xref: /minix3/sys/ufs/lfs/lfs_segment.c (revision f14fb602092e015ff630df58e17c2a9cd57d29b3)
1 /*	$NetBSD: lfs_segment.c,v 1.222 2011/07/11 08:27:40 hannken Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright (c) 1991, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
60  */
61 
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.222 2011/07/11 08:27:40 hannken Exp $");
64 
65 #ifdef DEBUG
66 # define vndebug(vp, str) do {						\
67 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
68 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 		     VTOI(vp)->i_number, (str), op));			\
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76 
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94 
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97 
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/dir.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
102 
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_extern.h>
105 
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_extern.h>
108 
109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
110 
111 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
112 static void lfs_free_aiodone(struct buf *);
113 static void lfs_super_aiodone(struct buf *);
114 static void lfs_cluster_aiodone(struct buf *);
115 static void lfs_cluster_callback(struct buf *);
116 
117 /*
118  * Determine if it's OK to start a partial in this segment, or if we need
119  * to go on to a new segment.
120  */
121 #define	LFS_PARTIAL_FITS(fs) \
122 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
123 	(fs)->lfs_frag)
124 
125 /*
126  * Figure out whether we should do a checkpoint write or go ahead with
127  * an ordinary write.
128  */
129 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
130         ((flags & SEGM_CLEAN) == 0 &&					\
131 	  ((fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
132 	    (flags & SEGM_CKP) ||					\
133 	    fs->lfs_nclean < LFS_MAX_ACTIVE)))
134 
135 int	 lfs_match_fake(struct lfs *, struct buf *);
136 void	 lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
139 void	 lfs_supercallback(struct buf *);
140 void	 lfs_updatemeta(struct segment *);
141 void	 lfs_writesuper(struct lfs *, daddr_t);
142 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
143 	    struct segment *sp, int dirops);
144 
145 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
146 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
147 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
148 int	lfs_dirvcount = 0;		/* # active dirops */
149 
150 /* Statistics Counters */
151 int lfs_dostats = 1;
152 struct lfs_stats lfs_stats;
153 
154 /* op values to lfs_writevnodes */
155 #define	VN_REG		0
156 #define	VN_DIROP	1
157 #define	VN_EMPTY	2
158 #define VN_CLEAN	3
159 
160 /*
161  * XXX KS - Set modification time on the Ifile, so the cleaner can
162  * read the fs mod time off of it.  We don't set IN_UPDATE here,
163  * since we don't really need this to be flushed to disk (and in any
164  * case that wouldn't happen to the Ifile until we checkpoint).
165  */
166 void
167 lfs_imtime(struct lfs *fs)
168 {
169 	struct timespec ts;
170 	struct inode *ip;
171 
172 	ASSERT_MAYBE_SEGLOCK(fs);
173 	vfs_timestamp(&ts);
174 	ip = VTOI(fs->lfs_ivnode);
175 	ip->i_ffs1_mtime = ts.tv_sec;
176 	ip->i_ffs1_mtimensec = ts.tv_nsec;
177 }
178 
179 /*
180  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
181  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
182  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
183  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
184  */
185 
186 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
187 
188 int
189 lfs_vflush(struct vnode *vp)
190 {
191 	struct inode *ip;
192 	struct lfs *fs;
193 	struct segment *sp;
194 	struct buf *bp, *nbp, *tbp, *tnbp;
195 	int error;
196 	int flushed;
197 	int relock;
198 	int loopcount;
199 
200 	ip = VTOI(vp);
201 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
202 	relock = 0;
203 
204     top:
205 	ASSERT_NO_SEGLOCK(fs);
206 	if (ip->i_flag & IN_CLEANING) {
207 		ivndebug(vp,"vflush/in_cleaning");
208 		mutex_enter(&lfs_lock);
209 		LFS_CLR_UINO(ip, IN_CLEANING);
210 		LFS_SET_UINO(ip, IN_MODIFIED);
211 		mutex_exit(&lfs_lock);
212 
213 		/*
214 		 * Toss any cleaning buffers that have real counterparts
215 		 * to avoid losing new data.
216 		 */
217 		mutex_enter(vp->v_interlock);
218 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
219 			nbp = LIST_NEXT(bp, b_vnbufs);
220 			if (!LFS_IS_MALLOC_BUF(bp))
221 				continue;
222 			/*
223 			 * Look for pages matching the range covered
224 			 * by cleaning blocks.  It's okay if more dirty
225 			 * pages appear, so long as none disappear out
226 			 * from under us.
227 			 */
228 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
229 			    vp != fs->lfs_ivnode) {
230 				struct vm_page *pg;
231 				voff_t off;
232 
233 				for (off = lblktosize(fs, bp->b_lblkno);
234 				     off < lblktosize(fs, bp->b_lblkno + 1);
235 				     off += PAGE_SIZE) {
236 					pg = uvm_pagelookup(&vp->v_uobj, off);
237 					if (pg == NULL)
238 						continue;
239 					if ((pg->flags & PG_CLEAN) == 0 ||
240 					    pmap_is_modified(pg)) {
241 						fs->lfs_avail += btofsb(fs,
242 							bp->b_bcount);
243 						wakeup(&fs->lfs_avail);
244 						mutex_exit(vp->v_interlock);
245 						lfs_freebuf(fs, bp);
246 						mutex_enter(vp->v_interlock);
247 						bp = NULL;
248 						break;
249 					}
250 				}
251 			}
252 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
253 			    tbp = tnbp)
254 			{
255 				tnbp = LIST_NEXT(tbp, b_vnbufs);
256 				if (tbp->b_vp == bp->b_vp
257 				   && tbp->b_lblkno == bp->b_lblkno
258 				   && tbp != bp)
259 				{
260 					fs->lfs_avail += btofsb(fs,
261 						bp->b_bcount);
262 					wakeup(&fs->lfs_avail);
263 					mutex_exit(vp->v_interlock);
264 					lfs_freebuf(fs, bp);
265 					mutex_enter(vp->v_interlock);
266 					bp = NULL;
267 					break;
268 				}
269 			}
270 		}
271 	} else {
272 		mutex_enter(vp->v_interlock);
273 	}
274 
275 	/* If the node is being written, wait until that is done */
276 	while (WRITEINPROG(vp)) {
277 		ivndebug(vp,"vflush/writeinprog");
278 		cv_wait(&vp->v_cv, vp->v_interlock);
279 	}
280 	mutex_exit(vp->v_interlock);
281 
282 	/* Protect against VI_XLOCK deadlock in vinvalbuf() */
283 	lfs_seglock(fs, SEGM_SYNC);
284 
285 	/* If we're supposed to flush a freed inode, just toss it */
286 	if (ip->i_lfs_iflags & LFSI_DELETED) {
287 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
288 		      ip->i_number));
289 		/* Drain v_numoutput */
290 		mutex_enter(vp->v_interlock);
291 		while (vp->v_numoutput > 0) {
292 			cv_wait(&vp->v_cv, vp->v_interlock);
293 		}
294 		KASSERT(vp->v_numoutput == 0);
295 		mutex_exit(vp->v_interlock);
296 
297 		mutex_enter(&bufcache_lock);
298 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
299 			nbp = LIST_NEXT(bp, b_vnbufs);
300 
301 			KASSERT((bp->b_flags & B_GATHERED) == 0);
302 			if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
303 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
304 				wakeup(&fs->lfs_avail);
305 			}
306 			/* Copied from lfs_writeseg */
307 			if (bp->b_iodone != NULL) {
308 				mutex_exit(&bufcache_lock);
309 				biodone(bp);
310 				mutex_enter(&bufcache_lock);
311 			} else {
312 				bremfree(bp);
313 				LFS_UNLOCK_BUF(bp);
314 				mutex_enter(vp->v_interlock);
315 				bp->b_flags &= ~(B_READ | B_GATHERED);
316 				bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
317 				bp->b_error = 0;
318 				reassignbuf(bp, vp);
319 				mutex_exit(vp->v_interlock);
320 				brelse(bp, 0);
321 			}
322 		}
323 		mutex_exit(&bufcache_lock);
324 		LFS_CLR_UINO(ip, IN_CLEANING);
325 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
326 		ip->i_flag &= ~IN_ALLMOD;
327 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
328 		      ip->i_number));
329 		lfs_segunlock(fs);
330 
331 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
332 
333 		return 0;
334 	}
335 
336 	fs->lfs_flushvp = vp;
337 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
338 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
339 		fs->lfs_flushvp = NULL;
340 		KASSERT(fs->lfs_flushvp_fakevref == 0);
341 		lfs_segunlock(fs);
342 
343 		/* Make sure that any pending buffers get written */
344 		mutex_enter(vp->v_interlock);
345 		while (vp->v_numoutput > 0) {
346 			cv_wait(&vp->v_cv, vp->v_interlock);
347 		}
348 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
349 		KASSERT(vp->v_numoutput == 0);
350 		mutex_exit(vp->v_interlock);
351 
352 		return error;
353 	}
354 	sp = fs->lfs_sp;
355 
356 	flushed = 0;
357 	if (VPISEMPTY(vp)) {
358 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
359 		++flushed;
360 	} else if ((ip->i_flag & IN_CLEANING) &&
361 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
362 		ivndebug(vp,"vflush/clean");
363 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
364 		++flushed;
365 	} else if (lfs_dostats) {
366 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
367 			++lfs_stats.vflush_invoked;
368 		ivndebug(vp,"vflush");
369 	}
370 
371 #ifdef DIAGNOSTIC
372 	if (vp->v_uflag & VU_DIROP) {
373 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
374 		/* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
375 	}
376 #endif
377 
378 	do {
379 		loopcount = 0;
380 		do {
381 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
382 				relock = lfs_writefile(fs, sp, vp);
383 				if (relock) {
384 					/*
385 					 * Might have to wait for the
386 					 * cleaner to run; but we're
387 					 * still not done with this vnode.
388 					 */
389 					KDASSERT(ip->i_number != LFS_IFILE_INUM);
390 					lfs_writeinode(fs, sp, ip);
391 					mutex_enter(&lfs_lock);
392 					LFS_SET_UINO(ip, IN_MODIFIED);
393 					mutex_exit(&lfs_lock);
394 					lfs_writeseg(fs, sp);
395 					lfs_segunlock(fs);
396 					lfs_segunlock_relock(fs);
397 					goto top;
398 				}
399 			}
400 			/*
401 			 * If we begin a new segment in the middle of writing
402 			 * the Ifile, it creates an inconsistent checkpoint,
403 			 * since the Ifile information for the new segment
404 			 * is not up-to-date.  Take care of this here by
405 			 * sending the Ifile through again in case there
406 			 * are newly dirtied blocks.  But wait, there's more!
407 			 * This second Ifile write could *also* cross a segment
408 			 * boundary, if the first one was large.  The second
409 			 * one is guaranteed to be no more than 8 blocks,
410 			 * though (two segment blocks and supporting indirects)
411 			 * so the third write *will not* cross the boundary.
412 			 */
413 			if (vp == fs->lfs_ivnode) {
414 				lfs_writefile(fs, sp, vp);
415 				lfs_writefile(fs, sp, vp);
416 			}
417 #ifdef DEBUG
418 			if (++loopcount > 2)
419 				log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
420 #endif
421 		} while (lfs_writeinode(fs, sp, ip));
422 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
423 
424 	if (lfs_dostats) {
425 		++lfs_stats.nwrites;
426 		if (sp->seg_flags & SEGM_SYNC)
427 			++lfs_stats.nsync_writes;
428 		if (sp->seg_flags & SEGM_CKP)
429 			++lfs_stats.ncheckpoints;
430 	}
431 	/*
432 	 * If we were called from somewhere that has already held the seglock
433 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
434 	 * the write to complete because we are still locked.
435 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
436 	 * we must explicitly wait, if that is the case.
