1 /* $NetBSD: lfs_segment.c,v 1.222 2011/07/11 08:27:40 hannken Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /* 32 * Copyright (c) 1991, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 60 */ 61 62 #include <sys/cdefs.h> 63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.222 2011/07/11 08:27:40 hannken Exp $"); 64 65 #ifdef DEBUG 66 # define vndebug(vp, str) do { \ 67 if (VTOI(vp)->i_flag & IN_CLEANING) \ 68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \ 69 VTOI(vp)->i_number, (str), op)); \ 70 } while(0) 71 #else 72 # define vndebug(vp, str) 73 #endif 74 #define ivndebug(vp, str) \ 75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str))) 76 77 #if defined(_KERNEL_OPT) 78 #include "opt_ddb.h" 79 #endif 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/namei.h> 84 #include <sys/kernel.h> 85 #include <sys/resourcevar.h> 86 #include <sys/file.h> 87 #include <sys/stat.h> 88 #include <sys/buf.h> 89 #include <sys/proc.h> 90 #include <sys/vnode.h> 91 #include <sys/mount.h> 92 #include <sys/kauth.h> 93 #include <sys/syslog.h> 94 95 #include <miscfs/specfs/specdev.h> 96 #include <miscfs/fifofs/fifo.h> 97 98 #include <ufs/ufs/inode.h> 99 #include <ufs/ufs/dir.h> 100 #include <ufs/ufs/ufsmount.h> 101 #include <ufs/ufs/ufs_extern.h> 102 103 #include <ufs/lfs/lfs.h> 104 #include <ufs/lfs/lfs_extern.h> 105 106 #include <uvm/uvm.h> 107 #include <uvm/uvm_extern.h> 108 109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 110 111 static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); 112 static void lfs_free_aiodone(struct buf *); 113 static void lfs_super_aiodone(struct buf *); 114 static void lfs_cluster_aiodone(struct buf *); 115 static void lfs_cluster_callback(struct buf *); 116 117 /* 118 * Determine if it's OK to start a partial in this segment, or if we need 119 * to go on to a new segment. 120 */ 121 #define LFS_PARTIAL_FITS(fs) \ 122 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 123 (fs)->lfs_frag) 124 125 /* 126 * Figure out whether we should do a checkpoint write or go ahead with 127 * an ordinary write. 128 */ 129 #define LFS_SHOULD_CHECKPOINT(fs, flags) \ 130 ((flags & SEGM_CLEAN) == 0 && \ 131 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \ 132 (flags & SEGM_CKP) || \ 133 fs->lfs_nclean < LFS_MAX_ACTIVE))) 134 135 int lfs_match_fake(struct lfs *, struct buf *); 136 void lfs_newseg(struct lfs *); 137 /* XXX ondisk32 */ 138 void lfs_shellsort(struct buf **, int32_t *, int, int); 139 void lfs_supercallback(struct buf *); 140 void lfs_updatemeta(struct segment *); 141 void lfs_writesuper(struct lfs *, daddr_t); 142 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 143 struct segment *sp, int dirops); 144 145 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 146 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 147 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 148 int lfs_dirvcount = 0; /* # active dirops */ 149 150 /* Statistics Counters */ 151 int lfs_dostats = 1; 152 struct lfs_stats lfs_stats; 153 154 /* op values to lfs_writevnodes */ 155 #define VN_REG 0 156 #define VN_DIROP 1 157 #define VN_EMPTY 2 158 #define VN_CLEAN 3 159 160 /* 161 * XXX KS - Set modification time on the Ifile, so the cleaner can 162 * read the fs mod time off of it. We don't set IN_UPDATE here, 163 * since we don't really need this to be flushed to disk (and in any 164 * case that wouldn't happen to the Ifile until we checkpoint). 