1 /* $NetBSD: crc32.c,v 1.5 2017/01/10 01:27:41 christos Exp $ */ 2 3 /* crc32.c -- compute the CRC-32 of a data stream 4 * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler 5 * For conditions of distribution and use, see copyright notice in zlib.h 6 * 7 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster 8 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing 9 * tables for updating the shift register in one step with three exclusive-ors 10 * instead of four steps with four exclusive-ors. This results in about a 11 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. 12 */ 13 14 /* @(#) $Id: crc32.c,v 1.5 2017/01/10 01:27:41 christos Exp $ */ 15 16 /* 17 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore 18 protection on the static variables used to control the first-use generation 19 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should 20 first call get_crc_table() to initialize the tables before allowing more than 21 one thread to use crc32(). 22 23 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. 24 */ 25 26 #ifdef MAKECRCH 27 # include <stdio.h> 28 # ifndef DYNAMIC_CRC_TABLE 29 # define DYNAMIC_CRC_TABLE 30 # endif /* !DYNAMIC_CRC_TABLE */ 31 #endif /* MAKECRCH */ 32 33 #include "zutil.h" /* for STDC and FAR definitions */ 34 35 #define local static 36 37 #if defined(__NetBSD__) && defined(_STANDALONE) 38 #define NOBYFOUR 39 #define DYNAMIC_CRC_TABLE 40 #endif 41 42 /* Definitions for doing the crc four data bytes at a time. */ 43 #if !defined(NOBYFOUR) && defined(Z_U4) 44 # define BYFOUR 45 #endif 46 #ifdef BYFOUR 47 local unsigned long crc32_little OF((unsigned long, 48 const unsigned char FAR *, z_size_t)); 49 local unsigned long crc32_big OF((unsigned long, 50 const unsigned char FAR *, z_size_t)); 51 # define TBLS 8 52 #else 53 # define TBLS 1 54 #endif /* BYFOUR */ 55 56 /* Local functions for crc concatenation */ 57 local unsigned long gf2_matrix_times OF((unsigned long *mat, 58 unsigned long vec)); 59 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); 60 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); 61 62 63 #ifdef DYNAMIC_CRC_TABLE 64 65 local volatile int crc_table_empty = 1; 66 local z_crc_t FAR crc_table[TBLS][256]; 67 local void make_crc_table OF((void)); 68 #ifdef MAKECRCH 69 local void write_table OF((FILE *, const z_crc_t FAR *)); 70 #endif /* MAKECRCH */ 71 /* 72 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: 73 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. 74 75 Polynomials over GF(2) are represented in binary, one bit per coefficient, 76 with the lowest powers in the most significant bit. Then adding polynomials 77 is just exclusive-or, and multiplying a polynomial by x is a right shift by 78 one. If we call the above polynomial p, and represent a byte as the 79 polynomial q, also with the lowest power in the most significant bit (so the 80 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, 81 where a mod b means the remainder after dividing a by b. 82 83 This calculation is done using the shift-register method of multiplying and 84 taking the remainder. The register is initialized to zero, and for each 85 incoming bit, x^32 is added mod p to the register if the bit is a one (where 86 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by 87 x (which is shifting right by one and adding x^32 mod p if the bit shifted 88 out is a one). We start with the highest power (least significant bit) of 89 q and repeat for all eight bits of q. 90 91 The first table is simply the CRC of all possible eight bit values. This is 92 all the information needed to generate CRCs on data a byte at a time for all 93 combinations of CRC register values and incoming bytes. The remaining tables 94 allow for word-at-a-time CRC calculation for both big-endian and little- 95 endian machines, where a word is four bytes. 96 */ 97 local void make_crc_table() 98 { 99 z_crc_t c; 100 int n, k; 101 z_crc_t poly; /* polynomial exclusive-or pattern */ 102 /* terms of polynomial defining this crc (except x^32): */ 103 static volatile int first = 1; /* flag to limit concurrent making */ 104 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; 105 106 /* See if another task is already doing this (not thread-safe, but better 107 than nothing -- significantly reduces duration of vulnerability in 108 case the advice about DYNAMIC_CRC_TABLE is ignored) */ 109 if (first) { 110 first = 0; 111 112 /* make exclusive-or pattern from polynomial (0xedb88320UL) */ 113 poly = 0; 114 for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) 115 poly |= (z_crc_t)1 << (31 - p[n]); 116 117 /* generate a crc for every 