xref: /netbsd-src/common/dist/zlib/inftrees.c (revision 3117ece4fc4a4ca4489ba793710b60b0d26bab6c)
1 /*	$NetBSD: inftrees.c,v 1.5 2024/09/22 19:12:27 christos Exp $	*/
2 
3 /* inftrees.c -- generate Huffman trees for efficient decoding
4  * Copyright (C) 1995-2024 Mark Adler
5  * For conditions of distribution and use, see copyright notice in zlib.h
6  */
7 
8 #include "zutil.h"
9 #include "inftrees.h"
10 
11 #define MAXBITS 15
12 
13 const char inflate_copyright[] =
14    " inflate 1.3.1 Copyright 1995-2024 Mark Adler ";
15 /*
16   If you use the zlib library in a product, an acknowledgment is welcome
17   in the documentation of your product. If for some reason you cannot
18   include such an acknowledgment, I would appreciate that you keep this
19   copyright string in the executable of your product.
20  */
21 
22 /*
23    Build a set of tables to decode the provided canonical Huffman code.
24    The code lengths are lens[0..codes-1].  The result starts at *table,
25    whose indices are 0..2^bits-1.  work is a writable array of at least
26    lens shorts, which is used as a work area.  type is the type of code
27    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
28    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
29    on return points to the next available entry's address.  bits is the
30    requested root table index bits, and on return it is the actual root
31    table index bits.  It will differ if the request is greater than the
32    longest code or if it is less than the shortest code.
33  */
34 int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
35                                 unsigned codes, code FAR * FAR *table,
36                                 unsigned FAR *bits, unsigned short FAR *work) {
37     unsigned len;               /* a code's length in bits */
38     unsigned sym;               /* index of code symbols */
39     unsigned mmin, mmax;        /* minimum and maximum code lengths */
40     unsigned root;              /* number of index bits for root table */
41     unsigned curr;              /* number of index bits for current table */
42     unsigned drop;              /* code bits to drop for sub-table */
43     int left;                   /* number of prefix codes available */
44     unsigned used;              /* code entries in table used */
45     unsigned huff;              /* Huffman code */
46     unsigned incr;              /* for incrementing code, index */
47     unsigned fill;              /* index for replicating entries */
48     unsigned low;               /* low bits for current root entry */
49     unsigned mask;              /* mask for low root bits */
50     code here;                  /* table entry for duplication */
51     code FAR *next;             /* next available space in table */
52     const unsigned short FAR *base;     /* base value table to use */
53     const unsigned short FAR *extra;    /* extra bits table to use */
54     unsigned match;             /* use base and extra for symbol >= match */
55     unsigned short count[MAXBITS+1];    /* number of codes of each length */
56     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
57     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
58         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
59         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
60     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
61         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
62         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 203, 77};
63     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
64         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
65         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
66         8193, 12289, 16385, 24577, 0, 0};
67     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
68         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
69         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
70         28, 28, 29, 29, 64, 64};
71 
72     /*
73        Process a set of code lengths to create a canonical Huffman code.  The
74        code lengths are lens[0..codes-1].  Each length corresponds to the
75        symbols 0..codes-1.  The Huffman code is generated by first sorting the
76        symbols by length from short to long, and retaining the symbol order
77        for codes with equal lengths.  Then the code starts with all zero bits
78        for the first code of the shortest length, and the codes are integer
79        increments for the same length, and zeros are appended as the length
80        increases.  For the deflate format, these bits are stored backwards
81        from their more natural integer increment ordering, and so when the
82        decoding tables are built in the large loop below, the integer codes
83        are incremented backwards.
84 
85        This routine assumes, but does not check, that all of the entries in
86        lens[] are in the range 0..MAXBITS.  The caller must assure this.
87        1..MAXBITS is interpreted as that code length.  zero means that that
88        symbol does not occur in this code.
89 
90        The codes are sorted by computing a count of codes for each length,
91        creating from that a table of starting indices for each length in the
92        sorted table, and then entering the symbols in order in the sorted
93        table.  The sorted table is work[], with that space being provided by
94        the caller.
95 
96        The length counts are used for other purposes as well, i.e. finding
97        the minimum and maximum length codes, determining if there are any
98        codes at all, checking for a valid set of lengths, and looking ahead
99        at length counts to determine sub-table sizes when building the
100        decoding tables.
101      */
102 
103     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
104     for (len = 0; len <= MAXBITS; len++)
105         count[len] = 0;
106     for (sym = 0; sym < codes; sym++)
107         count[lens[sym]]++;
108 
109     /* bound code lengths, force root to be within code lengths */
110     root = *bits;
111     for (mmax = MAXBITS; mmax >= 1; mmax--)
112         if (count[mmax] != 0) break;
113     if (root > mmax) root = mmax;
114     if (mmax == 0) {                     /* no symbols to code at all */
115         here.op = (unsigned char)64;    /* invalid code marker */
116         here.bits = (unsigned char)1;
117         here.val = (unsigned short)0;
118         *(*table)++ = here;             /* make a table to force an error */
119         *(*table)++ = here;
120         *bits = 1;
121         return 0;     /* no symbols, but wait for decoding to report error */
122     }
123     for (mmin = 1; mmin <= MAXBITS; mmin++)
124         if (count[mmin] != 0) break;
125     if (root < mmin) root = mmin;
126 
127     /* check for an over-subscribed or incomplete set of lengths */
128     left = 1;
129     for (len = 1; len <= MAXBITS; len++) {
130         left <<= 1;
131         left -= count[len];
132         if (left < 0) return -1;        /* over-subscribed */
133     }
134     if (left > 0 && (type == CODES || mmax != 1))
135         return -1;                      /* incomplete set */
136 
137     /* generate offsets into symbol table for each length for sorting */
138     offs[1] = 0;
139     for (len = 1; len < MAXBITS; len++)
140         offs[len + 1] = offs[len] + count[len];
141 
142     /* sort symbols by length, by symbol order within each length */
143     for (sym = 0; sym < codes; sym++)
144         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
145 
146     /*
147        Create and fill in decoding tables.  In this loop, the table being
148        filled is at next and has curr index bits.  The code being used is huff
149        with length len.  That code is converted to an index by dropping drop
150        bits off of the bottom.  For codes where len is less than drop + curr,
151        those top drop + curr - len bits are incremented through all values to
152        fill the table with replicated entries.