437 	 *
438 	 * We compare the iocount against 1, not 0, because it is
439 	 * artificially incremented by lfs_seglock().
440 	 */
441 	mutex_enter(&lfs_lock);
442 	if (fs->lfs_seglock > 1) {
443 		while (fs->lfs_iocount > 1)
444 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
445 				     "lfs_vflush", 0, &lfs_lock);
446 	}
447 	mutex_exit(&lfs_lock);
448 
449 	lfs_segunlock(fs);
450 
451 	/* Wait for these buffers to be recovered by aiodoned */
452 	mutex_enter(vp->v_interlock);
453 	while (vp->v_numoutput > 0) {
454 		cv_wait(&vp->v_cv, vp->v_interlock);
455 	}
456 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
457 	KASSERT(vp->v_numoutput == 0);
458 	mutex_exit(vp->v_interlock);
459 
460 	fs->lfs_flushvp = NULL;
461 	KASSERT(fs->lfs_flushvp_fakevref == 0);
462 
463 	return (0);
464 }
465 
466 int
467 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
468 {
469 	struct inode *ip;
470 	struct vnode *vp;
471 	int inodes_written = 0, only_cleaning;
472 	int error = 0;
473 
474 	ASSERT_SEGLOCK(fs);
475  loop:
476 	/* start at last (newest) vnode. */
477 	mutex_enter(&mntvnode_lock);
478 	TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
479 		/*
480 		 * If the vnode that we are about to sync is no longer
481 		 * associated with this mount point, start over.
482 		 */
483 		if (vp->v_mount != mp) {
484 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
485 			/*
486 			 * After this, pages might be busy
487 			 * due to our own previous putpages.
488 			 * Start actual segment write here to avoid deadlock.
489 			 */
490 			mutex_exit(&mntvnode_lock);
491 			(void)lfs_writeseg(fs, sp);
492 			goto loop;
493 		}
494 
495 		mutex_enter(vp->v_interlock);
496 		if (vp->v_type == VNON || vismarker(vp) ||
497 		    (vp->v_iflag & VI_CLEAN) != 0) {
498 			mutex_exit(vp->v_interlock);
499 			continue;
500 		}
501 
502 		ip = VTOI(vp);
503 		if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
504 		    (op != VN_DIROP && op != VN_CLEAN &&
505 		    (vp->v_uflag & VU_DIROP))) {
506 			mutex_exit(vp->v_interlock);
507 			vndebug(vp,"dirop");
508 			continue;
509 		}
510 
511 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
512 			mutex_exit(vp->v_interlock);
513 			vndebug(vp,"empty");
514 			continue;
515 		}
516 
517 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
518 		   && vp != fs->lfs_flushvp
519 		   && !(ip->i_flag & IN_CLEANING)) {
520 			mutex_exit(vp->v_interlock);
521 			vndebug(vp,"cleaning");
522 			continue;
523 		}
524 
525 		mutex_exit(&mntvnode_lock);
526 		if (lfs_vref(vp)) {
527 			vndebug(vp,"vref");
528 			mutex_enter(&mntvnode_lock);
529 			continue;
530 		}
531 
532 		only_cleaning = 0;
533 		/*
534 		 * Write the inode/file if dirty and it's not the IFILE.
535 		 */
536 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
537 			only_cleaning =
538 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
539 
540 			if (ip->i_number != LFS_IFILE_INUM) {
541 				error = lfs_writefile(fs, sp, vp);
542 				if (error) {
543 					lfs_vunref(vp);
544 					if (error == EAGAIN) {
545 						/*
546 						 * This error from lfs_putpages
547 						 * indicates we need to drop
548 						 * the segment lock and start
549 						 * over after the cleaner has
550 						 * had a chance to run.
551 						 */
552 						lfs_writeinode(fs, sp, ip);
553 						lfs_writeseg(fs, sp);
554 						if (!VPISEMPTY(vp) &&
555 						    !WRITEINPROG(vp) &&
556 						    !(ip->i_flag & IN_ALLMOD)) {
557 							mutex_enter(&lfs_lock);
558 							LFS_SET_UINO(ip, IN_MODIFIED);
559 							mutex_exit(&lfs_lock);
560 						}
561 						mutex_enter(&mntvnode_lock);
562 						break;
563 					}
564 					error = 0; /* XXX not quite right */
565 					mutex_enter(&mntvnode_lock);
566 					continue;
567 				}
568 
569 				if (!VPISEMPTY(vp)) {
570 					if (WRITEINPROG(vp)) {
571 						ivndebug(vp,"writevnodes/write2");
572 					} else if (!(ip->i_flag & IN_ALLMOD)) {
573 						mutex_enter(&lfs_lock);
574 						LFS_SET_UINO(ip, IN_MODIFIED);
575 						mutex_exit(&lfs_lock);
576 					}
577 				}
578 				(void) lfs_writeinode(fs, sp, ip);
579 				inodes_written++;
580 			}
581 		}
582 
583 		if (lfs_clean_vnhead && only_cleaning)
584 			lfs_vunref_head(vp);
585 		else
586 			lfs_vunref(vp);
587 
588 		mutex_enter(&mntvnode_lock);
589 	}
590 	mutex_exit(&mntvnode_lock);
591 	return error;
592 }
593 
594 /*
595  * Do a checkpoint.
596  */
597 int
598 lfs_segwrite(struct mount *mp, int flags)
599 {
600 	struct buf *bp;
601 	struct inode *ip;
602 	struct lfs *fs;
603 	struct segment *sp;
604 	struct vnode *vp;
605 	SEGUSE *segusep;
606 	int do_ckp, did_ckp, error;
607 	unsigned n, segleft, maxseg, sn, i, curseg;
608 	int writer_set = 0;
609 	int dirty;
610 	int redo;
611 	int um_error;
612 	int loopcount;
613 
614 	fs = VFSTOUFS(mp)->um_lfs;
615 	ASSERT_MAYBE_SEGLOCK(fs);
616 
617 	if (fs->lfs_ronly)
618 		return EROFS;
619 
620 	lfs_imtime(fs);
621 
622 	/*
623 	 * Allocate a segment structure and enough space to hold pointers to
624 	 * the maximum possible number of buffers which can be described in a
625 	 * single summary block.
626 	 */
627 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
628 
629 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
630 	sp = fs->lfs_sp;
631 	if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
632 		do_ckp = 1;
633 
634 	/*
635 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
636 	 * in which case we have to flush *all* buffers off of this vnode.
637 	 * We don't care about other nodes, but write any non-dirop nodes
638 	 * anyway in anticipation of another getnewvnode().
639 	 *
640 	 * If we're cleaning we only write cleaning and ifile blocks, and
641 	 * no dirops, since otherwise we'd risk corruption in a crash.
642 	 */
643 	if (sp->seg_flags & SEGM_CLEAN)
644 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
645 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
646 		do {
647 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
648 
649 			if (do_ckp || fs->lfs_dirops == 0) {
650 				if (!writer_set) {
651 					lfs_writer_enter(fs, "lfs writer");
652 					writer_set = 1;
653 				}
654 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
655 				if (um_error == 0)
656 					um_error = error;
657 				/* In case writevnodes errored out */
658 				lfs_flush_dirops(fs);
659 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
660 				lfs_finalize_fs_seguse(fs);
661 			}
662 			if (do_ckp && um_error) {
663 				lfs_segunlock_relock(fs);
664 				sp = fs->lfs_sp;
665 			}
666 		} while (do_ckp && um_error != 0);
667 	}
668 
669 	/*
670 	 * If we are doing a checkpoint, mark everything since the
671 	 * last checkpoint as no longer ACTIVE.
672 	 */
673 	if (do_ckp || fs->lfs_doifile) {
674 		segleft = fs->lfs_nseg;
675 		curseg = 0;
676 		for (n = 0; n < fs->lfs_segtabsz; n++) {
677 			dirty = 0;
678 			if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
679 			    fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
680 				panic("lfs_segwrite: ifile read");
681 			segusep = (SEGUSE *)bp->b_data;
682 			maxseg = min(segleft, fs->lfs_sepb);
683 			for (i = 0; i < maxseg; i++) {
684 				sn = curseg + i;
685 				if (sn != dtosn(fs, fs->lfs_curseg) &&
686 				    segusep->su_flags & SEGUSE_ACTIVE) {
687 					segusep->su_flags &= ~SEGUSE_ACTIVE;
688 					--fs->lfs_nactive;
689 					++dirty;
690 				}
691 				fs->lfs_suflags[fs->lfs_activesb][sn] =
692 					segusep->su_flags;
693 				if (fs->lfs_version > 1)
694 					++segusep;
695 				else
696 					segusep = (SEGUSE *)
697 						((SEGUSE_V1 *)segusep + 1);
698 			}
699 
700 			if (dirty)
701 				error = LFS_BWRITE_LOG(bp); /* Ifile */
702 			else
703 				brelse(bp, 0);
704 			segleft -= fs->lfs_sepb;
705 			curseg += fs->lfs_sepb;
706 		}
707 	}
708 
709 	KASSERT(LFS_SEGLOCK_HELD(fs));
710 
711 	did_ckp = 0;
712 	if (do_ckp || fs->lfs_doifile) {
713 		vp = fs->lfs_ivnode;
714 		vn_lock(vp, LK_EXCLUSIVE);
715 		loopcount = 0;
716 		do {
717 #ifdef DEBUG
718 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
719 #endif
720 			mutex_enter(&lfs_lock);
721 			fs->lfs_flags &= ~LFS_IFDIRTY;
722 			mutex_exit(&lfs_lock);
723 
724 			ip = VTOI(vp);
725 
726 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
727 				/*
728 				 * Ifile has no pages, so we don't need
729 				 * to check error return here.
730 				 */
731 				lfs_writefile(fs, sp, vp);
732 				/*
733 				 * Ensure the Ifile takes the current segment
734 				 * into account.  See comment in lfs_vflush.
735 				 */
736 				lfs_writefile(fs, sp, vp);
737 				lfs_writefile(fs, sp, vp);
738 			}
739 
740 			if (ip->i_flag & IN_ALLMOD)
741 				++did_ckp;
742 #if 0
743 			redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
744 #else
745 			redo = lfs_writeinode(fs, sp, ip);
746 #endif
747 			redo += lfs_writeseg(fs, sp);
748 			mutex_enter(&lfs_lock);
749 			redo += (fs->lfs_flags & LFS_IFDIRTY);
750 			mutex_exit(&lfs_lock);
751 #ifdef DEBUG
752 			if (++loopcount > 2)
753 				log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
754 					loopcount);
755 #endif
756 		} while (redo && do_ckp);
757 
758 		/*
759 		 * Unless we are unmounting, the Ifile may continue to have
760 		 * dirty blocks even after a checkpoint, due to changes to
761 		 * inodes' atime.  If we're checkpointing, it's "impossible"
762 		 * for other parts of the Ifile to be dirty after the loop
763 		 * above, since we hold the segment lock.
764 		 */
765 		mutex_enter(vp->v_interlock);
766 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
767 			LFS_CLR_UINO(ip, IN_ALLMOD);
768 		}
769 #ifdef DIAGNOSTIC
770 		else if (do_ckp) {
771 			int do_panic = 0;
772 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
773 				if (bp->b_lblkno < fs->lfs_cleansz +
774 				    fs->lfs_segtabsz &&
775 				    !(bp->b_flags & B_GATHERED)) {
776 					printf("ifile lbn %ld still dirty (flags %lx)\n",
777 						(long)bp->b_lblkno,
778 						(long)bp->b_flags);
779 					++do_panic;
780 				}
781 			}
782 			if (do_panic)
783 				panic("dirty blocks");
784 		}
785 #endif
786 		mutex_exit(vp->v_interlock);
787 		VOP_UNLOCK(vp);
788 	} else {
789 		(void) lfs_writeseg(fs, sp);
790 	}
791 
792 	/* Note Ifile no longer needs to be written */
793 	fs->lfs_doifile = 0;
794 	if (writer_set)
795 		lfs_writer_leave(fs);
796 
797 	/*
798 	 * If we didn't write the Ifile, we didn't really do anything.
