1 /* $NetBSD: tables.c,v 1.12 2000/02/17 03:12:26 itohy Exp $ */ 2 3 /*- 4 * Copyright (c) 1992 Keith Muller. 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Keith Muller of the University of California, San Diego. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 #ifndef lint 42 #if 0 43 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93"; 44 #else 45 __RCSID("$NetBSD: tables.c,v 1.12 2000/02/17 03:12:26 itohy Exp $"); 46 #endif 47 #endif /* not lint */ 48 49 #include <sys/types.h> 50 #include <sys/time.h> 51 #include <sys/stat.h> 52 #include <sys/param.h> 53 #include <stdio.h> 54 #include <ctype.h> 55 #include <fcntl.h> 56 #include <paths.h> 57 #include <string.h> 58 #include <unistd.h> 59 #include <errno.h> 60 #include <stdlib.h> 61 #include "pax.h" 62 #include "tables.h" 63 #include "extern.h" 64 65 /* 66 * Routines for controlling the contents of all the different databases pax 67 * keeps. Tables are dynamically created only when they are needed. The 68 * goal was speed and the ability to work with HUGE archives. The databases 69 * were kept simple, but do have complex rules for when the contents change. 70 * As of this writing, the posix library functions were more complex than 71 * needed for this application (pax databases have very short lifetimes and 72 * do not survive after pax is finished). Pax is required to handle very 73 * large archives. These database routines carefully combine memory usage and 74 * temporary file storage in ways which will not significantly impact runtime 75 * performance while allowing the largest possible archives to be handled. 76 * Trying to force the fit to the posix databases routines was not considered 77 * time well spent. 78 */ 79 80 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */ 81 static FTM **ftab = NULL; /* file time table for updating arch */ 82 static NAMT **ntab = NULL; /* interactive rename storage table */ 83 static DEVT **dtab = NULL; /* device/inode mapping tables */ 84 static ATDIR **atab = NULL; /* file tree directory time reset table */ 85 static int dirfd = -1; /* storage for setting created dir time/mode */ 86 static u_long dircnt; /* entries in dir time/mode storage */ 87 static int ffd = -1; /* tmp file for file time table name storage */ 88 89 static DEVT *chk_dev __P((dev_t, int)); 90 91 /* 92 * hard link table routines 93 * 94 * The hard link table tries to detect hard links to files using the device and 95 * inode values. We do this when writing an archive, so we can tell the format 96 * write routine that this file is a hard link to another file. The format 97 * write routine then can store this file in whatever way it wants (as a hard 98 * link if the format supports that like tar, or ignore this info like cpio). 99 * (Actually a field in the format driver table tells us if the format wants 100 * hard link info. if not, we do not waste time looking for them). We also use 101 * the same table when reading an archive. In that situation, this table is 102 * used by the format read routine to detect hard links from stored dev and 103 * inode numbers (like cpio). This will allow pax to create a link when one 104 * can be detected by the archive format. 105 */ 106 107 /* 108 * lnk_start 109 * Creates the hard link table. 110 * Return: 111 * 0 if created, -1 if failure 112 */ 113 114 #if __STDC__ 115 int 116 lnk_start(void) 117 #else 118 int 119 lnk_start() 120 #endif 121 { 122 if (ltab != NULL) 123 return(0); 124 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) { 125 tty_warn(1, "Cannot allocate memory for hard link table"); 126 return(-1); 127 } 128 return(0); 129 } 130 131 /* 132 * chk_lnk() 133 * Looks up entry in hard link hash table. If found, it copies the name 134 * of the file it is linked to (we already saw that file) into ln_name. 135 * lnkcnt is decremented and if goes to 1 the node is deleted from the 136 * database. (We have seen all the links to this file). If not found, 137 * we add the file to the database if it has the potential for having 138 * hard links to other files we may process (it has a link count > 1) 139 * Return: 140 * if found returns 1; if not found returns 0; -1 on error 141 */ 142 143 #if __STDC__ 144 int 145 chk_lnk(ARCHD *arcn) 146 #else 147 int 148 chk_lnk(arcn) 149 ARCHD *arcn; 150 #endif 151 { 152 HRDLNK *pt; 153 HRDLNK **ppt; 154 u_int indx; 155 156 if (ltab == NULL) 157 return(-1); 158 /* 159 * ignore those nodes that cannot have hard links 160 */ 161 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1)) 162 return(0); 163 164 /* 165 * hash inode number and look for this file 166 */ 167 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 168 if ((pt = ltab[indx]) != NULL) { 169 /* 170 * it's hash chain in not empty, walk down looking for it 171 */ 172 ppt = &(ltab[indx]); 173 while (pt != NULL) { 174 if ((pt->ino == arcn->sb.st_ino) && 175 (pt->dev == arcn->sb.st_dev)) 176 break; 177 ppt = &(pt->fow); 178 pt = pt->fow; 179 } 180 181 if (pt != NULL) { 182 /* 183 * found a link. set the node type and copy in the 184 * name of the file it is to link to. we need to 185 * handle hardlinks to regular files differently than 186 * other links. 