1 /* $NetBSD: tables.c,v 1.6 1997/03/22 03:14:27 lukem Exp $ */ 2 3 /*- 4 * Copyright (c) 1992 Keith Muller. 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Keith Muller of the University of California, San Diego. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 */ 39 40 #ifndef lint 41 #if 0 42 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93"; 43 #else 44 static char rcsid[] = "$NetBSD: tables.c,v 1.6 1997/03/22 03:14:27 lukem Exp $"; 45 #endif 46 #endif /* not lint */ 47 48 #include <sys/types.h> 49 #include <sys/time.h> 50 #include <sys/stat.h> 51 #include <sys/param.h> 52 #include <sys/fcntl.h> 53 #include <stdio.h> 54 #include <ctype.h> 55 #include <string.h> 56 #include <unistd.h> 57 #include <errno.h> 58 #include <stdlib.h> 59 #include "pax.h" 60 #include "tables.h" 61 #include "extern.h" 62 63 /* 64 * Routines for controlling the contents of all the different databases pax 65 * keeps. Tables are dynamically created only when they are needed. The 66 * goal was speed and the ability to work with HUGE archives. The databases 67 * were kept simple, but do have complex rules for when the contents change. 68 * As of this writing, the posix library functions were more complex than 69 * needed for this application (pax databases have very short lifetimes and 70 * do not survive after pax is finished). Pax is required to handle very 71 * large archives. These database routines carefully combine memory usage and 72 * temporary file storage in ways which will not significantly impact runtime 73 * performance while allowing the largest possible archives to be handled. 74 * Trying to force the fit to the posix databases routines was not considered 75 * time well spent. 76 */ 77 78 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */ 79 static FTM **ftab = NULL; /* file time table for updating arch */ 80 static NAMT **ntab = NULL; /* interactive rename storage table */ 81 static DEVT **dtab = NULL; /* device/inode mapping tables */ 82 static ATDIR **atab = NULL; /* file tree directory time reset table */ 83 static int dirfd = -1; /* storage for setting created dir time/mode */ 84 static u_long dircnt; /* entries in dir time/mode storage */ 85 static int ffd = -1; /* tmp file for file time table name storage */ 86 87 static DEVT *chk_dev __P((dev_t, int)); 88 89 /* 90 * hard link table routines 91 * 92 * The hard link table tries to detect hard links to files using the device and 93 * inode values. We do this when writing an archive, so we can tell the format 94 * write routine that this file is a hard link to another file. The format 95 * write routine then can store this file in whatever way it wants (as a hard 96 * link if the format supports that like tar, or ignore this info like cpio). 97 * (Actually a field in the format driver table tells us if the format wants 98 * hard link info. if not, we do not waste time looking for them). We also use 99 * the same table when reading an archive. In that situation, this table is 100 * used by the format read routine to detect hard links from stored dev and 101 * inode numbers (like cpio). This will allow pax to create a link when one 102 * can be detected by the archive format. 103 */ 104 105 /* 106 * lnk_start 107 * Creates the hard link table. 108 * Return: 109 * 0 if created, -1 if failure 110 */ 111 112 #if __STDC__ 113 int 114 lnk_start(void) 115 #else 116 int 117 lnk_start() 118 #endif 119 { 120 if (ltab != NULL) 121 return(0); 122 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) { 123 warn(1, "Cannot allocate memory for hard link table"); 124 return(-1); 125 } 126 return(0); 127 } 128 129 /* 130 * chk_lnk() 131 * Looks up entry in hard link hash table. If found, it copies the name 132 * of the file it is linked to (we already saw that file) into ln_name. 133 * lnkcnt is decremented and if goes to 1 the node is deleted from the 134 * database. (We have seen all the links to this file). If not found, 135 * we add the file to the database if it has the potential for having 136 * hard links to other files we may process (it has a link count > 1) 137 * Return: 138 * if found returns 1; if not found returns 0; -1 on error 139 */ 140 141 #if __STDC__ 142 int 143 chk_lnk(ARCHD *arcn) 144 #else 145 int 146 chk_lnk(arcn) 147 ARCHD *arcn; 148 #endif 149 { 150 HRDLNK *pt; 151 HRDLNK **ppt; 152 u_int indx; 153 154 if (ltab == NULL) 155 return(-1); 156 /* 157 * ignore those nodes that cannot have hard links 158 */ 159 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1)) 160 return(0); 161 162 /* 163 * hash inode number and look for this file 164 */ 165 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 166 if ((pt = ltab[indx]) != NULL) { 167 /* 168 * it's hash chain in not empty, walk down looking for it 169 */ 170 ppt = &(ltab[indx]); 171 while (pt != NULL) { 172 if ((pt->ino == arcn->sb.st_ino) && 173 (pt->dev == arcn->sb.st_dev)) 174 break; 175 ppt = &(pt->fow); 176 pt = pt->fow; 177 } 178 179 if (pt != NULL) { 180 /* 181 * found a link. set the node type and copy in the 182 * name of the file it is to link to. we need to 183 * handle hardlinks to regular files differently than 184 * other links. 