xref: /netbsd-src/common/lib/libc/hash/sha2/sha2.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /* $NetBSD: sha2.c,v 1.7 2008/02/16 17:15:32 apb Exp $ */
2 /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
3 
4 /*
5  * sha2.c
6  *
7  * Version 1.0.0beta1
8  *
9  * Written by Aaron D. Gifford <me@aarongifford.com>
10  *
11  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the copyright holder nor the names of contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  */
38 
39 #include <sys/cdefs.h>
40 
41 #if defined(_KERNEL) || defined(_STANDALONE)
42 __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.7 2008/02/16 17:15:32 apb Exp $");
43 
44 #include <lib/libkern/libkern.h>
45 
46 #else
47 
48 #if defined(LIBC_SCCS) && !defined(lint)
49 __RCSID("$NetBSD: sha2.c,v 1.7 2008/02/16 17:15:32 apb Exp $");
50 #endif /* LIBC_SCCS and not lint */
51 
52 #include "namespace.h"
53 #include <assert.h>
54 #include <string.h>
55 
56 #endif
57 
58 #include <sys/types.h>
59 #include <sys/param.h>
60 #include <sys/sha2.h>
61 
62 /*
63  * ASSERT NOTE:
64  * Some sanity checking code is included using assert().  On my FreeBSD
65  * system, this additional code can be removed by compiling with NDEBUG
66  * defined.  Check your own systems manpage on assert() to see how to
67  * compile WITHOUT the sanity checking code on your system.
68  *
69  * UNROLLED TRANSFORM LOOP NOTE:
70  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
71  * loop version for the hash transform rounds (defined using macros
72  * later in this file).  Either define on the command line, for example:
73  *
74  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
75  *
76  * or define below:
77  *
78  *   #define SHA2_UNROLL_TRANSFORM
79  *
80  */
81 
82 #if defined(__bsdi__) || defined(__FreeBSD__)
83 #define assert(x)
84 #endif
85 
86 
87 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
88 /*
89  * BYTE_ORDER NOTE:
90  *
91  * Please make sure that your system defines BYTE_ORDER.  If your
92  * architecture is little-endian, make sure it also defines
93  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
94  * equivilent.
95  *
96  * If your system does not define the above, then you can do so by
97  * hand like this:
98  *
99  *   #define LITTLE_ENDIAN 1234
100  *   #define BIG_ENDIAN    4321
101  *
102  * And for little-endian machines, add:
103  *
104  *   #define BYTE_ORDER LITTLE_ENDIAN
105  *
106  * Or for big-endian machines:
107  *
108  *   #define BYTE_ORDER BIG_ENDIAN
109  *
110  * The FreeBSD machine this was written on defines BYTE_ORDER
111  * appropriately by including <sys/types.h> (which in turn includes
112  * <machine/endian.h> where the appropriate definitions are actually
113  * made).
114  */
115 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
116 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
117 #endif
118 
119 /*
120  * Define the followingsha2_* types to types of the correct length on
121  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
122  * types.  Machines with recent ANSI C headers, can use the standard C99
123  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
124  * during compile or in the sha.h header file.
125  *
126  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
127  * will need to define these three typedefs below (and the appropriate
128  * ones in sha.h too) by hand according to their system architecture.
129  *
130  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
131  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
132  */
133 #if 1 /*def SHA2_USE_INTTYPES_H*/
134 
135 typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
136 typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
137 typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
138 
139 #else /* SHA2_USE_INTTYPES_H */
140 
141 typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
142 typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
143 typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
144 
145 #endif /* SHA2_USE_INTTYPES_H */
146 
147 
148 /*** SHA-256/384/512 Various Length Definitions ***********************/
149 /* NOTE: Most of these are in sha2.h */
150 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
151 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
152 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
153 
154 
155 /*** ENDIAN REVERSAL MACROS *******************************************/
156 #if BYTE_ORDER == LITTLE_ENDIAN
157 #define REVERSE32(w,x)	{ \
158 	sha2_word32 tmp = (w); \
159 	tmp = (tmp >> 16) | (tmp << 16); \
160 	(x) = (sha2_word32)(((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8)); \
161 }
162 #define REVERSE64(w,x)	{ \
163 	sha2_word64 tmp = (w); \
164 	tmp = (tmp >> 32) | (tmp << 32); \
165 	tmp = (sha2_word64)(((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
166 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8)); \
167 	(x) = (sha2_word64)(((tmp & 0xffff0000ffff0000ULL) >> 16) | \
168 	      ((tmp & 0x0000ffff0000ffffULL) << 16)); \
169 }
170 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
171 
172 /*
173  * Macro for incrementally adding the unsigned 64-bit integer n to the
174  * unsigned 128-bit integer (represented using a two-element array of
175  * 64-bit words):
176  */
177 #define ADDINC128(w,n)	{ \
178 	(w)[0] += (sha2_word64)(n); \
179 	if ((w)[0] < (n)) { \
180 		(w)[1]++; \
181 	} \
182 }
183 
184 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
185 /*
186  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
187  *
188  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
189  *   S is a ROTATION) because the SHA-256/384/512 description document
190  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
191  *   same "backwards" definition.
