xref: /netbsd-src/bin/pax/tables.c (revision d0fed6c87ddc40a8bffa6f99e7433ddfc864dd83)
1 /*	$NetBSD: tables.c,v 1.6 1997/03/22 03:14:27 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 1992 Keith Muller.
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Keith Muller of the University of California, San Diego.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 #ifndef lint
41 #if 0
42 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
43 #else
44 static char rcsid[] = "$NetBSD: tables.c,v 1.6 1997/03/22 03:14:27 lukem Exp $";
45 #endif
46 #endif /* not lint */
47 
48 #include <sys/types.h>
49 #include <sys/time.h>
50 #include <sys/stat.h>
51 #include <sys/param.h>
52 #include <sys/fcntl.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <string.h>
56 #include <unistd.h>
57 #include <errno.h>
58 #include <stdlib.h>
59 #include "pax.h"
60 #include "tables.h"
61 #include "extern.h"
62 
63 /*
64  * Routines for controlling the contents of all the different databases pax
65  * keeps. Tables are dynamically created only when they are needed. The
66  * goal was speed and the ability to work with HUGE archives. The databases
67  * were kept simple, but do have complex rules for when the contents change.
68  * As of this writing, the posix library functions were more complex than
69  * needed for this application (pax databases have very short lifetimes and
70  * do not survive after pax is finished). Pax is required to handle very
71  * large archives. These database routines carefully combine memory usage and
72  * temporary file storage in ways which will not significantly impact runtime
73  * performance while allowing the largest possible archives to be handled.
74  * Trying to force the fit to the posix databases routines was not considered
75  * time well spent.
76  */
77 
78 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
79 static FTM **ftab = NULL;	/* file time table for updating arch */
80 static NAMT **ntab = NULL;	/* interactive rename storage table */
81 static DEVT **dtab = NULL;	/* device/inode mapping tables */
82 static ATDIR **atab = NULL;	/* file tree directory time reset table */
83 static int dirfd = -1;		/* storage for setting created dir time/mode */
84 static u_long dircnt;		/* entries in dir time/mode storage */
85 static int ffd = -1;		/* tmp file for file time table name storage */
86 
87 static DEVT *chk_dev __P((dev_t, int));
88 
89 /*
90  * hard link table routines
91  *
92  * The hard link table tries to detect hard links to files using the device and
93  * inode values. We do this when writing an archive, so we can tell the format
94  * write routine that this file is a hard link to another file. The format
95  * write routine then can store this file in whatever way it wants (as a hard
96  * link if the format supports that like tar, or ignore this info like cpio).
97  * (Actually a field in the format driver table tells us if the format wants
98  * hard link info. if not, we do not waste time looking for them). We also use
99  * the same table when reading an archive. In that situation, this table is
100  * used by the format read routine to detect hard links from stored dev and
101  * inode numbers (like cpio). This will allow pax to create a link when one
102  * can be detected by the archive format.
103  */
104 
105 /*
106  * lnk_start
107  *	Creates the hard link table.
108  * Return:
109  *	0 if created, -1 if failure
110  */
111 
112 #if __STDC__
113 int
114 lnk_start(void)
115 #else
116 int
117 lnk_start()
118 #endif
119 {
120 	if (ltab != NULL)
121 		return(0);
122  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
123                 warn(1, "Cannot allocate memory for hard link table");
124                 return(-1);
125         }
126 	return(0);
127 }
128 
129 /*
130  * chk_lnk()
131  *	Looks up entry in hard link hash table. If found, it copies the name
132  *	of the file it is linked to (we already saw that file) into ln_name.
133  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
134  *	database. (We have seen all the links to this file). If not found,
135  *	we add the file to the database if it has the potential for having
136  *	hard links to other files we may process (it has a link count > 1)
137  * Return:
138  *	if found returns 1; if not found returns 0; -1 on error
139  */
140 
141 #if __STDC__
142 int
143 chk_lnk(ARCHD *arcn)
144 #else
145 int
146 chk_lnk(arcn)
147 	ARCHD *arcn;
148 #endif
149 {
150 	HRDLNK *pt;
151 	HRDLNK **ppt;
152 	u_int indx;
153 
154 	if (ltab == NULL)
155 		return(-1);
156 	/*
157 	 * ignore those nodes that cannot have hard links
158 	 */
159 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
160 		return(0);
161 
162 	/*
163 	 * hash inode number and look for this file
164 	 */
165 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
166 	if ((pt = ltab[indx]) != NULL) {
167 		/*
168 		 * it's hash chain in not empty, walk down looking for it
169 		 */
170 		ppt = &(ltab[indx]);
171 		while (pt != NULL) {
172 			if ((pt->ino == arcn->sb.st_ino) &&
173 			    (pt->dev == arcn->sb.st_dev))
174 				break;
175 			ppt = &(pt->fow);
176 			pt = pt->fow;
177 		}
178 
179 		if (pt != NULL) {
180 			/*
181 			 * found a link. set the node type and copy in the
182 			 * name of the file it is to link to. we need to
183 			 * handle hardlinks to regular files differently than
184 			 * other links.
