1 /* $NetBSD: deflate.c,v 1.6 2022/10/15 19:49:32 christos Exp $ */ 2 3 /* deflate.c -- compress data using the deflation algorithm 4 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler 5 * For conditions of distribution and use, see copyright notice in zlib.h 6 */ 7 8 /* 9 * ALGORITHM 10 * 11 * The "deflation" process depends on being able to identify portions 12 * of the input text which are identical to earlier input (within a 13 * sliding window trailing behind the input currently being processed). 14 * 15 * The most straightforward technique turns out to be the fastest for 16 * most input files: try all possible matches and select the longest. 17 * The key feature of this algorithm is that insertions into the string 18 * dictionary are very simple and thus fast, and deletions are avoided 19 * completely. Insertions are performed at each input character, whereas 20 * string matches are performed only when the previous match ends. So it 21 * is preferable to spend more time in matches to allow very fast string 22 * insertions and avoid deletions. The matching algorithm for small 23 * strings is inspired from that of Rabin & Karp. A brute force approach 24 * is used to find longer strings when a small match has been found. 25 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze 26 * (by Leonid Broukhis). 27 * A previous version of this file used a more sophisticated algorithm 28 * (by Fiala and Greene) which is guaranteed to run in linear amortized 29 * time, but has a larger average cost, uses more memory and is patented. 30 * However the F&G algorithm may be faster for some highly redundant 31 * files if the parameter max_chain_length (described below) is too large. 32 * 33 * ACKNOWLEDGEMENTS 34 * 35 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and 36 * I found it in 'freeze' written by Leonid Broukhis. 37 * Thanks to many people for bug reports and testing. 38 * 39 * REFERENCES 40 * 41 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". 42 * Available in http://tools.ietf.org/html/rfc1951 43 * 44 * A description of the Rabin and Karp algorithm is given in the book 45 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. 46 * 47 * Fiala,E.R., and Greene,D.H. 48 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 49 * 50 */ 51 52 /* @(#) Id */ 53 54 #include "deflate.h" 55 56 const char deflate_copyright[] = 57 " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler "; 58 /* 59 If you use the zlib library in a product, an acknowledgment is welcome 60 in the documentation of your product. If for some reason you cannot 61 include such an acknowledgment, I would appreciate that you keep this 62 copyright string in the executable of your product. 63 */ 64 65 /* =========================================================================== 66 * Function prototypes. 67 */ 68 typedef enum { 69 need_more, /* block not completed, need more input or more output */ 70 block_done, /* block flush performed */ 71 finish_started, /* finish started, need only more output at next deflate */ 72 finish_done /* finish done, accept no more input or output */ 73 } block_state; 74 75 typedef block_state (*compress_func) OF((deflate_state *s, int flush)); 76 /* Compression function. Returns the block state after the call. */ 77 78 local int deflateStateCheck OF((z_streamp strm)); 79 local void slide_hash OF((deflate_state *s)); 80 local void fill_window OF((deflate_state *s)); 81 local block_state deflate_stored OF((deflate_state *s, int flush)); 82 local block_state deflate_fast OF((deflate_state *s, int flush)); 83 #ifndef FASTEST 84 local block_state deflate_slow OF((deflate_state *s, int flush)); 85 #endif 86 local block_state deflate_rle OF((deflate_state *s, int flush)); 87 local block_state deflate_huff OF((deflate_state *s, int flush)); 88 local void lm_init OF((deflate_state *s)); 89 local void putShortMSB OF((deflate_state *s, uInt b)); 90 local void flush_pending OF((z_streamp strm)); 91 local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); 92 local uInt longest_match OF((deflate_state *s, IPos cur_match)); 93 94 #ifdef ZLIB_DEBUG 95 local void check_match OF((deflate_state *s, IPos start, IPos match, 96 int length)); 97 #endif 98 99 /* =========================================================================== 100 * Local data 101 */ 102 103 #define NIL 0 104 /* Tail of hash chains */ 105 106 #ifndef TOO_FAR 107 # define TOO_FAR 4096 108 #endif 109 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ 110 111 /* Values for max_lazy_match, good_match and max_chain_length, depending on 112 * the desired pack level (0..9). The values given below have been tuned to 113 * exclude worst case performance for pathological files. Better values may be 114 * found for specific files. 115 */ 116 typedef struct config_s { 117 ush good_length; /* reduce lazy search above this match length */ 118 ush max_lazy; /* do not perform lazy search above this match length */ 119 ush nice_length; /* quit search above this match length */ 120 ush max_chain; 121 compress_func func; 122 } config; 123 124 #ifdef FASTEST 125 local const config configuration_table[2] = { 126 /* good lazy nice chain */ 127 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 128 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ 129 #else 130 local const config configuration_table[10] = { 131 /* good lazy nice chain */ 132 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 133 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ 134 /* 2 */ {4, 5, 16, 8, deflate_fast}, 135 /* 3 */ {4, 6, 32, 32, deflate_fast}, 136 137 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ 138 /* 5 */ {8, 16, 32, 32, deflate_slow}, 139 /* 6 */ {8, 16, 128, 128, deflate_slow}, 140 /* 7 */ {8, 32, 128, 256, deflate_slow}, 141 /* 8 */ {32, 128, 258, 1024, deflate_slow}, 142 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ 143 #endif 144 145 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 146 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different 147 * meaning. 148 */ 149 150 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ 151 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) 152 153 /* =========================================================================== 154 * Update a hash value with the given input byte 155 * IN assertion: all calls to UPDATE_HASH are made with consecutive input 156 * characters, so that a running hash key can be computed from the previous 157 * key instead of complete recalculation each time. 158 */ 159 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask) 160 161 162 /* =========================================================================== 163 * Insert string str in the dictionary and set match_head to the previous head 164 * of the hash chain (the most recent string with same hash key). Return 165 * the previous length of the hash chain. 166 * If this file is compiled with -DFASTEST, the compression level is forced 167 * to 1, and no hash chains are maintained. 168 * IN assertion: all calls to INSERT_STRING are made with consecutive input 169 * characters and the first MIN_MATCH bytes of str are valid (except for 170 * the last MIN_MATCH-1 bytes of the input file). 171 */ 172 #ifdef FASTEST 173 #define INSERT_STRING(s, str, match_head) \ 174 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 175 match_head = s->head[s->ins_h], \ 176 s->head[s->ins_h] = (Pos)(str)) 177 #else 178 #define INSERT_STRING(s, str, match_head) \ 179 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 180 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ 181 s->head[s->ins_h] = (Pos)(str)) 182 #endif 183 184 /* =========================================================================== 185 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). 186 * prev[] will be initialized on the fly. 187 */ 188 #define CLEAR_HASH(s) \ 189 do { \ 190 s->head[s->hash_size - 1] = NIL; \ 191 zmemzero((Bytef *)s->head, \ 192 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \ 193 } while (0) 194 195 /* =========================================================================== 196 * Slide the hash table when sliding the window down (could be avoided with 32 197 * bit values at the expense of memory usage). We slide even when level == 0 to 198 * keep the hash table consistent if we switch back to level > 0 later. 