192  */
193 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
194 #define R(b,x) 		((x) >> (b))
195 /* 32-bit Rotate-right (used in SHA-256): */
196 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
197 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
198 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
199 
200 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
201 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
202 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
203 
204 /* Four of six logical functions used in SHA-256: */
205 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
206 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
207 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
208 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
209 
210 /* Four of six logical functions used in SHA-384 and SHA-512: */
211 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
212 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
213 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
214 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
215 
216 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
217 /* NOTE: These should not be accessed directly from outside this
218  * library -- they are intended for private internal visibility/use
219  * only.
220  */
221 static void SHA512_Last(SHA512_CTX*);
222 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
223 void SHA384_Transform(SHA384_CTX*, const sha2_word64*);
224 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
225 
226 
227 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
228 /* Hash constant words K for SHA-256: */
229 static const sha2_word32 K256[64] = {
230 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
231 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
232 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
233 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
234 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
235 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
236 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
237 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
238 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
239 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
240 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
241 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
242 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
243 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
244 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
245 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
246 };
247 
248 /* Initial hash value H for SHA-256: */
249 static const sha2_word32 sha256_initial_hash_value[8] = {
250 	0x6a09e667UL,
251 	0xbb67ae85UL,
252 	0x3c6ef372UL,
253 	0xa54ff53aUL,
254 	0x510e527fUL,
255 	0x9b05688cUL,
256 	0x1f83d9abUL,
257 	0x5be0cd19UL
258 };
259 
260 /* Hash constant words K for SHA-384 and SHA-512: */
261 static const sha2_word64 K512[80] = {
262 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
263 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
264 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
265 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
266 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
267 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
268 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
269 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
270 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
271 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
272 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
273 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
274 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
275 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
276 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
277 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
278 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
279 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
280 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
281 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
282 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
283 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
284 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
285 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
286 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
287 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
