xref: /netbsd-src/common/dist/zlib/deflate.c (revision f8cf1a9151c7af1cb0bd8b09c13c66bca599c027)
1 /*	$NetBSD: deflate.c,v 1.7 2024/09/22 19:12:27 christos Exp $	*/
2 
3 /* deflate.c -- compress data using the deflation algorithm
4  * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
5  * For conditions of distribution and use, see copyright notice in zlib.h
6  */
7 
8 /*
9  *  ALGORITHM
10  *
11  *      The "deflation" process depends on being able to identify portions
12  *      of the input text which are identical to earlier input (within a
13  *      sliding window trailing behind the input currently being processed).
14  *
15  *      The most straightforward technique turns out to be the fastest for
16  *      most input files: try all possible matches and select the longest.
17  *      The key feature of this algorithm is that insertions into the string
18  *      dictionary are very simple and thus fast, and deletions are avoided
19  *      completely. Insertions are performed at each input character, whereas
20  *      string matches are performed only when the previous match ends. So it
21  *      is preferable to spend more time in matches to allow very fast string
22  *      insertions and avoid deletions. The matching algorithm for small
23  *      strings is inspired from that of Rabin & Karp. A brute force approach
24  *      is used to find longer strings when a small match has been found.
25  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
26  *      (by Leonid Broukhis).
27  *         A previous version of this file used a more sophisticated algorithm
28  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
29  *      time, but has a larger average cost, uses more memory and is patented.
30  *      However the F&G algorithm may be faster for some highly redundant
31  *      files if the parameter max_chain_length (described below) is too large.
32  *
33  *  ACKNOWLEDGEMENTS
34  *
35  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
36  *      I found it in 'freeze' written by Leonid Broukhis.
37  *      Thanks to many people for bug reports and testing.
38  *
39  *  REFERENCES
40  *
41  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
42  *      Available in http://tools.ietf.org/html/rfc1951
43  *
44  *      A description of the Rabin and Karp algorithm is given in the book
45  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
46  *
47  *      Fiala,E.R., and Greene,D.H.
48  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
49  *
50  */
51 
52 /* @(#) Id */
53 
54 #include "deflate.h"
55 
56 const char deflate_copyright[] =
57    " deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
58 /*
59   If you use the zlib library in a product, an acknowledgment is welcome
60   in the documentation of your product. If for some reason you cannot
61   include such an acknowledgment, I would appreciate that you keep this
62   copyright string in the executable of your product.
63  */
64 
65 typedef enum {
66     need_more,      /* block not completed, need more input or more output */
67     block_done,     /* block flush performed */
68     finish_started, /* finish started, need only more output at next deflate */
69     finish_done     /* finish done, accept no more input or output */
70 } block_state;
71 
72 typedef block_state (*compress_func)(deflate_state *s, int flush);
73 /* Compression function. Returns the block state after the call. */
74 
75 local block_state deflate_stored(deflate_state *s, int flush);
76 local block_state deflate_fast(deflate_state *s, int flush);
77 #ifndef FASTEST
78 local block_state deflate_slow(deflate_state *s, int flush);
79 #endif
80 local block_state deflate_rle(deflate_state *s, int flush);
81 local block_state deflate_huff(deflate_state *s, int flush);
82 
83 /* ===========================================================================
84  * Local data
85  */
86 
87 #define NIL 0
88 /* Tail of hash chains */
89 
90 #ifndef TOO_FAR
91 #  define TOO_FAR 4096
92 #endif
93 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
94 
95 /* Values for max_lazy_match, good_match and max_chain_length, depending on
96  * the desired pack level (0..9). The values given below have been tuned to
97  * exclude worst case performance for pathological files. Better values may be
98  * found for specific files.
99  */
100 typedef struct config_s {
101    ush good_length; /* reduce lazy search above this match length */
102    ush max_lazy;    /* do not perform lazy search above this match length */
103    ush nice_length; /* quit search above this match length */
104    ush max_chain;
105    compress_func func;
106 } config;
107 
108 #ifdef FASTEST
109 local const config configuration_table[2] = {
110 /*      good lazy nice chain */
111 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
112 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
113 #else
114 local const config configuration_table[10] = {
115 /*      good lazy nice chain */
116 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
117 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
118 /* 2 */ {4,    5, 16,    8, deflate_fast},
119 /* 3 */ {4,    6, 32,   32, deflate_fast},
120 
121 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
122 /* 5 */ {8,   16, 32,   32, deflate_slow},
123 /* 6 */ {8,   16, 128, 128, deflate_slow},
124 /* 7 */ {8,   32, 128, 256, deflate_slow},
125 /* 8 */ {32, 128, 258, 1024, deflate_slow},
126 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
127 #endif
128 
129 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
130  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
131  * meaning.
132  */
133 
134 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
135 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
136 
137 /* ===========================================================================
138  * Update a hash value with the given input byte
139  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
140  *    characters, so that a running hash key can be computed from the previous
141  *    key instead of complete recalculation each time.
142  */
143 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
144 
145 
146 /* ===========================================================================
147  * Insert string str in the dictionary and set match_head to the previous head
148  * of the hash chain (the most recent string with same hash key). Return
149  * the previous length of the hash chain.
150  * If this file is compiled with -DFASTEST, the compression level is forced
151  * to 1, and no hash chains are maintained.
152  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
153  *    characters and the first MIN_MATCH bytes of str are valid (except for
154  *    the last MIN_MATCH-1 bytes of the input file).
155  */
156 #ifdef FASTEST
157 #define INSERT_STRING(s, str, match_head) \
158    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
159     match_head = s->head[s->ins_h], \
160     s->head[s->ins_h] = (Pos)(str))
161 #else
162 #define INSERT_STRING(s, str, match_head) \
163    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
164     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
165     s->head[s->ins_h] = (Pos)(str))
166 #endif
167 
168 /* ===========================================================================
169  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
170  * prev[] will be initialized on the fly.
171  */
172 #define CLEAR_HASH(s) \
173     do { \
174         s->head[s->hash_size - 1] = NIL; \
175         zmemzero((Bytef *)s->head, \
176                  (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
177     } while (0)
178 
179 /* ===========================================================================
180  * Slide the hash table when sliding the window down (could be avoided with 32
181  * bit values at the expense of memory usage). We slide even when level == 0 to
182  * keep the hash table consistent if we switch back to level > 0 later.
183  */
184 #if defined(__has_feature)
185 #  if __has_feature(memory_sanitizer)
186      __attribute__((no_sanitize("memory")))
187 #  endif
188 #endif
189 local void slide_hash(deflate_state *s) {
190     unsigned n, m;
191     Posf *p;
192     uInt wsize = s->w_size;
193 
194     n = s->hash_size;
195     p = &s->head[n];
196     do {
197         m = *--p;
198         *p = (Pos)(m >= wsize ? m - wsize : NIL);
199     } while (--n);
200     n = wsize;
201 #ifndef FASTEST
202     p = &s->prev[n];
203     do {
204         m = *--p;
205         *p = (Pos)(m >= wsize ? m - wsize : NIL);
206         /* If n is not on any hash chain, prev[n] is garbage but
207          * its value will never be used.
208          */
209     } while (--n);
210 #endif
211 }
212 
213 /* ===========================================================================
214  * Read a new buffer from the current input stream, update the adler32
215  * and total number of bytes read.  All deflate() input goes through
216  * this function so some applications may wish to modify it to avoid
217  * allocating a large strm->next_in buffer and copying from it.
218  * (See also flush_pending()).
219  */
220 local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
221     unsigned len = strm->avail_in;
222 
223     if (len > size) len = size;
224     if (len == 0) return 0;
225 
226     strm->avail_in  -= len;
227 
228     zmemcpy(buf, strm->next_in, len);
229     if (strm->state->wrap == 1) {
230         strm->adler = adler32(strm->adler, buf, len);
231     }
232 #ifdef GZIP
233     else if (strm->state->wrap == 2) {
234         strm->adler = crc32(strm->adler, buf, len);
235     }
236 #endif
237     strm->next_in  += len;
238     strm->total_in += len;
239 
240     return len;
241 }
242 
243 /* ===========================================================================
244  * Fill the window when the lookahead becomes insufficient.
245  * Updates strstart and lookahead.
246  *
247  * IN assertion: lookahead < MIN_LOOKAHEAD
248  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
249  *    At least one byte has been read, or avail_in == 0; reads are
250  *    performed for at least two bytes (required for the zip translate_eol
251  *    option -- not supported here).
252  */
253 local void fill_window(deflate_state *s) {
254     unsigned n;
255     unsigned more;    /* Amount of free space at the end of the window. */
256     uInt wsize = s->w_size;
257 
258     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
259 
260     do {
261         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
262 
263         /* Deal with !@#$% 64K limit: */
264         if (sizeof(int) <= 2) {
265             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
266                 more = wsize;
267 
268             } else if (more == (unsigned)(-1)) {
269                 /* Very unlikely, but possible on 16 bit machine if
270                  * strstart == 0 && lookahead == 1 (input done a byte at time)
271                  */
272                 more--;
273             }
274         }
275 
276         /* If the window is almost full and there is insufficient lookahead,
277          * move the upper half to the lower one to make room in the upper half.