187 */ 188 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name, 189 PAXPATHLEN+1); 190 if (arcn->type == PAX_REG) 191 arcn->type = PAX_HRG; 192 else 193 arcn->type = PAX_HLK; 194 195 /* 196 * if we have found all the links to this file, remove 197 * it from the database 198 */ 199 if (--pt->nlink <= 1) { 200 *ppt = pt->fow; 201 (void)free((char *)pt->name); 202 (void)free((char *)pt); 203 } 204 return(1); 205 } 206 } 207 208 /* 209 * we never saw this file before. It has links so we add it to the 210 * front of this hash chain 211 */ 212 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) { 213 if ((pt->name = strdup(arcn->name)) != NULL) { 214 pt->dev = arcn->sb.st_dev; 215 pt->ino = arcn->sb.st_ino; 216 pt->nlink = arcn->sb.st_nlink; 217 pt->fow = ltab[indx]; 218 ltab[indx] = pt; 219 return(0); 220 } 221 (void)free((char *)pt); 222 } 223 224 tty_warn(1, "Hard link table out of memory"); 225 return(-1); 226 } 227 228 /* 229 * purg_lnk 230 * remove reference for a file that we may have added to the data base as 231 * a potential source for hard links. We ended up not using the file, so 232 * we do not want to accidently point another file at it later on. 233 */ 234 235 #if __STDC__ 236 void 237 purg_lnk(ARCHD *arcn) 238 #else 239 void 240 purg_lnk(arcn) 241 ARCHD *arcn; 242 #endif 243 { 244 HRDLNK *pt; 245 HRDLNK **ppt; 246 u_int indx; 247 248 if (ltab == NULL) 249 return; 250 /* 251 * do not bother to look if it could not be in the database 252 */ 253 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) || 254 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG)) 255 return; 256 257 /* 258 * find the hash chain for this inode value, if empty return 259 */ 260 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 261 if ((pt = ltab[indx]) == NULL) 262 return; 263 264 /* 265 * walk down the list looking for the inode/dev pair, unlink and 266 * free if found 267 */ 268 ppt = &(ltab[indx]); 269 while (pt != NULL) { 270 if ((pt->ino == arcn->sb.st_ino) && 271 (pt->dev == arcn->sb.st_dev)) 272 break; 273 ppt = &(pt->fow); 274 pt = pt->fow; 275 } 276 if (pt == NULL) 277 return; 278 279 /* 280 * remove and free it 281 */ 282 *ppt = pt->fow; 283 (void)free((char *)pt->name); 284 (void)free((char *)pt); 285 } 286 287 /* 288 * lnk_end() 289 * pull apart a existing link table so we can reuse it. We do this between 290 * read and write phases of append with update. (The format may have 291 * used the link table, and we need to start with a fresh table for the 292 * write phase 293 */ 294 295 #if __STDC__ 296 void 297 lnk_end(void) 298 #else 299 void 300 lnk_end() 301 #endif 302 { 303 int i; 304 HRDLNK *pt; 305 HRDLNK *ppt; 306 307 if (ltab == NULL) 308 return; 309 310 for (i = 0; i < L_TAB_SZ; ++i) { 311 if (ltab[i] == NULL) 312 continue; 313 pt = ltab[i]; 314 ltab[i] = NULL; 315 316 /* 317 * free up each entry on this chain 318 */ 319 while (pt != NULL) { 320 ppt = pt; 321 pt = ppt->fow; 322 (void)free((char *)ppt->name); 323 (void)free((char *)ppt); 324 } 325 } 326 return; 327 } 328 329 /* 330 * modification time table routines 331 * 332 * The modification time table keeps track of last modification times for all 333 * files stored in an archive during a write phase when -u is set. We only 334 * add a file to the archive if it is newer than a file with the same name 335 * already stored on the archive (if there is no other file with the same 336 * name on the archive it is added). This applies to writes and appends. 337 * An append with an -u must read the archive and store the modification time 338 * for every file on that archive before starting the write phase. It is clear 339 * that this is one HUGE database. To save memory space, the actual file names 340 * are stored in a scatch file and indexed by an in memory hash table. The 341 * hash table is indexed by hashing the file path. The nodes in the table store 342 * the length of the filename and the lseek offset within the scratch file 343 * where the actual name is stored. Since there are never any deletions to this 344 * table, fragmentation of the scratch file is never a issue. Lookups seem to 345 * not exhibit any locality at all (files in the database are rarely 346 * looked up more than once...). So caching is just a waste of memory. The 347 * only limitation is the amount of scatch file space available to store the 348 * path names. 349 */ 350 351 /* 352 * ftime_start() 353 * create the file time hash table and open for read/write the scratch 354 * file. (after created it is unlinked, so when we exit we leave 355 * no witnesses). 