xref: /netbsd-src/bin/pax/tables.c (revision ce0bb6e8d2e560ecacbe865a848624f94498063b)
1 /*	$NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $	*/
2 
3 /*-
4  * Copyright (c) 1992 Keith Muller.
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Keith Muller of the University of California, San Diego.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 #ifndef lint
41 #if 0
42 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
43 #else
44 static char rcsid[] = "$NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $";
45 #endif
46 #endif /* not lint */
47 
48 #include <sys/types.h>
49 #include <sys/time.h>
50 #include <sys/stat.h>
51 #include <sys/param.h>
52 #include <sys/fcntl.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <string.h>
56 #include <unistd.h>
57 #include <errno.h>
58 #include <stdlib.h>
59 #include "pax.h"
60 #include "tables.h"
61 #include "extern.h"
62 
63 /*
64  * Routines for controlling the contents of all the different databases pax
65  * keeps. Tables are dynamically created only when they are needed. The
66  * goal was speed and the ability to work with HUGE archives. The databases
67  * were kept simple, but do have complex rules for when the contents change.
68  * As of this writing, the posix library functions were more complex than
69  * needed for this application (pax databases have very short lifetimes and
70  * do not survive after pax is finished). Pax is required to handle very
71  * large archives. These database routines carefully combine memory usage and
72  * temporary file storage in ways which will not significantly impact runtime
73  * performance while allowing the largest possible archives to be handled.
74  * Trying to force the fit to the posix databases routines was not considered
75  * time well spent.
76  */
77 
78 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
79 static FTM **ftab = NULL;	/* file time table for updating arch */
80 static NAMT **ntab = NULL;	/* interactive rename storage table */
81 static DEVT **dtab = NULL;	/* device/inode mapping tables */
82 static ATDIR **atab = NULL;	/* file tree directory time reset table */
83 static int dirfd = -1;		/* storage for setting created dir time/mode */
84 static u_long dircnt;		/* entries in dir time/mode storage */
85 static int ffd = -1;		/* tmp file for file time table name storage */
86 
87 static DEVT *chk_dev __P((dev_t, int));
88 
89 /*
90  * hard link table routines
91  *
92  * The hard link table tries to detect hard links to files using the device and
93  * inode values. We do this when writing an archive, so we can tell the format
94  * write routine that this file is a hard link to another file. The format
95  * write routine then can store this file in whatever way it wants (as a hard
96  * link if the format supports that like tar, or ignore this info like cpio).
97  * (Actually a field in the format driver table tells us if the format wants
98  * hard link info. if not, we do not waste time looking for them). We also use
99  * the same table when reading an archive. In that situation, this table is
100  * used by the format read routine to detect hard links from stored dev and
101  * inode numbers (like cpio). This will allow pax to create a link when one
102  * can be detected by the archive format.
103  */
104 
105 /*
106  * lnk_start
107  *	Creates the hard link table.
108  * Return:
109  *	0 if created, -1 if failure
110  */
111 
112 #if __STDC__
113 int
114 lnk_start(void)
115 #else
116 int
117 lnk_start()
118 #endif
119 {
120 	if (ltab != NULL)
121 		return(0);
122  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
123                 warn(1, "Cannot allocate memory for hard link table");
124                 return(-1);
125         }
126 	return(0);
127 }
128 
129 /*
130  * chk_lnk()
131  *	Looks up entry in hard link hash table. If found, it copies the name
132  *	of the file it is linked to (we already saw that file) into ln_name.
133  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
134  *	database. (We have seen all the links to this file). If not found,
135  *	we add the file to the database if it has the potential for having
136  *	hard links to other files we may process (it has a link count > 1)
137  * Return:
138  *	if found returns 1; if not found returns 0; -1 on error
139  */
140 
141 #if __STDC__
142 int
143 chk_lnk(register ARCHD *arcn)
144 #else
145 int
146 chk_lnk(arcn)
147 	register ARCHD *arcn;
148 #endif
149 {
150 	register HRDLNK *pt;
151 	register HRDLNK **ppt;
152 	register u_int indx;
153 
154 	if (ltab == NULL)
155 		return(-1);
156 	/*
157 	 * ignore those nodes that cannot have hard links
158 	 */
159 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
160 		return(0);
161 
162 	/*
163 	 * hash inode number and look for this file
164 	 */
165 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
166 	if ((pt = ltab[indx]) != NULL) {
167 		/*
168 		 * it's hash chain in not empty, walk down looking for it
169 		 */
170 		ppt = &(ltab[indx]);
171 		while (pt != NULL) {
172 			if ((pt->ino == arcn->sb.st_ino) &&
173 			    (pt->dev == arcn->sb.st_dev))
174 				break;
175 			ppt = &(pt->fow);
176 			pt = pt->fow;
177 		}
178 
179 		if (pt != NULL) {
180 			/*
181 			 * found a link. set the node type and copy in the
182 			 * name of the file it is to link to. we need to
183 			 * handle hardlinks to regular files differently than
184 			 * other links.
