xref: /netbsd-src/crypto/external/bsd/netpgp/dist/src/lib/packet-parse.c (revision 5c46dd73a9bcb28b2994504ea090f64066b17a77)
1 /*-
2  * Copyright (c) 2009 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Alistair Crooks (agc@NetBSD.org)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /*
30  * Copyright (c) 2005-2008 Nominet UK (www.nic.uk)
31  * All rights reserved.
32  * Contributors: Ben Laurie, Rachel Willmer. The Contributors have asserted
33  * their moral rights under the UK Copyright Design and Patents Act 1988 to
34  * be recorded as the authors of this copyright work.
35  *
36  * Licensed under the Apache License, Version 2.0 (the "License"); you may not
37  * use this file except in compliance with the License.
38  *
39  * You may obtain a copy of the License at
40  *     http://www.apache.org/licenses/LICENSE-2.0
41  *
42  * Unless required by applicable law or agreed to in writing, software
43  * distributed under the License is distributed on an "AS IS" BASIS,
44  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
45  *
46  * See the License for the specific language governing permissions and
47  * limitations under the License.
48  */
49 
50 /** \file
51  * \brief Parser for OpenPGP packets
52  */
53 #include "config.h"
54 
55 #ifdef HAVE_SYS_CDEFS_H
56 #include <sys/cdefs.h>
57 #endif
58 
59 #if defined(__NetBSD__)
60 __COPYRIGHT("@(#) Copyright (c) 2009 The NetBSD Foundation, Inc. All rights reserved.");
61 __RCSID("$NetBSD: packet-parse.c,v 1.36 2010/06/01 03:19:26 agc Exp $");
62 #endif
63 
64 #ifdef HAVE_OPENSSL_CAST_H
65 #include <openssl/cast.h>
66 #endif
67 
68 #include <stdarg.h>
69 #include <stdlib.h>
70 #include <string.h>
71 
72 #ifdef HAVE_UNISTD_H
73 #include <unistd.h>
74 #endif
75 
76 #ifdef HAVE_LIMITS_H
77 #include <limits.h>
78 #endif
79 
80 #include "packet.h"
81 #include "packet-parse.h"
82 #include "keyring.h"
83 #include "errors.h"
84 #include "packet-show.h"
85 #include "create.h"
86 #include "readerwriter.h"
87 #include "netpgpdefs.h"
88 #include "crypto.h"
89 #include "netpgpdigest.h"
90 
91 #define ERRP(cbinfo, cont, err)	do {					\
92 	cont.u.error = err;						\
93 	CALLBACK(OPS_PARSER_ERROR, cbinfo, &cont);			\
94 	return 0;							\
95 	/*NOTREACHED*/							\
96 } while(/*CONSTCOND*/0)
97 
98 /**
99  * limread_data reads the specified amount of the subregion's data
100  * into a data_t structure
101  *
102  * \param data	Empty structure which will be filled with data
103  * \param len	Number of octets to read
104  * \param subregion
105  * \param stream	How to parse
106  *
107  * \return 1 on success, 0 on failure
108  */
109 static int
110 limread_data(__ops_data_t *data, unsigned len,
111 		  __ops_region_t *subregion, __ops_stream_t *stream)
112 {
113 	data->len = len;
114 
115 	if (subregion->length - subregion->readc < len) {
116 		(void) fprintf(stderr, "limread_data: bad length\n");
117 		return 0;
118 	}
119 
120 	data->contents = calloc(1, data->len);
121 	if (!data->contents) {
122 		return 0;
123 	}
124 
125 	return __ops_limited_read(data->contents, data->len, subregion,
126 			&stream->errors, &stream->readinfo, &stream->cbinfo);
127 }
128 
129 /**
130  * read_data reads the remainder of the subregion's data
131  * into a data_t structure
132  *
133  * \param data
134  * \param subregion
135  * \param stream
136  *
137  * \return 1 on success, 0 on failure
138  */
139 static int
140 read_data(__ops_data_t *data, __ops_region_t *region, __ops_stream_t *stream)
141 {
142 	int	cc;
143 
144 	cc = region->length - region->readc;
145 	return (cc >= 0) ? limread_data(data, (unsigned)cc, region, stream) : 0;
146 }
147 
148 /**
149  * Reads the remainder of the subregion as a string.
150  * It is the user's responsibility to free the memory allocated here.
151  */
152 
153 static int
154 read_unsig_str(uint8_t **str, __ops_region_t *subregion,
155 		     __ops_stream_t *stream)
156 {
157 	size_t	len;
158 
159 	len = subregion->length - subregion->readc;
160 	if ((*str = calloc(1, len + 1)) == NULL) {
161 		return 0;
162 	}
163 	if (len &&
164 	    !__ops_limited_read(*str, len, subregion, &stream->errors,
165 				     &stream->readinfo, &stream->cbinfo)) {
166 		return 0;
167 	}
168 	(*str)[len] = '\0';
169 	return 1;
170 }
171 
172 static int
173 read_string(char **str, __ops_region_t *subregion, __ops_stream_t *stream)
174 {
175 	return read_unsig_str((uint8_t **) str, subregion, stream);
176 }
177 
178 void
179 __ops_init_subregion(__ops_region_t *subregion, __ops_region_t *region)
180 {
181 	(void) memset(subregion, 0x0, sizeof(*subregion));
182 	subregion->parent = region;
183 }
184 
185 /*
186  * XXX: replace __ops_ptag_t with something more appropriate for limiting reads
187  */
188 
189 /**
190  * low-level function to read data from reader function
191  *
192  * Use this function, rather than calling the reader directly.
193  *
194  * If the accumulate flag is set in *stream, the function
195  * adds the read data to the accumulated data, and updates
196  * the accumulated length. This is useful if, for example,
197  * the application wants access to the raw data as well as the
198  * parsed data.
199  *
200  * This function will also try to read the entire amount asked for, but not
201  * if it is over INT_MAX. Obviously many callers will know that they
202  * never ask for that much and so can avoid the extra complexity of
203  * dealing with return codes and filled-in lengths.
204  *
205  * \param *dest
206  * \param *plength
207  * \param flags
208  * \param *stream
209  *
210  * \return OPS_R_OK
211  * \return OPS_R_PARTIAL_READ
212  * \return OPS_R_EOF
213  * \return OPS_R_EARLY_EOF
214  *
215  * \sa #__ops_reader_ret_t for details of return codes
216  */
217 
218 static int
219 sub_base_read(void *dest, size_t length, __ops_error_t **errors,
220 	      __ops_reader_t *readinfo, __ops_cbdata_t *cbinfo)
221 {
222 	size_t          n;
223 
224 	/* reading more than this would look like an error */
225 	if (length > INT_MAX)
226 		length = INT_MAX;
227 
228 	for (n = 0; n < length;) {
229 		int	r;
230 
231 		r = readinfo->reader((char *) dest + n, length - n, errors,
232 				readinfo, cbinfo);
233 		if (r > (int)(length - n)) {
234 			(void) fprintf(stderr, "sub_base_read: bad read\n");
235 			return 0;
236 		}
237 		if (r < 0) {
238 			return r;
239 		}
240 		if (r == 0) {
241 			break;
242 		}
243 		n += (unsigned)r;
244 	}
245 
246 	if (n == 0) {
247 		return 0;
248 	}
249 	if (readinfo->accumulate) {
250 		if (readinfo->asize < readinfo->alength) {
251 			(void) fprintf(stderr, "sub_base_read: bad size\n");
252 			return 0;
253 		}
254 		if (readinfo->alength + n > readinfo->asize) {
255 			uint8_t	*temp;
256 
257 			readinfo->asize = (readinfo->asize * 2) + n;
258 			temp = realloc(readinfo->accumulated, readinfo->asize);
259 			if (temp == NULL) {
260 				(void) fprintf(stderr,
261 					"sub_base_read: bad alloc\n");
262 				return 0;
263 			}
264 			readinfo->accumulated = temp;
265 		}
266 		if (readinfo->asize < readinfo->alength + n) {
267 			(void) fprintf(stderr, "sub_base_read: bad realloc\n");
268 			return 0;
269 		}
270 		(void) memcpy(readinfo->accumulated + readinfo->alength, dest,
271 				n);
272 	}
273 	/* we track length anyway, because it is used for packet offsets */
274 	readinfo->alength += n;
275 	/* and also the position */
276 	readinfo->position += n;
277 
278 	return n;
279 }
280 
281 int
282 __ops_stacked_read(void *dest, size_t length, __ops_error_t **errors,
283 		 __ops_reader_t *readinfo, __ops_cbdata_t *cbinfo)
284 {
285 	return sub_base_read(dest, length, errors, readinfo->next, cbinfo);
286 }
287 
288 /* This will do a full read so long as length < MAX_INT */
289 static int
290 base_read(uint8_t *dest, size_t length, __ops_stream_t *stream)
291 {
292 	return sub_base_read(dest, length, &stream->errors, &stream->readinfo,
293 			     &stream->cbinfo);
294 }
295 
296 /*
297  * Read a full size_t's worth. If the return is < than length, then
298  * *last_read tells you why - < 0 for an error, == 0 for EOF
299  */
300 
301 static size_t
302 full_read(uint8_t *dest,
303 		size_t length,
304 		int *last_read,
305 		__ops_error_t **errors,
306 		__ops_reader_t *readinfo,
307 		__ops_cbdata_t *cbinfo)
308 {
309 	size_t          t;
310 	int             r = 0;	/* preset in case some loon calls with length
311 				 * == 0 */
312 
313 	for (t = 0; t < length;) {
314 		r = sub_base_read(dest + t, length - t, errors, readinfo,
315 				cbinfo);
316 		if (r <= 0) {
317 			*last_read = r;
318 			return t;
319 		}
320 		t += (size_t)r;
321 	}
322 
323 	*last_read = r;
324 
325 	return t;
326 }
327 
328 
329 
330 /** Read a scalar value of selected length from reader.
331  *
332  * Read an unsigned scalar value from reader in Big Endian representation.
333  *
334  * This function does not know or care about packet boundaries. It
335  * also assumes that an EOF is an error.
336  *
337  * \param *result	The scalar value is stored here
338  * \param *reader	Our reader
339  * \param length	How many bytes to read
340  * \return		1 on success, 0 on failure
341  */
342 static unsigned
343 _read_scalar(unsigned *result, unsigned length,
344 	     __ops_stream_t *stream)
345 {
346 	unsigned        t = 0;
347 
348 	if (length > sizeof(*result)) {
349 		(void) fprintf(stderr, "_read_scalar: bad length\n");
350 		return 0;
351 	}
352 
353 	while (length--) {
354 		uint8_t	c;
355 		int	r;
356 
357 		r = base_read(&c, 1, stream);
358 		if (r != 1)
359 			return 0;
360 		t = (t << 8) + c;
361 	}
362 
363 	*result = t;
364 	return 1;
365 }
366 
367 /**
368  * \ingroup Core_ReadPackets
369  * \brief Read bytes from a region within the packet.
370  *
371  * Read length bytes into the buffer pointed to by *dest.
372  * Make sure we do not read over the packet boundary.
373  * Updates the Packet Tag's __ops_ptag_t::readc.
374  *
375  * If length would make us read over the packet boundary, or if
376  * reading fails, we call the callback with an error.
377  *
378  * Note that if the region is indeterminate, this can return a short
379  * read - check region->last_read for the length. EOF is indicated by
380  * a success return and region->last_read == 0 in this case (for a
381  * region of known length, EOF is an error).
382  *
383  * This function makes sure to respect packet boundaries.
384  *
385  * \param dest		The destination buffer
386  * \param length	How many bytes to read
387  * \param region	Pointer to packet region
388  * \param errors    Error stack
389  * \param readinfo		Reader info
390  * \param cbinfo	Callback info
391  * \return		1 on success, 0 on error
392  */
393 unsigned
394 __ops_limited_read(uint8_t *dest,
395 			size_t length,
396 			__ops_region_t *region,
397 			__ops_error_t **errors,
398 			__ops_reader_t *readinfo,
399 			__ops_cbdata_t *cbinfo)
400 {
401 	size_t	r;
402 	int	lr;
403 
404 	if (!region->indeterminate &&
405 	    region->readc + length > region->length) {
406 		OPS_ERROR(errors, OPS_E_P_NOT_ENOUGH_DATA, "Not enough data");
407 		return 0;
408 	}
409 	r = full_read(dest, length, &lr, errors, readinfo, cbinfo);
410 	if (lr < 0) {
411 		OPS_ERROR(errors, OPS_E_R_READ_FAILED, "Read failed");
412 		return 0;
413 	}
414 	if (!region->indeterminate && r != length) {
415 		OPS_ERROR(errors, OPS_E_R_READ_FAILED, "Read failed");
416 		return 0;
417 	}
418 	region->last_read = r;
419 	do {
420 		region->readc += r;
421 		if (region->parent && region->length > region->parent->length) {
422 			(void) fprintf(stderr,
423 				"ops_limited_read: bad length\n");
424 			return 0;
425 		}
426 	} while ((region = region->parent) != NULL);
427 	return 1;
428 }
429 
430 /**
431    \ingroup Core_ReadPackets
432    \brief Call __ops_limited_read on next in stack
433 */
434 unsigned
435 __ops_stacked_limited_read(uint8_t *dest, unsigned length,
436 			 __ops_region_t *region,
437 			 __ops_error_t **errors,
438 			 __ops_reader_t *readinfo,
439 			 __ops_cbdata_t *cbinfo)
440 {
441 	return __ops_limited_read(dest, length, region, errors,
442 				readinfo->next, cbinfo);
443 }
444 
445 static unsigned
446 limread(uint8_t *dest, unsigned length,
447 	     __ops_region_t *region, __ops_stream_t *info)
448 {
449 	return __ops_limited_read(dest, length, region, &info->errors,
450 				&info->readinfo, &info->cbinfo);
451 }
452 
453 static unsigned
454 exact_limread(uint8_t *dest, unsigned len,
455 		   __ops_region_t *region,
456 		   __ops_stream_t *stream)
457 {
458 	unsigned   ret;
459 
460 	stream->exact_read = 1;
461 	ret = limread(dest, len, region, stream);
462 	stream->exact_read = 0;
463 	return ret;
464 }
465 
466 /** Skip over length bytes of this packet.
467  *
468  * Calls limread() to skip over some data.
469  *
470  * This function makes sure to respect packet boundaries.
471  *
472  * \param length	How many bytes to skip
473  * \param *region	Pointer to packet region
474  * \param *stream	How to parse
475  * \return		1 on success, 0 on error (calls the cb with OPS_PARSER_ERROR in limread()).
476  */
477 static int
478 limskip(unsigned length, __ops_region_t *region, __ops_stream_t *stream)
479 {
480 	uint8_t   buf[NETPGP_BUFSIZ];
481 
482 	while (length > 0) {
483 		unsigned	n = length % NETPGP_BUFSIZ;
484 
485 		if (!limread(buf, n, region, stream)) {
486 			return 0;
487 		}
488 		length -= n;
489 	}
490 	return 1;
491 }
492 
493 /** Read a scalar.
494  *
495  * Read a big-endian scalar of length bytes, respecting packet
496  * boundaries (by calling limread() to read the raw data).
497  *
498  * This function makes sure to respect packet boundaries.
499  *
500  * \param *dest		The scalar value is stored here
501  * \param length	How many bytes make up this scalar (at most 4)
502  * \param *region	Pointer to current packet region
503  * \param *stream	How to parse
504  * \param *cb		The callback
505  * \return		1 on success, 0 on error (calls the cb with OPS_PARSER_ERROR in limread()).
506  *
507  * \see RFC4880 3.1
508  */
509 static int
510 limread_scalar(unsigned *dest,
511 			unsigned len,
512 			__ops_region_t *region,
513 			__ops_stream_t *stream)
514 {
515 	uint8_t		c[4] = "";
516 	unsigned        t;
517 	unsigned        n;
518 
519 	if (len > 4) {
520 		(void) fprintf(stderr, "limread_scalar: bad length\n");
521 		return 0;
522 	}
523 	/*LINTED*/
524 	if (/*CONSTCOND*/sizeof(*dest) < 4) {
525 		(void) fprintf(stderr, "limread_scalar: bad dest\n");
526 		return 0;
527 	}
528 	if (!limread(c, len, region, stream)) {
529 		return 0;
530 	}
531 	for (t = 0, n = 0; n < len; ++n) {
532 		t = (t << 8) + c[n];
533 	}
534 	*dest = t;
535 	return 1;
536 }
537 
538 /** Read a scalar.
