xref: /netbsd-src/bin/pax/tables.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: tables.c,v 1.13 2000/03/21 02:15:24 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1992 Keith Muller.
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Keith Muller of the University of California, San Diego.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 #ifndef lint
42 #if 0
43 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
44 #else
45 __RCSID("$NetBSD: tables.c,v 1.13 2000/03/21 02:15:24 thorpej Exp $");
46 #endif
47 #endif /* not lint */
48 
49 #include <sys/types.h>
50 #include <sys/time.h>
51 #include <sys/stat.h>
52 #include <sys/param.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <fcntl.h>
56 #include <paths.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <errno.h>
60 #include <stdlib.h>
61 #include "pax.h"
62 #include "tables.h"
63 #include "extern.h"
64 
65 /*
66  * Routines for controlling the contents of all the different databases pax
67  * keeps. Tables are dynamically created only when they are needed. The
68  * goal was speed and the ability to work with HUGE archives. The databases
69  * were kept simple, but do have complex rules for when the contents change.
70  * As of this writing, the posix library functions were more complex than
71  * needed for this application (pax databases have very short lifetimes and
72  * do not survive after pax is finished). Pax is required to handle very
73  * large archives. These database routines carefully combine memory usage and
74  * temporary file storage in ways which will not significantly impact runtime
75  * performance while allowing the largest possible archives to be handled.
76  * Trying to force the fit to the posix databases routines was not considered
77  * time well spent.
78  */
79 
80 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
81 static FTM **ftab = NULL;	/* file time table for updating arch */
82 static NAMT **ntab = NULL;	/* interactive rename storage table */
83 static DEVT **dtab = NULL;	/* device/inode mapping tables */
84 static ATDIR **atab = NULL;	/* file tree directory time reset table */
85 #ifdef DIRS_USE_FILE
86 static int dirfd = -1;		/* storage for setting created dir time/mode */
87 static u_long dircnt;		/* entries in dir time/mode storage */
88 #endif
89 static int ffd = -1;		/* tmp file for file time table name storage */
90 
91 static DEVT *chk_dev __P((dev_t, int));
92 
93 /*
94  * hard link table routines
95  *
96  * The hard link table tries to detect hard links to files using the device and
97  * inode values. We do this when writing an archive, so we can tell the format
98  * write routine that this file is a hard link to another file. The format
99  * write routine then can store this file in whatever way it wants (as a hard
100  * link if the format supports that like tar, or ignore this info like cpio).
101  * (Actually a field in the format driver table tells us if the format wants
102  * hard link info. if not, we do not waste time looking for them). We also use
103  * the same table when reading an archive. In that situation, this table is
104  * used by the format read routine to detect hard links from stored dev and
105  * inode numbers (like cpio). This will allow pax to create a link when one
106  * can be detected by the archive format.
107  */
108 
109 /*
110  * lnk_start
111  *	Creates the hard link table.
112  * Return:
113  *	0 if created, -1 if failure
114  */
115 
116 #if __STDC__
117 int
118 lnk_start(void)
119 #else
120 int
121 lnk_start()
122 #endif
123 {
124 	if (ltab != NULL)
125 		return(0);
126 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
127 		tty_warn(1, "Cannot allocate memory for hard link table");
128 		return(-1);
129 	}
130 	return(0);
131 }
132 
133 /*
134  * chk_lnk()
135  *	Looks up entry in hard link hash table. If found, it copies the name
136  *	of the file it is linked to (we already saw that file) into ln_name.
137  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
138  *	database. (We have seen all the links to this file). If not found,
139  *	we add the file to the database if it has the potential for having
140  *	hard links to other files we may process (it has a link count > 1)
141  * Return:
142  *	if found returns 1; if not found returns 0; -1 on error
143  */
144 
145 #if __STDC__
146 int
147 chk_lnk(ARCHD *arcn)
148 #else
149 int
150 chk_lnk(arcn)
151 	ARCHD *arcn;
152 #endif
153 {
154 	HRDLNK *pt;
155 	HRDLNK **ppt;
156 	u_int indx;
157 
158 	if (ltab == NULL)
159 		return(-1);
160 	/*
161 	 * ignore those nodes that cannot have hard links
162 	 */
163 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
164 		return(0);
165 
166 	/*
167 	 * hash inode number and look for this file
168 	 */
169 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
170 	if ((pt = ltab[indx]) != NULL) {
171 		/*
172 		 * it's hash chain in not empty, walk down looking for it
173 		 */
174 		ppt = &(ltab[indx]);
175 		while (pt != NULL) {
176 			if ((pt->ino == arcn->sb.st_ino) &&
177 			    (pt->dev == arcn->sb.st_dev))
178 				break;
179 			ppt = &(pt->fow);
180 			pt = pt->fow;
181 		}
182 
183 		if (pt != NULL) {
184 			/*
185 			 * found a link. set the node type and copy in the
186 			 * name of the file it is to link to. we need to
187 			 * handle hardlinks to regular files differently than
188 			 * other links.