278          */
279         if (s->strstart >= wsize + MAX_DIST(s)) {
280 
281             zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
282             s->match_start -= wsize;
283             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
284             s->block_start -= (long) wsize;
285             if (s->insert > s->strstart)
286                 s->insert = s->strstart;
287             slide_hash(s);
288             more += wsize;
289         }
290         if (s->strm->avail_in == 0) break;
291 
292         /* If there was no sliding:
293          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
294          *    more == window_size - lookahead - strstart
295          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
296          * => more >= window_size - 2*WSIZE + 2
297          * In the BIG_MEM or MMAP case (not yet supported),
298          *   window_size == input_size + MIN_LOOKAHEAD  &&
299          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
300          * Otherwise, window_size == 2*WSIZE so more >= 2.
301          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
302          */
303         Assert(more >= 2, "more < 2");
304 
305         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
306         s->lookahead += n;
307 
308         /* Initialize the hash value now that we have some input: */
309         if (s->lookahead + s->insert >= MIN_MATCH) {
310             uInt str = s->strstart - s->insert;
311             s->ins_h = s->window[str];
312             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
313 #if MIN_MATCH != 3
314             Call UPDATE_HASH() MIN_MATCH-3 more times
315 #endif
316             while (s->insert) {
317                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
318 #ifndef FASTEST
319                 s->prev[str & s->w_mask] = s->head[s->ins_h];
320 #endif
321                 s->head[s->ins_h] = (Pos)str;
322                 str++;
323                 s->insert--;
324                 if (s->lookahead + s->insert < MIN_MATCH)
325                     break;
326             }
327         }
328         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
329          * but this is not important since only literal bytes will be emitted.
330          */
331 
332     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
333 
334     /* If the WIN_INIT bytes after the end of the current data have never been
335      * written, then zero those bytes in order to avoid memory check reports of
336      * the use of uninitialized (or uninitialised as Julian writes) bytes by
337      * the longest match routines.  Update the high water mark for the next
338      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
339      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
340      */
341     if (s->high_water < s->window_size) {
342         ulg curr = s->strstart + (ulg)(s->lookahead);
343         ulg init;
344 
345         if (s->high_water < curr) {
346             /* Previous high water mark below current data -- zero WIN_INIT
347              * bytes or up to end of window, whichever is less.
348              */
349             init = s->window_size - curr;
350             if (init > WIN_INIT)
351                 init = WIN_INIT;
352             zmemzero(s->window + curr, (unsigned)init);
353             s->high_water = curr + init;
354         }
355         else if (s->high_water < (ulg)curr + WIN_INIT) {
356             /* High water mark at or above current data, but below current data
357              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
358              * to end of window, whichever is less.
359              */
360             init = (ulg)curr + WIN_INIT - s->high_water;
361             if (init > s->window_size - s->high_water)
362                 init = s->window_size - s->high_water;
363             zmemzero(s->window + s->high_water, (unsigned)init);
364             s->high_water += init;
365         }
366     }
367 
368     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
369            "not enough room for search");
370 }
371 
372 /* ========================================================================= */
373 int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
374                          int stream_size) {
375     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
376                          Z_DEFAULT_STRATEGY, version, stream_size);
377     /* To do: ignore strm->next_in if we use it as window */
378 }
379 
380 /* ========================================================================= */
381 int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
382                           int windowBits, int memLevel, int strategy,
383                           const char *version, int stream_size) {
384     deflate_state *s;
385     int wrap = 1;
386     static const char my_version[] = ZLIB_VERSION;
387 
388     if (version == Z_NULL || version[0] != my_version[0] ||
389         stream_size != sizeof(z_stream)) {
390         return Z_VERSION_ERROR;
391     }
392     if (strm == Z_NULL) return Z_STREAM_ERROR;
393 
394     strm->msg = Z_NULL;
395     if (strm->zalloc == (alloc_func)0) {
396 #ifdef Z_SOLO
397         return Z_STREAM_ERROR;
398 #else
399         strm->zalloc = zcalloc;
400         strm->opaque = (voidpf)0;
401 #endif
402     }
403     if (strm->zfree == (free_func)0)
404 #ifdef Z_SOLO
405         return Z_STREAM_ERROR;
406 #else
407         strm->zfree = zcfree;
408 #endif
409 
410 #ifdef FASTEST
411     if (level != 0) level = 1;
412 #else
413     if (level == Z_DEFAULT_COMPRESSION) level = 6;
414 #endif
415 
416     if (windowBits < 0) { /* suppress zlib wrapper */
417         wrap = 0;
418         if (windowBits < -15)
419             return Z_STREAM_ERROR;
420         windowBits = -windowBits;
421     }
422 #ifdef GZIP
423     else if (windowBits > 15) {
424         wrap = 2;       /* write gzip wrapper instead */
425         windowBits -= 16;
426     }
427 #endif
428     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
429         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
430         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
431         return Z_STREAM_ERROR;
432     }
433     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
434     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
435     if (s == Z_NULL) return Z_MEM_ERROR;
436     strm->state = (struct internal_state FAR *)s;
437     s->strm = strm;
438     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
439 
440     s->wrap = wrap;
441     s->gzhead = Z_NULL;
442     s->w_bits = (uInt)windowBits;
443     s->w_size = 1 << s->w_bits;
444     s->w_mask = s->w_size - 1;
445 
446     s->hash_bits = (uInt)memLevel + 7;
447     s->hash_size = 1 << s->hash_bits;
448     s->hash_mask = s->hash_size - 1;
449     s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
450 
451     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
452     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
453     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
454 
455     s->high_water = 0;      /* nothing written to s->window yet */
456 
457     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
458 
459     /* We overlay pending_buf and sym_buf. This works since the average size
460      * for length/distance pairs over any compressed block is assured to be 31
461      * bits or less.
462      *
463      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
464      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
465      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
466      * possible fixed-codes length/distance pair is then 31 bits total.
467      *
468      * sym_buf starts one-fourth of the way into pending_buf. So there are
469      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
470      * in sym_buf is three bytes -- two for the distance and one for the
471      * literal/length. As each symbol is consumed, the pointer to the next
472      * sym_buf value to read moves forward three bytes. From that symbol, up to
473      * 31 bits are written to pending_buf. The closest the written pending_buf
474      * bits gets to the next sym_buf symbol to read is just before the last
475      * code is written. At that time, 31*(n - 2) bits have been written, just
476      * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
477      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
478      * symbols are written.) The closest the writing gets to what is unread is
479      * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
480      * can range from 128 to 32768.
481      *
482      * Therefore, at a minimum, there are 142 bits of space between what is
483      * written and what is read in the overlain buffers, so the symbols cannot
484      * be overwritten by the compressed data. That space is actually 139 bits,
485      * due to the three-bit fixed-code block header.
486      *
487      * That covers the case where either Z_FIXED is specified, forcing fixed
488      * codes, or when the use of fixed codes is chosen, because that choice
489      * results in a smaller compressed block than dynamic codes. That latter
490      * condition then assures that the above analysis also covers all dynamic
491      * blocks. A dynamic-code block will only be chosen to be emitted if it has
492      * fewer bits than a fixed-code block would for the same set of symbols.
493      * Therefore its average symbol length is assured to be less than 31. So
494      * the compressed data for a dynamic block also cannot overwrite the
495      * symbols from which it is being constructed.
496      */
497 
498     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
499     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
500 
501     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
502         s->pending_buf == Z_NULL) {
503         s->status = FINISH_STATE;
504         strm->msg = __UNCONST(ERR_MSG(Z_MEM_ERROR));
505         deflateEnd (strm);
506         return Z_MEM_ERROR;
507     }
508 #ifdef LIT_MEM
509     s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
510     s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
511     s->sym_end = s->lit_bufsize - 1;
512 #else
513     s->sym_buf = s->pending_buf + s->lit_bufsize;
514     s->sym_end = (s->lit_bufsize - 1) * 3;
515 #endif
516     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
517      * on 16 bit machines and because stored blocks are restricted to
518      * 64K-1 bytes.