539  *
540  * Read a big-endian scalar of length bytes, respecting packet
541  * boundaries (by calling limread() to read the raw data).
542  *
543  * The value read is stored in a size_t, which is a different size
544  * from an unsigned on some platforms.
545  *
546  * This function makes sure to respect packet boundaries.
547  *
548  * \param *dest		The scalar value is stored here
549  * \param length	How many bytes make up this scalar (at most 4)
550  * \param *region	Pointer to current packet region
551  * \param *stream	How to parse
552  * \param *cb		The callback
553  * \return		1 on success, 0 on error (calls the cb with OPS_PARSER_ERROR in limread()).
554  *
555  * \see RFC4880 3.1
556  */
557 static int
558 limread_size_t(size_t *dest,
559 				unsigned length,
560 				__ops_region_t *region,
561 				__ops_stream_t *stream)
562 {
563 	unsigned        tmp;
564 
565 	/*
566 	 * Note that because the scalar is at most 4 bytes, we don't care if
567 	 * size_t is bigger than usigned
568 	 */
569 	if (!limread_scalar(&tmp, length, region, stream))
570 		return 0;
571 
572 	*dest = tmp;
573 	return 1;
574 }
575 
576 /** Read a timestamp.
577  *
578  * Timestamps in OpenPGP are unix time, i.e. seconds since The Epoch (1.1.1970).  They are stored in an unsigned scalar
579  * of 4 bytes.
580  *
581  * This function reads the timestamp using limread_scalar().
582  *
583  * This function makes sure to respect packet boundaries.
584  *
585  * \param *dest		The timestamp is stored here
586  * \param *ptag		Pointer to current packet's Packet Tag.
587  * \param *reader	Our reader
588  * \param *cb		The callback
589  * \return		see limread_scalar()
590  *
591  * \see RFC4880 3.5
592  */
593 static int
594 limited_read_time(time_t *dest, __ops_region_t *region,
595 		  __ops_stream_t *stream)
596 {
597 	uint8_t	c;
598 	time_t	mytime = 0;
599 	int	i;
600 
601 	/*
602          * Cannot assume that time_t is 4 octets long -
603 	 * SunOS 5.10 and NetBSD both have 64-bit time_ts.
604          */
605 	if (/* CONSTCOND */sizeof(time_t) == 4) {
606 		return limread_scalar((unsigned *)(void *)dest, 4, region, stream);
607 	}
608 	for (i = 0; i < 4; i++) {
609 		if (!limread(&c, 1, region, stream)) {
610 			return 0;
611 		}
612 		mytime = (mytime << 8) + c;
613 	}
614 	*dest = mytime;
615 	return 1;
616 }
617 
618 /**
619  * \ingroup Core_MPI
620  * Read a multiprecision integer.
621  *
622  * Large numbers (multiprecision integers, MPI) are stored in OpenPGP in two parts.  First there is a 2 byte scalar
623  * indicating the length of the following MPI in Bits.  Then follow the bits that make up the actual number, most
624  * significant bits first (Big Endian).  The most significant bit in the MPI is supposed to be 1 (unless the MPI is
625  * encrypted - then it may be different as the bit count refers to the plain text but the bits are encrypted).
626  *
627  * Unused bits (i.e. those filling up the most significant byte from the left to the first bits that counts) are
628  * supposed to be cleared - I guess. XXX - does anything actually say so?
629  *
630  * This function makes sure to respect packet boundaries.
631  *
632  * \param **pgn		return the integer there - the BIGNUM is created by BN_bin2bn() and probably needs to be freed
633  * 				by the caller XXX right ben?
634  * \param *ptag		Pointer to current packet's Packet Tag.
635  * \param *reader	Our reader
636  * \param *cb		The callback
637  * \return		1 on success, 0 on error (by limread_scalar() or limread() or if the MPI is not properly formed (XXX
638  * 				 see comment below - the callback is called with a OPS_PARSER_ERROR in case of an error)
639  *
640  * \see RFC4880 3.2
641  */
642 static int
643 limread_mpi(BIGNUM **pbn, __ops_region_t *region, __ops_stream_t *stream)
644 {
645 	uint8_t   buf[NETPGP_BUFSIZ] = "";
646 					/* an MPI has a 2 byte length part.
647 					 * Length is given in bits, so the
648 					 * largest we should ever need for
649 					 * the buffer is NETPGP_BUFSIZ bytes. */
650 	unsigned        length;
651 	unsigned        nonzero;
652 	unsigned	ret;
653 
654 	stream->reading_mpi_len = 1;
655 	ret = (unsigned)limread_scalar(&length, 2, region, stream);
656 
657 	stream->reading_mpi_len = 0;
658 	if (!ret)
659 		return 0;
660 
661 	nonzero = length & 7;	/* there should be this many zero bits in the
662 				 * MS byte */
663 	if (!nonzero)
664 		nonzero = 8;
665 	length = (length + 7) / 8;
666 
667 	if (length == 0) {
668 		/* if we try to read a length of 0, then fail */
669 		if (__ops_get_debug_level(__FILE__)) {
670 			(void) fprintf(stderr, "limread_mpi: 0 length\n");
671 		}
672 		return 0;
673 	}
674 	if (length > NETPGP_BUFSIZ) {
675 		(void) fprintf(stderr, "limread_mpi: bad length\n");
676 		return 0;
677 	}
678 	if (!limread(buf, length, region, stream)) {
679 		return 0;
680 	}
681 	if (((unsigned)buf[0] >> nonzero) != 0 ||
682 	    !((unsigned)buf[0] & (1U << (nonzero - 1U)))) {
683 		OPS_ERROR(&stream->errors, OPS_E_P_MPI_FORMAT_ERROR, "MPI Format error");
684 		/* XXX: Ben, one part of
685 		 * this constraint does
686 		 * not apply to
687 		 * encrypted MPIs the
688 		 * draft says. -- peter */
689 		return 0;
690 	}
691 	*pbn = BN_bin2bn(buf, (int)length, NULL);
692 	return 1;
693 }
694 
695 /** Read some data with a New-Format length from reader.
696  *
697  * \sa Internet-Draft RFC4880.txt Section 4.2.2
698  *
699  * \param *length	Where the decoded length will be put
700  * \param *stream	How to parse
701  * \return		1 if OK, else 0
702  *
703  */
704 
705 static unsigned
706 read_new_length(unsigned *length, __ops_stream_t *stream)
707 {
708 	uint8_t   c;
709 
710 	if (base_read(&c, 1, stream) != 1)
711 		return 0;
712 	if (c < 192) {
713 		/* 1. One-octet packet */
714 		*length = c;
715 		return 1;
716 	} else if (c >= 192 && c <= 223) {
717 		/* 2. Two-octet packet */
718 		unsigned        t = (c - 192) << 8;
719 
720 		if (base_read(&c, 1, stream) != 1)
721 			return 0;
722 		*length = t + c + 192;
723 		return 1;
724 	} else if (c == 255) {
725 		/* 3. Five-Octet packet */
726 		return _read_scalar(length, 4, stream);
727 	} else if (c >= 224 && c < 255) {
728 		/* 4. Partial Body Length */
729 		/* XXX - agc - gpg multi-recipient encryption uses this */
730 		OPS_ERROR(&stream->errors, OPS_E_UNIMPLEMENTED,
731 		"New format Partial Body Length fields not yet implemented");
732 		return 0;
733 	}
734 	return 0;
735 }
736 
737 /** Read the length information for a new format Packet Tag.
738  *
739  * New style Packet Tags encode the length in one to five octets.  This function reads the right amount of bytes and
740  * decodes it to the proper length information.
741  *
742  * This function makes sure to respect packet boundaries.
743  *
744  * \param *length	return the length here
745  * \param *ptag		Pointer to current packet's Packet Tag.
746  * \param *reader	Our reader
747  * \param *cb		The callback
748  * \return		1 on success, 0 on error (by limread_scalar() or limread() or if the MPI is not properly formed (XXX
749  * 				 see comment below)
750  *
751  * \see RFC4880 4.2.2
752  * \see __ops_ptag_t
753  */
754 static int
755 limited_read_new_length(unsigned *length, __ops_region_t *region,
756 			__ops_stream_t *stream)
757 {
758 	uint8_t   c = 0x0;
759 
760 	if (!limread(&c, 1, region, stream)) {
761 		return 0;
762 	}
763 	if (c < 192) {
764 		*length = c;
765 		return 1;
766 	}
767 	if (c < 255) {
768 		unsigned        t = (c - 192) << 8;
769 
770 		if (!limread(&c, 1, region, stream)) {
771 			return 0;
772 		}
773 		*length = t + c + 192;
774 		return 1;
775 	}
776 	return limread_scalar(length, 4, region, stream);
777 }
778 
779 /**
780 \ingroup Core_Create
781 \brief Free allocated memory
782 */
783 void
784 __ops_data_free(__ops_data_t *data)
785 {
786 	free(data->contents);
787 	data->contents = NULL;
788 	data->len = 0;
789 }
790 
791 /**
792 \ingroup Core_Create
793 \brief Free allocated memory
794 */
795 static void
796 string_free(char **str)
797 {
798 	free(*str);
799 	*str = NULL;
800 }
801 
802 /**
803 \ingroup Core_Create
804 \brief Free allocated memory
805 */
806 /* ! Free packet memory, set pointer to NULL */
807 void
808 __ops_subpacket_free(__ops_subpacket_t *packet)
809 {
810 	free(packet->raw);
811 	packet->raw = NULL;
812 }
813 
814 /**
815 \ingroup Core_Create
816 \brief Free allocated memory
817 */
818 static void
819 __ops_headers_free(__ops_headers_t *headers)
820 {
821 	unsigned        n;
822 
823 	for (n = 0; n < headers->headerc; ++n) {
824 		free(headers->headers[n].key);
825 		free(headers->headers[n].value);
826 	}
827 	free(headers->headers);
828 	headers->headers = NULL;
829 }
830 
831 /**
832 \ingroup Core_Create
833 \brief Free allocated memory
834 */
835 static void
836 cleartext_trailer_free(struct _ops_hash_t **trailer)
837 {
838 	free(*trailer);
839 	*trailer = NULL;
840 }
841 
842 /**
843 \ingroup Core_Create
844 \brief Free allocated memory
845 */
846 static void
847 __ops_cmd_get_passphrase_free(__ops_seckey_passphrase_t *skp)
848 {
849 	if (skp->passphrase && *skp->passphrase) {
850 		free(*skp->passphrase);
851 		*skp->passphrase = NULL;
852 	}
853 }
854 
855 /**
856 \ingroup Core_Create
857 \brief Free allocated memory
858 */
859 static void
860 free_BN(BIGNUM **pp)
861 {
862 	BN_free(*pp);
863 	*pp = NULL;
864 }
865 
866 /**
867  * \ingroup Core_Create
868  * \brief Free the memory used when parsing a signature
869  * \param sig
870  */
871 static void
872 sig_free(__ops_sig_t *sig)
873 {
874 	switch (sig->info.key_alg) {
875 	case OPS_PKA_RSA:
876 	case OPS_PKA_RSA_SIGN_ONLY:
877 		free_BN(&sig->info.sig.rsa.sig);
878 		break;
879 
880 	case OPS_PKA_DSA:
881 		free_BN(&sig->info.sig.dsa.r);
882 		free_BN(&sig->info.sig.dsa.s);
883 		break;
884 
885 	case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN:
886 		free_BN(&sig->info.sig.elgamal.r);
887 		free_BN(&sig->info.sig.elgamal.s);
888 		break;
889 
890 	case OPS_PKA_PRIVATE00:
891 	case OPS_PKA_PRIVATE01:
892 	case OPS_PKA_PRIVATE02:
893 	case OPS_PKA_PRIVATE03:
894 	case OPS_PKA_PRIVATE04:
895 	case OPS_PKA_PRIVATE05:
896 	case OPS_PKA_PRIVATE06:
897 	case OPS_PKA_PRIVATE07:
898 	case OPS_PKA_PRIVATE08:
899 	case OPS_PKA_PRIVATE09:
900 	case OPS_PKA_PRIVATE10:
901 		__ops_data_free(&sig->info.sig.unknown);
902 		break;
903 
904 	default:
905 		(void) fprintf(stderr, "sig_free: bad sig type\n");
906 	}
907 }
908 
909 /**
910 \ingroup Core_Create
911 \brief Free allocated memory
912 */
913 /* ! Free any memory allocated when parsing the packet content */
914 void
915 __ops_parser_content_free(__ops_packet_t *c)
916 {
917 	switch (c->tag) {
918 	case OPS_PARSER_PTAG:
919 	case OPS_PTAG_CT_COMPRESSED:
920 	case OPS_PTAG_SS_CREATION_TIME:
921 	case OPS_PTAG_SS_EXPIRATION_TIME:
922 	case OPS_PTAG_SS_KEY_EXPIRY:
923 	case OPS_PTAG_SS_TRUST:
924 	case OPS_PTAG_SS_ISSUER_KEY_ID:
925 	case OPS_PTAG_CT_1_PASS_SIG:
926 	case OPS_PTAG_SS_PRIMARY_USER_ID:
927 	case OPS_PTAG_SS_REVOCABLE:
928 	case OPS_PTAG_SS_REVOCATION_KEY:
929 	case OPS_PTAG_CT_LITDATA_HEADER:
930 	case OPS_PTAG_CT_LITDATA_BODY:
931 	case OPS_PTAG_CT_SIGNED_CLEARTEXT_BODY:
932 	case OPS_PTAG_CT_UNARMOURED_TEXT:
933 	case OPS_PTAG_CT_ARMOUR_TRAILER:
934 	case OPS_PTAG_CT_SIGNATURE_HEADER:
935 	case OPS_PTAG_CT_SE_DATA_HEADER:
936 	case OPS_PTAG_CT_SE_IP_DATA_HEADER:
937 	case OPS_PTAG_CT_SE_IP_DATA_BODY:
938 	case OPS_PTAG_CT_MDC:
939 	case OPS_GET_SECKEY:
940 		break;
941 
942 	case OPS_PTAG_CT_SIGNED_CLEARTEXT_HEADER:
943 		__ops_headers_free(&c->u.cleartext_head);