799 	 * That means that (1) there is a checkpoint on disk and (2)
800 	 * nothing has changed since it was written.
801 	 *
802 	 * Take the flags off of the segment so that lfs_segunlock
803 	 * doesn't have to write the superblock either.
804 	 */
805 	if (do_ckp && !did_ckp) {
806 		sp->seg_flags &= ~SEGM_CKP;
807 	}
808 
809 	if (lfs_dostats) {
810 		++lfs_stats.nwrites;
811 		if (sp->seg_flags & SEGM_SYNC)
812 			++lfs_stats.nsync_writes;
813 		if (sp->seg_flags & SEGM_CKP)
814 			++lfs_stats.ncheckpoints;
815 	}
816 	lfs_segunlock(fs);
817 	return (0);
818 }
819 
820 /*
821  * Write the dirty blocks associated with a vnode.
822  */
823 int
824 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
825 {
826 	struct finfo *fip;
827 	struct inode *ip;
828 	int i, frag;
829 	int error;
830 
831 	ASSERT_SEGLOCK(fs);
832 	error = 0;
833 	ip = VTOI(vp);
834 
835 	fip = sp->fip;
836 	lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
837 
838 	if (vp->v_uflag & VU_DIROP)
839 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
840 
841 	if (sp->seg_flags & SEGM_CLEAN) {
842 		lfs_gather(fs, sp, vp, lfs_match_fake);
843 		/*
844 		 * For a file being flushed, we need to write *all* blocks.
845 		 * This means writing the cleaning blocks first, and then
846 		 * immediately following with any non-cleaning blocks.
847 		 * The same is true of the Ifile since checkpoints assume
848 		 * that all valid Ifile blocks are written.
849 		 */
850 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
851 			lfs_gather(fs, sp, vp, lfs_match_data);
852 			/*
853 			 * Don't call VOP_PUTPAGES: if we're flushing,
854 			 * we've already done it, and the Ifile doesn't
855 			 * use the page cache.
856 			 */
857 		}
858 	} else {
859 		lfs_gather(fs, sp, vp, lfs_match_data);
860 		/*
861 		 * If we're flushing, we've already called VOP_PUTPAGES
862 		 * so don't do it again.  Otherwise, we want to write
863 		 * everything we've got.
864 		 */
865 		if (!IS_FLUSHING(fs, vp)) {
866 			mutex_enter(vp->v_interlock);
867 			error = VOP_PUTPAGES(vp, 0, 0,
868 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
869 		}
870 	}
871 
872 	/*
873 	 * It may not be necessary to write the meta-data blocks at this point,
874 	 * as the roll-forward recovery code should be able to reconstruct the
875 	 * list.
876 	 *
877 	 * We have to write them anyway, though, under two conditions: (1) the
878 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
879 	 * checkpointing.
880 	 *
881 	 * BUT if we are cleaning, we might have indirect blocks that refer to
882 	 * new blocks not being written yet, in addition to fragments being
883 	 * moved out of a cleaned segment.  If that is the case, don't
884 	 * write the indirect blocks, or the finfo will have a small block
885 	 * in the middle of it!
886 	 * XXX in this case isn't the inode size wrong too?
887 	 */
888 	frag = 0;
889 	if (sp->seg_flags & SEGM_CLEAN) {
890 		for (i = 0; i < NDADDR; i++)
891 			if (ip->i_lfs_fragsize[i] > 0 &&
892 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
893 				++frag;
894 	}
895 #ifdef DIAGNOSTIC
896 	if (frag > 1)
897 		panic("lfs_writefile: more than one fragment!");
898 #endif
899 	if (IS_FLUSHING(fs, vp) ||
900 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
901 		lfs_gather(fs, sp, vp, lfs_match_indir);
902 		lfs_gather(fs, sp, vp, lfs_match_dindir);
903 		lfs_gather(fs, sp, vp, lfs_match_tindir);
904 	}
905 	fip = sp->fip;
906 	lfs_release_finfo(fs);
907 
908 	return error;
909 }
910 
911 /*
912  * Update segment accounting to reflect this inode's change of address.
913  */
914 static int
915 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
916 {
917 	struct buf *bp;
918 	daddr_t daddr;
919 	IFILE *ifp;
920 	SEGUSE *sup;
921 	ino_t ino;
922 	int redo_ifile, error;
923 	u_int32_t sn;
924 
925 	redo_ifile = 0;
926 
927 	/*
928 	 * If updating the ifile, update the super-block.  Update the disk
929 	 * address and access times for this inode in the ifile.
930 	 */
931 	ino = ip->i_number;
932 	if (ino == LFS_IFILE_INUM) {
933 		daddr = fs->lfs_idaddr;
934 		fs->lfs_idaddr = dbtofsb(fs, ndaddr);
935 	} else {
936 		LFS_IENTRY(ifp, fs, ino, bp);
937 		daddr = ifp->if_daddr;
938 		ifp->if_daddr = dbtofsb(fs, ndaddr);
939 		error = LFS_BWRITE_LOG(bp); /* Ifile */
940 	}
941 
942 	/*
943 	 * If this is the Ifile and lfs_offset is set to the first block
944 	 * in the segment, dirty the new segment's accounting block
945 	 * (XXX should already be dirty?) and tell the caller to do it again.
946 	 */
947 	if (ip->i_number == LFS_IFILE_INUM) {
948 		sn = dtosn(fs, fs->lfs_offset);
949 		if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
950 		    fs->lfs_offset) {
951 			LFS_SEGENTRY(sup, fs, sn, bp);
952 			KASSERT(bp->b_oflags & BO_DELWRI);
953 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
954 			/* fs->lfs_flags |= LFS_IFDIRTY; */
955 			redo_ifile |= 1;
956 		}
957 	}
958 
959 	/*
960 	 * The inode's last address should not be in the current partial
961 	 * segment, except under exceptional circumstances (lfs_writevnodes
962 	 * had to start over, and in the meantime more blocks were written
963 	 * to a vnode).	 Both inodes will be accounted to this segment
964 	 * in lfs_writeseg so we need to subtract the earlier version
965 	 * here anyway.	 The segment count can temporarily dip below
966 	 * zero here; keep track of how many duplicates we have in
967 	 * "dupino" so we don't panic below.
968 	 */
969 	if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
970 		++sp->ndupino;
971 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
972 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
973 		      (long long)daddr, sp->ndupino));
974 	}
975 	/*
976 	 * Account the inode: it no longer belongs to its former segment,
977 	 * though it will not belong to the new segment until that segment
978 	 * is actually written.
979 	 */
980 	if (daddr != LFS_UNUSED_DADDR) {
981 		u_int32_t oldsn = dtosn(fs, daddr);
982 #ifdef DIAGNOSTIC
983 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
984 #endif
985 		LFS_SEGENTRY(sup, fs, oldsn, bp);
986 #ifdef DIAGNOSTIC
987 		if (sup->su_nbytes +
988 		    sizeof (struct ufs1_dinode) * ndupino
989 		      < sizeof (struct ufs1_dinode)) {
990 			printf("lfs_writeinode: negative bytes "
991 			       "(segment %" PRIu32 " short by %d, "
992 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
993 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
994 			       "ndupino=%d)\n",
995 			       dtosn(fs, daddr),
996 			       (int)sizeof (struct ufs1_dinode) *
997 				   (1 - sp->ndupino) - sup->su_nbytes,
998 			       oldsn, sp->seg_number, daddr,
999 			       (unsigned int)sup->su_nbytes,
1000 			       sp->ndupino);
1001 			panic("lfs_writeinode: negative bytes");
1002 			sup->su_nbytes = sizeof (struct ufs1_dinode);
1003 		}
1004 #endif
1005 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1006 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1007 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
1008 		redo_ifile |=
1009 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1010 		if (redo_ifile) {
1011 			mutex_enter(&lfs_lock);
1012 			fs->lfs_flags |= LFS_IFDIRTY;
1013 			mutex_exit(&lfs_lock);
1014 			/* Don't double-account */
1015 			fs->lfs_idaddr = 0x0;
1016 		}
1017 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1018 	}
1019 
1020 	return redo_ifile;
1021 }
1022 
1023 int
1024 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1025 {
1026 	struct buf *bp;
1027 	struct ufs1_dinode *cdp;
1028 	daddr_t daddr;
1029 	int32_t *daddrp;	/* XXX ondisk32 */
1030 	int i, ndx;
1031 	int redo_ifile = 0;
1032 	int gotblk = 0;
1033 	int count;
1034 
1035 	ASSERT_SEGLOCK(fs);
1036 	if (!(ip->i_flag & IN_ALLMOD))
1037 		return (0);
1038 
1039 	/* Can't write ifile when writer is not set */
1040 	KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1041 		(sp->seg_flags & SEGM_CLEAN));
1042 
1043 	/*
1044 	 * If this is the Ifile, see if writing it here will generate a
1045 	 * temporary misaccounting.  If it will, do the accounting and write
1046 	 * the blocks, postponing the inode write until the accounting is
1047 	 * solid.
1048 	 */
1049 	count = 0;
1050 	while (ip->i_number == LFS_IFILE_INUM) {
1051 		int redo = 0;
1052 
1053 		if (sp->idp == NULL && sp->ibp == NULL &&
1054 		    (sp->seg_bytes_left < fs->lfs_ibsize ||
1055 		     sp->sum_bytes_left < sizeof(int32_t))) {
1056 			(void) lfs_writeseg(fs, sp);
1057 			continue;
1058 		}
1059 
1060 		/* Look for dirty Ifile blocks */
1061 		LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1062 			if (!(bp->b_flags & B_GATHERED)) {
1063 				redo = 1;
1064 				break;
1065 			}
1066 		}
1067 
1068 		if (redo == 0)
1069 			redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1070 		if (redo == 0)
1071 			break;
1072 
1073 		if (sp->idp) {
1074 			sp->idp->di_inumber = 0;
1075 			sp->idp = NULL;
1076 		}
1077 		++count;
1078 		if (count > 2)
1079 			log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1080 		lfs_writefile(fs, sp, fs->lfs_ivnode);
1081 	}
1082 
1083 	/* Allocate a new inode block if necessary. */
1084 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1085 	    sp->ibp == NULL) {
1086 		/* Allocate a new segment if necessary. */
1087 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
1088 		    sp->sum_bytes_left < sizeof(int32_t))
1089 			(void) lfs_writeseg(fs, sp);
1090 
1091 		/* Get next inode block. */
1092 		daddr = fs->lfs_offset;
1093 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1094 		sp->ibp = *sp->cbpp++ =
1095 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1096 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1097 		gotblk++;
1098 
1099 		/* Zero out inode numbers */
1100 		for (i = 0; i < INOPB(fs); ++i)
1101 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1102 			    0;
1103 
1104 		++sp->start_bpp;
1105 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1106 		/* Set remaining space counters. */
1107 		sp->seg_bytes_left -= fs->lfs_ibsize;
1108 		sp->sum_bytes_left -= sizeof(int32_t);
1109 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
1110 			sp->ninodes / INOPB(fs) - 1;
1111 		((int32_t *)(sp->segsum))[ndx] = daddr;
1112 	}
1113 
1114 	/* Check VU_DIROP in case there is a new file with no data blocks */
1115 	if (ITOV(ip)->v_uflag & VU_DIROP)
1116 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1117 
1118 	/* Update the inode times and copy the inode onto the inode page. */
1119 	/* XXX kludge --- don't redirty the ifile just to put times on it */
1120 	if (ip->i_number != LFS_IFILE_INUM)
1121 		LFS_ITIMES(ip, NULL, NULL, NULL);
1122 
1123 	/*
1124 	 * If this is the Ifile, and we've already written the Ifile in this
1125 	 * partial segment, just overwrite it (it's not on disk yet) and
1126 	 * continue.