519      */
520 
521     s->level = level;
522     s->strategy = strategy;
523     s->method = (Byte)method;
524 
525     return deflateReset(strm);
526 }
527 
528 /* =========================================================================
529  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
530  */
531 local int deflateStateCheck(z_streamp strm) {
532     deflate_state *s;
533     if (strm == Z_NULL ||
534         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
535         return 1;
536     s = strm->state;
537     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
538 #ifdef GZIP
539                                            s->status != GZIP_STATE &&
540 #endif
541                                            s->status != EXTRA_STATE &&
542                                            s->status != NAME_STATE &&
543                                            s->status != COMMENT_STATE &&
544                                            s->status != HCRC_STATE &&
545                                            s->status != BUSY_STATE &&
546                                            s->status != FINISH_STATE))
547         return 1;
548     return 0;
549 }
550 
551 /* ========================================================================= */
552 int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
553                                  uInt  dictLength) {
554     deflate_state *s;
555     uInt str, n;
556     int wrap;
557     unsigned avail;
558     z_const unsigned char *next;
559 
560     if (deflateStateCheck(strm) || dictionary == Z_NULL)
561         return Z_STREAM_ERROR;
562     s = strm->state;
563     wrap = s->wrap;
564     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
565         return Z_STREAM_ERROR;
566 
567     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
568     if (wrap == 1)
569         strm->adler = adler32(strm->adler, dictionary, dictLength);
570     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
571 
572     /* if dictionary would fill window, just replace the history */
573     if (dictLength >= s->w_size) {
574         if (wrap == 0) {            /* already empty otherwise */
575             CLEAR_HASH(s);
576             s->strstart = 0;
577             s->block_start = 0L;
578             s->insert = 0;
579         }
580         dictionary += dictLength - s->w_size;  /* use the tail */
581         dictLength = s->w_size;
582     }
583 
584     /* insert dictionary into window and hash */
585     avail = strm->avail_in;
586     next = strm->next_in;
587     strm->avail_in = dictLength;
588     strm->next_in = __UNCONST(dictionary);
589     fill_window(s);
590     while (s->lookahead >= MIN_MATCH) {
591         str = s->strstart;
592         n = s->lookahead - (MIN_MATCH-1);
593         do {
594             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
595 #ifndef FASTEST
596             s->prev[str & s->w_mask] = s->head[s->ins_h];
597 #endif
598             s->head[s->ins_h] = (Pos)str;
599             str++;
600         } while (--n);
601         s->strstart = str;
602         s->lookahead = MIN_MATCH-1;
603         fill_window(s);
604     }
605     s->strstart += s->lookahead;
606     s->block_start = (long)s->strstart;
607     s->insert = s->lookahead;
608     s->lookahead = 0;
609     s->match_length = s->prev_length = MIN_MATCH-1;
610     s->match_available = 0;
611     strm->next_in = next;
612     strm->avail_in = avail;
613     s->wrap = wrap;
614     return Z_OK;
615 }
616 
617 /* ========================================================================= */
618 int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
619                                  uInt *dictLength) {
620     deflate_state *s;
621     uInt len;
622 
623     if (deflateStateCheck(strm))
624         return Z_STREAM_ERROR;
625     s = strm->state;
626     len = s->strstart + s->lookahead;
627     if (len > s->w_size)
628         len = s->w_size;
629     if (dictionary != Z_NULL && len)
630         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
631     if (dictLength != Z_NULL)
632         *dictLength = len;
633     return Z_OK;
634 }
635 
636 /* ========================================================================= */
637 int ZEXPORT deflateResetKeep(z_streamp strm) {
638     deflate_state *s;
639 
640     if (deflateStateCheck(strm)) {
641         return Z_STREAM_ERROR;
642     }
643 
644     strm->total_in = strm->total_out = 0;
645     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
646     strm->data_type = Z_UNKNOWN;
647 
648     s = (deflate_state *)strm->state;
649     s->pending = 0;
650     s->pending_out = s->pending_buf;
651 
652     if (s->wrap < 0) {
653         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
654     }
655     s->status =
656 #ifdef GZIP
657         s->wrap == 2 ? GZIP_STATE :
658 #endif
659         INIT_STATE;
660     strm->adler =
661 #ifdef GZIP
662         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
663 #endif
664         adler32(0L, Z_NULL, 0);
665     s->last_flush = -2;
666 
667     _tr_init(s);
668 
669     return Z_OK;
670 }
671 
672 /* ===========================================================================
673  * Initialize the "longest match" routines for a new zlib stream
674  */
675 local void lm_init(deflate_state *s) {
676     s->window_size = (ulg)2L*s->w_size;
677 
678     CLEAR_HASH(s);
679 
680     /* Set the default configuration parameters:
681      */
682     s->max_lazy_match   = configuration_table[s->level].max_lazy;
683     s->good_match       = configuration_table[s->level].good_length;
684     s->nice_match       = configuration_table[s->level].nice_length;
685     s->max_chain_length = configuration_table[s->level].max_chain;
686 
687     s->strstart = 0;
688     s->block_start = 0L;
689     s->lookahead = 0;
690     s->insert = 0;
691     s->match_length = s->prev_length = MIN_MATCH-1;
692     s->match_available = 0;
693     s->ins_h = 0;
694 }
695 
696 /* ========================================================================= */
697 int ZEXPORT deflateReset(z_streamp strm) {
698     int ret;
699 
700     ret = deflateResetKeep(strm);
701     if (ret == Z_OK)
702         lm_init(strm->state);
703     return ret;
704 }
705 
706 /* ========================================================================= */
707 int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
708     if (deflateStateCheck(strm) || strm->state->wrap != 2)
709         return Z_STREAM_ERROR;
710     strm->state->gzhead = head;
711     return Z_OK;
712 }
713 
714 /* ========================================================================= */
715 int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
716     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
717     if (pending != Z_NULL)
718         *pending = strm->state->pending;
719     if (bits != Z_NULL)
720         *bits = strm->state->bi_valid;
721     return Z_OK;
722 }
723 
724 /* ========================================================================= */
725 int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
726     deflate_state *s;
727     int put;
728 
729     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
730     s = strm->state;
731 #ifdef LIT_MEM
732     if (bits < 0 || bits > 16 ||
733         (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
734         return Z_BUF_ERROR;
735 #else
736     if (bits < 0 || bits > 16 ||
737         s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
738         return Z_BUF_ERROR;
739 #endif
740     do {
741         put = Buf_size - s->bi_valid;
742         if (put > bits)
743             put = bits;
744         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
745         s->bi_valid += put;
746         _tr_flush_bits(s);
747         value >>= put;
748         bits -= put;
749     } while (bits);
750     return Z_OK;
751 }
752 
753 /* ========================================================================= */
754 int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
755     deflate_state *s;
756     compress_func func;
757 
758     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
759     s = strm->state;
760 
761 #ifdef FASTEST
762     if (level != 0) level = 1;
763 #else
764     if (level == Z_DEFAULT_COMPRESSION) level = 6;
765 #endif
766     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
767         return Z_STREAM_ERROR;
768     }
769     func = configuration_table[s->level].func;
770 
771     if ((strategy != s->strategy || func != configuration_table[level].func) &&
772         s->last_flush != -2) {
773         /* Flush the last buffer: */
774         int err = deflate(strm, Z_BLOCK);
775         if (err == Z_STREAM_ERROR)
776             return err;
777         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
778             return Z_BUF_ERROR;
779     }
780     if (s->level != level) {
781         if (s->level == 0 && s->matches != 0) {
782             if (s->matches == 1)
783                 slide_hash(s);
784             else
785                 CLEAR_HASH(s);
786             s->matches = 0;
787         }
788         s->level = level;
789         s->max_lazy_match   = configuration_table[level].max_lazy;
790         s->good_match       = configuration_table[level].good_length;
791         s->nice_match       = configuration_table[level].nice_length;
792         s->max_chain_length = configuration_table[level].max_chain;
793     }
794     s->strategy = strategy;
795     return Z_OK;
796 }
797 
798 /* ========================================================================= */
799 int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
800                         int nice_length, int max_chain) {
801     deflate_state *s;
802 
803     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
804     s = strm->state;
805     s->good_match = (uInt)good_length;
806     s->max_lazy_match = (uInt)max_lazy;
807     s->nice_match = nice_length;
808     s->max_chain_length = (uInt)max_chain;
809     return Z_OK;
810 }
811 
812 /* =========================================================================
813  * For the default windowBits of 15 and memLevel of 8, this function returns a
814  * close to exact, as well as small, upper bound on the compressed size. This
815  * is an expansion of ~0.03%, plus a small constant.
816  *
817  * For any setting other than those defaults for windowBits and memLevel, one
818  * of two worst case bounds is returned. This is at most an expansion of ~4% or
819  * ~13%, plus a small constant.
820  *
821  * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
822  * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
823  * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
824  * expansion results from five bytes of header for each stored block.
825  *
826  * The larger expansion of 13% results from a window size less than or equal to
827  * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
828  * the data being compressed may have slid out of the sliding window, impeding
829  * a stored block from being emitted. Then the only choice is a fixed or
830  * dynamic block, where a fixed block limits the maximum expansion to 9 bits
831  * per 8-bit byte, plus 10 bits for every block. The smallest block size for
832  * which this can occur is 255 (memLevel == 2).
833  *
834  * Shifts are used to approximate divisions, for speed.