944 		break;
945 
946 	case OPS_PTAG_CT_ARMOUR_HEADER:
947 		__ops_headers_free(&c->u.armour_header.headers);
948 		break;
949 
950 	case OPS_PTAG_CT_SIGNED_CLEARTEXT_TRAILER:
951 		cleartext_trailer_free(&c->u.cleartext_trailer);
952 		break;
953 
954 	case OPS_PTAG_CT_TRUST:
955 		__ops_data_free(&c->u.trust);
956 		break;
957 
958 	case OPS_PTAG_CT_SIGNATURE:
959 	case OPS_PTAG_CT_SIGNATURE_FOOTER:
960 		sig_free(&c->u.sig);
961 		break;
962 
963 	case OPS_PTAG_CT_PUBLIC_KEY:
964 	case OPS_PTAG_CT_PUBLIC_SUBKEY:
965 		__ops_pubkey_free(&c->u.pubkey);
966 		break;
967 
968 	case OPS_PTAG_CT_USER_ID:
969 		__ops_userid_free(&c->u.userid);
970 		break;
971 
972 	case OPS_PTAG_SS_SIGNERS_USER_ID:
973 		__ops_userid_free(&c->u.ss_signer);
974 		break;
975 
976 	case OPS_PTAG_CT_USER_ATTR:
977 		__ops_data_free(&c->u.userattr);
978 		break;
979 
980 	case OPS_PTAG_SS_PREFERRED_SKA:
981 		__ops_data_free(&c->u.ss_skapref);
982 		break;
983 
984 	case OPS_PTAG_SS_PREFERRED_HASH:
985 		__ops_data_free(&c->u.ss_hashpref);
986 		break;
987 
988 	case OPS_PTAG_SS_PREF_COMPRESS:
989 		__ops_data_free(&c->u.ss_zpref);
990 		break;
991 
992 	case OPS_PTAG_SS_KEY_FLAGS:
993 		__ops_data_free(&c->u.ss_key_flags);
994 		break;
995 
996 	case OPS_PTAG_SS_KEYSERV_PREFS:
997 		__ops_data_free(&c->u.ss_key_server_prefs);
998 		break;
999 
1000 	case OPS_PTAG_SS_FEATURES:
1001 		__ops_data_free(&c->u.ss_features);
1002 		break;
1003 
1004 	case OPS_PTAG_SS_NOTATION_DATA:
1005 		__ops_data_free(&c->u.ss_notation.name);
1006 		__ops_data_free(&c->u.ss_notation.value);
1007 		break;
1008 
1009 	case OPS_PTAG_SS_REGEXP:
1010 		string_free(&c->u.ss_regexp);
1011 		break;
1012 
1013 	case OPS_PTAG_SS_POLICY_URI:
1014 		string_free(&c->u.ss_policy);
1015 		break;
1016 
1017 	case OPS_PTAG_SS_PREF_KEYSERV:
1018 		string_free(&c->u.ss_keyserv);
1019 		break;
1020 
1021 	case OPS_PTAG_SS_USERDEFINED00:
1022 	case OPS_PTAG_SS_USERDEFINED01:
1023 	case OPS_PTAG_SS_USERDEFINED02:
1024 	case OPS_PTAG_SS_USERDEFINED03:
1025 	case OPS_PTAG_SS_USERDEFINED04:
1026 	case OPS_PTAG_SS_USERDEFINED05:
1027 	case OPS_PTAG_SS_USERDEFINED06:
1028 	case OPS_PTAG_SS_USERDEFINED07:
1029 	case OPS_PTAG_SS_USERDEFINED08:
1030 	case OPS_PTAG_SS_USERDEFINED09:
1031 	case OPS_PTAG_SS_USERDEFINED10:
1032 		__ops_data_free(&c->u.ss_userdef);
1033 		break;
1034 
1035 	case OPS_PTAG_SS_RESERVED:
1036 		__ops_data_free(&c->u.ss_unknown);
1037 		break;
1038 
1039 	case OPS_PTAG_SS_REVOCATION_REASON:
1040 		string_free(&c->u.ss_revocation.reason);
1041 		break;
1042 
1043 	case OPS_PTAG_SS_EMBEDDED_SIGNATURE:
1044 		__ops_data_free(&c->u.ss_embedded_sig);
1045 		break;
1046 
1047 	case OPS_PARSER_PACKET_END:
1048 		__ops_subpacket_free(&c->u.packet);
1049 		break;
1050 
1051 	case OPS_PARSER_ERROR:
1052 	case OPS_PARSER_ERRCODE:
1053 		break;
1054 
1055 	case OPS_PTAG_CT_SECRET_KEY:
1056 	case OPS_PTAG_CT_ENCRYPTED_SECRET_KEY:
1057 		__ops_seckey_free(&c->u.seckey);
1058 		break;
1059 
1060 	case OPS_PTAG_CT_PK_SESSION_KEY:
1061 	case OPS_PTAG_CT_ENCRYPTED_PK_SESSION_KEY:
1062 		__ops_pk_sesskey_free(&c->u.pk_sesskey);
1063 		break;
1064 
1065 	case OPS_GET_PASSPHRASE:
1066 		__ops_cmd_get_passphrase_free(&c->u.skey_passphrase);
1067 		break;
1068 
1069 	default:
1070 		fprintf(stderr, "Can't free %d (0x%x)\n", c->tag, c->tag);
1071 	}
1072 }
1073 
1074 /**
1075 \ingroup Core_Create
1076 \brief Free allocated memory
1077 */
1078 void
1079 __ops_pk_sesskey_free(__ops_pk_sesskey_t *sk)
1080 {
1081 	switch (sk->alg) {
1082 	case OPS_PKA_RSA:
1083 		free_BN(&sk->params.rsa.encrypted_m);
1084 		break;
1085 
1086 	case OPS_PKA_ELGAMAL:
1087 		free_BN(&sk->params.elgamal.g_to_k);
1088 		free_BN(&sk->params.elgamal.encrypted_m);
1089 		break;
1090 
1091 	default:
1092 		(void) fprintf(stderr, "__ops_pk_sesskey_free: bad alg\n");
1093 		break;
1094 	}
1095 }
1096 
1097 /**
1098 \ingroup Core_Create
1099 \brief Free allocated memory
1100 */
1101 /* ! Free the memory used when parsing a public key */
1102 void
1103 __ops_pubkey_free(__ops_pubkey_t *p)
1104 {
1105 	switch (p->alg) {
1106 	case OPS_PKA_RSA:
1107 	case OPS_PKA_RSA_ENCRYPT_ONLY:
1108 	case OPS_PKA_RSA_SIGN_ONLY:
1109 		free_BN(&p->key.rsa.n);
1110 		free_BN(&p->key.rsa.e);
1111 		break;
1112 
1113 	case OPS_PKA_DSA:
1114 		free_BN(&p->key.dsa.p);
1115 		free_BN(&p->key.dsa.q);
1116 		free_BN(&p->key.dsa.g);
1117 		free_BN(&p->key.dsa.y);
1118 		break;
1119 
1120 	case OPS_PKA_ELGAMAL:
1121 	case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN:
1122 		free_BN(&p->key.elgamal.p);
1123 		free_BN(&p->key.elgamal.g);
1124 		free_BN(&p->key.elgamal.y);
1125 		break;
1126 
1127 	case OPS_PKA_NOTHING:
1128 		/* nothing to free */
1129 		break;
1130 
1131 	default:
1132 		(void) fprintf(stderr, "__ops_pubkey_free: bad alg\n");
1133 	}
1134 }
1135 
1136 /**
1137    \ingroup Core_ReadPackets
1138 */
1139 static int
1140 parse_pubkey_data(__ops_pubkey_t *key, __ops_region_t *region,
1141 		      __ops_stream_t *stream)
1142 {
1143 	uint8_t   c = 0x0;
1144 
1145 	if (region->readc != 0) {
1146 		/* We should not have read anything so far */
1147 		(void) fprintf(stderr, "parse_pubkey_data: bad length\n");
1148 		return 0;
1149 	}
1150 	if (!limread(&c, 1, region, stream)) {
1151 		return 0;
1152 	}
1153 	key->version = (__ops_version_t)c;
1154 	switch (key->version) {
1155 	case OPS_V2:
1156 	case OPS_V3:
1157 	case OPS_V4:
1158 		break;
1159 	default:
1160 		OPS_ERROR_1(&stream->errors, OPS_E_PROTO_BAD_PUBLIC_KEY_VRSN,
1161 			    "Bad public key version (0x%02x)", key->version);
1162 		return 0;
1163 	}
1164 	if (!limited_read_time(&key->birthtime, region, stream)) {
1165 		return 0;
1166 	}
1167 
1168 	key->days_valid = 0;
1169 	if ((key->version == 2 || key->version == 3) &&
1170 	    !limread_scalar(&key->days_valid, 2, region, stream)) {
1171 		return 0;
1172 	}
1173 
1174 	if (!limread(&c, 1, region, stream)) {
1175 		return 0;
1176 	}
1177 	key->alg = c;
1178 
1179 	switch (key->alg) {
1180 	case OPS_PKA_DSA:
1181 		if (!limread_mpi(&key->key.dsa.p, region, stream) ||
1182 		    !limread_mpi(&key->key.dsa.q, region, stream) ||
1183 		    !limread_mpi(&key->key.dsa.g, region, stream) ||
1184 		    !limread_mpi(&key->key.dsa.y, region, stream)) {
1185 			return 0;
1186 		}
1187 		break;
1188 
1189 	case OPS_PKA_RSA:
1190 	case OPS_PKA_RSA_ENCRYPT_ONLY:
1191 	case OPS_PKA_RSA_SIGN_ONLY:
1192 		if (!limread_mpi(&key->key.rsa.n, region, stream) ||
1193 		    !limread_mpi(&key->key.rsa.e, region, stream)) {
1194 			return 0;
1195 		}
1196 		break;
1197 
1198 	case OPS_PKA_ELGAMAL:
1199 	case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN:
1200 		if (!limread_mpi(&key->key.elgamal.p, region, stream) ||
1201 		    !limread_mpi(&key->key.elgamal.g, region, stream) ||
1202 		    !limread_mpi(&key->key.elgamal.y, region, stream)) {
1203 			return 0;
1204 		}
1205 		break;
1206 
1207 	default:
1208 		OPS_ERROR_1(&stream->errors,
1209 			OPS_E_ALG_UNSUPPORTED_PUBLIC_KEY_ALG,
1210 			"Unsupported Public Key algorithm (%s)",
1211 			__ops_show_pka(key->alg));
1212 		return 0;
1213 	}
1214 
1215 	return 1;
1216 }
1217 
1218 
1219 /**
1220  * \ingroup Core_ReadPackets
1221  * \brief Parse a public key packet.
1222  *
1223  * This function parses an entire v3 (== v2) or v4 public key packet for RSA, ElGamal, and DSA keys.
1224  *
1225  * Once the key has been parsed successfully, it is passed to the callback.
1226  *
1227  * \param *ptag		Pointer to the current Packet Tag.  This function should consume the entire packet.
1228  * \param *reader	Our reader
1229  * \param *cb		The callback
1230  * \return		1 on success, 0 on error
1231  *
1232  * \see RFC4880 5.5.2
1233  */
1234 static int
1235 parse_pubkey(__ops_content_enum tag, __ops_region_t *region,
1236 		 __ops_stream_t *stream)
1237 {
1238 	__ops_packet_t pkt;
1239 
1240 	if (!parse_pubkey_data(&pkt.u.pubkey, region, stream))
1241 		return 0;
1242 
1243 	/* XXX: this test should be done for all packets, surely? */
1244 	if (region->readc != region->length) {
1245 		OPS_ERROR_1(&stream->errors, OPS_E_R_UNCONSUMED_DATA,
1246 			    "Unconsumed data (%d)", region->length - region->readc);
1247 		return 0;
1248 	}
1249 	CALLBACK(tag, &stream->cbinfo, &pkt);
1250 
1251 	return 1;
1252 }
1253 
1254 /**
1255  * \ingroup Core_ReadPackets
1256  * \brief Parse one user attribute packet.
1257  *
1258  * User attribute packets contain one or more attribute subpackets.
1259  * For now, handle the whole packet as raw data.
1260  */
1261 
1262 static int
1263 parse_userattr(__ops_region_t *region, __ops_stream_t *stream)
1264 {
1265 
1266 	__ops_packet_t pkt;
1267 
1268 	/*
1269 	 * xxx- treat as raw data for now. Could break down further into
1270 	 * attribute sub-packets later - rachel
1271 	 */
1272 	if (region->readc != 0) {
1273 		/* We should not have read anything so far */
1274 		(void) fprintf(stderr, "parse_userattr: bad length\n");
1275 		return 0;
1276 	}
1277 	if (!read_data(&pkt.u.userattr, region, stream)) {
1278 		return 0;
1279 	}
1280 	CALLBACK(OPS_PTAG_CT_USER_ATTR, &stream->cbinfo, &pkt);
1281 	return 1;
1282 }
1283 
1284 /**
1285 \ingroup Core_Create
1286 \brief Free allocated memory
1287 */
1288 /* ! Free the memory used when parsing this packet type */
1289 void
1290 __ops_userid_free(uint8_t **id)
1291 {
1292 	free(*id);
1293 	*id = NULL;
1294 }
1295 
1296 /**
1297  * \ingroup Core_ReadPackets
1298  * \brief Parse a user id.
1299  *
1300  * This function parses an user id packet, which is basically just a char array the size of the packet.
1301  *
1302  * The char array is to be treated as an UTF-8 string.
1303  *
1304  * The userid gets null terminated by this function.  Freeing it is the responsibility of the caller.
1305  *
1306  * Once the userid has been parsed successfully, it is passed to the callback.
1307  *
1308  * \param *ptag		Pointer to the Packet Tag.  This function should consume the entire packet.
1309  * \param *reader	Our reader
1310  * \param *cb		The callback
1311  * \return		1 on success, 0 on error
1312  *
1313  * \see RFC4880 5.11
1314  */
1315 static int
1316 parse_userid(__ops_region_t *region, __ops_stream_t *stream)
1317 {
1318 	__ops_packet_t pkt;
1319 
1320 	 if (region->readc != 0) {
1321 		/* We should not have read anything so far */
1322 		(void) fprintf(stderr, "parse_userid: bad length\n");
1323 		return 0;
1324 	}
1325 
1326 	if ((pkt.u.userid = calloc(1, region->length + 1)) == NULL) {
1327 		(void) fprintf(stderr, "parse_userid: bad alloc\n");
1328 		return 0;
1329 	}
1330 
1331 	if (region->length &&
1332 	    !limread(pkt.u.userid, region->length, region,
1333 			stream)) {
1334 		return 0;
1335 	}
1336 	pkt.u.userid[region->length] = 0x0;
1337 	CALLBACK(OPS_PTAG_CT_USER_ID, &stream->cbinfo, &pkt);
1338 	return 1;
1339 }
1340 
1341 static __ops_hash_t     *
1342 parse_hash_find(__ops_stream_t *stream, const uint8_t *keyid)
1343 {
1344 	__ops_hashtype_t	*hp;
1345 	size_t			 n;
1346 
1347 	for (n = 0, hp = stream->hashes; n < stream->hashc; n++, hp++) {
1348 		if (memcmp(hp->keyid, keyid, OPS_KEY_ID_SIZE) == 0) {
1349 			return &hp->hash;
1350 		}
1351 	}
1352 	return NULL;
1353 }
1354 
1355 /**
1356  * \ingroup Core_Parse
1357  * \brief Parse a version 3 signature.
1358  *
1359  * This function parses an version 3 signature packet, handling RSA and DSA signatures.
1360  *
1361  * Once the signature has been parsed successfully, it is passed to the callback.
1362  *
1363  * \param *ptag		Pointer to the Packet Tag.  This function should consume the entire packet.