1127 	 *
1128 	 * XXX we know that the bp that we get the second time around has
1129 	 * already been gathered.
1130 	 */
1131 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1132 		*(sp->idp) = *ip->i_din.ffs1_din;
1133 		ip->i_lfs_osize = ip->i_size;
1134 		return 0;
1135 	}
1136 
1137 	bp = sp->ibp;
1138 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1139 	*cdp = *ip->i_din.ffs1_din;
1140 
1141 	/*
1142 	 * If cleaning, link counts and directory file sizes cannot change,
1143 	 * since those would be directory operations---even if the file
1144 	 * we are writing is marked VU_DIROP we should write the old values.
1145 	 * If we're not cleaning, of course, update the values so we get
1146 	 * current values the next time we clean.
1147 	 */
1148 	if (sp->seg_flags & SEGM_CLEAN) {
1149 		if (ITOV(ip)->v_uflag & VU_DIROP) {
1150 			cdp->di_nlink = ip->i_lfs_odnlink;
1151 			/* if (ITOV(ip)->v_type == VDIR) */
1152 			cdp->di_size = ip->i_lfs_osize;
1153 		}
1154 	} else {
1155 		ip->i_lfs_odnlink = cdp->di_nlink;
1156 		ip->i_lfs_osize = ip->i_size;
1157 	}
1158 
1159 
1160 	/* We can finish the segment accounting for truncations now */
1161 	lfs_finalize_ino_seguse(fs, ip);
1162 
1163 	/*
1164 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1165 	 * addresses to disk; possibly change the on-disk record of
1166 	 * the inode size, either by reverting to the previous size
1167 	 * (in the case of cleaning) or by verifying the inode's block
1168 	 * holdings (in the case of files being allocated as they are being
1169 	 * written).
1170 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1171 	 * XXX count on disk wrong by the same amount.	We should be
1172 	 * XXX able to "borrow" from lfs_avail and return it after the
1173 	 * XXX Ifile is written.  See also in lfs_writeseg.
1174 	 */
1175 
1176 	/* Check file size based on highest allocated block */
1177 	if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1178 	     (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1179 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1180 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1181 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1182 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1183 	}
1184 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1185 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1186 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1187 		      ip->i_ffs1_blocks, fs->lfs_offset));
1188 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1189 		     daddrp++) {
1190 			if (*daddrp == UNWRITTEN) {
1191 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1192 				*daddrp = 0;
1193 			}
1194 		}
1195 	}
1196 
1197 #ifdef DIAGNOSTIC
1198 	/*
1199 	 * Check dinode held blocks against dinode size.
1200 	 * This should be identical to the check in lfs_vget().
1201 	 */
1202 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1203 	     i < NDADDR; i++) {
1204 		KASSERT(i >= 0);
1205 		if ((cdp->di_mode & IFMT) == IFLNK)
1206 			continue;
1207 		if (((cdp->di_mode & IFMT) == IFBLK ||
1208 		     (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1209 			continue;
1210 		if (cdp->di_db[i] != 0) {
1211 # ifdef DEBUG
1212 			lfs_dump_dinode(cdp);
1213 # endif
1214 			panic("writing inconsistent inode");
1215 		}
1216 	}
1217 #endif /* DIAGNOSTIC */
1218 
1219 	if (ip->i_flag & IN_CLEANING)
1220 		LFS_CLR_UINO(ip, IN_CLEANING);
1221 	else {
1222 		/* XXX IN_ALLMOD */
1223 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1224 			     IN_UPDATE | IN_MODIFY);
1225 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1226 			LFS_CLR_UINO(ip, IN_MODIFIED);
1227 		else {
1228 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1229 			    "blks=%d, eff=%d\n", ip->i_number,
1230 			    ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1231 		}
1232 	}
1233 
1234 	if (ip->i_number == LFS_IFILE_INUM) {
1235 		/* We know sp->idp == NULL */
1236 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1237 			(sp->ninodes % INOPB(fs));
1238 
1239 		/* Not dirty any more */
1240 		mutex_enter(&lfs_lock);
1241 		fs->lfs_flags &= ~LFS_IFDIRTY;
1242 		mutex_exit(&lfs_lock);
1243 	}
1244 
1245 	if (gotblk) {
1246 		mutex_enter(&bufcache_lock);
1247 		LFS_LOCK_BUF(bp);
1248 		brelsel(bp, 0);
1249 		mutex_exit(&bufcache_lock);
1250 	}
1251 
1252 	/* Increment inode count in segment summary block. */
1253 	++((SEGSUM *)(sp->segsum))->ss_ninos;
1254 
1255 	/* If this page is full, set flag to allocate a new page. */
1256 	if (++sp->ninodes % INOPB(fs) == 0)
1257 		sp->ibp = NULL;
1258 
1259 	redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1260 
1261 	KASSERT(redo_ifile == 0);
1262 	return (redo_ifile);
1263 }
1264 
1265 int
1266 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1267 {
1268 	struct lfs *fs;
1269 	int vers;
1270 	int j, blksinblk;
1271 
1272 	ASSERT_SEGLOCK(sp->fs);
1273 	/*
1274 	 * If full, finish this segment.  We may be doing I/O, so
1275 	 * release and reacquire the splbio().
1276 	 */
1277 #ifdef DIAGNOSTIC
1278 	if (sp->vp == NULL)
1279 		panic ("lfs_gatherblock: Null vp in segment");
1280 #endif
1281 	fs = sp->fs;
1282 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1283 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1284 	    sp->seg_bytes_left < bp->b_bcount) {
1285 		if (mptr)
1286 			mutex_exit(mptr);
1287 		lfs_updatemeta(sp);
1288 
1289 		vers = sp->fip->fi_version;
1290 		(void) lfs_writeseg(fs, sp);
1291 
1292 		/* Add the current file to the segment summary. */
1293 		lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1294 
1295 		if (mptr)
1296 			mutex_enter(mptr);
1297 		return (1);
1298 	}
1299 
1300 	if (bp->b_flags & B_GATHERED) {
1301 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1302 		      " lbn %" PRId64 "\n",
1303 		      sp->fip->fi_ino, bp->b_lblkno));
1304 		return (0);
1305 	}
1306 
1307 	/* Insert into the buffer list, update the FINFO block. */
1308 	bp->b_flags |= B_GATHERED;
1309 
1310 	*sp->cbpp++ = bp;
1311 	for (j = 0; j < blksinblk; j++) {
1312 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1313 		/* This block's accounting moves from lfs_favail to lfs_avail */
1314 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1315 	}
1316 
1317 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1318 	sp->seg_bytes_left -= bp->b_bcount;
1319 	return (0);
1320 }
1321 
1322 int
1323 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1324     int (*match)(struct lfs *, struct buf *))
1325 {
1326 	struct buf *bp, *nbp;
1327 	int count = 0;
1328 
1329 	ASSERT_SEGLOCK(fs);
1330 	if (vp->v_type == VBLK)
1331 		return 0;
1332 	KASSERT(sp->vp == NULL);
1333 	sp->vp = vp;
1334 	mutex_enter(&bufcache_lock);
1335 
1336 #ifndef LFS_NO_BACKBUF_HACK
1337 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1338 # define	BUF_OFFSET	\
1339 	(((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1340 # define	BACK_BUF(BP)	\
1341 	((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1342 # define	BEG_OF_LIST	\
1343 	((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1344 
1345 loop:
1346 	/* Find last buffer. */
1347 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1348 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1349 	     bp = LIST_NEXT(bp, b_vnbufs))
1350 		/* nothing */;
1351 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1352 		nbp = BACK_BUF(bp);
1353 #else /* LFS_NO_BACKBUF_HACK */
1354 loop:
1355 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1356 		nbp = LIST_NEXT(bp, b_vnbufs);
1357 #endif /* LFS_NO_BACKBUF_HACK */
1358 		if ((bp->b_cflags & BC_BUSY) != 0 ||
1359 		    (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1360 #ifdef DEBUG
1361 			if (vp == fs->lfs_ivnode &&
1362 			    (bp->b_cflags & BC_BUSY) != 0 &&
1363 			    (bp->b_flags & B_GATHERED) == 0)
1364 				log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1365 				      PRId64 " busy (%x) at 0x%x",
1366 				      bp->b_lblkno, bp->b_flags,
1367 				      (unsigned)fs->lfs_offset);
1368 #endif
1369 			continue;
1370 		}
1371 #ifdef DIAGNOSTIC
1372 # ifdef LFS_USE_B_INVAL
1373 		if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1374 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1375 			      " is BC_INVAL\n", bp->b_lblkno));
1376 			VOP_PRINT(bp->b_vp);
1377 		}
1378 # endif /* LFS_USE_B_INVAL */
1379 		if (!(bp->b_oflags & BO_DELWRI))
1380 			panic("lfs_gather: bp not BO_DELWRI");
1381 		if (!(bp->b_flags & B_LOCKED)) {
1382 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1383 			      " blk %" PRId64 " not B_LOCKED\n",
1384 			      bp->b_lblkno,
1385 			      dbtofsb(fs, bp->b_blkno)));
1386 			VOP_PRINT(bp->b_vp);
1387 			panic("lfs_gather: bp not B_LOCKED");
1388 		}
1389 #endif
1390 		if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1391 			goto loop;
1392 		}
1393 		count++;
1394 	}
1395 	mutex_exit(&bufcache_lock);
1396 	lfs_updatemeta(sp);
1397 	KASSERT(sp->vp == vp);
1398 	sp->vp = NULL;
1399 	return count;
1400 }
1401 
1402 #if DEBUG
1403 # define DEBUG_OOFF(n) do {						\
1404 	if (ooff == 0) {						\
1405 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1406 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
1407 			", was 0x0 (or %" PRId64 ")\n",			\
1408 			(n), ip->i_number, lbn, ndaddr, daddr));	\
1409 	}								\
1410 } while (0)
1411 #else
1412 # define DEBUG_OOFF(n)
1413 #endif
1414 
1415 /*
1416  * Change the given block's address to ndaddr, finding its previous
1417  * location using ufs_bmaparray().
1418  *
1419  * Account for this change in the segment table.
1420  *
1421  * called with sp == NULL by roll-forwarding code.
1422  */
1423 void
1424 lfs_update_single(struct lfs *fs, struct segment *sp,
1425     struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1426 {
1427 	SEGUSE *sup;
1428 	struct buf *bp;
1429 	struct indir a[NIADDR + 2], *ap;
1430 	struct inode *ip;
1431 	daddr_t daddr, ooff;
1432 	int num, error;
1433 	int bb, osize, obb;
1434 
1435 	ASSERT_SEGLOCK(fs);
1436 	KASSERT(sp == NULL || sp->vp == vp);
1437 	ip = VTOI(vp);
1438 
1439 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1440 	if (error)
1441 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1442 
1443 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1444 	KASSERT(daddr <= LFS_MAX_DADDR);
1445 	if (daddr > 0)
1446 		daddr = dbtofsb(fs, daddr);
1447 
1448 	bb = numfrags(fs, size);
1449 	switch (num) {
1450 	    case 0:
1451 		    ooff = ip->i_ffs1_db[lbn];
1452 		    DEBUG_OOFF(0);
1453 		    if (ooff == UNWRITTEN)
1454 			    ip->i_ffs1_blocks += bb;
1455 		    else {
1456 			    /* possible fragment truncation or extension */
1457 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1458 			    ip->i_ffs1_blocks += (bb - obb);
1459 		    }
1460 		    ip->i_ffs1_db[lbn] = ndaddr;
1461 		    break;
1462 	    case 1:
1463 		    ooff = ip->i_ffs1_ib[a[0].in_off];
1464 		    DEBUG_OOFF(1);
1465 		    if (ooff == UNWRITTEN)
1466 			    ip->i_ffs1_blocks += bb;
1467 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1468 		    break;
1469 	    default:
1470 		    ap = &a[num - 1];
1471 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
1472 			B_MODIFY, &bp))
1473 			    panic("lfs_updatemeta: bread bno %" PRId64,
1474 				  ap->in_lbn);
1475 
1476 		    /* XXX ondisk32 */
1477 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
1478 		    DEBUG_OOFF(num);
1479 		    if (ooff == UNWRITTEN)
1480 			    ip->i_ffs1_blocks += bb;
1481 		    /* XXX ondisk32 */
1482 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1483 		    (void) VOP_BWRITE(bp->b_vp, bp);
1484 	}
1485 
1486 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1487 
1488 	/* Update hiblk when extending the file */
1489 	if (lbn > ip->i_lfs_hiblk)
1490 		ip->i_lfs_hiblk = lbn;
1491 
1492 	/*
1493 	 * Though we'd rather it couldn't, this *can* happen right now
1494 	 * if cleaning blocks and regular blocks coexist.