199 */ 200 local void slide_hash(s) 201 deflate_state *s; 202 { 203 unsigned n, m; 204 Posf *p; 205 uInt wsize = s->w_size; 206 207 n = s->hash_size; 208 p = &s->head[n]; 209 do { 210 m = *--p; 211 *p = (Pos)(m >= wsize ? m - wsize : NIL); 212 } while (--n); 213 n = wsize; 214 #ifndef FASTEST 215 p = &s->prev[n]; 216 do { 217 m = *--p; 218 *p = (Pos)(m >= wsize ? m - wsize : NIL); 219 /* If n is not on any hash chain, prev[n] is garbage but 220 * its value will never be used. 221 */ 222 } while (--n); 223 #endif 224 } 225 226 /* ========================================================================= */ 227 int ZEXPORT deflateInit_(strm, level, version, stream_size) 228 z_streamp strm; 229 int level; 230 const char *version; 231 int stream_size; 232 { 233 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 234 Z_DEFAULT_STRATEGY, version, stream_size); 235 /* To do: ignore strm->next_in if we use it as window */ 236 } 237 238 /* ========================================================================= */ 239 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, 240 version, stream_size) 241 z_streamp strm; 242 int level; 243 int method; 244 int windowBits; 245 int memLevel; 246 int strategy; 247 const char *version; 248 int stream_size; 249 { 250 deflate_state *s; 251 int wrap = 1; 252 static const char my_version[] = ZLIB_VERSION; 253 254 if (version == Z_NULL || version[0] != my_version[0] || 255 stream_size != sizeof(z_stream)) { 256 return Z_VERSION_ERROR; 257 } 258 if (strm == Z_NULL) return Z_STREAM_ERROR; 259 260 strm->msg = Z_NULL; 261 if (strm->zalloc == (alloc_func)0) { 262 #ifdef Z_SOLO 263 return Z_STREAM_ERROR; 264 #else 265 strm->zalloc = zcalloc; 266 strm->opaque = (voidpf)0; 267 #endif 268 } 269 if (strm->zfree == (free_func)0) 270 #ifdef Z_SOLO 271 return Z_STREAM_ERROR; 272 #else 273 strm->zfree = zcfree; 274 #endif 275 276 #ifdef FASTEST 277 if (level != 0) level = 1; 278 #else 279 if (level == Z_DEFAULT_COMPRESSION) level = 6; 280 #endif 281 282 if (windowBits < 0) { /* suppress zlib wrapper */ 283 wrap = 0; 284 if (windowBits < -15) 285 return Z_STREAM_ERROR; 286 windowBits = -windowBits; 287 } 288 #ifdef GZIP 289 else if (windowBits > 15) { 290 wrap = 2; /* write gzip wrapper instead */ 291 windowBits -= 16; 292 } 293 #endif 294 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || 295 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || 296 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) { 297 return Z_STREAM_ERROR; 298 } 299 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ 300 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); 301 if (s == Z_NULL) return Z_MEM_ERROR; 302 strm->state = (struct internal_state FAR *)s; 303 s->strm = strm; 304 s->status = INIT_STATE; /* to pass state test in deflateReset() */ 305 306 s->wrap = wrap; 307 s->gzhead = Z_NULL; 308 s->w_bits = (uInt)windowBits; 309 s->w_size = 1 << s->w_bits; 310 s->w_mask = s->w_size - 1; 311 312 s->hash_bits = (uInt)memLevel + 7; 313 s->hash_size = 1 << s->hash_bits; 314 s->hash_mask = s->hash_size - 1; 315 s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH); 316 317 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); 318 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); 319 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); 320 321 s->high_water = 0; /* nothing written to s->window yet */ 322 323 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ 324 325 /* We overlay pending_buf and sym_buf. This works since the average size 326 * for length/distance pairs over any compressed block is assured to be 31 327 * bits or less. 328 * 329 * Analysis: The longest fixed codes are a length code of 8 bits plus 5 330 * extra bits, for lengths 131 to 257. The longest fixed distance codes are 331 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest 332 * possible fixed-codes length/distance pair is then 31 bits total. 333 * 334 * sym_buf starts one-fourth of the way into pending_buf. So there are 335 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol 336 * in sym_buf is three bytes -- two for the distance and one for the 337 * literal/length. As each symbol is consumed, the pointer to the next 338 * sym_buf value to read moves forward three bytes. From that symbol, up to 339 * 31 bits are written to pending_buf. The closest the written pending_buf 340 * bits gets to the next sym_buf symbol to read is just before the last 341 * code is written. At that time, 31*(n - 2) bits have been written, just 342 * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at 343 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1 344 * symbols are written.) The closest the writing gets to what is unread is 345 * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and 346 * can range from 128 to 32768. 347 * 348 * Therefore, at a minimum, there are 142 bits of space between what is 349 * written and what is read in the overlain buffers, so the symbols cannot 350 * be overwritten by the compressed data. That space is actually 139 bits, 351 * due to the three-bit fixed-code block header. 352 * 353 * That covers the case where either Z_FIXED is specified, forcing fixed 354 * codes, or when the use of fixed codes is chosen, because that choice 355 * results in a smaller compressed block than dynamic codes. That latter 356 * condition then assures that the above analysis also covers all dynamic 357 * blocks. A dynamic-code block will only be chosen to be emitted if it has 358 * fewer bits than a fixed-code block would for the same set of symbols. 359 * Therefore its average symbol length is assured to be less than 31. So 360 * the compressed data for a dynamic block also cannot overwrite the 361 * symbols from which it is being constructed. 362 */ 363 364 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4); 365 s->pending_buf_size = (ulg)s->lit_bufsize * 4; 366 367 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || 368 s->pending_buf == Z_NULL) { 369 s->status = FINISH_STATE; 370 strm->msg = __UNCONST(ERR_MSG(Z_MEM_ERROR)); 371 deflateEnd (strm); 372 return Z_MEM_ERROR; 373 } 374 s->sym_buf = s->pending_buf + s->lit_bufsize; 375 s->sym_end = (s->lit_bufsize - 1) * 3; 376 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K 377 * on 16 bit machines and because stored blocks are restricted to 378 * 64K-1 bytes. 379 */ 380 381 s->level = level; 382 s->strategy = strategy; 383 s->method = (Byte)method; 384 385 return deflateReset(strm); 386 } 387 388 /* ========================================================================= 389 * Check for a valid deflate stream state. Return 0 if ok, 1 if not. 390 */ 391 local int deflateStateCheck(strm) 392 z_streamp strm; 393 { 394 deflate_state *s; 395 if (strm == Z_NULL || 396 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) 397 return 1; 398 s = strm->state; 399 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE && 400 #ifdef GZIP 401 s->status != GZIP_STATE && 402 #endif 403 s->status != EXTRA_STATE && 404 s->status != NAME_STATE && 405 s->status != COMMENT_STATE && 406 s->status != HCRC_STATE && 407 s->status != BUSY_STATE && 408 s->status != FINISH_STATE)) 409 return 1; 410 return 0; 411 } 412 413 /* ========================================================================= */ 414 int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength) 415 z_streamp strm; 416 const Bytef *dictionary; 417 uInt dictLength; 418 { 419 deflate_state *s; 420 uInt str, n; 421 int wrap; 422 unsigned avail; 423 z_const unsigned char *next; 424 425 if (deflateStateCheck(strm) || dictionary == Z_NULL) 426 return Z_STREAM_ERROR; 427 s = strm->state; 428 wrap = s->wrap; 429 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) 430 return Z_STREAM_ERROR; 431 432 /* when using zlib wrappers, compute Adler-32 for provided dictionary */ 433 if (wrap == 1) 434 strm->adler = adler32(strm->adler, dictionary, dictLength); 435 s->wrap = 0; /* avoid computing Adler-32 in read_buf */ 436 437 /* if dictionary would fill window, just replace the history */ 438 if (dictLength >= s->w_size) { 439 if (wrap == 0) { /* already empty otherwise */ 440 CLEAR_HASH(s); 441 s->strstart = 0; 442 s->block_start = 0L; 443 s->insert = 0; 444 } 445 dictionary += dictLength - s->w_size; /* use the tail */ 446 dictLength = s->w_size; 447 } 448 449 /* insert dictionary into window and hash */ 450 avail = strm->avail_in; 451 next = strm->next_in; 452 strm->avail_in = dictLength; 453 strm->next_in = __UNCONST(dictionary); 454 fill_window(s); 455 while (s->lookahead >= MIN_MATCH) { 456 str = s->strstart; 457 n = s->lookahead - (MIN_MATCH-1); 458 do { 459 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 460 #ifndef FASTEST 461 s->prev[str & s->w_mask] = s->head[s->ins_h]; 462 #endif 463 s->head[s->ins_h] = (Pos)str; 464 str++; 465 } while (--n); 466 s->strstart = str; 467 s->lookahead = MIN_MATCH-1; 468 fill_window(s); 469 } 470 s->strstart += s->lookahead; 471 s->block_start = (long)s->strstart; 472 s->insert = s->lookahead; 473 s->lookahead = 0; 474 s->match_length = s->prev_length = MIN_MATCH-1; 475 s->match_available = 0; 476 strm->next_in = next; 477 strm->avail_in = avail; 478 s->wrap = wrap; 479 return Z_OK; 480 } 481 482 /* ========================================================================= */ 483 int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength) 484 z_streamp strm; 485 Bytef *dictionary; 486 uInt *dictLength; 487 { 488 deflate_state *s; 489 uInt len; 490 491 if (deflateStateCheck(strm)) 492 return Z_STREAM_ERROR; 493 s = strm->state; 494 len = s->strstart + s->lookahead; 495 if (len > s->w_size) 496 len = s->w_size; 497 if (dictionary != Z_NULL && len) 498 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); 499 if (dictLength != Z_NULL) 500 *dictLength = len; 501 return Z_OK; 502 } 503 504 /* ========================================================================= */ 505 int ZEXPORT deflateResetKeep(strm) 506 z_streamp strm; 507 { 508 deflate_state *s; 509 510 if (deflateStateCheck(strm)) { 511 return Z_STREAM_ERROR; 512 } 513 514 strm->total_in = strm->total_out = 0; 515 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ 516 strm->data_type = Z_UNKNOWN; 517 518 s = (deflate_state *)strm->state; 519 s->pending = 0; 520 s->pending_out = s->pending_buf; 521 522 if (s->wrap < 0) { 523 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ 524 } 525 s->status = 526 #ifdef GZIP 527 s->wrap == 2 ? GZIP_STATE : 528 #endif 529 INIT_STATE; 530 strm->adler = 531 #ifdef GZIP 532 s->wrap == 2 ? crc32(0L, Z_NULL, 0) : 533 #endif 534 adler32(0L, Z_NULL, 0); 535 s->last_flush = -2; 536 537 _tr_init(s); 538 539 return Z_OK; 540 } 541 542 /* ========================================================================= */ 