1364  * \param *reader	Our reader
1365  * \param *cb		The callback
1366  * \return		1 on success, 0 on error
1367  *
1368  * \see RFC4880 5.2.2
1369  */
1370 static int
1371 parse_v3_sig(__ops_region_t *region,
1372 		   __ops_stream_t *stream)
1373 {
1374 	__ops_packet_t	pkt;
1375 	uint8_t		c = 0x0;
1376 
1377 	/* clear signature */
1378 	(void) memset(&pkt.u.sig, 0x0, sizeof(pkt.u.sig));
1379 
1380 	pkt.u.sig.info.version = OPS_V3;
1381 
1382 	/* hash info length */
1383 	if (!limread(&c, 1, region, stream)) {
1384 		return 0;
1385 	}
1386 	if (c != 5) {
1387 		ERRP(&stream->cbinfo, pkt, "bad hash info length");
1388 	}
1389 
1390 	if (!limread(&c, 1, region, stream)) {
1391 		return 0;
1392 	}
1393 	pkt.u.sig.info.type = (__ops_sig_type_t)c;
1394 	/* XXX: check signature type */
1395 
1396 	if (!limited_read_time(&pkt.u.sig.info.birthtime, region, stream)) {
1397 		return 0;
1398 	}
1399 	pkt.u.sig.info.birthtime_set = 1;
1400 
1401 	if (!limread(pkt.u.sig.info.signer_id, OPS_KEY_ID_SIZE, region,
1402 			stream)) {
1403 		return 0;
1404 	}
1405 	pkt.u.sig.info.signer_id_set = 1;
1406 
1407 	if (!limread(&c, 1, region, stream)) {
1408 		return 0;
1409 	}
1410 	pkt.u.sig.info.key_alg = (__ops_pubkey_alg_t)c;
1411 	/* XXX: check algorithm */
1412 
1413 	if (!limread(&c, 1, region, stream)) {
1414 		return 0;
1415 	}
1416 	pkt.u.sig.info.hash_alg = (__ops_hash_alg_t)c;
1417 	/* XXX: check algorithm */
1418 
1419 	if (!limread(pkt.u.sig.hash2, 2, region, stream)) {
1420 		return 0;
1421 	}
1422 
1423 	switch (pkt.u.sig.info.key_alg) {
1424 	case OPS_PKA_RSA:
1425 	case OPS_PKA_RSA_SIGN_ONLY:
1426 		if (!limread_mpi(&pkt.u.sig.info.sig.rsa.sig, region, stream)) {
1427 			return 0;
1428 		}
1429 		break;
1430 
1431 	case OPS_PKA_DSA:
1432 		if (!limread_mpi(&pkt.u.sig.info.sig.dsa.r, region, stream) ||
1433 		    !limread_mpi(&pkt.u.sig.info.sig.dsa.s, region, stream)) {
1434 			return 0;
1435 		}
1436 		break;
1437 
1438 	case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN:
1439 		if (!limread_mpi(&pkt.u.sig.info.sig.elgamal.r, region,
1440 				stream) ||
1441 		    !limread_mpi(&pkt.u.sig.info.sig.elgamal.s, region,
1442 		    		stream)) {
1443 			return 0;
1444 		}
1445 		break;
1446 
1447 	default:
1448 		OPS_ERROR_1(&stream->errors,
1449 			OPS_E_ALG_UNSUPPORTED_SIGNATURE_ALG,
1450 			"Unsupported signature key algorithm (%s)",
1451 			__ops_show_pka(pkt.u.sig.info.key_alg));
1452 		return 0;
1453 	}
1454 
1455 	if (region->readc != region->length) {
1456 		OPS_ERROR_1(&stream->errors, OPS_E_R_UNCONSUMED_DATA,
1457 			"Unconsumed data (%d)",
1458 			region->length - region->readc);
1459 		return 0;
1460 	}
1461 	if (pkt.u.sig.info.signer_id_set) {
1462 		pkt.u.sig.hash = parse_hash_find(stream,
1463 				pkt.u.sig.info.signer_id);
1464 	}
1465 	CALLBACK(OPS_PTAG_CT_SIGNATURE, &stream->cbinfo, &pkt);
1466 	return 1;
1467 }
1468 
1469 /**
1470  * \ingroup Core_ReadPackets
1471  * \brief Parse one signature sub-packet.
1472  *
1473  * Version 4 signatures can have an arbitrary amount of (hashed and
1474  * unhashed) subpackets.  Subpackets are used to hold optional
1475  * attributes of subpackets.
1476  *
1477  * This function parses one such signature subpacket.
1478  *
1479  * Once the subpacket has been parsed successfully, it is passed to the callback.
1480  *
1481  * \param *ptag		Pointer to the Packet Tag.  This function should consume the entire subpacket.
1482  * \param *reader	Our reader
1483  * \param *cb		The callback
1484  * \return		1 on success, 0 on error
1485  *
1486  * \see RFC4880 5.2.3
1487  */
1488 static int
1489 parse_one_sig_subpacket(__ops_sig_t *sig,
1490 			      __ops_region_t *region,
1491 			      __ops_stream_t *stream)
1492 {
1493 	__ops_region_t	subregion;
1494 	__ops_packet_t	pkt;
1495 	uint8_t		bools = 0x0;
1496 	uint8_t		c = 0x0;
1497 	unsigned	doread = 1;
1498 	unsigned        t8;
1499 	unsigned        t7;
1500 
1501 	__ops_init_subregion(&subregion, region);
1502 	if (!limited_read_new_length(&subregion.length, region, stream)) {
1503 		return 0;
1504 	}
1505 
1506 	if (subregion.length > region->length) {
1507 		ERRP(&stream->cbinfo, pkt, "Subpacket too long");
1508 	}
1509 
1510 	if (!limread(&c, 1, &subregion, stream)) {
1511 		return 0;
1512 	}
1513 
1514 	t8 = (c & 0x7f) / 8;
1515 	t7 = 1 << (c & 7);
1516 
1517 	pkt.critical = (unsigned)c >> 7;
1518 	pkt.tag = (__ops_content_enum)(OPS_PTAG_SIG_SUBPKT_BASE + (c & 0x7f));
1519 
1520 	/* Application wants it delivered raw */
1521 	if (stream->ss_raw[t8] & t7) {
1522 		pkt.u.ss_raw.tag = pkt.tag;
1523 		pkt.u.ss_raw.length = subregion.length - 1;
1524 		pkt.u.ss_raw.raw = calloc(1, pkt.u.ss_raw.length);
1525 		if (pkt.u.ss_raw.raw == NULL) {
1526 			(void) fprintf(stderr, "parse_one_sig_subpacket: bad alloc\n");
1527 			return 0;
1528 		}
1529 		if (!limread(pkt.u.ss_raw.raw, pkt.u.ss_raw.length,
1530 				&subregion, stream)) {
1531 			return 0;
1532 		}
1533 		CALLBACK(OPS_PTAG_RAW_SS, &stream->cbinfo, &pkt);
1534 		return 1;
1535 	}
1536 	switch (pkt.tag) {
1537 	case OPS_PTAG_SS_CREATION_TIME:
1538 	case OPS_PTAG_SS_EXPIRATION_TIME:
1539 	case OPS_PTAG_SS_KEY_EXPIRY:
1540 		if (!limited_read_time(&pkt.u.ss_time, &subregion, stream))
1541 			return 0;
1542 		if (pkt.tag == OPS_PTAG_SS_CREATION_TIME) {
1543 			sig->info.birthtime = pkt.u.ss_time;
1544 			sig->info.birthtime_set = 1;
1545 		}
1546 		if (pkt.tag == OPS_PTAG_SS_EXPIRATION_TIME) {
1547 			sig->info.duration = pkt.u.ss_time;
1548 			sig->info.duration_set = 1;
1549 		}
1550 		break;
1551 
1552 	case OPS_PTAG_SS_TRUST:
1553 		if (!limread(&pkt.u.ss_trust.level, 1, &subregion, stream) ||
1554 		    !limread(&pkt.u.ss_trust.amount, 1, &subregion, stream)) {
1555 			return 0;
1556 		}
1557 		break;
1558 
1559 	case OPS_PTAG_SS_REVOCABLE:
1560 		if (!limread(&bools, 1, &subregion, stream)) {
1561 			return 0;
1562 		}
1563 		pkt.u.ss_revocable = !!bools;
1564 		break;
1565 
1566 	case OPS_PTAG_SS_ISSUER_KEY_ID:
1567 		if (!limread(pkt.u.ss_issuer, OPS_KEY_ID_SIZE, &subregion, stream)) {
1568 			return 0;
1569 		}
1570 		(void) memcpy(sig->info.signer_id, pkt.u.ss_issuer, OPS_KEY_ID_SIZE);
1571 		sig->info.signer_id_set = 1;
1572 		break;
1573 
1574 	case OPS_PTAG_SS_PREFERRED_SKA:
1575 		if (!read_data(&pkt.u.ss_skapref, &subregion, stream)) {
1576 			return 0;
1577 		}
1578 		break;
1579 
1580 	case OPS_PTAG_SS_PREFERRED_HASH:
1581 		if (!read_data(&pkt.u.ss_hashpref, &subregion, stream)) {
1582 			return 0;
1583 		}
1584 		break;
1585 
1586 	case OPS_PTAG_SS_PREF_COMPRESS:
1587 		if (!read_data(&pkt.u.ss_zpref, &subregion, stream)) {
1588 			return 0;
1589 		}
1590 		break;
1591 
1592 	case OPS_PTAG_SS_PRIMARY_USER_ID:
1593 		if (!limread(&bools, 1, &subregion, stream)) {
1594 			return 0;
1595 		}
1596 		pkt.u.ss_primary_userid = !!bools;
1597 		break;
1598 
1599 	case OPS_PTAG_SS_KEY_FLAGS:
1600 		if (!read_data(&pkt.u.ss_key_flags, &subregion, stream)) {
1601 			return 0;
1602 		}
1603 		break;
1604 
1605 	case OPS_PTAG_SS_KEYSERV_PREFS:
1606 		if (!read_data(&pkt.u.ss_key_server_prefs, &subregion, stream)) {
1607 			return 0;
1608 		}
1609 		break;
1610 
1611 	case OPS_PTAG_SS_FEATURES:
1612 		if (!read_data(&pkt.u.ss_features, &subregion, stream)) {
1613 			return 0;
1614 		}
1615 		break;
1616 
1617 	case OPS_PTAG_SS_SIGNERS_USER_ID:
1618 		if (!read_unsig_str(&pkt.u.ss_signer, &subregion, stream)) {
1619 			return 0;
1620 		}
1621 		break;
1622 
1623 	case OPS_PTAG_SS_EMBEDDED_SIGNATURE:
1624 		/* \todo should do something with this sig? */
1625 		if (!read_data(&pkt.u.ss_embedded_sig, &subregion, stream)) {
1626 			return 0;
1627 		}
1628 		break;
1629 
1630 	case OPS_PTAG_SS_NOTATION_DATA:
1631 		if (!limread_data(&pkt.u.ss_notation.flags, 4,
1632 				&subregion, stream)) {
1633 			return 0;
1634 		}
1635 		if (!limread_size_t(&pkt.u.ss_notation.name.len, 2,
1636 				&subregion, stream)) {
1637 			return 0;
1638 		}
1639 		if (!limread_size_t(&pkt.u.ss_notation.value.len, 2,
1640 				&subregion, stream)) {
1641 			return 0;
1642 		}
1643 		if (!limread_data(&pkt.u.ss_notation.name,
1644 				pkt.u.ss_notation.name.len,
1645 				&subregion, stream)) {
1646 			return 0;
1647 		}
1648 		if (!limread_data(&pkt.u.ss_notation.value,
1649 			   pkt.u.ss_notation.value.len,
1650 			   &subregion, stream)) {
1651 			return 0;
1652 		}
1653 		break;
1654 
1655 	case OPS_PTAG_SS_POLICY_URI:
1656 		if (!read_string(&pkt.u.ss_policy, &subregion, stream)) {
1657 			return 0;
1658 		}
1659 		break;
1660 
1661 	case OPS_PTAG_SS_REGEXP:
1662 		if (!read_string(&pkt.u.ss_regexp, &subregion, stream)) {
1663 			return 0;
1664 		}
1665 		break;
1666 
1667 	case OPS_PTAG_SS_PREF_KEYSERV:
1668 		if (!read_string(&pkt.u.ss_keyserv, &subregion, stream)) {
1669 			return 0;
1670 		}
1671 		break;
1672 
1673 	case OPS_PTAG_SS_USERDEFINED00:
1674 	case OPS_PTAG_SS_USERDEFINED01:
1675 	case OPS_PTAG_SS_USERDEFINED02:
1676 	case OPS_PTAG_SS_USERDEFINED03:
1677 	case OPS_PTAG_SS_USERDEFINED04:
1678 	case OPS_PTAG_SS_USERDEFINED05:
1679 	case OPS_PTAG_SS_USERDEFINED06:
1680 	case OPS_PTAG_SS_USERDEFINED07:
1681 	case OPS_PTAG_SS_USERDEFINED08:
1682 	case OPS_PTAG_SS_USERDEFINED09:
1683 	case OPS_PTAG_SS_USERDEFINED10:
1684 		if (!read_data(&pkt.u.ss_userdef, &subregion, stream)) {
1685 			return 0;
1686 		}
1687 		break;
1688 
1689 	case OPS_PTAG_SS_RESERVED:
1690 		if (!read_data(&pkt.u.ss_unknown, &subregion, stream)) {
1691 			return 0;
1692 		}
1693 		break;
1694 
1695 	case OPS_PTAG_SS_REVOCATION_REASON:
1696 		/* first byte is the machine-readable code */
1697 		if (!limread(&pkt.u.ss_revocation.code, 1, &subregion, stream)) {
1698 			return 0;
1699 		}
1700 		/* the rest is a human-readable UTF-8 string */
1701 		if (!read_string(&pkt.u.ss_revocation.reason, &subregion,
1702 				stream)) {
1703 			return 0;
1704 		}
1705 		break;
1706 
1707 	case OPS_PTAG_SS_REVOCATION_KEY:
1708 		/* octet 0 = class. Bit 0x80 must be set */
1709 		if (!limread(&pkt.u.ss_revocation_key.class, 1,
1710 				&subregion, stream)) {
1711 			return 0;
1712 		}
1713 		if (!(pkt.u.ss_revocation_key.class & 0x80)) {
1714 			printf("Warning: OPS_PTAG_SS_REVOCATION_KEY class: "
1715 			       "Bit 0x80 should be set\n");
1716 			return 0;
1717 		}
1718 		/* octet 1 = algid */
1719 		if (!limread(&pkt.u.ss_revocation_key.algid, 1,
1720 				&subregion, stream)) {
1721 			return 0;
1722 		}
1723 		/* octets 2-21 = fingerprint */
1724 		if (!limread(&pkt.u.ss_revocation_key.fingerprint[0],
1725 				OPS_FINGERPRINT_SIZE, &subregion, stream)) {
1726 			return 0;
1727 		}
1728 		break;
1729 
1730 	default:
1731 		if (stream->ss_parsed[t8] & t7) {
1732 			OPS_ERROR_1(&stream->errors, OPS_E_PROTO_UNKNOWN_SS,
1733 				    "Unknown signature subpacket type (%d)",
1734 				    c & 0x7f);
1735 		}
1736 		doread = 0;
1737 		break;
1738 	}
1739 
1740 	/* Application doesn't want it delivered parsed */
1741 	if (!(stream->ss_parsed[t8] & t7)) {
1742 		if (pkt.critical) {
1743 			OPS_ERROR_1(&stream->errors,
1744 				OPS_E_PROTO_CRITICAL_SS_IGNORED,
1745 				"Critical signature subpacket ignored (%d)",
1746 				c & 0x7f);
1747 		}
1748 		if (!doread &&
1749 		    !limskip(subregion.length - 1, &subregion, stream)) {
1750 			return 0;
1751 		}
1752 		if (doread) {
1753 			__ops_parser_content_free(&pkt);
1754 		}
1755 		return 1;
1756 	}
1757 	if (doread && subregion.readc != subregion.length) {
1758 		OPS_ERROR_1(&stream->errors, OPS_E_R_UNCONSUMED_DATA,
1759 			    "Unconsumed data (%d)",
1760 			    subregion.length - subregion.readc);
1761 		return 0;
1762 	}
1763 	CALLBACK(pkt.tag, &stream->cbinfo, &pkt);
1764 	return 1;
1765 }
1766 
1767 /**
1768  * \ingroup Core_ReadPackets
1769  * \brief Parse several signature subpackets.
1770  *
1771  * Hashed and unhashed subpacket sets are preceded by an octet count that specifies the length of the complete set.
1772  * This function parses this length and then calls parse_one_sig_subpacket() for each subpacket until the
1773  * entire set is consumed.
1774  *
1775  * This function does not call the callback directly, parse_one_sig_subpacket() does for each subpacket.
1776  *
1777  * \param *ptag		Pointer to the Packet Tag.
1778  * \param *reader	Our reader
1779  * \param *cb		The callback
1780  * \return		1 on success, 0 on error
1781  *
1782  * \see RFC4880 5.2.3
1783  */
1784 static int
1785 parse_sig_subpkts(__ops_sig_t *sig,
1786 			   __ops_region_t *region,
1787 			   __ops_stream_t *stream)
1788 {
1789 	__ops_region_t	subregion;
1790 	__ops_packet_t	pkt;
1791 
1792 	__ops_init_subregion(&subregion, region);
1793 	if (!limread_scalar(&subregion.length, 2, region, stream)) {
1794 		return 0;
1795 	}
1796 
1797 	if (subregion.length > region->length) {
1798 		ERRP(&stream->cbinfo, pkt, "Subpacket set too long");
1799 	}
1800 
1801 	while (subregion.readc < subregion.length) {
1802 		if (!parse_one_sig_subpacket(sig, &subregion, stream)) {
1803 			return 0;
1804 		}
1805 	}
1806 
1807 	if (subregion.readc != subregion.length) {
1808 		if (!limskip(subregion.length - subregion.readc,
1809 				&subregion, stream)) {
1810 			ERRP(&stream->cbinfo, pkt,
1811 "parse_sig_subpkts: subpacket length read mismatch");
1812 		}
1813 		ERRP(&stream->cbinfo, pkt, "Subpacket length mismatch");
1814 	}
1815 	return 1;
1816 }
1817 
1818 /**
1819  * \ingroup Core_ReadPackets
1820  * \brief Parse a version 4 signature.