1495 	 */
1496 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1497 
1498 	/*
1499 	 * Update segment usage information, based on old size
1500 	 * and location.
1501 	 */
1502 	if (daddr > 0) {
1503 		u_int32_t oldsn = dtosn(fs, daddr);
1504 #ifdef DIAGNOSTIC
1505 		int ndupino;
1506 
1507 		if (sp && sp->seg_number == oldsn) {
1508 			ndupino = sp->ndupino;
1509 		} else {
1510 			ndupino = 0;
1511 		}
1512 #endif
1513 		KASSERT(oldsn < fs->lfs_nseg);
1514 		if (lbn >= 0 && lbn < NDADDR)
1515 			osize = ip->i_lfs_fragsize[lbn];
1516 		else
1517 			osize = fs->lfs_bsize;
1518 		LFS_SEGENTRY(sup, fs, oldsn, bp);
1519 #ifdef DIAGNOSTIC
1520 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1521 		    < osize) {
1522 			printf("lfs_updatemeta: negative bytes "
1523 			       "(segment %" PRIu32 " short by %" PRId64
1524 			       ")\n", dtosn(fs, daddr),
1525 			       (int64_t)osize -
1526 			       (sizeof (struct ufs1_dinode) * ndupino +
1527 				sup->su_nbytes));
1528 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1529 			       ", addr = 0x%" PRIx64 "\n",
1530 			       (unsigned long long)ip->i_number, lbn, daddr);
1531 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1532 			panic("lfs_updatemeta: negative bytes");
1533 			sup->su_nbytes = osize -
1534 			    sizeof (struct ufs1_dinode) * ndupino;
1535 		}
1536 #endif
1537 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1538 		      " db 0x%" PRIx64 "\n",
1539 		      dtosn(fs, daddr), osize,
1540 		      ip->i_number, lbn, daddr));
1541 		sup->su_nbytes -= osize;
1542 		if (!(bp->b_flags & B_GATHERED)) {
1543 			mutex_enter(&lfs_lock);
1544 			fs->lfs_flags |= LFS_IFDIRTY;
1545 			mutex_exit(&lfs_lock);
1546 		}
1547 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1548 	}
1549 	/*
1550 	 * Now that this block has a new address, and its old
1551 	 * segment no longer owns it, we can forget about its
1552 	 * old size.
1553 	 */
1554 	if (lbn >= 0 && lbn < NDADDR)
1555 		ip->i_lfs_fragsize[lbn] = size;
1556 }
1557 
1558 /*
1559  * Update the metadata that points to the blocks listed in the FINFO
1560  * array.
1561  */
1562 void
1563 lfs_updatemeta(struct segment *sp)
1564 {
1565 	struct buf *sbp;
1566 	struct lfs *fs;
1567 	struct vnode *vp;
1568 	daddr_t lbn;
1569 	int i, nblocks, num;
1570 	int bb;
1571 	int bytesleft, size;
1572 
1573 	ASSERT_SEGLOCK(sp->fs);
1574 	vp = sp->vp;
1575 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1576 	KASSERT(nblocks >= 0);
1577 	KASSERT(vp != NULL);
1578 	if (nblocks == 0)
1579 		return;
1580 
1581 	/*
1582 	 * This count may be high due to oversize blocks from lfs_gop_write.
1583 	 * Correct for this. (XXX we should be able to keep track of these.)
1584 	 */
1585 	fs = sp->fs;
1586 	for (i = 0; i < nblocks; i++) {
1587 		if (sp->start_bpp[i] == NULL) {
1588 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1589 			nblocks = i;
1590 			break;
1591 		}
1592 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1593 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1594 		nblocks -= num - 1;
1595 	}
1596 
1597 	KASSERT(vp->v_type == VREG ||
1598 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1599 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1600 
1601 	/*
1602 	 * Sort the blocks.
1603 	 *
1604 	 * We have to sort even if the blocks come from the
1605 	 * cleaner, because there might be other pending blocks on the
1606 	 * same inode...and if we don't sort, and there are fragments
1607 	 * present, blocks may be written in the wrong place.
1608 	 */
1609 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1610 
1611 	/*
1612 	 * Record the length of the last block in case it's a fragment.
1613 	 * If there are indirect blocks present, they sort last.  An
1614 	 * indirect block will be lfs_bsize and its presence indicates
1615 	 * that you cannot have fragments.
1616 	 *
1617 	 * XXX This last is a lie.  A cleaned fragment can coexist with
1618 	 * XXX a later indirect block.	This will continue to be
1619 	 * XXX true until lfs_markv is fixed to do everything with
1620 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
1621 	 */
1622 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1623 		fs->lfs_bmask) + 1;
1624 
1625 	/*
1626 	 * Assign disk addresses, and update references to the logical
1627 	 * block and the segment usage information.
1628 	 */
1629 	for (i = nblocks; i--; ++sp->start_bpp) {
1630 		sbp = *sp->start_bpp;
1631 		lbn = *sp->start_lbp;
1632 		KASSERT(sbp->b_lblkno == lbn);
1633 
1634 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1635 
1636 		/*
1637 		 * If we write a frag in the wrong place, the cleaner won't
1638 		 * be able to correctly identify its size later, and the
1639 		 * segment will be uncleanable.	 (Even worse, it will assume
1640 		 * that the indirect block that actually ends the list
1641 		 * is of a smaller size!)
1642 		 */
1643 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1644 			panic("lfs_updatemeta: fragment is not last block");
1645 
1646 		/*
1647 		 * For each subblock in this possibly oversized block,
1648 		 * update its address on disk.
1649 		 */
1650 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1651 		KASSERT(vp == sbp->b_vp);
1652 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
1653 		     bytesleft -= fs->lfs_bsize) {
1654 			size = MIN(bytesleft, fs->lfs_bsize);
1655 			bb = numfrags(fs, size);
1656 			lbn = *sp->start_lbp++;
1657 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1658 			    size);
1659 			fs->lfs_offset += bb;
1660 		}
1661 
1662 	}
1663 
1664 	/* This inode has been modified */
1665 	LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1666 }
1667 
1668 /*
1669  * Move lfs_offset to a segment earlier than sn.
1670  */
1671 int
1672 lfs_rewind(struct lfs *fs, int newsn)
1673 {
1674 	int sn, osn, isdirty;
1675 	struct buf *bp;
1676 	SEGUSE *sup;
1677 
1678 	ASSERT_SEGLOCK(fs);
1679 
1680 	osn = dtosn(fs, fs->lfs_offset);
1681 	if (osn < newsn)
1682 		return 0;
1683 
1684 	/* lfs_avail eats the remaining space in this segment */
1685 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1686 
1687 	/* Find a low-numbered segment */
1688 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1689 		LFS_SEGENTRY(sup, fs, sn, bp);
1690 		isdirty = sup->su_flags & SEGUSE_DIRTY;
1691 		brelse(bp, 0);
1692 
1693 		if (!isdirty)
1694 			break;
1695 	}
1696 	if (sn == fs->lfs_nseg)
1697 		panic("lfs_rewind: no clean segments");
1698 	if (newsn >= 0 && sn >= newsn)
1699 		return ENOENT;
1700 	fs->lfs_nextseg = sn;
1701 	lfs_newseg(fs);
1702 	fs->lfs_offset = fs->lfs_curseg;
1703 
1704 	return 0;
1705 }
1706 
1707 /*
1708  * Start a new partial segment.
1709  *
1710  * Return 1 when we entered to a new segment.
1711  * Otherwise, return 0.
1712  */
1713 int
1714 lfs_initseg(struct lfs *fs)
1715 {
1716 	struct segment *sp = fs->lfs_sp;
1717 	SEGSUM *ssp;
1718 	struct buf *sbp;	/* buffer for SEGSUM */
1719 	int repeat = 0;		/* return value */
1720 
1721 	ASSERT_SEGLOCK(fs);
1722 	/* Advance to the next segment. */
1723 	if (!LFS_PARTIAL_FITS(fs)) {
1724 		SEGUSE *sup;
1725 		struct buf *bp;
1726 
1727 		/* lfs_avail eats the remaining space */
1728 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1729 						   fs->lfs_curseg);
1730 		/* Wake up any cleaning procs waiting on this file system. */
1731 		lfs_wakeup_cleaner(fs);
1732 		lfs_newseg(fs);
1733 		repeat = 1;
1734 		fs->lfs_offset = fs->lfs_curseg;
1735 
1736 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1737 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1738 
1739 		/*
1740 		 * If the segment contains a superblock, update the offset
1741 		 * and summary address to skip over it.
1742 		 */
1743 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1744 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1745 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1746 			sp->seg_bytes_left -= LFS_SBPAD;
1747 		}
1748 		brelse(bp, 0);
1749 		/* Segment zero could also contain the labelpad */
1750 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1751 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1752 			fs->lfs_offset +=
1753 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1754 			sp->seg_bytes_left -=
1755 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1756 		}
1757 	} else {
1758 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1759 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1760 				      (fs->lfs_offset - fs->lfs_curseg));
1761 	}
1762 	fs->lfs_lastpseg = fs->lfs_offset;
1763 
1764 	/* Record first address of this partial segment */
1765 	if (sp->seg_flags & SEGM_CLEAN) {
1766 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1767 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1768 			/* "1" is the artificial inc in lfs_seglock */
1769 			mutex_enter(&lfs_lock);
1770 			while (fs->lfs_iocount > 1) {
1771 				mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1772 				    "lfs_initseg", 0, &lfs_lock);
1773 			}
1774 			mutex_exit(&lfs_lock);
1775 			fs->lfs_cleanind = 0;
1776 		}
1777 	}
1778 
1779 	sp->fs = fs;
1780 	sp->ibp = NULL;
1781 	sp->idp = NULL;
1782 	sp->ninodes = 0;
1783 	sp->ndupino = 0;
1784 
1785 	sp->cbpp = sp->bpp;
1786 
1787 	/* Get a new buffer for SEGSUM */
1788 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1789 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1790 
1791 	/* ... and enter it into the buffer list. */
1792 	*sp->cbpp = sbp;
1793 	sp->cbpp++;
1794 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1795 
1796 	sp->start_bpp = sp->cbpp;
1797 
1798 	/* Set point to SEGSUM, initialize it. */
1799 	ssp = sp->segsum = sbp->b_data;
1800 	memset(ssp, 0, fs->lfs_sumsize);
1801 	ssp->ss_next = fs->lfs_nextseg;
1802 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
1803 	ssp->ss_magic = SS_MAGIC;
1804 
1805 	/* Set pointer to first FINFO, initialize it. */
1806 	sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1807 	sp->fip->fi_nblocks = 0;
1808 	sp->start_lbp = &sp->fip->fi_blocks[0];
1809 	sp->fip->fi_lastlength = 0;
1810 
1811 	sp->seg_bytes_left -= fs->lfs_sumsize;
1812 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1813 
1814 	return (repeat);
1815 }
1816 
1817 /*
1818  * Remove SEGUSE_INVAL from all segments.
