xref: /netbsd-src/common/dist/zlib/trees.c (revision f8cf1a9151c7af1cb0bd8b09c13c66bca599c027)
1 /*	$NetBSD: trees.c,v 1.7 2024/09/22 19:12:27 christos Exp $	*/
2 
3 /* trees.c -- output deflated data using Huffman coding
4  * Copyright (C) 1995-2024 Jean-loup Gailly
5  * detect_data_type() function provided freely by Cosmin Truta, 2006
6  * For conditions of distribution and use, see copyright notice in zlib.h
7  */
8 
9 /*
10  *  ALGORITHM
11  *
12  *      The "deflation" process uses several Huffman trees. The more
13  *      common source values are represented by shorter bit sequences.
14  *
15  *      Each code tree is stored in a compressed form which is itself
16  * a Huffman encoding of the lengths of all the code strings (in
17  * ascending order by source values).  The actual code strings are
18  * reconstructed from the lengths in the inflate process, as described
19  * in the deflate specification.
20  *
21  *  REFERENCES
22  *
23  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
24  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
25  *
26  *      Storer, James A.
27  *          Data Compression:  Methods and Theory, pp. 49-50.
28  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
29  *
30  *      Sedgewick, R.
31  *          Algorithms, p290.
32  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
33  */
34 
35 /* @(#) Id */
36 
37 /* #define GEN_TREES_H */
38 
39 #include "deflate.h"
40 
41 #ifdef ZLIB_DEBUG
42 #  include <ctype.h>
43 #endif
44 
45 /* ===========================================================================
46  * Constants
47  */
48 
49 #define MAX_BL_BITS 7
50 /* Bit length codes must not exceed MAX_BL_BITS bits */
51 
52 #define END_BLOCK 256
53 /* end of block literal code */
54 
55 #define REP_3_6      16
56 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
57 
58 #define REPZ_3_10    17
59 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
60 
61 #define REPZ_11_138  18
62 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
63 
64 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
65    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
66 
67 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
68    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
69 
70 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
71    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
72 
73 local const uch bl_order[BL_CODES]
74    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
75 /* The lengths of the bit length codes are sent in order of decreasing
76  * probability, to avoid transmitting the lengths for unused bit length codes.
77  */
78 
79 /* ===========================================================================
80  * Local data. These are initialized only once.
81  */
82 
83 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
84 
85 #if defined(GEN_TREES_H) || !defined(STDC)
86 /* non ANSI compilers may not accept trees.h */
87 
88 local ct_data static_ltree[L_CODES+2];
89 /* The static literal tree. Since the bit lengths are imposed, there is no
90  * need for the L_CODES extra codes used during heap construction. However
91  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
92  * below).
93  */
94 
95 local ct_data static_dtree[D_CODES];
96 /* The static distance tree. (Actually a trivial tree since all codes use
97  * 5 bits.)
98  */
99 
100 uch _dist_code[DIST_CODE_LEN];
101 /* Distance codes. The first 256 values correspond to the distances
102  * 3 .. 258, the last 256 values correspond to the top 8 bits of
103  * the 15 bit distances.
104  */
105 
106 uch _length_code[MAX_MATCH-MIN_MATCH+1];
107 /* length code for each normalized match length (0 == MIN_MATCH) */
108 
109 local int base_length[LENGTH_CODES];
110 /* First normalized length for each code (0 = MIN_MATCH) */
111 
112 local int base_dist[D_CODES];
113 /* First normalized distance for each code (0 = distance of 1) */
114 
115 #else
116 #  include "trees.h"
117 #endif /* GEN_TREES_H */
118 
119 struct static_tree_desc_s {
120     const ct_data *static_tree;  /* static tree or NULL */
121     const intf *extra_bits;      /* extra bits for each code or NULL */
122     int     extra_base;          /* base index for extra_bits */
123     int     elems;               /* max number of elements in the tree */
124     int     max_length;          /* max bit length for the codes */
125 };
126 
127 #ifdef NO_INIT_GLOBAL_POINTERS
128 #  define TCONST
129 #else
130 #  define TCONST const
131 #endif
132 
133 local TCONST static_tree_desc static_l_desc =
134 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
135 
136 local TCONST static_tree_desc static_d_desc =
137 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
138 
139 local TCONST static_tree_desc static_bl_desc =
140 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
141 
142 /* ===========================================================================
143  * Output a short LSB first on the stream.
144  * IN assertion: there is enough room in pendingBuf.
