xref: /netbsd-src/bin/pax/tables.c (revision 89c5a767f8fc7a4633b2d409966e2becbb98ff92)
1 /*	$NetBSD: tables.c,v 1.12 2000/02/17 03:12:26 itohy Exp $	*/
2 
3 /*-
4  * Copyright (c) 1992 Keith Muller.
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Keith Muller of the University of California, San Diego.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 #ifndef lint
42 #if 0
43 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
44 #else
45 __RCSID("$NetBSD: tables.c,v 1.12 2000/02/17 03:12:26 itohy Exp $");
46 #endif
47 #endif /* not lint */
48 
49 #include <sys/types.h>
50 #include <sys/time.h>
51 #include <sys/stat.h>
52 #include <sys/param.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <fcntl.h>
56 #include <paths.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <errno.h>
60 #include <stdlib.h>
61 #include "pax.h"
62 #include "tables.h"
63 #include "extern.h"
64 
65 /*
66  * Routines for controlling the contents of all the different databases pax
67  * keeps. Tables are dynamically created only when they are needed. The
68  * goal was speed and the ability to work with HUGE archives. The databases
69  * were kept simple, but do have complex rules for when the contents change.
70  * As of this writing, the posix library functions were more complex than
71  * needed for this application (pax databases have very short lifetimes and
72  * do not survive after pax is finished). Pax is required to handle very
73  * large archives. These database routines carefully combine memory usage and
74  * temporary file storage in ways which will not significantly impact runtime
75  * performance while allowing the largest possible archives to be handled.
76  * Trying to force the fit to the posix databases routines was not considered
77  * time well spent.
78  */
79 
80 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
81 static FTM **ftab = NULL;	/* file time table for updating arch */
82 static NAMT **ntab = NULL;	/* interactive rename storage table */
83 static DEVT **dtab = NULL;	/* device/inode mapping tables */
84 static ATDIR **atab = NULL;	/* file tree directory time reset table */
85 static int dirfd = -1;		/* storage for setting created dir time/mode */
86 static u_long dircnt;		/* entries in dir time/mode storage */
87 static int ffd = -1;		/* tmp file for file time table name storage */
88 
89 static DEVT *chk_dev __P((dev_t, int));
90 
91 /*
92  * hard link table routines
93  *
94  * The hard link table tries to detect hard links to files using the device and
95  * inode values. We do this when writing an archive, so we can tell the format
96  * write routine that this file is a hard link to another file. The format
97  * write routine then can store this file in whatever way it wants (as a hard
98  * link if the format supports that like tar, or ignore this info like cpio).
99  * (Actually a field in the format driver table tells us if the format wants
100  * hard link info. if not, we do not waste time looking for them). We also use
101  * the same table when reading an archive. In that situation, this table is
102  * used by the format read routine to detect hard links from stored dev and
103  * inode numbers (like cpio). This will allow pax to create a link when one
104  * can be detected by the archive format.
105  */
106 
107 /*
108  * lnk_start
109  *	Creates the hard link table.
110  * Return:
111  *	0 if created, -1 if failure
112  */
113 
114 #if __STDC__
115 int
116 lnk_start(void)
117 #else
118 int
119 lnk_start()
120 #endif
121 {
122 	if (ltab != NULL)
123 		return(0);
124 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
125 		tty_warn(1, "Cannot allocate memory for hard link table");
126 		return(-1);
127 	}
128 	return(0);
129 }
130 
131 /*
132  * chk_lnk()
133  *	Looks up entry in hard link hash table. If found, it copies the name
134  *	of the file it is linked to (we already saw that file) into ln_name.
135  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
136  *	database. (We have seen all the links to this file). If not found,
137  *	we add the file to the database if it has the potential for having
138  *	hard links to other files we may process (it has a link count > 1)
139  * Return:
140  *	if found returns 1; if not found returns 0; -1 on error
141  */
142 
143 #if __STDC__
144 int
145 chk_lnk(ARCHD *arcn)
146 #else
147 int
148 chk_lnk(arcn)
149 	ARCHD *arcn;
150 #endif
151 {
152 	HRDLNK *pt;
153 	HRDLNK **ppt;
154 	u_int indx;
155 
156 	if (ltab == NULL)
157 		return(-1);
158 	/*
159 	 * ignore those nodes that cannot have hard links
160 	 */
161 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
162 		return(0);
163 
164 	/*
165 	 * hash inode number and look for this file
166 	 */
167 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
168 	if ((pt = ltab[indx]) != NULL) {
169 		/*
170 		 * it's hash chain in not empty, walk down looking for it
171 		 */
172 		ppt = &(ltab[indx]);
173 		while (pt != NULL) {
174 			if ((pt->ino == arcn->sb.st_ino) &&
175 			    (pt->dev == arcn->sb.st_dev))
176 				break;
177 			ppt = &(pt->fow);
178 			pt = pt->fow;
179 		}
180 
181 		if (pt != NULL) {
182 			/*
183 			 * found a link. set the node type and copy in the
184 			 * name of the file it is to link to. we need to
185 			 * handle hardlinks to regular files differently than
186 			 * other links.