185 			 */
186 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
187 				PAXPATHLEN+1);
188 			if (arcn->type == PAX_REG)
189 				arcn->type = PAX_HRG;
190 			else
191 				arcn->type = PAX_HLK;
192 
193 			/*
194 			 * if we have found all the links to this file, remove
195 			 * it from the database
196 			 */
197 			if (--pt->nlink <= 1) {
198 				*ppt = pt->fow;
199 				(void)free((char *)pt->name);
200 				(void)free((char *)pt);
201 			}
202 			return(1);
203 		}
204 	}
205 
206 	/*
207 	 * we never saw this file before. It has links so we add it to the
208 	 * front of this hash chain
209 	 */
210 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
211 		if ((pt->name = strdup(arcn->name)) != NULL) {
212 			pt->dev = arcn->sb.st_dev;
213 			pt->ino = arcn->sb.st_ino;
214 			pt->nlink = arcn->sb.st_nlink;
215 			pt->fow = ltab[indx];
216 			ltab[indx] = pt;
217 			return(0);
218 		}
219 		(void)free((char *)pt);
220 	}
221 
222 	warn(1, "Hard link table out of memory");
223 	return(-1);
224 }
225 
226 /*
227  * purg_lnk
228  *	remove reference for a file that we may have added to the data base as
229  *	a potential source for hard links. We ended up not using the file, so
230  *	we do not want to accidently point another file at it later on.
231  */
232 
233 #if __STDC__
234 void
235 purg_lnk(register ARCHD *arcn)
236 #else
237 void
238 purg_lnk(arcn)
239 	register ARCHD *arcn;
240 #endif
241 {
242 	register HRDLNK *pt;
243 	register HRDLNK **ppt;
244 	register u_int indx;
245 
246 	if (ltab == NULL)
247 		return;
248 	/*
249 	 * do not bother to look if it could not be in the database
250 	 */
251 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
252 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
253 		return;
254 
255 	/*
256 	 * find the hash chain for this inode value, if empty return
257 	 */
258 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
259 	if ((pt = ltab[indx]) == NULL)
260 		return;
261 
262 	/*
263 	 * walk down the list looking for the inode/dev pair, unlink and
264 	 * free if found
265 	 */
266 	ppt = &(ltab[indx]);
267 	while (pt != NULL) {
268 		if ((pt->ino == arcn->sb.st_ino) &&
269 		    (pt->dev == arcn->sb.st_dev))
270 			break;
271 		ppt = &(pt->fow);
272 		pt = pt->fow;
273 	}
274 	if (pt == NULL)
275 		return;
276 
277 	/*
278 	 * remove and free it
279 	 */
280 	*ppt = pt->fow;
281 	(void)free((char *)pt->name);
282 	(void)free((char *)pt);
283 }
284 
285 /*
286  * lnk_end()
287  *	pull apart a existing link table so we can reuse it. We do this between
288  *	read and write phases of append with update. (The format may have
289  *	used the link table, and we need to start with a fresh table for the
290  *	write phase
291  */
292 
293 #if __STDC__
294 void
295 lnk_end(void)
296 #else
297 void
298 lnk_end()
299 #endif
300 {
301 	register int i;
302 	register HRDLNK *pt;
303 	register HRDLNK *ppt;
304 
305 	if (ltab == NULL)
306 		return;
307 
308 	for (i = 0; i < L_TAB_SZ; ++i) {
309 		if (ltab[i] == NULL)
310 			continue;
311 		pt = ltab[i];
312 		ltab[i] = NULL;
313 
314 		/*
315 		 * free up each entry on this chain
316 		 */
317 		while (pt != NULL) {
318 			ppt = pt;
319 			pt = ppt->fow;
320 			(void)free((char *)ppt->name);
321 			(void)free((char *)ppt);
322 		}
323 	}
324 	return;
325 }
326 
327 /*
328  * modification time table routines
329  *
330  * The modification time table keeps track of last modification times for all
331  * files stored in an archive during a write phase when -u is set. We only
332  * add a file to the archive if it is newer than a file with the same name
333  * already stored on the archive (if there is no other file with the same
334  * name on the archive it is added). This applies to writes and appends.
335  * An append with an -u must read the archive and store the modification time
336  * for every file on that archive before starting the write phase. It is clear
337  * that this is one HUGE database. To save memory space, the actual file names
338  * are stored in a scatch file and indexed by an in memory hash table. The
339  * hash table is indexed by hashing the file path. The nodes in the table store
340  * the length of the filename and the lseek offset within the scratch file
341  * where the actual name is stored. Since there are never any deletions to this
342  * table, fragmentation of the scratch file is never a issue. Lookups seem to
343  * not exhibit any locality at all (files in the database are rarely
344  * looked up more than once...). So caching is just a waste of memory. The
345  * only limitation is the amount of scatch file space available to store the
346  * path names.
347  */
348 
349 /*
350  * ftime_start()
351  *	create the file time hash table and open for read/write the scratch
352  *	file. (after created it is unlinked, so when we exit we leave
353  *	no witnesses).