145  */
146 #define put_short(s, w) { \
147     put_byte(s, (uch)((w) & 0xff)); \
148     put_byte(s, (uch)((ush)(w) >> 8)); \
149 }
150 
151 /* ===========================================================================
152  * Reverse the first len bits of a code, using straightforward code (a faster
153  * method would use a table)
154  * IN assertion: 1 <= len <= 15
155  */
156 local unsigned bi_reverse(unsigned code, int len) {
157     register unsigned res = 0;
158     do {
159         res |= code & 1;
160         code >>= 1, res <<= 1;
161     } while (--len > 0);
162     return res >> 1;
163 }
164 
165 /* ===========================================================================
166  * Flush the bit buffer, keeping at most 7 bits in it.
167  */
168 local void bi_flush(deflate_state *s) {
169     if (s->bi_valid == 16) {
170         put_short(s, s->bi_buf);
171         s->bi_buf = 0;
172         s->bi_valid = 0;
173     } else if (s->bi_valid >= 8) {
174         put_byte(s, (Byte)s->bi_buf);
175         s->bi_buf >>= 8;
176         s->bi_valid -= 8;
177     }
178 }
179 
180 /* ===========================================================================
181  * Flush the bit buffer and align the output on a byte boundary
182  */
183 local void bi_windup(deflate_state *s) {
184     if (s->bi_valid > 8) {
185         put_short(s, s->bi_buf);
186     } else if (s->bi_valid > 0) {
187         put_byte(s, (Byte)s->bi_buf);
188     }
189     s->bi_buf = 0;
190     s->bi_valid = 0;
191 #ifdef ZLIB_DEBUG
192     s->bits_sent = (s->bits_sent + 7) & ~7;
193 #endif
194 }
195 
196 /* ===========================================================================
197  * Generate the codes for a given tree and bit counts (which need not be
198  * optimal).
199  * IN assertion: the array bl_count contains the bit length statistics for
200  * the given tree and the field len is set for all tree elements.
201  * OUT assertion: the field code is set for all tree elements of non
202  *     zero code length.
203  */
204 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
205     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
206     unsigned code = 0;         /* running code value */
207     int bits;                  /* bit index */
208     int n;                     /* code index */
209 
210     /* The distribution counts are first used to generate the code values
211      * without bit reversal.
212      */
213     for (bits = 1; bits <= MAX_BITS; bits++) {
214         code = (code + bl_count[bits - 1]) << 1;
215         next_code[bits] = (ush)code;
216     }
217     /* Check that the bit counts in bl_count are consistent. The last code
218      * must be all ones.
219      */
220     Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
221             "inconsistent bit counts");
222     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
223 
224     for (n = 0;  n <= max_code; n++) {
225         int len = tree[n].Len;
226         if (len == 0) continue;
227         /* Now reverse the bits */
228         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
229 
230         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
231             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
232     }
233 }
234 
235 #ifdef GEN_TREES_H
236 local void gen_trees_header(void);
237 #endif
238 
239 #ifndef ZLIB_DEBUG
240 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
241    /* Send a code of the given tree. c and tree must not have side effects */
242 
243 #else /* !ZLIB_DEBUG */
244 #  define send_code(s, c, tree) \
245      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
246        send_bits(s, tree[c].Code, tree[c].Len); }
247 #endif
248 
249 /* ===========================================================================
250  * Send a value on a given number of bits.
251  * IN assertion: length <= 16 and value fits in length bits.
252  */
253 #ifdef ZLIB_DEBUG
254 local void send_bits(deflate_state *s, int value, int length) {
255     Tracevv((stderr," l %2d v %4x ", length, value));
256     Assert(length > 0 && length <= 15, "invalid length");
257     s->bits_sent += (ulg)length;
258 
259     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
260      * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
261      * unused bits in value.
262      */
263     if (s->bi_valid > (int)Buf_size - length) {
264         s->bi_buf |= (ush)value << s->bi_valid;
265         put_short(s, s->bi_buf);
266         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
267         s->bi_valid += length - Buf_size;
268     } else {
269         s->bi_buf |= (ush)value << s->bi_valid;
270         s->bi_valid += length;
271     }
272 }
273 #else /* !ZLIB_DEBUG */
274 
275 #define send_bits(s, value, length) \
276 { int len = length;\
277   if (s->bi_valid > (int)Buf_size - len) {\
278     int val = (int)value;\
279     s->bi_buf |= (ush)val << s->bi_valid;\
280     put_short(s, s->bi_buf);\
281     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
282     s->bi_valid += len - Buf_size;\
283   } else {\
284     s->bi_buf |= (ush)(value) << s->bi_valid;\
285     s->bi_valid += len;\
286   }\
287 }
288 #endif /* ZLIB_DEBUG */
289 
290 
291 /* the arguments must not have side effects */
292 
293 /* ===========================================================================
294  * Initialize the various 'constant' tables.