185 			 */
186 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
187 				PAXPATHLEN+1);
188 			if (arcn->type == PAX_REG)
189 				arcn->type = PAX_HRG;
190 			else
191 				arcn->type = PAX_HLK;
192 
193 			/*
194 			 * if we have found all the links to this file, remove
195 			 * it from the database
196 			 */
197 			if (--pt->nlink <= 1) {
198 				*ppt = pt->fow;
199 				(void)free((char *)pt->name);
200 				(void)free((char *)pt);
201 			}
202 			return(1);
203 		}
204 	}
205 
206 	/*
207 	 * we never saw this file before. It has links so we add it to the
208 	 * front of this hash chain
209 	 */
210 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
211 		if ((pt->name = strdup(arcn->name)) != NULL) {
212 			pt->dev = arcn->sb.st_dev;
213 			pt->ino = arcn->sb.st_ino;
214 			pt->nlink = arcn->sb.st_nlink;
215 			pt->fow = ltab[indx];
216 			ltab[indx] = pt;
217 			return(0);
218 		}
219 		(void)free((char *)pt);
220 	}
221 
222 	warn(1, "Hard link table out of memory");
223 	return(-1);
224 }
225 
226 /*
227  * purg_lnk
228  *	remove reference for a file that we may have added to the data base as
229  *	a potential source for hard links. We ended up not using the file, so
230  *	we do not want to accidently point another file at it later on.
231  */
232 
233 #if __STDC__
234 void
235 purg_lnk(ARCHD *arcn)
236 #else
237 void
238 purg_lnk(arcn)
239 	ARCHD *arcn;
240 #endif
241 {
242 	HRDLNK *pt;
243 	HRDLNK **ppt;
244 	u_int indx;
245 
246 	if (ltab == NULL)
247 		return;
248 	/*
249 	 * do not bother to look if it could not be in the database
250 	 */
251 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
252 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
253 		return;
254 
255 	/*
256 	 * find the hash chain for this inode value, if empty return
257 	 */
258 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
259 	if ((pt = ltab[indx]) == NULL)
260 		return;
261 
262 	/*
263 	 * walk down the list looking for the inode/dev pair, unlink and
264 	 * free if found
265 	 */
266 	ppt = &(ltab[indx]);
267 	while (pt != NULL) {
268 		if ((pt->ino == arcn->sb.st_ino) &&
269 		    (pt->dev == arcn->sb.st_dev))
270 			break;
271 		ppt = &(pt->fow);
272 		pt = pt->fow;
273 	}
274 	if (pt == NULL)
275 		return;
276 
277 	/*
278 	 * remove and free it
279 	 */
280 	*ppt = pt->fow;
281 	(void)free((char *)pt->name);
282 	(void)free((char *)pt);
283 }
284 
285 /*
286  * lnk_end()
287  *	pull apart a existing link table so we can reuse it. We do this between
288  *	read and write phases of append with update. (The format may have
289  *	used the link table, and we need to start with a fresh table for the
290  *	write phase
291  */
292 
293 #if __STDC__
294 void
295 lnk_end(void)
296 #else
297 void
298 lnk_end()
299 #endif
300 {
301 	int i;
302 	HRDLNK *pt;
303 	HRDLNK *ppt;
304 
305 	if (ltab == NULL)
306 		return;
307 
308 	for (i = 0; i < L_TAB_SZ; ++i) {
309 		if (ltab[i] == NULL)
310 			continue;
311 		pt = ltab[i];
312 		ltab[i] = NULL;
313 
314 		/*
315 		 * free up each entry on this chain
316 		 */
317 		while (pt != NULL) {
318 			ppt = pt;
319 			pt = ppt->fow;
320 			(void)free((char *)ppt->name);
321 			(void)free((char *)ppt);
322 		}
323 	}
324 	return;
325 }
326 
327 /*
328  * modification time table routines
329  *
330  * The modification time table keeps track of last modification times for all
331  * files stored in an archive during a write phase when -u is set. We only
332  * add a file to the archive if it is newer than a file with the same name
333  * already stored on the archive (if there is no other file with the same
334  * name on the archive it is added). This applies to writes and appends.
335  * An append with an -u must read the archive and store the modification time
336  * for every file on that archive before starting the write phase. It is clear
337  * that this is one HUGE database. To save memory space, the actual file names
338  * are stored in a scatch file and indexed by an in memory hash table. The
339  * hash table is indexed by hashing the file path. The nodes in the table store
340  * the length of the filename and the lseek offset within the scratch file
341  * where the actual name is stored. Since there are never any deletions to this
342  * table, fragmentation of the scratch file is never a issue. Lookups seem to
343  * not exhibit any locality at all (files in the database are rarely
344  * looked up more than once...). So caching is just a waste of memory. The
345  * only limitation is the amount of scatch file space available to store the
346  * path names.
347  */
348 
349 /*
350  * ftime_start()
351  *	create the file time hash table and open for read/write the scratch
352  *	file. (after created it is unlinked, so when we exit we leave
353  *	no witnesses).