354  * Return:
355  *	0 if the table and file was created ok, -1 otherwise
356  */
357 
358 #if __STDC__
359 int
360 ftime_start(void)
361 #else
362 int
363 ftime_start()
364 #endif
365 {
366 	char *pt;
367 
368 	if (ftab != NULL)
369 		return(0);
370  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
371                 warn(1, "Cannot allocate memory for file time table");
372                 return(-1);
373         }
374 
375 	/*
376 	 * get random name and create temporary scratch file, unlink name
377 	 * so it will get removed on exit
378 	 */
379 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
380 		return(-1);
381 	(void)unlink(pt);
382 
383 	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
384 		syswarn(1, errno, "Unable to open temporary file: %s", pt);
385 		return(-1);
386 	}
387 
388 	(void)unlink(pt);
389 	return(0);
390 }
391 
392 /*
393  * chk_ftime()
394  *	looks up entry in file time hash table. If not found, the file is
395  *	added to the hash table and the file named stored in the scratch file.
396  *	If a file with the same name is found, the file times are compared and
397  *	the most recent file time is retained. If the new file was younger (or
398  *	was not in the database) the new file is selected for storage.
399  * Return:
400  *	0 if file should be added to the archive, 1 if it should be skipped,
401  *	-1 on error
402  */
403 
404 #if __STDC__
405 int
406 chk_ftime(register ARCHD *arcn)
407 #else
408 int
409 chk_ftime(arcn)
410 	register ARCHD *arcn;
411 #endif
412 {
413 	register FTM *pt;
414 	register int namelen;
415 	register u_int indx;
416 	char ckname[PAXPATHLEN+1];
417 
418 	/*
419 	 * no info, go ahead and add to archive
420 	 */
421 	if (ftab == NULL)
422 		return(0);
423 
424 	/*
425 	 * hash the pathname and look up in table
426 	 */
427 	namelen = arcn->nlen;
428 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
429 	if ((pt = ftab[indx]) != NULL) {
430 		/*
431 		 * the hash chain is not empty, walk down looking for match
432 		 * only read up the path names if the lengths match, speeds
433 		 * up the search a lot
434 		 */
435 		while (pt != NULL) {
436 			if (pt->namelen == namelen) {
437 				/*
438 				 * potential match, have to read the name
439 				 * from the scratch file.
440 				 */
441 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
442 					syswarn(1, errno,
443 					    "Failed ftime table seek");
444 					return(-1);
445 				}
446 				if (read(ffd, ckname, namelen) != namelen) {
447 					syswarn(1, errno,
448 					    "Failed ftime table read");
449 					return(-1);
450 				}
451 
452 				/*
453 				 * if the names match, we are done
454 				 */
455 				if (!strncmp(ckname, arcn->name, namelen))
456 					break;
457 			}
458 
459 			/*
460 			 * try the next entry on the chain
461 			 */
462 			pt = pt->fow;
463 		}
464 
465 		if (pt != NULL) {
466 			/*
467 			 * found the file, compare the times, save the newer
468 			 */
469 			if (arcn->sb.st_mtime > pt->mtime) {
470 				/*
471 				 * file is newer
472 				 */
473 				pt->mtime = arcn->sb.st_mtime;
474 				return(0);
475 			}
476 			/*
477 			 * file is older
478 			 */
479 			return(1);
480 		}
481 	}
482 
483 	/*
484 	 * not in table, add it
485 	 */
486 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
487 		/*
488 		 * add the name at the end of the scratch file, saving the
489 		 * offset. add the file to the head of the hash chain
490 		 */
491 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
492 			if (write(ffd, arcn->name, namelen) == namelen) {
493 				pt->mtime = arcn->sb.st_mtime;
494 				pt->namelen = namelen;
495 				pt->fow = ftab[indx];
496 				ftab[indx] = pt;
497 				return(0);
498 			}
499 			syswarn(1, errno, "Failed write to file time table");
500 		} else
501 			syswarn(1, errno, "Failed seek on file time table");
502 	} else
503 		warn(1, "File time table ran out of memory");
504 
505 	if (pt != NULL)
506 		(void)free((char *)pt);
507 	return(-1);
508 }
509 
510 /*
511  * Interactive rename table routines
512  *
513  * The interactive rename table keeps track of the new names that the user
514  * assignes to files from tty input. Since this map is unique for each file
515  * we must store it in case there is a reference to the file later in archive
516  * (a link). Otherwise we will be unable to find the file we know was
517  * extracted. The remapping of these files is stored in a memory based hash
518  * table (it is assumed since input must come from /dev/tty, it is unlikely to
519  * be a very large table).
520  */
521 
522 /*
523  * name_start()
524  *	create the interactive rename table
525  * Return:
526  *	0 if successful, -1 otherwise
527  */
528 
529 #if __STDC__
530 int
531 name_start(void)
532 #else
533 int
534 name_start()
535 #endif
536 {
537 	if (ntab != NULL)
538 		return(0);
539  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
540                 warn(1, "Cannot allocate memory for interactive rename table");
541                 return(-1);
542         }
543 	return(0);
544 }
545 
546 /*
547  * add_name()
548  *	add the new name to old name mapping just created by the user.
549  *	If an old name mapping is found (there may be duplicate names on an
550  *	archive) only the most recent is kept.