165 */ 166 void 167 lfs_imtime(struct lfs *fs) 168 { 169 struct timespec ts; 170 struct inode *ip; 171 172 ASSERT_MAYBE_SEGLOCK(fs); 173 vfs_timestamp(&ts); 174 ip = VTOI(fs->lfs_ivnode); 175 ip->i_ffs1_mtime = ts.tv_sec; 176 ip->i_ffs1_mtimensec = ts.tv_nsec; 177 } 178 179 /* 180 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 181 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 182 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 183 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 184 */ 185 186 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 187 188 int 189 lfs_vflush(struct vnode *vp) 190 { 191 struct inode *ip; 192 struct lfs *fs; 193 struct segment *sp; 194 struct buf *bp, *nbp, *tbp, *tnbp; 195 int error; 196 int flushed; 197 int relock; 198 int loopcount; 199 200 ip = VTOI(vp); 201 fs = VFSTOUFS(vp->v_mount)->um_lfs; 202 relock = 0; 203 204 top: 205 ASSERT_NO_SEGLOCK(fs); 206 if (ip->i_flag & IN_CLEANING) { 207 ivndebug(vp,"vflush/in_cleaning"); 208 mutex_enter(&lfs_lock); 209 LFS_CLR_UINO(ip, IN_CLEANING); 210 LFS_SET_UINO(ip, IN_MODIFIED); 211 mutex_exit(&lfs_lock); 212 213 /* 214 * Toss any cleaning buffers that have real counterparts 215 * to avoid losing new data. 216 */ 217 mutex_enter(vp->v_interlock); 218 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 219 nbp = LIST_NEXT(bp, b_vnbufs); 220 if (!LFS_IS_MALLOC_BUF(bp)) 221 continue; 222 /* 223 * Look for pages matching the range covered 224 * by cleaning blocks. It's okay if more dirty 225 * pages appear, so long as none disappear out 226 * from under us. 227 */ 228 if (bp->b_lblkno > 0 && vp->v_type == VREG && 229 vp != fs->lfs_ivnode) { 230 struct vm_page *pg; 231 voff_t off; 232 233 for (off = lblktosize(fs, bp->b_lblkno); 234 off < lblktosize(fs, bp->b_lblkno + 1); 235 off += PAGE_SIZE) { 236 pg = uvm_pagelookup(&vp->v_uobj, off); 237 if (pg == NULL) 238 continue; 239 if ((pg->flags & PG_CLEAN) == 0 || 240 pmap_is_modified(pg)) { 241 fs->lfs_avail += btofsb(fs, 242 bp->b_bcount); 243 wakeup(&fs->lfs_avail); 244 mutex_exit(vp->v_interlock); 245 lfs_freebuf(fs, bp); 246 mutex_enter(vp->v_interlock); 247 bp = NULL; 248 break; 249 } 250 } 251 } 252 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 253 tbp = tnbp) 254 { 255 tnbp = LIST_NEXT(tbp, b_vnbufs); 256 if (tbp->b_vp == bp->b_vp 257 && tbp->b_lblkno == bp->b_lblkno 258 && tbp != bp) 259 { 260 fs->lfs_avail += btofsb(fs, 261 bp->b_bcount); 262 wakeup(&fs->lfs_avail); 263 mutex_exit(vp->v_interlock); 264 lfs_freebuf(fs, bp); 265 mutex_enter(vp->v_interlock); 266 bp = NULL; 267 break; 268 } 269 } 270 } 271 } else { 272 mutex_enter(vp->v_interlock); 273 } 274 275 /* If the node is being written, wait until that is done */ 276 while (WRITEINPROG(vp)) { 277 ivndebug(vp,"vflush/writeinprog"); 278 cv_wait(&vp->v_cv, vp->v_interlock); 279 } 280 mutex_exit(vp->v_interlock); 281 282 /* Protect against VI_XLOCK deadlock in vinvalbuf() */ 283 lfs_seglock(fs, SEGM_SYNC); 284 285 /* If we're supposed to flush a freed inode, just toss it */ 286 if (ip->i_lfs_iflags & LFSI_DELETED) { 287 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n", 288 ip->i_number)); 289 /* Drain v_numoutput */ 290 mutex_enter(vp->v_interlock); 291 while (vp->v_numoutput > 0) { 292 cv_wait(&vp->v_cv, vp->v_interlock); 293 } 294 KASSERT(vp->v_numoutput == 0); 295 