185 */ 186 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name, 187 PAXPATHLEN+1); 188 if (arcn->type == PAX_REG) 189 arcn->type = PAX_HRG; 190 else 191 arcn->type = PAX_HLK; 192 193 /* 194 * if we have found all the links to this file, remove 195 * it from the database 196 */ 197 if (--pt->nlink <= 1) { 198 *ppt = pt->fow; 199 (void)free((char *)pt->name); 200 (void)free((char *)pt); 201 } 202 return(1); 203 } 204 } 205 206 /* 207 * we never saw this file before. It has links so we add it to the 208 * front of this hash chain 209 */ 210 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) { 211 if ((pt->name = strdup(arcn->name)) != NULL) { 212 pt->dev = arcn->sb.st_dev; 213 pt->ino = arcn->sb.st_ino; 214 pt->nlink = arcn->sb.st_nlink; 215 pt->fow = ltab[indx]; 216 ltab[indx] = pt; 217 return(0); 218 } 219 (void)free((char *)pt); 220 } 221 222 warn(1, "Hard link table out of memory"); 223 return(-1); 224 } 225 226 /* 227 * purg_lnk 228 * remove reference for a file that we may have added to the data base as 229 * a potential source for hard links. We ended up not using the file, so 230 * we do not want to accidently point another file at it later on. 231 */ 232 233 #if __STDC__ 234 void 235 purg_lnk(ARCHD *arcn) 236 #else 237 void 238 purg_lnk(arcn) 239 ARCHD *arcn; 240 #endif 241 { 242 HRDLNK *pt; 243 HRDLNK **ppt; 244 u_int indx; 245 246 if (ltab == NULL) 247 return; 248 /* 249 * do not bother to look if it could not be in the database 250 */ 251 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) || 252 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG)) 253 return; 254 255 /* 256 * find the hash chain for this inode value, if empty return 257 */ 258 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 259 if ((pt = ltab[indx]) == NULL) 260 return; 261 262 /* 263 * walk down the list looking for the inode/dev pair, unlink and 264 * free if found 265 */ 266 ppt = &(ltab[indx]); 267 while (pt != NULL) { 268 if ((pt->ino == arcn->sb.st_ino) && 269 (pt->dev == arcn->sb.st_dev)) 270 break; 271 ppt = &(pt->fow); 272 pt = pt->fow; 273 } 274 if (pt == NULL) 275 return; 276 277 /* 278 * remove and free it 279 */ 280 *ppt = pt->fow; 281 (void)free((char *)pt->name); 282 (void)free((char *)pt); 283 } 284 285 /* 286 * lnk_end() 287 * pull apart a existing link table so we can reuse it. We do this between 288 * read and write phases of append with update. (The format may have 289 * used the link table, and we need to start with a fresh table for the 290 * write phase 291 */ 292 293 #if __STDC__ 294 void 295 lnk_end(void) 296 #else 297 void 298 lnk_end() 299 #endif 300 { 301 int i; 302 HRDLNK *pt; 303 HRDLNK *ppt; 304 305 if (ltab == NULL) 306 return; 307 308 for (i = 0; i < L_TAB_SZ; ++i) { 309 if (ltab[i] == NULL) 310 continue; 311 pt = ltab[i]; 312 ltab[i] = NULL; 313 314 /* 315 * free up each entry on this chain 316 */ 317 while (pt != NULL) { 318 ppt = pt; 319 pt = ppt->fow; 320 (void)free((char *)ppt->name); 321 (void)free((char *)ppt); 322 } 323 } 324 return; 325 } 326 327 /* 328 * modification time table routines 329 * 330 * The modification time table keeps track of last modification times for all 331 * files stored in an archive during a write phase when -u is set. We only 332 * add a file to the archive if it is newer than a file with the same name 333 * already stored on the archive (if there is no other file with the same 334 * name on the archive it is added). This applies to writes and appends. 335 * An append with an -u must read the archive and store the modification time 336 * for every file on that archive before starting the write phase. It is clear 337 * that this is one HUGE database. To save memory space, the actual file names 338 * are stored in a scatch file and indexed by an in memory hash table. The 339 * hash table is indexed by hashing the file path. The nodes in the table store 340 * the length of the filename and the lseek offset within the scratch file 341 * where the actual name is stored. Since there are never any deletions to this 342 * table, fragmentation of the scratch file is never a issue. Lookups seem to 343 * not exhibit any locality at all (files in the database are rarely 344 * looked up more than once...). So caching is just a waste of memory. The 345 * only limitation is the amount of scatch file space available to store the 346 * path names. 347 */ 348 349 /* 350 * ftime_start() 351 * create the file time hash table and open for read/write the scratch 352 * file. (after created it is unlinked, so when we exit we leave 353 * no witnesses). 