187 			 */
188 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
189 				PAXPATHLEN+1);
190 			if (arcn->type == PAX_REG)
191 				arcn->type = PAX_HRG;
192 			else
193 				arcn->type = PAX_HLK;
194 
195 			/*
196 			 * if we have found all the links to this file, remove
197 			 * it from the database
198 			 */
199 			if (--pt->nlink <= 1) {
200 				*ppt = pt->fow;
201 				(void)free((char *)pt->name);
202 				(void)free((char *)pt);
203 			}
204 			return(1);
205 		}
206 	}
207 
208 	/*
209 	 * we never saw this file before. It has links so we add it to the
210 	 * front of this hash chain
211 	 */
212 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
213 		if ((pt->name = strdup(arcn->name)) != NULL) {
214 			pt->dev = arcn->sb.st_dev;
215 			pt->ino = arcn->sb.st_ino;
216 			pt->nlink = arcn->sb.st_nlink;
217 			pt->fow = ltab[indx];
218 			ltab[indx] = pt;
219 			return(0);
220 		}
221 		(void)free((char *)pt);
222 	}
223 
224 	tty_warn(1, "Hard link table out of memory");
225 	return(-1);
226 }
227 
228 /*
229  * purg_lnk
230  *	remove reference for a file that we may have added to the data base as
231  *	a potential source for hard links. We ended up not using the file, so
232  *	we do not want to accidently point another file at it later on.
233  */
234 
235 #if __STDC__
236 void
237 purg_lnk(ARCHD *arcn)
238 #else
239 void
240 purg_lnk(arcn)
241 	ARCHD *arcn;
242 #endif
243 {
244 	HRDLNK *pt;
245 	HRDLNK **ppt;
246 	u_int indx;
247 
248 	if (ltab == NULL)
249 		return;
250 	/*
251 	 * do not bother to look if it could not be in the database
252 	 */
253 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
254 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
255 		return;
256 
257 	/*
258 	 * find the hash chain for this inode value, if empty return
259 	 */
260 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
261 	if ((pt = ltab[indx]) == NULL)
262 		return;
263 
264 	/*
265 	 * walk down the list looking for the inode/dev pair, unlink and
266 	 * free if found
267 	 */
268 	ppt = &(ltab[indx]);
269 	while (pt != NULL) {
270 		if ((pt->ino == arcn->sb.st_ino) &&
271 		    (pt->dev == arcn->sb.st_dev))
272 			break;
273 		ppt = &(pt->fow);
274 		pt = pt->fow;
275 	}
276 	if (pt == NULL)
277 		return;
278 
279 	/*
280 	 * remove and free it
281 	 */
282 	*ppt = pt->fow;
283 	(void)free((char *)pt->name);
284 	(void)free((char *)pt);
285 }
286 
287 /*
288  * lnk_end()
289  *	pull apart a existing link table so we can reuse it. We do this between
290  *	read and write phases of append with update. (The format may have
291  *	used the link table, and we need to start with a fresh table for the
292  *	write phase
293  */
294 
295 #if __STDC__
296 void
297 lnk_end(void)
298 #else
299 void
300 lnk_end()
301 #endif
302 {
303 	int i;
304 	HRDLNK *pt;
305 	HRDLNK *ppt;
306 
307 	if (ltab == NULL)
308 		return;
309 
310 	for (i = 0; i < L_TAB_SZ; ++i) {
311 		if (ltab[i] == NULL)
312 			continue;
313 		pt = ltab[i];
314 		ltab[i] = NULL;
315 
316 		/*
317 		 * free up each entry on this chain
318 		 */
319 		while (pt != NULL) {
320 			ppt = pt;
321 			pt = ppt->fow;
322 			(void)free((char *)ppt->name);
323 			(void)free((char *)ppt);
324 		}
325 	}
326 	return;
327 }
328 
329 /*
330  * modification time table routines
331  *
332  * The modification time table keeps track of last modification times for all
333  * files stored in an archive during a write phase when -u is set. We only
334  * add a file to the archive if it is newer than a file with the same name
335  * already stored on the archive (if there is no other file with the same
336  * name on the archive it is added). This applies to writes and appends.
337  * An append with an -u must read the archive and store the modification time
338  * for every file on that archive before starting the write phase. It is clear
339  * that this is one HUGE database. To save memory space, the actual file names
340  * are stored in a scatch file and indexed by an in memory hash table. The
341  * hash table is indexed by hashing the file path. The nodes in the table store
342  * the length of the filename and the lseek offset within the scratch file
343  * where the actual name is stored. Since there are never any deletions to this
344  * table, fragmentation of the scratch file is never a issue. Lookups seem to
345  * not exhibit any locality at all (files in the database are rarely
346  * looked up more than once...). So caching is just a waste of memory. The
347  * only limitation is the amount of scatch file space available to store the
348  * path names.
349  */
350 
351 /*
352  * ftime_start()
353  *	create the file time hash table and open for read/write the scratch
354  *	file. (after created it is unlinked, so when we exit we leave
355  *	no witnesses).