189 			 */
190 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
191 				PAXPATHLEN+1);
192 			if (arcn->type == PAX_REG)
193 				arcn->type = PAX_HRG;
194 			else
195 				arcn->type = PAX_HLK;
196 
197 			/*
198 			 * if we have found all the links to this file, remove
199 			 * it from the database
200 			 */
201 			if (--pt->nlink <= 1) {
202 				*ppt = pt->fow;
203 				(void)free((char *)pt->name);
204 				(void)free((char *)pt);
205 			}
206 			return(1);
207 		}
208 	}
209 
210 	/*
211 	 * we never saw this file before. It has links so we add it to the
212 	 * front of this hash chain
213 	 */
214 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
215 		if ((pt->name = strdup(arcn->name)) != NULL) {
216 			pt->dev = arcn->sb.st_dev;
217 			pt->ino = arcn->sb.st_ino;
218 			pt->nlink = arcn->sb.st_nlink;
219 			pt->fow = ltab[indx];
220 			ltab[indx] = pt;
221 			return(0);
222 		}
223 		(void)free((char *)pt);
224 	}
225 
226 	tty_warn(1, "Hard link table out of memory");
227 	return(-1);
228 }
229 
230 /*
231  * purg_lnk
232  *	remove reference for a file that we may have added to the data base as
233  *	a potential source for hard links. We ended up not using the file, so
234  *	we do not want to accidently point another file at it later on.
235  */
236 
237 #if __STDC__
238 void
239 purg_lnk(ARCHD *arcn)
240 #else
241 void
242 purg_lnk(arcn)
243 	ARCHD *arcn;
244 #endif
245 {
246 	HRDLNK *pt;
247 	HRDLNK **ppt;
248 	u_int indx;
249 
250 	if (ltab == NULL)
251 		return;
252 	/*
253 	 * do not bother to look if it could not be in the database
254 	 */
255 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
256 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
257 		return;
258 
259 	/*
260 	 * find the hash chain for this inode value, if empty return
261 	 */
262 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
263 	if ((pt = ltab[indx]) == NULL)
264 		return;
265 
266 	/*
267 	 * walk down the list looking for the inode/dev pair, unlink and
268 	 * free if found
269 	 */
270 	ppt = &(ltab[indx]);
271 	while (pt != NULL) {
272 		if ((pt->ino == arcn->sb.st_ino) &&
273 		    (pt->dev == arcn->sb.st_dev))
274 			break;
275 		ppt = &(pt->fow);
276 		pt = pt->fow;
277 	}
278 	if (pt == NULL)
279 		return;
280 
281 	/*
282 	 * remove and free it
283 	 */
284 	*ppt = pt->fow;
285 	(void)free((char *)pt->name);
286 	(void)free((char *)pt);
287 }
288 
289 /*
290  * lnk_end()
291  *	pull apart a existing link table so we can reuse it. We do this between
292  *	read and write phases of append with update. (The format may have
293  *	used the link table, and we need to start with a fresh table for the
294  *	write phase
295  */
296 
297 #if __STDC__
298 void
299 lnk_end(void)
300 #else
301 void
302 lnk_end()
303 #endif
304 {
305 	int i;
306 	HRDLNK *pt;
307 	HRDLNK *ppt;
308 
309 	if (ltab == NULL)
310 		return;
311 
312 	for (i = 0; i < L_TAB_SZ; ++i) {
313 		if (ltab[i] == NULL)
314 			continue;
315 		pt = ltab[i];
316 		ltab[i] = NULL;
317 
318 		/*
319 		 * free up each entry on this chain
320 		 */
321 		while (pt != NULL) {
322 			ppt = pt;
323 			pt = ppt->fow;
324 			(void)free((char *)ppt->name);
325 			(void)free((char *)ppt);
326 		}
327 	}
328 	return;
329 }
330 
331 /*
332  * modification time table routines
333  *
334  * The modification time table keeps track of last modification times for all
335  * files stored in an archive during a write phase when -u is set. We only
336  * add a file to the archive if it is newer than a file with the same name
337  * already stored on the archive (if there is no other file with the same
338  * name on the archive it is added). This applies to writes and appends.
339  * An append with an -u must read the archive and store the modification time
340  * for every file on that archive before starting the write phase. It is clear
341  * that this is one HUGE database. To save memory space, the actual file names
342  * are stored in a scatch file and indexed by an in memory hash table. The
343  * hash table is indexed by hashing the file path. The nodes in the table store
344  * the length of the filename and the lseek offset within the scratch file
345  * where the actual name is stored. Since there are never any deletions to this
346  * table, fragmentation of the scratch file is never a issue. Lookups seem to
347  * not exhibit any locality at all (files in the database are rarely
348  * looked up more than once...). So caching is just a waste of memory. The
349  * only limitation is the amount of scatch file space available to store the
350  * path names.
351  */
352 
353 /*
354  * ftime_start()
355  *	create the file time hash table and open for read/write the scratch
356  *	file. (after created it is unlinked, so when we exit we leave
357  *	no witnesses).
358  * Return:
359  *	0 if the table and file was created ok, -1 otherwise
360  */
361 
362 #if __STDC__
363 int
364 ftime_start(void)
365 #else
366 int
367 ftime_start()
368 #endif
369 {
370 	const char *tmpdir;
371 	char template[MAXPATHLEN];
372 
373 	if (ftab != NULL)
374 		return(0);
375 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
376 		tty_warn(1, "Cannot allocate memory for file time table");
377 		return(-1);
378 	}
379 
380 	/*
381 	 * get random name and create temporary scratch file, unlink name
382 	 * so it will get removed on exit
383 	 */
384 	if ((tmpdir = getenv("TMPDIR")) == NULL)
385 		tmpdir = _PATH_TMP;
386 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
387 	if ((ffd = mkstemp(template)) == -1) {
388 		syswarn(1, errno, "Unable to create temporary file: %s",
389 		    template);
390 		return(-1);
391 	}
392 
393 	(void)unlink(template);
394 	return(0);
395 }
396 
397 /*
398  * chk_ftime()
399  *	looks up entry in file time hash table. If not found, the file is
400  *	added to the hash table and the file named stored in the scratch file.