153 
154        root is the number of index bits for the root table.  When len exceeds
155        root, sub-tables are created pointed to by the root entry with an index
156        of the low root bits of huff.  This is saved in low to check for when a
157        new sub-table should be started.  drop is zero when the root table is
158        being filled, and drop is root when sub-tables are being filled.
159 
160        When a new sub-table is needed, it is necessary to look ahead in the
161        code lengths to determine what size sub-table is needed.  The length
162        counts are used for this, and so count[] is decremented as codes are
163        entered in the tables.
164 
165        used keeps track of how many table entries have been allocated from the
166        provided *table space.  It is checked for LENS and DIST tables against
167        the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
168        the initial root table size constants.  See the comments in inftrees.h
169        for more information.
170 
171        sym increments through all symbols, and the loop terminates when
172        all codes of length mmax, i.e. all codes, have been processed.  This
173        routine permits incomplete codes, so another loop after this one fills
174        in the rest of the decoding tables with invalid code markers.
175      */
176 
177     /* set up for code type */
178     switch (type) {
179     case CODES:
180         base = extra = work;    /* dummy value--not used */
181         match = 20;
182         break;
183     case LENS:
184         base = lbase;
185         extra = lext;
186         match = 257;
187         break;
188     default:    /* DISTS */
189         base = dbase;
190         extra = dext;
191         match = 0;
192     }
193 
194     /* initialize state for loop */
195     huff = 0;                   /* starting code */
196     sym = 0;                    /* starting code symbol */
197     len = mmin;                  /* starting code length */
198     next = *table;              /* current table to fill in */
199     curr = root;                /* current table index bits */
200     drop = 0;                   /* current bits to drop from code for index */
201     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
202     used = 1U << root;          /* use root table entries */
203     mask = used - 1;            /* mask for comparing low */
204 
205     /* check available table space */
206     if ((type == LENS && used > ENOUGH_LENS) ||
207         (type == DISTS && used > ENOUGH_DISTS))
208         return 1;
209 
210     /* process all codes and make table entries */
211     for (;;) {
212         /* create table entry */
213         here.bits = (unsigned char)(len - drop);
214         if (work[sym] + 1U < match) {
215             here.op = (unsigned char)0;
216             here.val = work[sym];
217         }
218         else if (work[sym] >= match) {
219             here.op = (unsigned char)(extra[work[sym] - match]);
220             here.val = base[work[sym] - match];
221         }
222         else {
223             here.op = (unsigned char)(32 + 64);         /* end of block */
224             here.val = 0;
225         }
226 
227         /* replicate for those indices with low len bits equal to huff */
228         incr = 1U << (len - drop);
229         fill = 1U << curr;
230         mmin = fill;                 /* save offset to next table */
231         do {
232             fill -= incr;
233             next[(huff >> drop) + fill] = here;
234         } while (fill != 0);
235 
236         /* backwards increment the len-bit code huff */
237         incr = 1U << (len - 1);
238         while (huff & incr)
239             incr >>= 1;
240         if (incr != 0) {
241             huff &= incr - 1;
242             huff += incr;
243         }
244         else
245             huff = 0;
246 
247         /* go to next symbol, update count, len */
248         sym++;
249         if (--(count[len]) == 0) {
250             if (len == mmax) break;
251             len = lens[work[sym]];
252         }
253 
254         /* create new sub-table if needed */
255         if (len > root && (huff & mask) != low) {
256             /* if first time, transition to sub-tables */
257             if (drop == 0)
258                 drop = root;
259 
260             /* increment past last table */
261             next += mmin;            /* here mmin is 1 << curr */
262 
263             /* determine length of next table */
264             curr = len - drop;
265             left = (int)(1 << curr);
266             while (curr + drop < mmax) {
267                 left -= count[curr + drop];
268                 if (left <= 0) break;
269                 curr++;
270                 left <<= 1;
271             }
272 
273             /* check for enough space */
274             used += 1U << curr;
275             if ((type == LENS && used > ENOUGH_LENS) ||
276                 (type == DISTS && used > ENOUGH_DISTS))
277                 return 1;
278 
279             /* point entry in root table to sub-table */
280             low = huff & mask;
281             (*table)[low].op = (unsigned char)curr;
282             (*table)[low].bits = (unsigned char)root;
283             (*table)[low].val = (unsigned short)(next - *table);
284         }
285     }
286 
287     /* fill in remaining table entry if code is incomplete (guaranteed to have
288        at most one remaining entry, since if the code is incomplete, the
289        maximum code length that was allowed to get this far is one bit) */
290     if (huff != 0) {
291         here.op = (unsigned char)64;            /* invalid code marker */
292         here.bits = (unsigned char)(len - drop);
293         here.val = (unsigned short)0;
294         next[huff] = here;
295     }
296 
297     /* set return parameters */
298     *table += used;
299     *bits = root;
300     return 0;
301 }
302