295  */
296 local void tr_static_init(void) {
297 #if defined(GEN_TREES_H) || !defined(STDC)
298     static int static_init_done = 0;
299     int n;        /* iterates over tree elements */
300     int bits;     /* bit counter */
301     int length;   /* length value */
302     int code;     /* code value */
303     int dist;     /* distance index */
304     ush bl_count[MAX_BITS+1];
305     /* number of codes at each bit length for an optimal tree */
306 
307     if (static_init_done) return;
308 
309     /* For some embedded targets, global variables are not initialized: */
310 #ifdef NO_INIT_GLOBAL_POINTERS
311     static_l_desc.static_tree = static_ltree;
312     static_l_desc.extra_bits = extra_lbits;
313     static_d_desc.static_tree = static_dtree;
314     static_d_desc.extra_bits = extra_dbits;
315     static_bl_desc.extra_bits = extra_blbits;
316 #endif
317 
318     /* Initialize the mapping length (0..255) -> length code (0..28) */
319     length = 0;
320     for (code = 0; code < LENGTH_CODES-1; code++) {
321         base_length[code] = length;
322         for (n = 0; n < (1 << extra_lbits[code]); n++) {
323             _length_code[length++] = (uch)code;
324         }
325     }
326     Assert (length == 256, "tr_static_init: length != 256");
327     /* Note that the length 255 (match length 258) can be represented
328      * in two different ways: code 284 + 5 bits or code 285, so we
329      * overwrite length_code[255] to use the best encoding:
330      */
331     _length_code[length - 1] = (uch)code;
332 
333     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
334     dist = 0;
335     for (code = 0 ; code < 16; code++) {
336         base_dist[code] = dist;
337         for (n = 0; n < (1 << extra_dbits[code]); n++) {
338             _dist_code[dist++] = (uch)code;
339         }
340     }
341     Assert (dist == 256, "tr_static_init: dist != 256");
342     dist >>= 7; /* from now on, all distances are divided by 128 */
343     for ( ; code < D_CODES; code++) {
344         base_dist[code] = dist << 7;
345         for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
346             _dist_code[256 + dist++] = (uch)code;
347         }
348     }
349     Assert (dist == 256, "tr_static_init: 256 + dist != 512");
350 
351     /* Construct the codes of the static literal tree */
352     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
353     n = 0;
354     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
355     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
356     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
357     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
358     /* Codes 286 and 287 do not exist, but we must include them in the
359      * tree construction to get a canonical Huffman tree (longest code
360      * all ones)
361      */
362     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
363 
364     /* The static distance tree is trivial: */
365     for (n = 0; n < D_CODES; n++) {
366         static_dtree[n].Len = 5;
367         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
368     }
369     static_init_done = 1;
370 
371 #  ifdef GEN_TREES_H
372     gen_trees_header();
373 #  endif
374 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
375 }
376 
377 /* ===========================================================================
378  * Generate the file trees.h describing the static trees.
379  */
380 #ifdef GEN_TREES_H
381 #  ifndef ZLIB_DEBUG
382 #    include <stdio.h>
383 #  endif
384 
385 #  define SEPARATOR(i, last, width) \
386       ((i) == (last)? "\n};\n\n" :    \
387        ((i) % (width) == (width) - 1 ? ",\n" : ", "))
388 
389 void gen_trees_header(void) {
390     FILE *header = fopen("trees.h", "w");
391     int i;
392 
393     Assert (header != NULL, "Can't open trees.h");
394     fprintf(header,
395             "/* header created automatically with -DGEN_TREES_H */\n\n");
396 
397     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
398     for (i = 0; i < L_CODES+2; i++) {
399         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
400                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
401     }
402 
403     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
404     for (i = 0; i < D_CODES; i++) {
405         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
406                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
407     }
408 
409     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
410     for (i = 0; i < DIST_CODE_LEN; i++) {
411         fprintf(header, "%2u%s", _dist_code[i],
412                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
413     }
414 
415     fprintf(header,
416         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
417     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
418         fprintf(header, "%2u%s", _length_code[i],
419                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
420     }
421 
422     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
423     for (i = 0; i < LENGTH_CODES; i++) {
424         fprintf(header, "%1u%s", base_length[i],
425                 SEPARATOR(i, LENGTH_CODES-1, 20));
426     }
427 
428     fprintf(header, "local const int base_dist[D_CODES] = {\n");
429     for (i = 0; i < D_CODES; i++) {
430         fprintf(header, "%5u%s", base_dist[i],
431                 SEPARATOR(i, D_CODES-1, 10));
432     }
433 
434     fclose(header);
435 }
436 #endif /* GEN_TREES_H */
437 
438 /* ===========================================================================
439  * Initialize a new block.