354 * Return: 355 * 0 if the table and file was created ok, -1 otherwise 356 */ 357 358 #if __STDC__ 359 int 360 ftime_start(void) 361 #else 362 int 363 ftime_start() 364 #endif 365 { 366 char *pt; 367 368 if (ftab != NULL) 369 return(0); 370 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) { 371 warn(1, "Cannot allocate memory for file time table"); 372 return(-1); 373 } 374 375 /* 376 * get random name and create temporary scratch file, unlink name 377 * so it will get removed on exit 378 */ 379 pt = strdup("/tmp/paxXXXXXX"); 380 if (pt == NULL) { 381 warn(1, "Unable to allocate memory"); 382 return(-1); 383 } 384 if ((ffd = mkstemp(pt)) == -1) { 385 syswarn(1, errno, "Unable to create temporary file: %s", pt); 386 free(pt); 387 return(-1); 388 } 389 390 (void)unlink(pt); 391 free(pt); 392 return(0); 393 } 394 395 /* 396 * chk_ftime() 397 * looks up entry in file time hash table. If not found, the file is 398 * added to the hash table and the file named stored in the scratch file. 399 * If a file with the same name is found, the file times are compared and 400 * the most recent file time is retained. If the new file was younger (or 401 * was not in the database) the new file is selected for storage. 402 * Return: 403 * 0 if file should be added to the archive, 1 if it should be skipped, 404 * -1 on error 405 */ 406 407 #if __STDC__ 408 int 409 chk_ftime(ARCHD *arcn) 410 #else 411 int 412 chk_ftime(arcn) 413 ARCHD *arcn; 414 #endif 415 { 416 FTM *pt; 417 int namelen; 418 u_int indx; 419 char ckname[PAXPATHLEN+1]; 420 421 /* 422 * no info, go ahead and add to archive 423 */ 424 if (ftab == NULL) 425 return(0); 426 427 /* 428 * hash the pathname and look up in table 429 */ 430 namelen = arcn->nlen; 431 indx = st_hash(arcn->name, namelen, F_TAB_SZ); 432 if ((pt = ftab[indx]) != NULL) { 433 /* 434 * the hash chain is not empty, walk down looking for match 435 * only read up the path names if the lengths match, speeds 436 * up the search a lot 437 */ 438 while (pt != NULL) { 439 if (pt->namelen == namelen) { 440 /* 441 * potential match, have to read the name 442 * from the scratch file. 443 */ 444 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) { 445 syswarn(1, errno, 446 "Failed ftime table seek"); 447 return(-1); 448 } 449 if (read(ffd, ckname, namelen) != namelen) { 450 syswarn(1, errno, 451 "Failed ftime table read"); 452 return(-1); 453 } 454 455 /* 456 * if the names match, we are done 457 */ 458 if (!strncmp(ckname, arcn->name, namelen)) 459 break; 460 } 461 462 /* 463 * try the next entry on the chain 464 */ 465 pt = pt->fow; 466 } 467 468 if (pt != NULL) { 469 /* 470 * found the file, compare the times, save the newer 471 */ 472 if (arcn->sb.st_mtime > pt->mtime) { 473 /* 474 * file is newer 475 */ 476 pt->mtime = arcn->sb.st_mtime; 477 return(0); 478 } 479 /* 480 * file is older 481 */ 482 return(1); 483 } 484 } 485 486 /* 487 * not in table, add it 488 */ 489 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) { 490 /* 491 * add the name at the end of the scratch file, saving the 492 * offset. add the file to the head of the hash chain 493 */ 494 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) { 495 if (write(ffd, arcn->name, namelen) == namelen) { 496 pt->mtime = arcn->sb.st_mtime; 497 pt->namelen = namelen; 498 pt->fow = ftab[indx]; 499 ftab[indx] = pt; 500 return(0); 501 } 502 syswarn(1, errno, "Failed write to file time table"); 503 } else 504 syswarn(1, errno, "Failed seek on file time table"); 505 } else 506 warn(1, "File time table ran out of memory"); 507 508 if (pt != NULL) 509 (void)free((char *)pt); 510 return(-1); 511 } 512 513 /* 514 * Interactive rename table routines 515 * 516 * The interactive rename table keeps track of the new names that the user 517 * assignes to files from tty input. Since this map is unique for each file 518 * we must store it in case there is a reference to the file later in archive 519 * (a link). Otherwise we will be unable to find the file we know was 520 * extracted. The remapping of these files is stored in a memory based hash 521 * table (it is assumed since input must come from /dev/tty, it is unlikely to 522 * be a very large table). 523 */ 524 525 /* 526 * name_start() 527 * create the interactive rename table 528 * Return: 529 * 0 if successful, -1 otherwise 530 */ 531 532 #if __STDC__ 533 int 534 name_start(void) 535 #else 536 int 537 name_start() 538 #endif 539 { 540 if (ntab != NULL) 541 return(0); 542 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) { 543 warn(1, "Cannot allocate memory for interactive rename table"); 544 return(-1); 545 } 546 return(0); 547 } 548 549 /* 550 * add_name() 551 * add the new name to old name mapping just created by the user. 552 * If an old name mapping is found (there may be duplicate names on an 553 * archive) only the most recent is kept. 554 * Return: 555 * 0 if added, -1 otherwise 556 */ 557 558 #if __STDC__ 559 int 560 add_name(char *oname, int onamelen, char *nname) 561 #else 562 int 563 add_name(oname, onamelen, nname) 564 char *oname; 565 int onamelen; 566 char *nname; 567 #endif 568 { 569 NAMT *pt; 570 u_int indx; 571 572 if (ntab == NULL) { 573 /* 574 * should never happen 575 */ 576 