288 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
289 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
290 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
291 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
292 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
293 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
294 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
295 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
296 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
297 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
298 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
299 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
300 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
301 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
302 };
303 
304 /* Initial hash value H for SHA-384 */
305 static const sha2_word64 sha384_initial_hash_value[8] = {
306 	0xcbbb9d5dc1059ed8ULL,
307 	0x629a292a367cd507ULL,
308 	0x9159015a3070dd17ULL,
309 	0x152fecd8f70e5939ULL,
310 	0x67332667ffc00b31ULL,
311 	0x8eb44a8768581511ULL,
312 	0xdb0c2e0d64f98fa7ULL,
313 	0x47b5481dbefa4fa4ULL
314 };
315 
316 /* Initial hash value H for SHA-512 */
317 static const sha2_word64 sha512_initial_hash_value[8] = {
318 	0x6a09e667f3bcc908ULL,
319 	0xbb67ae8584caa73bULL,
320 	0x3c6ef372fe94f82bULL,
321 	0xa54ff53a5f1d36f1ULL,
322 	0x510e527fade682d1ULL,
323 	0x9b05688c2b3e6c1fULL,
324 	0x1f83d9abfb41bd6bULL,
325 	0x5be0cd19137e2179ULL
326 };
327 
328 #if !defined(_KERNEL) && defined(__weak_alias)
329 __weak_alias(SHA256_Init,_SHA256_Init)
330 __weak_alias(SHA256_Update,_SHA256_Update)
331 __weak_alias(SHA256_Final,_SHA256_Final)
332 __weak_alias(SHA256_Transform,_SHA256_Transform)
333 
334 __weak_alias(SHA384_Init,_SHA384_Init)
335 __weak_alias(SHA384_Update,_SHA384_Update)
336 __weak_alias(SHA384_Final,_SHA384_Final)
337 __weak_alias(SHA384_Transform,_SHA384_Transform)
338 
339 __weak_alias(SHA512_Init,_SHA512_Init)
340 __weak_alias(SHA512_Update,_SHA512_Update)
341 __weak_alias(SHA512_Final,_SHA512_Final)
342 __weak_alias(SHA512_Transform,_SHA512_Transform)
343 #endif
344 
345 /*** SHA-256: *********************************************************/
346 void SHA256_Init(SHA256_CTX* context) {
347 	if (context == (SHA256_CTX*)0) {
348 		return;
349 	}
350 	memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
351 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
352 	context->bitcount = 0;
353 }
354 
355 #ifdef SHA2_UNROLL_TRANSFORM
356 
357 /* Unrolled SHA-256 round macros: */
358 
359 #if BYTE_ORDER == LITTLE_ENDIAN
360 
361 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
362 	REVERSE32(*data++, W256[j]); \
363 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
364              K256[j] + W256[j]; \
365 	(d) += T1; \
366 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
367 	j++
368 
369 
370 #else /* BYTE_ORDER == LITTLE_ENDIAN */
371 
372 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
373 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
374 	     K256[j] + (W256[j] = *data++); \
375 	(d) += T1; \
376 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
377 	j++
378 
379 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
380 
381 #define ROUND256(a,b,c,d,e,f,g,h)	\
382 	s0 = W256[(j+1)&0x0f]; \
383 	s0 = sigma0_256(s0); \
384 	s1 = W256[(j+14)&0x0f]; \
385 	s1 = sigma1_256(s1); \
386 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
387 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
388 	(d) += T1; \
389 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
390 	j++
391 
392 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
393 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
394 	sha2_word32	T1, *W256;
395 	int		j;
396 
397 	W256 = (sha2_word32*)context->buffer;
398 
399 	/* Initialize registers with the prev. intermediate value */
400 	a = context->state[0];
401 	b = context->state[1];
402 	c = context->state[2];
403 	d = context->state[3];
404 	e = context->state[4];
405 	f = context->state[5];
406 	g = context->state[6];
407 	h = context->state[7];
408 
409 	j = 0;
410 	do {
411 		/* Rounds 0 to 15 (unrolled): */
412 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
413 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
414 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
415 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
416 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