356  * Return:
357  *	0 if the table and file was created ok, -1 otherwise
358  */
359 
360 #if __STDC__
361 int
362 ftime_start(void)
363 #else
364 int
365 ftime_start()
366 #endif
367 {
368 	const char *tmpdir;
369 	char template[MAXPATHLEN];
370 
371 	if (ftab != NULL)
372 		return(0);
373 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
374 		tty_warn(1, "Cannot allocate memory for file time table");
375 		return(-1);
376 	}
377 
378 	/*
379 	 * get random name and create temporary scratch file, unlink name
380 	 * so it will get removed on exit
381 	 */
382 	if ((tmpdir = getenv("TMPDIR")) == NULL)
383 		tmpdir = _PATH_TMP;
384 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
385 	if ((ffd = mkstemp(template)) == -1) {
386 		syswarn(1, errno, "Unable to create temporary file: %s",
387 		    template);
388 		return(-1);
389 	}
390 
391 	(void)unlink(template);
392 	return(0);
393 }
394 
395 /*
396  * chk_ftime()
397  *	looks up entry in file time hash table. If not found, the file is
398  *	added to the hash table and the file named stored in the scratch file.
399  *	If a file with the same name is found, the file times are compared and
400  *	the most recent file time is retained. If the new file was younger (or
401  *	was not in the database) the new file is selected for storage.
402  * Return:
403  *	0 if file should be added to the archive, 1 if it should be skipped,
404  *	-1 on error
405  */
406 
407 #if __STDC__
408 int
409 chk_ftime(ARCHD *arcn)
410 #else
411 int
412 chk_ftime(arcn)
413 	ARCHD *arcn;
414 #endif
415 {
416 	FTM *pt;
417 	int namelen;
418 	u_int indx;
419 	char ckname[PAXPATHLEN+1];
420 
421 	/*
422 	 * no info, go ahead and add to archive
423 	 */
424 	if (ftab == NULL)
425 		return(0);
426 
427 	/*
428 	 * hash the pathname and look up in table
429 	 */
430 	namelen = arcn->nlen;
431 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
432 	if ((pt = ftab[indx]) != NULL) {
433 		/*
434 		 * the hash chain is not empty, walk down looking for match
435 		 * only read up the path names if the lengths match, speeds
436 		 * up the search a lot
437 		 */
438 		while (pt != NULL) {
439 			if (pt->namelen == namelen) {
440 				/*
441 				 * potential match, have to read the name
442 				 * from the scratch file.
443 				 */
444 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
445 					syswarn(1, errno,
446 					    "Failed ftime table seek");
447 					return(-1);
448 				}
449 				if (xread(ffd, ckname, namelen) != namelen) {
450 					syswarn(1, errno,
451 					    "Failed ftime table read");
452 					return(-1);
453 				}
454 
455 				/*
456 				 * if the names match, we are done
457 				 */
458 				if (!strncmp(ckname, arcn->name, namelen))
459 					break;
460 			}
461 
462 			/*
463 			 * try the next entry on the chain
464 			 */
465 			pt = pt->fow;
466 		}
467 
468 		if (pt != NULL) {
469 			/*
470 			 * found the file, compare the times, save the newer
471 			 */
472 			if (arcn->sb.st_mtime > pt->mtime) {
473 				/*
474 				 * file is newer
475 				 */
476 				pt->mtime = arcn->sb.st_mtime;
477 				return(0);
478 			}
479 			/*
480 			 * file is older
481 			 */
482 			return(1);
483 		}
484 	}
485 
486 	/*
487 	 * not in table, add it
488 	 */
489 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
490 		/*
491 		 * add the name at the end of the scratch file, saving the
492 		 * offset. add the file to the head of the hash chain
493 		 */
494 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
495 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
496 				pt->mtime = arcn->sb.st_mtime;
497 				pt->namelen = namelen;
498 				pt->fow = ftab[indx];
499 				ftab[indx] = pt;
500 				return(0);
501 			}
502 			syswarn(1, errno, "Failed write to file time table");
503 		} else
504 			syswarn(1, errno, "Failed seek on file time table");
505 	} else
506 		tty_warn(1, "File time table ran out of memory");
507 
508 	if (pt != NULL)
509 		(void)free((char *)pt);
510 	return(-1);
511 }
512 
513 /*
514  * Interactive rename table routines
515  *
516  * The interactive rename table keeps track of the new names that the user
517  * assigns to files from tty input. Since this map is unique for each file
518  * we must store it in case there is a reference to the file later in archive
519  * (a link). Otherwise we will be unable to find the file we know was
520  * extracted. The remapping of these files is stored in a memory based hash
521  * table (it is assumed since input must come from /dev/tty, it is unlikely to
522  * be a very large table).
523  */
524 
525 /*
526  * name_start()
527  *	create the interactive rename table
528  * Return:
529  *	0 if successful, -1 otherwise
530  */
531 
532 #if __STDC__
533 int
534 name_start(void)
535 #else
536 int
537 name_start()
538 #endif
539 {
540 	if (ntab != NULL)
541 		return(0);
542 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
543 		tty_warn(1,
544 		    "Cannot allocate memory for interactive rename table");
545 		return(-1);
546 	}
547 	return(0);
548 }
549 
550 /*
551  * add_name()
552  *	add the new name to old name mapping just created by the user.
553  *	If an old name mapping is found (there may be duplicate names on an
554  *	archive) only the most recent is kept.