401  *	If a file with the same name is found, the file times are compared and
402  *	the most recent file time is retained. If the new file was younger (or
403  *	was not in the database) the new file is selected for storage.
404  * Return:
405  *	0 if file should be added to the archive, 1 if it should be skipped,
406  *	-1 on error
407  */
408 
409 #if __STDC__
410 int
411 chk_ftime(ARCHD *arcn)
412 #else
413 int
414 chk_ftime(arcn)
415 	ARCHD *arcn;
416 #endif
417 {
418 	FTM *pt;
419 	int namelen;
420 	u_int indx;
421 	char ckname[PAXPATHLEN+1];
422 
423 	/*
424 	 * no info, go ahead and add to archive
425 	 */
426 	if (ftab == NULL)
427 		return(0);
428 
429 	/*
430 	 * hash the pathname and look up in table
431 	 */
432 	namelen = arcn->nlen;
433 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
434 	if ((pt = ftab[indx]) != NULL) {
435 		/*
436 		 * the hash chain is not empty, walk down looking for match
437 		 * only read up the path names if the lengths match, speeds
438 		 * up the search a lot
439 		 */
440 		while (pt != NULL) {
441 			if (pt->namelen == namelen) {
442 				/*
443 				 * potential match, have to read the name
444 				 * from the scratch file.
445 				 */
446 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
447 					syswarn(1, errno,
448 					    "Failed ftime table seek");
449 					return(-1);
450 				}
451 				if (xread(ffd, ckname, namelen) != namelen) {
452 					syswarn(1, errno,
453 					    "Failed ftime table read");
454 					return(-1);
455 				}
456 
457 				/*
458 				 * if the names match, we are done
459 				 */
460 				if (!strncmp(ckname, arcn->name, namelen))
461 					break;
462 			}
463 
464 			/*
465 			 * try the next entry on the chain
466 			 */
467 			pt = pt->fow;
468 		}
469 
470 		if (pt != NULL) {
471 			/*
472 			 * found the file, compare the times, save the newer
473 			 */
474 			if (arcn->sb.st_mtime > pt->mtime) {
475 				/*
476 				 * file is newer
477 				 */
478 				pt->mtime = arcn->sb.st_mtime;
479 				return(0);
480 			}
481 			/*
482 			 * file is older
483 			 */
484 			return(1);
485 		}
486 	}
487 
488 	/*
489 	 * not in table, add it
490 	 */
491 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
492 		/*
493 		 * add the name at the end of the scratch file, saving the
494 		 * offset. add the file to the head of the hash chain
495 		 */
496 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
497 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
498 				pt->mtime = arcn->sb.st_mtime;
499 				pt->namelen = namelen;
500 				pt->fow = ftab[indx];
501 				ftab[indx] = pt;
502 				return(0);
503 			}
504 			syswarn(1, errno, "Failed write to file time table");
505 		} else
506 			syswarn(1, errno, "Failed seek on file time table");
507 	} else
508 		tty_warn(1, "File time table ran out of memory");
509 
510 	if (pt != NULL)
511 		(void)free((char *)pt);
512 	return(-1);
513 }
514 
515 /*
516  * Interactive rename table routines
517  *
518  * The interactive rename table keeps track of the new names that the user
519  * assigns to files from tty input. Since this map is unique for each file
520  * we must store it in case there is a reference to the file later in archive
521  * (a link). Otherwise we will be unable to find the file we know was
522  * extracted. The remapping of these files is stored in a memory based hash
523  * table (it is assumed since input must come from /dev/tty, it is unlikely to
524  * be a very large table).
525  */
526 
527 /*
528  * name_start()
529  *	create the interactive rename table
530  * Return:
531  *	0 if successful, -1 otherwise
532  */
533 
534 #if __STDC__
535 int
536 name_start(void)
537 #else
538 int
539 name_start()
540 #endif
541 {
542 	if (ntab != NULL)
543 		return(0);
544 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
545 		tty_warn(1,
546 		    "Cannot allocate memory for interactive rename table");
547 		return(-1);
548 	}
549 	return(0);
550 }
551 
552 /*
553  * add_name()
554  *	add the new name to old name mapping just created by the user.
555  *	If an old name mapping is found (there may be duplicate names on an
556  *	archive) only the most recent is kept.
