xref: /netbsd-src/common/lib/libc/hash/sha2/sha2.c (revision 10ad5ffa714ce1a679dcc9dd8159648df2d67b5a)
1 /* $NetBSD: sha2.c,v 1.18 2009/06/25 14:05:18 joerg Exp $ */
2 /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
3 
4 /*
5  * sha2.c
6  *
7  * Version 1.0.0beta1
8  *
9  * Written by Aaron D. Gifford <me@aarongifford.com>
10  *
11  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the copyright holder nor the names of contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  */
38 
39 #if HAVE_NBTOOL_CONFIG_H
40 #include "nbtool_config.h"
41 #endif
42 
43 #include <sys/cdefs.h>
44 
45 #if defined(_KERNEL) || defined(_STANDALONE)
46 __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.18 2009/06/25 14:05:18 joerg Exp $");
47 
48 #include <sys/param.h>	/* XXX: to pull <machine/macros.h> for vax memset(9) */
49 #include <lib/libkern/libkern.h>
50 
51 #else
52 
53 #if defined(LIBC_SCCS) && !defined(lint)
54 __RCSID("$NetBSD: sha2.c,v 1.18 2009/06/25 14:05:18 joerg Exp $");
55 #endif /* LIBC_SCCS and not lint */
56 
57 #include "namespace.h"
58 #include <string.h>
59 
60 #endif
61 
62 #include <sys/types.h>
63 #include <sys/sha2.h>
64 
65 #if HAVE_NBTOOL_CONFIG_H
66 #  if HAVE_SYS_ENDIAN_H
67 #    include <sys/endian.h>
68 #  else
69 #   undef htobe32
70 #   undef htobe64
71 #   undef be32toh
72 #   undef be64toh
73 
74 static uint32_t
75 htobe32(uint32_t x)
76 {
77 	uint8_t p[4];
78 	memcpy(p, &x, 4);
79 
80 	return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
81 }
82 
83 static uint64_t
84 htobe64(uint64_t x)
85 {
86 	uint8_t p[8];
87 	uint32_t u, v;
88 	memcpy(p, &x, 8);
89 
90 	u = ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
91 	v = ((p[4] << 24) | (p[5] << 16) | (p[6] << 8) | p[7]);
92 
93 	return ((((uint64_t)u) << 32) | v);
94 }
95 
96 static uint32_t
97 be32toh(uint32_t x)
98 {
99 	return htobe32(x);
100 }
101 
102 static uint64_t
103 be64toh(uint64_t x)
104 {
105 	return htobe64(x);
106 }
107 #  endif
108 #endif
109 
110 /*** SHA-256/384/512 Various Length Definitions ***********************/
111 /* NOTE: Most of these are in sha2.h */
112 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
113 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
114 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
115 
116 /*
117  * Macro for incrementally adding the unsigned 64-bit integer n to the
118  * unsigned 128-bit integer (represented using a two-element array of
119  * 64-bit words):
120  */
121 #define ADDINC128(w,n)	{ \
122 	(w)[0] += (uint64_t)(n); \
123 	if ((w)[0] < (n)) { \
124 		(w)[1]++; \
125 	} \
126 }
127 
128 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
129 /*
130  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
131  *
132  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
133  *   S is a ROTATION) because the SHA-256/384/512 description document
134  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
135  *   same "backwards" definition.
136  */
137 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
138 #define R(b,x) 		((x) >> (b))
139 /* 32-bit Rotate-right (used in SHA-256): */
140 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
141 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
142 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
143 
144 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
145 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
146 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
147 
148 /* Four of six logical functions used in SHA-256: */
149 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
150 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
151 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
152 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
153 
154 /* Four of six logical functions used in SHA-384 and SHA-512: */
155 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
156 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
157 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
158 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
159 
160 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
161 /* NOTE: These should not be accessed directly from outside this
162  * library -- they are intended for private internal visibility/use
163  * only.