555  * Return:
556  *	0 if added, -1 otherwise
557  */
558 
559 #if __STDC__
560 int
561 add_name(char *oname, int onamelen, char *nname)
562 #else
563 int
564 add_name(oname, onamelen, nname)
565 	char *oname;
566 	int onamelen;
567 	char *nname;
568 #endif
569 {
570 	NAMT *pt;
571 	u_int indx;
572 
573 	if (ntab == NULL) {
574 		/*
575 		 * should never happen
576 		 */
577 		tty_warn(0, "No interactive rename table, links may fail\n");
578 		return(0);
579 	}
580 
581 	/*
582 	 * look to see if we have already mapped this file, if so we
583 	 * will update it
584 	 */
585 	indx = st_hash(oname, onamelen, N_TAB_SZ);
586 	if ((pt = ntab[indx]) != NULL) {
587 		/*
588 		 * look down the has chain for the file
589 		 */
590 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
591 			pt = pt->fow;
592 
593 		if (pt != NULL) {
594 			/*
595 			 * found an old mapping, replace it with the new one
596 			 * the user just input (if it is different)
597 			 */
598 			if (strcmp(nname, pt->nname) == 0)
599 				return(0);
600 
601 			(void)free((char *)pt->nname);
602 			if ((pt->nname = strdup(nname)) == NULL) {
603 				tty_warn(1, "Cannot update rename table");
604 				return(-1);
605 			}
606 			return(0);
607 		}
608 	}
609 
610 	/*
611 	 * this is a new mapping, add it to the table
612 	 */
613 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
614 		if ((pt->oname = strdup(oname)) != NULL) {
615 			if ((pt->nname = strdup(nname)) != NULL) {
616 				pt->fow = ntab[indx];
617 				ntab[indx] = pt;
618 				return(0);
619 			}
620 			(void)free((char *)pt->oname);
621 		}
622 		(void)free((char *)pt);
623 	}
624 	tty_warn(1, "Interactive rename table out of memory");
625 	return(-1);
626 }
627 
628 /*
629  * sub_name()
630  *	look up a link name to see if it points at a file that has been
631  *	remapped by the user. If found, the link is adjusted to contain the
632  *	new name (oname is the link to name)
633  */
634 
635 #if __STDC__
636 void
637 sub_name(char *oname, int *onamelen)
638 #else
639 void
640 sub_name(oname, onamelen)
641 	char *oname;
642 	int *onamelen;
643 #endif
644 {
645 	NAMT *pt;
646 	u_int indx;
647 
648 	if (ntab == NULL)
649 		return;
650 	/*
651 	 * look the name up in the hash table
652 	 */
653 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
654 	if ((pt = ntab[indx]) == NULL)
655 		return;
656 
657 	while (pt != NULL) {
658 		/*
659 		 * walk down the hash cahin looking for a match
660 		 */
661 		if (strcmp(oname, pt->oname) == 0) {
662 			/*
663 			 * found it, replace it with the new name
664 			 * and return (we know that oname has enough space)
665 			 */
666 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
667 			return;
668 		}
669 		pt = pt->fow;
670 	}
671 
672 	/*
673 	 * no match, just return
674 	 */
675 	return;
676 }
677 
678 /*
679  * device/inode mapping table routines
680  * (used with formats that store device and inodes fields)
681  *
682  * device/inode mapping tables remap the device field in a archive header. The
683  * device/inode fields are used to determine when files are hard links to each
684  * other. However these values have very little meaning outside of that. This
685  * database is used to solve one of two different problems.
686  *
687  * 1) when files are appended to an archive, while the new files may have hard
688  * links to each other, you cannot determine if they have hard links to any
689  * file already stored on the archive from a prior run of pax. We must assume
690  * that these inode/device pairs are unique only within a SINGLE run of pax
691  * (which adds a set of files to an archive). So we have to make sure the
692  * inode/dev pairs we add each time are always unique. We do this by observing
693  * while the inode field is very dense, the use of the dev field is fairly
694  * sparse. Within each run of pax, we remap any device number of a new archive
695  * member that has a device number used in a prior run and already stored in a
696  * file on the archive. During the read phase of the append, we store the
697  * device numbers used and mark them to not be used by any file during the
698  * write phase. If during write we go to use one of those old device numbers,
699  * we remap it to a new value.
700  *
701  * 2) Often the fields in the archive header used to store these values are
702  * too small to store the entire value. The result is an inode or device value
703  * which can be truncated. This really can foul up an archive. With truncation
704  * we end up creating links between files that are really not links (after
705  * truncation the inodes are the same value). We address that by detecting
706  * truncation and forcing a remap of the device field to split truncated
707  * inodes away from each other. Each truncation creates a pattern of bits that
708  * are removed. We use this pattern of truncated bits to partition the inodes
709  * on a single device to many different devices (each one represented by the
710  * truncated bit pattern). All inodes on the same device that have the same
711  * truncation pattern are mapped to the same new device. Two inodes that
712  * truncate to the same value clearly will always have different truncation
713  * bit patterns, so they will be split from away each other. When we spot
714  * device truncation we remap the device number to a non truncated value.
715  * (for more info see table.h for the data structures involved).
716  */
717 
718 /*
719  * dev_start()
720  *	create the device mapping table
721  * Return:
722  *	0 if successful, -1 otherwise
723  */
724 
725 #if __STDC__
726 int
727 dev_start(void)
728 #else
729 int
730 dev_start()
731 #endif
732 {
733 	if (dtab != NULL)
734 		return(0);
735 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
736 		tty_warn(1, "Cannot allocate memory for device mapping table");
737 		return(-1);
738 	}
739 	return(0);
740 }
741 
742 /*
743  * add_dev()
744  *	add a device number to the table. this will force the device to be
745  *	remapped to a new value if it be used during a write phase. This
746  *	function is called during the read phase of an append to prohibit the
747  *	use of any device number already in the archive.