835  */
836 uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
837     deflate_state *s;
838     uLong fixedlen, storelen, wraplen;
839 
840     /* upper bound for fixed blocks with 9-bit literals and length 255
841        (memLevel == 2, which is the lowest that may not use stored blocks) --
842        ~13% overhead plus a small constant */
843     fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
844                (sourceLen >> 9) + 4;
845 
846     /* upper bound for stored blocks with length 127 (memLevel == 1) --
847        ~4% overhead plus a small constant */
848     storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
849                (sourceLen >> 11) + 7;
850 
851     /* if can't get parameters, return larger bound plus a zlib wrapper */
852     if (deflateStateCheck(strm))
853         return (fixedlen > storelen ? fixedlen : storelen) + 6;
854 
855     /* compute wrapper length */
856     s = strm->state;
857     switch (s->wrap) {
858     case 0:                                 /* raw deflate */
859         wraplen = 0;
860         break;
861     case 1:                                 /* zlib wrapper */
862         wraplen = 6 + (s->strstart ? 4 : 0);
863         break;
864 #ifdef GZIP
865     case 2:                                 /* gzip wrapper */
866         wraplen = 18;
867         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
868             Bytef *str;
869             if (s->gzhead->extra != Z_NULL)
870                 wraplen += 2 + s->gzhead->extra_len;
871             str = s->gzhead->name;
872             if (str != Z_NULL)
873                 do {
874                     wraplen++;
875                 } while (*str++);
876             str = s->gzhead->comment;
877             if (str != Z_NULL)
878                 do {
879                     wraplen++;
880                 } while (*str++);
881             if (s->gzhead->hcrc)
882                 wraplen += 2;
883         }
884         break;
885 #endif
886     default:                                /* for compiler happiness */
887         wraplen = 6;
888     }
889 
890     /* if not default parameters, return one of the conservative bounds */
891     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
892         return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
893                wraplen;
894 
895     /* default settings: return tight bound for that case -- ~0.03% overhead
896        plus a small constant */
897     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
898            (sourceLen >> 25) + 13 - 6 + wraplen;
899 }
900 
901 /* =========================================================================
902  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
903  * IN assertion: the stream state is correct and there is enough room in
904  * pending_buf.
905  */
906 local void putShortMSB(deflate_state *s, uInt b) {
907     put_byte(s, (Byte)(b >> 8));
908     put_byte(s, (Byte)(b & 0xff));
909 }
910 
911 /* =========================================================================
912  * Flush as much pending output as possible. All deflate() output, except for
913  * some deflate_stored() output, goes through this function so some
914  * applications may wish to modify it to avoid allocating a large
915  * strm->next_out buffer and copying into it. (See also read_buf()).
916  */
917 local void flush_pending(z_streamp strm) {
918     unsigned len;
919     deflate_state *s = strm->state;
920 
921     _tr_flush_bits(s);
922     len = s->pending;
923     if (len > strm->avail_out) len = strm->avail_out;
924     if (len == 0) return;
925 
926     zmemcpy(strm->next_out, s->pending_out, len);
927     strm->next_out  += len;
928     s->pending_out  += len;
929     strm->total_out += len;
930     strm->avail_out -= len;
931     s->pending      -= len;
932     if (s->pending == 0) {
933         s->pending_out = s->pending_buf;
934     }
935 }
936 
937 /* ===========================================================================
938  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
939  */
940 #define HCRC_UPDATE(beg) \
941     do { \
942         if (s->gzhead->hcrc && s->pending > (beg)) \
943             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
944                                 s->pending - (beg)); \
945     } while (0)
946 
947 /* ========================================================================= */
948 int ZEXPORT deflate(z_streamp strm, int flush) {
949     int old_flush; /* value of flush param for previous deflate call */
950     deflate_state *s;
951 
952     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
953         return Z_STREAM_ERROR;
954     }
955     s = strm->state;
956 
957     if (strm->next_out == Z_NULL ||
958         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
959         (s->status == FINISH_STATE && flush != Z_FINISH)) {
960         ERR_RETURN(strm, Z_STREAM_ERROR);
961     }
962     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
963 
964     old_flush = s->last_flush;
965     s->last_flush = flush;
966 
967     /* Flush as much pending output as possible */
968     if (s->pending != 0) {
969         flush_pending(strm);
970         if (strm->avail_out == 0) {
971             /* Since avail_out is 0, deflate will be called again with
972              * more output space, but possibly with both pending and
973              * avail_in equal to zero. There won't be anything to do,
974              * but this is not an error situation so make sure we
975              * return OK instead of BUF_ERROR at next call of deflate:
976              */
977             s->last_flush = -1;
978             return Z_OK;
979         }
980 
981     /* Make sure there is something to do and avoid duplicate consecutive
982      * flushes. For repeated and useless calls with Z_FINISH, we keep
983      * returning Z_STREAM_END instead of Z_BUF_ERROR.
984      */
985     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
986                flush != Z_FINISH) {
987         ERR_RETURN(strm, Z_BUF_ERROR);
988     }
989 
990     /* User must not provide more input after the first FINISH: */
991     if (s->status == FINISH_STATE && strm->avail_in != 0) {
992         ERR_RETURN(strm, Z_BUF_ERROR);
993     }
994 
995     /* Write the header */
996     if (s->status == INIT_STATE && s->wrap == 0)
997         s->status = BUSY_STATE;
998     if (s->status == INIT_STATE) {
999         /* zlib header */
1000         uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1001         uInt level_flags;
1002 
1003         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1004             level_flags = 0;
1005         else if (s->level < 6)
1006             level_flags = 1;
1007         else if (s->level == 6)
1008             level_flags = 2;
1009         else
1010             level_flags = 3;
1011         header |= (level_flags << 6);
1012         if (s->strstart != 0) header |= PRESET_DICT;
1013         header += 31 - (header % 31);
1014 
1015         putShortMSB(s, header);
1016 
1017         /* Save the adler32 of the preset dictionary: */
1018         if (s->strstart != 0) {
1019             putShortMSB(s, (uInt)(strm->adler >> 16));
1020             putShortMSB(s, (uInt)(strm->adler & 0xffff));
1021         }
1022         strm->adler = adler32(0L, Z_NULL, 0);
1023         s->status = BUSY_STATE;
1024 
1025         /* Compression must start with an empty pending buffer */
1026         flush_pending(strm);
1027         if (s->pending != 0) {
1028             s->last_flush = -1;
1029             return Z_OK;
1030         }
1031     }
1032 #ifdef GZIP
1033     if (s->status == GZIP_STATE) {
1034         /* gzip header */
1035         strm->adler = crc32(0L, Z_NULL, 0);
1036         put_byte(s, 31);
1037         put_byte(s, 139);
1038         put_byte(s, 8);
1039         if (s->gzhead == Z_NULL) {
1040             put_byte(s, 0);
1041             put_byte(s, 0);
1042             put_byte(s, 0);
1043             put_byte(s, 0);
1044             put_byte(s, 0);
1045             put_byte(s, s->level == 9 ? 2 :
1046                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1047                       4 : 0));
1048             put_byte(s, OS_CODE);
1049             s->status = BUSY_STATE;
1050 
1051             /* Compression must start with an empty pending buffer */
1052             flush_pending(strm);
1053             if (s->pending != 0) {
1054                 s->last_flush = -1;
1055                 return Z_OK;
1056             }
1057         }
1058         else {
1059             put_byte(s, (s->gzhead->text ? 1 : 0) +
1060                      (s->gzhead->hcrc ? 2 : 0) +
1061                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
1062                      (s->gzhead->name == Z_NULL ? 0 : 8) +
1063                      (s->gzhead->comment == Z_NULL ? 0 : 16)
1064                      );
1065             put_byte(s, (Byte)(s->gzhead->time & 0xff));
1066             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1067             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1068             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1069             put_byte(s, s->level == 9 ? 2 :
1070                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1071                       4 : 0));
1072             put_byte(s, s->gzhead->os & 0xff);
1073             if (s->gzhead->extra != Z_NULL) {
1074                 put_byte(s, s->gzhead->extra_len & 0xff);
1075                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1076             }
1077             if (s->gzhead->hcrc)
1078                 strm->adler = crc32(strm->adler, s->pending_buf,
1079                                     s->pending);
1080             s->gzindex = 0;
1081             s->status = EXTRA_STATE;
1082         }
1083     }
1084     if (s->status == EXTRA_STATE) {
1085         if (s->gzhead->extra != Z_NULL) {
1086             ulg beg = s->pending;   /* start of bytes to update crc */
1087             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1088             while (s->pending + left > s->pending_buf_size) {
1089                 uInt copy = s->pending_buf_size - s->pending;
1090                 zmemcpy(s->pending_buf + s->pending,
1091                         s->gzhead->extra + s->gzindex, copy);
1092                 s->pending = s->pending_buf_size;
1093                 HCRC_UPDATE(beg);
1094                 s->gzindex += copy;
1095                 flush_pending(strm);
1096                 if (s->pending != 0) {
1097                     s->last_flush = -1;
1098                     return Z_OK;
1099                 }
1100                 beg = 0;
1101                 left -= copy;
1102             }
1103             zmemcpy(s->pending_buf + s->pending,
1104                     s->gzhead->extra + s->gzindex, left);
1105             s->pending += left;
1106             HCRC_UPDATE(beg);
1107             s->gzindex = 0;
1108         }
1109         s->status = NAME_STATE;
1110     }
1111     if (s->status == NAME_STATE) {
1112         if (s->gzhead->name != Z_NULL) {
1113             ulg beg = s->pending;   /* start of bytes to update crc */
1114             int val;
1115             do {
1116                 if (s->pending == s->pending_buf_size) {
1117                     HCRC_UPDATE(beg);
1118                     flush_pending(strm);
1119                     if (s->pending != 0) {
1120                         s->last_flush = -1;
1121                         return Z_OK;
1122                     }
1123                     beg = 0;
1124                 }
1125                 val = s->gzhead->name[s->gzindex++];
1126                 put_byte(s, val);
1127             } while (val != 0);
1128             HCRC_UPDATE(beg);
1129             s->gzindex = 0;
1130         }
1131         s->status = COMMENT_STATE;
1132     }
1133     if (s->status == COMMENT_STATE) {
1134         if (s->gzhead->comment != Z_NULL) {
1135             ulg beg = s->pending;   /* start of bytes to update crc */
1136             int val;
1137             do {
1138                 if (s->pending == s->pending_buf_size) {
1139                     HCRC_UPDATE(beg);
1140                     flush_pending(strm);
1141                     if (s->pending != 0) {
1142                         s->last_flush = -1;
1143                         return Z_OK;
1144                     }
1145                     beg = 0;
1146                 }
1147                 val = s->gzhead->comment[s->gzindex++];
1148                 put_byte(s, val);
1149             } while (val != 0);
1150             HCRC_UPDATE(beg);
1151         }
1152         s->status = HCRC_STATE;
1153     }
1154     if (s->status == HCRC_STATE) {
1155         if (s->gzhead->hcrc) {
1156             if (s->pending + 2 > s->pending_buf_size) {
1157                 flush_pending(strm);
1158                 if (s->pending != 0) {
1159                     s->last_flush = -1;
1160                     return Z_OK;
1161                 }
1162             }
1163             put_byte(s, (Byte)(strm->adler & 0xff));
1164             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1165             strm->adler = crc32(0L, Z_NULL, 0);
1166         }
1167         s->status = BUSY_STATE;
1168 
1169         /* Compression must start with an empty pending buffer */
1170         flush_pending(strm);
1171         if (s->pending != 0) {
1172             s->last_flush = -1;
1173             return Z_OK;
1174         }
1175     }
1176 #endif
1177 
1178     /* Start a new block or continue the current one.