164  */
165 static void SHA512_Last(SHA512_CTX *);
166 void SHA224_Transform(SHA224_CTX *, const uint32_t*);
167 void SHA256_Transform(SHA256_CTX *, const uint32_t*);
168 void SHA384_Transform(SHA384_CTX *, const uint64_t*);
169 void SHA512_Transform(SHA512_CTX *, const uint64_t*);
170 
171 
172 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
173 /* Hash constant words K for SHA-256: */
174 static const uint32_t K256[64] = {
175 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
176 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
177 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
178 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
179 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
180 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
181 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
182 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
183 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
184 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
185 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
186 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
187 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
188 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
189 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
190 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
191 };
192 
193 /* Initial hash value H for SHA-224: */
194 static const uint32_t sha224_initial_hash_value[8] = {
195 	0xc1059ed8UL,
196 	0x367cd507UL,
197 	0x3070dd17UL,
198 	0xf70e5939UL,
199 	0xffc00b31UL,
200 	0x68581511UL,
201 	0x64f98fa7UL,
202 	0xbefa4fa4UL
203 };
204 
205 /* Initial hash value H for SHA-256: */
206 static const uint32_t sha256_initial_hash_value[8] = {
207 	0x6a09e667UL,
208 	0xbb67ae85UL,
209 	0x3c6ef372UL,
210 	0xa54ff53aUL,
211 	0x510e527fUL,
212 	0x9b05688cUL,
213 	0x1f83d9abUL,
214 	0x5be0cd19UL
215 };
216 
217 /* Hash constant words K for SHA-384 and SHA-512: */
218 static const uint64_t K512[80] = {
219 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
220 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
221 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
222 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
223 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
224 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
225 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
226 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
227 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
228 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
229 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
230 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
231 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
232 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
233 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
234 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
235 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
236 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
237 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
238 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
239 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
240 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
241 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
242 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
243 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
244 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
245 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
246 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
247 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
248 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
249 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
250 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
251 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
252 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
253 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
254 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
255 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
256 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
257 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
258 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
259 };
260 
261 /* Initial hash value H for SHA-384 */
262 static const uint64_t sha384_initial_hash_value[8] = {