748  * Return:
749  *	0 if added ok, -1 otherwise
750  */
751 
752 #if __STDC__
753 int
754 add_dev(ARCHD *arcn)
755 #else
756 int
757 add_dev(arcn)
758 	ARCHD *arcn;
759 #endif
760 {
761 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
762 		return(-1);
763 	return(0);
764 }
765 
766 /*
767  * chk_dev()
768  *	check for a device value in the device table. If not found and the add
769  *	flag is set, it is added. This does NOT assign any mapping values, just
770  *	adds the device number as one that need to be remapped. If this device
771  *	is already mapped, just return with a pointer to that entry.
772  * Return:
773  *	pointer to the entry for this device in the device map table. Null
774  *	if the add flag is not set and the device is not in the table (it is
775  *	not been seen yet). If add is set and the device cannot be added, null
776  *	is returned (indicates an error).
777  */
778 
779 #if __STDC__
780 static DEVT *
781 chk_dev(dev_t dev, int add)
782 #else
783 static DEVT *
784 chk_dev(dev, add)
785 	dev_t dev;
786 	int add;
787 #endif
788 {
789 	DEVT *pt;
790 	u_int indx;
791 
792 	if (dtab == NULL)
793 		return(NULL);
794 	/*
795 	 * look to see if this device is already in the table
796 	 */
797 	indx = ((unsigned)dev) % D_TAB_SZ;
798 	if ((pt = dtab[indx]) != NULL) {
799 		while ((pt != NULL) && (pt->dev != dev))
800 			pt = pt->fow;
801 
802 		/*
803 		 * found it, return a pointer to it
804 		 */
805 		if (pt != NULL)
806 			return(pt);
807 	}
808 
809 	/*
810 	 * not in table, we add it only if told to as this may just be a check
811 	 * to see if a device number is being used.
812 	 */
813 	if (add == 0)
814 		return(NULL);
815 
816 	/*
817 	 * allocate a node for this device and add it to the front of the hash
818 	 * chain. Note we do not assign remaps values here, so the pt->list
819 	 * list must be NULL.
820 	 */
821 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
822 		tty_warn(1, "Device map table out of memory");
823 		return(NULL);
824 	}
825 	pt->dev = dev;
826 	pt->list = NULL;
827 	pt->fow = dtab[indx];
828 	dtab[indx] = pt;
829 	return(pt);
830 }
831 /*
832  * map_dev()
833  *	given an inode and device storage mask (the mask has a 1 for each bit
834  *	the archive format is able to store in a header), we check for inode
835  *	and device truncation and remap the device as required. Device mapping
836  *	can also occur when during the read phase of append a device number was
837  *	seen (and was marked as do not use during the write phase). WE ASSUME
838  *	that unsigned longs are the same size or bigger than the fields used
839  *	for ino_t and dev_t. If not the types will have to be changed.
840  * Return:
841  *	0 if all ok, -1 otherwise.
842  */
843 
844 #if __STDC__
845 int
846 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
847 #else
848 int
849 map_dev(arcn, dev_mask, ino_mask)
850 	ARCHD *arcn;
851 	u_long dev_mask;
852 	u_long ino_mask;
853 #endif
854 {
855 	DEVT *pt;
856 	DLIST *dpt;
857 	static dev_t lastdev = 0;	/* next device number to try */
858 	int trc_ino = 0;
859 	int trc_dev = 0;
860 	ino_t trunc_bits = 0;
861 	ino_t nino;
862 
863 	if (dtab == NULL)
864 		return(0);
865 	/*
866 	 * check for device and inode truncation, and extract the truncated
867 	 * bit pattern.
868 	 */
869 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
870 		++trc_dev;
871 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
872 		++trc_ino;
873 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
874 	}
875 
876 	/*
877 	 * see if this device is already being mapped, look up the device
878 	 * then find the truncation bit pattern which applies
879 	 */
880 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
881 		/*
882 		 * this device is already marked to be remapped
883 		 */
884 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
885 			if (dpt->trunc_bits == trunc_bits)
886 				break;
887 
888 		if (dpt != NULL) {
889 			/*
890 			 * we are being remapped for this device and pattern
891 			 * change the device number to be stored and return
892 			 */
893 			arcn->sb.st_dev = dpt->dev;
894 			arcn->sb.st_ino = nino;
895 			return(0);
896 		}
897 	} else {
898 		/*
899 		 * this device is not being remapped YET. if we do not have any
900 		 * form of truncation, we do not need a remap
901 		 */
902 		if (!trc_ino && !trc_dev)
903 			return(0);
904 
905 		/*
906 		 * we have truncation, have to add this as a device to remap
907 		 */
908 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
909 			goto bad;
910 
911 		/*
912 		 * if we just have a truncated inode, we have to make sure that
913 		 * all future inodes that do not truncate (they have the
914 		 * truncation pattern of all 0's) continue to map to the same
915 		 * device number. We probably have already written inodes with
916 		 * this device number to the archive with the truncation
917 		 * pattern of all 0's. So we add the mapping for all 0's to the
918 		 * same device number.