354  * Return:
355  *	0 if the table and file was created ok, -1 otherwise
356  */
357 
358 #if __STDC__
359 int
360 ftime_start(void)
361 #else
362 int
363 ftime_start()
364 #endif
365 {
366 	char *pt;
367 
368 	if (ftab != NULL)
369 		return(0);
370  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
371                 warn(1, "Cannot allocate memory for file time table");
372                 return(-1);
373         }
374 
375 	/*
376 	 * get random name and create temporary scratch file, unlink name
377 	 * so it will get removed on exit
378 	 */
379 	pt = strdup("/tmp/paxXXXXXX");
380 	if (pt == NULL) {
381 		warn(1, "Unable to allocate memory");
382 		return(-1);
383 	}
384 	if ((ffd = mkstemp(pt)) == -1) {
385 		syswarn(1, errno, "Unable to create temporary file: %s", pt);
386 		free(pt);
387 		return(-1);
388 	}
389 
390 	(void)unlink(pt);
391 	free(pt);
392 	return(0);
393 }
394 
395 /*
396  * chk_ftime()
397  *	looks up entry in file time hash table. If not found, the file is
398  *	added to the hash table and the file named stored in the scratch file.
399  *	If a file with the same name is found, the file times are compared and
400  *	the most recent file time is retained. If the new file was younger (or
401  *	was not in the database) the new file is selected for storage.
402  * Return:
403  *	0 if file should be added to the archive, 1 if it should be skipped,
404  *	-1 on error
405  */
406 
407 #if __STDC__
408 int
409 chk_ftime(ARCHD *arcn)
410 #else
411 int
412 chk_ftime(arcn)
413 	ARCHD *arcn;
414 #endif
415 {
416 	FTM *pt;
417 	int namelen;
418 	u_int indx;
419 	char ckname[PAXPATHLEN+1];
420 
421 	/*
422 	 * no info, go ahead and add to archive
423 	 */
424 	if (ftab == NULL)
425 		return(0);
426 
427 	/*
428 	 * hash the pathname and look up in table
429 	 */
430 	namelen = arcn->nlen;
431 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
432 	if ((pt = ftab[indx]) != NULL) {
433 		/*
434 		 * the hash chain is not empty, walk down looking for match
435 		 * only read up the path names if the lengths match, speeds
436 		 * up the search a lot
437 		 */
438 		while (pt != NULL) {
439 			if (pt->namelen == namelen) {
440 				/*
441 				 * potential match, have to read the name
442 				 * from the scratch file.
443 				 */
444 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
445 					syswarn(1, errno,
446 					    "Failed ftime table seek");
447 					return(-1);
448 				}
449 				if (read(ffd, ckname, namelen) != namelen) {
450 					syswarn(1, errno,
451 					    "Failed ftime table read");
452 					return(-1);
453 				}
454 
455 				/*
456 				 * if the names match, we are done
457 				 */
458 				if (!strncmp(ckname, arcn->name, namelen))
459 					break;
460 			}
461 
462 			/*
463 			 * try the next entry on the chain
464 			 */
465 			pt = pt->fow;
466 		}
467 
468 		if (pt != NULL) {
469 			/*
470 			 * found the file, compare the times, save the newer
471 			 */
472 			if (arcn->sb.st_mtime > pt->mtime) {
473 				/*
474 				 * file is newer
475 				 */
476 				pt->mtime = arcn->sb.st_mtime;
477 				return(0);
478 			}
479 			/*
480 			 * file is older
481 			 */
482 			return(1);
483 		}
484 	}
485 
486 	/*
487 	 * not in table, add it
488 	 */
489 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
490 		/*
491 		 * add the name at the end of the scratch file, saving the
492 		 * offset. add the file to the head of the hash chain
493 		 */
494 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
495 			if (write(ffd, arcn->name, namelen) == namelen) {
496 				pt->mtime = arcn->sb.st_mtime;
497 				pt->namelen = namelen;
498 				pt->fow = ftab[indx];
499 				ftab[indx] = pt;
500 				return(0);
501 			}
502 			syswarn(1, errno, "Failed write to file time table");
503 		} else
504 			syswarn(1, errno, "Failed seek on file time table");
505 	} else
506 		warn(1, "File time table ran out of memory");
507 
508 	if (pt != NULL)
509 		(void)free((char *)pt);
510 	return(-1);
511 }
512 
513 /*
514  * Interactive rename table routines
515  *
516  * The interactive rename table keeps track of the new names that the user
517  * assignes to files from tty input. Since this map is unique for each file
518  * we must store it in case there is a reference to the file later in archive
519  * (a link). Otherwise we will be unable to find the file we know was
520  * extracted. The remapping of these files is stored in a memory based hash
521  * table (it is assumed since input must come from /dev/tty, it is unlikely to
522  * be a very large table).
523  */
524 
525 /*
526  * name_start()
527  *	create the interactive rename table
528  * Return:
529  *	0 if successful, -1 otherwise
530  */
531 
532 #if __STDC__
533 int
534 name_start(void)
535 #else
536 int
537 name_start()
538 #endif
539 {
540 	if (ntab != NULL)
541 		return(0);
542  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
543                 warn(1, "Cannot allocate memory for interactive rename table");
544                 return(-1);
545         }
546 	return(0);
547 }
548 
549 /*
550  * add_name()
551  *	add the new name to old name mapping just created by the user.
552  *	If an old name mapping is found (there may be duplicate names on an
553  *	archive) only the most recent is kept.