356 * Return: 357 * 0 if the table and file was created ok, -1 otherwise 358 */ 359 360 #if __STDC__ 361 int 362 ftime_start(void) 363 #else 364 int 365 ftime_start() 366 #endif 367 { 368 const char *tmpdir; 369 char template[MAXPATHLEN]; 370 371 if (ftab != NULL) 372 return(0); 373 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) { 374 tty_warn(1, "Cannot allocate memory for file time table"); 375 return(-1); 376 } 377 378 /* 379 * get random name and create temporary scratch file, unlink name 380 * so it will get removed on exit 381 */ 382 if ((tmpdir = getenv("TMPDIR")) == NULL) 383 tmpdir = _PATH_TMP; 384 (void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE); 385 if ((ffd = mkstemp(template)) == -1) { 386 syswarn(1, errno, "Unable to create temporary file: %s", 387 template); 388 return(-1); 389 } 390 391 (void)unlink(template); 392 return(0); 393 } 394 395 /* 396 * chk_ftime() 397 * looks up entry in file time hash table. If not found, the file is 398 * added to the hash table and the file named stored in the scratch file. 399 * If a file with the same name is found, the file times are compared and 400 * the most recent file time is retained. If the new file was younger (or 401 * was not in the database) the new file is selected for storage. 402 * Return: 403 * 0 if file should be added to the archive, 1 if it should be skipped, 404 * -1 on error 405 */ 406 407 #if __STDC__ 408 int 409 chk_ftime(ARCHD *arcn) 410 #else 411 int 412 chk_ftime(arcn) 413 ARCHD *arcn; 414 #endif 415 { 416 FTM *pt; 417 int namelen; 418 u_int indx; 419 char ckname[PAXPATHLEN+1]; 420 421 /* 422 * no info, go ahead and add to archive 423 */ 424 if (ftab == NULL) 425 return(0); 426 427 /* 428 * hash the pathname and look up in table 429 */ 430 namelen = arcn->nlen; 431 indx = st_hash(arcn->name, namelen, F_TAB_SZ); 432 if ((pt = ftab[indx]) != NULL) { 433 /* 434 * the hash chain is not empty, walk down looking for match 435 * only read up the path names if the lengths match, speeds 436 * up the search a lot 437 */ 438 while (pt != NULL) { 439 if (pt->namelen == namelen) { 440 /* 441 * potential match, have to read the name 442 * from the scratch file. 443 */ 444 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) { 445 syswarn(1, errno, 446 "Failed ftime table seek"); 447 return(-1); 448 } 449 if (xread(ffd, ckname, namelen) != namelen) { 450 syswarn(1, errno, 451 "Failed ftime table read"); 452 return(-1); 453 } 454 455 /* 456 * if the names match, we are done 457 */ 458 if (!strncmp(ckname, arcn->name, namelen)) 459 break; 460 } 461 462 /* 463 * try the next entry on the chain 464 */ 465 pt = pt->fow; 466 } 467 468 if (pt != NULL) { 469 /* 470 * found the file, compare the times, save the newer 471 */ 472 if (arcn->sb.st_mtime > pt->mtime) { 473 /* 474 * file is newer 475 */ 476 pt->mtime = arcn->sb.st_mtime; 477 return(0); 478 } 479 /* 480 * file is older 481 */ 482 return(1); 483 } 484 } 485 486 /* 487 * not in table, add it 488 */ 489 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) { 490 /* 491 * add the name at the end of the scratch file, saving the 492 * offset. add the file to the head of the hash chain 493 */ 494 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) { 495 if (xwrite(ffd, arcn->name, namelen) == namelen) { 496 pt->mtime = arcn->sb.st_mtime; 497 pt->namelen = namelen; 498 pt->fow = ftab[indx]; 499 ftab[indx] = pt; 500 return(0); 501 } 502 syswarn(1, errno, "Failed write to file time table"); 503 } else 504 syswarn(1, errno, "Failed seek on file time table"); 505 } else 506 tty_warn(1, "File time table ran out of memory"); 507 508 if (pt != NULL) 509 (void)free((char *)pt); 510 return(-1); 511 } 512 513 /* 514 * Interactive rename table routines 515 * 516 * The interactive rename table keeps track of the new names that the user 517 * assigns to files from tty input. Since this map is unique for each file 518 * we must store it in case there is a reference to the file later in archive 519 * (a link). Otherwise we will be unable to find the file we know was 520 * extracted. The remapping of these files is stored in a memory based hash 521 * table (it is assumed since input must come from /dev/tty, it is unlikely to 522 * be a very large table). 523 */ 524 525 /* 526 * name_start() 527 * create the interactive rename table 528 * Return: 529 * 0 if successful, -1 otherwise 530 */ 531 532 #if __STDC__ 533 int 534 name_start(void) 535 #else 536 int 537 name_start() 538 #endif 539 { 540 if (ntab != NULL) 541 return(0); 542 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) { 543 tty_warn(1, 544 "Cannot allocate memory for interactive rename table"); 545 return(-1); 546 } 547 return(0); 548 } 549 550 /* 551 * add_name() 552 * add the new name to old name mapping just created by the user. 553 * If an old name mapping is found (there may be duplicate names on an 554 * archive) only the most recent is kept. 555 * Return: 556 * 0 if added, -1 otherwise 557 */ 558 559 #if __STDC__ 560 int 561 add_name(char *oname, int onamelen, char *nname) 562 #else 563 int 564 add_name(oname, onamelen, nname) 565 char *oname; 566 int onamelen; 567 char *nname; 568 #endif 569 { 570 NAMT *pt; 571 u_int indx; 572 573 if (ntab == NULL) { 574 /* 575 * should never happen 576 */ 577 tty_warn(0, "No interactive rename