263 	0xcbbb9d5dc1059ed8ULL,
264 	0x629a292a367cd507ULL,
265 	0x9159015a3070dd17ULL,
266 	0x152fecd8f70e5939ULL,
267 	0x67332667ffc00b31ULL,
268 	0x8eb44a8768581511ULL,
269 	0xdb0c2e0d64f98fa7ULL,
270 	0x47b5481dbefa4fa4ULL
271 };
272 
273 /* Initial hash value H for SHA-512 */
274 static const uint64_t sha512_initial_hash_value[8] = {
275 	0x6a09e667f3bcc908ULL,
276 	0xbb67ae8584caa73bULL,
277 	0x3c6ef372fe94f82bULL,
278 	0xa54ff53a5f1d36f1ULL,
279 	0x510e527fade682d1ULL,
280 	0x9b05688c2b3e6c1fULL,
281 	0x1f83d9abfb41bd6bULL,
282 	0x5be0cd19137e2179ULL
283 };
284 
285 #if !defined(_KERNEL) && defined(__weak_alias)
286 __weak_alias(SHA224_Init,_SHA224_Init)
287 __weak_alias(SHA224_Update,_SHA224_Update)
288 __weak_alias(SHA224_Final,_SHA224_Final)
289 __weak_alias(SHA224_Transform,_SHA224_Transform)
290 
291 __weak_alias(SHA256_Init,_SHA256_Init)
292 __weak_alias(SHA256_Update,_SHA256_Update)
293 __weak_alias(SHA256_Final,_SHA256_Final)
294 __weak_alias(SHA256_Transform,_SHA256_Transform)
295 
296 __weak_alias(SHA384_Init,_SHA384_Init)
297 __weak_alias(SHA384_Update,_SHA384_Update)
298 __weak_alias(SHA384_Final,_SHA384_Final)
299 __weak_alias(SHA384_Transform,_SHA384_Transform)
300 
301 __weak_alias(SHA512_Init,_SHA512_Init)
302 __weak_alias(SHA512_Update,_SHA512_Update)
303 __weak_alias(SHA512_Final,_SHA512_Final)
304 __weak_alias(SHA512_Transform,_SHA512_Transform)
305 #endif
306 
307 /*** SHA-256: *********************************************************/
308 int
309 SHA256_Init(SHA256_CTX *context)
310 {
311 	if (context == NULL)
312 		return 1;
313 
314 	memcpy(context->state, sha256_initial_hash_value,
315 	    (size_t)(SHA256_DIGEST_LENGTH));
316 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
317 	context->bitcount = 0;
318 
319 	return 1;
320 }
321 
322 #ifdef SHA2_UNROLL_TRANSFORM
323 
324 /* Unrolled SHA-256 round macros: */
325 
326 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
327 	W256[j] = be32toh(*data);		\
328 	++data;					\
329 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
330              K256[j] + W256[j]; \
331 	(d) += T1; \
332 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
333 	j++
334 
335 #define ROUND256(a,b,c,d,e,f,g,h)	\
336 	s0 = W256[(j+1)&0x0f]; \
337 	s0 = sigma0_256(s0); \
338 	s1 = W256[(j+14)&0x0f]; \
339 	s1 = sigma1_256(s1); \
340 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
341 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
342 	(d) += T1; \
343 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
344 	j++
345 
346 void
347 SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
348 {
349 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
350 	uint32_t	T1, *W256;
351 	int		j;
352 
353 	W256 = (uint32_t *)context->buffer;
354 
355 	/* Initialize registers with the prev. intermediate value */
356 	a = context->state[0];
357 	b = context->state[1];
358 	c = context->state[2];
359 	d = context->state[3];
360 	e = context->state[4];
361 	f = context->state[5];
362 	g = context->state[6];
363 	h = context->state[7];
364 
365 	j = 0;
366 	do {
367 		/* Rounds 0 to 15 (unrolled): */
368 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
369 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
370 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
371 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
372 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
373 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
374 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
375 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
376 	} while (j < 16);
377 
378 	/* Now for the remaining rounds to 64: */
379 	do {
380 		ROUND256(a,b,c,d,e,f,g,h);
381 		ROUND256(h,a,b,c,d,e,f,g);
382 		ROUND256(g,h,a,b,c,d,e,f);
383 		ROUND256(f,g,h,a,b,c,d,e);
384 		ROUND256(e,f,g,h,a,b,c,d);
385 		ROUND256(d,e,f,g,h,a,b,c);
386 		ROUND256(c,d,e,f,g,h,a,b);
387 		ROUND256(b,c,d,e,f,g,h,a);
388 	} while (j < 64);
389 
390 	/* Compute the current intermediate hash value */
391 	context->state[0] += a;
392 	context->state[1] += b;
393 	context->state[2] += c;
394 	context->state[3] += d;
395 	context->state[4] += e;
396 	context->state[5] += f;
397 	context->state[6] += g;
398 	context->state[7] += h;
399 
400 	/* Clean up */
401 	a = b = c = d = e = f = g = h = T1 = 0;
402 }
403 
404 #else /* SHA2_UNROLL_TRANSFORM */
405 
406 void
407 SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