551  * Return:
552  *	0 if added, -1 otherwise
553  */
554 
555 #if __STDC__
556 int
557 add_name(register char *oname, int onamelen, char *nname)
558 #else
559 int
560 add_name(oname, onamelen, nname)
561 	register char *oname;
562 	int onamelen;
563 	char *nname;
564 #endif
565 {
566 	register NAMT *pt;
567 	register u_int indx;
568 
569 	if (ntab == NULL) {
570 		/*
571 		 * should never happen
572 		 */
573 		warn(0, "No interactive rename table, links may fail\n");
574 		return(0);
575 	}
576 
577 	/*
578 	 * look to see if we have already mapped this file, if so we
579 	 * will update it
580 	 */
581 	indx = st_hash(oname, onamelen, N_TAB_SZ);
582 	if ((pt = ntab[indx]) != NULL) {
583 		/*
584 		 * look down the has chain for the file
585 		 */
586 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
587 			pt = pt->fow;
588 
589 		if (pt != NULL) {
590 			/*
591 			 * found an old mapping, replace it with the new one
592 			 * the user just input (if it is different)
593 			 */
594 			if (strcmp(nname, pt->nname) == 0)
595 				return(0);
596 
597 			(void)free((char *)pt->nname);
598 			if ((pt->nname = strdup(nname)) == NULL) {
599 				warn(1, "Cannot update rename table");
600 				return(-1);
601 			}
602 			return(0);
603 		}
604 	}
605 
606 	/*
607 	 * this is a new mapping, add it to the table
608 	 */
609 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
610 		if ((pt->oname = strdup(oname)) != NULL) {
611 			if ((pt->nname = strdup(nname)) != NULL) {
612 				pt->fow = ntab[indx];
613 				ntab[indx] = pt;
614 				return(0);
615 			}
616 			(void)free((char *)pt->oname);
617 		}
618 		(void)free((char *)pt);
619 	}
620 	warn(1, "Interactive rename table out of memory");
621 	return(-1);
622 }
623 
624 /*
625  * sub_name()
626  *	look up a link name to see if it points at a file that has been
627  *	remapped by the user. If found, the link is adjusted to contain the
628  *	new name (oname is the link to name)
629  */
630 
631 #if __STDC__
632 void
633 sub_name(register char *oname, int *onamelen)
634 #else
635 void
636 sub_name(oname, onamelen)
637 	register char *oname;
638 	int *onamelen;
639 #endif
640 {
641 	register NAMT *pt;
642 	register u_int indx;
643 
644 	if (ntab == NULL)
645 		return;
646 	/*
647 	 * look the name up in the hash table
648 	 */
649 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
650 	if ((pt = ntab[indx]) == NULL)
651 		return;
652 
653 	while (pt != NULL) {
654 		/*
655 		 * walk down the hash cahin looking for a match
656 		 */
657 		if (strcmp(oname, pt->oname) == 0) {
658 			/*
659 			 * found it, replace it with the new name
660 			 * and return (we know that oname has enough space)
661 			 */
662 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
663 			return;
664 		}
665 		pt = pt->fow;
666 	}
667 
668 	/*
669 	 * no match, just return
670 	 */
671 	return;
672 }
673 
674 /*
675  * device/inode mapping table routines
676  * (used with formats that store device and inodes fields)
677  *
678  * device/inode mapping tables remap the device field in a archive header. The
679  * device/inode fields are used to determine when files are hard links to each
680  * other. However these values have very little meaning outside of that. This
681  * database is used to solve one of two different problems.
682  *
683  * 1) when files are appended to an archive, while the new files may have hard
684  * links to each other, you cannot determine if they have hard links to any
685  * file already stored on the archive from a prior run of pax. We must assume
686  * that these inode/device pairs are unique only within a SINGLE run of pax
687  * (which adds a set of files to an archive). So we have to make sure the
688  * inode/dev pairs we add each time are always unique. We do this by observing
689  * while the inode field is very dense, the use of the dev field is fairly
690  * sparse. Within each run of pax, we remap any device number of a new archive
691  * member that has a device number used in a prior run and already stored in a
692  * file on the archive. During the read phase of the append, we store the
693  * device numbers used and mark them to not be used by any file during the
694  * write phase. If during write we go to use one of those old device numbers,
695  * we remap it to a new value.
696  *
697  * 2) Often the fields in the archive header used to store these values are
698  * too small to store the entire value. The result is an inode or device value
699  * which can be truncated. This really can foul up an archive. With truncation
700  * we end up creating links between files that are really not links (after
701  * truncation the inodes are the same value). We address that by detecting
702  * truncation and forcing a remap of the device field to split truncated
703  * inodes away from each other. Each truncation creates a pattern of bits that
704  * are removed. We use this pattern of truncated bits to partition the inodes
705  * on a single device to many different devices (each one represented by the
706  * truncated bit pattern). All inodes on the same device that have the same
707  * truncation pattern are mapped to the same new device. Two inodes that
708  * truncate to the same value clearly will always have different truncation
709  * bit patterns, so they will be split from away each other. When we spot
710  * device truncation we remap the device number to a non truncated value.
711  * (for more info see table.h for the data structures involved).
712  */
713 
714 /*
715  * dev_start()
716  *	create the device mapping table
717  * Return:
718  *	0 if successful, -1 otherwise
719  */
720 
721 #if __STDC__
722 int
723 dev_start(void)
724 #else
725 int
726 dev_start()
727 #endif
728 {
729 	if (dtab != NULL)
730 		return(0);
731  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
732                 warn(1, "Cannot allocate memory for device mapping table");
733                 return(-1);
734         }
735 	return(0);
736 }
737 
738 /*
739  * add_dev()
740  *	add a device number to the table. this will force the device to be
741  *	remapped to a new value if it be used during a write phase. This
742  *	function is called during the read phase of an append to prohibit the
743  *	use of any device number already in the archive.