table, links may fail\n"); 578 return(0); 579 } 580 581 /* 582 * look to see if we have already mapped this file, if so we 583 * will update it 584 */ 585 indx = st_hash(oname, onamelen, N_TAB_SZ); 586 if ((pt = ntab[indx]) != NULL) { 587 /* 588 * look down the has chain for the file 589 */ 590 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0)) 591 pt = pt->fow; 592 593 if (pt != NULL) { 594 /* 595 * found an old mapping, replace it with the new one 596 * the user just input (if it is different) 597 */ 598 if (strcmp(nname, pt->nname) == 0) 599 return(0); 600 601 (void)free((char *)pt->nname); 602 if ((pt->nname = strdup(nname)) == NULL) { 603 tty_warn(1, "Cannot update rename table"); 604 return(-1); 605 } 606 return(0); 607 } 608 } 609 610 /* 611 * this is a new mapping, add it to the table 612 */ 613 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) { 614 if ((pt->oname = strdup(oname)) != NULL) { 615 if ((pt->nname = strdup(nname)) != NULL) { 616 pt->fow = ntab[indx]; 617 ntab[indx] = pt; 618 return(0); 619 } 620 (void)free((char *)pt->oname); 621 } 622 (void)free((char *)pt); 623 } 624 tty_warn(1, "Interactive rename table out of memory"); 625 return(-1); 626 } 627 628 /* 629 * sub_name() 630 * look up a link name to see if it points at a file that has been 631 * remapped by the user. If found, the link is adjusted to contain the 632 * new name (oname is the link to name) 633 */ 634 635 #if __STDC__ 636 void 637 sub_name(char *oname, int *onamelen) 638 #else 639 void 640 sub_name(oname, onamelen) 641 char *oname; 642 int *onamelen; 643 #endif 644 { 645 NAMT *pt; 646 u_int indx; 647 648 if (ntab == NULL) 649 return; 650 /* 651 * look the name up in the hash table 652 */ 653 indx = st_hash(oname, *onamelen, N_TAB_SZ); 654 if ((pt = ntab[indx]) == NULL) 655 return; 656 657 while (pt != NULL) { 658 /* 659 * walk down the hash cahin looking for a match 660 */ 661 if (strcmp(oname, pt->oname) == 0) { 662 /* 663 * found it, replace it with the new name 664 * and return (we know that oname has enough space) 665 */ 666 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1); 667 return; 668 } 669 pt = pt->fow; 670 } 671 672 /* 673 * no match, just return 674 */ 675 return; 676 } 677 678 /* 679 * device/inode mapping table routines 680 * (used with formats that store device and inodes fields) 681 * 682 * device/inode mapping tables remap the device field in a archive header. The 683 * device/inode fields are used to determine when files are hard links to each 684 * other. However these values have very little meaning outside of that. This 685 * database is used to solve one of two different problems. 686 * 687 * 1) when files are appended to an archive, while the new files may have hard 688 * links to each other, you cannot determine if they have hard links to any 689 * file already stored on the archive from a prior run of pax. We must assume 690 * that these inode/device pairs are unique only within a SINGLE run of pax 691 * (which adds a set of files to an archive). So we have to make sure the 692 * inode/dev pairs we add each time are always unique. We do this by observing 693 * while the inode field is very dense, the use of the dev field is fairly 694 * sparse. Within each run of pax, we remap any device number of a new archive 695 * member that has a device number used in a prior run and already stored in a 696 * file on the archive. During the read phase of the append, we store the 697 * device numbers used and mark them to not be used by any file during the 698 * write phase. If during write we go to use one of those old device numbers, 699 * we remap it to a new value. 700 * 701 * 2) Often the fields in the archive header used to store these values are 702 * too small to store the entire value. The result is an inode or device value 703 * which can be truncated. This really can foul up an archive. With truncation 704 * we end up creating links between files that are really not links (after 705 * truncation the inodes are the same value). We address that by detecting 706 * truncation and forcing a remap of the device field to split truncated 707 * inodes away from each other. Each truncation creates a pattern of bits that 708 * are removed. We use this pattern of truncated bits to partition the inodes 709 * on a single device to many different devices (each one represented by the 710 * truncated bit pattern). All inodes on the same device that have the same 711 * truncation pattern are mapped to the same new device. Two inodes that 712 * truncate to the same value clearly will always have different truncation 713 * bit patterns, so they will be split from away each other. When we spot 714 * device truncation we remap the device number to a non truncated value. 715 * (for more info see table.h for the data structures involved). 