440  */
441 local void init_block(deflate_state *s) {
442     int n; /* iterates over tree elements */
443 
444     /* Initialize the trees. */
445     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
446     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
447     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
448 
449     s->dyn_ltree[END_BLOCK].Freq = 1;
450     s->opt_len = s->static_len = 0L;
451     s->sym_next = s->matches = 0;
452 }
453 
454 /* ===========================================================================
455  * Initialize the tree data structures for a new zlib stream.
456  */
457 void ZLIB_INTERNAL _tr_init(deflate_state *s) {
458     tr_static_init();
459 
460     s->l_desc.dyn_tree = s->dyn_ltree;
461     s->l_desc.stat_desc = &static_l_desc;
462 
463     s->d_desc.dyn_tree = s->dyn_dtree;
464     s->d_desc.stat_desc = &static_d_desc;
465 
466     s->bl_desc.dyn_tree = s->bl_tree;
467     s->bl_desc.stat_desc = &static_bl_desc;
468 
469     s->bi_buf = 0;
470     s->bi_valid = 0;
471 #ifdef ZLIB_DEBUG
472     s->compressed_len = 0L;
473     s->bits_sent = 0L;
474 #endif
475 
476     /* Initialize the first block of the first file: */
477     init_block(s);
478 }
479 
480 #define SMALLEST 1
481 /* Index within the heap array of least frequent node in the Huffman tree */
482 
483 
484 /* ===========================================================================
485  * Remove the smallest element from the heap and recreate the heap with
486  * one less element. Updates heap and heap_len.
487  */
488 #define pqremove(s, tree, top) \
489 {\
490     top = s->heap[SMALLEST]; \
491     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
492     pqdownheap(s, tree, SMALLEST); \
493 }
494 
495 /* ===========================================================================
496  * Compares to subtrees, using the tree depth as tie breaker when
497  * the subtrees have equal frequency. This minimizes the worst case length.
498  */
499 #define smaller(tree, n, m, depth) \
500    (tree[n].Freq < tree[m].Freq || \
501    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
502 
503 /* ===========================================================================
504  * Restore the heap property by moving down the tree starting at node k,
505  * exchanging a node with the smallest of its two sons if necessary, stopping
506  * when the heap property is re-established (each father smaller than its
507  * two sons).
508  */
509 local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
510     int v = s->heap[k];
511     int j = k << 1;  /* left son of k */
512     while (j <= s->heap_len) {
513         /* Set j to the smallest of the two sons: */
514         if (j < s->heap_len &&
515             smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
516             j++;
517         }
518         /* Exit if v is smaller than both sons */
519         if (smaller(tree, v, s->heap[j], s->depth)) break;
520 
521         /* Exchange v with the smallest son */
522         s->heap[k] = s->heap[j];  k = j;
523 
524         /* And continue down the tree, setting j to the left son of k */
525         j <<= 1;
526     }
527     s->heap[k] = v;
528 }
529 
530 /* ===========================================================================
531  * Compute the optimal bit lengths for a tree and update the total bit length
532  * for the current block.
533  * IN assertion: the fields freq and dad are set, heap[heap_max] and
534  *    above are the tree nodes sorted by increasing frequency.
535  * OUT assertions: the field len is set to the optimal bit length, the
536  *     array bl_count contains the frequencies for each bit length.
537  *     The length opt_len is updated; static_len is also updated if stree is
538  *     not null.
539  */
540 local void gen_bitlen(deflate_state *s, tree_desc *desc) {
541     ct_data *tree        = desc->dyn_tree;
542     int max_code         = desc->max_code;
543     const ct_data *stree = desc->stat_desc->static_tree;
544     const intf *extra    = desc->stat_desc->extra_bits;
545     int base             = desc->stat_desc->extra_base;
546     int max_length       = desc->stat_desc->max_length;
547     int h;              /* heap index */
548     int n, m;           /* iterate over the tree elements */
549     int bits;           /* bit length */
550     int xbits;          /* extra bits */
551     ush f;              /* frequency */
552     int overflow = 0;   /* number of elements with bit length too large */
553 
554     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
555 
556     /* In a first pass, compute the optimal bit lengths (which may
557      * overflow in the case of the bit length tree).