417 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
418 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
419 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
420 	} while (j < 16);
421 
422 	/* Now for the remaining rounds to 64: */
423 	do {
424 		ROUND256(a,b,c,d,e,f,g,h);
425 		ROUND256(h,a,b,c,d,e,f,g);
426 		ROUND256(g,h,a,b,c,d,e,f);
427 		ROUND256(f,g,h,a,b,c,d,e);
428 		ROUND256(e,f,g,h,a,b,c,d);
429 		ROUND256(d,e,f,g,h,a,b,c);
430 		ROUND256(c,d,e,f,g,h,a,b);
431 		ROUND256(b,c,d,e,f,g,h,a);
432 	} while (j < 64);
433 
434 	/* Compute the current intermediate hash value */
435 	context->state[0] += a;
436 	context->state[1] += b;
437 	context->state[2] += c;
438 	context->state[3] += d;
439 	context->state[4] += e;
440 	context->state[5] += f;
441 	context->state[6] += g;
442 	context->state[7] += h;
443 
444 	/* Clean up */
445 	a = b = c = d = e = f = g = h = T1 = 0;
446 }
447 
448 #else /* SHA2_UNROLL_TRANSFORM */
449 
450 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
451 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
452 	sha2_word32	T1, T2, *W256;
453 	int		j;
454 
455 	W256 = (sha2_word32*)(void *)context->buffer;
456 
457 	/* Initialize registers with the prev. intermediate value */
458 	a = context->state[0];
459 	b = context->state[1];
460 	c = context->state[2];
461 	d = context->state[3];
462 	e = context->state[4];
463 	f = context->state[5];
464 	g = context->state[6];
465 	h = context->state[7];
466 
467 	j = 0;
468 	do {
469 #if BYTE_ORDER == LITTLE_ENDIAN
470 		/* Copy data while converting to host byte order */
471 		REVERSE32(*data++,W256[j]);
472 		/* Apply the SHA-256 compression function to update a..h */
473 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
474 #else /* BYTE_ORDER == LITTLE_ENDIAN */
475 		/* Apply the SHA-256 compression function to update a..h with copy */
476 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
477 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
478 		T2 = Sigma0_256(a) + Maj(a, b, c);
479 		h = g;
480 		g = f;
481 		f = e;
482 		e = d + T1;
483 		d = c;
484 		c = b;
485 		b = a;
486 		a = T1 + T2;
487 
488 		j++;
489 	} while (j < 16);
490 
491 	do {
492 		/* Part of the message block expansion: */
493 		s0 = W256[(j+1)&0x0f];
494 		s0 = sigma0_256(s0);
495 		s1 = W256[(j+14)&0x0f];
496 		s1 = sigma1_256(s1);
497 
498 		/* Apply the SHA-256 compression function to update a..h */
499 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
500 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
501 		T2 = Sigma0_256(a) + Maj(a, b, c);
502 		h = g;
503 		g = f;
504 		f = e;
505 		e = d + T1;
506 		d = c;
507 		c = b;
508 		b = a;
509 		a = T1 + T2;
510 
511 		j++;
512 	} while (j < 64);
513 
514 	/* Compute the current intermediate hash value */
515 	context->state[0] += a;
516 	context->state[1] += b;
517 	context->state[2] += c;
518 	context->state[3] += d;
519 	context->state[4] += e;
520 	context->state[5] += f;
521 	context->state[6] += g;
522 	context->state[7] += h;
523 
524 	/* Clean up */
525 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
526 }
527 
528 #endif /* SHA2_UNROLL_TRANSFORM */
529 
530 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
531 	unsigned int	freespace, usedspace;
532 
533 	if (len == 0) {
534 		/* Calling with no data is valid - we do nothing */
535 		return;
536 	}
537 
538 	/* Sanity check: */
539 	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
540 
541 	usedspace = (unsigned int)((context->bitcount >> 3) %
542 				    SHA256_BLOCK_LENGTH);
543 	if (usedspace > 0) {
544 		/* Calculate how much free space is available in the buffer */
545 		freespace = SHA256_BLOCK_LENGTH - usedspace;
546 
547 		if (len >= freespace) {
548 			/* Fill the buffer completely and process it */
549 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
550 			context->bitcount += freespace << 3;
551 			len -= freespace;
552 			data += freespace;
553 			SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
554 		} else {
555 			/* The buffer is not yet full */
556 			memcpy(&context->buffer[usedspace], data, len);
557 			context->bitcount += len << 3;
558 			/* Clean up: */
559 			usedspace = freespace = 0;
560 			return;
561 		}
562 	}
563 	/*
564 	 * Process as many complete blocks as possible.
565 	 *
566 	 * Check alignment of the data pointer. If it is 32bit aligned,
567 	 * SHA256_Transform can be called directly on the data stream,
568 	 * otherwise enforce the alignment by copy into the buffer.