408 {
409 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
410 	uint32_t	T1, T2, *W256;
411 	int		j;
412 
413 	W256 = (uint32_t *)(void *)context->buffer;
414 
415 	/* Initialize registers with the prev. intermediate value */
416 	a = context->state[0];
417 	b = context->state[1];
418 	c = context->state[2];
419 	d = context->state[3];
420 	e = context->state[4];
421 	f = context->state[5];
422 	g = context->state[6];
423 	h = context->state[7];
424 
425 	j = 0;
426 	do {
427 		W256[j] = be32toh(*data);
428 		++data;
429 		/* Apply the SHA-256 compression function to update a..h */
430 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
431 		T2 = Sigma0_256(a) + Maj(a, b, c);
432 		h = g;
433 		g = f;
434 		f = e;
435 		e = d + T1;
436 		d = c;
437 		c = b;
438 		b = a;
439 		a = T1 + T2;
440 
441 		j++;
442 	} while (j < 16);
443 
444 	do {
445 		/* Part of the message block expansion: */
446 		s0 = W256[(j+1)&0x0f];
447 		s0 = sigma0_256(s0);
448 		s1 = W256[(j+14)&0x0f];
449 		s1 = sigma1_256(s1);
450 
451 		/* Apply the SHA-256 compression function to update a..h */
452 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
453 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
454 		T2 = Sigma0_256(a) + Maj(a, b, c);
455 		h = g;
456 		g = f;
457 		f = e;
458 		e = d + T1;
459 		d = c;
460 		c = b;
461 		b = a;
462 		a = T1 + T2;
463 
464 		j++;
465 	} while (j < 64);
466 
467 	/* Compute the current intermediate hash value */
468 	context->state[0] += a;
469 	context->state[1] += b;
470 	context->state[2] += c;
471 	context->state[3] += d;
472 	context->state[4] += e;
473 	context->state[5] += f;
474 	context->state[6] += g;
475 	context->state[7] += h;
476 
477 	/* Clean up */
478 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
479 }
480 
481 #endif /* SHA2_UNROLL_TRANSFORM */
482 
483 int
484 SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
485 {
486 	unsigned int	freespace, usedspace;
487 
488 	if (len == 0) {
489 		/* Calling with no data is valid - we do nothing */
490 		return 1;
491 	}
492 
493 	usedspace = (unsigned int)((context->bitcount >> 3) %
494 				    SHA256_BLOCK_LENGTH);
495 	if (usedspace > 0) {
496 		/* Calculate how much free space is available in the buffer */
497 		freespace = SHA256_BLOCK_LENGTH - usedspace;
498 
499 		if (len >= freespace) {
500 			/* Fill the buffer completely and process it */
501 			memcpy(&context->buffer[usedspace], data,
502 			    (size_t)(freespace));
503 			context->bitcount += freespace << 3;
504 			len -= freespace;
505 			data += freespace;
506 			SHA256_Transform(context,
507 			    (uint32_t *)(void *)context->buffer);
508 		} else {
509 			/* The buffer is not yet full */
510 			memcpy(&context->buffer[usedspace], data, len);
511 			context->bitcount += len << 3;
512 			/* Clean up: */
513 			usedspace = freespace = 0;
514 			return 1;
515 		}
516 	}
517 	/*
518 	 * Process as many complete blocks as possible.
519 	 *
520 	 * Check alignment of the data pointer. If it is 32bit aligned,
521 	 * SHA256_Transform can be called directly on the data stream,
522 	 * otherwise enforce the alignment by copy into the buffer.
523 	 */
524 	if ((uintptr_t)data % 4 == 0) {
525 		while (len >= SHA256_BLOCK_LENGTH) {
526 			SHA256_Transform(context,
527 			    (const uint32_t *)(const void *)data);
528 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
529 			len -= SHA256_BLOCK_LENGTH;
530 			data += SHA256_BLOCK_LENGTH;
531 		}
532 	} else {
533 		while (len >= SHA256_BLOCK_LENGTH) {
534 			memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
535 			SHA256_Transform(context,
536 			    (const uint32_t *)(const void *)context->buffer);
537 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
538 			len -= SHA256_BLOCK_LENGTH;
539 			data += SHA256_BLOCK_LENGTH;
540 		}
541 	}
542 	if (len > 0) {
543 		/* There's left-overs, so save 'em */
544 		memcpy(context->buffer, data, len);
545 		context->bitcount += len << 3;
546 	}
547 	/* Clean up: */
548 	usedspace = freespace = 0;
549 
550 	return 1;
551 }
552 
553 static int
554 SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
555 {
556 	uint32_t	*d = (void *)digest;
557 	unsigned int	usedspace;
558 	size_t i;
559 
560 	/* If no digest buffer is passed, we don't bother doing this: */
561 	if (digest != NULL) {
562 		usedspace = (unsigned int)((context->bitcount >> 3) %