mutex_exit(vp->v_interlock); 296 297 mutex_enter(&bufcache_lock); 298 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 299 nbp = LIST_NEXT(bp, b_vnbufs); 300 301 KASSERT((bp->b_flags & B_GATHERED) == 0); 302 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */ 303 fs->lfs_avail += btofsb(fs, bp->b_bcount); 304 wakeup(&fs->lfs_avail); 305 } 306 /* Copied from lfs_writeseg */ 307 if (bp->b_iodone != NULL) { 308 mutex_exit(&bufcache_lock); 309 biodone(bp); 310 mutex_enter(&bufcache_lock); 311 } else { 312 bremfree(bp); 313 LFS_UNLOCK_BUF(bp); 314 mutex_enter(vp->v_interlock); 315 bp->b_flags &= ~(B_READ | B_GATHERED); 316 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE; 317 bp->b_error = 0; 318 reassignbuf(bp, vp); 319 mutex_exit(vp->v_interlock); 320 brelse(bp, 0); 321 } 322 } 323 mutex_exit(&bufcache_lock); 324 LFS_CLR_UINO(ip, IN_CLEANING); 325 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 326 ip->i_flag &= ~IN_ALLMOD; 327 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n", 328 ip->i_number)); 329 lfs_segunlock(fs); 330 331 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 332 333 return 0; 334 } 335 336 fs->lfs_flushvp = vp; 337 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) { 338 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 339 fs->lfs_flushvp = NULL; 340 KASSERT(fs->lfs_flushvp_fakevref == 0); 341 lfs_segunlock(fs); 342 343 /* Make sure that any pending buffers get written */ 344 mutex_enter(vp->v_interlock); 345 while (vp->v_numoutput > 0) { 346 cv_wait(&vp->v_cv, vp->v_interlock); 347 } 348 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 349 KASSERT(vp->v_numoutput == 0); 350 mutex_exit(vp->v_interlock); 351 352 return error; 353 } 354 sp = fs->lfs_sp; 355 356 flushed = 0; 357 if (VPISEMPTY(vp)) { 358 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 359 ++flushed; 360 } else if ((ip->i_flag & IN_CLEANING) && 361 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 362 ivndebug(vp,"vflush/clean"); 363 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 364 ++flushed; 365 } else if (lfs_dostats) { 366 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) 367 ++lfs_stats.vflush_invoked; 368 ivndebug(vp,"vflush"); 369 } 370 371 #ifdef DIAGNOSTIC 372 if (vp->v_uflag & VU_DIROP) { 373 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n")); 374 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */ 375 } 376 #endif 377 378 do { 379 loopcount = 0; 380 do { 381 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 382 relock = lfs_writefile(fs, sp, vp); 383 if (relock) { 384 /* 385 * Might have to wait for the 386 * cleaner to run; but we're 387 * still not done with this vnode. 388 */ 389 KDASSERT(ip->i_number != LFS_IFILE_INUM); 390 lfs_writeinode(fs, sp, ip); 391 mutex_enter(&lfs_lock); 392 LFS_SET_UINO(ip, IN_MODIFIED); 393 mutex_exit(&lfs_lock); 394 lfs_writeseg(fs, sp); 395 lfs_segunlock(fs); 396 lfs_segunlock_relock(fs); 397 goto top; 398 } 399 } 400 /* 401 * If we begin a new segment in the middle of writing 402 * the Ifile, it creates an inconsistent checkpoint, 403 * since the Ifile information for the new segment 404 * is not up-to-date. Take care of this here by 405 * sending the Ifile through again in case there 406 * are newly dirtied blocks. But wait, there's more! 407 * This second Ifile write could *also* cross a segment 408 * boundary, if the first one was large. The second 409 * one is guaranteed to be no more than 8 blocks, 410 * though (two segment blocks and supporting indirects) 411 * so the third write *will not* cross the boundary. 