xref: /netbsd-src/common/lib/libc/quad/qdivrem.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: qdivrem.c,v 1.1 2005/12/20 19:28:51 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 #if defined(LIBC_SCCS) && !defined(lint)
38 #if 0
39 static char sccsid[] = "@(#)qdivrem.c	8.1 (Berkeley) 6/4/93";
40 #else
41 __RCSID("$NetBSD: qdivrem.c,v 1.1 2005/12/20 19:28:51 christos Exp $");
42 #endif
43 #endif /* LIBC_SCCS and not lint */
44 
45 /*
46  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
47  * section 4.3.1, pp. 257--259.
48  */
49 
50 #include "quad.h"
51 
52 #define	B	((int)1 << HALF_BITS)	/* digit base */
53 
54 /* Combine two `digits' to make a single two-digit number. */
55 #define	COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
56 
57 /* select a type for digits in base B: use unsigned short if they fit */
58 #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
59 typedef unsigned short digit;
60 #else
61 typedef u_int digit;
62 #endif
63 
64 static void shl __P((digit *p, int len, int sh));
65 
66 /*
67  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
68  *
69  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
70  * fit within u_int.  As a consequence, the maximum length dividend and
71  * divisor are 4 `digits' in this base (they are shorter if they have
72  * leading zeros).
73  */
74 u_quad_t
75 __qdivrem(uq, vq, arq)
76 	u_quad_t uq, vq, *arq;
77 {
78 	union uu tmp;
79 	digit *u, *v, *q;
80 	digit v1, v2;
81 	u_int qhat, rhat, t;
82 	int m, n, d, j, i;
83 	digit uspace[5], vspace[5], qspace[5];
84 
85 	/*
86 	 * Take care of special cases: divide by zero, and u < v.
87 	 */
88 	if (vq == 0) {
89 		/* divide by zero. */
90 		static volatile const unsigned int zero = 0;
91 
92 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
93 		if (arq)
94 			*arq = uq;
95 		return (tmp.q);
96 	}
97 	if (uq < vq) {
98 		if (arq)
99 			*arq = uq;
100 		return (0);
101 	}
102 	u = &uspace[0];
103 	v = &vspace[0];
104 	q = &qspace[0];
105 
106 	/*
107 	 * Break dividend and divisor into digits in base B, then
108 	 * count leading zeros to determine m and n.  When done, we
109 	 * will have:
110 	 *	u = (u[1]u[2]...u[m+n]) sub B
111 	 *	v = (v[1]v[2]...v[n]) sub B
112 	 *	v[1] != 0
113 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
114 	 *	m >= 0 (otherwise u < v, which we already checked)
115 	 *	m + n = 4
116 	 * and thus
117 	 *	m = 4 - n <= 2
118 	 */
119 	tmp.uq = uq;
120 	u[0] = 0;
121 	u[1] = (digit)HHALF(tmp.ul[H]);
122 	u[2] = (digit)LHALF(tmp.ul[H]);
123 	u[3] = (digit)HHALF(tmp.ul[L]);
124 	u[4] = (digit)LHALF(tmp.ul[L]);
125 	tmp.uq = vq;
126 	v[1] = (digit)HHALF(tmp.ul[H]);
127 	v[2] = (digit)LHALF(tmp.ul[H]);
128 	v[3] = (digit)HHALF(tmp.ul[L]);
129 	v[4] = (digit)LHALF(tmp.ul[L]);
130 	for (n = 4; v[1] == 0; v++) {
131 		if (--n == 1) {
132 			u_int rbj;	/* r*B+u[j] (not root boy jim) */
133 			digit q1, q2, q3, q4;
134 
135 			/*
136 			 * Change of plan, per exercise 16.
137 			 *	r = 0;
138 			 *	for j = 1..4:
139 			 *		q[j] = floor((r*B + u[j]) / v),
140 			 *		r = (r*B + u[j]) % v;
141 			 * We unroll this completely here.
142 			 */
143 			t = v[2];	/* nonzero, by definition */
144 			q1 = (digit)(u[1] / t);
145 			rbj = COMBINE(u[1] % t, u[2]);
146 			q2 = (digit)(rbj / t);
147 			rbj = COMBINE(rbj % t, u[3]);
148 			q3 = (digit)(rbj / t);
149 			rbj = COMBINE(rbj % t, u[4]);
150 			q4 = (digit)(rbj / t);
151 			if (arq)
152 				*arq = rbj % t;
153 			tmp.ul[H] = COMBINE(q1, q2);
154 			tmp.ul[L] = COMBINE(q3, q4);
155 			return (tmp.q);
156 		}
157 	}
158 
159 	/*
160 	 * By adjusting q once we determine m, we can guarantee that
161 	 * there is a complete four-digit quotient at &qspace[1] when
162 	 * we finally stop.