8-bit value */ 118 for (n = 0; n < 256; n++) { 119 c = (z_crc_t)n; 120 for (k = 0; k < 8; k++) 121 c = c & 1 ? poly ^ (c >> 1) : c >> 1; 122 crc_table[0][n] = c; 123 } 124 125 #ifdef BYFOUR 126 /* generate crc for each value followed by one, two, and three zeros, 127 and then the byte reversal of those as well as the first table */ 128 for (n = 0; n < 256; n++) { 129 c = crc_table[0][n]; 130 crc_table[4][n] = ZSWAP32(c); 131 for (k = 1; k < 4; k++) { 132 c = crc_table[0][c & 0xff] ^ (c >> 8); 133 crc_table[k][n] = c; 134 crc_table[k + 4][n] = ZSWAP32(c); 135 } 136 } 137 #endif /* BYFOUR */ 138 139 crc_table_empty = 0; 140 } 141 else { /* not first */ 142 /* wait for the other guy to finish (not efficient, but rare) */ 143 while (crc_table_empty) 144 ; 145 } 146 147 #ifdef MAKECRCH 148 /* write out CRC tables to crc32.h */ 149 { 150 FILE *out; 151 152 out = fopen("crc32.h", "w"); 153 if (out == NULL) return; 154 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); 155 fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); 156 fprintf(out, "local const z_crc_t FAR "); 157 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); 158 write_table(out, crc_table[0]); 159 # ifdef BYFOUR 160 fprintf(out, "#ifdef BYFOUR\n"); 161 for (k = 1; k < 8; k++) { 162 fprintf(out, " },\n {\n"); 163 write_table(out, crc_table[k]); 164 } 165 fprintf(out, "#endif\n"); 166 # endif /* BYFOUR */ 167 fprintf(out, " }\n};\n"); 168 fclose(out); 169 } 170 #endif /* MAKECRCH */ 171 } 172 173 #ifdef MAKECRCH 174 local void write_table(out, table) 175 FILE *out; 176 const z_crc_t FAR *table; 177 { 178 int n; 179 180 for (n = 0; n < 256; n++) 181 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", 182 (unsigned long)(table[n]), 183 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); 184 } 185 #endif /* MAKECRCH */ 186 187 #else /* !DYNAMIC_CRC_TABLE */ 188 /* ======================================================================== 189 * Tables of CRC-32s of all single-byte values, made by make_crc_table(). 190 */ 191 #include "crc32.h" 192 #endif /* DYNAMIC_CRC_TABLE */ 193 194 /* ========================================================================= 195 * This function can be used by asm versions of crc32() 196 */ 197 const z_crc_t FAR * ZEXPORT get_crc_table() 198 { 199 #ifdef DYNAMIC_CRC_TABLE 200 if (crc_table_empty) 201 make_crc_table(); 202 #endif /* DYNAMIC_CRC_TABLE */ 203 return (const z_crc_t FAR *)crc_table; 204 } 205 206 /* ========================================================================= */ 207 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) 208 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 209 210 /* ========================================================================= */ 211 unsigned long ZEXPORT crc32_z(crc, buf, len) 212 unsigned long crc; 213 const unsigned char FAR *buf; 214 z_size_t len; 215 { 216 if (buf == Z_NULL) return 0UL; 217 218 #ifdef DYNAMIC_CRC_TABLE 219 if (crc_table_empty) 220 make_crc_table(); 221 #endif /* DYNAMIC_CRC_TABLE */ 222 223 #ifdef BYFOUR 224 if (sizeof(void *) == sizeof(ptrdiff_t)) { 225 z_crc_t endian; 226 227 endian = 1; 228 if (*((unsigned char *)(&endian))) 229 return crc32_little(crc, buf, len); 230 else 231 return crc32_big(crc, buf, len); 232 } 233 #endif /* BYFOUR */ 234 crc = crc ^ 0xffffffffUL; 235 while (len >= 8) { 236 DO8; 237 len -= 8; 238 } 239 if (len) do { 240 DO1; 241 } while (--len); 242 return crc ^ 0xffffffffUL; 243 } 244 245 /* ========================================================================= */ 246 unsigned long ZEXPORT crc32(crc, buf, len) 247 unsigned long crc; 248 const unsigned char FAR *buf; 249 uInt len; 250 { 251 return crc32_z(crc, buf, len); 252 } 253 254 #ifdef BYFOUR 255 256 /* 257 This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit 258 integer pointer type. This violates the strict aliasing rule, where a 259 compiler can assume, for optimization purposes, that two pointers to 260 fundamentally different types won't ever point to the same memory. This can 261 manifest as a problem only if one of the pointers is written to. This code 262 only reads from those pointers. So long as this code remains isolated in 263 this compilation unit, there won't be a problem. For this reason, this code 264 should not be copied and pasted into a compilation unit in which other code 265 writes to the buffer that is passed to these routines. 