744  * Return:
745  *	0 if added ok, -1 otherwise
746  */
747 
748 #if __STDC__
749 int
750 add_dev(register ARCHD *arcn)
751 #else
752 int
753 add_dev(arcn)
754 	register ARCHD *arcn;
755 #endif
756 {
757 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
758 		return(-1);
759 	return(0);
760 }
761 
762 /*
763  * chk_dev()
764  *	check for a device value in the device table. If not found and the add
765  *	flag is set, it is added. This does NOT assign any mapping values, just
766  *	adds the device number as one that need to be remapped. If this device
767  *	is alread mapped, just return with a pointer to that entry.
768  * Return:
769  *	pointer to the entry for this device in the device map table. Null
770  *	if the add flag is not set and the device is not in the table (it is
771  *	not been seen yet). If add is set and the device cannot be added, null
772  *	is returned (indicates an error).
773  */
774 
775 #if __STDC__
776 static DEVT *
777 chk_dev(dev_t dev, int add)
778 #else
779 static DEVT *
780 chk_dev(dev, add)
781 	dev_t dev;
782 	int add;
783 #endif
784 {
785 	register DEVT *pt;
786 	register u_int indx;
787 
788 	if (dtab == NULL)
789 		return(NULL);
790 	/*
791 	 * look to see if this device is already in the table
792 	 */
793 	indx = ((unsigned)dev) % D_TAB_SZ;
794 	if ((pt = dtab[indx]) != NULL) {
795 		while ((pt != NULL) && (pt->dev != dev))
796 			pt = pt->fow;
797 
798 		/*
799 		 * found it, return a pointer to it
800 		 */
801 		if (pt != NULL)
802 			return(pt);
803 	}
804 
805 	/*
806 	 * not in table, we add it only if told to as this may just be a check
807 	 * to see if a device number is being used.
808 	 */
809 	if (add == 0)
810 		return(NULL);
811 
812 	/*
813 	 * allocate a node for this device and add it to the front of the hash
814 	 * chain. Note we do not assign remaps values here, so the pt->list
815 	 * list must be NULL.
816 	 */
817 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
818 		warn(1, "Device map table out of memory");
819 		return(NULL);
820 	}
821 	pt->dev = dev;
822 	pt->list = NULL;
823 	pt->fow = dtab[indx];
824 	dtab[indx] = pt;
825 	return(pt);
826 }
827 /*
828  * map_dev()
829  *	given an inode and device storage mask (the mask has a 1 for each bit
830  *	the archive format is able to store in a header), we check for inode
831  *	and device truncation and remap the device as required. Device mapping
832  *	can also occur when during the read phase of append a device number was
833  *	seen (and was marked as do not use during the write phase). WE ASSUME
834  *	that unsigned longs are the same size or bigger than the fields used
835  *	for ino_t and dev_t. If not the types will have to be changed.
836  * Return:
837  *	0 if all ok, -1 otherwise.
838  */
839 
840 #if __STDC__
841 int
842 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
843 #else
844 int
845 map_dev(arcn, dev_mask, ino_mask)
846 	register ARCHD *arcn;
847 	u_long dev_mask;
848 	u_long ino_mask;
849 #endif
850 {
851 	register DEVT *pt;
852 	register DLIST *dpt;
853 	static dev_t lastdev = 0;	/* next device number to try */
854 	int trc_ino = 0;
855 	int trc_dev = 0;
856 	ino_t trunc_bits = 0;
857 	ino_t nino;
858 
859 	if (dtab == NULL)
860 		return(0);
861 	/*
862 	 * check for device and inode truncation, and extract the truncated
863 	 * bit pattern.
864 	 */
865 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
866 		++trc_dev;
867 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
868 		++trc_ino;
869 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
870 	}
871 
872 	/*
873 	 * see if this device is already being mapped, look up the device
874 	 * then find the truncation bit pattern which applies
875 	 */
876 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
877 		/*
878 		 * this device is already marked to be remapped
879 		 */
880 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
881 			if (dpt->trunc_bits == trunc_bits)
882 				break;
883 
884 		if (dpt != NULL) {
885 			/*
886 			 * we are being remapped for this device and pattern
887 			 * change the device number to be stored and return
888 			 */
889 			arcn->sb.st_dev = dpt->dev;
890 			arcn->sb.st_ino = nino;
891 			return(0);
892 		}
893 	} else {
894 		/*
895 		 * this device is not being remapped YET. if we do not have any
896 		 * form of truncation, we do not need a remap
897 		 */
898 		if (!trc_ino && !trc_dev)
899 			return(0);
900 
901 		/*
902 		 * we have truncation, have to add this as a device to remap
903 		 */
904 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
905 			goto bad;
906 
907 		/*
908 		 * if we just have a truncated inode, we have to make sure that
909 		 * all future inodes that do not truncate (they have the
910 		 * truncation pattern of all 0's) continue to map to the same
911 		 * device number. We probably have already written inodes with
912 		 * this device number to the archive with the truncation
913 		 * pattern of all 0's. So we add the mapping for all 0's to the
914 		 * same device number.