1179      */
1180     if (strm->avail_in != 0 || s->lookahead != 0 ||
1181         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1182         block_state bstate;
1183 
1184         bstate = s->level == 0 ? deflate_stored(s, flush) :
1185                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1186                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1187                  (*(configuration_table[s->level].func))(s, flush);
1188 
1189         if (bstate == finish_started || bstate == finish_done) {
1190             s->status = FINISH_STATE;
1191         }
1192         if (bstate == need_more || bstate == finish_started) {
1193             if (strm->avail_out == 0) {
1194                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1195             }
1196             return Z_OK;
1197             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1198              * of deflate should use the same flush parameter to make sure
1199              * that the flush is complete. So we don't have to output an
1200              * empty block here, this will be done at next call. This also
1201              * ensures that for a very small output buffer, we emit at most
1202              * one empty block.
1203              */
1204         }
1205         if (bstate == block_done) {
1206             if (flush == Z_PARTIAL_FLUSH) {
1207                 _tr_align(s);
1208             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1209                 _tr_stored_block(s, (char*)0, 0L, 0);
1210                 /* For a full flush, this empty block will be recognized
1211                  * as a special marker by inflate_sync().
1212                  */
1213                 if (flush == Z_FULL_FLUSH) {
1214                     CLEAR_HASH(s);             /* forget history */
1215                     if (s->lookahead == 0) {
1216                         s->strstart = 0;
1217                         s->block_start = 0L;
1218                         s->insert = 0;
1219                     }
1220                 }
1221             }
1222             flush_pending(strm);
1223             if (strm->avail_out == 0) {
1224               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1225               return Z_OK;
1226             }
1227         }
1228     }
1229 
1230     if (flush != Z_FINISH) return Z_OK;
1231     if (s->wrap <= 0) return Z_STREAM_END;
1232 
1233     /* Write the trailer */
1234 #ifdef GZIP
1235     if (s->wrap == 2) {
1236         put_byte(s, (Byte)(strm->adler & 0xff));
1237         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1238         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1239         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1240         put_byte(s, (Byte)(strm->total_in & 0xff));
1241         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1242         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1243         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1244     }
1245     else
1246 #endif
1247     {
1248         putShortMSB(s, (uInt)(strm->adler >> 16));
1249         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1250     }
1251     flush_pending(strm);
1252     /* If avail_out is zero, the application will call deflate again
1253      * to flush the rest.
1254      */
1255     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1256     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1257 }
1258 
1259 /* ========================================================================= */
1260 int ZEXPORT deflateEnd(z_streamp strm) {
1261     int status;
1262 
1263     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1264 
1265     status = strm->state->status;
1266 
1267     /* Deallocate in reverse order of allocations: */
1268     TRY_FREE(strm, strm->state->pending_buf);
1269     TRY_FREE(strm, strm->state->head);
1270     TRY_FREE(strm, strm->state->prev);
1271     TRY_FREE(strm, strm->state->window);
1272 
1273     ZFREE(strm, strm->state);
1274     strm->state = Z_NULL;
1275 
1276     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1277 }
1278 
1279 /* =========================================================================
1280  * Copy the source state to the destination state.
1281  * To simplify the source, this is not supported for 16-bit MSDOS (which
1282  * doesn't have enough memory anyway to duplicate compression states).
1283  */
1284 int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1285 #ifdef MAXSEG_64K
1286     (void)dest;
1287     (void)source;
1288     return Z_STREAM_ERROR;
1289 #else
1290     deflate_state *ds;
1291     deflate_state *ss;
1292 
1293 
1294     if (deflateStateCheck(source) || dest == Z_NULL) {
1295         return Z_STREAM_ERROR;
1296     }
1297 
1298     ss = source->state;
1299 
1300     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1301 
1302     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1303     if (ds == Z_NULL) return Z_MEM_ERROR;
1304     dest->state = (struct internal_state FAR *) ds;
1305     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1306     ds->strm = dest;
1307 
1308     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1309     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1310     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1311     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1312 
1313     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1314         ds->pending_buf == Z_NULL) {
1315         deflateEnd (dest);
1316         return Z_MEM_ERROR;
1317     }
1318     /* following zmemcpy do not work for 16-bit MSDOS */
1319     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1320     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1321     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1322     zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1323 
1324     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1325 #ifdef LIT_MEM
1326     ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1327     ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1328 #else
1329     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1330 #endif
1331 
1332     ds->l_desc.dyn_tree = ds->dyn_ltree;
1333     ds->d_desc.dyn_tree = ds->dyn_dtree;
1334     ds->bl_desc.dyn_tree = ds->bl_tree;
1335 
1336     return Z_OK;
1337 #endif /* MAXSEG_64K */
1338 }
1339 
1340 #ifndef FASTEST
1341 /* ===========================================================================
1342  * Set match_start to the longest match starting at the given string and
1343  * return its length. Matches shorter or equal to prev_length are discarded,
1344  * in which case the result is equal to prev_length and match_start is
1345  * garbage.
1346  * IN assertions: cur_match is the head of the hash chain for the current
1347  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1348  * OUT assertion: the match length is not greater than s->lookahead.
1349  */
1350 local uInt longest_match(deflate_state *s, IPos cur_match) {
1351     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1352     register Bytef *scan = s->window + s->strstart; /* current string */
1353     register Bytef *match;                      /* matched string */
1354     register int len;                           /* length of current match */
1355     int best_len = (int)s->prev_length;         /* best match length so far */
1356     int nice_match = s->nice_match;             /* stop if match long enough */
1357     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1358         s->strstart - (IPos)MAX_DIST(s) : NIL;
1359     /* Stop when cur_match becomes <= limit. To simplify the code,
1360      * we prevent matches with the string of window index 0.
1361      */
1362     Posf *prev = s->prev;
1363     uInt wmask = s->w_mask;
1364 
1365 #ifdef UNALIGNED_OK
1366     /* Compare two bytes at a time. Note: this is not always beneficial.
1367      * Try with and without -DUNALIGNED_OK to check.
1368      */
1369     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1370     register ush scan_start = *(ushf*)scan;
1371     register ush scan_end   = *(ushf*)(scan + best_len - 1);
1372 #else
1373     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1374     register Byte scan_end1  = scan[best_len - 1];
1375     register Byte scan_end   = scan[best_len];
1376 #endif
1377 
1378     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1379      * It is easy to get rid of this optimization if necessary.