543 int ZEXPORT deflateReset(strm) 544 z_streamp strm; 545 { 546 int ret; 547 548 ret = deflateResetKeep(strm); 549 if (ret == Z_OK) 550 lm_init(strm->state); 551 return ret; 552 } 553 554 /* ========================================================================= */ 555 int ZEXPORT deflateSetHeader(strm, head) 556 z_streamp strm; 557 gz_headerp head; 558 { 559 if (deflateStateCheck(strm) || strm->state->wrap != 2) 560 return Z_STREAM_ERROR; 561 strm->state->gzhead = head; 562 return Z_OK; 563 } 564 565 /* ========================================================================= */ 566 int ZEXPORT deflatePending(strm, pending, bits) 567 unsigned *pending; 568 int *bits; 569 z_streamp strm; 570 { 571 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 572 if (pending != Z_NULL) 573 *pending = strm->state->pending; 574 if (bits != Z_NULL) 575 *bits = strm->state->bi_valid; 576 return Z_OK; 577 } 578 579 /* ========================================================================= */ 580 int ZEXPORT deflatePrime(strm, bits, value) 581 z_streamp strm; 582 int bits; 583 int value; 584 { 585 deflate_state *s; 586 int put; 587 588 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 589 s = strm->state; 590 if (bits < 0 || bits > 16 || 591 s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3)) 592 return Z_BUF_ERROR; 593 do { 594 put = Buf_size - s->bi_valid; 595 if (put > bits) 596 put = bits; 597 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); 598 s->bi_valid += put; 599 _tr_flush_bits(s); 600 value >>= put; 601 bits -= put; 602 } while (bits); 603 return Z_OK; 604 } 605 606 /* ========================================================================= */ 607 int ZEXPORT deflateParams(strm, level, strategy) 608 z_streamp strm; 609 int level; 610 int strategy; 611 { 612 deflate_state *s; 613 compress_func func; 614 615 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 616 s = strm->state; 617 618 #ifdef FASTEST 619 if (level != 0) level = 1; 620 #else 621 if (level == Z_DEFAULT_COMPRESSION) level = 6; 622 #endif 623 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { 624 return Z_STREAM_ERROR; 625 } 626 func = configuration_table[s->level].func; 627 628 if ((strategy != s->strategy || func != configuration_table[level].func) && 629 s->last_flush != -2) { 630 /* Flush the last buffer: */ 631 int err = deflate(strm, Z_BLOCK); 632 if (err == Z_STREAM_ERROR) 633 return err; 634 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead) 635 return Z_BUF_ERROR; 636 } 637 if (s->level != level) { 638 if (s->level == 0 && s->matches != 0) { 639 if (s->matches == 1) 640 slide_hash(s); 641 else 642 CLEAR_HASH(s); 643 s->matches = 0; 644 } 645 s->level = level; 646 s->max_lazy_match = configuration_table[level].max_lazy; 647 s->good_match = configuration_table[level].good_length; 648 s->nice_match = configuration_table[level].nice_length; 649 s->max_chain_length = configuration_table[level].max_chain; 650 } 651 s->strategy = strategy; 652 return Z_OK; 653 } 654 655 /* ========================================================================= */ 656 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) 657 z_streamp strm; 658 int good_length; 659 int max_lazy; 660 int nice_length; 661 int max_chain; 662 { 663 deflate_state *s; 664 665 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 666 s = strm->state; 667 s->good_match = (uInt)good_length; 668 s->max_lazy_match = (uInt)max_lazy; 669 s->nice_match = nice_length; 670 s->max_chain_length = (uInt)max_chain; 671 return Z_OK; 672 } 673 674 /* ========================================================================= 675 * For the default windowBits of 15 and memLevel of 8, this function returns a 676 * close to exact, as well as small, upper bound on the compressed size. This 677 * is an expansion of ~0.03%, plus a small constant. 678 * 679 * For any setting other than those defaults for windowBits and memLevel, one 680 * of two worst case bounds is returned. This is at most an expansion of ~4% or 681 * ~13%, plus a small constant. 682 * 683 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first 684 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second 685 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The 686 * expansion results from five bytes of header for each stored block. 687 * 688 * The larger expansion of 13% results from a window size less than or equal to 689 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of 690 * the data being compressed may have slid out of the sliding window, impeding 691 * a stored block from being emitted. Then the only choice is a fixed or 692 * dynamic block, where a fixed block limits the maximum expansion to 9 bits 693 * per 8-bit byte, plus 10 bits for every block. The smallest block size for 694 * which this can occur is 255 (memLevel == 2). 695 * 696 * Shifts are used to approximate divisions, for speed. 697 */ 698 uLong ZEXPORT deflateBound(strm, sourceLen) 699 z_streamp strm; 700 uLong sourceLen; 701 { 702 deflate_state *s; 703 uLong fixedlen, storelen, wraplen; 704 705 /* upper bound for fixed blocks with 9-bit literals and length 255 706 (memLevel == 2, which is the lowest that may not use stored blocks) -- 707 ~13% overhead plus a small constant */ 708 fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) + 709 (sourceLen >> 9) + 4; 710 711 /* upper bound for stored blocks with length 127 (memLevel == 1) -- 712 ~4% overhead plus a small constant */ 713 storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) + 714 (sourceLen >> 11) + 7; 715 716 /* if can't get parameters, return larger bound plus a zlib wrapper */ 717 if (deflateStateCheck(strm)) 718 return (fixedlen > storelen ? fixedlen : storelen) + 6; 719 720 /* compute wrapper length */ 721 s = strm->state; 722 switch (s->wrap) { 723 case 0: /* raw deflate */ 724 wraplen = 0; 725 break; 726 case 1: /* zlib wrapper */ 727 wraplen = 6 + (s->strstart ? 4 : 0); 728 break; 729 #ifdef GZIP 730 case 2: /* gzip wrapper */ 731 wraplen = 18; 732 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ 733 Bytef *str; 734 if (s->gzhead->extra != Z_NULL) 735 wraplen += 2 + s->gzhead->extra_len; 736 str = s->gzhead->name; 737 if (str != Z_NULL) 738 do { 739 wraplen++; 740 } while (*str++); 741 str = s->gzhead->comment; 742 if (str != Z_NULL) 743 do { 744 wraplen++; 745 } while (*str++); 746 if (s->gzhead->hcrc) 747 wraplen += 2; 748 } 749 break; 750 #endif 751 default: /* for compiler happiness */ 752 wraplen = 6; 753 } 754 755 /* if not default parameters, return one of the conservative bounds */ 756 if (s->w_bits != 15 || s->hash_bits != 8 + 7) 757 return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen; 758 759 /* default settings: return tight bound for that case -- ~0.03% overhead 760 plus a small constant */ 761 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + 762 (sourceLen >> 25) + 13 - 6 + wraplen; 763 } 764 765 /* ========================================================================= 766 * Put a short in the pending buffer. The 16-bit value is put in MSB order. 767 * IN assertion: the stream state is correct and there is enough room in 768 * pending_buf. 769 */ 770 local void putShortMSB(s, b) 771 deflate_state *s; 772 uInt b; 773 { 774 put_byte(s, (Byte)(b >> 8)); 775 put_byte(s, (Byte)(b & 0xff)); 776 } 777 778 /* ========================================================================= 779 * Flush as much pending output as possible. All deflate() output, except for 780 * some deflate_stored() output, goes through this function so some 781 * applications may wish to modify it to avoid allocating a large 782 * strm->next_out buffer and copying into it. (See also read_buf()). 783 */ 784 local void flush_pending(strm) 785 z_streamp strm; 786 { 787 unsigned len; 788 deflate_state *s = strm->state; 789 790 _tr_flush_bits(s); 791 len = s->pending; 792 if (len > strm->avail_out) len = strm->avail_out; 793 if (len == 0) return; 794 795 zmemcpy(strm->next_out, s->pending_out, len); 796 strm->next_out += len; 797 s->pending_out += len; 798 strm->total_out += len; 799 strm->avail_out -= len; 800 s->pending -= len; 801 if (s->pending == 0) { 802 s->pending_out = s->pending_buf; 803 } 804 } 805 806 /* =========================================================================== 807 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. 808 */ 809 #define HCRC_UPDATE(beg) \ 810 do { \ 811 if (s->gzhead->hcrc && s->pending > (beg)) \ 812 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \ 813 s->pending - (beg)); \ 814 } while (0) 815 816 /* ========================================================================= */ 817 int ZEXPORT deflate(strm, flush) 818 z_streamp strm; 819 int flush; 820 { 821 int old_flush; /* value of flush param for previous deflate call */ 822 deflate_state *s; 823 824 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) { 825 return Z_STREAM_ERROR; 826 } 827 s = strm->state; 828 829 if (strm->next_out == Z_NULL || 830 (strm->avail_in != 0 && strm->next_in == Z_NULL) || 831 (s->status == FINISH_STATE && flush != Z_FINISH)) { 832 ERR_RETURN(strm, Z_STREAM_ERROR); 833 } 834 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); 835 836 old_flush = s->last_flush; 837 s->last_flush = flush; 838 839 /* Flush as much pending output as possible */ 840 if (s->pending != 0) { 841 flush_pending(strm); 842 if (strm->avail_out == 0) { 843 /* Since avail_out is 0, deflate will be called again with 844 * more output space, but possibly with both pending and 845 * avail_in equal to zero. There won't be anything to do, 846 * but this is not an error situation so make sure we 847 * return OK instead of BUF_ERROR at next call of deflate: 848 */ 849 s->last_flush = -1; 850 return Z_OK; 851 } 852 853 /* Make sure there is something to do and avoid duplicate consecutive 854 * flushes. For repeated and useless calls with Z_FINISH, we keep 855 * returning Z_STREAM_END instead of Z_BUF_ERROR. 