558      */
559     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
560 
561     for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
562         n = s->heap[h];
563         bits = tree[tree[n].Dad].Len + 1;
564         if (bits > max_length) bits = max_length, overflow++;
565         tree[n].Len = (ush)bits;
566         /* We overwrite tree[n].Dad which is no longer needed */
567 
568         if (n > max_code) continue; /* not a leaf node */
569 
570         s->bl_count[bits]++;
571         xbits = 0;
572         if (n >= base) xbits = extra[n - base];
573         f = tree[n].Freq;
574         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
575         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
576     }
577     if (overflow == 0) return;
578 
579     Tracev((stderr,"\nbit length overflow\n"));
580     /* This happens for example on obj2 and pic of the Calgary corpus */
581 
582     /* Find the first bit length which could increase: */
583     do {
584         bits = max_length - 1;
585         while (s->bl_count[bits] == 0) bits--;
586         s->bl_count[bits]--;        /* move one leaf down the tree */
587         s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
588         s->bl_count[max_length]--;
589         /* The brother of the overflow item also moves one step up,
590          * but this does not affect bl_count[max_length]
591          */
592         overflow -= 2;
593     } while (overflow > 0);
594 
595     /* Now recompute all bit lengths, scanning in increasing frequency.
596      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
597      * lengths instead of fixing only the wrong ones. This idea is taken
598      * from 'ar' written by Haruhiko Okumura.)
599      */
600     for (bits = max_length; bits != 0; bits--) {
601         n = s->bl_count[bits];
602         while (n != 0) {
603             m = s->heap[--h];
604             if (m > max_code) continue;
605             if ((unsigned) tree[m].Len != (unsigned) bits) {
606                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
607                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
608                 tree[m].Len = (ush)bits;
609             }
610             n--;
611         }
612     }
613 }
614 
615 #ifdef DUMP_BL_TREE
616 #  include <stdio.h>
617 #endif
618 
619 /* ===========================================================================
620  * Construct one Huffman tree and assigns the code bit strings and lengths.
621  * Update the total bit length for the current block.
622  * IN assertion: the field freq is set for all tree elements.
623  * OUT assertions: the fields len and code are set to the optimal bit length
624  *     and corresponding code. The length opt_len is updated; static_len is
625  *     also updated if stree is not null. The field max_code is set.
626  */
627 local void build_tree(deflate_state *s, tree_desc *desc) {
628     ct_data *tree         = desc->dyn_tree;
629     const ct_data *stree  = desc->stat_desc->static_tree;
630     int elems             = desc->stat_desc->elems;
631     int n, m;          /* iterate over heap elements */
632     int max_code = -1; /* largest code with non zero frequency */
633     int node;          /* new node being created */
634 
635     /* Construct the initial heap, with least frequent element in
636      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
637      * heap[0] is not used.
638      */
639     s->heap_len = 0, s->heap_max = HEAP_SIZE;
640 
641     for (n = 0; n < elems; n++) {
642         if (tree[n].Freq != 0) {
643             s->heap[++(s->heap_len)] = max_code = n;
644             s->depth[n] = 0;
645         } else {
646             tree[n].Len = 0;
647         }
648     }
649 
650     /* The pkzip format requires that at least one distance code exists,
651      * and that at least one bit should be sent even if there is only one
652      * possible code. So to avoid special checks later on we force at least
653      * two codes of non zero frequency.
654      */
655     while (s->heap_len < 2) {
656         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
657         tree[node].Freq = 1;
658         s->depth[node] = 0;
659         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
660         /* node is 0 or 1 so it does not have extra bits */
661     }
662     desc->max_code = max_code;
663 
664     /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
665      * establish sub-heaps of increasing lengths:
666      */
667     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
668 
669     /* Construct the Huffman tree by repeatedly combining the least two
670      * frequent nodes.
671      */
672     node = elems;              /* next internal node of the tree */
673     do {
674         pqremove(s, tree, n);  /* n = node of least frequency */
675         m = s->heap[SMALLEST]; /* m = node of next least frequency */
676 
677         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
678         s->heap[--(s->heap_max)] = m;
679 
680         /* Create a new node father of n and m */
681         tree[node].Freq = tree[n].Freq + tree[m].Freq;
682         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
683                                 s->depth[n] : s->depth[m]) + 1);
684         tree[n].Dad = tree[m].Dad = (ush)node;
685 #ifdef DUMP_BL_TREE
686         if (tree == s->bl_tree) {
687             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
688                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
689         }
690 #endif
691         /* and insert the new node in the heap */
692         s->heap[SMALLEST] = node++;
693         pqdownheap(s, tree, SMALLEST);
694 
695     } while (s->heap_len >= 2);
696 
697     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
698 
699     /* At this point, the fields freq and dad are set. We can now
700      * generate the bit lengths.
701      */
702     gen_bitlen(s, (tree_desc *)desc);
703 
704     /* The field len is now set, we can generate the bit codes */
705     gen_codes ((ct_data *)tree, max_code, s->bl_count);
706 }
707 
708 /* ===========================================================================
709  * Scan a literal or distance tree to determine the frequencies of the codes
710  * in the bit length tree.