563 		    SHA256_BLOCK_LENGTH);
564 		context->bitcount = htobe64(context->bitcount);
565 		if (usedspace > 0) {
566 			/* Begin padding with a 1 bit: */
567 			context->buffer[usedspace++] = 0x80;
568 
569 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
570 				/* Set-up for the last transform: */
571 				memset(&context->buffer[usedspace], 0,
572 				    (size_t)(SHA256_SHORT_BLOCK_LENGTH -
573 				    usedspace));
574 			} else {
575 				if (usedspace < SHA256_BLOCK_LENGTH) {
576 					memset(&context->buffer[usedspace], 0,
577 					    (size_t)(SHA256_BLOCK_LENGTH -
578 					    usedspace));
579 				}
580 				/* Do second-to-last transform: */
581 				SHA256_Transform(context,
582 				    (uint32_t *)(void *)context->buffer);
583 
584 				/* And set-up for the last transform: */
585 				memset(context->buffer, 0,
586 				    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
587 			}
588 		} else {
589 			/* Set-up for the last transform: */
590 			memset(context->buffer, 0,
591 			    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
592 
593 			/* Begin padding with a 1 bit: */
594 			*context->buffer = 0x80;
595 		}
596 		/* Set the bit count: */
597 		memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
598 		    &context->bitcount, sizeof(context->bitcount));
599 
600 		/* Final transform: */
601 		SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
602 
603 		for (i = 0; i < len / 4; i++)
604 			d[i] = htobe32(context->state[i]);
605 	}
606 
607 	/* Clean up state data: */
608 	memset(context, 0, sizeof(*context));
609 	usedspace = 0;
610 
611 	return 1;
612 }
613 
614 int
615 SHA256_Final(uint8_t digest[], SHA256_CTX *context)
616 {
617 	return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
618 }
619 
620 /*** SHA-224: *********************************************************/
621 int
622 SHA224_Init(SHA224_CTX *context)
623 {
624 	if (context == NULL)
625 		return 1;
626 
627 	/* The state and buffer size are driven by SHA256, not by SHA224. */
628 	memcpy(context->state, sha224_initial_hash_value,
629 	    (size_t)(SHA256_DIGEST_LENGTH));
630 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
631 	context->bitcount = 0;
632 
633 	return 1;
634 }
635 
636 int
637 SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len)
638 {
639 	return SHA256_Update((SHA256_CTX *)context, data, len);
640 }
641 
642 void
643 SHA224_Transform(SHA224_CTX *context, const uint32_t *data)
644 {
645 	SHA256_Transform((SHA256_CTX *)context, data);
646 }
647 
648 int
649 SHA224_Final(uint8_t digest[], SHA224_CTX *context)
650 {
651 	return SHA224_256_Final(digest, (SHA256_CTX *)context,
652 	    SHA224_DIGEST_LENGTH);
653 }
654 
655 /*** SHA-512: *********************************************************/
656 int
657 SHA512_Init(SHA512_CTX *context)
658 {
659 	if (context == NULL)
660 		return 1;
661 
662 	memcpy(context->state, sha512_initial_hash_value,
663 	    (size_t)(SHA512_DIGEST_LENGTH));
664 	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
665 	context->bitcount[0] = context->bitcount[1] =  0;
666 
667 	return 1;
668 }
669 
670 #ifdef SHA2_UNROLL_TRANSFORM
671 
672 /* Unrolled SHA-512 round macros: */
673 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
674 	W512[j] = be64toh(*data);		\
675 	++data;					\
676 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
677              K512[j] + W512[j]; \
678 	(d) += T1, \
679 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
680 	j++
681 
682 #define ROUND512(a,b,c,d,e,f,g,h)	\
683 	s0 = W512[(j+1)&0x0f]; \
684 	s0 = sigma0_512(s0); \
685 	s1 = W512[(j+14)&0x0f]; \
686 	s1 = sigma1_512(s1); \
687 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
688              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
689 	(d) += T1; \
690 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
691 	j++
692 
693 void
694 SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
695 {
696 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
697 	uint64_t	T1, *W512 = (uint64_t *)context->buffer;
698 	int		j;
699 
700 	/* Initialize registers with the prev. intermediate value */
701 	a = context->state[0];
702 	b = context->state[1];
703 	c = context->state[2];
704 	d = context->state[3];
705 	e = context->state[4];
706 	f = context->state[5];
707 	g = context->state[6];
708 	h = context->state[7];
709 
710 	j = 0;
711 	do {
712 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