856 */ 857 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && 858 flush != Z_FINISH) { 859 ERR_RETURN(strm, Z_BUF_ERROR); 860 } 861 862 /* User must not provide more input after the first FINISH: */ 863 if (s->status == FINISH_STATE && strm->avail_in != 0) { 864 ERR_RETURN(strm, Z_BUF_ERROR); 865 } 866 867 /* Write the header */ 868 if (s->status == INIT_STATE && s->wrap == 0) 869 s->status = BUSY_STATE; 870 if (s->status == INIT_STATE) { 871 /* zlib header */ 872 uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8; 873 uInt level_flags; 874 875 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) 876 level_flags = 0; 877 else if (s->level < 6) 878 level_flags = 1; 879 else if (s->level == 6) 880 level_flags = 2; 881 else 882 level_flags = 3; 883 header |= (level_flags << 6); 884 if (s->strstart != 0) header |= PRESET_DICT; 885 header += 31 - (header % 31); 886 887 putShortMSB(s, header); 888 889 /* Save the adler32 of the preset dictionary: */ 890 if (s->strstart != 0) { 891 putShortMSB(s, (uInt)(strm->adler >> 16)); 892 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 893 } 894 strm->adler = adler32(0L, Z_NULL, 0); 895 s->status = BUSY_STATE; 896 897 /* Compression must start with an empty pending buffer */ 898 flush_pending(strm); 899 if (s->pending != 0) { 900 s->last_flush = -1; 901 return Z_OK; 902 } 903 } 904 #ifdef GZIP 905 if (s->status == GZIP_STATE) { 906 /* gzip header */ 907 strm->adler = crc32(0L, Z_NULL, 0); 908 put_byte(s, 31); 909 put_byte(s, 139); 910 put_byte(s, 8); 911 if (s->gzhead == Z_NULL) { 912 put_byte(s, 0); 913 put_byte(s, 0); 914 put_byte(s, 0); 915 put_byte(s, 0); 916 put_byte(s, 0); 917 put_byte(s, s->level == 9 ? 2 : 918 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 919 4 : 0)); 920 put_byte(s, OS_CODE); 921 s->status = BUSY_STATE; 922 923 /* Compression must start with an empty pending buffer */ 924 flush_pending(strm); 925 if (s->pending != 0) { 926 s->last_flush = -1; 927 return Z_OK; 928 } 929 } 930 else { 931 put_byte(s, (s->gzhead->text ? 1 : 0) + 932 (s->gzhead->hcrc ? 2 : 0) + 933 (s->gzhead->extra == Z_NULL ? 0 : 4) + 934 (s->gzhead->name == Z_NULL ? 0 : 8) + 935 (s->gzhead->comment == Z_NULL ? 0 : 16) 936 ); 937 put_byte(s, (Byte)(s->gzhead->time & 0xff)); 938 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); 939 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); 940 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); 941 put_byte(s, s->level == 9 ? 2 : 942 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 943 4 : 0)); 944 put_byte(s, s->gzhead->os & 0xff); 945 if (s->gzhead->extra != Z_NULL) { 946 put_byte(s, s->gzhead->extra_len & 0xff); 947 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); 948 } 949 if (s->gzhead->hcrc) 950 strm->adler = crc32(strm->adler, s->pending_buf, 951 s->pending); 952 s->gzindex = 0; 953 s->status = EXTRA_STATE; 954 } 955 } 956 if (s->status == EXTRA_STATE) { 957 if (s->gzhead->extra != Z_NULL) { 958 ulg beg = s->pending; /* start of bytes to update crc */ 959 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex; 960 while (s->pending + left > s->pending_buf_size) { 961 uInt copy = s->pending_buf_size - s->pending; 962 zmemcpy(s->pending_buf + s->pending, 963 s->gzhead->extra + s->gzindex, copy); 964 s->pending = s->pending_buf_size; 965 HCRC_UPDATE(beg); 966 s->gzindex += copy; 967 flush_pending(strm); 968 if (s->pending != 0) { 969 s->last_flush = -1; 970 return Z_OK; 971 } 972 beg = 0; 973 left -= copy; 974 } 975 zmemcpy(s->pending_buf + s->pending, 976 s->gzhead->extra + s->gzindex, left); 977 s->pending += left; 978 HCRC_UPDATE(beg); 979 s->gzindex = 0; 980 } 981 s->status = NAME_STATE; 982 } 983 if (s->status == NAME_STATE) { 984 if (s->gzhead->name != Z_NULL) { 985 ulg beg = s->pending; /* start of bytes to update crc */ 986 int val; 987 do { 988 if (s->pending == s->pending_buf_size) { 989 HCRC_UPDATE(beg); 990 flush_pending(strm); 991 if (s->pending != 0) { 992 s->last_flush = -1; 993 return Z_OK; 994 } 995 beg = 0; 996 } 997 val = s->gzhead->name[s->gzindex++]; 998 put_byte(s, val); 999 } while (val != 0); 1000 HCRC_UPDATE(beg); 1001 s->gzindex = 0; 1002 } 1003 s->status = COMMENT_STATE; 1004 } 1005 if (s->status == COMMENT_STATE) { 1006 if (s->gzhead->comment != Z_NULL) { 1007 ulg beg = s->pending; /* start of bytes to update crc */ 1008 int val; 1009 do { 1010 if (s->pending == s->pending_buf_size) { 1011 HCRC_UPDATE(beg); 1012 flush_pending(strm); 1013 if (s->pending != 0) { 1014 s->last_flush = -1; 1015 return Z_OK; 1016 } 1017 beg = 0; 1018 } 1019 val = s->gzhead->comment[s->gzindex++]; 1020 put_byte(s, val); 1021 } while (val != 0); 1022 HCRC_UPDATE(beg); 1023 } 1024 s->status = HCRC_STATE; 1025 } 1026 if (s->status == HCRC_STATE) { 1027 if (s->gzhead->hcrc) { 1028 if (s->pending + 2 > s->pending_buf_size) { 1029 flush_pending(strm); 1030 if (s->pending != 0) { 1031 s->last_flush = -1; 1032 return Z_OK; 1033 } 1034 } 1035 put_byte(s, (Byte)(strm->adler & 0xff)); 1036 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 1037 strm->adler = crc32(0L, Z_NULL, 0); 1038 } 1039 s->status = BUSY_STATE; 1040 1041 /* Compression must start with an empty pending buffer */ 1042 flush_pending(strm); 1043 if (s->pending != 0) { 1044 s->last_flush = -1; 1045 return Z_OK; 1046 } 1047 } 1048 #endif 1049 1050 /* Start a new block or continue the current one. 1051 */ 1052 if (strm->avail_in != 0 || s->lookahead != 0 || 1053 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { 1054 block_state bstate; 1055 1056 bstate = s->level == 0 ? deflate_stored(s, flush) : 1057 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : 1058 s->strategy == Z_RLE ? deflate_rle(s, flush) : 1059 (*(configuration_table[s->level].func))(s, flush); 1060 1061 if (bstate == finish_started || bstate == finish_done) { 1062 s->status = FINISH_STATE; 1063 } 1064 if (bstate == need_more || bstate == finish_started) { 1065 if (strm->avail_out == 0) { 1066 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ 1067 } 1068 return Z_OK; 1069 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call 1070 * of deflate should use the same flush parameter to make sure 1071 * that the flush is complete. So we don't have to output an 1072 * empty block here, this will be done at next call. This also 1073 * ensures that for a very small output buffer, we emit at most 1074 * one empty block. 1075 */ 1076 } 1077 if (bstate == block_done) { 1078 if (flush == Z_PARTIAL_FLUSH) { 1079 _tr_align(s); 1080 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ 1081 _tr_stored_block(s, (char*)0, 0L, 0); 1082 /* For a full flush, this empty block will be recognized 1083 * as a special marker by inflate_sync(). 1084 */ 1085 if (flush == Z_FULL_FLUSH) { 1086 CLEAR_HASH(s); /* forget history */ 1087 if (s->lookahead == 0) { 1088 s->strstart = 0; 1089 s->block_start = 0L; 1090 s->insert = 0; 1091 } 1092 } 1093 } 1094 flush_pending(strm); 1095 if (strm->avail_out == 0) { 1096 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ 1097 return Z_OK; 1098 } 1099 } 1100 } 1101 1102 if (flush != Z_FINISH) return Z_OK; 1103 if (s->wrap <= 0) return Z_STREAM_END; 1104 1105 /* Write the trailer */ 1106 #ifdef GZIP 1107 if (s->wrap == 2) { 1108 put_byte(s, (Byte)(strm->adler & 0xff)); 1109 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 1110 put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); 1111 put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); 1112 put_byte(s, (Byte)(strm->total_in & 0xff)); 1113 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); 1114 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); 1115 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); 1116 } 1117 else 1118 #endif 1119 { 1120 putShortMSB(s, (uInt)(strm->adler >> 16)); 1121 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 1122 } 1123 flush_pending(strm); 1124 /* If avail_out is zero, the application will call deflate again 1125 * to flush the rest. 1126 */ 1127 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ 1128 return s->pending != 0 ? Z_OK : Z_STREAM_END; 1129 } 1130 1131 /* ========================================================================= */ 1132 int ZEXPORT deflateEnd(strm) 1133 z_streamp strm; 1134 { 1135 int status; 1136 1137 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 1138 1139 status = strm->state->status; 1140 1141 /* Deallocate in reverse order of allocations: */ 1142 TRY_FREE(strm, strm->state->pending_buf); 1143 TRY_FREE(strm, strm->state->head); 1144 TRY_FREE(strm, strm->state->prev); 1145 TRY_FREE(strm, strm->state->window); 1146 1147 ZFREE(strm, strm->state); 1148 strm->state = Z_NULL; 1149 1150 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; 1151 } 1152 1153 /* ========================================================================= 1154 * Copy the source state to the destination state. 1155 * To simplify the source, this is not supported for 16-bit MSDOS (which 1156 * doesn't have enough memory anyway to duplicate compression states). 