557  * Return:
558  *	0 if added, -1 otherwise
559  */
560 
561 #if __STDC__
562 int
563 add_name(char *oname, int onamelen, char *nname)
564 #else
565 int
566 add_name(oname, onamelen, nname)
567 	char *oname;
568 	int onamelen;
569 	char *nname;
570 #endif
571 {
572 	NAMT *pt;
573 	u_int indx;
574 
575 	if (ntab == NULL) {
576 		/*
577 		 * should never happen
578 		 */
579 		tty_warn(0, "No interactive rename table, links may fail\n");
580 		return(0);
581 	}
582 
583 	/*
584 	 * look to see if we have already mapped this file, if so we
585 	 * will update it
586 	 */
587 	indx = st_hash(oname, onamelen, N_TAB_SZ);
588 	if ((pt = ntab[indx]) != NULL) {
589 		/*
590 		 * look down the has chain for the file
591 		 */
592 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
593 			pt = pt->fow;
594 
595 		if (pt != NULL) {
596 			/*
597 			 * found an old mapping, replace it with the new one
598 			 * the user just input (if it is different)
599 			 */
600 			if (strcmp(nname, pt->nname) == 0)
601 				return(0);
602 
603 			(void)free((char *)pt->nname);
604 			if ((pt->nname = strdup(nname)) == NULL) {
605 				tty_warn(1, "Cannot update rename table");
606 				return(-1);
607 			}
608 			return(0);
609 		}
610 	}
611 
612 	/*
613 	 * this is a new mapping, add it to the table
614 	 */
615 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
616 		if ((pt->oname = strdup(oname)) != NULL) {
617 			if ((pt->nname = strdup(nname)) != NULL) {
618 				pt->fow = ntab[indx];
619 				ntab[indx] = pt;
620 				return(0);
621 			}
622 			(void)free((char *)pt->oname);
623 		}
624 		(void)free((char *)pt);
625 	}
626 	tty_warn(1, "Interactive rename table out of memory");
627 	return(-1);
628 }
629 
630 /*
631  * sub_name()
632  *	look up a link name to see if it points at a file that has been
633  *	remapped by the user. If found, the link is adjusted to contain the
634  *	new name (oname is the link to name)
635  */
636 
637 #if __STDC__
638 void
639 sub_name(char *oname, int *onamelen)
640 #else
641 void
642 sub_name(oname, onamelen)
643 	char *oname;
644 	int *onamelen;
645 #endif
646 {
647 	NAMT *pt;
648 	u_int indx;
649 
650 	if (ntab == NULL)
651 		return;
652 	/*
653 	 * look the name up in the hash table
654 	 */
655 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
656 	if ((pt = ntab[indx]) == NULL)
657 		return;
658 
659 	while (pt != NULL) {
660 		/*
661 		 * walk down the hash cahin looking for a match
662 		 */
663 		if (strcmp(oname, pt->oname) == 0) {
664 			/*
665 			 * found it, replace it with the new name
666 			 * and return (we know that oname has enough space)
667 			 */
668 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
669 			return;
670 		}
671 		pt = pt->fow;
672 	}
673 
674 	/*
675 	 * no match, just return
676 	 */
677 	return;
678 }
679 
680 /*
681  * device/inode mapping table routines
682  * (used with formats that store device and inodes fields)
683  *
684  * device/inode mapping tables remap the device field in a archive header. The
685  * device/inode fields are used to determine when files are hard links to each
686  * other. However these values have very little meaning outside of that. This
687  * database is used to solve one of two different problems.
688  *
689  * 1) when files are appended to an archive, while the new files may have hard
690  * links to each other, you cannot determine if they have hard links to any
691  * file already stored on the archive from a prior run of pax. We must assume
692  * that these inode/device pairs are unique only within a SINGLE run of pax
693  * (which adds a set of files to an archive). So we have to make sure the
694  * inode/dev pairs we add each time are always unique. We do this by observing
695  * while the inode field is very dense, the use of the dev field is fairly
696  * sparse. Within each run of pax, we remap any device number of a new archive
697  * member that has a device number used in a prior run and already stored in a
698  * file on the archive. During the read phase of the append, we store the
699  * device numbers used and mark them to not be used by any file during the
700  * write phase. If during write we go to use one of those old device numbers,
701  * we remap it to a new value.
702  *
703  * 2) Often the fields in the archive header used to store these values are
704  * too small to store the entire value. The result is an inode or device value
705  * which can be truncated. This really can foul up an archive. With truncation
706  * we end up creating links between files that are really not links (after
707  * truncation the inodes are the same value). We address that by detecting
708  * truncation and forcing a remap of the device field to split truncated
709  * inodes away from each other. Each truncation creates a pattern of bits that
710  * are removed. We use this pattern of truncated bits to partition the inodes
711  * on a single device to many different devices (each one represented by the
712  * truncated bit pattern). All inodes on the same device that have the same
713  * truncation pattern are mapped to the same new device. Two inodes that
714  * truncate to the same value clearly will always have different truncation
715  * bit patterns, so they will be split from away each other. When we spot
716  * device truncation we remap the device number to a non truncated value.
717  * (for more info see table.h for the data structures involved).
718  */
719 
720 /*
721  * dev_start()
722  *	create the device mapping table
723  * Return:
724  *	0 if successful, -1 otherwise
725  */
726 
727 #if __STDC__
728 int
729 dev_start(void)
730 #else
731 int
732 dev_start()
733 #endif
734 {
735 	if (dtab != NULL)
736 		return(0);
737 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
738 		tty_warn(1, "Cannot allocate memory for device mapping table");
739 		return(-1);
740 	}
741 	return(0);
742 }
743 
744 /*
745  * add_dev()
746  *	add a device number to the table. this will force the device to be
747  *	remapped to a new value if it be used during a write phase. This
748  *	function is called during the read phase of an append to prohibit the
749  *	use of any device number already in the archive.
750  * Return:
751  *	0 if added ok, -1 otherwise
752  */
753 
754 #if __STDC__
755 int
756 add_dev(ARCHD *arcn)
757 #else
758 int
759 add_dev(arcn)
760 	ARCHD *arcn;
761 #endif
762 {
763 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
764 		return(-1);
765 	return(0);
766 }
767 
768 /*
769  * chk_dev()
770  *	check for a device value in the device table. If not found and the add
771  *	flag is set, it is added. This does NOT assign any mapping values, just
772  *	adds the device number as one that need to be remapped. If this device
773  *	is already mapped, just return with a pointer to that entry.
774  * Return:
775  *	pointer to the entry for this device in the device map table. Null
776  *	if the add flag is not set and the device is not in the table (it is
777  *	not been seen yet). If add is set and the device cannot be added, null
778  *	is returned (indicates an error).