1380      */
1381     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1382 
1383     /* Do not waste too much time if we already have a good match: */
1384     if (s->prev_length >= s->good_match) {
1385         chain_length >>= 2;
1386     }
1387     /* Do not look for matches beyond the end of the input. This is necessary
1388      * to make deflate deterministic.
1389      */
1390     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1391 
1392     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1393            "need lookahead");
1394 
1395     do {
1396         Assert(cur_match < s->strstart, "no future");
1397         match = s->window + cur_match;
1398 
1399         /* Skip to next match if the match length cannot increase
1400          * or if the match length is less than 2.  Note that the checks below
1401          * for insufficient lookahead only occur occasionally for performance
1402          * reasons.  Therefore uninitialized memory will be accessed, and
1403          * conditional jumps will be made that depend on those values.
1404          * However the length of the match is limited to the lookahead, so
1405          * the output of deflate is not affected by the uninitialized values.
1406          */
1407 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1408         /* This code assumes sizeof(unsigned short) == 2. Do not use
1409          * UNALIGNED_OK if your compiler uses a different size.
1410          */
1411         if (*(ushf*)(match + best_len - 1) != scan_end ||
1412             *(ushf*)match != scan_start) continue;
1413 
1414         /* It is not necessary to compare scan[2] and match[2] since they are
1415          * always equal when the other bytes match, given that the hash keys
1416          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1417          * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1418          * lookahead only every 4th comparison; the 128th check will be made
1419          * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1420          * necessary to put more guard bytes at the end of the window, or
1421          * to check more often for insufficient lookahead.
1422          */
1423         Assert(scan[2] == match[2], "scan[2]?");
1424         scan++, match++;
1425         do {
1426         } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1427                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1428                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1429                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1430                  scan < strend);
1431         /* The funny "do {}" generates better code on most compilers */
1432 
1433         /* Here, scan <= window + strstart + 257 */
1434         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1435                "wild scan");
1436         if (*scan == *match) scan++;
1437 
1438         len = (MAX_MATCH - 1) - (int)(strend - scan);
1439         scan = strend - (MAX_MATCH-1);
1440 
1441 #else /* UNALIGNED_OK */
1442 
1443         if (match[best_len]     != scan_end  ||
1444             match[best_len - 1] != scan_end1 ||
1445             *match              != *scan     ||
1446             *++match            != scan[1])      continue;
1447 
1448         /* The check at best_len - 1 can be removed because it will be made
1449          * again later. (This heuristic is not always a win.)
1450          * It is not necessary to compare scan[2] and match[2] since they
1451          * are always equal when the other bytes match, given that
1452          * the hash keys are equal and that HASH_BITS >= 8.
1453          */
1454         scan += 2, match++;
1455         Assert(*scan == *match, "match[2]?");
1456 
1457         /* We check for insufficient lookahead only every 8th comparison;
1458          * the 256th check will be made at strstart + 258.
1459          */
1460         do {
1461         } while (*++scan == *++match && *++scan == *++match &&
1462                  *++scan == *++match && *++scan == *++match &&
1463                  *++scan == *++match && *++scan == *++match &&
1464                  *++scan == *++match && *++scan == *++match &&
1465                  scan < strend);
1466 
1467         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1468                "wild scan");
1469 
1470         len = MAX_MATCH - (int)(strend - scan);
1471         scan = strend - MAX_MATCH;
1472 
1473 #endif /* UNALIGNED_OK */
1474 
1475         if (len > best_len) {
1476             s->match_start = cur_match;
1477             best_len = len;
1478             if (len >= nice_match) break;
1479 #ifdef UNALIGNED_OK
1480             scan_end = *(ushf*)(scan + best_len - 1);
1481 #else
1482             scan_end1  = scan[best_len - 1];
1483             scan_end   = scan[best_len];
1484 #endif
1485         }
1486     } while ((cur_match = prev[cur_match & wmask]) > limit
1487              && --chain_length != 0);
1488 
1489     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1490     return s->lookahead;
1491 }
1492 
1493 #else /* FASTEST */
1494 
1495 /* ---------------------------------------------------------------------------
1496  * Optimized version for FASTEST only
1497  */
1498 local uInt longest_match(deflate_state *s, IPos cur_match) {
1499     register Bytef *scan = s->window + s->strstart; /* current string */
1500     register Bytef *match;                       /* matched string */
1501     register int len;                           /* length of current match */
1502     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1503 
1504     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1505      * It is easy to get rid of this optimization if necessary.
1506      */
1507     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1508 
1509     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1510            "need lookahead");
1511 
1512     Assert(cur_match < s->strstart, "no future");
1513 
1514     match = s->window + cur_match;
1515 
1516     /* Return failure if the match length is less than 2:
1517      */
1518     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1519 
1520     /* The check at best_len - 1 can be removed because it will be made
1521      * again later. (This heuristic is not always a win.)
1522      * It is not necessary to compare scan[2] and match[2] since they
1523      * are always equal when the other bytes match, given that
1524      * the hash keys are equal and that HASH_BITS >= 8.
1525      */
1526     scan += 2, match += 2;
1527     Assert(*scan == *match, "match[2]?");
1528 
1529     /* We check for insufficient lookahead only every 8th comparison;
1530      * the 256th check will be made at strstart + 258.
1531      */
1532     do {
1533     } while (*++scan == *++match && *++scan == *++match &&
1534              *++scan == *++match && *++scan == *++match &&
1535              *++scan == *++match && *++scan == *++match &&
1536              *++scan == *++match && *++scan == *++match &&
1537              scan < strend);
1538 
1539     Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1540 
1541     len = MAX_MATCH - (int)(strend - scan);
1542 
1543     if (len < MIN_MATCH) return MIN_MATCH - 1;
1544 
1545     s->match_start = cur_match;
1546     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1547 }
1548 
1549 #endif /* FASTEST */
1550 
1551 #ifdef ZLIB_DEBUG
1552 
1553 #define EQUAL 0
1554 /* result of memcmp for equal strings */
1555 
1556 /* ===========================================================================
1557  * Check that the match at match_start is indeed a match.
1558  */
1559 local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1560     /* check that the match is indeed a match */
1561     Bytef *back = s->window + (int)match, *here = s->window + start;
1562     IPos len = length;
1563     if (match == (IPos)-1) {
1564         /* match starts one byte before the current window -- just compare the
1565            subsequent length-1 bytes */
1566         back++;
1567         here++;
1568         len--;
1569     }
1570     if (zmemcmp(back, here, len) != EQUAL) {
1571         fprintf(stderr, " start %u, match %d, length %d\n",
1572                 start, (int)match, length);
1573         do {
1574             fprintf(stderr, "(%02x %02x)", *back++, *here++);
1575         } while (--len != 0);
1576         z_error("invalid match");
1577     }
1578     if (z_verbose > 1) {
1579         fprintf(stderr,"\\[%d,%d]", start - match, length);
1580         do { putc(s->window[start++], stderr); } while (--length != 0);
1581     }
1582 }
1583 #else
1584 #  define check_match(s, start, match, length)
1585 #endif /* ZLIB_DEBUG */
1586 
1587 /* ===========================================================================
1588  * Flush the current block, with given end-of-file flag.
1589  * IN assertion: strstart is set to the end of the current match.
1590  */
1591 #define FLUSH_BLOCK_ONLY(s, last) { \
1592    _tr_flush_block(s, (s->block_start >= 0L ? \
1593                    (charf *)&s->window[(unsigned)s->block_start] : \
1594                    (charf *)Z_NULL), \
1595                 (ulg)((long)s->strstart - s->block_start), \
1596                 (last)); \
1597    s->block_start = s->strstart; \
1598    flush_pending(s->strm); \
1599    Tracev((stderr,"[FLUSH]")); \
1600 }
1601 
1602 /* Same but force premature exit if necessary. */
1603 #define FLUSH_BLOCK(s, last) { \
1604    FLUSH_BLOCK_ONLY(s, last); \
1605    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1606 }
1607 
1608 /* Maximum stored block length in deflate format (not including header). */
1609 #define MAX_STORED 65535
1610 
1611 /* Minimum of a and b. */
1612 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1613 
1614 /* ===========================================================================
1615  * Copy without compression as much as possible from the input stream, return
1616  * the current block state.
1617  *
1618  * In case deflateParams() is used to later switch to a non-zero compression
1619  * level, s->matches (otherwise unused when storing) keeps track of the number
1620  * of hash table slides to perform. If s->matches is 1, then one hash table
1621  * slide will be done when switching. If s->matches is 2, the maximum value
1622  * allowed here, then the hash table will be cleared, since two or more slides
1623  * is the same as a clear.
1624  *
1625  * deflate_stored() is written to minimize the number of times an input byte is
1626  * copied. It is most efficient with large input and output buffers, which
1627  * maximizes the opportunities to have a single copy from next_in to next_out.
1628  */
1629 local block_state deflate_stored(deflate_state *s, int flush) {
1630     /* Smallest worthy block size when not flushing or finishing. By default
1631      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1632      * large input and output buffers, the stored block size will be larger.