713 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
714 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
715 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
716 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
717 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
718 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
719 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
720 	} while (j < 16);
721 
722 	/* Now for the remaining rounds up to 79: */
723 	do {
724 		ROUND512(a,b,c,d,e,f,g,h);
725 		ROUND512(h,a,b,c,d,e,f,g);
726 		ROUND512(g,h,a,b,c,d,e,f);
727 		ROUND512(f,g,h,a,b,c,d,e);
728 		ROUND512(e,f,g,h,a,b,c,d);
729 		ROUND512(d,e,f,g,h,a,b,c);
730 		ROUND512(c,d,e,f,g,h,a,b);
731 		ROUND512(b,c,d,e,f,g,h,a);
732 	} while (j < 80);
733 
734 	/* Compute the current intermediate hash value */
735 	context->state[0] += a;
736 	context->state[1] += b;
737 	context->state[2] += c;
738 	context->state[3] += d;
739 	context->state[4] += e;
740 	context->state[5] += f;
741 	context->state[6] += g;
742 	context->state[7] += h;
743 
744 	/* Clean up */
745 	a = b = c = d = e = f = g = h = T1 = 0;
746 }
747 
748 #else /* SHA2_UNROLL_TRANSFORM */
749 
750 void
751 SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
752 {
753 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
754 	uint64_t	T1, T2, *W512 = (void *)context->buffer;
755 	int		j;
756 
757 	/* Initialize registers with the prev. intermediate value */
758 	a = context->state[0];
759 	b = context->state[1];
760 	c = context->state[2];
761 	d = context->state[3];
762 	e = context->state[4];
763 	f = context->state[5];
764 	g = context->state[6];
765 	h = context->state[7];
766 
767 	j = 0;
768 	do {
769 		W512[j] = be64toh(*data);
770 		++data;
771 		/* Apply the SHA-512 compression function to update a..h */
772 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
773 		T2 = Sigma0_512(a) + Maj(a, b, c);
774 		h = g;
775 		g = f;
776 		f = e;
777 		e = d + T1;
778 		d = c;
779 		c = b;
780 		b = a;
781 		a = T1 + T2;
782 
783 		j++;
784 	} while (j < 16);
785 
786 	do {
787 		/* Part of the message block expansion: */
788 		s0 = W512[(j+1)&0x0f];
789 		s0 = sigma0_512(s0);
790 		s1 = W512[(j+14)&0x0f];
791 		s1 =  sigma1_512(s1);
792 
793 		/* Apply the SHA-512 compression function to update a..h */
794 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
795 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
796 		T2 = Sigma0_512(a) + Maj(a, b, c);
797 		h = g;
798 		g = f;
799 		f = e;
800 		e = d + T1;
801 		d = c;
802 		c = b;
803 		b = a;
804 		a = T1 + T2;
805 
806 		j++;
807 	} while (j < 80);
808 
809 	/* Compute the current intermediate hash value */
810 	context->state[0] += a;
811 	context->state[1] += b;
812 	context->state[2] += c;
813 	context->state[3] += d;
814 	context->state[4] += e;
815 	context->state[5] += f;
816 	context->state[6] += g;
817 	context->state[7] += h;
818 
819 	/* Clean up */
820 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
821 }
822 
823 #endif /* SHA2_UNROLL_TRANSFORM */
824 
825 int
826 SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len)
827 {
828 	unsigned int	freespace, usedspace;
829 
830 	if (len == 0) {
831 		/* Calling with no data is valid - we do nothing */
832 		return 1;
833 	}
834 
835 	usedspace = (unsigned int)((context->bitcount[0] >> 3) %
836 	    SHA512_BLOCK_LENGTH);
837 	if (usedspace > 0) {
838 		/* Calculate how much free space is available in the buffer */
839 		freespace = SHA512_BLOCK_LENGTH - usedspace;
840 
841 		if (len >= freespace) {
842 			/* Fill the buffer completely and process it */
843 			memcpy(&context->buffer[usedspace], data,
844 			    (size_t)(freespace));
845 			ADDINC128(context->bitcount, freespace << 3);
846 			len -= freespace;
847 			data += freespace;
848 			SHA512_Transform(context,
849 			    (uint64_t *)(void *)context->buffer);
850 		} else {
851 			/* The buffer is not yet full */
852 			memcpy(&context->buffer[usedspace], data, len);
853 			ADDINC128(context->bitcount, len << 3);
854 			/* Clean up: */
855 			usedspace = freespace = 0;
856 			return 1;
857 		}
858 	}
859 	/*
860 	 * Process as many complete blocks as possible.
861 	 *
862 	 * Check alignment of the data pointer. If it is 64bit aligned,
863 	 * SHA512_Transform can be called directly on the data stream,
864 	 * otherwise enforce the alignment by copy into the buffer.