1821  *
1822  * This function parses a version 4 signature including all its hashed and unhashed subpackets.
1823  *
1824  * Once the signature packet has been parsed successfully, it is passed to the callback.
1825  *
1826  * \param *ptag		Pointer to the Packet Tag.
1827  * \param *reader	Our reader
1828  * \param *cb		The callback
1829  * \return		1 on success, 0 on error
1830  *
1831  * \see RFC4880 5.2.3
1832  */
1833 static int
1834 parse_v4_sig(__ops_region_t *region, __ops_stream_t *stream)
1835 {
1836 	__ops_packet_t	pkt;
1837 	uint8_t		c = 0x0;
1838 
1839 	if (__ops_get_debug_level(__FILE__)) {
1840 		fprintf(stderr, "\nparse_v4_sig\n");
1841 	}
1842 	/* clear signature */
1843 	(void) memset(&pkt.u.sig, 0x0, sizeof(pkt.u.sig));
1844 
1845 	/*
1846 	 * We need to hash the packet data from version through the hashed
1847 	 * subpacket data
1848 	 */
1849 
1850 	pkt.u.sig.v4_hashstart = stream->readinfo.alength - 1;
1851 
1852 	/* Set version,type,algorithms */
1853 
1854 	pkt.u.sig.info.version = OPS_V4;
1855 
1856 	if (!limread(&c, 1, region, stream)) {
1857 		return 0;
1858 	}
1859 	pkt.u.sig.info.type = (__ops_sig_type_t)c;
1860 	if (__ops_get_debug_level(__FILE__)) {
1861 		fprintf(stderr, "signature type=%d (%s)\n",
1862 			pkt.u.sig.info.type,
1863 			__ops_show_sig_type(pkt.u.sig.info.type));
1864 	}
1865 	/* XXX: check signature type */
1866 
1867 	if (!limread(&c, 1, region, stream)) {
1868 		return 0;
1869 	}
1870 	pkt.u.sig.info.key_alg = (__ops_pubkey_alg_t)c;
1871 	/* XXX: check key algorithm */
1872 	if (__ops_get_debug_level(__FILE__)) {
1873 		(void) fprintf(stderr, "key_alg=%d (%s)\n",
1874 			pkt.u.sig.info.key_alg,
1875 			__ops_show_pka(pkt.u.sig.info.key_alg));
1876 	}
1877 	if (!limread(&c, 1, region, stream)) {
1878 		return 0;
1879 	}
1880 	pkt.u.sig.info.hash_alg = (__ops_hash_alg_t)c;
1881 	/* XXX: check hash algorithm */
1882 	if (__ops_get_debug_level(__FILE__)) {
1883 		fprintf(stderr, "hash_alg=%d %s\n",
1884 			pkt.u.sig.info.hash_alg,
1885 		  __ops_show_hash_alg(pkt.u.sig.info.hash_alg));
1886 	}
1887 	CALLBACK(OPS_PTAG_CT_SIGNATURE_HEADER, &stream->cbinfo, &pkt);
1888 
1889 	if (!parse_sig_subpkts(&pkt.u.sig, region, stream)) {
1890 		return 0;
1891 	}
1892 
1893 	pkt.u.sig.info.v4_hashlen = stream->readinfo.alength
1894 					- pkt.u.sig.v4_hashstart;
1895 	if (__ops_get_debug_level(__FILE__)) {
1896 		fprintf(stderr, "v4_hashlen=%zd\n", pkt.u.sig.info.v4_hashlen);
1897 	}
1898 
1899 	/* copy hashed subpackets */
1900 	if (pkt.u.sig.info.v4_hashed) {
1901 		free(pkt.u.sig.info.v4_hashed);
1902 	}
1903 	pkt.u.sig.info.v4_hashed = calloc(1, pkt.u.sig.info.v4_hashlen);
1904 	if (pkt.u.sig.info.v4_hashed == NULL) {
1905 		(void) fprintf(stderr, "parse_v4_sig: bad alloc\n");
1906 		return 0;
1907 	}
1908 
1909 	if (!stream->readinfo.accumulate) {
1910 		/* We must accumulate, else we can't check the signature */
1911 		fprintf(stderr, "*** ERROR: must set accumulate to 1\n");
1912 		return 0;
1913 	}
1914 	(void) memcpy(pkt.u.sig.info.v4_hashed,
1915 	       stream->readinfo.accumulated + pkt.u.sig.v4_hashstart,
1916 	       pkt.u.sig.info.v4_hashlen);
1917 
1918 	if (!parse_sig_subpkts(&pkt.u.sig, region, stream)) {
1919 		return 0;
1920 	}
1921 
1922 	if (!limread(pkt.u.sig.hash2, 2, region, stream)) {
1923 		return 0;
1924 	}
1925 
1926 	switch (pkt.u.sig.info.key_alg) {
1927 	case OPS_PKA_RSA:
1928 		if (!limread_mpi(&pkt.u.sig.info.sig.rsa.sig, region, stream)) {
1929 			return 0;
1930 		}
1931 		if (__ops_get_debug_level(__FILE__)) {
1932 			(void) fprintf(stderr, "parse_v4_sig: RSA: sig is\n");
1933 			BN_print_fp(stderr, pkt.u.sig.info.sig.rsa.sig);
1934 			(void) fprintf(stderr, "\n");
1935 		}
1936 		break;
1937 
1938 	case OPS_PKA_DSA:
1939 		if (!limread_mpi(&pkt.u.sig.info.sig.dsa.r, region, stream)) {
1940 			/*
1941 			 * usually if this fails, it just means we've reached
1942 			 * the end of the keyring
1943 			 */
1944 			if (__ops_get_debug_level(__FILE__)) {
1945 				(void) fprintf(stderr,
1946 				"Error reading DSA r field in signature");
1947 			}
1948 			return 0;
1949 		}
1950 		if (!limread_mpi(&pkt.u.sig.info.sig.dsa.s, region, stream)) {
1951 			ERRP(&stream->cbinfo, pkt,
1952 			"Error reading DSA s field in signature");
1953 		}
1954 		break;
1955 
1956 	case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN:
1957 		if (!limread_mpi(&pkt.u.sig.info.sig.elgamal.r, region,
1958 				stream) ||
1959 		    !limread_mpi(&pkt.u.sig.info.sig.elgamal.s, region,
1960 		    		stream)) {
1961 			return 0;
1962 		}
1963 		break;
1964 
1965 	case OPS_PKA_PRIVATE00:
1966 	case OPS_PKA_PRIVATE01:
1967 	case OPS_PKA_PRIVATE02:
1968 	case OPS_PKA_PRIVATE03:
1969 	case OPS_PKA_PRIVATE04:
1970 	case OPS_PKA_PRIVATE05:
1971 	case OPS_PKA_PRIVATE06:
1972 	case OPS_PKA_PRIVATE07:
1973 	case OPS_PKA_PRIVATE08:
1974 	case OPS_PKA_PRIVATE09:
1975 	case OPS_PKA_PRIVATE10:
1976 		if (!read_data(&pkt.u.sig.info.sig.unknown, region, stream)) {
1977 			return 0;
1978 		}
1979 		break;
1980 
1981 	default:
1982 		OPS_ERROR_1(&stream->errors, OPS_E_ALG_UNSUPPORTED_SIGNATURE_ALG,
1983 			    "Bad v4 signature key algorithm (%s)",
1984 			    __ops_show_pka(pkt.u.sig.info.key_alg));
1985 		return 0;
1986 	}
1987 	if (region->readc != region->length) {
1988 		OPS_ERROR_1(&stream->errors, OPS_E_R_UNCONSUMED_DATA,
1989 			    "Unconsumed data (%d)",
1990 			    region->length - region->readc);
1991 		return 0;
1992 	}
1993 	CALLBACK(OPS_PTAG_CT_SIGNATURE_FOOTER, &stream->cbinfo, &pkt);
1994 	return 1;
1995 }
1996 
1997 /**
1998  * \ingroup Core_ReadPackets
1999  * \brief Parse a signature subpacket.
2000  *
2001  * This function calls the appropriate function to handle v3 or v4 signatures.
2002  *
2003  * Once the signature packet has been parsed successfully, it is passed to the callback.
2004  *
2005  * \param *ptag		Pointer to the Packet Tag.
2006  * \param *reader	Our reader
2007  * \param *cb		The callback
2008  * \return		1 on success, 0 on error
2009  */
2010 static int
2011 parse_sig(__ops_region_t *region, __ops_stream_t *stream)
2012 {
2013 	__ops_packet_t	pkt;
2014 	uint8_t		c = 0x0;
2015 
2016 	if (region->readc != 0) {
2017 		/* We should not have read anything so far */
2018 		(void) fprintf(stderr, "parse_sig: bad length\n");
2019 		return 0;
2020 	}
2021 
2022 	(void) memset(&pkt, 0x0, sizeof(pkt));
2023 	if (!limread(&c, 1, region, stream)) {
2024 		return 0;
2025 	}
2026 	if (c == 2 || c == 3) {
2027 		return parse_v3_sig(region, stream);
2028 	}
2029 	if (c == 4) {
2030 		return parse_v4_sig(region, stream);
2031 	}
2032 	OPS_ERROR_1(&stream->errors, OPS_E_PROTO_BAD_SIGNATURE_VRSN,
2033 		    "Bad signature version (%d)", c);
2034 	return 0;
2035 }
2036 
2037 /**
2038  \ingroup Core_ReadPackets
2039  \brief Parse Compressed packet
2040 */
2041 static int
2042 parse_compressed(__ops_region_t *region, __ops_stream_t *stream)
2043 {
2044 	__ops_packet_t	pkt;
2045 	uint8_t		c = 0x0;
2046 
2047 	if (!limread(&c, 1, region, stream)) {
2048 		return 0;
2049 	}
2050 
2051 	pkt.u.compressed = (__ops_compression_type_t)c;
2052 
2053 	CALLBACK(OPS_PTAG_CT_COMPRESSED, &stream->cbinfo, &pkt);
2054 
2055 	/*
2056 	 * The content of a compressed data packet is more OpenPGP packets
2057 	 * once decompressed, so recursively handle them
2058 	 */
2059 
2060 	return __ops_decompress(region, stream, pkt.u.compressed);
2061 }
2062 
2063 /* XXX: this could be improved by sharing all hashes that are the */
2064 /* same, then duping them just before checking the signature. */
2065 static void
2066 parse_hash_init(__ops_stream_t *stream, __ops_hash_alg_t type,
2067 		    const uint8_t *keyid)
2068 {
2069 	__ops_hashtype_t *hash;
2070 
2071 	hash = realloc(stream->hashes,
2072 			      (stream->hashc + 1) * sizeof(*stream->hashes));
2073 	if (hash == NULL) {
2074 		(void) fprintf(stderr, "parse_hash_init: bad alloc 0\n");
2075 		/* just continue and die here */
2076 		/* XXX - agc - no way to return failure */
2077 	} else {
2078 		stream->hashes = hash;
2079 	}
2080 	hash = &stream->hashes[stream->hashc++];
2081 
2082 	__ops_hash_any(&hash->hash, type);
2083 	if (!hash->hash.init(&hash->hash)) {
2084 		(void) fprintf(stderr, "parse_hash_init: bad alloc\n");
2085 		/* just continue and die here */
2086 		/* XXX - agc - no way to return failure */
2087 	}
2088 	(void) memcpy(hash->keyid, keyid, sizeof(hash->keyid));
2089 }
2090 
2091 /**
2092    \ingroup Core_ReadPackets
2093    \brief Parse a One Pass Signature packet
2094 */
2095 static int
2096 parse_one_pass(__ops_region_t * region, __ops_stream_t * stream)
2097 {
2098 	__ops_packet_t	pkt;
2099 	uint8_t		c = 0x0;
2100 
2101 	if (!limread(&pkt.u.one_pass_sig.version, 1, region, stream)) {
2102 		return 0;
2103 	}
2104 	if (pkt.u.one_pass_sig.version != 3) {
2105 		OPS_ERROR_1(&stream->errors, OPS_E_PROTO_BAD_ONE_PASS_SIG_VRSN,
2106 			    "Bad one-pass signature version (%d)",
2107 			    pkt.u.one_pass_sig.version);
2108 		return 0;
2109 	}
2110 	if (!limread(&c, 1, region, stream)) {
2111 		return 0;
2112 	}
2113 	pkt.u.one_pass_sig.sig_type = (__ops_sig_type_t)c;
2114 
2115 	if (!limread(&c, 1, region, stream)) {
2116 		return 0;
2117 	}
2118 	pkt.u.one_pass_sig.hash_alg = (__ops_hash_alg_t)c;
2119 
2120 	if (!limread(&c, 1, region, stream)) {
2121 		return 0;
2122 	}
2123 	pkt.u.one_pass_sig.key_alg = (__ops_pubkey_alg_t)c;
2124 
2125 	if (!limread(pkt.u.one_pass_sig.keyid,
2126 			  sizeof(pkt.u.one_pass_sig.keyid), region, stream)) {
2127 		return 0;
2128 	}
2129 
2130 	if (!limread(&c, 1, region, stream)) {
2131 		return 0;
2132 	}
2133 	pkt.u.one_pass_sig.nested = !!c;
2134 	CALLBACK(OPS_PTAG_CT_1_PASS_SIG, &stream->cbinfo, &pkt);
2135 	/* XXX: we should, perhaps, let the app choose whether to hash or not */
2136 	parse_hash_init(stream, pkt.u.one_pass_sig.hash_alg,
2137 			    pkt.u.one_pass_sig.keyid);
2138 	return 1;
2139 }
2140 
2141 /**
2142  \ingroup Core_ReadPackets
2143  \brief Parse a Trust packet
2144 */
2145 static int
2146 parse_trust(__ops_region_t *region, __ops_stream_t *stream)
2147 {
2148 	__ops_packet_t pkt;
2149 
2150 	if (!read_data(&pkt.u.trust, region, stream)) {
2151 		return 0;
2152 	}
2153 	CALLBACK(OPS_PTAG_CT_TRUST, &stream->cbinfo, &pkt);
2154 	return 1;
2155 }
2156 
2157 static void
2158 parse_hash_data(__ops_stream_t *stream, const void *data,
2159 		    size_t length)
2160 {
2161 	size_t          n;
2162 
2163 	for (n = 0; n < stream->hashc; ++n) {
2164 		stream->hashes[n].hash.add(&stream->hashes[n].hash, data, length);
2165 	}
2166 }
2167 
2168 /**
2169    \ingroup Core_ReadPackets
2170    \brief Parse a Literal Data packet
2171 */
2172 static int
2173 parse_litdata(__ops_region_t *region, __ops_stream_t *stream)
2174 {
2175 	__ops_memory_t	*mem;
2176 	__ops_packet_t	 pkt;
2177 	uint8_t		 c = 0x0;
2178 
2179 	if (!limread(&c, 1, region, stream)) {
2180 		return 0;
2181 	}
2182 	pkt.u.litdata_header.format = (__ops_litdata_enum)c;
2183 	if (!limread(&c, 1, region, stream)) {
2184 		return 0;
2185 	}
2186 	if (!limread((uint8_t *)pkt.u.litdata_header.filename,
2187 			(unsigned)c, region, stream)) {
2188 		return 0;
2189 	}
2190 	pkt.u.litdata_header.filename[c] = '\0';
2191 	if (!limited_read_time(&pkt.u.litdata_header.mtime, region, stream)) {
2192 		return 0;
2193 	}
2194 	CALLBACK(OPS_PTAG_CT_LITDATA_HEADER, &stream->cbinfo, &pkt);
2195 	mem = pkt.u.litdata_body.mem = __ops_memory_new();
2196 	__ops_memory_init(pkt.u.litdata_body.mem,
2197 			(unsigned)((region->length * 101) / 100) + 12);
2198 	pkt.u.litdata_body.data = mem->buf;
2199 
2200 	while (region->readc < region->length) {
2201 		unsigned        readc = region->length - region->readc;
2202 
2203 		if (!limread(mem->buf, readc, region, stream)) {
2204 			return 0;
2205 		}
2206 		pkt.u.litdata_body.length = readc;
2207 		parse_hash_data(stream, pkt.u.litdata_body.data, region->length);
2208 		CALLBACK(OPS_PTAG_CT_LITDATA_BODY, &stream->cbinfo, &pkt);
2209 	}
2210 
2211 	/* XXX - get rid of mem here? */
2212 
2213 	return 1;
2214 }
2215 
2216 /**
2217  * \ingroup Core_Create
2218  *
2219  * __ops_seckey_free() frees the memory associated with "key". Note that
2220  * the key itself is not freed.