711  */
712 local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
713     int n;                     /* iterates over all tree elements */
714     int prevlen = -1;          /* last emitted length */
715     int curlen;                /* length of current code */
716     int nextlen = tree[0].Len; /* length of next code */
717     int count = 0;             /* repeat count of the current code */
718     int max_count = 7;         /* max repeat count */
719     int min_count = 4;         /* min repeat count */
720 
721     if (nextlen == 0) max_count = 138, min_count = 3;
722     tree[max_code + 1].Len = (ush)0xffff; /* guard */
723 
724     for (n = 0; n <= max_code; n++) {
725         curlen = nextlen; nextlen = tree[n + 1].Len;
726         if (++count < max_count && curlen == nextlen) {
727             continue;
728         } else if (count < min_count) {
729             s->bl_tree[curlen].Freq += count;
730         } else if (curlen != 0) {
731             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
732             s->bl_tree[REP_3_6].Freq++;
733         } else if (count <= 10) {
734             s->bl_tree[REPZ_3_10].Freq++;
735         } else {
736             s->bl_tree[REPZ_11_138].Freq++;
737         }
738         count = 0; prevlen = curlen;
739         if (nextlen == 0) {
740             max_count = 138, min_count = 3;
741         } else if (curlen == nextlen) {
742             max_count = 6, min_count = 3;
743         } else {
744             max_count = 7, min_count = 4;
745         }
746     }
747 }
748 
749 /* ===========================================================================
750  * Send a literal or distance tree in compressed form, using the codes in
751  * bl_tree.
752  */
753 local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
754     int n;                     /* iterates over all tree elements */
755     int prevlen = -1;          /* last emitted length */
756     int curlen;                /* length of current code */
757     int nextlen = tree[0].Len; /* length of next code */
758     int count = 0;             /* repeat count of the current code */
759     int max_count = 7;         /* max repeat count */
760     int min_count = 4;         /* min repeat count */
761 
762     /* tree[max_code + 1].Len = -1; */  /* guard already set */
763     if (nextlen == 0) max_count = 138, min_count = 3;
764 
765     for (n = 0; n <= max_code; n++) {
766         curlen = nextlen; nextlen = tree[n + 1].Len;
767         if (++count < max_count && curlen == nextlen) {
768             continue;
769         } else if (count < min_count) {
770             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
771 
772         } else if (curlen != 0) {
773             if (curlen != prevlen) {
774                 send_code(s, curlen, s->bl_tree); count--;
775             }
776             Assert(count >= 3 && count <= 6, " 3_6?");
777             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
778 
779         } else if (count <= 10) {
780             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
781 
782         } else {
783             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
784         }
785         count = 0; prevlen = curlen;
786         if (nextlen == 0) {
787             max_count = 138, min_count = 3;
788         } else if (curlen == nextlen) {
789             max_count = 6, min_count = 3;
790         } else {
791             max_count = 7, min_count = 4;
792         }
793     }
794 }
795 
796 /* ===========================================================================
797  * Construct the Huffman tree for the bit lengths and return the index in
798  * bl_order of the last bit length code to send.
799  */
800 local int build_bl_tree(deflate_state *s) {
801     int max_blindex;  /* index of last bit length code of non zero freq */
802 
803     /* Determine the bit length frequencies for literal and distance trees */
804     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
805     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
806 
807     /* Build the bit length tree: */
808     build_tree(s, (tree_desc *)(&(s->bl_desc)));
809     /* opt_len now includes the length of the tree representations, except the
810      * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
811      */
812 
813     /* Determine the number of bit length codes to send. The pkzip format
814      * requires that at least 4 bit length codes be sent. (appnote.txt says
815      * 3 but the actual value used is 4.)
816      */
817     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
818         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
819     }
820     /* Update opt_len to include the bit length tree and counts */
821     s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
822     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
823             s->opt_len, s->static_len));
824 
825     return max_blindex;
826 }
827 
828 /* ===========================================================================
829  * Send the header for a block using dynamic Huffman trees: the counts, the
830  * lengths of the bit length codes, the literal tree and the distance tree.