554  * Return:
555  *	0 if added, -1 otherwise
556  */
557 
558 #if __STDC__
559 int
560 add_name(char *oname, int onamelen, char *nname)
561 #else
562 int
563 add_name(oname, onamelen, nname)
564 	char *oname;
565 	int onamelen;
566 	char *nname;
567 #endif
568 {
569 	NAMT *pt;
570 	u_int indx;
571 
572 	if (ntab == NULL) {
573 		/*
574 		 * should never happen
575 		 */
576 		warn(0, "No interactive rename table, links may fail\n");
577 		return(0);
578 	}
579 
580 	/*
581 	 * look to see if we have already mapped this file, if so we
582 	 * will update it
583 	 */
584 	indx = st_hash(oname, onamelen, N_TAB_SZ);
585 	if ((pt = ntab[indx]) != NULL) {
586 		/*
587 		 * look down the has chain for the file
588 		 */
589 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
590 			pt = pt->fow;
591 
592 		if (pt != NULL) {
593 			/*
594 			 * found an old mapping, replace it with the new one
595 			 * the user just input (if it is different)
596 			 */
597 			if (strcmp(nname, pt->nname) == 0)
598 				return(0);
599 
600 			(void)free((char *)pt->nname);
601 			if ((pt->nname = strdup(nname)) == NULL) {
602 				warn(1, "Cannot update rename table");
603 				return(-1);
604 			}
605 			return(0);
606 		}
607 	}
608 
609 	/*
610 	 * this is a new mapping, add it to the table
611 	 */
612 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
613 		if ((pt->oname = strdup(oname)) != NULL) {
614 			if ((pt->nname = strdup(nname)) != NULL) {
615 				pt->fow = ntab[indx];
616 				ntab[indx] = pt;
617 				return(0);
618 			}
619 			(void)free((char *)pt->oname);
620 		}
621 		(void)free((char *)pt);
622 	}
623 	warn(1, "Interactive rename table out of memory");
624 	return(-1);
625 }
626 
627 /*
628  * sub_name()
629  *	look up a link name to see if it points at a file that has been
630  *	remapped by the user. If found, the link is adjusted to contain the
631  *	new name (oname is the link to name)
632  */
633 
634 #if __STDC__
635 void
636 sub_name(char *oname, int *onamelen)
637 #else
638 void
639 sub_name(oname, onamelen)
640 	char *oname;
641 	int *onamelen;
642 #endif
643 {
644 	NAMT *pt;
645 	u_int indx;
646 
647 	if (ntab == NULL)
648 		return;
649 	/*
650 	 * look the name up in the hash table
651 	 */
652 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
653 	if ((pt = ntab[indx]) == NULL)
654 		return;
655 
656 	while (pt != NULL) {
657 		/*
658 		 * walk down the hash cahin looking for a match
659 		 */
660 		if (strcmp(oname, pt->oname) == 0) {
661 			/*
662 			 * found it, replace it with the new name
663 			 * and return (we know that oname has enough space)
664 			 */
665 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
666 			return;
667 		}
668 		pt = pt->fow;
669 	}
670 
671 	/*
672 	 * no match, just return
673 	 */
674 	return;
675 }
676 
677 /*
678  * device/inode mapping table routines
679  * (used with formats that store device and inodes fields)
680  *
681  * device/inode mapping tables remap the device field in a archive header. The
682  * device/inode fields are used to determine when files are hard links to each
683  * other. However these values have very little meaning outside of that. This
684  * database is used to solve one of two different problems.
685  *
686  * 1) when files are appended to an archive, while the new files may have hard
687  * links to each other, you cannot determine if they have hard links to any
688  * file already stored on the archive from a prior run of pax. We must assume
689  * that these inode/device pairs are unique only within a SINGLE run of pax
690  * (which adds a set of files to an archive). So we have to make sure the
691  * inode/dev pairs we add each time are always unique. We do this by observing
692  * while the inode field is very dense, the use of the dev field is fairly
693  * sparse. Within each run of pax, we remap any device number of a new archive
694  * member that has a device number used in a prior run and already stored in a
695  * file on the archive. During the read phase of the append, we store the
696  * device numbers used and mark them to not be used by any file during the
697  * write phase. If during write we go to use one of those old device numbers,
698  * we remap it to a new value.
699  *
700  * 2) Often the fields in the archive header used to store these values are
701  * too small to store the entire value. The result is an inode or device value
702  * which can be truncated. This really can foul up an archive. With truncation
703  * we end up creating links between files that are really not links (after
704  * truncation the inodes are the same value). We address that by detecting
705  * truncation and forcing a remap of the device field to split truncated
706  * inodes away from each other. Each truncation creates a pattern of bits that
707  * are removed. We use this pattern of truncated bits to partition the inodes
708  * on a single device to many different devices (each one represented by the
709  * truncated bit pattern). All inodes on the same device that have the same
710  * truncation pattern are mapped to the same new device. Two inodes that
711  * truncate to the same value clearly will always have different truncation
712  * bit patterns, so they will be split from away each other. When we spot
713  * device truncation we remap the device number to a non truncated value.
714  * (for more info see table.h for the data structures involved).
715  */
716 
717 /*
718  * dev_start()
719  *	create the device mapping table
720  * Return:
721  *	0 if successful, -1 otherwise
722  */
723 
724 #if __STDC__
725 int
726 dev_start(void)
727 #else
728 int
729 dev_start()
730 #endif
731 {
732 	if (dtab != NULL)
733 		return(0);
734  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
735                 warn(1, "Cannot allocate memory for device mapping table");
736                 return(-1);
737         }
738 	return(0);
739 }
740 
741 /*
742  * add_dev()
743  *	add a device number to the table. this will force the device to be
744  *	remapped to a new value if it be used during a write phase. This
745  *	function is called during the read phase of an append to prohibit the
746  *	use of any device number already in the archive.