779  */
780 
781 #if __STDC__
782 static DEVT *
783 chk_dev(dev_t dev, int add)
784 #else
785 static DEVT *
786 chk_dev(dev, add)
787 	dev_t dev;
788 	int add;
789 #endif
790 {
791 	DEVT *pt;
792 	u_int indx;
793 
794 	if (dtab == NULL)
795 		return(NULL);
796 	/*
797 	 * look to see if this device is already in the table
798 	 */
799 	indx = ((unsigned)dev) % D_TAB_SZ;
800 	if ((pt = dtab[indx]) != NULL) {
801 		while ((pt != NULL) && (pt->dev != dev))
802 			pt = pt->fow;
803 
804 		/*
805 		 * found it, return a pointer to it
806 		 */
807 		if (pt != NULL)
808 			return(pt);
809 	}
810 
811 	/*
812 	 * not in table, we add it only if told to as this may just be a check
813 	 * to see if a device number is being used.
814 	 */
815 	if (add == 0)
816 		return(NULL);
817 
818 	/*
819 	 * allocate a node for this device and add it to the front of the hash
820 	 * chain. Note we do not assign remaps values here, so the pt->list
821 	 * list must be NULL.
822 	 */
823 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
824 		tty_warn(1, "Device map table out of memory");
825 		return(NULL);
826 	}
827 	pt->dev = dev;
828 	pt->list = NULL;
829 	pt->fow = dtab[indx];
830 	dtab[indx] = pt;
831 	return(pt);
832 }
833 /*
834  * map_dev()
835  *	given an inode and device storage mask (the mask has a 1 for each bit
836  *	the archive format is able to store in a header), we check for inode
837  *	and device truncation and remap the device as required. Device mapping
838  *	can also occur when during the read phase of append a device number was
839  *	seen (and was marked as do not use during the write phase). WE ASSUME
840  *	that unsigned longs are the same size or bigger than the fields used
841  *	for ino_t and dev_t. If not the types will have to be changed.
842  * Return:
843  *	0 if all ok, -1 otherwise.
844  */
845 
846 #if __STDC__
847 int
848 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
849 #else
850 int
851 map_dev(arcn, dev_mask, ino_mask)
852 	ARCHD *arcn;
853 	u_long dev_mask;
854 	u_long ino_mask;
855 #endif
856 {
857 	DEVT *pt;
858 	DLIST *dpt;
859 	static dev_t lastdev = 0;	/* next device number to try */
860 	int trc_ino = 0;
861 	int trc_dev = 0;
862 	ino_t trunc_bits = 0;
863 	ino_t nino;
864 
865 	if (dtab == NULL)
866 		return(0);
867 	/*
868 	 * check for device and inode truncation, and extract the truncated
869 	 * bit pattern.
870 	 */
871 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
872 		++trc_dev;
873 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
874 		++trc_ino;
875 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
876 	}
877 
878 	/*
879 	 * see if this device is already being mapped, look up the device
880 	 * then find the truncation bit pattern which applies
881 	 */
882 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
883 		/*
884 		 * this device is already marked to be remapped
885 		 */
886 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
887 			if (dpt->trunc_bits == trunc_bits)
888 				break;
889 
890 		if (dpt != NULL) {
891 			/*
892 			 * we are being remapped for this device and pattern
893 			 * change the device number to be stored and return
894 			 */
895 			arcn->sb.st_dev = dpt->dev;
896 			arcn->sb.st_ino = nino;
897 			return(0);
898 		}
899 	} else {
900 		/*
901 		 * this device is not being remapped YET. if we do not have any
902 		 * form of truncation, we do not need a remap
903 		 */
904 		if (!trc_ino && !trc_dev)
905 			return(0);
906 
907 		/*
908 		 * we have truncation, have to add this as a device to remap
909 		 */
910 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
911 			goto bad;
912 
913 		/*
914 		 * if we just have a truncated inode, we have to make sure that
915 		 * all future inodes that do not truncate (they have the
916 		 * truncation pattern of all 0's) continue to map to the same
917 		 * device number. We probably have already written inodes with
918 		 * this device number to the archive with the truncation
919 		 * pattern of all 0's. So we add the mapping for all 0's to the
920 		 * same device number.
921 		 */
922 		if (!trc_dev && (trunc_bits != 0)) {
923 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
924 				goto bad;
925 			dpt->trunc_bits = 0;
926 			dpt->dev = arcn->sb.st_dev;
927 			dpt->fow = pt->list;
928 			pt->list = dpt;
929 		}
930 	}
931 
932 	/*
933 	 * look for a device number not being used. We must watch for wrap
934 	 * around on lastdev (so we do not get stuck looking forever!)
935 	 */
936 	while (++lastdev > 0) {
937 		if (chk_dev(lastdev, 0) != NULL)
938 			continue;
939 		/*
940 		 * found an unused value. If we have reached truncation point
941 		 * for this format we are hosed, so we give up. Otherwise we
942 		 * mark it as being used.
943 		 */
944 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
945 		    (chk_dev(lastdev, 1) == NULL))
946 			goto bad;
947 		break;
948 	}
949 
950 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
951 		goto bad;
952 
953 	/*
954 	 * got a new device number, store it under this truncation pattern.
955 	 * change the device number this file is being stored with.