1819  */
1820 void
1821 lfs_unset_inval_all(struct lfs *fs)
1822 {
1823 	SEGUSE *sup;
1824 	struct buf *bp;
1825 	int i;
1826 
1827 	for (i = 0; i < fs->lfs_nseg; i++) {
1828 		LFS_SEGENTRY(sup, fs, i, bp);
1829 		if (sup->su_flags & SEGUSE_INVAL) {
1830 			sup->su_flags &= ~SEGUSE_INVAL;
1831 			LFS_WRITESEGENTRY(sup, fs, i, bp);
1832 		} else
1833 			brelse(bp, 0);
1834 	}
1835 }
1836 
1837 /*
1838  * Return the next segment to write.
1839  */
1840 void
1841 lfs_newseg(struct lfs *fs)
1842 {
1843 	CLEANERINFO *cip;
1844 	SEGUSE *sup;
1845 	struct buf *bp;
1846 	int curseg, isdirty, sn, skip_inval;
1847 
1848 	ASSERT_SEGLOCK(fs);
1849 
1850 	/* Honor LFCNWRAPSTOP */
1851 	mutex_enter(&lfs_lock);
1852 	while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1853 		if (fs->lfs_wrappass) {
1854 			log(LOG_NOTICE, "%s: wrappass=%d\n",
1855 				fs->lfs_fsmnt, fs->lfs_wrappass);
1856 			fs->lfs_wrappass = 0;
1857 			break;
1858 		}
1859 		fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1860 		wakeup(&fs->lfs_nowrap);
1861 		log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1862 		mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1863 			&lfs_lock);
1864 	}
1865 	fs->lfs_wrapstatus = LFS_WRAP_GOING;
1866 	mutex_exit(&lfs_lock);
1867 
1868 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1869 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1870 	      dtosn(fs, fs->lfs_nextseg)));
1871 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1872 	sup->su_nbytes = 0;
1873 	sup->su_nsums = 0;
1874 	sup->su_ninos = 0;
1875 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1876 
1877 	LFS_CLEANERINFO(cip, fs, bp);
1878 	--cip->clean;
1879 	++cip->dirty;
1880 	fs->lfs_nclean = cip->clean;
1881 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1882 
1883 	fs->lfs_lastseg = fs->lfs_curseg;
1884 	fs->lfs_curseg = fs->lfs_nextseg;
1885 	skip_inval = 1;
1886 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1887 		sn = (sn + 1) % fs->lfs_nseg;
1888 
1889 		if (sn == curseg) {
1890 			if (skip_inval)
1891 				skip_inval = 0;
1892 			else
1893 				panic("lfs_nextseg: no clean segments");
1894 		}
1895 		LFS_SEGENTRY(sup, fs, sn, bp);
1896 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1897 		/* Check SEGUSE_EMPTY as we go along */
1898 		if (isdirty && sup->su_nbytes == 0 &&
1899 		    !(sup->su_flags & SEGUSE_EMPTY))
1900 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
1901 		else
1902 			brelse(bp, 0);
1903 
1904 		if (!isdirty)
1905 			break;
1906 	}
1907 	if (skip_inval == 0)
1908 		lfs_unset_inval_all(fs);
1909 
1910 	++fs->lfs_nactive;
1911 	fs->lfs_nextseg = sntod(fs, sn);
1912 	if (lfs_dostats) {
1913 		++lfs_stats.segsused;
1914 	}
1915 }
1916 
1917 static struct buf *
1918 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1919     int n)
1920 {
1921 	struct lfs_cluster *cl;
1922 	struct buf **bpp, *bp;
1923 
1924 	ASSERT_SEGLOCK(fs);
1925 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1926 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1927 	memset(cl, 0, sizeof(*cl));
1928 	cl->fs = fs;
1929 	cl->bpp = bpp;
1930 	cl->bufcount = 0;
1931 	cl->bufsize = 0;
1932 
1933 	/* If this segment is being written synchronously, note that */
1934 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1935 		cl->flags |= LFS_CL_SYNC;
1936 		cl->seg = fs->lfs_sp;
1937 		++cl->seg->seg_iocount;
1938 	}
1939 
1940 	/* Get an empty buffer header, or maybe one with something on it */
1941 	bp = getiobuf(vp, true);
1942 	bp->b_dev = NODEV;
1943 	bp->b_blkno = bp->b_lblkno = addr;
1944 	bp->b_iodone = lfs_cluster_callback;
1945 	bp->b_private = cl;
1946 
1947 	return bp;
1948 }
1949 
1950 int
1951 lfs_writeseg(struct lfs *fs, struct segment *sp)
1952 {
1953 	struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1954 	SEGUSE *sup;
1955 	SEGSUM *ssp;
1956 	int i;
1957 	int do_again, nblocks, byteoffset;
1958 	size_t el_size;
1959 	struct lfs_cluster *cl;
1960 	u_short ninos;
1961 	struct vnode *devvp;
1962 	char *p = NULL;
1963 	struct vnode *vp;
1964 	int32_t *daddrp;	/* XXX ondisk32 */
1965 	int changed;
1966 	u_int32_t sum;
1967 #ifdef DEBUG
1968 	FINFO *fip;
1969 	int findex;
1970 #endif
1971 
1972 	ASSERT_SEGLOCK(fs);
1973 
1974 	ssp = (SEGSUM *)sp->segsum;
1975 
1976 	/*
1977 	 * If there are no buffers other than the segment summary to write,
1978 	 * don't do anything.  If we are the end of a dirop sequence, however,
1979 	 * write the empty segment summary anyway, to help out the
1980 	 * roll-forward agent.
1981 	 */
1982 	if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1983 		if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1984 			return 0;
1985 	}
1986 
1987 	/* Note if partial segment is being written by the cleaner */
1988 	if (sp->seg_flags & SEGM_CLEAN)
1989 		ssp->ss_flags |= SS_CLEAN;
1990 
1991 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1992 
1993 	/* Update the segment usage information. */
1994 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1995 
1996 	/* Loop through all blocks, except the segment summary. */
1997 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1998 		if ((*bpp)->b_vp != devvp) {
1999 			sup->su_nbytes += (*bpp)->b_bcount;
2000 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2001 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2002 			      sp->seg_number, (*bpp)->b_bcount,
2003 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2004 			      (*bpp)->b_blkno));
2005 		}
2006 	}
2007 
2008 #ifdef DEBUG
2009 	/* Check for zero-length and zero-version FINFO entries. */
2010 	fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2011 	for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2012 		KDASSERT(fip->fi_nblocks > 0);
2013 		KDASSERT(fip->fi_version > 0);
2014 		fip = (FINFO *)((char *)fip + FINFOSIZE +
2015 			sizeof(int32_t) * fip->fi_nblocks);
2016 	}
2017 #endif /* DEBUG */
2018 
2019 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2020 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2021 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2022 	      ssp->ss_ninos));
2023 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2024 	/* sup->su_nbytes += fs->lfs_sumsize; */
2025 	if (fs->lfs_version == 1)
2026 		sup->su_olastmod = time_second;
2027 	else
2028 		sup->su_lastmod = time_second;
2029 	sup->su_ninos += ninos;
2030 	++sup->su_nsums;
2031 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2032 
2033 	do_again = !(bp->b_flags & B_GATHERED);
2034 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2035 
2036 	/*
2037 	 * Mark blocks B_BUSY, to prevent then from being changed between
2038 	 * the checksum computation and the actual write.
2039 	 *
2040 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2041 	 * there are any, replace them with copies that have UNASSIGNED
2042 	 * instead.
2043 	 */
2044 	mutex_enter(&bufcache_lock);
2045 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2046 		++bpp;
2047 		bp = *bpp;
2048 		if (bp->b_iodone != NULL) {	 /* UBC or malloced buffer */
2049 			bp->b_cflags |= BC_BUSY;
2050 			continue;
2051 		}
2052 
2053 		while (bp->b_cflags & BC_BUSY) {
2054 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2055 			      " data summary corruption for ino %d, lbn %"
2056 			      PRId64 "\n",
2057 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2058 			bp->b_cflags |= BC_WANTED;
2059 			cv_wait(&bp->b_busy, &bufcache_lock);
2060 		}
2061 		bp->b_cflags |= BC_BUSY;
2062 		mutex_exit(&bufcache_lock);
2063 		unbusybp = NULL;
2064 
2065 		/*
2066 		 * Check and replace indirect block UNWRITTEN bogosity.
2067 		 * XXX See comment in lfs_writefile.
2068 		 */
2069 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2070 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
2071 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
2072 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2073 			      VTOI(bp->b_vp)->i_number,
2074 			      VTOI(bp->b_vp)->i_lfs_effnblks,
2075 			      VTOI(bp->b_vp)->i_ffs1_blocks));
2076 			/* Make a copy we'll make changes to */
2077 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2078 					   bp->b_bcount, LFS_NB_IBLOCK);
2079 			newbp->b_blkno = bp->b_blkno;
2080 			memcpy(newbp->b_data, bp->b_data,
2081 			       newbp->b_bcount);
2082 
2083 			changed = 0;
2084 			/* XXX ondisk32 */
2085 			for (daddrp = (int32_t *)(newbp->b_data);
2086 			     daddrp < (int32_t *)((char *)newbp->b_data +
2087 						  newbp->b_bcount); daddrp++) {
2088 				if (*daddrp == UNWRITTEN) {
2089 					++changed;
2090 					*daddrp = 0;
2091 				}
2092 			}
2093 			/*
2094 			 * Get rid of the old buffer.  Don't mark it clean,
2095 			 * though, if it still has dirty data on it.
2096 			 */
2097 			if (changed) {
2098 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2099 				      " bp = %p newbp = %p\n", changed, bp,
2100 				      newbp));
2101 				*bpp = newbp;
2102 				bp->b_flags &= ~B_GATHERED;
2103 				bp->b_error = 0;
2104 				if (bp->b_iodone != NULL) {
2105 					DLOG((DLOG_SEG, "lfs_writeseg: "
2106 					      "indir bp should not be B_CALL\n"));
2107 					biodone(bp);
2108 					bp = NULL;
2109 				} else {
2110 					/* Still on free list, leave it there */
2111 					unbusybp = bp;
2112 					/*
2113 					 * We have to re-decrement lfs_avail
2114 					 * since this block is going to come
2115 					 * back around to us in the next
2116 					 * segment.
2117 					 */
2118 					fs->lfs_avail -=
2119 					    btofsb(fs, bp->b_bcount);
2120 				}
2121 			} else {
2122 				lfs_freebuf(fs, newbp);
2123 			}
2124 		}
2125 		mutex_enter(&bufcache_lock);
2126 		if (unbusybp != NULL) {
2127 			unbusybp->b_cflags &= ~BC_BUSY;
2128 			if (unbusybp->b_cflags & BC_WANTED)
2129 				cv_broadcast(&bp->b_busy);
2130 		}
2131 	}
2132 	mutex_exit(&bufcache_lock);
2133 
2134 	/*
2135 	 * Compute checksum across data and then across summary; the first
2136 	 * block (the summary block) is skipped.  Set the create time here
2137 	 * so that it's guaranteed to be later than the inode mod times.