warn(0, "No interactive rename table, links may fail\n"); 577 return(0); 578 } 579 580 /* 581 * look to see if we have already mapped this file, if so we 582 * will update it 583 */ 584 indx = st_hash(oname, onamelen, N_TAB_SZ); 585 if ((pt = ntab[indx]) != NULL) { 586 /* 587 * look down the has chain for the file 588 */ 589 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0)) 590 pt = pt->fow; 591 592 if (pt != NULL) { 593 /* 594 * found an old mapping, replace it with the new one 595 * the user just input (if it is different) 596 */ 597 if (strcmp(nname, pt->nname) == 0) 598 return(0); 599 600 (void)free((char *)pt->nname); 601 if ((pt->nname = strdup(nname)) == NULL) { 602 warn(1, "Cannot update rename table"); 603 return(-1); 604 } 605 return(0); 606 } 607 } 608 609 /* 610 * this is a new mapping, add it to the table 611 */ 612 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) { 613 if ((pt->oname = strdup(oname)) != NULL) { 614 if ((pt->nname = strdup(nname)) != NULL) { 615 pt->fow = ntab[indx]; 616 ntab[indx] = pt; 617 return(0); 618 } 619 (void)free((char *)pt->oname); 620 } 621 (void)free((char *)pt); 622 } 623 warn(1, "Interactive rename table out of memory"); 624 return(-1); 625 } 626 627 /* 628 * sub_name() 629 * look up a link name to see if it points at a file that has been 630 * remapped by the user. If found, the link is adjusted to contain the 631 * new name (oname is the link to name) 632 */ 633 634 #if __STDC__ 635 void 636 sub_name(char *oname, int *onamelen) 637 #else 638 void 639 sub_name(oname, onamelen) 640 char *oname; 641 int *onamelen; 642 #endif 643 { 644 NAMT *pt; 645 u_int indx; 646 647 if (ntab == NULL) 648 return; 649 /* 650 * look the name up in the hash table 651 */ 652 indx = st_hash(oname, *onamelen, N_TAB_SZ); 653 if ((pt = ntab[indx]) == NULL) 654 return; 655 656 while (pt != NULL) { 657 /* 658 * walk down the hash cahin looking for a match 659 */ 660 if (strcmp(oname, pt->oname) == 0) { 661 /* 662 * found it, replace it with the new name 663 * and return (we know that oname has enough space) 664 */ 665 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1); 666 return; 667 } 668 pt = pt->fow; 669 } 670 671 /* 672 * no match, just return 673 */ 674 return; 675 } 676 677 /* 678 * device/inode mapping table routines 679 * (used with formats that store device and inodes fields) 680 * 681 * device/inode mapping tables remap the device field in a archive header. The 682 * device/inode fields are used to determine when files are hard links to each 683 * other. However these values have very little meaning outside of that. This 684 * database is used to solve one of two different problems. 685 * 686 * 1) when files are appended to an archive, while the new files may have hard 687 * links to each other, you cannot determine if they have hard links to any 688 * file already stored on the archive from a prior run of pax. We must assume 689 * that these inode/device pairs are unique only within a SINGLE run of pax 690 * (which adds a set of files to an archive). So we have to make sure the 691 * inode/dev pairs we add each time are always unique. We do this by observing 692 * while the inode field is very dense, the use of the dev field is fairly 693 * sparse. Within each run of pax, we remap any device number of a new archive 694 * member that has a device number used in a prior run and already stored in a 695 * file on the archive. During the read phase of the append, we store the 696 * device numbers used and mark them to not be used by any file during the 697 * write phase. If during write we go to use one of those old device numbers, 698 * we remap it to a new value. 699 * 700 * 2) Often the fields in the archive header used to store these values are 701 * too small to store the entire value. The result is an inode or device value 702 * which can be truncated. This really can foul up an archive. With truncation 703 * we end up creating links between files that are really not links (after 704 * truncation the inodes are the same value). We address that by detecting 705 * truncation and forcing a remap of the device field to split truncated 706 * inodes away from each other. Each truncation creates a pattern of bits that 707 * are removed. We use this pattern of truncated bits to partition the inodes 708 * on a single device to many different devices (each one represented by the 709 * truncated bit pattern). All inodes on the same device that have the same 710 * truncation pattern are mapped to the same new device. Two inodes that 711 * truncate to the same value clearly will always have different truncation 712 * bit patterns, so they will be split from away each other. When we spot 713 * device truncation we remap the device number to a non truncated value. 714 * (for more info see table.h for the data structures involved). 