2221  *
2222  * \param key
2223  */
2224 
2225 void
2226 __ops_seckey_free(__ops_seckey_t *key)
2227 {
2228 	switch (key->pubkey.alg) {
2229 	case OPS_PKA_RSA:
2230 	case OPS_PKA_RSA_ENCRYPT_ONLY:
2231 	case OPS_PKA_RSA_SIGN_ONLY:
2232 		free_BN(&key->key.rsa.d);
2233 		free_BN(&key->key.rsa.p);
2234 		free_BN(&key->key.rsa.q);
2235 		free_BN(&key->key.rsa.u);
2236 		break;
2237 
2238 	case OPS_PKA_DSA:
2239 		free_BN(&key->key.dsa.x);
2240 		break;
2241 
2242 	default:
2243 		(void) fprintf(stderr,
2244 			"__ops_seckey_free: Unknown algorithm: %d (%s)\n",
2245 			key->pubkey.alg,
2246 			__ops_show_pka(key->pubkey.alg));
2247 	}
2248 	free(key->checkhash);
2249 }
2250 
2251 static int
2252 consume_packet(__ops_region_t *region, __ops_stream_t *stream, unsigned warn)
2253 {
2254 	__ops_packet_t	pkt;
2255 	__ops_data_t	remainder;
2256 
2257 	if (region->indeterminate) {
2258 		ERRP(&stream->cbinfo, pkt,
2259 			"Can't consume indeterminate packets");
2260 	}
2261 
2262 	if (read_data(&remainder, region, stream)) {
2263 		/* now throw it away */
2264 		__ops_data_free(&remainder);
2265 		if (warn) {
2266 			OPS_ERROR(&stream->errors, OPS_E_P_PACKET_CONSUMED,
2267 				"Warning: packet consumer");
2268 		}
2269 		return 1;
2270 	}
2271 	OPS_ERROR(&stream->errors, OPS_E_P_PACKET_NOT_CONSUMED,
2272 			(warn) ? "Warning: Packet was not consumed" :
2273 				"Packet was not consumed");
2274 	return warn;
2275 }
2276 
2277 /**
2278  * \ingroup Core_ReadPackets
2279  * \brief Parse a secret key
2280  */
2281 static int
2282 parse_seckey(__ops_region_t *region, __ops_stream_t *stream)
2283 {
2284 	__ops_packet_t		pkt;
2285 	__ops_region_t		encregion;
2286 	__ops_region_t	       *saved_region = NULL;
2287 	__ops_crypt_t		decrypt;
2288 	__ops_hash_t		checkhash;
2289 	unsigned		blocksize;
2290 	unsigned		crypted;
2291 	uint8_t			c = 0x0;
2292 	int			ret = 1;
2293 
2294 	if (__ops_get_debug_level(__FILE__)) {
2295 		fprintf(stderr, "\n---------\nparse_seckey:\n");
2296 		fprintf(stderr,
2297 			"region length=%u, readc=%u, remainder=%u\n",
2298 			region->length, region->readc,
2299 			region->length - region->readc);
2300 	}
2301 	(void) memset(&pkt, 0x0, sizeof(pkt));
2302 	if (!parse_pubkey_data(&pkt.u.seckey.pubkey, region, stream)) {
2303 		return 0;
2304 	}
2305 	if (__ops_get_debug_level(__FILE__)) {
2306 		fprintf(stderr, "parse_seckey: public key parsed\n");
2307 		__ops_print_pubkey(&pkt.u.seckey.pubkey);
2308 	}
2309 	stream->reading_v3_secret = (pkt.u.seckey.pubkey.version != OPS_V4);
2310 
2311 	if (!limread(&c, 1, region, stream)) {
2312 		return 0;
2313 	}
2314 	pkt.u.seckey.s2k_usage = (__ops_s2k_usage_t)c;
2315 
2316 	if (pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED ||
2317 	    pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED_AND_HASHED) {
2318 		if (!limread(&c, 1, region, stream)) {
2319 			return 0;
2320 		}
2321 		pkt.u.seckey.alg = (__ops_symm_alg_t)c;
2322 		if (!limread(&c, 1, region, stream)) {
2323 			return 0;
2324 		}
2325 		pkt.u.seckey.s2k_specifier = (__ops_s2k_specifier_t)c;
2326 		switch (pkt.u.seckey.s2k_specifier) {
2327 		case OPS_S2KS_SIMPLE:
2328 		case OPS_S2KS_SALTED:
2329 		case OPS_S2KS_ITERATED_AND_SALTED:
2330 			break;
2331 		default:
2332 			(void) fprintf(stderr,
2333 				"parse_seckey: bad seckey\n");
2334 			return 0;
2335 		}
2336 		if (!limread(&c, 1, region, stream)) {
2337 			return 0;
2338 		}
2339 		pkt.u.seckey.hash_alg = (__ops_hash_alg_t)c;
2340 		if (pkt.u.seckey.s2k_specifier != OPS_S2KS_SIMPLE &&
2341 		    !limread(pkt.u.seckey.salt, 8, region, stream)) {
2342 			return 0;
2343 		}
2344 		if (pkt.u.seckey.s2k_specifier ==
2345 					OPS_S2KS_ITERATED_AND_SALTED) {
2346 			if (!limread(&c, 1, region, stream)) {
2347 				return 0;
2348 			}
2349 			pkt.u.seckey.octetc =
2350 				(16 + ((unsigned)c & 15)) <<
2351 						(((unsigned)c >> 4) + 6);
2352 		}
2353 	} else if (pkt.u.seckey.s2k_usage != OPS_S2KU_NONE) {
2354 		/* this is V3 style, looks just like a V4 simple hash */
2355 		pkt.u.seckey.alg = (__ops_symm_alg_t)c;
2356 		pkt.u.seckey.s2k_usage = OPS_S2KU_ENCRYPTED;
2357 		pkt.u.seckey.s2k_specifier = OPS_S2KS_SIMPLE;
2358 		pkt.u.seckey.hash_alg = OPS_HASH_MD5;
2359 	}
2360 	crypted = pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED ||
2361 		pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED_AND_HASHED;
2362 
2363 	if (crypted) {
2364 		__ops_packet_t	seckey;
2365 		__ops_hash_t	hashes[(OPS_MAX_KEY_SIZE + OPS_MIN_HASH_SIZE - 1) / OPS_MIN_HASH_SIZE];
2366 		uint8_t   	key[OPS_MAX_KEY_SIZE + OPS_MAX_HASH_SIZE];
2367 		size_t          passlen;
2368 		char           *passphrase;
2369 		int             hashsize;
2370 		int             keysize;
2371 		int             n;
2372 
2373 		blocksize = __ops_block_size(pkt.u.seckey.alg);
2374 		if (blocksize == 0 || blocksize > OPS_MAX_BLOCK_SIZE) {
2375 			(void) fprintf(stderr,
2376 				"parse_seckey: bad blocksize\n");
2377 			return 0;
2378 		}
2379 
2380 		if (!limread(pkt.u.seckey.iv, blocksize, region, stream)) {
2381 			return 0;
2382 		}
2383 		(void) memset(&seckey, 0x0, sizeof(seckey));
2384 		passphrase = NULL;
2385 		seckey.u.skey_passphrase.passphrase = &passphrase;
2386 		seckey.u.skey_passphrase.seckey = &pkt.u.seckey;
2387 		CALLBACK(OPS_GET_PASSPHRASE, &stream->cbinfo, &seckey);
2388 		if (!passphrase) {
2389 			if (__ops_get_debug_level(__FILE__)) {
2390 				/* \todo make into proper error */
2391 				(void) fprintf(stderr,
2392 				"parse_seckey: can't get passphrase\n");
2393 			}
2394 			if (!consume_packet(region, stream, 0)) {
2395 				return 0;
2396 			}
2397 
2398 			CALLBACK(OPS_PTAG_CT_ENCRYPTED_SECRET_KEY,
2399 				&stream->cbinfo, &pkt);
2400 
2401 			return 1;
2402 		}
2403 		keysize = __ops_key_size(pkt.u.seckey.alg);
2404 		if (keysize == 0 || keysize > OPS_MAX_KEY_SIZE) {
2405 			(void) fprintf(stderr,
2406 				"parse_seckey: bad keysize\n");
2407 			return 0;
2408 		}
2409 
2410 		hashsize = __ops_hash_size(pkt.u.seckey.hash_alg);
2411 		if (hashsize == 0 || hashsize > OPS_MAX_HASH_SIZE) {
2412 			(void) fprintf(stderr,
2413 				"parse_seckey: bad hashsize\n");
2414 			return 0;
2415 		}
2416 
2417 		for (n = 0; n * hashsize < keysize; ++n) {
2418 			int             i;
2419 
2420 			__ops_hash_any(&hashes[n],
2421 				pkt.u.seckey.hash_alg);
2422 			if (!hashes[n].init(&hashes[n])) {
2423 				(void) fprintf(stderr,
2424 					"parse_seckey: bad alloc\n");
2425 				return 0;
2426 			}
2427 			/* preload hashes with zeroes... */
2428 			for (i = 0; i < n; ++i) {
2429 				hashes[n].add(&hashes[n],
2430 					(const uint8_t *) "", 1);
2431 			}
2432 		}
2433 		passlen = strlen(passphrase);
2434 		for (n = 0; n * hashsize < keysize; ++n) {
2435 			unsigned        i;
2436 
2437 			switch (pkt.u.seckey.s2k_specifier) {
2438 			case OPS_S2KS_SALTED:
2439 				hashes[n].add(&hashes[n],
2440 					pkt.u.seckey.salt,
2441 					OPS_SALT_SIZE);
2442 				/* FALLTHROUGH */
2443 			case OPS_S2KS_SIMPLE:
2444 				hashes[n].add(&hashes[n],
2445 					(uint8_t *) passphrase, passlen);
2446 				break;
2447 
2448 			case OPS_S2KS_ITERATED_AND_SALTED:
2449 				for (i = 0; i < pkt.u.seckey.octetc;
2450 						i += passlen + OPS_SALT_SIZE) {
2451 					unsigned	j;
2452 
2453 					j = passlen + OPS_SALT_SIZE;
2454 					if (i + j > pkt.u.seckey.octetc && i != 0) {
2455 						j = pkt.u.seckey.octetc - i;
2456 					}
2457 					hashes[n].add(&hashes[n],
2458 						pkt.u.seckey.salt,
2459 						(unsigned)(j > OPS_SALT_SIZE) ?
2460 							OPS_SALT_SIZE : j);
2461 					if (j > OPS_SALT_SIZE) {
2462 						hashes[n].add(&hashes[n],
2463 						(uint8_t *) passphrase,
2464 						j - OPS_SALT_SIZE);
2465 					}
2466 				}
2467 				break;
2468 			default:
2469 				break;
2470 			}
2471 		}
2472 
2473 		for (n = 0; n * hashsize < keysize; ++n) {
2474 			int	r;
2475 
2476 			r = hashes[n].finish(&hashes[n], key + n * hashsize);
2477 			if (r != hashsize) {
2478 				(void) fprintf(stderr,
2479 					"parse_seckey: bad r\n");
2480 				return 0;
2481 			}
2482 		}
2483 
2484 		__ops_forget(passphrase, passlen);
2485 
2486 		__ops_crypt_any(&decrypt, pkt.u.seckey.alg);
2487 		if (__ops_get_debug_level(__FILE__)) {
2488 			fprintf(stderr, "\nREADING:\niv=");
2489 			hexdump(stderr, pkt.u.seckey.iv, __ops_block_size(pkt.u.seckey.alg), " ");
2490 			fprintf(stderr, "\nkey=");
2491 			hexdump(stderr, key, CAST_KEY_LENGTH, " ");
2492 			fprintf(stderr, "\n");
2493 		}
2494 		decrypt.set_iv(&decrypt, pkt.u.seckey.iv);
2495 		decrypt.set_crypt_key(&decrypt, key);
2496 
2497 		/* now read encrypted data */
2498 
2499 		__ops_reader_push_decrypt(stream, &decrypt, region);
2500 
2501 		/*
2502 		 * Since all known encryption for PGP doesn't compress, we
2503 		 * can limit to the same length as the current region (for
2504 		 * now).