2138 	 */
2139 	sum = 0;
2140 	if (fs->lfs_version == 1)
2141 		el_size = sizeof(u_long);
2142 	else
2143 		el_size = sizeof(u_int32_t);
2144 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2145 		++bpp;
2146 		/* Loop through gop_write cluster blocks */
2147 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2148 		     byteoffset += fs->lfs_bsize) {
2149 #ifdef LFS_USE_B_INVAL
2150 			if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2151 			    (*bpp)->b_iodone != NULL) {
2152 				if (copyin((void *)(*bpp)->b_saveaddr +
2153 					   byteoffset, dp, el_size)) {
2154 					panic("lfs_writeseg: copyin failed [1]:"
2155 						" ino %d blk %" PRId64,
2156 						VTOI((*bpp)->b_vp)->i_number,
2157 						(*bpp)->b_lblkno);
2158 				}
2159 			} else
2160 #endif /* LFS_USE_B_INVAL */
2161 			{
2162 				sum = lfs_cksum_part((char *)
2163 				    (*bpp)->b_data + byteoffset, el_size, sum);
2164 			}
2165 		}
2166 	}
2167 	if (fs->lfs_version == 1)
2168 		ssp->ss_ocreate = time_second;
2169 	else {
2170 		ssp->ss_create = time_second;
2171 		ssp->ss_serial = ++fs->lfs_serial;
2172 		ssp->ss_ident  = fs->lfs_ident;
2173 	}
2174 	ssp->ss_datasum = lfs_cksum_fold(sum);
2175 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2176 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2177 
2178 	mutex_enter(&lfs_lock);
2179 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2180 			  btofsb(fs, fs->lfs_sumsize));
2181 	fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2182 			  btofsb(fs, fs->lfs_sumsize));
2183 	mutex_exit(&lfs_lock);
2184 
2185 	/*
2186 	 * When we simply write the blocks we lose a rotation for every block
2187 	 * written.  To avoid this problem, we cluster the buffers into a
2188 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
2189 	 * devices can handle, use that for the size of the chunks.
2190 	 *
2191 	 * Blocks that are already clusters (from GOP_WRITE), however, we
2192 	 * don't bother to copy into other clusters.
2193 	 */
2194 
2195 #define CHUNKSIZE MAXPHYS
2196 
2197 	if (devvp == NULL)
2198 		panic("devvp is NULL");
2199 	for (bpp = sp->bpp, i = nblocks; i;) {
2200 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2201 		cl = cbp->b_private;
2202 
2203 		cbp->b_flags |= B_ASYNC;
2204 		cbp->b_cflags |= BC_BUSY;
2205 		cbp->b_bcount = 0;
2206 
2207 #if defined(DEBUG) && defined(DIAGNOSTIC)
2208 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2209 		    / sizeof(int32_t)) {
2210 			panic("lfs_writeseg: real bpp overwrite");
2211 		}
2212 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2213 			panic("lfs_writeseg: theoretical bpp overwrite");
2214 		}
2215 #endif
2216 
2217 		/*
2218 		 * Construct the cluster.
2219 		 */
2220 		mutex_enter(&lfs_lock);
2221 		++fs->lfs_iocount;
2222 		mutex_exit(&lfs_lock);
2223 		while (i && cbp->b_bcount < CHUNKSIZE) {
2224 			bp = *bpp;
2225 
2226 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2227 				break;
2228 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2229 				break;
2230 
2231 			/* Clusters from GOP_WRITE are expedited */
2232 			if (bp->b_bcount > fs->lfs_bsize) {
2233 				if (cbp->b_bcount > 0)
2234 					/* Put in its own buffer */
2235 					break;
2236 				else {
2237 					cbp->b_data = bp->b_data;
2238 				}
2239 			} else if (cbp->b_bcount == 0) {
2240 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2241 							     LFS_NB_CLUSTER);
2242 				cl->flags |= LFS_CL_MALLOC;
2243 			}
2244 #ifdef DIAGNOSTIC
2245 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2246 					      btodb(bp->b_bcount - 1))) !=
2247 			    sp->seg_number) {
2248 				printf("blk size %d daddr %" PRIx64
2249 				    " not in seg %d\n",
2250 				    bp->b_bcount, bp->b_blkno,
2251 				    sp->seg_number);
2252 				panic("segment overwrite");
2253 			}
2254 #endif
2255 
2256 #ifdef LFS_USE_B_INVAL
2257 			/*
2258 			 * Fake buffers from the cleaner are marked as B_INVAL.
2259 			 * We need to copy the data from user space rather than
2260 			 * from the buffer indicated.
2261 			 * XXX == what do I do on an error?
2262 			 */
2263 			if ((bp->b_cflags & BC_INVAL) != 0 &&
2264 			    bp->b_iodone != NULL) {
2265 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2266 					panic("lfs_writeseg: "
2267 					    "copyin failed [2]");
2268 			} else
2269 #endif /* LFS_USE_B_INVAL */
2270 			if (cl->flags & LFS_CL_MALLOC) {
2271 				/* copy data into our cluster. */
2272 				memcpy(p, bp->b_data, bp->b_bcount);
2273 				p += bp->b_bcount;
2274 			}
2275 
2276 			cbp->b_bcount += bp->b_bcount;
2277 			cl->bufsize += bp->b_bcount;
2278 
2279 			bp->b_flags &= ~B_READ;
2280 			bp->b_error = 0;
2281 			cl->bpp[cl->bufcount++] = bp;
2282 
2283 			vp = bp->b_vp;
2284 			mutex_enter(&bufcache_lock);
2285 			mutex_enter(vp->v_interlock);
2286 			bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2287 			reassignbuf(bp, vp);
2288 			vp->v_numoutput++;
2289 			mutex_exit(vp->v_interlock);
2290 			mutex_exit(&bufcache_lock);
2291 
2292 			bpp++;
2293 			i--;
2294 		}
2295 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2296 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2297 		else
2298 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2299 		mutex_enter(devvp->v_interlock);
2300 		devvp->v_numoutput++;
2301 		mutex_exit(devvp->v_interlock);
2302 		VOP_STRATEGY(devvp, cbp);
2303 		curlwp->l_ru.ru_oublock++;
2304 	}
2305 
2306 	if (lfs_dostats) {
2307 		++lfs_stats.psegwrites;
2308 		lfs_stats.blocktot += nblocks - 1;
2309 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2310 			++lfs_stats.psyncwrites;
2311 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2312 			++lfs_stats.pcleanwrites;
2313 			lfs_stats.cleanblocks += nblocks - 1;
2314 		}
2315 	}
2316 
2317 	return (lfs_initseg(fs) || do_again);
2318 }
2319 
2320 void
2321 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2322 {
2323 	struct buf *bp;
2324 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2325 	int s;
2326 
2327 	ASSERT_MAYBE_SEGLOCK(fs);
2328 #ifdef DIAGNOSTIC
2329 	KASSERT(fs->lfs_magic == LFS_MAGIC);
2330 #endif
2331 	/*
2332 	 * If we can write one superblock while another is in
2333 	 * progress, we risk not having a complete checkpoint if we crash.
2334 	 * So, block here if a superblock write is in progress.
2335 	 */
2336 	mutex_enter(&lfs_lock);
2337 	s = splbio();
2338 	while (fs->lfs_sbactive) {
2339 		mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2340 			&lfs_lock);
2341 	}
2342 	fs->lfs_sbactive = daddr;
2343 	splx(s);
2344 	mutex_exit(&lfs_lock);
2345 
2346 	/* Set timestamp of this version of the superblock */
2347 	if (fs->lfs_version == 1)
2348 		fs->lfs_otstamp = time_second;
2349 	fs->lfs_tstamp = time_second;
2350 
2351 	/* Checksum the superblock and copy it into a buffer. */
2352 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2353 	bp = lfs_newbuf(fs, devvp,
2354 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2355 	memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2356 	    LFS_SBPAD - sizeof(struct dlfs));
2357 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2358 
2359 	bp->b_cflags |= BC_BUSY;
2360 	bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2361 	bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2362 	bp->b_error = 0;
2363 	bp->b_iodone = lfs_supercallback;
2364 
2365 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2366 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2367 	else
2368 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2369 	curlwp->l_ru.ru_oublock++;
2370 
2371 	mutex_enter(devvp->v_interlock);
2372 	devvp->v_numoutput++;
2373 	mutex_exit(devvp->v_interlock);
2374 
2375 	mutex_enter(&lfs_lock);
2376 	++fs->lfs_iocount;
2377 	mutex_exit(&lfs_lock);
2378 	VOP_STRATEGY(devvp, bp);
2379 }
2380 
2381 /*
2382  * Logical block number match routines used when traversing the dirty block
2383  * chain.
2384  */
2385 int
2386 lfs_match_fake(struct lfs *fs, struct buf *bp)
2387 {
2388 
2389 	ASSERT_SEGLOCK(fs);
2390 	return LFS_IS_MALLOC_BUF(bp);
2391 }
2392 
2393 #if 0
2394 int
2395 lfs_match_real(struct lfs *fs, struct buf *bp)
2396 {
2397 
2398 	ASSERT_SEGLOCK(fs);
2399 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2400 }
2401 #endif
2402 
2403 int
2404 lfs_match_data(struct lfs *fs, struct buf *bp)
2405 {
2406 
2407 	ASSERT_SEGLOCK(fs);
2408 	return (bp->b_lblkno >= 0);
2409 }
2410 
2411 int
2412 lfs_match_indir(struct lfs *fs, struct buf *bp)
2413 {
2414 	daddr_t lbn;
2415 
2416 	ASSERT_SEGLOCK(fs);
2417 	lbn = bp->b_lblkno;
2418 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2419 }
2420 
2421 int
2422 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2423 {
2424 	daddr_t lbn;
2425 
2426 	ASSERT_SEGLOCK(fs);
2427 	lbn = bp->b_lblkno;
2428 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2429 }
2430 
2431 int
2432 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2433 {
2434 	daddr_t lbn;
2435 
2436 	ASSERT_SEGLOCK(fs);
2437 	lbn = bp->b_lblkno;
2438 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2439 }
2440 
2441 static void
2442 lfs_free_aiodone(struct buf *bp)
2443 {
2444 	struct lfs *fs;
2445 
2446 	KERNEL_LOCK(1, curlwp);
2447 	fs = bp->b_private;
2448 	ASSERT_NO_SEGLOCK(fs);
2449 	lfs_freebuf(fs, bp);
2450 	KERNEL_UNLOCK_LAST(curlwp);
2451 }
2452 
2453 static void
2454 lfs_super_aiodone(struct buf *bp)
2455 {
2456 	struct lfs *fs;
2457 
2458 	KERNEL_LOCK(1, curlwp);
2459 	fs = bp->b_private;
2460 	ASSERT_NO_SEGLOCK(fs);
2461 	mutex_enter(&lfs_lock);
2462 	fs->lfs_sbactive = 0;
2463 	if (--fs->lfs_iocount <= 1)
2464 		wakeup(&fs->lfs_iocount);
2465 	wakeup(&fs->lfs_sbactive);
2466 	mutex_exit(&lfs_lock);
2467 	lfs_freebuf(fs, bp);
2468 	KERNEL_UNLOCK_LAST(curlwp);
2469 }
2470 
2471 static void
2472 lfs_cluster_aiodone(struct buf *bp)
2473 {
2474 	struct lfs_cluster *cl;
2475 	struct lfs *fs;
2476 	struct buf *tbp, *fbp;
2477 	struct vnode *vp, *devvp, *ovp;
2478 	struct inode *ip;
2479 	int error;
2480 
2481 	KERNEL_LOCK(1, curlwp);
2482 
2483 	error = bp->b_error;
2484 	cl = bp->b_private;
2485 	fs = cl->fs;
2486 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2487 	ASSERT_NO_SEGLOCK(fs);
2488 
2489 	/* Put the pages back, and release the buffer */
2490 	while (cl->bufcount--) {
2491 		tbp = cl->bpp[cl->bufcount];
2492 		KASSERT(tbp->b_cflags & BC_BUSY);
2493 		if (error) {
2494 			tbp->b_error = error;
2495 		}
2496 
2497 		/*
2498 		 * We're done with tbp.	 If it has not been re-dirtied since
2499 		 * the cluster was written, free it.  Otherwise, keep it on
2500 		 * the locked list to be written again.