831  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
832  */
833 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
834                           int blcodes) {
835     int rank;                    /* index in bl_order */
836 
837     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
838     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
839             "too many codes");
840     Tracev((stderr, "\nbl counts: "));
841     send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
842     send_bits(s, dcodes - 1,   5);
843     send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
844     for (rank = 0; rank < blcodes; rank++) {
845         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
846         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
847     }
848     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
849 
850     send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
851     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
852 
853     send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
854     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
855 }
856 
857 /* ===========================================================================
858  * Send a stored block
859  */
860 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
861                                     ulg stored_len, int last) {
862     send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
863     bi_windup(s);        /* align on byte boundary */
864     put_short(s, (ush)stored_len);
865     put_short(s, (ush)~stored_len);
866     if (stored_len)
867         zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
868     s->pending += stored_len;
869 #ifdef ZLIB_DEBUG
870     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
871     s->compressed_len += (stored_len + 4) << 3;
872     s->bits_sent += 2*16;
873     s->bits_sent += stored_len << 3;
874 #endif
875 }
876 
877 /* ===========================================================================
878  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
879  */
880 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
881     bi_flush(s);
882 }
883 
884 /* ===========================================================================
885  * Send one empty static block to give enough lookahead for inflate.
886  * This takes 10 bits, of which 7 may remain in the bit buffer.
887  */
888 void ZLIB_INTERNAL _tr_align(deflate_state *s) {
889     send_bits(s, STATIC_TREES<<1, 3);
890     send_code(s, END_BLOCK, static_ltree);
891 #ifdef ZLIB_DEBUG
892     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
893 #endif
894     bi_flush(s);
895 }
896 
897 /* ===========================================================================
898  * Send the block data compressed using the given Huffman trees
899  */
900 local void compress_block(deflate_state *s, const ct_data *ltree,
901                           const ct_data *dtree) {
902     unsigned dist;      /* distance of matched string */
903     int lc;             /* match length or unmatched char (if dist == 0) */
904     unsigned sx = 0;    /* running index in symbol buffers */
905     unsigned code;      /* the code to send */
906     int extra;          /* number of extra bits to send */
907 
908     if (s->sym_next != 0) do {
909 #ifdef LIT_MEM
910         dist = s->d_buf[sx];
911         lc = s->l_buf[sx++];
912 #else
913         dist = s->sym_buf[sx++] & 0xff;
914         dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
915         lc = s->sym_buf[sx++];
916 #endif
917         if (dist == 0) {
918             send_code(s, lc, ltree); /* send a literal byte */
919             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
920         } else {
921             /* Here, lc is the match length - MIN_MATCH */
922             code = _length_code[lc];
923             send_code(s, code + LITERALS + 1, ltree);   /* send length code */
924             extra = extra_lbits[code];
925             if (extra != 0) {
926                 lc -= base_length[code];
927                 send_bits(s, lc, extra);       /* send the extra length bits */
928             }
929             dist--; /* dist is now the match distance - 1 */
930             code = d_code(dist);
931             Assert (code < D_CODES, "bad d_code");
932 
933             send_code(s, code, dtree);       /* send the distance code */
934             extra = extra_dbits[code];
935             if (extra != 0) {
936                 dist -= (unsigned)base_dist[code];
937                 send_bits(s, dist, extra);   /* send the extra distance bits */
938             }
939         } /* literal or match pair ? */
940 
941         /* Check for no overlay of pending_buf on needed symbols */
942 #ifdef LIT_MEM
943         Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
944 #else
945         Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
946 #endif
947 
948     } while (sx < s->sym_next);
949 
950     send_code(s, END_BLOCK, ltree);
951 }
952 
953 /* ===========================================================================
954  * Check if the data type is TEXT or BINARY, using the following algorithm:
955  * - TEXT if the two conditions below are satisfied:
956  *    a) There are no non-portable control characters belonging to the
957  *       "block list" (0..6, 14..25, 28..31).
958  *    b) There is at least one printable character belonging to the
959  *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
960  * - BINARY otherwise.
961  * - The following partially-portable control characters form a
962  *   "gray list" that is ignored in this detection algorithm:
963  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
964  * IN assertion: the fields Freq of dyn_ltree are set.
965  */
966 local int detect_data_type(deflate_state *s) {
967     /* block_mask is the bit mask of block-listed bytes
968      * set bits 0..6, 14..25, and 28..31
969      * 0xf3ffc07f = binary 11110011111111111100000001111111
970      */
971     unsigned long block_mask = 0xf3ffc07fUL;
972     int n;
973 
974     /* Check for non-textual ("block-listed") bytes. */
975     for (n = 0; n <= 31; n++, block_mask >>= 1)
976         if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
977             return Z_BINARY;
978 
979     /* Check for textual ("allow-listed") bytes. */
980     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
981             || s->dyn_ltree[13].Freq != 0)
982         return Z_TEXT;
983     for (n = 32; n < LITERALS; n++)
984         if (s->dyn_ltree[n].Freq != 0)
985             return Z_TEXT;
986 
987     /* There are no "block-listed" or "allow-listed" bytes:
988      * this stream either is empty or has tolerated ("gray-listed") bytes only.