915 		 */
916 		if (!trc_dev && (trunc_bits != 0)) {
917 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
918 				goto bad;
919 			dpt->trunc_bits = 0;
920 			dpt->dev = arcn->sb.st_dev;
921 			dpt->fow = pt->list;
922 			pt->list = dpt;
923 		}
924 	}
925 
926 	/*
927 	 * look for a device number not being used. We must watch for wrap
928 	 * around on lastdev (so we do not get stuck looking forever!)
929 	 */
930 	while (++lastdev > 0) {
931 		if (chk_dev(lastdev, 0) != NULL)
932 			continue;
933 		/*
934 		 * found an unused value. If we have reached truncation point
935 		 * for this format we are hosed, so we give up. Otherwise we
936 		 * mark it as being used.
937 		 */
938 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
939 		    (chk_dev(lastdev, 1) == NULL))
940 			goto bad;
941 		break;
942 	}
943 
944 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
945 		goto bad;
946 
947 	/*
948 	 * got a new device number, store it under this truncation pattern.
949 	 * change the device number this file is being stored with.
950 	 */
951 	dpt->trunc_bits = trunc_bits;
952 	dpt->dev = lastdev;
953 	dpt->fow = pt->list;
954 	pt->list = dpt;
955 	arcn->sb.st_dev = lastdev;
956 	arcn->sb.st_ino = nino;
957 	return(0);
958 
959     bad:
960 	warn(1, "Unable to fix truncated inode/device field when storing %s",
961 	    arcn->name);
962 	warn(0, "Archive may create improper hard links when extracted");
963 	return(0);
964 }
965 
966 /*
967  * directory access/mod time reset table routines (for directories READ by pax)
968  *
969  * The pax -t flag requires that access times of archive files to be the same
970  * before being read by pax. For regular files, access time is restored after
971  * the file has been copied. This database provides the same functionality for
972  * directories read during file tree traversal. Restoring directory access time
973  * is more complex than files since directories may be read several times until
974  * all the descendants in their subtree are visited by fts. Directory access
975  * and modification times are stored during the fts pre-order visit (done
976  * before any descendants in the subtree is visited) and restored after the
977  * fts post-order visit (after all the descendants have been visited). In the
978  * case of premature exit from a subtree (like from the effects of -n), any
979  * directory entries left in this database are reset during final cleanup
980  * operations of pax. Entries are hashed by inode number for fast lookup.
981  */
982 
983 /*
984  * atdir_start()
985  *	create the directory access time database for directories READ by pax.
986  * Return:
987  *	0 is created ok, -1 otherwise.
988  */
989 
990 #if __STDC__
991 int
992 atdir_start(void)
993 #else
994 int
995 atdir_start()
996 #endif
997 {
998 	if (atab != NULL)
999 		return(0);
1000  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1001                 warn(1,"Cannot allocate space for directory access time table");
1002                 return(-1);
1003         }
1004 	return(0);
1005 }
1006 
1007 
1008 /*
1009  * atdir_end()
1010  *	walk through the directory access time table and reset the access time
1011  *	of any directory who still has an entry left in the database. These
1012  *	entries are for directories READ by pax
1013  */
1014 
1015 #if __STDC__
1016 void
1017 atdir_end(void)
1018 #else
1019 void
1020 atdir_end()
1021 #endif
1022 {
1023 	register ATDIR *pt;
1024 	register int i;
1025 
1026 	if (atab == NULL)
1027 		return;
1028 	/*
1029 	 * for each non-empty hash table entry reset all the directories
1030 	 * chained there.
1031 	 */
1032 	for (i = 0; i < A_TAB_SZ; ++i) {
1033 		if ((pt = atab[i]) == NULL)
1034 			continue;
1035 		/*
1036 		 * remember to force the times, set_ftime() looks at pmtime
1037 		 * and patime, which only applies to things CREATED by pax,
1038 		 * not read by pax. Read time reset is controlled by -t.
1039 		 */
1040 		for (; pt != NULL; pt = pt->fow)
1041 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1042 	}
1043 }
1044 
1045 /*
1046  * add_atdir()
1047  *	add a directory to the directory access time table. Table is hashed
1048  *	and chained by inode number. This is for directories READ by pax
1049  */
1050 
1051 #if __STDC__
1052 void
1053 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1054 #else
1055 void
1056 add_atdir(fname, dev, ino, mtime, atime)
1057 	char *fname;
1058 	dev_t dev;
1059 	ino_t ino;
1060 	time_t mtime;
1061 	time_t atime;
1062 #endif
1063 {
1064 	register ATDIR *pt;
1065 	register u_int indx;
1066 
1067 	if (atab == NULL)
1068 		return;
1069 
1070 	/*
1071 	 * make sure this directory is not already in the table, if so just
1072 	 * return (the older entry always has the correct time). The only
1073 	 * way this will happen is when the same subtree can be traversed by
1074 	 * different args to pax and the -n option is aborting fts out of a
1075 	 * subtree before all the post-order visits have been made).
1076 	 */
1077 	indx = ((unsigned)ino) % A_TAB_SZ;
1078 	if ((pt = atab[indx]) != NULL) {
1079 		while (pt != NULL) {
1080 			if ((pt->ino == ino) && (pt->dev == dev))
1081 				break;
1082 			pt = pt->fow;
1083 		}
1084 
1085 		/*
1086 		 * oops, already there. Leave it alone.