163 	 */
164 	for (m = 4 - n; u[1] == 0; u++)
165 		m--;
166 	for (i = 4 - m; --i >= 0;)
167 		q[i] = 0;
168 	q += 4 - m;
169 
170 	/*
171 	 * Here we run Program D, translated from MIX to C and acquiring
172 	 * a few minor changes.
173 	 *
174 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
175 	 */
176 	d = 0;
177 	for (t = v[1]; t < B / 2; t <<= 1)
178 		d++;
179 	if (d > 0) {
180 		shl(&u[0], m + n, d);		/* u <<= d */
181 		shl(&v[1], n - 1, d);		/* v <<= d */
182 	}
183 	/*
184 	 * D2: j = 0.
185 	 */
186 	j = 0;
187 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
188 	v2 = v[2];	/* for D3 */
189 	do {
190 		digit uj0, uj1, uj2;
191 
192 		/*
193 		 * D3: Calculate qhat (\^q, in TeX notation).
194 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
195 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
196 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
197 		 * decrement qhat and increase rhat correspondingly.
198 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
199 		 */
200 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
201 		uj1 = u[j + 1];	/* for D3 only */
202 		uj2 = u[j + 2];	/* for D3 only */
203 		if (uj0 == v1) {
204 			qhat = B;
205 			rhat = uj1;
206 			goto qhat_too_big;
207 		} else {
208 			u_int nn = COMBINE(uj0, uj1);
209 			qhat = nn / v1;
210 			rhat = nn % v1;
211 		}
212 		while (v2 * qhat > COMBINE(rhat, uj2)) {
213 	qhat_too_big:
214 			qhat--;
215 			if ((rhat += v1) >= B)
216 				break;
217 		}
218 		/*
219 		 * D4: Multiply and subtract.
220 		 * The variable `t' holds any borrows across the loop.
221 		 * We split this up so that we do not require v[0] = 0,
222 		 * and to eliminate a final special case.
223 		 */
224 		for (t = 0, i = n; i > 0; i--) {
225 			t = u[i + j] - v[i] * qhat - t;
226 			u[i + j] = (digit)LHALF(t);
227 			t = (B - HHALF(t)) & (B - 1);
228 		}
229 		t = u[j] - t;
230 		u[j] = (digit)LHALF(t);
231 		/*
232 		 * D5: test remainder.
233 		 * There is a borrow if and only if HHALF(t) is nonzero;
234 		 * in that (rare) case, qhat was too large (by exactly 1).
235 		 * Fix it by adding v[1..n] to u[j..j+n].
236 		 */
237 		if (HHALF(t)) {
238 			qhat--;
239 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
240 				t += u[i + j] + v[i];
241 				u[i + j] = (digit)LHALF(t);
242 				t = HHALF(t);
243 			}
244 			u[j] = (digit)LHALF(u[j] + t);
245 		}
246 		q[j] = (digit)qhat;
247 	} while (++j <= m);		/* D7: loop on j. */
248 
249 	/*
250 	 * If caller wants the remainder, we have to calculate it as
251 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
252 	 * u[m+1..m+n], but we may need more source digits).
253 	 */
254 	if (arq) {
255 		if (d) {
256 			for (i = m + n; i > m; --i)
257 				u[i] = (digit)(((u_int)u[i] >> d) |
258 				    LHALF((u_int)u[i - 1] << (HALF_BITS - d)));
259 			u[i] = 0;
260 		}
261 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
262 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
263 		*arq = tmp.q;
264 	}
265 
266 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
267 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
268 	return (tmp.q);
269 }
270 
271 /*
272  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
273  * `fall out' the left (there never will be any such anyway).
274  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
275  */
276 static void
277 shl(digit *p, int len, int sh)
278 {
279 	int i;
280 
281 	for (i = 0; i < len; i++)
282 		p[i] = (digit)(LHALF((u_int)p[i] << sh) |
283 		    ((u_int)p[i + 1] >> (HALF_BITS - sh)));
284 	p[i] = (digit)(LHALF((u_int)p[i] << sh));
285 }
286