716 */ 717 718 /* 719 * dev_start() 720 * create the device mapping table 721 * Return: 722 * 0 if successful, -1 otherwise 723 */ 724 725 #if __STDC__ 726 int 727 dev_start(void) 728 #else 729 int 730 dev_start() 731 #endif 732 { 733 if (dtab != NULL) 734 return(0); 735 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) { 736 tty_warn(1, "Cannot allocate memory for device mapping table"); 737 return(-1); 738 } 739 return(0); 740 } 741 742 /* 743 * add_dev() 744 * add a device number to the table. this will force the device to be 745 * remapped to a new value if it be used during a write phase. This 746 * function is called during the read phase of an append to prohibit the 747 * use of any device number already in the archive. 748 * Return: 749 * 0 if added ok, -1 otherwise 750 */ 751 752 #if __STDC__ 753 int 754 add_dev(ARCHD *arcn) 755 #else 756 int 757 add_dev(arcn) 758 ARCHD *arcn; 759 #endif 760 { 761 if (chk_dev(arcn->sb.st_dev, 1) == NULL) 762 return(-1); 763 return(0); 764 } 765 766 /* 767 * chk_dev() 768 * check for a device value in the device table. If not found and the add 769 * flag is set, it is added. This does NOT assign any mapping values, just 770 * adds the device number as one that need to be remapped. If this device 771 * is already mapped, just return with a pointer to that entry. 772 * Return: 773 * pointer to the entry for this device in the device map table. Null 774 * if the add flag is not set and the device is not in the table (it is 775 * not been seen yet). If add is set and the device cannot be added, null 776 * is returned (indicates an error). 777 */ 778 779 #if __STDC__ 780 static DEVT * 781 chk_dev(dev_t dev, int add) 782 #else 783 static DEVT * 784 chk_dev(dev, add) 785 dev_t dev; 786 int add; 787 #endif 788 { 789 DEVT *pt; 790 u_int indx; 791 792 if (dtab == NULL) 793 return(NULL); 794 /* 795 * look to see if this device is already in the table 796 */ 797 indx = ((unsigned)dev) % D_TAB_SZ; 798 if ((pt = dtab[indx]) != NULL) { 799 while ((pt != NULL) && (pt->dev != dev)) 800 pt = pt->fow; 801 802 /* 803 * found it, return a pointer to it 804 */ 805 if (pt != NULL) 806 return(pt); 807 } 808 809 /* 810 * not in table, we add it only if told to as this may just be a check 811 * to see if a device number is being used. 812 */ 813 if (add == 0) 814 return(NULL); 815 816 /* 817 * allocate a node for this device and add it to the front of the hash 818 * chain. Note we do not assign remaps values here, so the pt->list 819 * list must be NULL. 820 */ 821 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) { 822 tty_warn(1, "Device map table out of memory"); 823 return(NULL); 824 } 825 pt->dev = dev; 826 pt->list = NULL; 827 pt->fow = dtab[indx]; 828 dtab[indx] = pt; 829 return(pt); 830 } 831 /* 832 * map_dev() 833 * given an inode and device storage mask (the mask has a 1 for each bit 834 * the archive format is able to store in a header), we check for inode 835 * and device truncation and remap the device as required. Device mapping 836 * can also occur when during the read phase of append a device number was 837 * seen (and was marked as do not use during the write phase). WE ASSUME 838 * that unsigned longs are the same size or bigger than the fields used 839 * for ino_t and dev_t. If not the types will have to be changed. 840 * Return: 841 * 0 if all ok, -1 otherwise. 842 */ 843 844 #if __STDC__ 845 int 846 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask) 847 #else 848 int 849 map_dev(arcn, dev_mask, ino_mask) 850 ARCHD *arcn; 851 u_long dev_mask; 852 u_long ino_mask; 853 #endif 854 { 855 DEVT *pt; 856 DLIST *dpt; 857 static dev_t lastdev = 0; /* next device number to try */ 858 int trc_ino = 0; 859 int trc_dev = 0; 860 ino_t trunc_bits = 0; 861 ino_t nino; 862 863 if (dtab == NULL) 864 return(0); 865 /* 866 * check for device and inode truncation, and extract the truncated 867 * bit pattern. 868 */ 869 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev) 870 ++trc_dev; 871 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) { 872 ++trc_ino; 873 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask); 874 } 875 876 /* 877 * see if this device is already being mapped, look up the device 878 * then find the truncation bit pattern which applies 879 */ 880 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) { 881 /* 882 * this device is already marked to be remapped 883 */ 884 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow) 885 if (dpt->trunc_bits == trunc_bits) 886 break; 887 888 if (dpt != NULL) { 889 /* 890 * we are being remapped for this device and pattern 891 * change the device number to be stored and return 892 */ 893 arcn->sb.st_dev = dpt->dev; 894 arcn->sb.st_ino = nino; 895 return(0); 896 } 897 } else { 898 /* 899 * this device is not being remapped YET. if we do not have any 900 * form of truncation, we do not need a remap 901 */ 902 if (!trc_ino && !trc_dev) 903 return(0); 904 905 /* 906 * we have truncation, have to add this as a device to remap 907 */ 908 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL) 909 goto bad; 910 911 /* 912 * if we just have a truncated inode, we have to make sure that 913 * all future inodes that do not truncate (they have the 914 * truncation pattern of all 0's) continue to map to the same 915 * device number. We probably have already written inodes with 916 * this device number to the archive with the truncation 917 * pattern of all 0's. So we add the mapping for all 0's to the 918 * same device number. 