715 */ 716 717 /* 718 * dev_start() 719 * create the device mapping table 720 * Return: 721 * 0 if successful, -1 otherwise 722 */ 723 724 #if __STDC__ 725 int 726 dev_start(void) 727 #else 728 int 729 dev_start() 730 #endif 731 { 732 if (dtab != NULL) 733 return(0); 734 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) { 735 warn(1, "Cannot allocate memory for device mapping table"); 736 return(-1); 737 } 738 return(0); 739 } 740 741 /* 742 * add_dev() 743 * add a device number to the table. this will force the device to be 744 * remapped to a new value if it be used during a write phase. This 745 * function is called during the read phase of an append to prohibit the 746 * use of any device number already in the archive. 747 * Return: 748 * 0 if added ok, -1 otherwise 749 */ 750 751 #if __STDC__ 752 int 753 add_dev(ARCHD *arcn) 754 #else 755 int 756 add_dev(arcn) 757 ARCHD *arcn; 758 #endif 759 { 760 if (chk_dev(arcn->sb.st_dev, 1) == NULL) 761 return(-1); 762 return(0); 763 } 764 765 /* 766 * chk_dev() 767 * check for a device value in the device table. If not found and the add 768 * flag is set, it is added. This does NOT assign any mapping values, just 769 * adds the device number as one that need to be remapped. If this device 770 * is alread mapped, just return with a pointer to that entry. 771 * Return: 772 * pointer to the entry for this device in the device map table. Null 773 * if the add flag is not set and the device is not in the table (it is 774 * not been seen yet). If add is set and the device cannot be added, null 775 * is returned (indicates an error). 776 */ 777 778 #if __STDC__ 779 static DEVT * 780 chk_dev(dev_t dev, int add) 781 #else 782 static DEVT * 783 chk_dev(dev, add) 784 dev_t dev; 785 int add; 786 #endif 787 { 788 DEVT *pt; 789 u_int indx; 790 791 if (dtab == NULL) 792 return(NULL); 793 /* 794 * look to see if this device is already in the table 795 */ 796 indx = ((unsigned)dev) % D_TAB_SZ; 797 if ((pt = dtab[indx]) != NULL) { 798 while ((pt != NULL) && (pt->dev != dev)) 799 pt = pt->fow; 800 801 /* 802 * found it, return a pointer to it 803 */ 804 if (pt != NULL) 805 return(pt); 806 } 807 808 /* 809 * not in table, we add it only if told to as this may just be a check 810 * to see if a device number is being used. 811 */ 812 if (add == 0) 813 return(NULL); 814 815 /* 816 * allocate a node for this device and add it to the front of the hash 817 * chain. Note we do not assign remaps values here, so the pt->list 818 * list must be NULL. 819 */ 820 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) { 821 warn(1, "Device map table out of memory"); 822 return(NULL); 823 } 824 pt->dev = dev; 825 pt->list = NULL; 826 pt->fow = dtab[indx]; 827 dtab[indx] = pt; 828 return(pt); 829 } 830 /* 831 * map_dev() 832 * given an inode and device storage mask (the mask has a 1 for each bit 833 * the archive format is able to store in a header), we check for inode 834 * and device truncation and remap the device as required. Device mapping 835 * can also occur when during the read phase of append a device number was 836 * seen (and was marked as do not use during the write phase). WE ASSUME 837 * that unsigned longs are the same size or bigger than the fields used 838 * for ino_t and dev_t. If not the types will have to be changed. 839 * Return: 840 * 0 if all ok, -1 otherwise. 841 */ 842 843 #if __STDC__ 844 int 845 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask) 846 #else 847 int 848 map_dev(arcn, dev_mask, ino_mask) 849 ARCHD *arcn; 850 u_long dev_mask; 851 u_long ino_mask; 852 #endif 853 { 854 DEVT *pt; 855 DLIST *dpt; 856 static dev_t lastdev = 0; /* next device number to try */ 857 int trc_ino = 0; 858 int trc_dev = 0; 859 ino_t trunc_bits = 0; 860 ino_t nino; 861 862 if (dtab == NULL) 863 return(0); 864 /* 865 * check for device and inode truncation, and extract the truncated 866 * bit pattern. 867 */ 868 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev) 869 ++trc_dev; 870 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) { 871 ++trc_ino; 872 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask); 873 } 874 875 /* 876 * see if this device is already being mapped, look up the device 877 * then find the truncation bit pattern which applies 878 */ 879 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) { 880 /* 881 * this device is already marked to be remapped 882 */ 883 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow) 884 if (dpt->trunc_bits == trunc_bits) 885 break; 886 887 if (dpt != NULL) { 888 /* 889 * we are being remapped for this device and pattern 890 * change the device number to be stored and return 891 */ 892 arcn->sb.st_dev = dpt->dev; 893 arcn->sb.st_ino = nino; 894 return(0); 895 } 896 } else { 897 /* 898 * this device is not being remapped YET. if we do not have any 899 * form of truncation, we do not need a remap 900 */ 901 if (!trc_ino && !trc_dev) 902 return(0); 903 904 /* 905 * we have truncation, have to add this as a device to remap 906 */ 907 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL) 908 goto bad; 909 910 /* 911 * if we just have a truncated inode, we have to make sure that 912 * all future inodes that do not truncate (they have the 913 * truncation pattern of all 0's) continue to map to the same 914 * device number. We probably have already written inodes with 915 * this device number to the archive with the truncation 916 * pattern of all 0's. So we add the mapping for all 0's to the 917 * same device number. 