2501 		 */
2502 		vp = tbp->b_vp;
2503 
2504 		tbp->b_flags &= ~B_GATHERED;
2505 
2506 		LFS_BCLEAN_LOG(fs, tbp);
2507 
2508 		mutex_enter(&bufcache_lock);
2509 		if (tbp->b_iodone == NULL) {
2510 			KASSERT(tbp->b_flags & B_LOCKED);
2511 			bremfree(tbp);
2512 			if (vp) {
2513 				mutex_enter(vp->v_interlock);
2514 				reassignbuf(tbp, vp);
2515 				mutex_exit(vp->v_interlock);
2516 			}
2517 			tbp->b_flags |= B_ASYNC; /* for biodone */
2518 		}
2519 
2520 		if (((tbp->b_flags | tbp->b_oflags) &
2521 		    (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2522 			LFS_UNLOCK_BUF(tbp);
2523 
2524 		if (tbp->b_oflags & BO_DONE) {
2525 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2526 				cl->bufcount, (long)tbp->b_flags));
2527 		}
2528 
2529 		if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2530 			/*
2531 			 * A buffer from the page daemon.
2532 			 * We use the same iodone as it does,
2533 			 * so we must manually disassociate its
2534 			 * buffers from the vp.
2535 			 */
2536 			if ((ovp = tbp->b_vp) != NULL) {
2537 				/* This is just silly */
2538 				mutex_enter(ovp->v_interlock);
2539 				brelvp(tbp);
2540 				mutex_exit(ovp->v_interlock);
2541 				tbp->b_vp = vp;
2542 				tbp->b_objlock = vp->v_interlock;
2543 			}
2544 			/* Put it back the way it was */
2545 			tbp->b_flags |= B_ASYNC;
2546 			/* Master buffers have BC_AGE */
2547 			if (tbp->b_private == tbp)
2548 				tbp->b_cflags |= BC_AGE;
2549 		}
2550 		mutex_exit(&bufcache_lock);
2551 
2552 		biodone(tbp);
2553 
2554 		/*
2555 		 * If this is the last block for this vnode, but
2556 		 * there are other blocks on its dirty list,
2557 		 * set IN_MODIFIED/IN_CLEANING depending on what
2558 		 * sort of block.  Only do this for our mount point,
2559 		 * not for, e.g., inode blocks that are attached to
2560 		 * the devvp.
2561 		 * XXX KS - Shouldn't we set *both* if both types
2562 		 * of blocks are present (traverse the dirty list?)
2563 		 */
2564 		mutex_enter(&lfs_lock);
2565 		mutex_enter(vp->v_interlock);
2566 		if (vp != devvp && vp->v_numoutput == 0 &&
2567 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2568 			ip = VTOI(vp);
2569 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2570 			       ip->i_number));
2571 			if (LFS_IS_MALLOC_BUF(fbp))
2572 				LFS_SET_UINO(ip, IN_CLEANING);
2573 			else
2574 				LFS_SET_UINO(ip, IN_MODIFIED);
2575 		}
2576 		cv_broadcast(&vp->v_cv);
2577 		mutex_exit(vp->v_interlock);
2578 		mutex_exit(&lfs_lock);
2579 	}
2580 
2581 	/* Fix up the cluster buffer, and release it */
2582 	if (cl->flags & LFS_CL_MALLOC)
2583 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2584 	putiobuf(bp);
2585 
2586 	/* Note i/o done */
2587 	if (cl->flags & LFS_CL_SYNC) {
2588 		if (--cl->seg->seg_iocount == 0)
2589 			wakeup(&cl->seg->seg_iocount);
2590 	}
2591 	mutex_enter(&lfs_lock);
2592 #ifdef DIAGNOSTIC
2593 	if (fs->lfs_iocount == 0)
2594 		panic("lfs_cluster_aiodone: zero iocount");
2595 #endif
2596 	if (--fs->lfs_iocount <= 1)
2597 		wakeup(&fs->lfs_iocount);
2598 	mutex_exit(&lfs_lock);
2599 
2600 	KERNEL_UNLOCK_LAST(curlwp);
2601 
2602 	pool_put(&fs->lfs_bpppool, cl->bpp);
2603 	cl->bpp = NULL;
2604 	pool_put(&fs->lfs_clpool, cl);
2605 }
2606 
2607 static void
2608 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2609 {
2610 	/* reset b_iodone for when this is a single-buf i/o. */
2611 	bp->b_iodone = aiodone;
2612 
2613 	workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2614 }
2615 
2616 static void
2617 lfs_cluster_callback(struct buf *bp)
2618 {
2619 
2620 	lfs_generic_callback(bp, lfs_cluster_aiodone);
2621 }
2622 
2623 void
2624 lfs_supercallback(struct buf *bp)
2625 {
2626 
2627 	lfs_generic_callback(bp, lfs_super_aiodone);
2628 }
2629 
2630 /*
2631  * The only buffers that are going to hit these functions are the
2632  * segment write blocks, or the segment summaries, or the superblocks.
2633  *
2634  * All of the above are created by lfs_newbuf, and so do not need to be
2635  * released via brelse.
2636  */
2637 void
2638 lfs_callback(struct buf *bp)
2639 {
2640 
2641 	lfs_generic_callback(bp, lfs_free_aiodone);
2642 }
2643 
2644 /*
2645  * Shellsort (diminishing increment sort) from Data Structures and
2646  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2647  * see also Knuth Vol. 3, page 84.  The increments are selected from
2648  * formula (8), page 95.  Roughly O(N^3/2).
2649  */
2650 /*
2651  * This is our own private copy of shellsort because we want to sort
2652  * two parallel arrays (the array of buffer pointers and the array of
2653  * logical block numbers) simultaneously.  Note that we cast the array
2654  * of logical block numbers to a unsigned in this routine so that the
2655  * negative block numbers (meta data blocks) sort AFTER the data blocks.
2656  */
2657 
2658 void
2659 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2660 {
2661 	static int __rsshell_increments[] = { 4, 1, 0 };
2662 	int incr, *incrp, t1, t2;
2663 	struct buf *bp_temp;
2664 
2665 #ifdef DEBUG
2666 	incr = 0;
2667 	for (t1 = 0; t1 < nmemb; t1++) {
2668 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2669 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2670 				/* dump before panic */
2671 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
2672 				    nmemb, size);
2673 				incr = 0;
2674 				for (t1 = 0; t1 < nmemb; t1++) {
2675 					const struct buf *bp = bp_array[t1];
2676 
2677 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2678 					    PRIu64 "\n", t1,
2679 					    (uint64_t)bp->b_bcount,
2680 					    (uint64_t)bp->b_lblkno);
2681 					printf("lbns:");
2682 					for (t2 = 0; t2 * size < bp->b_bcount;
2683 					    t2++) {
2684 						printf(" %" PRId32,
2685 						    lb_array[incr++]);
2686 					}
2687 					printf("\n");
2688 				}
2689 				panic("lfs_shellsort: inconsistent input");
2690 			}
2691 		}
2692 	}
2693 #endif
2694 
2695 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2696 		for (t1 = incr; t1 < nmemb; ++t1)
2697 			for (t2 = t1 - incr; t2 >= 0;)
2698 				if ((u_int32_t)bp_array[t2]->b_lblkno >
2699 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2700 					bp_temp = bp_array[t2];
2701 					bp_array[t2] = bp_array[t2 + incr];
2702 					bp_array[t2 + incr] = bp_temp;
2703 					t2 -= incr;
2704 				} else
2705 					break;
2706 
2707 	/* Reform the list of logical blocks */
2708 	incr = 0;
2709 	for (t1 = 0; t1 < nmemb; t1++) {
2710 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2711 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2712 		}
2713 	}
2714 }
2715 
2716 /*
2717  * Call vget with LK_NOWAIT.  If we are the one who holds VI_XLOCK,
2718  * however, we must press on.  Just fake success in that case.
2719  */
2720 int
2721 lfs_vref(struct vnode *vp)
2722 {
2723 	int error;
2724 	struct lfs *fs;
2725 
2726 	KASSERT(mutex_owned(vp->v_interlock));
2727 
2728 	fs = VTOI(vp)->i_lfs;
2729 
2730 	ASSERT_MAYBE_SEGLOCK(fs);
2731 
2732 	/*
2733 	 * If we return 1 here during a flush, we risk vinvalbuf() not
2734 	 * being able to flush all of the pages from this vnode, which
2735 	 * will cause it to panic.  So, return 0 if a flush is in progress.
2736 	 */
2737 	error = vget(vp, LK_NOWAIT);
2738 	if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2739 		++fs->lfs_flushvp_fakevref;
2740 		return 0;
2741 	}
2742 	return error;
2743 }
2744 
2745 /*
2746  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2747  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2748  */
2749 void
2750 lfs_vunref(struct vnode *vp)
2751 {
2752 	struct lfs *fs;
2753 
2754 	fs = VTOI(vp)->i_lfs;
2755 	ASSERT_MAYBE_SEGLOCK(fs);
2756 
2757 	/*
2758 	 * Analogous to lfs_vref, if the node is flushing, fake it.
2759 	 */
2760 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2761 		--fs->lfs_flushvp_fakevref;
2762 		return;
2763 	}
2764 
2765 	/* does not call inactive */
2766 	mutex_enter(vp->v_interlock);
2767 	vrelel(vp, 0);
2768 }
2769 
2770 /*
2771  * We use this when we have vnodes that were loaded in solely for cleaning.
2772  * There is no reason to believe that these vnodes will be referenced again
2773  * soon, since the cleaning process is unrelated to normal filesystem
2774  * activity.  Putting cleaned vnodes at the tail of the list has the effect
2775  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
2776  * cleaning at the head of the list, instead.
2777  */
2778 void
2779 lfs_vunref_head(struct vnode *vp)
2780 {
2781 
2782 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2783 
2784 	/* does not call inactive, inserts non-held vnode at head of freelist */
2785 	mutex_enter(vp->v_interlock);
2786 	vrelel(vp, 0);
2787 }
2788 
2789 
2790 /*
2791  * Set up an FINFO entry for a new file.  The fip pointer is assumed to
2792  * point at uninitialized space.
2793  */
2794 void
2795 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2796 {
2797 	struct segment *sp = fs->lfs_sp;
2798 
2799 	KASSERT(vers > 0);
2800 
2801 	if (sp->seg_bytes_left < fs->lfs_bsize ||
2802 	    sp->sum_bytes_left < sizeof(struct finfo))
2803 		(void) lfs_writeseg(fs, fs->lfs_sp);
2804 
2805 	sp->sum_bytes_left -= FINFOSIZE;
2806 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2807 	sp->fip->fi_nblocks = 0;
2808 	sp->fip->fi_ino = ino;
2809 	sp->fip->fi_version = vers;
2810 }
2811 
2812 /*
2813  * Release the FINFO entry, either clearing out an unused entry or
2814  * advancing us to the next available entry.
2815  */
2816 void
2817 lfs_release_finfo(struct lfs *fs)
2818 {
2819 	struct segment *sp = fs->lfs_sp;
2820 
2821 	if (sp->fip->fi_nblocks != 0) {
2822 		sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2823 			sizeof(int32_t) * sp->fip->fi_nblocks);
2824 		sp->start_lbp = &sp->fip->fi_blocks[0];
2825 	} else {
2826 		sp->sum_bytes_left += FINFOSIZE;
2827 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
2828 	}
2829 }
2830