956 	 */
957 	dpt->trunc_bits = trunc_bits;
958 	dpt->dev = lastdev;
959 	dpt->fow = pt->list;
960 	pt->list = dpt;
961 	arcn->sb.st_dev = lastdev;
962 	arcn->sb.st_ino = nino;
963 	return(0);
964 
965     bad:
966 	tty_warn(1,
967 	    "Unable to fix truncated inode/device field when storing %s",
968 	    arcn->name);
969 	tty_warn(0, "Archive may create improper hard links when extracted");
970 	return(0);
971 }
972 
973 /*
974  * directory access/mod time reset table routines (for directories READ by pax)
975  *
976  * The pax -t flag requires that access times of archive files to be the same
977  * before being read by pax. For regular files, access time is restored after
978  * the file has been copied. This database provides the same functionality for
979  * directories read during file tree traversal. Restoring directory access time
980  * is more complex than files since directories may be read several times until
981  * all the descendants in their subtree are visited by fts. Directory access
982  * and modification times are stored during the fts pre-order visit (done
983  * before any descendants in the subtree is visited) and restored after the
984  * fts post-order visit (after all the descendants have been visited). In the
985  * case of premature exit from a subtree (like from the effects of -n), any
986  * directory entries left in this database are reset during final cleanup
987  * operations of pax. Entries are hashed by inode number for fast lookup.
988  */
989 
990 /*
991  * atdir_start()
992  *	create the directory access time database for directories READ by pax.
993  * Return:
994  *	0 is created ok, -1 otherwise.
995  */
996 
997 #if __STDC__
998 int
999 atdir_start(void)
1000 #else
1001 int
1002 atdir_start()
1003 #endif
1004 {
1005 	if (atab != NULL)
1006 		return(0);
1007 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1008 		tty_warn(1,
1009 		    "Cannot allocate space for directory access time table");
1010 		return(-1);
1011 	}
1012 	return(0);
1013 }
1014 
1015 
1016 /*
1017  * atdir_end()
1018  *	walk through the directory access time table and reset the access time
1019  *	of any directory who still has an entry left in the database. These
1020  *	entries are for directories READ by pax
1021  */
1022 
1023 #if __STDC__
1024 void
1025 atdir_end(void)
1026 #else
1027 void
1028 atdir_end()
1029 #endif
1030 {
1031 	ATDIR *pt;
1032 	int i;
1033 
1034 	if (atab == NULL)
1035 		return;
1036 	/*
1037 	 * for each non-empty hash table entry reset all the directories
1038 	 * chained there.
1039 	 */
1040 	for (i = 0; i < A_TAB_SZ; ++i) {
1041 		if ((pt = atab[i]) == NULL)
1042 			continue;
1043 		/*
1044 		 * remember to force the times, set_ftime() looks at pmtime
1045 		 * and patime, which only applies to things CREATED by pax,
1046 		 * not read by pax. Read time reset is controlled by -t.
1047 		 */
1048 		for (; pt != NULL; pt = pt->fow)
1049 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1050 	}
1051 }
1052 
1053 /*
1054  * add_atdir()
1055  *	add a directory to the directory access time table. Table is hashed
1056  *	and chained by inode number. This is for directories READ by pax
1057  */
1058 
1059 #if __STDC__
1060 void
1061 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1062 #else
1063 void
1064 add_atdir(fname, dev, ino, mtime, atime)
1065 	char *fname;
1066 	dev_t dev;
1067 	ino_t ino;
1068 	time_t mtime;
1069 	time_t atime;
1070 #endif
1071 {
1072 	ATDIR *pt;
1073 	u_int indx;
1074 
1075 	if (atab == NULL)
1076 		return;
1077 
1078 	/*
1079 	 * make sure this directory is not already in the table, if so just
1080 	 * return (the older entry always has the correct time). The only
1081 	 * way this will happen is when the same subtree can be traversed by
1082 	 * different args to pax and the -n option is aborting fts out of a
1083 	 * subtree before all the post-order visits have been made).
1084 	 */
1085 	indx = ((unsigned)ino) % A_TAB_SZ;
1086 	if ((pt = atab[indx]) != NULL) {
1087 		while (pt != NULL) {
1088 			if ((pt->ino == ino) && (pt->dev == dev))
1089 				break;
1090 			pt = pt->fow;
1091 		}
1092 
1093 		/*
1094 		 * oops, already there. Leave it alone.
1095 		 */
1096 		if (pt != NULL)
1097 			return;
1098 	}
1099 
1100 	/*
1101 	 * add it to the front of the hash chain
1102 	 */
1103 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1104 		if ((pt->name = strdup(fname)) != NULL) {
1105 			pt->dev = dev;
1106 			pt->ino = ino;
1107 			pt->mtime = mtime;
1108 			pt->atime = atime;
1109 			pt->fow = atab[indx];
1110 			atab[indx] = pt;
1111 			return;
1112 		}
1113 		(void)free((char *)pt);
1114 	}
1115 
1116 	tty_warn(1, "Directory access time reset table ran out of memory");
1117 	return;
1118 }
1119 
1120 /*
1121  * get_atdir()
1122  *	look up a directory by inode and device number to obtain the access
1123  *	and modification time you want to set to. If found, the modification
1124  *	and access time parameters are set and the entry is removed from the
1125  *	table (as it is no longer needed). These are for directories READ by
1126  *	pax
1127  * Return:
1128  *	0 if found, -1 if not found.