1157 */ 1158 int ZEXPORT deflateCopy(dest, source) 1159 z_streamp dest; 1160 z_streamp source; 1161 { 1162 #ifdef MAXSEG_64K 1163 return Z_STREAM_ERROR; 1164 #else 1165 deflate_state *ds; 1166 deflate_state *ss; 1167 1168 1169 if (deflateStateCheck(source) || dest == Z_NULL) { 1170 return Z_STREAM_ERROR; 1171 } 1172 1173 ss = source->state; 1174 1175 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); 1176 1177 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); 1178 if (ds == Z_NULL) return Z_MEM_ERROR; 1179 dest->state = (struct internal_state FAR *) ds; 1180 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); 1181 ds->strm = dest; 1182 1183 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); 1184 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); 1185 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); 1186 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4); 1187 1188 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || 1189 ds->pending_buf == Z_NULL) { 1190 deflateEnd (dest); 1191 return Z_MEM_ERROR; 1192 } 1193 /* following zmemcpy do not work for 16-bit MSDOS */ 1194 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); 1195 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); 1196 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); 1197 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); 1198 1199 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); 1200 ds->sym_buf = ds->pending_buf + ds->lit_bufsize; 1201 1202 ds->l_desc.dyn_tree = ds->dyn_ltree; 1203 ds->d_desc.dyn_tree = ds->dyn_dtree; 1204 ds->bl_desc.dyn_tree = ds->bl_tree; 1205 1206 return Z_OK; 1207 #endif /* MAXSEG_64K */ 1208 } 1209 1210 /* =========================================================================== 1211 * Read a new buffer from the current input stream, update the adler32 1212 * and total number of bytes read. All deflate() input goes through 1213 * this function so some applications may wish to modify it to avoid 1214 * allocating a large strm->next_in buffer and copying from it. 1215 * (See also flush_pending()). 1216 */ 1217 local unsigned read_buf(strm, buf, size) 1218 z_streamp strm; 1219 Bytef *buf; 1220 unsigned size; 1221 { 1222 unsigned len = strm->avail_in; 1223 1224 if (len > size) len = size; 1225 if (len == 0) return 0; 1226 1227 strm->avail_in -= len; 1228 1229 zmemcpy(buf, strm->next_in, len); 1230 if (strm->state->wrap == 1) { 1231 strm->adler = adler32(strm->adler, buf, len); 1232 } 1233 #ifdef GZIP 1234 else if (strm->state->wrap == 2) { 1235 strm->adler = crc32(strm->adler, buf, len); 1236 } 1237 #endif 1238 strm->next_in += len; 1239 strm->total_in += len; 1240 1241 return len; 1242 } 1243 1244 /* =========================================================================== 1245 * Initialize the "longest match" routines for a new zlib stream 1246 */ 1247 local void lm_init(s) 1248 deflate_state *s; 1249 { 1250 s->window_size = (ulg)2L*s->w_size; 1251 1252 CLEAR_HASH(s); 1253 1254 /* Set the default configuration parameters: 1255 */ 1256 s->max_lazy_match = configuration_table[s->level].max_lazy; 1257 s->good_match = configuration_table[s->level].good_length; 1258 s->nice_match = configuration_table[s->level].nice_length; 1259 s->max_chain_length = configuration_table[s->level].max_chain; 1260 1261 s->strstart = 0; 1262 s->block_start = 0L; 1263 s->lookahead = 0; 1264 s->insert = 0; 1265 s->match_length = s->prev_length = MIN_MATCH-1; 1266 s->match_available = 0; 1267 s->ins_h = 0; 1268 } 1269 1270 #ifndef FASTEST 1271 /* =========================================================================== 1272 * Set match_start to the longest match starting at the given string and 1273 * return its length. Matches shorter or equal to prev_length are discarded, 1274 * in which case the result is equal to prev_length and match_start is 1275 * garbage. 1276 * IN assertions: cur_match is the head of the hash chain for the current 1277 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 1278 * OUT assertion: the match length is not greater than s->lookahead. 1279 */ 1280 local uInt longest_match(s, cur_match) 1281 deflate_state *s; 1282 IPos cur_match; /* current match */ 1283 { 1284 unsigned chain_length = s->max_chain_length;/* max hash chain length */ 1285 register Bytef *scan = s->window + s->strstart; /* current string */ 1286 register Bytef *match; /* matched string */ 1287 register int len; /* length of current match */ 1288 int best_len = (int)s->prev_length; /* best match length so far */ 1289 int nice_match = s->nice_match; /* stop if match long enough */ 1290 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? 1291 s->strstart - (IPos)MAX_DIST(s) : NIL; 1292 /* Stop when cur_match becomes <= limit. To simplify the code, 1293 * we prevent matches with the string of window index 0. 1294 */ 1295 Posf *prev = s->prev; 1296 uInt wmask = s->w_mask; 1297 1298 #ifdef UNALIGNED_OK 1299 /* Compare two bytes at a time. Note: this is not always beneficial. 1300 * Try with and without -DUNALIGNED_OK to check. 1301 */ 1302 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; 1303 register ush scan_start = *(ushf*)scan; 1304 register ush scan_end = *(ushf*)(scan + best_len - 1); 1305 #else 1306 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1307 register Byte scan_end1 = scan[best_len - 1]; 1308 register Byte scan_end = scan[best_len]; 1309 #endif 1310 1311 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1312 * It is easy to get rid of this optimization if necessary. 1313 */ 1314 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1315 1316 /* Do not waste too much time if we already have a good match: */ 1317 if (s->prev_length >= s->good_match) { 1318 chain_length >>= 2; 1319 } 1320 /* Do not look for matches beyond the end of the input. This is necessary 1321 * to make deflate deterministic. 1322 */ 1323 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead; 1324 1325 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 1326 "need lookahead"); 1327 1328 do { 1329 Assert(cur_match < s->strstart, "no future"); 1330 match = s->window + cur_match; 1331 1332 /* Skip to next match if the match length cannot increase 1333 * or if the match length is less than 2. Note that the checks below 1334 * for insufficient lookahead only occur occasionally for performance 1335 * reasons. Therefore uninitialized memory will be accessed, and 1336 * conditional jumps will be made that depend on those values. 1337 * However the length of the match is limited to the lookahead, so 1338 * the output of deflate is not affected by the uninitialized values. 1339 */ 1340 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) 1341 /* This code assumes sizeof(unsigned short) == 2. Do not use 1342 * UNALIGNED_OK if your compiler uses a different size. 1343 */ 1344 if (*(ushf*)(match + best_len - 1) != scan_end || 1345 *(ushf*)match != scan_start) continue; 1346 1347 /* It is not necessary to compare scan[2] and match[2] since they are 1348 * always equal when the other bytes match, given that the hash keys 1349 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at 1350 * strstart + 3, + 5, up to strstart + 257. We check for insufficient 1351 * lookahead only every 4th comparison; the 128th check will be made 1352 * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is 1353 * necessary to put more guard bytes at the end of the window, or 1354 * to check more often for insufficient lookahead. 1355 */ 1356 Assert(scan[2] == match[2], "scan[2]?"); 1357 scan++, match++; 1358 do { 1359 } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) && 1360 *(ushf*)(scan += 2) == *(ushf*)(match += 2) && 1361 *(ushf*)(scan += 2) == *(ushf*)(match += 2) && 1362 *(ushf*)(scan += 2) == *(ushf*)(match += 2) && 1363 scan < strend); 1364 /* The funny "do {}" generates better code on most compilers */ 1365 1366 /* Here, scan <= window + strstart + 257 */ 1367 Assert(scan <= s->window + (unsigned)(s->window_size - 1), 1368 "wild scan"); 1369 if (*scan == *match) scan++; 1370 1371 len = (MAX_MATCH - 1) - (int)(strend - scan); 1372 scan = strend - (MAX_MATCH-1); 1373 1374 #else /* UNALIGNED_OK */ 1375 1376 if (match[best_len] != scan_end || 1377 match[best_len - 1] != scan_end1 || 1378 *match != *scan || 1379 *++match != scan[1]) continue; 1380 1381 /* The check at best_len - 1 can be removed because it will be made 1382 * again later. (This heuristic is not always a win.) 1383 * It is not necessary to compare scan[2] and match[2] since they 1384 * are always equal when the other bytes match, given that 1385 * the hash keys are equal and that HASH_BITS >= 8. 1386 */ 1387 scan += 2, match++; 1388 Assert(*scan == *match, "match[2]?"); 1389 1390 /* We check for insufficient lookahead only every 8th comparison; 1391 * the 256th check will be made at strstart + 258. 1392 */ 1393 do { 1394 } while (*++scan == *++match && *++scan == *++match && 1395 *++scan == *++match && *++scan == *++match && 1396 *++scan == *++match && *++scan == *++match && 1397 *++scan == *++match && *++scan == *++match && 1398 scan < strend); 1399 1400 Assert(scan <= s->window + (unsigned)(s->window_size - 1), 1401 "wild scan"); 1402 1403 len = MAX_MATCH - (int)(strend - scan); 1404 scan = strend - MAX_MATCH; 1405 1406 #endif /* UNALIGNED_OK */ 1407 1408 if (len > best_len) { 1409 s->match_start = cur_match; 1410 best_len = len; 1411 if (len >= nice_match) break; 1412 #ifdef UNALIGNED_OK 1413 scan_end = *(ushf*)(scan + best_len - 1); 1414 #else 1415 scan_end1 = scan[best_len - 1]; 1416 scan_end = scan[best_len]; 1417 #endif 1418 } 1419 } while ((cur_match = prev[cur_match & wmask]) > limit 1420 && --chain_length != 0); 1421 1422 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; 1423 return s->lookahead; 1424 } 1425 1426 #else /* FASTEST */ 1427 1428 /* --------------------------------------------------------------------------- 1429 * Optimized version for FASTEST only 1430 */ 1431 local uInt longest_match(s, cur_match) 1432 deflate_state *s; 1433 IPos cur_match; /* current match */ 1434 { 1435 register Bytef *scan = s->window + s->strstart; /* current string */ 1436 register Bytef *match; /* matched string */ 1437 register int len; /* length of current match */ 1438 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1439 1440 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1441 * It is easy to get rid of this optimization if necessary. 