918 */ 919 if (!trc_dev && (trunc_bits != 0)) { 920 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL) 921 goto bad; 922 dpt->trunc_bits = 0; 923 dpt->dev = arcn->sb.st_dev; 924 dpt->fow = pt->list; 925 pt->list = dpt; 926 } 927 } 928 929 /* 930 * look for a device number not being used. We must watch for wrap 931 * around on lastdev (so we do not get stuck looking forever!) 932 */ 933 while (++lastdev > 0) { 934 if (chk_dev(lastdev, 0) != NULL) 935 continue; 936 /* 937 * found an unused value. If we have reached truncation point 938 * for this format we are hosed, so we give up. Otherwise we 939 * mark it as being used. 940 */ 941 if (((lastdev & ((dev_t)dev_mask)) != lastdev) || 942 (chk_dev(lastdev, 1) == NULL)) 943 goto bad; 944 break; 945 } 946 947 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)) 948 goto bad; 949 950 /* 951 * got a new device number, store it under this truncation pattern. 952 * change the device number this file is being stored with. 953 */ 954 dpt->trunc_bits = trunc_bits; 955 dpt->dev = lastdev; 956 dpt->fow = pt->list; 957 pt->list = dpt; 958 arcn->sb.st_dev = lastdev; 959 arcn->sb.st_ino = nino; 960 return(0); 961 962 bad: 963 warn(1, "Unable to fix truncated inode/device field when storing %s", 964 arcn->name); 965 warn(0, "Archive may create improper hard links when extracted"); 966 return(0); 967 } 968 969 /* 970 * directory access/mod time reset table routines (for directories READ by pax) 971 * 972 * The pax -t flag requires that access times of archive files to be the same 973 * before being read by pax. For regular files, access time is restored after 974 * the file has been copied. This database provides the same functionality for 975 * directories read during file tree traversal. Restoring directory access time 976 * is more complex than files since directories may be read several times until 977 * all the descendants in their subtree are visited by fts. Directory access 978 * and modification times are stored during the fts pre-order visit (done 979 * before any descendants in the subtree is visited) and restored after the 980 * fts post-order visit (after all the descendants have been visited). In the 981 * case of premature exit from a subtree (like from the effects of -n), any 982 * directory entries left in this database are reset during final cleanup 983 * operations of pax. Entries are hashed by inode number for fast lookup. 984 */ 985 986 /* 987 * atdir_start() 988 * create the directory access time database for directories READ by pax. 989 * Return: 990 * 0 is created ok, -1 otherwise. 991 */ 992 993 #if __STDC__ 994 int 995 atdir_start(void) 996 #else 997 int 998 atdir_start() 999 #endif 1000 { 1001 if (atab != NULL) 1002 return(0); 1003 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) { 1004 warn(1,"Cannot allocate space for directory access time table"); 1005 return(-1); 1006 } 1007 return(0); 1008 } 1009 1010 1011 /* 1012 * atdir_end() 1013 * walk through the directory access time table and reset the access time 1014 * of any directory who still has an entry left in the database. These 1015 * entries are for directories READ by pax 1016 */ 1017 1018 #if __STDC__ 1019 void 1020 atdir_end(void) 1021 #else 1022 void 1023 atdir_end() 1024 #endif 1025 { 1026 ATDIR *pt; 1027 int i; 1028 1029 if (atab == NULL) 1030 return; 1031 /* 1032 * for each non-empty hash table entry reset all the directories 1033 * chained there. 1034 */ 1035 for (i = 0; i < A_TAB_SZ; ++i) { 1036 if ((pt = atab[i]) == NULL) 1037 continue; 1038 /* 1039 * remember to force the times, set_ftime() looks at pmtime 1040 * and patime, which only applies to things CREATED by pax, 1041 * not read by pax. Read time reset is controlled by -t. 1042 */ 1043 for (; pt != NULL; pt = pt->fow) 1044 set_ftime(pt->name, pt->mtime, pt->atime, 1); 1045 } 1046 } 1047 1048 /* 1049 * add_atdir() 1050 * add a directory to the directory access time table. Table is hashed 1051 * and chained by inode number. This is for directories READ by pax 1052 */ 1053 1054 #if __STDC__ 1055 void 1056 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime) 1057 #else 1058 void 1059 add_atdir(fname, dev, ino, mtime, atime) 1060 char *fname; 1061 dev_t dev; 1062 ino_t ino; 1063 time_t mtime; 1064 time_t atime; 1065 #endif 1066 { 1067 ATDIR *pt; 1068 u_int indx; 1069 1070 if (atab == NULL) 1071 return; 1072 1073 /* 1074 * make sure this directory is not already in the table, if so just 1075 * return (the older entry always has the correct time). The only 1076 * way this will happen is when the same subtree can be traversed by 1077 * different args to pax and the -n option is aborting fts out of a 1078 * subtree before all the post-order visits have been made). 