919 		 */
920 		if (!trc_dev && (trunc_bits != 0)) {
921 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
922 				goto bad;
923 			dpt->trunc_bits = 0;
924 			dpt->dev = arcn->sb.st_dev;
925 			dpt->fow = pt->list;
926 			pt->list = dpt;
927 		}
928 	}
929 
930 	/*
931 	 * look for a device number not being used. We must watch for wrap
932 	 * around on lastdev (so we do not get stuck looking forever!)
933 	 */
934 	while (++lastdev > 0) {
935 		if (chk_dev(lastdev, 0) != NULL)
936 			continue;
937 		/*
938 		 * found an unused value. If we have reached truncation point
939 		 * for this format we are hosed, so we give up. Otherwise we
940 		 * mark it as being used.
941 		 */
942 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
943 		    (chk_dev(lastdev, 1) == NULL))
944 			goto bad;
945 		break;
946 	}
947 
948 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
949 		goto bad;
950 
951 	/*
952 	 * got a new device number, store it under this truncation pattern.
953 	 * change the device number this file is being stored with.
954 	 */
955 	dpt->trunc_bits = trunc_bits;
956 	dpt->dev = lastdev;
957 	dpt->fow = pt->list;
958 	pt->list = dpt;
959 	arcn->sb.st_dev = lastdev;
960 	arcn->sb.st_ino = nino;
961 	return(0);
962 
963     bad:
964 	tty_warn(1,
965 	    "Unable to fix truncated inode/device field when storing %s",
966 	    arcn->name);
967 	tty_warn(0, "Archive may create improper hard links when extracted");
968 	return(0);
969 }
970 
971 /*
972  * directory access/mod time reset table routines (for directories READ by pax)
973  *
974  * The pax -t flag requires that access times of archive files to be the same
975  * before being read by pax. For regular files, access time is restored after
976  * the file has been copied. This database provides the same functionality for
977  * directories read during file tree traversal. Restoring directory access time
978  * is more complex than files since directories may be read several times until
979  * all the descendants in their subtree are visited by fts. Directory access
980  * and modification times are stored during the fts pre-order visit (done
981  * before any descendants in the subtree is visited) and restored after the
982  * fts post-order visit (after all the descendants have been visited). In the
983  * case of premature exit from a subtree (like from the effects of -n), any
984  * directory entries left in this database are reset during final cleanup
985  * operations of pax. Entries are hashed by inode number for fast lookup.
986  */
987 
988 /*
989  * atdir_start()
990  *	create the directory access time database for directories READ by pax.
991  * Return:
992  *	0 is created ok, -1 otherwise.
993  */
994 
995 #if __STDC__
996 int
997 atdir_start(void)
998 #else
999 int
1000 atdir_start()
1001 #endif
1002 {
1003 	if (atab != NULL)
1004 		return(0);
1005 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1006 		tty_warn(1,
1007 		    "Cannot allocate space for directory access time table");
1008 		return(-1);
1009 	}
1010 	return(0);
1011 }
1012 
1013 
1014 /*
1015  * atdir_end()
1016  *	walk through the directory access time table and reset the access time
1017  *	of any directory who still has an entry left in the database. These
1018  *	entries are for directories READ by pax
1019  */
1020 
1021 #if __STDC__
1022 void
1023 atdir_end(void)
1024 #else
1025 void
1026 atdir_end()
1027 #endif
1028 {
1029 	ATDIR *pt;
1030 	int i;
1031 
1032 	if (atab == NULL)
1033 		return;
1034 	/*
1035 	 * for each non-empty hash table entry reset all the directories
1036 	 * chained there.
1037 	 */
1038 	for (i = 0; i < A_TAB_SZ; ++i) {
1039 		if ((pt = atab[i]) == NULL)
1040 			continue;
1041 		/*
1042 		 * remember to force the times, set_ftime() looks at pmtime
1043 		 * and patime, which only applies to things CREATED by pax,
1044 		 * not read by pax. Read time reset is controlled by -t.
1045 		 */
1046 		for (; pt != NULL; pt = pt->fow)
1047 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1048 	}
1049 }
1050 
1051 /*
1052  * add_atdir()
1053  *	add a directory to the directory access time table. Table is hashed
1054  *	and chained by inode number. This is for directories READ by pax
1055  */
1056 
1057 #if __STDC__
1058 void
1059 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1060 #else
1061 void
1062 add_atdir(fname, dev, ino, mtime, atime)
1063 	char *fname;
1064 	dev_t dev;
1065 	ino_t ino;
1066 	time_t mtime;
1067 	time_t atime;
1068 #endif
1069 {
1070 	ATDIR *pt;
1071 	u_int indx;
1072 
1073 	if (atab == NULL)
1074 		return;
1075 
1076 	/*
1077 	 * make sure this directory is not already in the table, if so just
1078 	 * return (the older entry always has the correct time). The only
1079 	 * way this will happen is when the same subtree can be traversed by
1080 	 * different args to pax and the -n option is aborting fts out of a
1081 	 * subtree before all the post-order visits have been made).
1082 	 */
1083 	indx = ((unsigned)ino) % A_TAB_SZ;
1084 	if ((pt = atab[indx]) != NULL) {
1085 		while (pt != NULL) {
1086 			if ((pt->ino == ino) && (pt->dev == dev))
1087 				break;
1088 			pt = pt->fow;
1089 		}
1090 
1091 		/*
1092 		 * oops, already there. Leave it alone.