2505 		 */
2506 		__ops_init_subregion(&encregion, NULL);
2507 		encregion.length = region->length - region->readc;
2508 		if (pkt.u.seckey.pubkey.version != OPS_V4) {
2509 			encregion.length -= 2;
2510 		}
2511 		saved_region = region;
2512 		region = &encregion;
2513 	}
2514 	if (pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED_AND_HASHED) {
2515 		pkt.u.seckey.checkhash = calloc(1, OPS_CHECKHASH_SIZE);
2516 		if (pkt.u.seckey.checkhash == NULL) {
2517 			(void) fprintf(stderr, "parse_seckey: bad alloc\n");
2518 			return 0;
2519 		}
2520 		__ops_hash_sha1(&checkhash);
2521 		__ops_reader_push_hash(stream, &checkhash);
2522 	} else {
2523 		__ops_reader_push_sum16(stream);
2524 	}
2525 
2526 	switch (pkt.u.seckey.pubkey.alg) {
2527 	case OPS_PKA_RSA:
2528 	case OPS_PKA_RSA_ENCRYPT_ONLY:
2529 	case OPS_PKA_RSA_SIGN_ONLY:
2530 		if (!limread_mpi(&pkt.u.seckey.key.rsa.d, region, stream) ||
2531 		    !limread_mpi(&pkt.u.seckey.key.rsa.p, region, stream) ||
2532 		    !limread_mpi(&pkt.u.seckey.key.rsa.q, region, stream) ||
2533 		    !limread_mpi(&pkt.u.seckey.key.rsa.u, region, stream)) {
2534 			ret = 0;
2535 		}
2536 		break;
2537 
2538 	case OPS_PKA_DSA:
2539 		if (!limread_mpi(&pkt.u.seckey.key.dsa.x, region, stream)) {
2540 			ret = 0;
2541 		}
2542 		break;
2543 
2544 	default:
2545 		OPS_ERROR_2(&stream->errors,
2546 			OPS_E_ALG_UNSUPPORTED_PUBLIC_KEY_ALG,
2547 			"Unsupported Public Key algorithm %d (%s)",
2548 			pkt.u.seckey.pubkey.alg,
2549 			__ops_show_pka(pkt.u.seckey.pubkey.alg));
2550 		ret = 0;
2551 	}
2552 
2553 	if (__ops_get_debug_level(__FILE__)) {
2554 		(void) fprintf(stderr, "4 MPIs read\n");
2555 	}
2556 	stream->reading_v3_secret = 0;
2557 
2558 	if (pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED_AND_HASHED) {
2559 		uint8_t   hash[OPS_CHECKHASH_SIZE];
2560 
2561 		__ops_reader_pop_hash(stream);
2562 		checkhash.finish(&checkhash, hash);
2563 
2564 		if (crypted &&
2565 		    pkt.u.seckey.pubkey.version != OPS_V4) {
2566 			__ops_reader_pop_decrypt(stream);
2567 			region = saved_region;
2568 		}
2569 		if (ret) {
2570 			if (!limread(pkt.u.seckey.checkhash,
2571 				OPS_CHECKHASH_SIZE, region, stream)) {
2572 				return 0;
2573 			}
2574 
2575 			if (memcmp(hash, pkt.u.seckey.checkhash,
2576 					OPS_CHECKHASH_SIZE) != 0) {
2577 				ERRP(&stream->cbinfo, pkt,
2578 					"Hash mismatch in secret key");
2579 			}
2580 		}
2581 	} else {
2582 		uint16_t  sum;
2583 
2584 		sum = __ops_reader_pop_sum16(stream);
2585 		if (crypted &&
2586 		    pkt.u.seckey.pubkey.version != OPS_V4) {
2587 			__ops_reader_pop_decrypt(stream);
2588 			region = saved_region;
2589 		}
2590 		if (ret) {
2591 			if (!limread_scalar(&pkt.u.seckey.checksum, 2,
2592 					region, stream))
2593 				return 0;
2594 
2595 			if (sum != pkt.u.seckey.checksum) {
2596 				ERRP(&stream->cbinfo, pkt,
2597 					"Checksum mismatch in secret key");
2598 			}
2599 		}
2600 	}
2601 
2602 	if (crypted && pkt.u.seckey.pubkey.version == OPS_V4) {
2603 		__ops_reader_pop_decrypt(stream);
2604 	}
2605 	if (region == NULL) {
2606 		(void) fprintf(stderr, "parse_seckey: NULL region\n");
2607 		return 0;
2608 	}
2609 	if (ret && region->readc != region->length) {
2610 		(void) fprintf(stderr, "parse_seckey: bad length\n");
2611 		return 0;
2612 	}
2613 	if (!ret) {
2614 		return 0;
2615 	}
2616 	CALLBACK(OPS_PTAG_CT_SECRET_KEY, &stream->cbinfo, &pkt);
2617 	if (__ops_get_debug_level(__FILE__)) {
2618 		(void) fprintf(stderr, "--- end of parse_seckey\n\n");
2619 	}
2620 	return 1;
2621 }
2622 
2623 /**
2624    \ingroup Core_ReadPackets
2625    \brief Parse a Public Key Session Key packet
2626 */
2627 static int
2628 parse_pk_sesskey(__ops_region_t *region,
2629 		     __ops_stream_t *stream)
2630 {
2631 	const __ops_seckey_t	*secret;
2632 	__ops_packet_t		 sesskey;
2633 	__ops_packet_t		 pkt;
2634 	uint8_t			*iv;
2635 	uint8_t		   	 c = 0x0;
2636 	uint8_t			 cs[2];
2637 	unsigned		 k;
2638 	BIGNUM			*enc_m;
2639 	int			 n;
2640 
2641 	/* Can't rely on it being CAST5 */
2642 	/* \todo FIXME RW */
2643 	/* const size_t sz_unencoded_m_buf=CAST_KEY_LENGTH+1+2; */
2644 	uint8_t		 unencoded_m_buf[1024];
2645 
2646 	if (!limread(&c, 1, region, stream)) {
2647 		return 0;
2648 	}
2649 	pkt.u.pk_sesskey.version = c;
2650 	if (pkt.u.pk_sesskey.version != 3) {
2651 		OPS_ERROR_1(&stream->errors, OPS_E_PROTO_BAD_PKSK_VRSN,
2652 			"Bad public-key encrypted session key version (%d)",
2653 			    pkt.u.pk_sesskey.version);
2654 		return 0;
2655 	}
2656 	if (!limread(pkt.u.pk_sesskey.key_id,
2657 			  sizeof(pkt.u.pk_sesskey.key_id), region, stream)) {
2658 		return 0;
2659 	}
2660 	if (__ops_get_debug_level(__FILE__)) {
2661 		fprintf(stderr, "session key: public key id: x=%" PRIsize "d\n", sizeof(pkt.u.pk_sesskey.key_id));
2662 		hexdump(stderr, pkt.u.pk_sesskey.key_id, sizeof(pkt.u.pk_sesskey.key_id), " ");
2663 		fprintf(stderr, "\n");
2664 	}
2665 	if (!limread(&c, 1, region, stream)) {
2666 		return 0;
2667 	}
2668 	pkt.u.pk_sesskey.alg = (__ops_pubkey_alg_t)c;
2669 	switch (pkt.u.pk_sesskey.alg) {
2670 	case OPS_PKA_RSA:
2671 		if (!limread_mpi(&pkt.u.pk_sesskey.params.rsa.encrypted_m,
2672 				      region, stream)) {
2673 			return 0;
2674 		}
2675 		enc_m = pkt.u.pk_sesskey.params.rsa.encrypted_m;
2676 		break;
2677 
2678 	case OPS_PKA_ELGAMAL:
2679 		if (!limread_mpi(&pkt.u.pk_sesskey.params.elgamal.g_to_k,
2680 				      region, stream) ||
2681 		    !limread_mpi(
2682 			&pkt.u.pk_sesskey.params.elgamal.encrypted_m,
2683 					 region, stream)) {
2684 			return 0;
2685 		}
2686 		enc_m = pkt.u.pk_sesskey.params.elgamal.encrypted_m;
2687 		break;
2688 
2689 	default:
2690 		OPS_ERROR_1(&stream->errors,
2691 			OPS_E_ALG_UNSUPPORTED_PUBLIC_KEY_ALG,
2692 			"Unknown public key algorithm in session key (%s)",
2693 			__ops_show_pka(pkt.u.pk_sesskey.alg));
2694 		return 0;
2695 	}
2696 
2697 	(void) memset(&sesskey, 0x0, sizeof(sesskey));
2698 	secret = NULL;
2699 	sesskey.u.get_seckey.seckey = &secret;
2700 	sesskey.u.get_seckey.pk_sesskey = &pkt.u.pk_sesskey;
2701 
2702 	CALLBACK(OPS_GET_SECKEY, &stream->cbinfo, &sesskey);
2703 
2704 	if (!secret) {
2705 		CALLBACK(OPS_PTAG_CT_ENCRYPTED_PK_SESSION_KEY, &stream->cbinfo,
2706 			&pkt);
2707 		return 1;
2708 	}
2709 	n = __ops_decrypt_decode_mpi(unencoded_m_buf, sizeof(unencoded_m_buf),
2710 			enc_m, secret);
2711 	if (n < 1) {
2712 		ERRP(&stream->cbinfo, pkt, "decrypted message too short");
2713 		return 0;
2714 	}
2715 
2716 	/* PKA */
2717 	pkt.u.pk_sesskey.symm_alg = (__ops_symm_alg_t)unencoded_m_buf[0];
2718 
2719 	if (!__ops_is_sa_supported(pkt.u.pk_sesskey.symm_alg)) {
2720 		/* ERR1P */
2721 		OPS_ERROR_1(&stream->errors, OPS_E_ALG_UNSUPPORTED_SYMMETRIC_ALG,
2722 			    "Symmetric algorithm %s not supported",
2723 			    __ops_show_symm_alg(
2724 				pkt.u.pk_sesskey.symm_alg));
2725 		return 0;
2726 	}
2727 	k = __ops_key_size(pkt.u.pk_sesskey.symm_alg);
2728 
2729 	if ((unsigned) n != k + 3) {
2730 		OPS_ERROR_2(&stream->errors, OPS_E_PROTO_DECRYPTED_MSG_WRONG_LEN,
2731 		      "decrypted message wrong length (got %d expected %d)",
2732 			    n, k + 3);
2733 		return 0;
2734 	}
2735 	if (k > sizeof(pkt.u.pk_sesskey.key)) {
2736 		(void) fprintf(stderr, "parse_pk_sesskey: bad keylength\n");
2737 		return 0;
2738 	}
2739 
2740 	(void) memcpy(pkt.u.pk_sesskey.key, unencoded_m_buf + 1, k);
2741 
2742 	if (__ops_get_debug_level(__FILE__)) {
2743 		fprintf(stderr, "session key recovered (len=%u):\n", k);
2744 		hexdump(stderr, pkt.u.pk_sesskey.key, k, " ");
2745 		fprintf(stderr, "\n");
2746 	}
2747 	pkt.u.pk_sesskey.checksum = unencoded_m_buf[k + 1] +
2748 			(unencoded_m_buf[k + 2] << 8);
2749 	if (__ops_get_debug_level(__FILE__)) {
2750 		printf("session key checksum: %2x %2x\n",
2751 			unencoded_m_buf[k + 1], unencoded_m_buf[k + 2]);
2752 	}
2753 
2754 	/* Check checksum */
2755 	__ops_calc_sesskey_checksum(&pkt.u.pk_sesskey, &cs[0]);
2756 	if (unencoded_m_buf[k + 1] != cs[0] ||
2757 	    unencoded_m_buf[k + 2] != cs[1]) {
2758 		OPS_ERROR_4(&stream->errors, OPS_E_PROTO_BAD_SK_CHECKSUM,
2759 		"Session key checksum wrong: expected %2x %2x, got %2x %2x",
2760 		cs[0], cs[1], unencoded_m_buf[k + 1],
2761 		unencoded_m_buf[k + 2]);
2762 		return 0;
2763 	}
2764 	/* all is well */
2765 	CALLBACK(OPS_PTAG_CT_PK_SESSION_KEY, &stream->cbinfo, &pkt);
2766 
2767 	__ops_crypt_any(&stream->decrypt, pkt.u.pk_sesskey.symm_alg);
2768 	iv = calloc(1, stream->decrypt.blocksize);
2769 	if (iv == NULL) {
2770 		(void) fprintf(stderr, "parse_pk_sesskey: bad alloc\n");
2771 		return 0;
2772 	}
2773 	stream->decrypt.set_iv(&stream->decrypt, iv);
2774 	stream->decrypt.set_crypt_key(&stream->decrypt, pkt.u.pk_sesskey.key);
2775 	__ops_encrypt_init(&stream->decrypt);
2776 	free(iv);
2777 	return 1;
2778 }
2779 
2780 static int
2781 __ops_decrypt_se_data(__ops_content_enum tag, __ops_region_t *region,
2782 		    __ops_stream_t *stream)
2783 {
2784 	__ops_crypt_t	*decrypt;
2785 	const int	 printerrors = 1;
2786 	int		 r = 1;
2787 
2788 	decrypt = __ops_get_decrypt(stream);
2789 	if (decrypt) {
2790 		uint8_t   buf[OPS_MAX_BLOCK_SIZE + 2] = "";
2791 		size_t          b = decrypt->blocksize;
2792 		/* __ops_packet_t pkt; */
2793 		__ops_region_t    encregion;
2794 
2795 
2796 		__ops_reader_push_decrypt(stream, decrypt, region);
2797 
2798 		__ops_init_subregion(&encregion, NULL);
2799 		encregion.length = b + 2;
2800 
2801 		if (!exact_limread(buf, b + 2, &encregion, stream)) {
2802 			return 0;
2803 		}
2804 		if (buf[b - 2] != buf[b] || buf[b - 1] != buf[b + 1]) {
2805 			__ops_reader_pop_decrypt(stream);
2806 			OPS_ERROR_4(&stream->errors,
2807 				OPS_E_PROTO_BAD_SYMMETRIC_DECRYPT,
2808 				"Bad symmetric decrypt (%02x%02x vs %02x%02x)",
2809 				buf[b - 2], buf[b - 1], buf[b], buf[b + 1]);
2810 			return 0;
2811 		}
2812 		if (tag == OPS_PTAG_CT_SE_DATA_BODY) {
2813 			decrypt->decrypt_resync(decrypt);
2814 			decrypt->block_encrypt(decrypt, decrypt->civ,
2815 					decrypt->civ);
2816 		}
2817 		r = __ops_parse(stream, !printerrors);
2818 
2819 		__ops_reader_pop_decrypt(stream);
2820 	} else {
2821 		__ops_packet_t pkt;
2822 
2823 		while (region->readc < region->length) {
2824 			unsigned        len;
2825 
2826 			len = region->length - region->readc;
2827 			if (len > sizeof(pkt.u.se_data_body.data))
2828 				len = sizeof(pkt.u.se_data_body.data);
2829 
2830 			if (!limread(pkt.u.se_data_body.data, len,
2831 					region, stream)) {
2832 				return 0;
2833 			}
2834 			pkt.u.se_data_body.length = len;
2835 			CALLBACK(tag, &stream->cbinfo, &pkt);
2836 		}
2837 	}
2838 
2839 	return r;
2840 }
2841 
2842 static int
2843 __ops_decrypt_se_ip_data(__ops_content_enum tag, __ops_region_t *region,
2844 		       __ops_stream_t *stream)
2845 {
2846 	__ops_crypt_t	*decrypt;
2847 	const int	 printerrors = 1;
2848 	int		 r = 1;
2849 
2850 	decrypt = __ops_get_decrypt(stream);
2851 	if (decrypt) {
2852 		__ops_reader_push_decrypt(stream, decrypt, region);
2853 		__ops_reader_push_se_ip_data(stream, decrypt, region);
2854 
2855 		r = __ops_parse(stream, !printerrors);
2856 
2857 		__ops_reader_pop_se_ip_data(stream);
2858 		__ops_reader_pop_decrypt(stream);
2859 	} else {
2860 		__ops_packet_t pkt;
2861 
2862 		while (region->readc < region->length) {
2863 			unsigned        len;
2864 
2865 			len = region->length - region->readc;
2866 			if (len > sizeof(pkt.u.se_data_body.data)) {
2867 				len = sizeof(pkt.u.se_data_body.data);
2868 			}
2869 
2870 			if (!limread(pkt.u.se_data_body.data,
2871 					len, region, stream)) {
2872 				return 0;
2873 			}
2874 
2875 			pkt.u.se_data_body.length = len;
2876 
2877 			CALLBACK(tag, &stream->cbinfo, &pkt);
2878 		}
2879 	}
2880 
2881 	return r;
2882 }
2883 
2884 /**
2885    \ingroup Core_ReadPackets
2886    \brief Read a Symmetrically Encrypted packet
2887 */
2888 static int
2889 parse_se_data(__ops_region_t *region, __ops_stream_t *stream)
2890 {
2891 	__ops_packet_t pkt;
2892 
2893 	/* there's no info to go with this, so just announce it */
2894 	CALLBACK(OPS_PTAG_CT_SE_DATA_HEADER, &stream->cbinfo, &pkt);
2895 
2896 	/*
2897 	 * The content of an encrypted data packet is more OpenPGP packets
2898 	 * once decrypted, so recursively handle them
2899 	 */
2900 	return __ops_decrypt_se_data(OPS_PTAG_CT_SE_DATA_BODY, region, stream);
2901 }
2902 
2903 /**
2904    \ingroup Core_ReadPackets
2905    \brief Read a Symmetrically Encrypted Integrity Protected packet
2906 */
2907 static int
2908 parse_se_ip_data(__ops_region_t *region, __ops_stream_t *stream)
2909 {
2910 	__ops_packet_t	pkt;
2911 	uint8_t		c = 0x0;
2912 
2913 	if (!limread(&c, 1, region, stream)) {
2914 		return 0;
2915 	}
2916 	pkt.u.se_ip_data_header = c;
2917 
2918 	if (pkt.u.se_ip_data_header != OPS_SE_IP_DATA_VERSION) {
2919 		(void) fprintf(stderr, "parse_se_ip_data: bad version\n");
2920 		return 0;
2921 	}
2922 
2923 	/*
2924 	 * The content of an encrypted data packet is more OpenPGP packets
2925 	 * once decrypted, so recursively handle them
2926 	 */
2927 	return __ops_decrypt_se_ip_data(OPS_PTAG_CT_SE_IP_DATA_BODY, region,
2928 			stream);
2929 }
2930 
2931 /**
2932    \ingroup Core_ReadPackets
2933    \brief Read a MDC packet
2934 */
2935 static int
2936 parse_mdc(__ops_region_t *region, __ops_stream_t *stream)
2937 {
2938 	__ops_packet_t pkt;
2939 
2940 	pkt.u.mdc.length = OPS_SHA1_HASH_SIZE;
2941 	if ((pkt.u.mdc.data = calloc(1, OPS_SHA1_HASH_SIZE)) == NULL) {
2942 		(void) fprintf(stderr, "parse_mdc: bad alloc\n");
2943 		return 0;
2944 	}
2945 	if (!limread(pkt.u.mdc.data, OPS_SHA1_HASH_SIZE, region, stream)) {
2946 		return 0;
2947 	}
2948 	CALLBACK(OPS_PTAG_CT_MDC, &stream->cbinfo, &pkt);
2949 	free(pkt.u.mdc.data);
2950 	return 1;
2951 }
2952 
2953 /**
2954  * \ingroup Core_ReadPackets
2955  * \brief Parse one packet.