919 */ 920 if (!trc_dev && (trunc_bits != 0)) { 921 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL) 922 goto bad; 923 dpt->trunc_bits = 0; 924 dpt->dev = arcn->sb.st_dev; 925 dpt->fow = pt->list; 926 pt->list = dpt; 927 } 928 } 929 930 /* 931 * look for a device number not being used. We must watch for wrap 932 * around on lastdev (so we do not get stuck looking forever!) 933 */ 934 while (++lastdev > 0) { 935 if (chk_dev(lastdev, 0) != NULL) 936 continue; 937 /* 938 * found an unused value. If we have reached truncation point 939 * for this format we are hosed, so we give up. Otherwise we 940 * mark it as being used. 941 */ 942 if (((lastdev & ((dev_t)dev_mask)) != lastdev) || 943 (chk_dev(lastdev, 1) == NULL)) 944 goto bad; 945 break; 946 } 947 948 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)) 949 goto bad; 950 951 /* 952 * got a new device number, store it under this truncation pattern. 953 * change the device number this file is being stored with. 954 */ 955 dpt->trunc_bits = trunc_bits; 956 dpt->dev = lastdev; 957 dpt->fow = pt->list; 958 pt->list = dpt; 959 arcn->sb.st_dev = lastdev; 960 arcn->sb.st_ino = nino; 961 return(0); 962 963 bad: 964 tty_warn(1, 965 "Unable to fix truncated inode/device field when storing %s", 966 arcn->name); 967 tty_warn(0, "Archive may create improper hard links when extracted"); 968 return(0); 969 } 970 971 /* 972 * directory access/mod time reset table routines (for directories READ by pax) 973 * 974 * The pax -t flag requires that access times of archive files to be the same 975 * before being read by pax. For regular files, access time is restored after 976 * the file has been copied. This database provides the same functionality for 977 * directories read during file tree traversal. Restoring directory access time 978 * is more complex than files since directories may be read several times until 979 * all the descendants in their subtree are visited by fts. Directory access 980 * and modification times are stored during the fts pre-order visit (done 981 * before any descendants in the subtree is visited) and restored after the 982 * fts post-order visit (after all the descendants have been visited). In the 983 * case of premature exit from a subtree (like from the effects of -n), any 984 * directory entries left in this database are reset during final cleanup 985 * operations of pax. Entries are hashed by inode number for fast lookup. 986 */ 987 988 /* 989 * atdir_start() 990 * create the directory access time database for directories READ by pax. 991 * Return: 992 * 0 is created ok, -1 otherwise. 993 */ 994 995 #if __STDC__ 996 int 997 atdir_start(void) 998 #else 999 int 1000 atdir_start() 1001 #endif 1002 { 1003 if (atab != NULL) 1004 return(0); 1005 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) { 1006 tty_warn(1, 1007 "Cannot allocate space for directory access time table"); 1008 return(-1); 1009 } 1010 return(0); 1011 } 1012 1013 1014 /* 1015 * atdir_end() 1016 * walk through the directory access time table and reset the access time 1017 * of any directory who still has an entry left in the database. These 1018 * entries are for directories READ by pax 1019 */ 1020 1021 #if __STDC__ 1022 void 1023 atdir_end(void) 1024 #else 1025 void 1026 atdir_end() 1027 #endif 1028 { 1029 ATDIR *pt; 1030 int i; 1031 1032 if (atab == NULL) 1033 return; 1034 /* 1035 * for each non-empty hash table entry reset all the directories 1036 * chained there. 1037 */ 1038 for (i = 0; i < A_TAB_SZ; ++i) { 1039 if ((pt = atab[i]) == NULL) 1040 continue; 1041 /* 1042 * remember to force the times, set_ftime() looks at pmtime 1043 * and patime, which only applies to things CREATED by pax, 1044 * not read by pax. Read time reset is controlled by -t. 1045 */ 1046 for (; pt != NULL; pt = pt->fow) 1047 set_ftime(pt->name, pt->mtime, pt->atime, 1); 1048 } 1049 } 1050 1051 /* 1052 * add_atdir() 1053 * add a directory to the directory access time table. Table is hashed 1054 * and chained by inode number. This is for directories READ by pax 1055 */ 1056 1057 #if __STDC__ 1058 void 1059 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime) 1060 #else 1061 void 1062 add_atdir(fname, dev, ino, mtime, atime) 1063 char *fname; 1064 dev_t dev; 1065 ino_t ino; 1066 time_t mtime; 1067 time_t atime; 1068 #endif 1069 { 1070 ATDIR *pt; 1071 u_int indx; 1072 1073 if (atab == NULL) 1074 return; 1075 1076 /* 1077 * make sure this directory is not already in the table, if so just 1078 * return (the older entry always has the correct time). The only 1079 * way this will happen is when the same subtree can be traversed by 1080 * different args to pax and the -n option is aborting fts out of a 1081 * subtree before all the post-order visits have been made). 