1442 */ 1443 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1444 1445 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 1446 "need lookahead"); 1447 1448 Assert(cur_match < s->strstart, "no future"); 1449 1450 match = s->window + cur_match; 1451 1452 /* Return failure if the match length is less than 2: 1453 */ 1454 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; 1455 1456 /* The check at best_len - 1 can be removed because it will be made 1457 * again later. (This heuristic is not always a win.) 1458 * It is not necessary to compare scan[2] and match[2] since they 1459 * are always equal when the other bytes match, given that 1460 * the hash keys are equal and that HASH_BITS >= 8. 1461 */ 1462 scan += 2, match += 2; 1463 Assert(*scan == *match, "match[2]?"); 1464 1465 /* We check for insufficient lookahead only every 8th comparison; 1466 * the 256th check will be made at strstart + 258. 1467 */ 1468 do { 1469 } while (*++scan == *++match && *++scan == *++match && 1470 *++scan == *++match && *++scan == *++match && 1471 *++scan == *++match && *++scan == *++match && 1472 *++scan == *++match && *++scan == *++match && 1473 scan < strend); 1474 1475 Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan"); 1476 1477 len = MAX_MATCH - (int)(strend - scan); 1478 1479 if (len < MIN_MATCH) return MIN_MATCH - 1; 1480 1481 s->match_start = cur_match; 1482 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; 1483 } 1484 1485 #endif /* FASTEST */ 1486 1487 #ifdef ZLIB_DEBUG 1488 1489 #define EQUAL 0 1490 /* result of memcmp for equal strings */ 1491 1492 /* =========================================================================== 1493 * Check that the match at match_start is indeed a match. 1494 */ 1495 local void check_match(s, start, match, length) 1496 deflate_state *s; 1497 IPos start, match; 1498 int length; 1499 { 1500 /* check that the match is indeed a match */ 1501 if (zmemcmp(s->window + match, 1502 s->window + start, length) != EQUAL) { 1503 fprintf(stderr, " start %u, match %u, length %d\n", 1504 start, match, length); 1505 do { 1506 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); 1507 } while (--length != 0); 1508 z_error("invalid match"); 1509 } 1510 if (z_verbose > 1) { 1511 fprintf(stderr,"\\[%d,%d]", start - match, length); 1512 do { putc(s->window[start++], stderr); } while (--length != 0); 1513 } 1514 } 1515 #else 1516 # define check_match(s, start, match, length) 1517 #endif /* ZLIB_DEBUG */ 1518 1519 /* =========================================================================== 1520 * Fill the window when the lookahead becomes insufficient. 1521 * Updates strstart and lookahead. 1522 * 1523 * IN assertion: lookahead < MIN_LOOKAHEAD 1524 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD 1525 * At least one byte has been read, or avail_in == 0; reads are 1526 * performed for at least two bytes (required for the zip translate_eol 1527 * option -- not supported here). 1528 */ 1529 local void fill_window(s) 1530 deflate_state *s; 1531 { 1532 unsigned n; 1533 unsigned more; /* Amount of free space at the end of the window. */ 1534 uInt wsize = s->w_size; 1535 1536 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); 1537 1538 do { 1539 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); 1540 1541 /* Deal with !@#$% 64K limit: */ 1542 if (sizeof(int) <= 2) { 1543 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { 1544 more = wsize; 1545 1546 } else if (more == (unsigned)(-1)) { 1547 /* Very unlikely, but possible on 16 bit machine if 1548 * strstart == 0 && lookahead == 1 (input done a byte at time) 1549 */ 1550 more--; 1551 } 1552 } 1553 1554 /* If the window is almost full and there is insufficient lookahead, 1555 * move the upper half to the lower one to make room in the upper half. 1556 */ 1557 if (s->strstart >= wsize + MAX_DIST(s)) { 1558 1559 zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more); 1560 s->match_start -= wsize; 1561 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ 1562 s->block_start -= (long) wsize; 1563 if (s->insert > s->strstart) 1564 s->insert = s->strstart; 1565 slide_hash(s); 1566 more += wsize; 1567 } 1568 if (s->strm->avail_in == 0) break; 1569 1570 /* If there was no sliding: 1571 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && 1572 * more == window_size - lookahead - strstart 1573 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) 1574 * => more >= window_size - 2*WSIZE + 2 1575 * In the BIG_MEM or MMAP case (not yet supported), 1576 * window_size == input_size + MIN_LOOKAHEAD && 1577 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. 1578 * Otherwise, window_size == 2*WSIZE so more >= 2. 1579 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. 1580 */ 1581 Assert(more >= 2, "more < 2"); 1582 1583 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); 1584 s->lookahead += n; 1585 1586 /* Initialize the hash value now that we have some input: */ 1587 if (s->lookahead + s->insert >= MIN_MATCH) { 1588 uInt str = s->strstart - s->insert; 1589 s->ins_h = s->window[str]; 1590 UPDATE_HASH(s, s->ins_h, s->window[str + 1]); 1591 #if MIN_MATCH != 3 1592 Call UPDATE_HASH() MIN_MATCH-3 more times 1593 #endif 1594 while (s->insert) { 1595 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 1596 #ifndef FASTEST 1597 s->prev[str & s->w_mask] = s->head[s->ins_h]; 1598 #endif 1599 s->head[s->ins_h] = (Pos)str; 1600 str++; 1601 s->insert--; 1602 if (s->lookahead + s->insert < MIN_MATCH) 1603 break; 1604 } 1605 } 1606 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, 1607 * but this is not important since only literal bytes will be emitted. 1608 */ 1609 1610 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); 1611 1612 /* If the WIN_INIT bytes after the end of the current data have never been 1613 * written, then zero those bytes in order to avoid memory check reports of 1614 * the use of uninitialized (or uninitialised as Julian writes) bytes by 1615 * the longest match routines. Update the high water mark for the next 1616 * time through here. WIN_INIT is set to MAX_MATCH since the longest match 1617 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. 1618 */ 1619 if (s->high_water < s->window_size) { 1620 ulg curr = s->strstart + (ulg)(s->lookahead); 1621 ulg init; 1622 1623 if (s->high_water < curr) { 1624 /* Previous high water mark below current data -- zero WIN_INIT 1625 * bytes or up to end of window, whichever is less. 1626 */ 1627 init = s->window_size - curr; 1628 if (init > WIN_INIT) 1629 init = WIN_INIT; 1630 zmemzero(s->window + curr, (unsigned)init); 1631 s->high_water = curr + init; 1632 } 1633 else if (s->high_water < (ulg)curr + WIN_INIT) { 1634 /* High water mark at or above current data, but below current data 1635 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up 1636 * to end of window, whichever is less. 1637 */ 1638 init = (ulg)curr + WIN_INIT - s->high_water; 1639 if (init > s->window_size - s->high_water) 1640 init = s->window_size - s->high_water; 1641 zmemzero(s->window + s->high_water, (unsigned)init); 1642 s->high_water += init; 1643 } 1644 } 1645 1646 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 1647 "not enough room for search"); 1648 } 1649 1650 /* =========================================================================== 1651 * Flush the current block, with given end-of-file flag. 1652 * IN assertion: strstart is set to the end of the current match. 1653 */ 1654 #define FLUSH_BLOCK_ONLY(s, last) { \ 1655 _tr_flush_block(s, (s->block_start >= 0L ? \ 1656 (charf *)&s->window[(unsigned)s->block_start] : \ 1657 (charf *)Z_NULL), \ 1658 (ulg)((long)s->strstart - s->block_start), \ 1659 (last)); \ 1660 s->block_start = s->strstart; \ 1661 flush_pending(s->strm); \ 1662 Tracev((stderr,"[FLUSH]")); \ 1663 } 1664 1665 /* Same but force premature exit if necessary. */ 1666 #define FLUSH_BLOCK(s, last) { \ 1667 FLUSH_BLOCK_ONLY(s, last); \ 1668 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ 1669 } 1670 1671 /* Maximum stored block length in deflate format (not including header). */ 1672 #define MAX_STORED 65535 1673 1674 /* Minimum of a and b. */ 1675 #define MIN(a, b) ((a) > (b) ? (b) : (a)) 1676 1677 /* =========================================================================== 1678 * Copy without compression as much as possible from the input stream, return 1679 * the current block state. 1680 * 1681 * In case deflateParams() is used to later switch to a non-zero compression 1682 * level, s->matches (otherwise unused when storing) keeps track of the number 1683 * of hash table slides to perform. If s->matches is 1, then one hash table 1684 * slide will be done when switching. If s->matches is 2, the maximum value 1685 * allowed here, then the hash table will be cleared, since two or more slides 1686 * is the same as a clear. 