747  * Return:
748  *	0 if added ok, -1 otherwise
749  */
750 
751 #if __STDC__
752 int
753 add_dev(ARCHD *arcn)
754 #else
755 int
756 add_dev(arcn)
757 	ARCHD *arcn;
758 #endif
759 {
760 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
761 		return(-1);
762 	return(0);
763 }
764 
765 /*
766  * chk_dev()
767  *	check for a device value in the device table. If not found and the add
768  *	flag is set, it is added. This does NOT assign any mapping values, just
769  *	adds the device number as one that need to be remapped. If this device
770  *	is alread mapped, just return with a pointer to that entry.
771  * Return:
772  *	pointer to the entry for this device in the device map table. Null
773  *	if the add flag is not set and the device is not in the table (it is
774  *	not been seen yet). If add is set and the device cannot be added, null
775  *	is returned (indicates an error).
776  */
777 
778 #if __STDC__
779 static DEVT *
780 chk_dev(dev_t dev, int add)
781 #else
782 static DEVT *
783 chk_dev(dev, add)
784 	dev_t dev;
785 	int add;
786 #endif
787 {
788 	DEVT *pt;
789 	u_int indx;
790 
791 	if (dtab == NULL)
792 		return(NULL);
793 	/*
794 	 * look to see if this device is already in the table
795 	 */
796 	indx = ((unsigned)dev) % D_TAB_SZ;
797 	if ((pt = dtab[indx]) != NULL) {
798 		while ((pt != NULL) && (pt->dev != dev))
799 			pt = pt->fow;
800 
801 		/*
802 		 * found it, return a pointer to it
803 		 */
804 		if (pt != NULL)
805 			return(pt);
806 	}
807 
808 	/*
809 	 * not in table, we add it only if told to as this may just be a check
810 	 * to see if a device number is being used.
811 	 */
812 	if (add == 0)
813 		return(NULL);
814 
815 	/*
816 	 * allocate a node for this device and add it to the front of the hash
817 	 * chain. Note we do not assign remaps values here, so the pt->list
818 	 * list must be NULL.
819 	 */
820 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
821 		warn(1, "Device map table out of memory");
822 		return(NULL);
823 	}
824 	pt->dev = dev;
825 	pt->list = NULL;
826 	pt->fow = dtab[indx];
827 	dtab[indx] = pt;
828 	return(pt);
829 }
830 /*
831  * map_dev()
832  *	given an inode and device storage mask (the mask has a 1 for each bit
833  *	the archive format is able to store in a header), we check for inode
834  *	and device truncation and remap the device as required. Device mapping
835  *	can also occur when during the read phase of append a device number was
836  *	seen (and was marked as do not use during the write phase). WE ASSUME
837  *	that unsigned longs are the same size or bigger than the fields used
838  *	for ino_t and dev_t. If not the types will have to be changed.
839  * Return:
840  *	0 if all ok, -1 otherwise.
841  */
842 
843 #if __STDC__
844 int
845 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
846 #else
847 int
848 map_dev(arcn, dev_mask, ino_mask)
849 	ARCHD *arcn;
850 	u_long dev_mask;
851 	u_long ino_mask;
852 #endif
853 {
854 	DEVT *pt;
855 	DLIST *dpt;
856 	static dev_t lastdev = 0;	/* next device number to try */
857 	int trc_ino = 0;
858 	int trc_dev = 0;
859 	ino_t trunc_bits = 0;
860 	ino_t nino;
861 
862 	if (dtab == NULL)
863 		return(0);
864 	/*
865 	 * check for device and inode truncation, and extract the truncated
866 	 * bit pattern.
867 	 */
868 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
869 		++trc_dev;
870 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
871 		++trc_ino;
872 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
873 	}
874 
875 	/*
876 	 * see if this device is already being mapped, look up the device
877 	 * then find the truncation bit pattern which applies
878 	 */
879 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
880 		/*
881 		 * this device is already marked to be remapped
882 		 */
883 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
884 			if (dpt->trunc_bits == trunc_bits)
885 				break;
886 
887 		if (dpt != NULL) {
888 			/*
889 			 * we are being remapped for this device and pattern
890 			 * change the device number to be stored and return
891 			 */
892 			arcn->sb.st_dev = dpt->dev;
893 			arcn->sb.st_ino = nino;
894 			return(0);
895 		}
896 	} else {
897 		/*
898 		 * this device is not being remapped YET. if we do not have any
899 		 * form of truncation, we do not need a remap
900 		 */
901 		if (!trc_ino && !trc_dev)
902 			return(0);
903 
904 		/*
905 		 * we have truncation, have to add this as a device to remap
906 		 */
907 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
908 			goto bad;
909 
910 		/*
911 		 * if we just have a truncated inode, we have to make sure that
912 		 * all future inodes that do not truncate (they have the
913 		 * truncation pattern of all 0's) continue to map to the same
914 		 * device number. We probably have already written inodes with
915 		 * this device number to the archive with the truncation
916 		 * pattern of all 0's. So we add the mapping for all 0's to the
917 		 * same device number.