1079 */ 1080 indx = ((unsigned)ino) % A_TAB_SZ; 1081 if ((pt = atab[indx]) != NULL) { 1082 while (pt != NULL) { 1083 if ((pt->ino == ino) && (pt->dev == dev)) 1084 break; 1085 pt = pt->fow; 1086 } 1087 1088 /* 1089 * oops, already there. Leave it alone. 1090 */ 1091 if (pt != NULL) 1092 return; 1093 } 1094 1095 /* 1096 * add it to the front of the hash chain 1097 */ 1098 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) { 1099 if ((pt->name = strdup(fname)) != NULL) { 1100 pt->dev = dev; 1101 pt->ino = ino; 1102 pt->mtime = mtime; 1103 pt->atime = atime; 1104 pt->fow = atab[indx]; 1105 atab[indx] = pt; 1106 return; 1107 } 1108 (void)free((char *)pt); 1109 } 1110 1111 warn(1, "Directory access time reset table ran out of memory"); 1112 return; 1113 } 1114 1115 /* 1116 * get_atdir() 1117 * look up a directory by inode and device number to obtain the access 1118 * and modification time you want to set to. If found, the modification 1119 * and access time parameters are set and the entry is removed from the 1120 * table (as it is no longer needed). These are for directories READ by 1121 * pax 1122 * Return: 1123 * 0 if found, -1 if not found. 1124 */ 1125 1126 #if __STDC__ 1127 int 1128 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime) 1129 #else 1130 int 1131 get_atdir(dev, ino, mtime, atime) 1132 dev_t dev; 1133 ino_t ino; 1134 time_t *mtime; 1135 time_t *atime; 1136 #endif 1137 { 1138 ATDIR *pt; 1139 ATDIR **ppt; 1140 u_int indx; 1141 1142 if (atab == NULL) 1143 return(-1); 1144 /* 1145 * hash by inode and search the chain for an inode and device match 1146 */ 1147 indx = ((unsigned)ino) % A_TAB_SZ; 1148 if ((pt = atab[indx]) == NULL) 1149 return(-1); 1150 1151 ppt = &(atab[indx]); 1152 while (pt != NULL) { 1153 if ((pt->ino == ino) && (pt->dev == dev)) 1154 break; 1155 /* 1156 * no match, go to next one 1157 */ 1158 ppt = &(pt->fow); 1159 pt = pt->fow; 1160 } 1161 1162 /* 1163 * return if we did not find it. 1164 */ 1165 if (pt == NULL) 1166 return(-1); 1167 1168 /* 1169 * found it. return the times and remove the entry from the table. 1170 */ 1171 *ppt = pt->fow; 1172 *mtime = pt->mtime; 1173 *atime = pt->atime; 1174 (void)free((char *)pt->name); 1175 (void)free((char *)pt); 1176 return(0); 1177 } 1178 1179 /* 1180 * directory access mode and time storage routines (for directories CREATED 1181 * by pax). 1182 * 1183 * Pax requires that extracted directories, by default, have their access/mod 1184 * times and permissions set to the values specified in the archive. During the 1185 * actions of extracting (and creating the destination subtree during -rw copy) 1186 * directories extracted may be modified after being created. Even worse is 1187 * that these directories may have been created with file permissions which 1188 * prohibits any descendants of these directories from being extracted. When 1189 * directories are created by pax, access rights may be added to permit the 1190 * creation of files in their subtree. Every time pax creates a directory, the 1191 * times and file permissions specified by the archive are stored. After all 1192 * files have been extracted (or copied), these directories have their times 1193 * and file modes reset to the stored values. The directory info is restored in 1194 * reverse order as entries were added to the data file from root to leaf. To 1195 * restore atime properly, we must go backwards. The data file consists of 1196 * records with two parts, the file name followed by a DIRDATA trailer. The 1197 * fixed sized trailer contains the size of the name plus the off_t location in 1198 * the file. To restore we work backwards through the file reading the trailer 1199 * then the file name. 1200 */ 1201 1202 /* 1203 * dir_start() 1204 * set up the directory time and file mode storage for directories CREATED 1205 * by pax. 1206 * Return: 1207 * 0 if ok, -1 otherwise 1208 */ 1209 1210 #if __STDC__ 1211 int 1212 dir_start(void) 1213 #else 1214 int 1215 dir_start() 1216 #endif 1217 { 1218 char *pt; 1219 1220 if (dirfd != -1) 1221 return(0); 1222 1223 /* 1224 * unlink the file so it goes away at termination by itself 1225 */ 1226 pt = strdup("/tmp/paxXXXXXX"); 1227 if (pt == NULL) { 1228 warn(1, "Unable to allocate memory"); 1229 return(-1); 1230 } 1231 if ((dirfd = mkstemp(pt)) >= 0) { 1232 (void)unlink(pt); 1233 free(pt); 1234 return(0); 1235 } 1236 warn(1, "Unable to create temporary file for directory times: %s", pt); 1237 free(pt); 1238 return(-1); 1239 } 1240 1241 /* 1242 * add_dir() 1243 * add the mode and times for a newly CREATED directory 1244 * name is name of the directory, psb the stat buffer with the data in it, 1245 * frc_mode is a flag that says whether to force the setting of the mode 1246 * (ignoring the user set values for preserving file mode). Frc_mode is 1247 * for the case where we