1687 * 1688 * deflate_stored() is written to minimize the number of times an input byte is 1689 * copied. It is most efficient with large input and output buffers, which 1690 * maximizes the opportunities to have a single copy from next_in to next_out. 1691 */ 1692 local block_state deflate_stored(s, flush) 1693 deflate_state *s; 1694 int flush; 1695 { 1696 /* Smallest worthy block size when not flushing or finishing. By default 1697 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For 1698 * large input and output buffers, the stored block size will be larger. 1699 */ 1700 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); 1701 1702 /* Copy as many min_block or larger stored blocks directly to next_out as 1703 * possible. If flushing, copy the remaining available input to next_out as 1704 * stored blocks, if there is enough space. 1705 */ 1706 unsigned len, left, have, last = 0; 1707 unsigned used = s->strm->avail_in; 1708 do { 1709 /* Set len to the maximum size block that we can copy directly with the 1710 * available input data and output space. Set left to how much of that 1711 * would be copied from what's left in the window. 1712 */ 1713 len = MAX_STORED; /* maximum deflate stored block length */ 1714 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ 1715 if (s->strm->avail_out < have) /* need room for header */ 1716 break; 1717 /* maximum stored block length that will fit in avail_out: */ 1718 have = s->strm->avail_out - have; 1719 left = s->strstart - s->block_start; /* bytes left in window */ 1720 if (len > (ulg)left + s->strm->avail_in) 1721 len = left + s->strm->avail_in; /* limit len to the input */ 1722 if (len > have) 1723 len = have; /* limit len to the output */ 1724 1725 /* If the stored block would be less than min_block in length, or if 1726 * unable to copy all of the available input when flushing, then try 1727 * copying to the window and the pending buffer instead. Also don't 1728 * write an empty block when flushing -- deflate() does that. 1729 */ 1730 if (len < min_block && ((len == 0 && flush != Z_FINISH) || 1731 flush == Z_NO_FLUSH || 1732 len != left + s->strm->avail_in)) 1733 break; 1734 1735 /* Make a dummy stored block in pending to get the header bytes, 1736 * including any pending bits. This also updates the debugging counts. 1737 */ 1738 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; 1739 _tr_stored_block(s, (char *)0, 0L, last); 1740 1741 /* Replace the lengths in the dummy stored block with len. */ 1742 s->pending_buf[s->pending - 4] = len; 1743 s->pending_buf[s->pending - 3] = len >> 8; 1744 s->pending_buf[s->pending - 2] = ~len; 1745 s->pending_buf[s->pending - 1] = ~len >> 8; 1746 1747 /* Write the stored block header bytes. */ 1748 flush_pending(s->strm); 1749 1750 #ifdef ZLIB_DEBUG 1751 /* Update debugging counts for the data about to be copied. */ 1752 s->compressed_len += len << 3; 1753 s->bits_sent += len << 3; 1754 #endif 1755 1756 /* Copy uncompressed bytes from the window to next_out. */ 1757 if (left) { 1758 if (left > len) 1759 left = len; 1760 zmemcpy(s->strm->next_out, s->window + s->block_start, left); 1761 s->strm->next_out += left; 1762 s->strm->avail_out -= left; 1763 s->strm->total_out += left; 1764 s->block_start += left; 1765 len -= left; 1766 } 1767 1768 /* Copy uncompressed bytes directly from next_in to next_out, updating 1769 * the check value. 1770 */ 1771 if (len) { 1772 read_buf(s->strm, s->strm->next_out, len); 1773 s->strm->next_out += len; 1774 s->strm->avail_out -= len; 1775 s->strm->total_out += len; 1776 } 1777 } while (last == 0); 1778 1779 /* Update the sliding window with the last s->w_size bytes of the copied 1780 * data, or append all of the copied data to the existing window if less 1781 * than s->w_size bytes were copied. Also update the number of bytes to 1782 * insert in the hash tables, in the event that deflateParams() switches to 1783 * a non-zero compression level. 1784 */ 1785 used -= s->strm->avail_in; /* number of input bytes directly copied */ 1786 if (used) { 1787 /* If any input was used, then no unused input remains in the window, 1788 * therefore s->block_start == s->strstart. 1789 */ 1790 if (used >= s->w_size) { /* supplant the previous history */ 1791 s->matches = 2; /* clear hash */ 1792 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size); 1793 s->strstart = s->w_size; 1794 s->insert = s->strstart; 1795 } 1796 else { 1797 if (s->window_size - s->strstart <= used) { 1798 /* Slide the window down. */ 1799 s->strstart -= s->w_size; 1800 zmemcpy(s->window, s->window + s->w_size, s->strstart); 1801 if (s->matches < 2) 1802 s->matches++; /* add a pending slide_hash() */ 1803 if (s->insert > s->strstart) 1804 s->insert = s->strstart; 1805 } 1806 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used); 1807 s->strstart += used; 1808 s->insert += MIN(used, s->w_size - s->insert); 1809 } 1810 s->block_start = s->strstart; 1811 } 1812 if (s->high_water < s->strstart) 1813 s->high_water = s->strstart; 1814 1815 /* If the last block was written to next_out, then done. */ 1816 if (last) 1817 return finish_done; 1818 1819 /* If flushing and all input has been consumed, then done. */ 1820 if (flush != Z_NO_FLUSH && flush != Z_FINISH && 1821 s->strm->avail_in == 0 && (long)s->strstart == s->block_start) 1822 return block_done; 1823 1824 /* Fill the window with any remaining input. */ 1825 have = s->window_size - s->strstart; 1826 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) { 1827 /* Slide the window down. */ 1828 s->block_start -= s->w_size; 1829 s->strstart -= s->w_size; 1830 zmemcpy(s->window, s->window + s->w_size, s->strstart); 1831 if (s->matches < 2) 1832 s->matches++; /* add a pending slide_hash() */ 1833 have += s->w_size; /* more space now */ 1834 if (s->insert > s->strstart) 1835 s->insert = s->strstart; 1836 } 1837 if (have > s->strm->avail_in) 1838 have = s->strm->avail_in; 1839 if (have) { 1840 read_buf(s->strm, s->window + s->strstart, have); 1841 s->strstart += have; 1842 s->insert += MIN(have, s->w_size - s->insert); 1843 } 1844 if (s->high_water < s->strstart) 1845 s->high_water = s->strstart; 1846 1847 /* There was not enough avail_out to write a complete worthy or flushed 1848 * stored block to next_out. Write a stored block to pending instead, if we 1849 * have enough input for a worthy block, or if flushing and there is enough 1850 * room for the remaining input as a stored block in the pending buffer. 1851 */ 1852 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ 1853 /* maximum stored block length that will fit in pending: */ 1854 have = MIN(s->pending_buf_size - have, MAX_STORED); 1855 min_block = MIN(have, s->w_size); 1856 left = s->strstart - s->block_start; 1857 if (left >= min_block || 1858 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && 1859 s->strm->avail_in == 0 && left <= have)) { 1860 len = MIN(left, have); 1861 last = flush == Z_FINISH && s->strm->avail_in == 0 && 1862 len == left ? 1 : 0; 1863 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last); 1864 s->block_start += len; 1865 flush_pending(s->strm); 1866 } 1867 1868 /* We've done all we can with the available input and output. */ 1869 return last ? finish_started : need_more; 1870 } 1871 1872 /* =========================================================================== 1873 * Compress as much as possible from the input stream, return the current 1874 * block state. 1875 * This function does not perform lazy evaluation of matches and inserts 1876 * new strings in the dictionary only for unmatched strings or for short 1877 * matches. It is used only for the fast compression options. 1878 */ 1879 local block_state deflate_fast(s, flush) 1880 deflate_state *s; 1881 int flush; 1882 { 1883 IPos hash_head; /* head of the hash chain */ 1884 int bflush; /* set if current block must be flushed */ 1885 1886 for (;;) { 1887 /* Make sure that we always have enough lookahead, except 1888 * at the end of the input file. We need MAX_MATCH bytes 1889 * for the next match, plus MIN_MATCH bytes to insert the 1890 * string following the next match. 1891 */ 1892 if (s->lookahead < MIN_LOOKAHEAD) { 1893 fill_window(s); 1894 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1895 return need_more; 1896 } 1897 if (s->lookahead == 0) break; /* flush the current block */ 1898 } 1899 1900 /* Insert the string window[strstart .. strstart + 2] in the 1901 * dictionary, and set hash_head to the head of the hash chain: 1902 */ 1903 hash_head = NIL; 1904 if (s->lookahead >= MIN_MATCH) { 1905 INSERT_STRING(s, s->strstart, hash_head); 1906 } 1907 1908 /* Find the longest match, discarding those <= prev_length. 1909 * At this point we have always match_length < MIN_MATCH 1910 */ 1911 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { 1912 /* To simplify the code, we prevent matches with the string 1913 * of window index 0 (in particular we have to avoid a match 1914 * of the string with itself at the start of the input file). 1915 */ 1916 s->match_length = longest_match (s, hash_head); 1917 /* longest_match() sets match_start */ 1918 } 1919 if (s->match_length >= MIN_MATCH) { 1920 check_match(s, s->strstart, s->match_start, s->match_length); 1921 1922 _tr_tally_dist(s, s->strstart - s->match_start, 1923 s->match_length - MIN_MATCH, bflush); 1924 1925 s->lookahead -= s->match_length; 1926 1927 /* Insert new strings in the hash table only if the match length 1928 * is not too large. This saves time but degrades compression. 