2956  *
2957  * This function parses the packet tag.  It computes the value of the
2958  * content tag and then calls the appropriate function to handle the
2959  * content.
2960  *
2961  * \param *stream	How to parse
2962  * \param *pktlen	On return, will contain number of bytes in packet
2963  * \return 1 on success, 0 on error, -1 on EOF */
2964 static int
2965 __ops_parse_packet(__ops_stream_t *stream, uint32_t *pktlen)
2966 {
2967 	__ops_packet_t	pkt;
2968 	__ops_region_t	region;
2969 	uint8_t		ptag;
2970 	unsigned	indeterminate = 0;
2971 	int		ret;
2972 
2973 	pkt.u.ptag.position = stream->readinfo.position;
2974 
2975 	ret = base_read(&ptag, 1, stream);
2976 
2977 	if (__ops_get_debug_level(__FILE__)) {
2978 		(void) fprintf(stderr,
2979 			"__ops_parse_packet: base_read returned %d\n",
2980 			ret);
2981 	}
2982 
2983 	/* errors in the base read are effectively EOF. */
2984 	if (ret <= 0) {
2985 		return -1;
2986 	}
2987 
2988 	*pktlen = 0;
2989 
2990 	if (!(ptag & OPS_PTAG_ALWAYS_SET)) {
2991 		pkt.u.error = "Format error (ptag bit not set)";
2992 		CALLBACK(OPS_PARSER_ERROR, &stream->cbinfo, &pkt);
2993 		return 0;
2994 	}
2995 	pkt.u.ptag.new_format = !!(ptag & OPS_PTAG_NEW_FORMAT);
2996 	if (pkt.u.ptag.new_format) {
2997 		pkt.u.ptag.type = (ptag & OPS_PTAG_NF_CONTENT_TAG_MASK);
2998 		pkt.u.ptag.length_type = 0;
2999 		if (!read_new_length(&pkt.u.ptag.length, stream)) {
3000 			return 0;
3001 		}
3002 	} else {
3003 		unsigned   rb;
3004 
3005 		rb = 0;
3006 		pkt.u.ptag.type = ((unsigned)ptag &
3007 				OPS_PTAG_OF_CONTENT_TAG_MASK)
3008 			>> OPS_PTAG_OF_CONTENT_TAG_SHIFT;
3009 		pkt.u.ptag.length_type = ptag & OPS_PTAG_OF_LENGTH_TYPE_MASK;
3010 		switch (pkt.u.ptag.length_type) {
3011 		case OPS_PTAG_OLD_LEN_1:
3012 			rb = _read_scalar(&pkt.u.ptag.length, 1, stream);
3013 			break;
3014 
3015 		case OPS_PTAG_OLD_LEN_2:
3016 			rb = _read_scalar(&pkt.u.ptag.length, 2, stream);
3017 			break;
3018 
3019 		case OPS_PTAG_OLD_LEN_4:
3020 			rb = _read_scalar(&pkt.u.ptag.length, 4, stream);
3021 			break;
3022 
3023 		case OPS_PTAG_OLD_LEN_INDETERMINATE:
3024 			pkt.u.ptag.length = 0;
3025 			indeterminate = 1;
3026 			rb = 1;
3027 			break;
3028 		}
3029 		if (!rb) {
3030 			return 0;
3031 		}
3032 	}
3033 
3034 	CALLBACK(OPS_PARSER_PTAG, &stream->cbinfo, &pkt);
3035 
3036 	__ops_init_subregion(&region, NULL);
3037 	region.length = pkt.u.ptag.length;
3038 	region.indeterminate = indeterminate;
3039 	if (__ops_get_debug_level(__FILE__)) {
3040 		(void) fprintf(stderr, "__ops_parse_packet: type %u\n",
3041 			       pkt.u.ptag.type);
3042 	}
3043 	switch (pkt.u.ptag.type) {
3044 	case OPS_PTAG_CT_SIGNATURE:
3045 		ret = parse_sig(&region, stream);
3046 		break;
3047 
3048 	case OPS_PTAG_CT_PUBLIC_KEY:
3049 	case OPS_PTAG_CT_PUBLIC_SUBKEY:
3050 		ret = parse_pubkey(pkt.u.ptag.type, &region, stream);
3051 		break;
3052 
3053 	case OPS_PTAG_CT_TRUST:
3054 		ret = parse_trust(&region, stream);
3055 		break;
3056 
3057 	case OPS_PTAG_CT_USER_ID:
3058 		ret = parse_userid(&region, stream);
3059 		break;
3060 
3061 	case OPS_PTAG_CT_COMPRESSED:
3062 		ret = parse_compressed(&region, stream);
3063 		break;
3064 
3065 	case OPS_PTAG_CT_1_PASS_SIG:
3066 		ret = parse_one_pass(&region, stream);
3067 		break;
3068 
3069 	case OPS_PTAG_CT_LITDATA:
3070 		ret = parse_litdata(&region, stream);
3071 		break;
3072 
3073 	case OPS_PTAG_CT_USER_ATTR:
3074 		ret = parse_userattr(&region, stream);
3075 		break;
3076 
3077 	case OPS_PTAG_CT_SECRET_KEY:
3078 		ret = parse_seckey(&region, stream);
3079 		break;
3080 
3081 	case OPS_PTAG_CT_SECRET_SUBKEY:
3082 		ret = parse_seckey(&region, stream);
3083 		break;
3084 
3085 	case OPS_PTAG_CT_PK_SESSION_KEY:
3086 		ret = parse_pk_sesskey(&region, stream);
3087 		break;
3088 
3089 	case OPS_PTAG_CT_SE_DATA:
3090 		ret = parse_se_data(&region, stream);
3091 		break;
3092 
3093 	case OPS_PTAG_CT_SE_IP_DATA:
3094 		ret = parse_se_ip_data(&region, stream);
3095 		break;
3096 
3097 	case OPS_PTAG_CT_MDC:
3098 		ret = parse_mdc(&region, stream);
3099 		break;
3100 
3101 	default:
3102 		OPS_ERROR_1(&stream->errors, OPS_E_P_UNKNOWN_TAG,
3103 			    "Unknown content tag 0x%x",
3104 			    pkt.u.ptag.type);
3105 		ret = 0;
3106 	}
3107 
3108 	/* Ensure that the entire packet has been consumed */
3109 
3110 	if (region.length != region.readc && !region.indeterminate) {
3111 		if (!consume_packet(&region, stream, 0)) {
3112 			ret = -1;
3113 		}
3114 	}
3115 
3116 	/* also consume it if there's been an error? */
3117 	/* \todo decide what to do about an error on an */
3118 	/* indeterminate packet */
3119 	if (ret == 0) {
3120 		if (!consume_packet(&region, stream, 0)) {
3121 			ret = -1;
3122 		}
3123 	}
3124 	/* set pktlen */
3125 
3126 	*pktlen = stream->readinfo.alength;
3127 
3128 	/* do callback on entire packet, if desired and there was no error */
3129 
3130 	if (ret > 0 && stream->readinfo.accumulate) {
3131 		pkt.u.packet.length = stream->readinfo.alength;
3132 		pkt.u.packet.raw = stream->readinfo.accumulated;
3133 		stream->readinfo.accumulated = NULL;
3134 		stream->readinfo.asize = 0;
3135 		CALLBACK(OPS_PARSER_PACKET_END, &stream->cbinfo, &pkt);
3136 	}
3137 	stream->readinfo.alength = 0;
3138 
3139 	return (ret < 0) ? -1 : (ret) ? 1 : 0;
3140 }
3141 
3142 /**
3143  * \ingroup Core_ReadPackets
3144  *
3145  * \brief Parse packets from an input stream until EOF or error.
3146  *
3147  * \details Setup the necessary parsing configuration in "stream"
3148  * before calling __ops_parse().
3149  *
3150  * That information includes :
3151  *
3152  * - a "reader" function to be used to get the data to be parsed
3153  *
3154  * - a "callback" function to be called when this library has identified
3155  * a parseable object within the data
3156  *
3157  * - whether the calling function wants the signature subpackets
3158  * returned raw, parsed or not at all.
3159  *
3160  * After returning, stream->errors holds any errors encountered while parsing.
3161  *
3162  * \param stream	Parsing configuration
3163  * \return		1 on success in all packets, 0 on error in any packet
3164  *
3165  * \sa CoreAPI Overview
3166  *
3167  * \sa __ops_print_errors()
3168  *
3169  */
3170 
3171 int
3172 __ops_parse(__ops_stream_t *stream, const int perrors)
3173 {
3174 	uint32_t   pktlen;
3175 	int             r;
3176 
3177 	do {
3178 		r = __ops_parse_packet(stream, &pktlen);
3179 	} while (r != -1);
3180 	if (perrors) {
3181 		__ops_print_errors(stream->errors);
3182 	}
3183 	return (stream->errors == NULL);
3184 }
3185 
3186 /**
3187  * \ingroup Core_ReadPackets
3188  *
3189  * \brief Specifies whether one or more signature
3190  * subpacket types should be returned parsed; or raw; or ignored.
3191  *
3192  * \param	stream	Pointer to previously allocated structure
3193  * \param	tag	Packet tag. OPS_PTAG_SS_ALL for all SS tags; or one individual signature subpacket tag
3194  * \param	type	Parse type
3195  * \todo Make all packet types optional, not just subpackets */
3196 void
3197 __ops_parse_options(__ops_stream_t *stream,
3198 		  __ops_content_enum tag,
3199 		  __ops_parse_type_t type)
3200 {
3201 	unsigned	t7;
3202 	unsigned	t8;
3203 
3204 	if (tag == OPS_PTAG_SS_ALL) {
3205 		int             n;
3206 
3207 		for (n = 0; n < 256; ++n) {
3208 			__ops_parse_options(stream,
3209 				OPS_PTAG_SIG_SUBPKT_BASE + n,
3210 				type);
3211 		}
3212 		return;
3213 	}
3214 	if (tag < OPS_PTAG_SIG_SUBPKT_BASE ||
3215 	    tag > OPS_PTAG_SIG_SUBPKT_BASE + NTAGS - 1) {
3216 		(void) fprintf(stderr, "__ops_parse_options: bad tag\n");
3217 		return;
3218 	}
3219 	t8 = (tag - OPS_PTAG_SIG_SUBPKT_BASE) / 8;
3220 	t7 = 1 << ((tag - OPS_PTAG_SIG_SUBPKT_BASE) & 7);
3221 	switch (type) {
3222 	case OPS_PARSE_RAW:
3223 		stream->ss_raw[t8] |= t7;
3224 		stream->ss_parsed[t8] &= ~t7;
3225 		break;
3226 
3227 	case OPS_PARSE_PARSED:
3228 		stream->ss_raw[t8] &= ~t7;
3229 		stream->ss_parsed[t8] |= t7;
3230 		break;
3231 
3232 	case OPS_PARSE_IGNORE:
3233 		stream->ss_raw[t8] &= ~t7;
3234 		stream->ss_parsed[t8] &= ~t7;
3235 		break;
3236 	}
3237 }
3238 
3239 /**
3240 \ingroup Core_ReadPackets
3241 \brief Free __ops_stream_t struct and its contents
3242 */
3243 void
3244 __ops_stream_delete(__ops_stream_t *stream)
3245 {
3246 	__ops_cbdata_t	*cbinfo;
3247 	__ops_cbdata_t	*next;
3248 
3249 	for (cbinfo = stream->cbinfo.next; cbinfo; cbinfo = next) {
3250 		next = cbinfo->next;
3251 		free(cbinfo);
3252 	}
3253 	if (stream->readinfo.destroyer) {
3254 		stream->readinfo.destroyer(&stream->readinfo);
3255 	}
3256 	__ops_free_errors(stream->errors);
3257 	if (stream->readinfo.accumulated) {
3258 		free(stream->readinfo.accumulated);
3259 	}
3260 	free(stream);
3261 }
3262 
3263 /**
3264 \ingroup Core_ReadPackets
3265 \brief Returns the parse_info's reader_info
3266 \return Pointer to the reader_info inside the parse_info
3267 */
3268 __ops_reader_t *
3269 __ops_readinfo(__ops_stream_t *stream)
3270 {
3271 	return &stream->readinfo;
3272 }
3273 
3274 /**
3275 \ingroup Core_ReadPackets
3276 \brief Sets the parse_info's callback
3277 This is used when adding the first callback in a stack of callbacks.
3278 \sa __ops_callback_push()
3279 */
3280 
3281 void
3282 __ops_set_callback(__ops_stream_t *stream, __ops_cbfunc_t *cb, void *arg)
3283 {
3284 	stream->cbinfo.cbfunc = cb;
3285 	stream->cbinfo.arg = arg;
3286 	stream->cbinfo.errors = &stream->errors;
3287 }
3288 
3289 /**
3290 \ingroup Core_ReadPackets
3291 \brief Adds a further callback to a stack of callbacks
3292 \sa __ops_set_callback()
3293 */
3294 void
3295 __ops_callback_push(__ops_stream_t *stream, __ops_cbfunc_t *cb, void *arg)
3296 {
3297 	__ops_cbdata_t	*cbinfo;
3298 
3299 	if ((cbinfo = calloc(1, sizeof(*cbinfo))) == NULL) {
3300 		(void) fprintf(stderr, "__ops_callback_push: bad alloc\n");
3301 		return;
3302 	}
3303 	(void) memcpy(cbinfo, &stream->cbinfo, sizeof(*cbinfo));
3304 	cbinfo->io = stream->io;
3305 	stream->cbinfo.next = cbinfo;
3306 	__ops_set_callback(stream, cb, arg);
3307 }
3308 
3309 /**
3310 \ingroup Core_ReadPackets
3311 \brief Returns callback's arg
3312 */
3313 void *
3314 __ops_callback_arg(__ops_cbdata_t *cbinfo)
3315 {
3316 	return cbinfo->arg;
3317 }
3318 
3319 /**
3320 \ingroup Core_ReadPackets
3321 \brief Returns callback's errors
3322 */
3323 void *
3324 __ops_callback_errors(__ops_cbdata_t *cbinfo)
3325 {
3326 	return cbinfo->errors;
3327 }
3328 
3329 /**
3330 \ingroup Core_ReadPackets
3331 \brief Calls the parse_cb_info's callback if present
3332 \return Return value from callback, if present; else OPS_FINISHED
3333 */
3334 __ops_cb_ret_t
3335 __ops_callback(const __ops_packet_t *pkt, __ops_cbdata_t *cbinfo)
3336 {
3337 	return (cbinfo->cbfunc) ? cbinfo->cbfunc(pkt, cbinfo) : OPS_FINISHED;
3338 }
3339 
3340 /**
3341 \ingroup Core_ReadPackets
3342 \brief Calls the next callback  in the stack
3343 \return Return value from callback
3344 */
3345 __ops_cb_ret_t
3346 __ops_stacked_callback(const __ops_packet_t *pkt, __ops_cbdata_t *cbinfo)
3347 {
3348 	return __ops_callback(pkt, cbinfo->next);
3349 }
3350 
3351 /**
3352 \ingroup Core_ReadPackets
3353 \brief Returns the parse_info's errors
3354 \return parse_info's errors
3355 */
3356 __ops_error_t    *
3357 __ops_stream_get_errors(__ops_stream_t *stream)
3358 {
3359 	return stream->errors;
3360 }
3361 
3362 __ops_crypt_t    *
3363 __ops_get_decrypt(__ops_stream_t *stream)
3364 {
3365 	return (stream->decrypt.alg) ? &stream->decrypt : NULL;
3366 }
3367