1093 		 */
1094 		if (pt != NULL)
1095 			return;
1096 	}
1097 
1098 	/*
1099 	 * add it to the front of the hash chain
1100 	 */
1101 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1102 		if ((pt->name = strdup(fname)) != NULL) {
1103 			pt->dev = dev;
1104 			pt->ino = ino;
1105 			pt->mtime = mtime;
1106 			pt->atime = atime;
1107 			pt->fow = atab[indx];
1108 			atab[indx] = pt;
1109 			return;
1110 		}
1111 		(void)free((char *)pt);
1112 	}
1113 
1114 	tty_warn(1, "Directory access time reset table ran out of memory");
1115 	return;
1116 }
1117 
1118 /*
1119  * get_atdir()
1120  *	look up a directory by inode and device number to obtain the access
1121  *	and modification time you want to set to. If found, the modification
1122  *	and access time parameters are set and the entry is removed from the
1123  *	table (as it is no longer needed). These are for directories READ by
1124  *	pax
1125  * Return:
1126  *	0 if found, -1 if not found.
1127  */
1128 
1129 #if __STDC__
1130 int
1131 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1132 #else
1133 int
1134 get_atdir(dev, ino, mtime, atime)
1135 	dev_t dev;
1136 	ino_t ino;
1137 	time_t *mtime;
1138 	time_t *atime;
1139 #endif
1140 {
1141 	ATDIR *pt;
1142 	ATDIR **ppt;
1143 	u_int indx;
1144 
1145 	if (atab == NULL)
1146 		return(-1);
1147 	/*
1148 	 * hash by inode and search the chain for an inode and device match
1149 	 */
1150 	indx = ((unsigned)ino) % A_TAB_SZ;
1151 	if ((pt = atab[indx]) == NULL)
1152 		return(-1);
1153 
1154 	ppt = &(atab[indx]);
1155 	while (pt != NULL) {
1156 		if ((pt->ino == ino) && (pt->dev == dev))
1157 			break;
1158 		/*
1159 		 * no match, go to next one
1160 		 */
1161 		ppt = &(pt->fow);
1162 		pt = pt->fow;
1163 	}
1164 
1165 	/*
1166 	 * return if we did not find it.
1167 	 */
1168 	if (pt == NULL)
1169 		return(-1);
1170 
1171 	/*
1172 	 * found it. return the times and remove the entry from the table.
1173 	 */
1174 	*ppt = pt->fow;
1175 	*mtime = pt->mtime;
1176 	*atime = pt->atime;
1177 	(void)free((char *)pt->name);
1178 	(void)free((char *)pt);
1179 	return(0);
1180 }
1181 
1182 /*
1183  * directory access mode and time storage routines (for directories CREATED
1184  * by pax).
1185  *
1186  * Pax requires that extracted directories, by default, have their access/mod
1187  * times and permissions set to the values specified in the archive. During the
1188  * actions of extracting (and creating the destination subtree during -rw copy)
1189  * directories extracted may be modified after being created. Even worse is
1190  * that these directories may have been created with file permissions which
1191  * prohibits any descendants of these directories from being extracted. When
1192  * directories are created by pax, access rights may be added to permit the
1193  * creation of files in their subtree. Every time pax creates a directory, the
1194  * times and file permissions specified by the archive are stored. After all
1195  * files have been extracted (or copied), these directories have their times
1196  * and file modes reset to the stored values. The directory info is restored in
1197  * reverse order as entries were added to the data file from root to leaf. To
1198  * restore atime properly, we must go backwards. The data file consists of
1199  * records with two parts, the file name followed by a DIRDATA trailer. The
1200  * fixed sized trailer contains the size of the name plus the off_t location in
1201  * the file. To restore we work backwards through the file reading the trailer
1202  * then the file name.
1203  */
1204 
1205 /*
1206  * dir_start()
1207  *	set up the directory time and file mode storage for directories CREATED
1208  *	by pax.