1129  */
1130 
1131 #if __STDC__
1132 int
1133 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1134 #else
1135 int
1136 get_atdir(dev, ino, mtime, atime)
1137 	dev_t dev;
1138 	ino_t ino;
1139 	time_t *mtime;
1140 	time_t *atime;
1141 #endif
1142 {
1143 	ATDIR *pt;
1144 	ATDIR **ppt;
1145 	u_int indx;
1146 
1147 	if (atab == NULL)
1148 		return(-1);
1149 	/*
1150 	 * hash by inode and search the chain for an inode and device match
1151 	 */
1152 	indx = ((unsigned)ino) % A_TAB_SZ;
1153 	if ((pt = atab[indx]) == NULL)
1154 		return(-1);
1155 
1156 	ppt = &(atab[indx]);
1157 	while (pt != NULL) {
1158 		if ((pt->ino == ino) && (pt->dev == dev))
1159 			break;
1160 		/*
1161 		 * no match, go to next one
1162 		 */
1163 		ppt = &(pt->fow);
1164 		pt = pt->fow;
1165 	}
1166 
1167 	/*
1168 	 * return if we did not find it.
1169 	 */
1170 	if (pt == NULL)
1171 		return(-1);
1172 
1173 	/*
1174 	 * found it. return the times and remove the entry from the table.
1175 	 */
1176 	*ppt = pt->fow;
1177 	*mtime = pt->mtime;
1178 	*atime = pt->atime;
1179 	(void)free((char *)pt->name);
1180 	(void)free((char *)pt);
1181 	return(0);
1182 }
1183 
1184 /*
1185  * directory access mode and time storage routines (for directories CREATED
1186  * by pax).
1187  *
1188  * Pax requires that extracted directories, by default, have their access/mod
1189  * times and permissions set to the values specified in the archive. During the
1190  * actions of extracting (and creating the destination subtree during -rw copy)
1191  * directories extracted may be modified after being created. Even worse is
1192  * that these directories may have been created with file permissions which
1193  * prohibits any descendants of these directories from being extracted. When
1194  * directories are created by pax, access rights may be added to permit the
1195  * creation of files in their subtree. Every time pax creates a directory, the
1196  * times and file permissions specified by the archive are stored. After all
1197  * files have been extracted (or copied), these directories have their times
1198  * and file modes reset to the stored values. The directory info is restored in
1199  * reverse order as entries were added to the data file from root to leaf. To
1200  * restore atime properly, we must go backwards. The data file consists of
1201  * records with two parts, the file name followed by a DIRDATA trailer. The
1202  * fixed sized trailer contains the size of the name plus the off_t location in
1203  * the file. To restore we work backwards through the file reading the trailer
1204  * then the file name.
1205  */
1206 
1207 #ifndef DIRS_USE_FILE
1208 static DIRDATA *dirdata_head;
1209 #endif
1210 
1211 /*
1212  * dir_start()
1213  *	set up the directory time and file mode storage for directories CREATED
1214  *	by pax.
1215  * Return:
1216  *	0 if ok, -1 otherwise
1217  */
1218 
1219 #if __STDC__
1220 int
1221 dir_start(void)
1222 #else
1223 int
1224 dir_start()
1225 #endif
1226 {
1227 #ifdef DIRS_USE_FILE
1228 	const char *tmpdir;
1229 	char template[MAXPATHLEN];
1230 
1231 	if (dirfd != -1)
1232 		return(0);
1233 
1234 	/*
1235 	 * unlink the file so it goes away at termination by itself
1236 	 */
1237 	if ((tmpdir = getenv("TMPDIR")) == NULL)
1238 		tmpdir = _PATH_TMP;
1239 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
1240 	if ((dirfd = mkstemp(template)) >= 0) {
1241 		(void)unlink(template);
1242 		return(0);
1243 	}
1244 	tty_warn(1, "Unable to create temporary file for directory times: %s",
1245 	    template);
1246 	return(-1);
1247 #else
1248 	return (0);
1249 #endif /* DIRS_USE_FILE */
1250 }
1251 
1252 /*
1253  * add_dir()
1254  *	add the mode and times for a newly CREATED directory
1255  *	name is name of the directory, psb the stat buffer with the data in it,
1256  *	frc_mode is a flag that says whether to force the setting of the mode
1257  *	(ignoring the user set values for preserving file mode). Frc_mode is
1258  *	for the case where we created a file and found that the resulting
1259  *	directory was not writeable and the user asked for file modes to NOT
1260  *	be preserved. (we have to preserve what was created by default, so we
1261  *	have to force the setting at the end. this is stated explicitly in the
1262  *	pax spec)
1263  */
1264 
1265 #if __STDC__
1266 void
1267 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1268 #else
1269 void
1270 add_dir(name, nlen, psb, frc_mode)
1271 	char *name;
1272 	int nlen;
1273 	struct stat *psb;
1274 	int frc_mode;
1275 #endif
1276 {
1277 #ifdef DIRS_USE_FILE
1278 	DIRDATA dblk;
1279 
1280 	if (dirfd < 0)
1281 		return;
1282 
1283 	/*
1284 	 * get current position (where file name will start) so we can store it
1285 	 * in the trailer
1286 	 */
1287 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1288 		tty_warn(1,
1289 		    "Unable to store mode and times for directory: %s",name);
1290 		return;
1291 	}
1292 
1293 	/*
1294 	 * write the file name followed by the trailer
1295 	 */
1296 	dblk.nlen = nlen + 1;
1297 	dblk.mode = psb->st_mode & 0xffff;
1298 	dblk.mtime = psb->st_mtime;
1299 	dblk.atime = psb->st_atime;
1300 	dblk.fflags = psb->st_flags;
1301 	dblk.frc_mode = frc_mode;
1302 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
1303 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1304 		++dircnt;
1305 		return;
1306 	}
1307 
1308 	tty_warn(1,
1309 	    "Unable to store mode and times for created directory: %s",name);
1310 	return;
1311 #else
1312 	DIRDATA *dblk;
1313 
1314 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
1315 	    (dblk->name = strdup(name)) == NULL) {
1316 		tty_warn(1,
1317 		    "Unable to store mode and times for directory: %s",name);
1318 		if (dblk != NULL)
1319 			free(dblk);
1320 		return;
1321 	}
1322 
1323 	dblk->mode = psb->st_mode & 0xffff;
1324 	dblk->mtime = psb->st_mtime;
1325 	dblk->atime = psb->st_atime;
1326 	dblk->fflags = psb->st_flags;
1327 	dblk->frc_mode = frc_mode;
1328 
1329 	dblk->next = dirdata_head;
1330 	dirdata_head = dblk;
1331 	return;
1332 #endif /* DIRS_USE_FILE */
1333 }
1334 
1335 /*
1336  * proc_dir()
1337  *	process all file modes and times stored for directories CREATED
1338  *	by pax
1339  */
1340 
1341 #if __STDC__
1342 void
1343 proc_dir(void)
1344 #else
1345 void
1346 proc_dir()
1347 #endif
1348 {
1349 #ifdef DIRS_USE_FILE
1350 	char name[PAXPATHLEN+1];
1351 	DIRDATA dblk;
1352 	u_long cnt;
1353 
1354 	if (dirfd < 0)
1355 		return;
1356 	/*
1357 	 * read backwards through the file and process each directory
1358 	 */
1359 	for (cnt = 0; cnt < dircnt; ++cnt) {
1360 		/*
1361 		 * read the trailer, then the file name, if this fails
1362 		 * just give up.