918 		 */
919 		if (!trc_dev && (trunc_bits != 0)) {
920 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
921 				goto bad;
922 			dpt->trunc_bits = 0;
923 			dpt->dev = arcn->sb.st_dev;
924 			dpt->fow = pt->list;
925 			pt->list = dpt;
926 		}
927 	}
928 
929 	/*
930 	 * look for a device number not being used. We must watch for wrap
931 	 * around on lastdev (so we do not get stuck looking forever!)
932 	 */
933 	while (++lastdev > 0) {
934 		if (chk_dev(lastdev, 0) != NULL)
935 			continue;
936 		/*
937 		 * found an unused value. If we have reached truncation point
938 		 * for this format we are hosed, so we give up. Otherwise we
939 		 * mark it as being used.
940 		 */
941 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
942 		    (chk_dev(lastdev, 1) == NULL))
943 			goto bad;
944 		break;
945 	}
946 
947 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
948 		goto bad;
949 
950 	/*
951 	 * got a new device number, store it under this truncation pattern.
952 	 * change the device number this file is being stored with.
953 	 */
954 	dpt->trunc_bits = trunc_bits;
955 	dpt->dev = lastdev;
956 	dpt->fow = pt->list;
957 	pt->list = dpt;
958 	arcn->sb.st_dev = lastdev;
959 	arcn->sb.st_ino = nino;
960 	return(0);
961 
962     bad:
963 	warn(1, "Unable to fix truncated inode/device field when storing %s",
964 	    arcn->name);
965 	warn(0, "Archive may create improper hard links when extracted");
966 	return(0);
967 }
968 
969 /*
970  * directory access/mod time reset table routines (for directories READ by pax)
971  *
972  * The pax -t flag requires that access times of archive files to be the same
973  * before being read by pax. For regular files, access time is restored after
974  * the file has been copied. This database provides the same functionality for
975  * directories read during file tree traversal. Restoring directory access time
976  * is more complex than files since directories may be read several times until
977  * all the descendants in their subtree are visited by fts. Directory access
978  * and modification times are stored during the fts pre-order visit (done
979  * before any descendants in the subtree is visited) and restored after the
980  * fts post-order visit (after all the descendants have been visited). In the
981  * case of premature exit from a subtree (like from the effects of -n), any
982  * directory entries left in this database are reset during final cleanup
983  * operations of pax. Entries are hashed by inode number for fast lookup.
984  */
985 
986 /*
987  * atdir_start()
988  *	create the directory access time database for directories READ by pax.
989  * Return:
990  *	0 is created ok, -1 otherwise.
991  */
992 
993 #if __STDC__
994 int
995 atdir_start(void)
996 #else
997 int
998 atdir_start()
999 #endif
1000 {
1001 	if (atab != NULL)
1002 		return(0);
1003  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1004                 warn(1,"Cannot allocate space for directory access time table");
1005                 return(-1);
1006         }
1007 	return(0);
1008 }
1009 
1010 
1011 /*
1012  * atdir_end()
1013  *	walk through the directory access time table and reset the access time
1014  *	of any directory who still has an entry left in the database. These
1015  *	entries are for directories READ by pax
1016  */
1017 
1018 #if __STDC__
1019 void
1020 atdir_end(void)
1021 #else
1022 void
1023 atdir_end()
1024 #endif
1025 {
1026 	ATDIR *pt;
1027 	int i;
1028 
1029 	if (atab == NULL)
1030 		return;
1031 	/*
1032 	 * for each non-empty hash table entry reset all the directories
1033 	 * chained there.
1034 	 */
1035 	for (i = 0; i < A_TAB_SZ; ++i) {
1036 		if ((pt = atab[i]) == NULL)
1037 			continue;
1038 		/*
1039 		 * remember to force the times, set_ftime() looks at pmtime
1040 		 * and patime, which only applies to things CREATED by pax,
1041 		 * not read by pax. Read time reset is controlled by -t.
1042 		 */
1043 		for (; pt != NULL; pt = pt->fow)
1044 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1045 	}
1046 }
1047 
1048 /*
1049  * add_atdir()
1050  *	add a directory to the directory access time table. Table is hashed
1051  *	and chained by inode number. This is for directories READ by pax
1052  */
1053 
1054 #if __STDC__
1055 void
1056 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1057 #else
1058 void
1059 add_atdir(fname, dev, ino, mtime, atime)
1060 	char *fname;
1061 	dev_t dev;
1062 	ino_t ino;
1063 	time_t mtime;
1064 	time_t atime;
1065 #endif
1066 {
1067 	ATDIR *pt;
1068 	u_int indx;
1069 
1070 	if (atab == NULL)
1071 		return;
1072 
1073 	/*
1074 	 * make sure this directory is not already in the table, if so just
1075 	 * return (the older entry always has the correct time). The only
1076 	 * way this will happen is when the same subtree can be traversed by
1077 	 * different args to pax and the -n option is aborting fts out of a
1078 	 * subtree before all the post-order visits have been made).
1079 	 */
1080 	indx = ((unsigned)ino) % A_TAB_SZ;
1081 	if ((pt = atab[indx]) != NULL) {
1082 		while (pt != NULL) {
1083 			if ((pt->ino == ino) && (pt->dev == dev))
1084 				break;
1085 			pt = pt->fow;
1086 		}
1087 
1088 		/*
1089 		 * oops, already there. Leave it alone.