569 	 */
570 	if ((uintptr_t)data % 4 == 0) {
571 		while (len >= SHA256_BLOCK_LENGTH) {
572 			SHA256_Transform(context,
573 			    (const sha2_word32 *)(const void *)data);
574 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
575 			len -= SHA256_BLOCK_LENGTH;
576 			data += SHA256_BLOCK_LENGTH;
577 		}
578 	} else {
579 		while (len >= SHA256_BLOCK_LENGTH) {
580 			memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
581 			SHA256_Transform(context,
582 			    (const sha2_word32 *)(const void *)context->buffer);
583 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
584 			len -= SHA256_BLOCK_LENGTH;
585 			data += SHA256_BLOCK_LENGTH;
586 		}
587 	}
588 	if (len > 0) {
589 		/* There's left-overs, so save 'em */
590 		memcpy(context->buffer, data, len);
591 		context->bitcount += len << 3;
592 	}
593 	/* Clean up: */
594 	usedspace = freespace = 0;
595 }
596 
597 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
598 	sha2_word32	*d = (void *)digest;
599 	unsigned int	usedspace;
600 
601 	/* Sanity check: */
602 	assert(context != (SHA256_CTX*)0);
603 
604 	/* If no digest buffer is passed, we don't bother doing this: */
605 	if (digest != (sha2_byte*)0) {
606 		usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
607 #if BYTE_ORDER == LITTLE_ENDIAN
608 		/* Convert FROM host byte order */
609 		REVERSE64(context->bitcount,context->bitcount);
610 #endif
611 		if (usedspace > 0) {
612 			/* Begin padding with a 1 bit: */
613 			context->buffer[usedspace++] = 0x80;
614 
615 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
616 				/* Set-up for the last transform: */
617 				memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace));
618 			} else {
619 				if (usedspace < SHA256_BLOCK_LENGTH) {
620 					memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace));
621 				}
622 				/* Do second-to-last transform: */
623 				SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
624 
625 				/* And set-up for the last transform: */
626 				memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
627 			}
628 		} else {
629 			/* Set-up for the last transform: */
630 			memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
631 
632 			/* Begin padding with a 1 bit: */
633 			*context->buffer = 0x80;
634 		}
635 		/* Set the bit count: */
636 		*(sha2_word64*)(void *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
637 
638 		/* Final transform: */
639 		SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
640 
641 #if BYTE_ORDER == LITTLE_ENDIAN
642 		{
643 			/* Convert TO host byte order */
644 			int	j;
645 			for (j = 0; j < 8; j++) {
646 				REVERSE32(context->state[j],context->state[j]);
647 				*d++ = context->state[j];
648 			}
649 		}
650 #else
651 		memcpy(d, context->state, SHA256_DIGEST_LENGTH);
652 #endif
653 	}
654 
655 	/* Clean up state data: */
656 	memset(context, 0, sizeof(*context));
657 	usedspace = 0;
658 }
659 
660 /*** SHA-512: *********************************************************/
661 void SHA512_Init(SHA512_CTX* context) {
662 	if (context == (SHA512_CTX*)0) {
663 		return;
664 	}
665 	memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
666 	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
667 	context->bitcount[0] = context->bitcount[1] =  0;
668 }
669 
670 #ifdef SHA2_UNROLL_TRANSFORM
671 
672 /* Unrolled SHA-512 round macros: */
673 #if BYTE_ORDER == LITTLE_ENDIAN
674 
675 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
676 	REVERSE64(*data++, W512[j]); \
677 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
678              K512[j] + W512[j]; \
679 	(d) += T1, \
680 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
681 	j++
682 
683 
684 #else /* BYTE_ORDER == LITTLE_ENDIAN */
685 
686 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
687 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
688              K512[j] + (W512[j] = *data++); \
689 	(d) += T1; \
690 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
691 	j++
692 
693 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
694 
695 #define ROUND512(a,b,c,d,e,f,g,h)	\
696 	s0 = W512[(j+1)&0x0f]; \
697 	s0 = sigma0_512(s0); \
698 	s1 = W512[(j+14)&0x0f]; \
699 	s1 = sigma1_512(s1); \
700 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
701              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
702 	(d) += T1; \
703 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
704 	j++
705 
706 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
707 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
708 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
709 	int		j;
710 
711 	/* Initialize registers with the prev. intermediate value */
712 	a = context->state[0];
713 	b = context->state[1];
714 	c = context->state[2];
715 	d = context->state[3];
716 	e = context->state[4];