1082 */ 1083 indx = ((unsigned)ino) % A_TAB_SZ; 1084 if ((pt = atab[indx]) != NULL) { 1085 while (pt != NULL) { 1086 if ((pt->ino == ino) && (pt->dev == dev)) 1087 break; 1088 pt = pt->fow; 1089 } 1090 1091 /* 1092 * oops, already there. Leave it alone. 1093 */ 1094 if (pt != NULL) 1095 return; 1096 } 1097 1098 /* 1099 * add it to the front of the hash chain 1100 */ 1101 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) { 1102 if ((pt->name = strdup(fname)) != NULL) { 1103 pt->dev = dev; 1104 pt->ino = ino; 1105 pt->mtime = mtime; 1106 pt->atime = atime; 1107 pt->fow = atab[indx]; 1108 atab[indx] = pt; 1109 return; 1110 } 1111 (void)free((char *)pt); 1112 } 1113 1114 tty_warn(1, "Directory access time reset table ran out of memory"); 1115 return; 1116 } 1117 1118 /* 1119 * get_atdir() 1120 * look up a directory by inode and device number to obtain the access 1121 * and modification time you want to set to. If found, the modification 1122 * and access time parameters are set and the entry is removed from the 1123 * table (as it is no longer needed). These are for directories READ by 1124 * pax 1125 * Return: 1126 * 0 if found, -1 if not found. 1127 */ 1128 1129 #if __STDC__ 1130 int 1131 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime) 1132 #else 1133 int 1134 get_atdir(dev, ino, mtime, atime) 1135 dev_t dev; 1136 ino_t ino; 1137 time_t *mtime; 1138 time_t *atime; 1139 #endif 1140 { 1141 ATDIR *pt; 1142 ATDIR **ppt; 1143 u_int indx; 1144 1145 if (atab == NULL) 1146 return(-1); 1147 /* 1148 * hash by inode and search the chain for an inode and device match 1149 */ 1150 indx = ((unsigned)ino) % A_TAB_SZ; 1151 if ((pt = atab[indx]) == NULL) 1152 return(-1); 1153 1154 ppt = &(atab[indx]); 1155 while (pt != NULL) { 1156 if ((pt->ino == ino) && (pt->dev == dev)) 1157 break; 1158 /* 1159 * no match, go to next one 1160 */ 1161 ppt = &(pt->fow); 1162 pt = pt->fow; 1163 } 1164 1165 /* 1166 * return if we did not find it. 1167 */ 1168 if (pt == NULL) 1169 return(-1); 1170 1171 /* 1172 * found it. return the times and remove the entry from the table. 1173 */ 1174 *ppt = pt->fow; 1175 *mtime = pt->mtime; 1176 *atime = pt->atime; 1177 (void)free((char *)pt->name); 1178 (void)free((char *)pt); 1179 return(0); 1180 } 1181 1182 /* 1183 * directory access mode and time storage routines (for directories CREATED 1184 * by pax). 1185 * 1186 * Pax requires that extracted directories, by default, have their access/mod 1187 * times and permissions set to the values specified in the archive. During the 1188 * actions of extracting (and creating the destination subtree during -rw copy) 1189 * directories extracted may be modified after being created. Even worse is 1190 * that these directories may have been created with file permissions which 1191 * prohibits any descendants of these directories from being extracted. When 1192 * directories are created by pax, access rights may be added to permit the 1193 * creation of files in their subtree. Every time pax creates a directory, the 1194 * times and file permissions specified by the archive are stored. After all 1195 * files have been extracted (or copied), these directories have their times 1196 * and file modes reset to the stored values. The directory info is restored in 1197 * reverse order as entries were added to the data file from root to leaf. To 1198 * restore atime properly, we must go backwards. The data file consists of 1199 * records with two parts, the file name followed by a DIRDATA trailer. The 1200 * fixed sized trailer contains the size of the name plus the off_t location in 1201 * the file. To restore we work backwards through the file reading the trailer 1202 * then the file name. 1203 */ 1204 1205 /* 1206 * dir_start() 1207 * set up the directory time and file mode storage for directories CREATED 1208 * by pax. 1209 * Return: 1210 * 0 if ok, -1 otherwise 1211 */ 1212 1213 #if __STDC__ 1214 int 1215 dir_start(void) 1216 #else 1217 int 1218 dir_start() 1219 #endif 1220 { 1221 const char *tmpdir; 1222 char template[MAXPATHLEN]; 1223 1224 if (dirfd != -1) 1225 return(0); 1226 1227 /* 1228 * unlink the file so it goes away at termination by itself 1229 */ 1230 if ((tmpdir = getenv("TMPDIR")) == NULL) 1231 tmpdir = _PATH_TMP; 1232 (void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE); 1233 if ((dirfd = mkstemp(template)) >= 0) { 1234 (void)unlink(template); 1235 return(0); 1236 } 1237 tty_warn(1, "Unable to create temporary file for directory times: %s", 1238 template); 1239 return(-1); 1240 } 1241 1242 /* 1243 * add_dir() 1244 * add the mode and times for a newly CREATED directory 1245 * name is name of the directory, psb the stat buffer with the data in it, 1246 * frc_mode is a flag that says whether to force the setting of the mode 1247 * (ignoring the user set values for preserving file mode). Frc_mode is 1248 * for the case where we created a file and found that the resulting 1249 * directory was not writeable and the