1090 		 */
1091 		if (pt != NULL)
1092 			return;
1093 	}
1094 
1095 	/*
1096 	 * add it to the front of the hash chain
1097 	 */
1098 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1099 		if ((pt->name = strdup(fname)) != NULL) {
1100 			pt->dev = dev;
1101 			pt->ino = ino;
1102 			pt->mtime = mtime;
1103 			pt->atime = atime;
1104 			pt->fow = atab[indx];
1105 			atab[indx] = pt;
1106 			return;
1107 		}
1108 		(void)free((char *)pt);
1109 	}
1110 
1111 	warn(1, "Directory access time reset table ran out of memory");
1112 	return;
1113 }
1114 
1115 /*
1116  * get_atdir()
1117  *	look up a directory by inode and device number to obtain the access
1118  *	and modification time you want to set to. If found, the modification
1119  *	and access time parameters are set and the entry is removed from the
1120  *	table (as it is no longer needed). These are for directories READ by
1121  *	pax
1122  * Return:
1123  *	0 if found, -1 if not found.
1124  */
1125 
1126 #if __STDC__
1127 int
1128 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1129 #else
1130 int
1131 get_atdir(dev, ino, mtime, atime)
1132 	dev_t dev;
1133 	ino_t ino;
1134 	time_t *mtime;
1135 	time_t *atime;
1136 #endif
1137 {
1138 	ATDIR *pt;
1139 	ATDIR **ppt;
1140 	u_int indx;
1141 
1142 	if (atab == NULL)
1143 		return(-1);
1144 	/*
1145 	 * hash by inode and search the chain for an inode and device match
1146 	 */
1147 	indx = ((unsigned)ino) % A_TAB_SZ;
1148 	if ((pt = atab[indx]) == NULL)
1149 		return(-1);
1150 
1151 	ppt = &(atab[indx]);
1152 	while (pt != NULL) {
1153 		if ((pt->ino == ino) && (pt->dev == dev))
1154 			break;
1155 		/*
1156 		 * no match, go to next one
1157 		 */
1158 		ppt = &(pt->fow);
1159 		pt = pt->fow;
1160 	}
1161 
1162 	/*
1163 	 * return if we did not find it.
1164 	 */
1165 	if (pt == NULL)
1166 		return(-1);
1167 
1168 	/*
1169 	 * found it. return the times and remove the entry from the table.
1170 	 */
1171 	*ppt = pt->fow;
1172 	*mtime = pt->mtime;
1173 	*atime = pt->atime;
1174 	(void)free((char *)pt->name);
1175 	(void)free((char *)pt);
1176 	return(0);
1177 }
1178 
1179 /*
1180  * directory access mode and time storage routines (for directories CREATED
1181  * by pax).
1182  *
1183  * Pax requires that extracted directories, by default, have their access/mod
1184  * times and permissions set to the values specified in the archive. During the
1185  * actions of extracting (and creating the destination subtree during -rw copy)
1186  * directories extracted may be modified after being created. Even worse is
1187  * that these directories may have been created with file permissions which
1188  * prohibits any descendants of these directories from being extracted. When
1189  * directories are created by pax, access rights may be added to permit the
1190  * creation of files in their subtree. Every time pax creates a directory, the
1191  * times and file permissions specified by the archive are stored. After all
1192  * files have been extracted (or copied), these directories have their times
1193  * and file modes reset to the stored values. The directory info is restored in
1194  * reverse order as entries were added to the data file from root to leaf. To
1195  * restore atime properly, we must go backwards. The data file consists of
1196  * records with two parts, the file name followed by a DIRDATA trailer. The
1197  * fixed sized trailer contains the size of the name plus the off_t location in
1198  * the file. To restore we work backwards through the file reading the trailer
1199  * then the file name.
1200  */
1201 
1202 /*
1203  * dir_start()
1204  *	set up the directory time and file mode storage for directories CREATED
1205  *	by pax.