717 	f = context->state[5];
718 	g = context->state[6];
719 	h = context->state[7];
720 
721 	j = 0;
722 	do {
723 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
724 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
725 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
726 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
727 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
728 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
729 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
730 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
731 	} while (j < 16);
732 
733 	/* Now for the remaining rounds up to 79: */
734 	do {
735 		ROUND512(a,b,c,d,e,f,g,h);
736 		ROUND512(h,a,b,c,d,e,f,g);
737 		ROUND512(g,h,a,b,c,d,e,f);
738 		ROUND512(f,g,h,a,b,c,d,e);
739 		ROUND512(e,f,g,h,a,b,c,d);
740 		ROUND512(d,e,f,g,h,a,b,c);
741 		ROUND512(c,d,e,f,g,h,a,b);
742 		ROUND512(b,c,d,e,f,g,h,a);
743 	} while (j < 80);
744 
745 	/* Compute the current intermediate hash value */
746 	context->state[0] += a;
747 	context->state[1] += b;
748 	context->state[2] += c;
749 	context->state[3] += d;
750 	context->state[4] += e;
751 	context->state[5] += f;
752 	context->state[6] += g;
753 	context->state[7] += h;
754 
755 	/* Clean up */
756 	a = b = c = d = e = f = g = h = T1 = 0;
757 }
758 
759 #else /* SHA2_UNROLL_TRANSFORM */
760 
761 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
762 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
763 	sha2_word64	T1, T2, *W512 = (void *)context->buffer;
764 	int		j;
765 
766 	/* Initialize registers with the prev. intermediate value */
767 	a = context->state[0];
768 	b = context->state[1];
769 	c = context->state[2];
770 	d = context->state[3];
771 	e = context->state[4];
772 	f = context->state[5];
773 	g = context->state[6];
774 	h = context->state[7];
775 
776 	j = 0;
777 	do {
778 #if BYTE_ORDER == LITTLE_ENDIAN
779 		/* Convert TO host byte order */
780 		REVERSE64(*data++, W512[j]);
781 		/* Apply the SHA-512 compression function to update a..h */
782 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
783 #else /* BYTE_ORDER == LITTLE_ENDIAN */
784 		/* Apply the SHA-512 compression function to update a..h with copy */
785 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
786 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
787 		T2 = Sigma0_512(a) + Maj(a, b, c);
788 		h = g;
789 		g = f;
790 		f = e;
791 		e = d + T1;
792 		d = c;
793 		c = b;
794 		b = a;
795 		a = T1 + T2;
796 
797 		j++;
798 	} while (j < 16);
799 
800 	do {
801 		/* Part of the message block expansion: */
802 		s0 = W512[(j+1)&0x0f];
803 		s0 = sigma0_512(s0);
804 		s1 = W512[(j+14)&0x0f];
805 		s1 =  sigma1_512(s1);
806 
807 		/* Apply the SHA-512 compression function to update a..h */
808 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
809 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
810 		T2 = Sigma0_512(a) + Maj(a, b, c);
811 		h = g;
812 		g = f;
813 		f = e;
814 		e = d + T1;
815 		d = c;
816 		c = b;
817 		b = a;
818 		a = T1 + T2;
819 
820 		j++;
821 	} while (j < 80);
822 
823 	/* Compute the current intermediate hash value */
824 	context->state[0] += a;
825 	context->state[1] += b;
826 	context->state[2] += c;
827 	context->state[3] += d;
828 	context->state[4] += e;
829 	context->state[5] += f;
830 	context->state[6] += g;
831 	context->state[7] += h;
832 
833 	/* Clean up */
834 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
835 }
836 
837 #endif /* SHA2_UNROLL_TRANSFORM */
838 
839 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
840 	unsigned int	freespace, usedspace;
841 
842 	if (len == 0) {
843 		/* Calling with no data is valid - we do nothing */
844 		return;
845 	}
846 
847 	/* Sanity check: */
848 	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
849 
850 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
851 	if (usedspace > 0) {
852 		/* Calculate how much free space is available in the buffer */
853 		freespace = SHA512_BLOCK_LENGTH - usedspace;
854 
855 		if (len >= freespace) {
856 			/* Fill the buffer completely and process it */
857 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
858 			ADDINC128(context->bitcount, freespace << 3);
859 			len -= freespace;
860 			data += freespace;
861 			SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
862 		} else {
863 			/* The buffer is not yet full */
864 			memcpy(&context->buffer[usedspace], data, len);
865 			ADDINC128(context->bitcount, len << 3);
866 			/* Clean up: */
867 			usedspace = freespace = 0;
868 			return;
869 		}
870 	}
871 	/*
872 	 * Process as many complete blocks as possible.
873 	 *
874 	 * Check alignment of the data pointer. If it is 64bit aligned,
875 	 * SHA512_Transform can be called directly on the data stream,
876 	 * otherwise enforce the alignment by copy into the buffer.