1087 		 */
1088 		if (pt != NULL)
1089 			return;
1090 	}
1091 
1092 	/*
1093 	 * add it to the front of the hash chain
1094 	 */
1095 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1096 		if ((pt->name = strdup(fname)) != NULL) {
1097 			pt->dev = dev;
1098 			pt->ino = ino;
1099 			pt->mtime = mtime;
1100 			pt->atime = atime;
1101 			pt->fow = atab[indx];
1102 			atab[indx] = pt;
1103 			return;
1104 		}
1105 		(void)free((char *)pt);
1106 	}
1107 
1108 	warn(1, "Directory access time reset table ran out of memory");
1109 	return;
1110 }
1111 
1112 /*
1113  * get_atdir()
1114  *	look up a directory by inode and device number to obtain the access
1115  *	and modification time you want to set to. If found, the modification
1116  *	and access time parameters are set and the entry is removed from the
1117  *	table (as it is no longer needed). These are for directories READ by
1118  *	pax
1119  * Return:
1120  *	0 if found, -1 if not found.
1121  */
1122 
1123 #if __STDC__
1124 int
1125 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1126 #else
1127 int
1128 get_atdir(dev, ino, mtime, atime)
1129 	dev_t dev;
1130 	ino_t ino;
1131 	time_t *mtime;
1132 	time_t *atime;
1133 #endif
1134 {
1135 	register ATDIR *pt;
1136 	register ATDIR **ppt;
1137 	register u_int indx;
1138 
1139 	if (atab == NULL)
1140 		return(-1);
1141 	/*
1142 	 * hash by inode and search the chain for an inode and device match
1143 	 */
1144 	indx = ((unsigned)ino) % A_TAB_SZ;
1145 	if ((pt = atab[indx]) == NULL)
1146 		return(-1);
1147 
1148 	ppt = &(atab[indx]);
1149 	while (pt != NULL) {
1150 		if ((pt->ino == ino) && (pt->dev == dev))
1151 			break;
1152 		/*
1153 		 * no match, go to next one
1154 		 */
1155 		ppt = &(pt->fow);
1156 		pt = pt->fow;
1157 	}
1158 
1159 	/*
1160 	 * return if we did not find it.
1161 	 */
1162 	if (pt == NULL)
1163 		return(-1);
1164 
1165 	/*
1166 	 * found it. return the times and remove the entry from the table.
1167 	 */
1168 	*ppt = pt->fow;
1169 	*mtime = pt->mtime;
1170 	*atime = pt->atime;
1171 	(void)free((char *)pt->name);
1172 	(void)free((char *)pt);
1173 	return(0);
1174 }
1175 
1176 /*
1177  * directory access mode and time storage routines (for directories CREATED
1178  * by pax).
1179  *
1180  * Pax requires that extracted directories, by default, have their access/mod
1181  * times and permissions set to the values specified in the archive. During the
1182  * actions of extracting (and creating the destination subtree during -rw copy)
1183  * directories extracted may be modified after being created. Even worse is
1184  * that these directories may have been created with file permissions which
1185  * prohibits any descendants of these directories from being extracted. When
1186  * directories are created by pax, access rights may be added to permit the
1187  * creation of files in their subtree. Every time pax creates a directory, the
1188  * times and file permissions specified by the archive are stored. After all
1189  * files have been extracted (or copied), these directories have their times
1190  * and file modes reset to the stored values. The directory info is restored in
1191  * reverse order as entries were added to the data file from root to leaf. To
1192  * restore atime properly, we must go backwards. The data file consists of
1193  * records with two parts, the file name followed by a DIRDATA trailer. The
1194  * fixed sized trailer contains the size of the name plus the off_t location in
1195  * the file. To restore we work backwards through the file reading the trailer
1196  * then the file name.
1197  */
1198 
1199 /*
1200  * dir_start()
1201  *	set up the directory time and file mode storage for directories CREATED
1202  *	by pax.