1633      */
1634     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1635 
1636     /* Copy as many min_block or larger stored blocks directly to next_out as
1637      * possible. If flushing, copy the remaining available input to next_out as
1638      * stored blocks, if there is enough space.
1639      */
1640     unsigned len, left, have, last = 0;
1641     unsigned used = s->strm->avail_in;
1642     do {
1643         /* Set len to the maximum size block that we can copy directly with the
1644          * available input data and output space. Set left to how much of that
1645          * would be copied from what's left in the window.
1646          */
1647         len = MAX_STORED;       /* maximum deflate stored block length */
1648         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1649         if (s->strm->avail_out < have)          /* need room for header */
1650             break;
1651             /* maximum stored block length that will fit in avail_out: */
1652         have = s->strm->avail_out - have;
1653         left = s->strstart - s->block_start;    /* bytes left in window */
1654         if (len > (ulg)left + s->strm->avail_in)
1655             len = left + s->strm->avail_in;     /* limit len to the input */
1656         if (len > have)
1657             len = have;                         /* limit len to the output */
1658 
1659         /* If the stored block would be less than min_block in length, or if
1660          * unable to copy all of the available input when flushing, then try
1661          * copying to the window and the pending buffer instead. Also don't
1662          * write an empty block when flushing -- deflate() does that.
1663          */
1664         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1665                                 flush == Z_NO_FLUSH ||
1666                                 len != left + s->strm->avail_in))
1667             break;
1668 
1669         /* Make a dummy stored block in pending to get the header bytes,
1670          * including any pending bits. This also updates the debugging counts.
1671          */
1672         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1673         _tr_stored_block(s, (char *)0, 0L, last);
1674 
1675         /* Replace the lengths in the dummy stored block with len. */
1676         s->pending_buf[s->pending - 4] = len;
1677         s->pending_buf[s->pending - 3] = len >> 8;
1678         s->pending_buf[s->pending - 2] = ~len;
1679         s->pending_buf[s->pending - 1] = ~len >> 8;
1680 
1681         /* Write the stored block header bytes. */
1682         flush_pending(s->strm);
1683 
1684 #ifdef ZLIB_DEBUG
1685         /* Update debugging counts for the data about to be copied. */
1686         s->compressed_len += len << 3;
1687         s->bits_sent += len << 3;
1688 #endif
1689 
1690         /* Copy uncompressed bytes from the window to next_out. */
1691         if (left) {
1692             if (left > len)
1693                 left = len;
1694             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1695             s->strm->next_out += left;
1696             s->strm->avail_out -= left;
1697             s->strm->total_out += left;
1698             s->block_start += left;
1699             len -= left;
1700         }
1701 
1702         /* Copy uncompressed bytes directly from next_in to next_out, updating
1703          * the check value.
1704          */
1705         if (len) {
1706             read_buf(s->strm, s->strm->next_out, len);
1707             s->strm->next_out += len;
1708             s->strm->avail_out -= len;
1709             s->strm->total_out += len;
1710         }
1711     } while (last == 0);
1712 
1713     /* Update the sliding window with the last s->w_size bytes of the copied
1714      * data, or append all of the copied data to the existing window if less
1715      * than s->w_size bytes were copied. Also update the number of bytes to
1716      * insert in the hash tables, in the event that deflateParams() switches to
1717      * a non-zero compression level.
1718      */
1719     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1720     if (used) {
1721         /* If any input was used, then no unused input remains in the window,
1722          * therefore s->block_start == s->strstart.
1723          */
1724         if (used >= s->w_size) {    /* supplant the previous history */
1725             s->matches = 2;         /* clear hash */
1726             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1727             s->strstart = s->w_size;
1728             s->insert = s->strstart;
1729         }
1730         else {
1731             if (s->window_size - s->strstart <= used) {
1732                 /* Slide the window down. */
1733                 s->strstart -= s->w_size;
1734                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1735                 if (s->matches < 2)
1736                     s->matches++;   /* add a pending slide_hash() */
1737                 if (s->insert > s->strstart)
1738                     s->insert = s->strstart;
1739             }
1740             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1741             s->strstart += used;
1742             s->insert += MIN(used, s->w_size - s->insert);
1743         }
1744         s->block_start = s->strstart;
1745     }
1746     if (s->high_water < s->strstart)
1747         s->high_water = s->strstart;
1748 
1749     /* If the last block was written to next_out, then done. */
1750     if (last)
1751         return finish_done;
1752 
1753     /* If flushing and all input has been consumed, then done. */
1754     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1755         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1756         return block_done;
1757 
1758     /* Fill the window with any remaining input. */
1759     have = s->window_size - s->strstart;
1760     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1761         /* Slide the window down. */
1762         s->block_start -= s->w_size;
1763         s->strstart -= s->w_size;
1764         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1765         if (s->matches < 2)
1766             s->matches++;           /* add a pending slide_hash() */
1767         have += s->w_size;          /* more space now */
1768         if (s->insert > s->strstart)
1769             s->insert = s->strstart;
1770     }
1771     if (have > s->strm->avail_in)
1772         have = s->strm->avail_in;
1773     if (have) {
1774         read_buf(s->strm, s->window + s->strstart, have);
1775         s->strstart += have;
1776         s->insert += MIN(have, s->w_size - s->insert);
1777     }
1778     if (s->high_water < s->strstart)
1779         s->high_water = s->strstart;
1780 
1781     /* There was not enough avail_out to write a complete worthy or flushed
1782      * stored block to next_out. Write a stored block to pending instead, if we
1783      * have enough input for a worthy block, or if flushing and there is enough
1784      * room for the remaining input as a stored block in the pending buffer.
1785      */
1786     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1787         /* maximum stored block length that will fit in pending: */
1788     have = MIN(s->pending_buf_size - have, MAX_STORED);
1789     min_block = MIN(have, s->w_size);
1790     left = s->strstart - s->block_start;
1791     if (left >= min_block ||
1792         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1793          s->strm->avail_in == 0 && left <= have)) {
1794         len = MIN(left, have);
1795         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1796                len == left ? 1 : 0;
1797         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1798         s->block_start += len;
1799         flush_pending(s->strm);
1800     }
1801 
1802     /* We've done all we can with the available input and output. */
1803     return last ? finish_started : need_more;
1804 }
1805 
1806 /* ===========================================================================
1807  * Compress as much as possible from the input stream, return the current
1808  * block state.
1809  * This function does not perform lazy evaluation of matches and inserts
1810  * new strings in the dictionary only for unmatched strings or for short
1811  * matches. It is used only for the fast compression options.
1812  */
1813 local block_state deflate_fast(deflate_state *s, int flush) {
1814     IPos hash_head;       /* head of the hash chain */
1815     int bflush;           /* set if current block must be flushed */
1816 
1817     for (;;) {
1818         /* Make sure that we always have enough lookahead, except
1819          * at the end of the input file. We need MAX_MATCH bytes
1820          * for the next match, plus MIN_MATCH bytes to insert the
1821          * string following the next match.
1822          */
1823         if (s->lookahead < MIN_LOOKAHEAD) {
1824             fill_window(s);
1825             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1826                 return need_more;
1827             }
1828             if (s->lookahead == 0) break; /* flush the current block */
1829         }
1830 
1831         /* Insert the string window[strstart .. strstart + 2] in the
1832          * dictionary, and set hash_head to the head of the hash chain:
1833          */
1834         hash_head = NIL;
1835         if (s->lookahead >= MIN_MATCH) {
1836             INSERT_STRING(s, s->strstart, hash_head);
1837         }
1838 
1839         /* Find the longest match, discarding those <= prev_length.
1840          * At this point we have always match_length < MIN_MATCH
1841          */
1842         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1843             /* To simplify the code, we prevent matches with the string
1844              * of window index 0 (in particular we have to avoid a match
1845              * of the string with itself at the start of the input file).
1846              */
1847             s->match_length = longest_match (s, hash_head);
1848             /* longest_match() sets match_start */
1849         }
1850         if (s->match_length >= MIN_MATCH) {
1851             check_match(s, s->strstart, s->match_start, s->match_length);
1852 
1853             _tr_tally_dist(s, s->strstart - s->match_start,
1854                            s->match_length - MIN_MATCH, bflush);
1855 
1856             s->lookahead -= s->match_length;
1857 
1858             /* Insert new strings in the hash table only if the match length
1859              * is not too large. This saves time but degrades compression.
1860              */
1861 #ifndef FASTEST
1862             if (s->match_length <= s->max_insert_length &&
1863                 s->lookahead >= MIN_MATCH) {
1864                 s->match_length--; /* string at strstart already in table */
1865                 do {
1866                     s->strstart++;
1867                     INSERT_STRING(s, s->strstart, hash_head);
1868                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1869                      * always MIN_MATCH bytes ahead.