1363 		 */
1364 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1365 			break;
1366 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1367 			break;
1368 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1369 			break;
1370 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
1371 			break;
1372 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1373 			break;
1374 
1375 		/*
1376 		 * frc_mode set, make sure we set the file modes even if
1377 		 * the user didn't ask for it (see file_subs.c for more info)
1378 		 */
1379 		if (pmode || dblk.frc_mode)
1380 			set_pmode(name, dblk.mode);
1381 		if (patime || pmtime)
1382 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1383 		if (pfflags)
1384 			set_chflags(name, dblk.fflags);
1385 	}
1386 
1387 	(void)close(dirfd);
1388 	dirfd = -1;
1389 	if (cnt != dircnt)
1390 		tty_warn(1,
1391 		    "Unable to set mode and times for created directories");
1392 	return;
1393 #else
1394 	DIRDATA *dblk;
1395 
1396 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
1397 		dirdata_head = dblk->next;
1398 
1399 		/*
1400 		 * frc_mode set, make sure we set the file modes even if
1401 		 * the user didn't ask for it (see file_subs.c for more info)
1402 		 */
1403 		if (pmode || dblk->frc_mode)
1404 			set_pmode(dblk->name, dblk->mode);
1405 		if (patime || pmtime)
1406 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
1407 		if (pfflags)
1408 			set_chflags(dblk->name, dblk->fflags);
1409 
1410 		free(dblk->name);
1411 		free(dblk);
1412 	}
1413 #endif /* DIRS_USE_FILE */
1414 }
1415 
1416 /*
1417  * database independent routines
1418  */
1419 
1420 /*
1421  * st_hash()
1422  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1423  *	end of file, as this provides far better distribution than any other
1424  *	part of the name. For performance reasons we only care about the last
1425  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1426  *	name). Was tested on 500,000 name file tree traversal from the root
1427  *	and gave almost a perfectly uniform distribution of keys when used with
1428  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1429  *	chars at a time and pads with 0 for last addition.
1430  * Return:
1431  *	the hash value of the string MOD (%) the table size.
1432  */
1433 
1434 #if __STDC__
1435 u_int
1436 st_hash(char *name, int len, int tabsz)
1437 #else
1438 u_int
1439 st_hash(name, len, tabsz)
1440 	char *name;
1441 	int len;
1442 	int tabsz;
1443 #endif
1444 {
1445 	char *pt;
1446 	char *dest;
1447 	char *end;
1448 	int i;
1449 	u_int key = 0;
1450 	int steps;
1451 	int res;
1452 	u_int val;
1453 
1454 	/*
1455 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1456 	 * time here (remember these are pathnames, the tail is what will
1457 	 * spread out the keys)
1458 	 */
1459 	if (len > MAXKEYLEN) {
1460 		pt = &(name[len - MAXKEYLEN]);
1461 		len = MAXKEYLEN;
1462 	} else
1463 		pt = name;
1464 
1465 	/*
1466 	 * calculate the number of u_int size steps in the string and if
1467 	 * there is a runt to deal with
1468 	 */
1469 	steps = len/sizeof(u_int);
1470 	res = len % sizeof(u_int);
1471 
1472 	/*
1473 	 * add up the value of the string in unsigned integer sized pieces
1474 	 * too bad we cannot have unsigned int aligned strings, then we
1475 	 * could avoid the expensive copy.
1476 	 */
1477 	for (i = 0; i < steps; ++i) {
1478 		end = pt + sizeof(u_int);
1479 		dest = (char *)&val;
1480 		while (pt < end)
1481 			*dest++ = *pt++;
1482 		key += val;
1483 	}
1484 
1485 	/*
1486 	 * add in the runt padded with zero to the right
1487 	 */
1488 	if (res) {
1489 		val = 0;
1490 		end = pt + res;
1491 		dest = (char *)&val;
1492 		while (pt < end)
1493 			*dest++ = *pt++;
1494 		key += val;
1495 	}
1496 
1497 	/*
1498 	 * return the result mod the table size
1499 	 */
1500 	return(key % tabsz);
1501 }
1502