877 	 */
878 	if ((uintptr_t)data % 8 == 0) {
879 		while (len >= SHA512_BLOCK_LENGTH) {
880 			SHA512_Transform(context,
881 			    (const sha2_word64*)(const void *)data);
882 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
883 			len -= SHA512_BLOCK_LENGTH;
884 			data += SHA512_BLOCK_LENGTH;
885 		}
886 	} else {
887 		while (len >= SHA512_BLOCK_LENGTH) {
888 			memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
889 			SHA512_Transform(context,
890 			    (const void *)context->buffer);
891 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
892 			len -= SHA512_BLOCK_LENGTH;
893 			data += SHA512_BLOCK_LENGTH;
894 		}
895 	}
896 	if (len > 0) {
897 		/* There's left-overs, so save 'em */
898 		memcpy(context->buffer, data, len);
899 		ADDINC128(context->bitcount, len << 3);
900 	}
901 	/* Clean up: */
902 	usedspace = freespace = 0;
903 }
904 
905 static void SHA512_Last(SHA512_CTX* context) {
906 	unsigned int	usedspace;
907 
908 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
909 #if BYTE_ORDER == LITTLE_ENDIAN
910 	/* Convert FROM host byte order */
911 	REVERSE64(context->bitcount[0],context->bitcount[0]);
912 	REVERSE64(context->bitcount[1],context->bitcount[1]);
913 #endif
914 	if (usedspace > 0) {
915 		/* Begin padding with a 1 bit: */
916 		context->buffer[usedspace++] = 0x80;
917 
918 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
919 			/* Set-up for the last transform: */
920 			memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
921 		} else {
922 			if (usedspace < SHA512_BLOCK_LENGTH) {
923 				memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace));
924 			}
925 			/* Do second-to-last transform: */
926 			SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
927 
928 			/* And set-up for the last transform: */
929 			memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2));
930 		}
931 	} else {
932 		/* Prepare for final transform: */
933 		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
934 
935 		/* Begin padding with a 1 bit: */
936 		*context->buffer = 0x80;
937 	}
938 	/* Store the length of input data (in bits): */
939 	*(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
940 	*(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
941 
942 	/* Final transform: */
943 	SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
944 }
945 
946 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
947 	sha2_word64	*d = (void *)digest;
948 
949 	/* Sanity check: */
950 	assert(context != (SHA512_CTX*)0);
951 
952 	/* If no digest buffer is passed, we don't bother doing this: */
953 	if (digest != (sha2_byte*)0) {
954 		SHA512_Last(context);
955 
956 		/* Save the hash data for output: */
957 #if BYTE_ORDER == LITTLE_ENDIAN
958 		{
959 			/* Convert TO host byte order */
960 			int	j;
961 			for (j = 0; j < 8; j++) {
962 				REVERSE64(context->state[j],context->state[j]);
963 				*d++ = context->state[j];
964 			}
965 		}
966 #else
967 		memcpy(d, context->state, SHA512_DIGEST_LENGTH);
968 #endif
969 	}
970 
971 	/* Zero out state data */
972 	memset(context, 0, sizeof(*context));
973 }
974 
975 /*** SHA-384: *********************************************************/
976 void SHA384_Init(SHA384_CTX* context) {
977 	if (context == (SHA384_CTX*)0) {
978 		return;
979 	}
980 	memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
981 	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
982 	context->bitcount[0] = context->bitcount[1] = 0;
983 }
984 
985 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
986 	SHA512_Update((SHA512_CTX*)context, data, len);
987 }
988 
989 void SHA384_Transform(SHA512_CTX* context, const sha2_word64* data) {
990 	SHA512_Transform((SHA512_CTX*)context, data);
991 }
992 
993 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
994 	sha2_word64	*d = (void *)digest;
995 
996 	/* Sanity check: */
997 	assert(context != (SHA384_CTX*)0);
998 
999 	/* If no digest buffer is passed, we don't bother doing this: */
1000 	if (digest != (sha2_byte*)0) {
1001 		SHA512_Last((SHA512_CTX*)context);
1002 
1003 		/* Save the hash data for output: */
1004 #if BYTE_ORDER == LITTLE_ENDIAN
1005 		{
1006 			/* Convert TO host byte order */
1007 			int	j;
1008 			for (j = 0; j < 6; j++) {
1009 				REVERSE64(context->state[j],context->state[j]);
1010 				*d++ = context->state[j];
1011 			}
1012 		}
1013 #else
1014 		memcpy(d, context->state, SHA384_DIGEST_LENGTH);
1015 #endif
1016 	}
1017 
1018 	/* Zero out state data */
1019 	memset(context, 0, sizeof(*context));
1020 }
1021