266 */ 267 268 /* ========================================================================= */ 269 #define DOLIT4 c ^= *buf4++; \ 270 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ 271 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] 272 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 273 274 /* ========================================================================= */ 275 local unsigned long crc32_little(crc, buf, len) 276 unsigned long crc; 277 const unsigned char FAR *buf; 278 z_size_t len; 279 { 280 register z_crc_t c; 281 register const z_crc_t FAR *buf4; 282 283 c = (z_crc_t)crc; 284 c = ~c; 285 while (len && ((z_ptrdiff_t)buf & 3)) { 286 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); 287 len--; 288 } 289 290 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; 291 while (len >= 32) { 292 DOLIT32; 293 len -= 32; 294 } 295 while (len >= 4) { 296 DOLIT4; 297 len -= 4; 298 } 299 buf = (const unsigned char FAR *)buf4; 300 301 if (len) do { 302 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); 303 } while (--len); 304 c = ~c; 305 return (unsigned long)c; 306 } 307 308 /* ========================================================================= */ 309 #define DOBIG4 c ^= *buf4++; \ 310 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ 311 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] 312 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 313 314 /* ========================================================================= */ 315 local unsigned long crc32_big(crc, buf, len) 316 unsigned long crc; 317 const unsigned char FAR *buf; 318 z_size_t len; 319 { 320 register z_crc_t c; 321 register const z_crc_t FAR *buf4; 322 323 c = ZSWAP32((z_crc_t)crc); 324 c = ~c; 325 while (len && ((z_ptrdiff_t)buf & 3)) { 326 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); 327 len--; 328 } 329 330 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; 331 while (len >= 32) { 332 DOBIG32; 333 len -= 32; 334 } 335 while (len >= 4) { 336 DOBIG4; 337 len -= 4; 338 } 339 buf = (const unsigned char FAR *)buf4; 340 341 if (len) do { 342 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); 343 } while (--len); 344 c = ~c; 345 return (unsigned long)(ZSWAP32(c)); 346 } 347 348 #endif /* BYFOUR */ 349 350 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ 351 352 /* ========================================================================= */ 353 local unsigned long gf2_matrix_times(mat, vec) 354 unsigned long *mat; 355 unsigned long vec; 356 { 357 unsigned long sum; 358 359 sum = 0; 360 while (vec) { 361 if (vec & 1) 362 sum ^= *mat; 363 vec >>= 1; 364 mat++; 365 } 366 return sum; 367 } 368 369 /* ========================================================================= */ 370 local void gf2_matrix_square(square, mat) 371 unsigned long *square; 372 unsigned long *mat; 373 { 374 int n; 375 376 for (n = 0; n < GF2_DIM; n++) 377 square[n] = gf2_matrix_times(mat, mat[n]); 378 } 379 380 /* ========================================================================= */ 381 local uLong crc32_combine_(crc1, crc2, len2) 382 uLong crc1; 383 uLong crc2; 384 z_off64_t len2; 385 { 386 int n; 387 unsigned long row; 388 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ 389 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ 390 391 /* degenerate case (also disallow negative lengths) */ 392 if (len2 <= 0) 393 return crc1; 394 395 /* put operator for one zero bit in odd */ 396 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ 397 row = 1; 398 for (n = 1; n < GF2_DIM; n++) { 399 odd[n] = row; 400 row <<= 1; 401 } 402 403 /* put operator for two zero bits in even */ 404 gf2_matrix_square(even, odd); 405 406 /* put operator for four zero bits in odd */ 407 gf2_matrix_square(odd, even); 408 409 /* apply len2 zeros to crc1 (first square will put the operator for one 410 zero byte, eight zero bits, in even) */ 411 do { 412 /* apply zeros operator for this bit of len2 */ 413 gf2_matrix_square(even, odd); 414 if (len2 & 1) 415 crc1 = gf2_matrix_times(even, crc1); 416 len2 >>= 1; 417 418 /* if no more bits set, then done */ 419 if (len2 == 0) 420 break; 421 422 /* another iteration of the loop with odd and even swapped */ 423 gf2_matrix_square(odd, even); 424 if (len2 & 1) 425 crc1 = gf2_matrix_times(odd, crc1); 426 len2 >>= 1; 427 428 /* if no more bits set, then done */ 429 } while (len2 != 0); 430 431 /* return combined crc */ 432 crc1 ^= crc2; 433 return crc1; 434 } 435 436 /* ========================================================================= */ 437 uLong ZEXPORT crc32_combine(crc1, crc2, len2) 438 uLong crc1; 439 uLong crc2; 440 z_off_t len2; 441 { 442 return crc32_combine_(crc1, crc2, len2); 443 } 444 445 uLong ZEXPORT crc32_combine64(crc1, crc2, len2) 446 uLong crc1; 447 uLong crc2; 448 z_off64_t len2; 449 { 450 return crc32_combine_(crc1, crc2, len2); 451 } 452