865 	 */
866 	if ((uintptr_t)data % 8 == 0) {
867 		while (len >= SHA512_BLOCK_LENGTH) {
868 			SHA512_Transform(context,
869 			    (const uint64_t*)(const void *)data);
870 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
871 			len -= SHA512_BLOCK_LENGTH;
872 			data += SHA512_BLOCK_LENGTH;
873 		}
874 	} else {
875 		while (len >= SHA512_BLOCK_LENGTH) {
876 			memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
877 			SHA512_Transform(context,
878 			    (const void *)context->buffer);
879 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
880 			len -= SHA512_BLOCK_LENGTH;
881 			data += SHA512_BLOCK_LENGTH;
882 		}
883 	}
884 	if (len > 0) {
885 		/* There's left-overs, so save 'em */
886 		memcpy(context->buffer, data, len);
887 		ADDINC128(context->bitcount, len << 3);
888 	}
889 	/* Clean up: */
890 	usedspace = freespace = 0;
891 
892 	return 1;
893 }
894 
895 static void
896 SHA512_Last(SHA512_CTX *context)
897 {
898 	unsigned int	usedspace;
899 
900 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
901 	context->bitcount[0] = htobe64(context->bitcount[0]);
902 	context->bitcount[1] = htobe64(context->bitcount[1]);
903 	if (usedspace > 0) {
904 		/* Begin padding with a 1 bit: */
905 		context->buffer[usedspace++] = 0x80;
906 
907 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
908 			/* Set-up for the last transform: */
909 			memset(&context->buffer[usedspace], 0,
910 			    (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
911 		} else {
912 			if (usedspace < SHA512_BLOCK_LENGTH) {
913 				memset(&context->buffer[usedspace], 0,
914 				    (size_t)(SHA512_BLOCK_LENGTH - usedspace));
915 			}
916 			/* Do second-to-last transform: */
917 			SHA512_Transform(context,
918 			    (uint64_t *)(void *)context->buffer);
919 
920 			/* And set-up for the last transform: */
921 			memset(context->buffer, 0,
922 			    (size_t)(SHA512_BLOCK_LENGTH - 2));
923 		}
924 	} else {
925 		/* Prepare for final transform: */
926 		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
927 
928 		/* Begin padding with a 1 bit: */
929 		*context->buffer = 0x80;
930 	}
931 	/* Store the length of input data (in bits): */
932 	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
933 	    &context->bitcount[1], sizeof(context->bitcount[1]));
934 	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
935 	    &context->bitcount[0], sizeof(context->bitcount[0]));
936 
937 	/* Final transform: */
938 	SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
939 }
940 
941 int
942 SHA512_Final(uint8_t digest[], SHA512_CTX *context)
943 {
944 	uint64_t	*d = (void *)digest;
945 	size_t i;
946 
947 	/* If no digest buffer is passed, we don't bother doing this: */
948 	if (digest != NULL) {
949 		SHA512_Last(context);
950 
951 		/* Save the hash data for output: */
952 		for (i = 0; i < 8; ++i)
953 			d[i] = htobe64(context->state[i]);
954 	}
955 
956 	/* Zero out state data */
957 	memset(context, 0, sizeof(*context));
958 
959 	return 1;
960 }
961 
962 /*** SHA-384: *********************************************************/
963 int
964 SHA384_Init(SHA384_CTX *context)
965 {
966 	if (context == NULL)
967 		return 1;
968 
969 	memcpy(context->state, sha384_initial_hash_value,
970 	    (size_t)(SHA512_DIGEST_LENGTH));
971 	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
972 	context->bitcount[0] = context->bitcount[1] = 0;
973 
974 	return 1;
975 }
976 
977 int
978 SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len)
979 {
980 	return SHA512_Update((SHA512_CTX *)context, data, len);
981 }
982 
983 void
984 SHA384_Transform(SHA512_CTX *context, const uint64_t *data)
985 {
986 	SHA512_Transform((SHA512_CTX *)context, data);
987 }
988 
989 int
990 SHA384_Final(uint8_t digest[], SHA384_CTX *context)
991 {
992 	uint64_t	*d = (void *)digest;
993 	size_t i;
994 
995 	/* If no digest buffer is passed, we don't bother doing this: */
996 	if (digest != NULL) {
997 		SHA512_Last((SHA512_CTX *)context);
998 
999 		/* Save the hash data for output: */
1000 		for (i = 0; i < 6; ++i)
1001 			d[i] = be64toh(context->state[i]);
1002 	}
1003 
1004 	/* Zero out state data */
1005 	memset(context, 0, sizeof(*context));
1006 
1007 	return 1;
1008 }
1009