1203  * Return:
1204  *	0 if ok, -1 otherwise
1205  */
1206 
1207 #if __STDC__
1208 int
1209 dir_start(void)
1210 #else
1211 int
1212 dir_start()
1213 #endif
1214 {
1215 	char *pt;
1216 
1217 	if (dirfd != -1)
1218 		return(0);
1219 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1220 		return(-1);
1221 
1222 	/*
1223 	 * unlink the file so it goes away at termination by itself
1224 	 */
1225 	(void)unlink(pt);
1226 	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1227 		(void)unlink(pt);
1228 		return(0);
1229 	}
1230 	warn(1, "Unable to create temporary file for directory times: %s", pt);
1231 	return(-1);
1232 }
1233 
1234 /*
1235  * add_dir()
1236  *	add the mode and times for a newly CREATED directory
1237  *	name is name of the directory, psb the stat buffer with the data in it,
1238  *	frc_mode is a flag that says whether to force the setting of the mode
1239  *	(ignoring the user set values for preserving file mode). Frc_mode is
1240  *	for the case where we created a file and found that the resulting
1241  *	directory was not writeable and the user asked for file modes to NOT
1242  *	be preserved. (we have to preserve what was created by default, so we
1243  *	have to force the setting at the end. this is stated explicitly in the
1244  *	pax spec)
1245  */
1246 
1247 #if __STDC__
1248 void
1249 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1250 #else
1251 void
1252 add_dir(name, nlen, psb, frc_mode)
1253 	char *name;
1254 	int nlen;
1255 	struct stat *psb;
1256 	int frc_mode;
1257 #endif
1258 {
1259 	DIRDATA dblk;
1260 
1261 	if (dirfd < 0)
1262 		return;
1263 
1264 	/*
1265 	 * get current position (where file name will start) so we can store it
1266 	 * in the trailer
1267 	 */
1268 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1269 		warn(1,"Unable to store mode and times for directory: %s",name);
1270 		return;
1271 	}
1272 
1273 	/*
1274 	 * write the file name followed by the trailer
1275 	 */
1276 	dblk.nlen = nlen + 1;
1277 	dblk.mode = psb->st_mode & 0xffff;
1278 	dblk.mtime = psb->st_mtime;
1279 	dblk.atime = psb->st_atime;
1280 	dblk.frc_mode = frc_mode;
1281 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1282 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1283 		++dircnt;
1284 		return;
1285 	}
1286 
1287 	warn(1,"Unable to store mode and times for created directory: %s",name);
1288 	return;
1289 }
1290 
1291 /*
1292  * proc_dir()
1293  *	process all file modes and times stored for directories CREATED
1294  *	by pax
1295  */
1296 
1297 #if __STDC__
1298 void
1299 proc_dir(void)
1300 #else
1301 void
1302 proc_dir()
1303 #endif
1304 {
1305 	char name[PAXPATHLEN+1];
1306 	DIRDATA dblk;
1307 	u_long cnt;
1308 
1309 	if (dirfd < 0)
1310 		return;
1311 	/*
1312 	 * read backwards through the file and process each directory
1313 	 */
1314 	for (cnt = 0; cnt < dircnt; ++cnt) {
1315 		/*
1316 		 * read the trailer, then the file name, if this fails
1317 		 * just give up.
1318 		 */
1319 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1320 			break;
1321 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1322 			break;
1323 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1324 			break;
1325 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1326 			break;
1327 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1328 			break;
1329 
1330 		/*
1331 		 * frc_mode set, make sure we set the file modes even if
1332 		 * the user didn't ask for it (see file_subs.c for more info)
1333 		 */
1334 		if (pmode || dblk.frc_mode)
1335 			set_pmode(name, dblk.mode);
1336 		if (patime || pmtime)
1337 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1338 	}
1339 
1340 	(void)close(dirfd);
1341 	dirfd = -1;
1342 	if (cnt != dircnt)
1343 		warn(1,"Unable to set mode and times for created directories");
1344 	return;
1345 }
1346 
1347 /*
1348  * database independent routines
1349  */
1350 
1351 /*
1352  * st_hash()
1353  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1354  *	end of file, as this provides far better distribution than any other
1355  *	part of the name. For performance reasons we only care about the last
1356  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1357  *	name). Was tested on 500,000 name file tree traversal from the root
1358  *	and gave almost a perfectly uniform distribution of keys when used with
1359  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1360  *	chars at a time and pads with 0 for last addition.
1361  * Return:
1362  *	the hash value of the string MOD (%) the table size.
1363  */
1364 
1365 #if __STDC__
1366 u_int
1367 st_hash(char *name, int len, int tabsz)
1368 #else
1369 u_int
1370 st_hash(name, len, tabsz)
1371 	char *name;
1372 	int len;
1373 	int tabsz;
1374 #endif
1375 {
1376 	register char *pt;
1377 	register char *dest;
1378 	register char *end;
1379 	register int i;
1380 	register u_int key = 0;
1381 	register int steps;
1382 	register int res;
1383 	u_int val;
1384 
1385 	/*
1386 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1387 	 * time here (remember these are pathnames, the tail is what will
1388 	 * spread out the keys)
1389 	 */
1390 	if (len > MAXKEYLEN) {
1391                 pt = &(name[len - MAXKEYLEN]);
1392 		len = MAXKEYLEN;
1393 	} else
1394 		pt = name;
1395 
1396 	/*
1397 	 * calculate the number of u_int size steps in the string and if
1398 	 * there is a runt to deal with
1399 	 */
1400 	steps = len/sizeof(u_int);
1401 	res = len % sizeof(u_int);
1402 
1403 	/*
1404 	 * add up the value of the string in unsigned integer sized pieces
1405 	 * too bad we cannot have unsigned int aligned strings, then we
1406 	 * could avoid the expensive copy.
1407 	 */
1408 	for (i = 0; i < steps; ++i) {
1409 		end = pt + sizeof(u_int);
1410 		dest = (char *)&val;
1411 		while (pt < end)
1412 			*dest++ = *pt++;
1413 		key += val;
1414 	}
1415 
1416 	/*
1417 	 * add in the runt padded with zero to the right
1418 	 */
1419 	if (res) {
1420 		val = 0;
1421 		end = pt + res;
1422 		dest = (char *)&val;
1423 		while (pt < end)
1424 			*dest++ = *pt++;
1425 		key += val;
1426 	}
1427 
1428 	/*
1429 	 * return the result mod the table size
1430 	 */
1431 	return(key % tabsz);
1432 }
1433