412 */ 413 if (vp == fs->lfs_ivnode) { 414 lfs_writefile(fs, sp, vp); 415 lfs_writefile(fs, sp, vp); 416 } 417 #ifdef DEBUG 418 if (++loopcount > 2) 419 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount); 420 #endif 421 } while (lfs_writeinode(fs, sp, ip)); 422 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 423 424 if (lfs_dostats) { 425 ++lfs_stats.nwrites; 426 if (sp->seg_flags & SEGM_SYNC) 427 ++lfs_stats.nsync_writes; 428 if (sp->seg_flags & SEGM_CKP) 429 ++lfs_stats.ncheckpoints; 430 } 431 /* 432 * If we were called from somewhere that has already held the seglock 433 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 434 * the write to complete because we are still locked. 435 * Since lfs_vflush() must return the vnode with no dirty buffers, 436 * we must explicitly wait, if that is the case. 437 * 438 * We compare the iocount against 1, not 0, because it is 439 * artificially incremented by lfs_seglock(). 440 */ 441 mutex_enter(&lfs_lock); 442 if (fs->lfs_seglock > 1) { 443 while (fs->lfs_iocount > 1) 444 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1, 445 "lfs_vflush", 0, &lfs_lock); 446 } 447 mutex_exit(&lfs_lock); 448 449 lfs_segunlock(fs); 450 451 /* Wait for these buffers to be recovered by aiodoned */ 452 mutex_enter(vp->v_interlock); 453 while (vp->v_numoutput > 0) { 454 cv_wait(&vp->v_cv, vp->v_interlock); 455 } 456 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 457 KASSERT(vp->v_numoutput == 0); 458 mutex_exit(vp->v_interlock); 459 460 fs->lfs_flushvp = NULL; 461 KASSERT(fs->lfs_flushvp_fakevref == 0); 462 463 return (0); 464 } 465 466 int 467 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 468 { 469 struct inode *ip; 470 struct vnode *vp; 471 int inodes_written = 0, only_cleaning; 472 int error = 0; 473 474 ASSERT_SEGLOCK(fs); 475 loop: 476 /* start at last (newest) vnode. */ 477 mutex_enter(&mntvnode_lock); 478 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) { 479 /* 480 * If the vnode that we are about to sync is no longer 481 * associated with this mount point, start over. 482 */ 483 if (vp->v_mount != mp) { 484 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n")); 485 /* 486 * After this, pages might be busy 487 * due to our own previous putpages. 488 * Start actual segment write here to avoid deadlock. 489 */ 490 mutex_exit(&mntvnode_lock); 491 (void)lfs_writeseg(fs, sp); 492 goto loop; 493 } 494 495 mutex_enter(vp->v_interlock); 496 if (vp->v_type == VNON || vismarker(vp) || 497 (vp->v_iflag & VI_CLEAN) != 0) { 498 mutex_exit(vp->v_interlock); 499 continue; 500 } 501 502 ip = VTOI(vp); 503 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) || 504 (op != VN_DIROP && op != VN_CLEAN && 505 (vp->v_uflag & VU_DIROP))) { 506 mutex_exit(vp->v_interlock); 507 vndebug(vp,"dirop"); 508 continue; 509 } 510 511 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 512 mutex_exit(vp->v_interlock); 513 vndebug(vp,"empty"); 514 continue; 515 } 516 517 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM 518 && vp != fs->lfs_flushvp 519 && !