989      */
990     return Z_BINARY;
991 }
992 
993 /* ===========================================================================
994  * Determine the best encoding for the current block: dynamic trees, static
995  * trees or store, and write out the encoded block.
996  */
997 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
998                                    ulg stored_len, int last) {
999     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1000     int max_blindex = 0;  /* index of last bit length code of non zero freq */
1001 
1002     /* Build the Huffman trees unless a stored block is forced */
1003     if (s->level > 0) {
1004 
1005         /* Check if the file is binary or text */
1006         if (s->strm->data_type == Z_UNKNOWN)
1007             s->strm->data_type = detect_data_type(s);
1008 
1009         /* Construct the literal and distance trees */
1010         build_tree(s, (tree_desc *)(&(s->l_desc)));
1011         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1012                 s->static_len));
1013 
1014         build_tree(s, (tree_desc *)(&(s->d_desc)));
1015         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1016                 s->static_len));
1017         /* At this point, opt_len and static_len are the total bit lengths of
1018          * the compressed block data, excluding the tree representations.
1019          */
1020 
1021         /* Build the bit length tree for the above two trees, and get the index
1022          * in bl_order of the last bit length code to send.
1023          */
1024         max_blindex = build_bl_tree(s);
1025 
1026         /* Determine the best encoding. Compute the block lengths in bytes. */
1027         opt_lenb = (s->opt_len + 3 + 7) >> 3;
1028         static_lenb = (s->static_len + 3 + 7) >> 3;
1029 
1030         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1031                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1032                 s->sym_next / 3));
1033 
1034 #ifndef FORCE_STATIC
1035         if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1036 #endif
1037             opt_lenb = static_lenb;
1038 
1039     } else {
1040         Assert(buf != (char*)0, "lost buf");
1041         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1042     }
1043 
1044 #ifdef FORCE_STORED
1045     if (buf != (char*)0) { /* force stored block */
1046 #else
1047     if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1048                        /* 4: two words for the lengths */
1049 #endif
1050         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1051          * Otherwise we can't have processed more than WSIZE input bytes since
1052          * the last block flush, because compression would have been
1053          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1054          * transform a block into a stored block.
1055          */
1056         _tr_stored_block(s, buf, stored_len, last);
1057 
1058     } else if (static_lenb == opt_lenb) {
1059         send_bits(s, (STATIC_TREES<<1) + last, 3);
1060         compress_block(s, (const ct_data *)static_ltree,
1061                        (const ct_data *)static_dtree);
1062 #ifdef ZLIB_DEBUG
1063         s->compressed_len += 3 + s->static_len;
1064 #endif
1065     } else {
1066         send_bits(s, (DYN_TREES<<1) + last, 3);
1067         send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1068                        max_blindex + 1);
1069         compress_block(s, (const ct_data *)s->dyn_ltree,
1070                        (const ct_data *)s->dyn_dtree);
1071 #ifdef ZLIB_DEBUG
1072         s->compressed_len += 3 + s->opt_len;
1073 #endif
1074     }
1075     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1076     /* The above check is made mod 2^32, for files larger than 512 MB
1077      * and uLong implemented on 32 bits.
1078      */
1079     init_block(s);
1080 
1081     if (last) {
1082         bi_windup(s);
1083 #ifdef ZLIB_DEBUG
1084         s->compressed_len += 7;  /* align on byte boundary */
1085 #endif
1086     }
1087     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1088            s->compressed_len - 7*last));
1089 }
1090 
1091 /* ===========================================================================
1092  * Save the match info and tally the frequency counts. Return true if
1093  * the current block must be flushed.
1094  */
1095 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1096 #ifdef LIT_MEM
1097     s->d_buf[s->sym_next] = (ush)dist;
1098     s->l_buf[s->sym_next++] = (uch)lc;
1099 #else
1100     s->sym_buf[s->sym_next++] = (uch)dist;
1101     s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1102     s->sym_buf[s->sym_next++] = (uch)lc;
1103 #endif
1104     if (dist == 0) {
1105         /* lc is the unmatched char */
1106         s->dyn_ltree[lc].Freq++;
1107     } else {
1108         s->matches++;
1109         /* Here, lc is the match length - MIN_MATCH */
1110         dist--;             /* dist = match distance - 1 */
1111         Assert((ush)dist < (ush)MAX_DIST(s) &&
1112                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1113                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1114 
1115         s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1116         s->dyn_dtree[d_code(dist)].Freq++;
1117     }
1118     return (s->sym_next == s->sym_end);
1119 }
1120