1209  * Return:
1210  *	0 if ok, -1 otherwise
1211  */
1212 
1213 #if __STDC__
1214 int
1215 dir_start(void)
1216 #else
1217 int
1218 dir_start()
1219 #endif
1220 {
1221 	const char *tmpdir;
1222 	char template[MAXPATHLEN];
1223 
1224 	if (dirfd != -1)
1225 		return(0);
1226 
1227 	/*
1228 	 * unlink the file so it goes away at termination by itself
1229 	 */
1230 	if ((tmpdir = getenv("TMPDIR")) == NULL)
1231 		tmpdir = _PATH_TMP;
1232 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
1233 	if ((dirfd = mkstemp(template)) >= 0) {
1234 		(void)unlink(template);
1235 		return(0);
1236 	}
1237 	tty_warn(1, "Unable to create temporary file for directory times: %s",
1238 	    template);
1239 	return(-1);
1240 }
1241 
1242 /*
1243  * add_dir()
1244  *	add the mode and times for a newly CREATED directory
1245  *	name is name of the directory, psb the stat buffer with the data in it,
1246  *	frc_mode is a flag that says whether to force the setting of the mode
1247  *	(ignoring the user set values for preserving file mode). Frc_mode is
1248  *	for the case where we created a file and found that the resulting
1249  *	directory was not writeable and the user asked for file modes to NOT
1250  *	be preserved. (we have to preserve what was created by default, so we
1251  *	have to force the setting at the end. this is stated explicitly in the
1252  *	pax spec)
1253  */
1254 
1255 #if __STDC__
1256 void
1257 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1258 #else
1259 void
1260 add_dir(name, nlen, psb, frc_mode)
1261 	char *name;
1262 	int nlen;
1263 	struct stat *psb;
1264 	int frc_mode;
1265 #endif
1266 {
1267 	DIRDATA dblk;
1268 
1269 	if (dirfd < 0)
1270 		return;
1271 
1272 	/*
1273 	 * get current position (where file name will start) so we can store it
1274 	 * in the trailer
1275 	 */
1276 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1277 		tty_warn(1,
1278 		    "Unable to store mode and times for directory: %s",name);
1279 		return;
1280 	}
1281 
1282 	/*
1283 	 * write the file name followed by the trailer
1284 	 */
1285 	dblk.nlen = nlen + 1;
1286 	dblk.mode = psb->st_mode & 0xffff;
1287 	dblk.mtime = psb->st_mtime;
1288 	dblk.atime = psb->st_atime;
1289 	dblk.fflags = psb->st_flags;
1290 	dblk.frc_mode = frc_mode;
1291 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
1292 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1293 		++dircnt;
1294 		return;
1295 	}
1296 
1297 	tty_warn(1,
1298 	    "Unable to store mode and times for created directory: %s",name);
1299 	return;
1300 }
1301 
1302 /*
1303  * proc_dir()
1304  *	process all file modes and times stored for directories CREATED
1305  *	by pax
1306  */
1307 
1308 #if __STDC__
1309 void
1310 proc_dir(void)
1311 #else
1312 void
1313 proc_dir()
1314 #endif
1315 {
1316 	char name[PAXPATHLEN+1];
1317 	DIRDATA dblk;
1318 	u_long cnt;
1319 
1320 	if (dirfd < 0)
1321 		return;
1322 	/*
1323 	 * read backwards through the file and process each directory
1324 	 */
1325 	for (cnt = 0; cnt < dircnt; ++cnt) {
1326 		/*
1327 		 * read the trailer, then the file name, if this fails
1328 		 * just give up.
1329 		 */
1330 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1331 			break;
1332 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1333 			break;
1334 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1335 			break;
1336 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
1337 			break;
1338 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1339 			break;
1340 
1341 		/*
1342 		 * frc_mode set, make sure we set the file modes even if
1343 		 * the user didn't ask for it (see file_subs.c for more info)
1344 		 */
1345 		if (pmode || dblk.frc_mode)
1346 			set_pmode(name, dblk.mode);
1347 		if (patime || pmtime)
1348 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1349 		if (pfflags)
1350 			set_chflags(name, dblk.fflags);
1351 	}
1352 
1353 	(void)close(dirfd);
1354 	dirfd = -1;
1355 	if (cnt != dircnt)
1356 		tty_warn(1,
1357 		    "Unable to set mode and times for created directories");
1358 	return;
1359 }
1360 
1361 /*
1362  * database independent routines
1363  */
1364 
1365 /*
1366  * st_hash()
1367  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1368  *	end of file, as this provides far better distribution than any other
1369  *	part of the name. For performance reasons we only care about the last
1370  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1371  *	name). Was tested on 500,000 name file tree traversal from the root
1372  *	and gave almost a perfectly uniform distribution of keys when used with
1373  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1374  *	chars at a time and pads with 0 for last addition.
1375  * Return:
1376  *	the hash value of the string MOD (%) the table size.
1377  */
1378 
1379 #if __STDC__
1380 u_int
1381 st_hash(char *name, int len, int tabsz)
1382 #else
1383 u_int
1384 st_hash(name, len, tabsz)
1385 	char *name;
1386 	int len;
1387 	int tabsz;
1388 #endif
1389 {
1390 	char *pt;
1391 	char *dest;
1392 	char *end;
1393 	int i;
1394 	u_int key = 0;
1395 	int steps;
1396 	int res;
1397 	u_int val;
1398 
1399 	/*
1400 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1401 	 * time here (remember these are pathnames, the tail is what will
1402 	 * spread out the keys)
1403 	 */
1404 	if (len > MAXKEYLEN) {
1405 		pt = &(name[len - MAXKEYLEN]);
1406 		len = MAXKEYLEN;
1407 	} else
1408 		pt = name;
1409 
1410 	/*
1411 	 * calculate the number of u_int size steps in the string and if
1412 	 * there is a runt to deal with
1413 	 */
1414 	steps = len/sizeof(u_int);
1415 	res = len % sizeof(u_int);
1416 
1417 	/*
1418 	 * add up the value of the string in unsigned integer sized pieces
1419 	 * too bad we cannot have unsigned int aligned strings, then we
1420 	 * could avoid the expensive copy.
1421 	 */
1422 	for (i = 0; i < steps; ++i) {
1423 		end = pt + sizeof(u_int);
1424 		dest = (char *)&val;
1425 		while (pt < end)
1426 			*dest++ = *pt++;
1427 		key += val;
1428 	}
1429 
1430 	/*
1431 	 * add in the runt padded with zero to the right
1432 	 */
1433 	if (res) {
1434 		val = 0;
1435 		end = pt + res;
1436 		dest = (char *)&val;
1437 		while (pt < end)
1438 			*dest++ = *pt++;
1439 		key += val;
1440 	}
1441 
1442 	/*
1443 	 * return the result mod the table size
1444 	 */
1445 	return(key % tabsz);
1446 }
1447