1206  * Return:
1207  *	0 if ok, -1 otherwise
1208  */
1209 
1210 #if __STDC__
1211 int
1212 dir_start(void)
1213 #else
1214 int
1215 dir_start()
1216 #endif
1217 {
1218 	char *pt;
1219 
1220 	if (dirfd != -1)
1221 		return(0);
1222 
1223 	/*
1224 	 * unlink the file so it goes away at termination by itself
1225 	 */
1226 	pt = strdup("/tmp/paxXXXXXX");
1227 	if (pt == NULL) {
1228 		warn(1, "Unable to allocate memory");
1229 		return(-1);
1230 	}
1231 	if ((dirfd = mkstemp(pt)) >= 0) {
1232 		(void)unlink(pt);
1233 		free(pt);
1234 		return(0);
1235 	}
1236 	warn(1, "Unable to create temporary file for directory times: %s", pt);
1237 	free(pt);
1238 	return(-1);
1239 }
1240 
1241 /*
1242  * add_dir()
1243  *	add the mode and times for a newly CREATED directory
1244  *	name is name of the directory, psb the stat buffer with the data in it,
1245  *	frc_mode is a flag that says whether to force the setting of the mode
1246  *	(ignoring the user set values for preserving file mode). Frc_mode is
1247  *	for the case where we created a file and found that the resulting
1248  *	directory was not writeable and the user asked for file modes to NOT
1249  *	be preserved. (we have to preserve what was created by default, so we
1250  *	have to force the setting at the end. this is stated explicitly in the
1251  *	pax spec)
1252  */
1253 
1254 #if __STDC__
1255 void
1256 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1257 #else
1258 void
1259 add_dir(name, nlen, psb, frc_mode)
1260 	char *name;
1261 	int nlen;
1262 	struct stat *psb;
1263 	int frc_mode;
1264 #endif
1265 {
1266 	DIRDATA dblk;
1267 
1268 	if (dirfd < 0)
1269 		return;
1270 
1271 	/*
1272 	 * get current position (where file name will start) so we can store it
1273 	 * in the trailer
1274 	 */
1275 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1276 		warn(1,"Unable to store mode and times for directory: %s",name);
1277 		return;
1278 	}
1279 
1280 	/*
1281 	 * write the file name followed by the trailer
1282 	 */
1283 	dblk.nlen = nlen + 1;
1284 	dblk.mode = psb->st_mode & 0xffff;
1285 	dblk.mtime = psb->st_mtime;
1286 	dblk.atime = psb->st_atime;
1287 	dblk.frc_mode = frc_mode;
1288 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1289 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1290 		++dircnt;
1291 		return;
1292 	}
1293 
1294 	warn(1,"Unable to store mode and times for created directory: %s",name);
1295 	return;
1296 }
1297 
1298 /*
1299  * proc_dir()
1300  *	process all file modes and times stored for directories CREATED
1301  *	by pax
1302  */
1303 
1304 #if __STDC__
1305 void
1306 proc_dir(void)
1307 #else
1308 void
1309 proc_dir()
1310 #endif
1311 {
1312 	char name[PAXPATHLEN+1];
1313 	DIRDATA dblk;
1314 	u_long cnt;
1315 
1316 	if (dirfd < 0)
1317 		return;
1318 	/*
1319 	 * read backwards through the file and process each directory
1320 	 */
1321 	for (cnt = 0; cnt < dircnt; ++cnt) {
1322 		/*
1323 		 * read the trailer, then the file name, if this fails
1324 		 * just give up.
1325 		 */
1326 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1327 			break;
1328 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1329 			break;
1330 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1331 			break;
1332 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1333 			break;
1334 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1335 			break;
1336 
1337 		/*
1338 		 * frc_mode set, make sure we set the file modes even if
1339 		 * the user didn't ask for it (see file_subs.c for more info)
1340 		 */
1341 		if (pmode || dblk.frc_mode)
1342 			set_pmode(name, dblk.mode);
1343 		if (patime || pmtime)
1344 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1345 	}
1346 
1347 	(void)close(dirfd);
1348 	dirfd = -1;
1349 	if (cnt != dircnt)
1350 		warn(1,"Unable to set mode and times for created directories");
1351 	return;
1352 }
1353 
1354 /*
1355  * database independent routines
1356  */
1357 
1358 /*
1359  * st_hash()
1360  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1361  *	end of file, as this provides far better distribution than any other
1362  *	part of the name. For performance reasons we only care about the last
1363  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1364  *	name). Was tested on 500,000 name file tree traversal from the root
1365  *	and gave almost a perfectly uniform distribution of keys when used with
1366  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1367  *	chars at a time and pads with 0 for last addition.
1368  * Return:
1369  *	the hash value of the string MOD (%) the table size.
1370  */
1371 
1372 #if __STDC__
1373 u_int
1374 st_hash(char *name, int len, int tabsz)
1375 #else
1376 u_int
1377 st_hash(name, len, tabsz)
1378 	char *name;
1379 	int len;
1380 	int tabsz;
1381 #endif
1382 {
1383 	char *pt;
1384 	char *dest;
1385 	char *end;
1386 	int i;
1387 	u_int key = 0;
1388 	int steps;
1389 	int res;
1390 	u_int val;
1391 
1392 	/*
1393 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1394 	 * time here (remember these are pathnames, the tail is what will
1395 	 * spread out the keys)
1396 	 */
1397 	if (len > MAXKEYLEN) {
1398                 pt = &(name[len - MAXKEYLEN]);
1399 		len = MAXKEYLEN;
1400 	} else
1401 		pt = name;
1402 
1403 	/*
1404 	 * calculate the number of u_int size steps in the string and if
1405 	 * there is a runt to deal with
1406 	 */
1407 	steps = len/sizeof(u_int);
1408 	res = len % sizeof(u_int);
1409 
1410 	/*
1411 	 * add up the value of the string in unsigned integer sized pieces
1412 	 * too bad we cannot have unsigned int aligned strings, then we
1413 	 * could avoid the expensive copy.
1414 	 */
1415 	for (i = 0; i < steps; ++i) {
1416 		end = pt + sizeof(u_int);
1417 		dest = (char *)&val;
1418 		while (pt < end)
1419 			*dest++ = *pt++;
1420 		key += val;
1421 	}
1422 
1423 	/*
1424 	 * add in the runt padded with zero to the right
1425 	 */
1426 	if (res) {
1427 		val = 0;
1428 		end = pt + res;
1429 		dest = (char *)&val;
1430 		while (pt < end)
1431 			*dest++ = *pt++;
1432 		key += val;
1433 	}
1434 
1435 	/*
1436 	 * return the result mod the table size
1437 	 */
1438 	return(key % tabsz);
1439 }
1440