user asked for file modes to NOT 1250 * be preserved. (we have to preserve what was created by default, so we 1251 * have to force the setting at the end. this is stated explicitly in the 1252 * pax spec) 1253 */ 1254 1255 #if __STDC__ 1256 void 1257 add_dir(char *name, int nlen, struct stat *psb, int frc_mode) 1258 #else 1259 void 1260 add_dir(name, nlen, psb, frc_mode) 1261 char *name; 1262 int nlen; 1263 struct stat *psb; 1264 int frc_mode; 1265 #endif 1266 { 1267 DIRDATA dblk; 1268 1269 if (dirfd < 0) 1270 return; 1271 1272 /* 1273 * get current position (where file name will start) so we can store it 1274 * in the trailer 1275 */ 1276 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) { 1277 tty_warn(1, 1278 "Unable to store mode and times for directory: %s",name); 1279 return; 1280 } 1281 1282 /* 1283 * write the file name followed by the trailer 1284 */ 1285 dblk.nlen = nlen + 1; 1286 dblk.mode = psb->st_mode & 0xffff; 1287 dblk.mtime = psb->st_mtime; 1288 dblk.atime = psb->st_atime; 1289 dblk.fflags = psb->st_flags; 1290 dblk.frc_mode = frc_mode; 1291 if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) && 1292 (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) { 1293 ++dircnt; 1294 return; 1295 } 1296 1297 tty_warn(1, 1298 "Unable to store mode and times for created directory: %s",name); 1299 return; 1300 } 1301 1302 /* 1303 * proc_dir() 1304 * process all file modes and times stored for directories CREATED 1305 * by pax 1306 */ 1307 1308 #if __STDC__ 1309 void 1310 proc_dir(void) 1311 #else 1312 void 1313 proc_dir() 1314 #endif 1315 { 1316 char name[PAXPATHLEN+1]; 1317 DIRDATA dblk; 1318 u_long cnt; 1319 1320 if (dirfd < 0) 1321 return; 1322 /* 1323 * read backwards through the file and process each directory 1324 */ 1325 for (cnt = 0; cnt < dircnt; ++cnt) { 1326 /* 1327 * read the trailer, then the file name, if this fails 1328 * just give up. 1329 */ 1330 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0) 1331 break; 1332 if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk)) 1333 break; 1334 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1335 break; 1336 if (xread(dirfd, name, dblk.nlen) != dblk.nlen) 1337 break; 1338 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1339 break; 1340 1341 /* 1342 * frc_mode set, make sure we set the file modes even if 1343 * the user didn't ask for it (see file_subs.c for more info) 1344 */ 1345 if (pmode || dblk.frc_mode) 1346 set_pmode(name, dblk.mode); 1347 if (patime || pmtime) 1348 set_ftime(name, dblk.mtime, dblk.atime, 0); 1349 if (pfflags) 1350 set_chflags(name, dblk.fflags); 1351 } 1352 1353 (void)close(dirfd); 1354 dirfd = -1; 1355 if (cnt != dircnt) 1356 tty_warn(1, 1357 "Unable to set mode and times for created directories"); 1358 return; 1359 } 1360 1361 /* 1362 * database independent routines 1363 */ 1364 1365 /* 1366 * st_hash() 1367 * hashes filenames to a u_int for hashing into a table. Looks at the tail 1368 * end of file, as this provides far better distribution than any other 1369 * part of the name. For performance reasons we only care about the last 1370 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file 1371 * name). Was tested on 500,000 name file tree traversal from the root 1372 * and gave almost a perfectly uniform distribution of keys when used with 1373 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int) 1374 * chars at a time and pads with 0 for last addition. 1375 * Return: 1376 * the hash value of the string MOD (%) the table size. 1377 */ 1378 1379 #if __STDC__ 1380 u_int 1381 st_hash(char *name, int len, int tabsz) 1382 #else 1383 u_int 1384 st_hash(name, len, tabsz) 1385 char *name; 1386 int len; 1387 int tabsz; 1388 #endif 1389 { 1390 char *pt; 1391 char *dest; 1392 char *end; 1393 int i; 1394 u_int key = 0; 1395 int steps; 1396 int res; 1397 u_int val; 1398 1399 /* 1400 * only look at the tail up to MAXKEYLEN, we do not need to waste 1401 * time here (remember these are pathnames, the tail is what will 1402 * spread out the keys) 1403 */ 1404 if (len > MAXKEYLEN) { 1405 pt = &(name[len - MAXKEYLEN]); 1406 len = MAXKEYLEN; 1407 } else 1408 pt = name; 1409 1410 /* 1411 * calculate the number of u_int size steps in the string and if 1412 * there is a runt to deal with 1413 */ 1414 steps = len/sizeof(u_int); 1415 res = len % sizeof(u_int); 1416 1417 /* 1418 * add up the value of the string in unsigned integer sized pieces 1419 * too bad we cannot have unsigned int aligned strings, then we 1420 * could avoid the expensive copy. 1421 */ 1422 for (i = 0; i < steps; ++i) { 1423 end = pt + sizeof(u_int); 1424 dest = (char *)&val; 1425 while (pt < end) 1426 *dest++ = *pt++; 1427 key += val; 1428 } 1429 1430 /* 1431 * add in the runt padded with zero to the right 1432 */ 1433 if (res) { 1434 val = 0; 1435 end = pt + res; 1436 dest = (char *)&val; 1437 while (pt < end) 1438 *dest++ = *pt++; 1439 key += val; 1440 } 1441 1442 /* 1443 * return the result mod the table size 1444 */ 1445 return(key % tabsz); 1446 } 1447