created a file and found that the resulting 1248 * directory was not writeable and the user asked for file modes to NOT 1249 * be preserved. (we have to preserve what was created by default, so we 1250 * have to force the setting at the end. this is stated explicitly in the 1251 * pax spec) 1252 */ 1253 1254 #if __STDC__ 1255 void 1256 add_dir(char *name, int nlen, struct stat *psb, int frc_mode) 1257 #else 1258 void 1259 add_dir(name, nlen, psb, frc_mode) 1260 char *name; 1261 int nlen; 1262 struct stat *psb; 1263 int frc_mode; 1264 #endif 1265 { 1266 DIRDATA dblk; 1267 1268 if (dirfd < 0) 1269 return; 1270 1271 /* 1272 * get current position (where file name will start) so we can store it 1273 * in the trailer 1274 */ 1275 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) { 1276 warn(1,"Unable to store mode and times for directory: %s",name); 1277 return; 1278 } 1279 1280 /* 1281 * write the file name followed by the trailer 1282 */ 1283 dblk.nlen = nlen + 1; 1284 dblk.mode = psb->st_mode & 0xffff; 1285 dblk.mtime = psb->st_mtime; 1286 dblk.atime = psb->st_atime; 1287 dblk.frc_mode = frc_mode; 1288 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) && 1289 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) { 1290 ++dircnt; 1291 return; 1292 } 1293 1294 warn(1,"Unable to store mode and times for created directory: %s",name); 1295 return; 1296 } 1297 1298 /* 1299 * proc_dir() 1300 * process all file modes and times stored for directories CREATED 1301 * by pax 1302 */ 1303 1304 #if __STDC__ 1305 void 1306 proc_dir(void) 1307 #else 1308 void 1309 proc_dir() 1310 #endif 1311 { 1312 char name[PAXPATHLEN+1]; 1313 DIRDATA dblk; 1314 u_long cnt; 1315 1316 if (dirfd < 0) 1317 return; 1318 /* 1319 * read backwards through the file and process each directory 1320 */ 1321 for (cnt = 0; cnt < dircnt; ++cnt) { 1322 /* 1323 * read the trailer, then the file name, if this fails 1324 * just give up. 1325 */ 1326 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0) 1327 break; 1328 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk)) 1329 break; 1330 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1331 break; 1332 if (read(dirfd, name, dblk.nlen) != dblk.nlen) 1333 break; 1334 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1335 break; 1336 1337 /* 1338 * frc_mode set, make sure we set the file modes even if 1339 * the user didn't ask for it (see file_subs.c for more info) 1340 */ 1341 if (pmode || dblk.frc_mode) 1342 set_pmode(name, dblk.mode); 1343 if (patime || pmtime) 1344 set_ftime(name, dblk.mtime, dblk.atime, 0); 1345 } 1346 1347 (void)close(dirfd); 1348 dirfd = -1; 1349 if (cnt != dircnt) 1350 warn(1,"Unable to set mode and times for created directories"); 1351 return; 1352 } 1353 1354 /* 1355 * database independent routines 1356 */ 1357 1358 /* 1359 * st_hash() 1360 * hashes filenames to a u_int for hashing into a table. Looks at the tail 1361 * end of file, as this provides far better distribution than any other 1362 * part of the name. For performance reasons we only care about the last 1363 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file 1364 * name). Was tested on 500,000 name file tree traversal from the root 1365 * and gave almost a perfectly uniform distribution of keys when used with 1366 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int) 1367 * chars at a time and pads with 0 for last addition. 1368 * Return: 1369 * the hash value of the string MOD (%) the table size. 1370 */ 1371 1372 #if __STDC__ 1373 u_int 1374 st_hash(char *name, int len, int tabsz) 1375 #else 1376 u_int 1377 st_hash(name, len, tabsz) 1378 char *name; 1379 int len; 1380 int tabsz; 1381 #endif 1382 { 1383 char *pt; 1384 char *dest; 1385 char *end; 1386 int i; 1387 u_int key = 0; 1388 int steps; 1389 int res; 1390 u_int val; 1391 1392 /* 1393 * only look at the tail up to MAXKEYLEN, we do not need to waste 1394 * time here (remember these are pathnames, the tail is what will 1395 * spread out the keys) 1396 */ 1397 if (len > MAXKEYLEN) { 1398 pt = &(name[len - MAXKEYLEN]); 1399 len = MAXKEYLEN; 1400 } else 1401 pt = name; 1402 1403 /* 1404 * calculate the number of u_int size steps in the string and if 1405 * there is a runt to deal with 1406 */ 1407 steps = len/sizeof(u_int); 1408 res = len % sizeof(u_int); 1409 1410 /* 1411 * add up the value of the string in unsigned integer sized pieces 1412 * too bad we cannot have unsigned int aligned strings, then we 1413 * could avoid the expensive copy. 1414 */ 1415 for (i = 0; i < steps; ++i) { 1416 end = pt + sizeof(u_int); 1417 dest = (char *)&val; 1418 while (pt < end) 1419 *dest++ = *pt++; 1420 key += val; 1421 } 1422 1423 /* 1424 * add in the runt padded with zero to the right 1425 */ 1426 if (res) { 1427 val = 0; 1428 end = pt + res; 1429 dest = (char *)&val; 1430 while (pt < end) 1431 *dest++ = *pt++; 1432 key += val; 1433 } 1434 1435 /* 1436 * return the result mod the table size 1437 */ 1438 return(key % tabsz); 1439 } 1440