1870                      */
1871                 } while (--s->match_length != 0);
1872                 s->strstart++;
1873             } else
1874 #endif
1875             {
1876                 s->strstart += s->match_length;
1877                 s->match_length = 0;
1878                 s->ins_h = s->window[s->strstart];
1879                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1880 #if MIN_MATCH != 3
1881                 Call UPDATE_HASH() MIN_MATCH-3 more times
1882 #endif
1883                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1884                  * matter since it will be recomputed at next deflate call.
1885                  */
1886             }
1887         } else {
1888             /* No match, output a literal byte */
1889             Tracevv((stderr,"%c", s->window[s->strstart]));
1890             _tr_tally_lit(s, s->window[s->strstart], bflush);
1891             s->lookahead--;
1892             s->strstart++;
1893         }
1894         if (bflush) FLUSH_BLOCK(s, 0);
1895     }
1896     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1897     if (flush == Z_FINISH) {
1898         FLUSH_BLOCK(s, 1);
1899         return finish_done;
1900     }
1901     if (s->sym_next)
1902         FLUSH_BLOCK(s, 0);
1903     return block_done;
1904 }
1905 
1906 #ifndef FASTEST
1907 /* ===========================================================================
1908  * Same as above, but achieves better compression. We use a lazy
1909  * evaluation for matches: a match is finally adopted only if there is
1910  * no better match at the next window position.
1911  */
1912 local block_state deflate_slow(deflate_state *s, int flush) {
1913     IPos hash_head;          /* head of hash chain */
1914     int bflush;              /* set if current block must be flushed */
1915 
1916     /* Process the input block. */
1917     for (;;) {
1918         /* Make sure that we always have enough lookahead, except
1919          * at the end of the input file. We need MAX_MATCH bytes
1920          * for the next match, plus MIN_MATCH bytes to insert the
1921          * string following the next match.
1922          */
1923         if (s->lookahead < MIN_LOOKAHEAD) {
1924             fill_window(s);
1925             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1926                 return need_more;
1927             }
1928             if (s->lookahead == 0) break; /* flush the current block */
1929         }
1930 
1931         /* Insert the string window[strstart .. strstart + 2] in the
1932          * dictionary, and set hash_head to the head of the hash chain:
1933          */
1934         hash_head = NIL;
1935         if (s->lookahead >= MIN_MATCH) {
1936             INSERT_STRING(s, s->strstart, hash_head);
1937         }
1938 
1939         /* Find the longest match, discarding those <= prev_length.
1940          */
1941         s->prev_length = s->match_length, s->prev_match = s->match_start;
1942         s->match_length = MIN_MATCH-1;
1943 
1944         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1945             s->strstart - hash_head <= MAX_DIST(s)) {
1946             /* To simplify the code, we prevent matches with the string
1947              * of window index 0 (in particular we have to avoid a match
1948              * of the string with itself at the start of the input file).
1949              */
1950             s->match_length = longest_match (s, hash_head);
1951             /* longest_match() sets match_start */
1952 
1953             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1954 #if TOO_FAR <= 32767
1955                 || (s->match_length == MIN_MATCH &&
1956                     s->strstart - s->match_start > TOO_FAR)
1957 #endif
1958                 )) {
1959 
1960                 /* If prev_match is also MIN_MATCH, match_start is garbage
1961                  * but we will ignore the current match anyway.
1962                  */
1963                 s->match_length = MIN_MATCH-1;
1964             }
1965         }
1966         /* If there was a match at the previous step and the current
1967          * match is not better, output the previous match:
1968          */
1969         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1970             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1971             /* Do not insert strings in hash table beyond this. */
1972 
1973             check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1974 
1975             _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1976                            s->prev_length - MIN_MATCH, bflush);
1977 
1978             /* Insert in hash table all strings up to the end of the match.
1979              * strstart - 1 and strstart are already inserted. If there is not
1980              * enough lookahead, the last two strings are not inserted in
1981              * the hash table.
1982              */
1983             s->lookahead -= s->prev_length - 1;
1984             s->prev_length -= 2;
1985             do {
1986                 if (++s->strstart <= max_insert) {
1987                     INSERT_STRING(s, s->strstart, hash_head);
1988                 }
1989             } while (--s->prev_length != 0);
1990             s->match_available = 0;
1991             s->match_length = MIN_MATCH-1;
1992             s->strstart++;
1993 
1994             if (bflush) FLUSH_BLOCK(s, 0);
1995 
1996         } else if (s->match_available) {
1997             /* If there was no match at the previous position, output a
1998              * single literal. If there was a match but the current match
1999              * is longer, truncate the previous match to a single literal.
2000              */
2001             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2002             _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2003             if (bflush) {
2004                 FLUSH_BLOCK_ONLY(s, 0);
2005             }
2006             s->strstart++;
2007             s->lookahead--;
2008             if (s->strm->avail_out == 0) return need_more;
2009         } else {
2010             /* There is no previous match to compare with, wait for
2011              * the next step to decide.
2012              */
2013             s->match_available = 1;
2014             s->strstart++;
2015             s->lookahead--;
2016         }
2017     }
2018     Assert (flush != Z_NO_FLUSH, "no flush?");
2019     if (s->match_available) {
2020         Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2021         _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2022         s->match_available = 0;
2023     }
2024     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2025     if (flush == Z_FINISH) {
2026         FLUSH_BLOCK(s, 1);
2027         return finish_done;
2028     }
2029     if (s->sym_next)
2030         FLUSH_BLOCK(s, 0);
2031     return block_done;
2032 }
2033 #endif /* FASTEST */
2034 
2035 /* ===========================================================================
2036  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2037  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2038  * deflate switches away from Z_RLE.)
2039  */
2040 local block_state deflate_rle(deflate_state *s, int flush) {
2041     int bflush;             /* set if current block must be flushed */
2042     uInt prev;              /* byte at distance one to match */
2043     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2044 
2045     for (;;) {
2046         /* Make sure that we always have enough lookahead, except
2047          * at the end of the input file. We need MAX_MATCH bytes
2048          * for the longest run, plus one for the unrolled loop.
2049          */
2050         if (s->lookahead <= MAX_MATCH) {
2051             fill_window(s);
2052             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2053                 return need_more;
2054             }
2055             if (s->lookahead == 0) break; /* flush the current block */
2056         }
2057 
2058         /* See how many times the previous byte repeats */
2059         s->match_length = 0;
2060         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2061             scan = s->window + s->strstart - 1;
2062             prev = *scan;
2063             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2064                 strend = s->window + s->strstart + MAX_MATCH;
2065                 do {
2066                 } while (prev == *++scan && prev == *++scan &&
2067                          prev == *++scan && prev == *++scan &&
2068                          prev == *++scan && prev == *++scan &&
2069                          prev == *++scan && prev == *++scan &&
2070                          scan < strend);
2071                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2072                 if (s->match_length > s->lookahead)
2073                     s->match_length = s->lookahead;
2074             }
2075             Assert(scan <= s->window + (uInt)(s->window_size - 1),
2076                    "wild scan");
2077         }
2078 
2079         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2080         if (s->match_length >= MIN_MATCH) {
2081             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2082 
2083             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2084 
2085             s->lookahead -= s->match_length;
2086             s->strstart += s->match_length;
2087             s->match_length = 0;
2088         } else {
2089             /* No match, output a literal byte */
2090             Tracevv((stderr,"%c", s->window[s->strstart]));
2091             _tr_tally_lit(s, s->window[s->strstart], bflush);
2092             s->lookahead--;
2093             s->strstart++;
2094         }
2095         if (bflush) FLUSH_BLOCK(s, 0);
2096     }
2097     s->insert = 0;
2098     if (flush == Z_FINISH) {
2099         FLUSH_BLOCK(s, 1);
2100         return finish_done;
2101     }
2102     if (s->sym_next)
2103         FLUSH_BLOCK(s, 0);
2104     return block_done;
2105 }
2106 
2107 /* ===========================================================================
2108  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2109  * (It will be regenerated if this run of deflate switches away from Huffman.)
2110  */
2111 local block_state deflate_huff(deflate_state *s, int flush) {
2112     int bflush;             /* set if current block must be flushed */
2113 
2114     for (;;) {
2115         /* Make sure that we have a literal to write. */
2116         if (s->lookahead == 0) {
2117             fill_window(s);
2118             if (s->lookahead == 0) {
2119                 if (flush == Z_NO_FLUSH)
2120                     return need_more;
2121                 break;      /* flush the current block */
2122             }
2123         }
2124 
2125         /* Output a literal byte */
2126         s->match_length = 0;
2127         Tracevv((stderr,"%c", s->window[s->strstart]));
2128         _tr_tally_lit(s, s->window[s->strstart], bflush);
2129         s->lookahead--;
2130         s->strstart++;
2131         if (bflush) FLUSH_BLOCK(s, 0);
2132     }
2133     s->insert = 0;
2134     if (flush == Z_FINISH) {
2135         FLUSH_BLOCK(s, 1);
2136         return finish_done;
2137     }
2138     if (s->sym_next)
2139         FLUSH_BLOCK(s, 0);
2140     return block_done;
2141 }
2142