1929 */ 1930 #ifndef FASTEST 1931 if (s->match_length <= s->max_insert_length && 1932 s->lookahead >= MIN_MATCH) { 1933 s->match_length--; /* string at strstart already in table */ 1934 do { 1935 s->strstart++; 1936 INSERT_STRING(s, s->strstart, hash_head); 1937 /* strstart never exceeds WSIZE-MAX_MATCH, so there are 1938 * always MIN_MATCH bytes ahead. 1939 */ 1940 } while (--s->match_length != 0); 1941 s->strstart++; 1942 } else 1943 #endif 1944 { 1945 s->strstart += s->match_length; 1946 s->match_length = 0; 1947 s->ins_h = s->window[s->strstart]; 1948 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]); 1949 #if MIN_MATCH != 3 1950 Call UPDATE_HASH() MIN_MATCH-3 more times 1951 #endif 1952 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not 1953 * matter since it will be recomputed at next deflate call. 1954 */ 1955 } 1956 } else { 1957 /* No match, output a literal byte */ 1958 Tracevv((stderr,"%c", s->window[s->strstart])); 1959 _tr_tally_lit(s, s->window[s->strstart], bflush); 1960 s->lookahead--; 1961 s->strstart++; 1962 } 1963 if (bflush) FLUSH_BLOCK(s, 0); 1964 } 1965 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 1966 if (flush == Z_FINISH) { 1967 FLUSH_BLOCK(s, 1); 1968 return finish_done; 1969 } 1970 if (s->sym_next) 1971 FLUSH_BLOCK(s, 0); 1972 return block_done; 1973 } 1974 1975 #ifndef FASTEST 1976 /* =========================================================================== 1977 * Same as above, but achieves better compression. We use a lazy 1978 * evaluation for matches: a match is finally adopted only if there is 1979 * no better match at the next window position. 1980 */ 1981 local block_state deflate_slow(s, flush) 1982 deflate_state *s; 1983 int flush; 1984 { 1985 IPos hash_head; /* head of hash chain */ 1986 int bflush; /* set if current block must be flushed */ 1987 1988 /* Process the input block. */ 1989 for (;;) { 1990 /* Make sure that we always have enough lookahead, except 1991 * at the end of the input file. We need MAX_MATCH bytes 1992 * for the next match, plus MIN_MATCH bytes to insert the 1993 * string following the next match. 1994 */ 1995 if (s->lookahead < MIN_LOOKAHEAD) { 1996 fill_window(s); 1997 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1998 return need_more; 1999 } 2000 if (s->lookahead == 0) break; /* flush the current block */ 2001 } 2002 2003 /* Insert the string window[strstart .. strstart + 2] in the 2004 * dictionary, and set hash_head to the head of the hash chain: 2005 */ 2006 hash_head = NIL; 2007 if (s->lookahead >= MIN_MATCH) { 2008 INSERT_STRING(s, s->strstart, hash_head); 2009 } 2010 2011 /* Find the longest match, discarding those <= prev_length. 2012 */ 2013 s->prev_length = s->match_length, s->prev_match = s->match_start; 2014 s->match_length = MIN_MATCH-1; 2015 2016 if (hash_head != NIL && s->prev_length < s->max_lazy_match && 2017 s->strstart - hash_head <= MAX_DIST(s)) { 2018 /* To simplify the code, we prevent matches with the string 2019 * of window index 0 (in particular we have to avoid a match 2020 * of the string with itself at the start of the input file). 2021 */ 2022 s->match_length = longest_match (s, hash_head); 2023 /* longest_match() sets match_start */ 2024 2025 if (s->match_length <= 5 && (s->strategy == Z_FILTERED 2026 #if TOO_FAR <= 32767 2027 || (s->match_length == MIN_MATCH && 2028 s->strstart - s->match_start > TOO_FAR) 2029 #endif 2030 )) { 2031 2032 /* If prev_match is also MIN_MATCH, match_start is garbage 2033 * but we will ignore the current match anyway. 2034 */ 2035 s->match_length = MIN_MATCH-1; 2036 } 2037 } 2038 /* If there was a match at the previous step and the current 2039 * match is not better, output the previous match: 2040 */ 2041 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { 2042 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; 2043 /* Do not insert strings in hash table beyond this. */ 2044 2045 check_match(s, s->strstart - 1, s->prev_match, s->prev_length); 2046 2047 _tr_tally_dist(s, s->strstart - 1 - s->prev_match, 2048 s->prev_length - MIN_MATCH, bflush); 2049 2050 /* Insert in hash table all strings up to the end of the match. 2051 * strstart - 1 and strstart are already inserted. If there is not 2052 * enough lookahead, the last two strings are not inserted in 2053 * the hash table. 2054 */ 2055 s->lookahead -= s->prev_length - 1; 2056 s->prev_length -= 2; 2057 do { 2058 if (++s->strstart <= max_insert) { 2059 INSERT_STRING(s, s->strstart, hash_head); 2060 } 2061 } while (--s->prev_length != 0); 2062 s->match_available = 0; 2063 s->match_length = MIN_MATCH-1; 2064 s->strstart++; 2065 2066 if (bflush) FLUSH_BLOCK(s, 0); 2067 2068 } else if (s->match_available) { 2069 /* If there was no match at the previous position, output a 2070 * single literal. If there was a match but the current match 2071 * is longer, truncate the previous match to a single literal. 2072 */ 2073 Tracevv((stderr,"%c", s->window[s->strstart - 1])); 2074 _tr_tally_lit(s, s->window[s->strstart - 1], bflush); 2075 if (bflush) { 2076 FLUSH_BLOCK_ONLY(s, 0); 2077 } 2078 s->strstart++; 2079 s->lookahead--; 2080 if (s->strm->avail_out == 0) return need_more; 2081 } else { 2082 /* There is no previous match to compare with, wait for 2083 * the next step to decide. 2084 */ 2085 s->match_available = 1; 2086 s->strstart++; 2087 s->lookahead--; 2088 } 2089 } 2090 Assert (flush != Z_NO_FLUSH, "no flush?"); 2091 if (s->match_available) { 2092 Tracevv((stderr,"%c", s->window[s->strstart - 1])); 2093 _tr_tally_lit(s, s->window[s->strstart - 1], bflush); 2094 s->match_available = 0; 2095 } 2096 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 2097 if (flush == Z_FINISH) { 2098 FLUSH_BLOCK(s, 1); 2099 return finish_done; 2100 } 2101 if (s->sym_next) 2102 FLUSH_BLOCK(s, 0); 2103 return block_done; 2104 } 2105 #endif /* FASTEST */ 2106 2107 /* =========================================================================== 2108 * For Z_RLE, simply look for runs of bytes, generate matches only of distance 2109 * one. Do not maintain a hash table. (It will be regenerated if this run of 2110 * deflate switches away from Z_RLE.) 2111 */ 2112 local block_state deflate_rle(s, flush) 2113 deflate_state *s; 2114 int flush; 2115 { 2116 int bflush; /* set if current block must be flushed */ 2117 uInt prev; /* byte at distance one to match */ 2118 Bytef *scan, *strend; /* scan goes up to strend for length of run */ 2119 2120 for (;;) { 2121 /* Make sure that we always have enough lookahead, except 2122 * at the end of the input file. We need MAX_MATCH bytes 2123 * for the longest run, plus one for the unrolled loop. 2124 */ 2125 if (s->lookahead <= MAX_MATCH) { 2126 fill_window(s); 2127 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { 2128 return need_more; 2129 } 2130 if (s->lookahead == 0) break; /* flush the current block */ 2131 } 2132 2133 /* See how many times the previous byte repeats */ 2134 s->match_length = 0; 2135 if (s->lookahead >= MIN_MATCH && s->strstart > 0) { 2136 scan = s->window + s->strstart - 1; 2137 prev = *scan; 2138 if (prev == *++scan && prev == *++scan && prev == *++scan) { 2139 strend = s->window + s->strstart + MAX_MATCH; 2140 do { 2141 } while (prev == *++scan && prev == *++scan && 2142 prev == *++scan && prev == *++scan && 2143 prev == *++scan && prev == *++scan && 2144 prev == *++scan && prev == *++scan && 2145 scan < strend); 2146 s->match_length = MAX_MATCH - (uInt)(strend - scan); 2147 if (s->match_length > s->lookahead) 2148 s->match_length = s->lookahead; 2149 } 2150 Assert(scan <= s->window + (uInt)(s->window_size - 1), 2151 "wild scan"); 2152 } 2153 2154 /* Emit match if have run of MIN_MATCH or longer, else emit literal */ 2155 if (s->match_length >= MIN_MATCH) { 2156 check_match(s, s->strstart, s->strstart - 1, s->match_length); 2157 2158 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); 2159 2160 s->lookahead -= s->match_length; 2161 s->strstart += s->match_length; 2162 s->match_length = 0; 2163 } else { 2164 /* No match, output a literal byte */ 2165 Tracevv((stderr,"%c", s->window[s->strstart])); 2166 _tr_tally_lit(s, s->window[s->strstart], bflush); 2167 s->lookahead--; 2168 s->strstart++; 2169 } 2170 if (bflush) FLUSH_BLOCK(s, 0); 2171 } 2172 s->insert = 0; 2173 if (flush == Z_FINISH) { 2174 FLUSH_BLOCK(s, 1); 2175 return finish_done; 2176 } 2177 if (s->sym_next) 2178 FLUSH_BLOCK(s, 0); 2179 return block_done; 2180 } 2181 2182 /* =========================================================================== 2183 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. 2184 * (It will be regenerated if this run of deflate switches away from Huffman.) 2185 */ 2186 local block_state deflate_huff(s, flush) 2187 deflate_state *s; 2188 int flush; 2189 { 2190 int bflush; /* set if current block must be flushed */ 2191 2192 for (;;) { 2193 /* Make sure that we have a literal to write. */ 2194 if (s->lookahead == 0) { 2195 fill_window(s); 2196 if (s->lookahead == 0) { 2197 if (flush == Z_NO_FLUSH) 2198 return need_more; 2199 break; /* flush the current block */ 2200 } 2201 } 2202 2203 /* Output a literal byte */ 2204 s->match_length = 0; 2205 Tracevv((stderr,"%c", s->window[s->strstart])); 2206 _tr_tally_lit(s, s->window[s->strstart], bflush); 2207 s->lookahead--; 2208 s->strstart++; 2209 if (bflush) FLUSH_BLOCK(s, 0); 2210 } 2211 s->insert = 0; 2212 if (flush == Z_FINISH) { 2213 FLUSH_BLOCK(s, 1); 2214 return finish_done; 2215 } 2216 if (s->sym_next) 2217 FLUSH_BLOCK(s, 0); 2218 return block_done; 2219 } 2220