(ip->i_flag & IN_CLEANING)) { 520 mutex_exit(vp->v_interlock); 521 vndebug(vp,"cleaning"); 522 continue; 523 } 524 525 mutex_exit(&mntvnode_lock); 526 if (lfs_vref(vp)) { 527 vndebug(vp,"vref"); 528 mutex_enter(&mntvnode_lock); 529 continue; 530 } 531 532 only_cleaning = 0; 533 /* 534 * Write the inode/file if dirty and it's not the IFILE. 535 */ 536 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) { 537 only_cleaning = 538 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING); 539 540 if (ip->i_number != LFS_IFILE_INUM) { 541 error = lfs_writefile(fs, sp, vp); 542 if (error) { 543 lfs_vunref(vp); 544 if (error == EAGAIN) { 545 /* 546 * This error from lfs_putpages 547 * indicates we need to drop 548 * the segment lock and start 549 * over after the cleaner has 550 * had a chance to run. 551 */ 552 lfs_writeinode(fs, sp, ip); 553 lfs_writeseg(fs, sp); 554 if (!VPISEMPTY(vp) && 555 !WRITEINPROG(vp) && 556 !(ip->i_flag & IN_ALLMOD)) { 557 mutex_enter(&lfs_lock); 558 LFS_SET_UINO(ip, IN_MODIFIED); 559 mutex_exit(&lfs_lock); 560 } 561 mutex_enter(&mntvnode_lock); 562 break; 563 } 564 error = 0; /* XXX not quite right */ 565 mutex_enter(&mntvnode_lock); 566 continue; 567 } 568 569 if (!VPISEMPTY(vp)) { 570 if (WRITEINPROG(vp)) { 571 ivndebug(vp,"writevnodes/write2"); 572 } else if (!(ip->i_flag & IN_ALLMOD)) { 573 mutex_enter(&lfs_lock); 574 LFS_SET_UINO(ip, IN_MODIFIED); 575 mutex_exit(&lfs_lock); 576 } 577 } 578 (void) lfs_writeinode(fs, sp, ip); 579 inodes_written++; 580 } 581 } 582 583 if (lfs_clean_vnhead && only_cleaning) 584 lfs_vunref_head(vp); 585 else 586 lfs_vunref(vp); 587 588 mutex_enter(&mntvnode_lock); 589 } 590 mutex_exit(&mntvnode_lock); 591 return error; 592 } 593 594 /* 595 * Do a checkpoint. 596 */ 597 int 598 lfs_segwrite(struct mount *mp, int flags) 599 { 600 struct buf *bp; 601 struct inode *ip; 602 struct lfs *fs; 603 struct segment *sp; 604 struct vnode *vp; 605 SEGUSE *segusep; 606 int do_ckp, did_ckp, error; 607 unsigned n, segleft, maxseg, sn, i, curseg; 608 int writer_set = 0; 609 int dirty; 610 int redo; 611 int um_error; 612 int loopcount; 613 614 fs = VFSTOUFS(mp)->um_lfs; 615 ASSERT_MAYBE_SEGLOCK(fs); 616 617 if (fs->lfs_ronly) 618 return EROFS; 619 620 lfs_imtime(fs); 621 622 /* 623 * Allocate a segment structure and enough space to hold pointers to 624 * the maximum possible number of buffers which can be described in a 625 * single summary block. 626 */ 627 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags); 628 629 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 630 sp = fs->lfs_sp; 631 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP)) 632 do_ckp = 1; 633 634 /* 635 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 636 * in which case we have to flush *all* buffers off of this vnode. 637 * We don't care about other nodes, but write any non-dirop nodes 638 * anyway in anticipation of another getnewvnode(). 639 * 640 * If we're cleaning we only write cleaning and ifile blocks, and 641 * no dirops, since otherwise we'd risk corruption in a crash. 642 */ 643 if (sp->seg_flags & SEGM_CLEAN) 644 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 645 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 646 do { 647 um_error = lfs_writevnodes(fs, mp, sp, VN_REG); 648 649 if (do_ckp || fs->lfs_dirops == 0) { 650 if (!writer_set) { 651 lfs_writer_enter(fs, "lfs writer"); 652 writer_set = 1; 653 } 654 error = lfs_writevnodes(fs, mp, sp, VN_DIROP); 655 if (um_error == 0) 656 um_error = error; 657 /* In case writevnodes errored out */ 658 lfs_flush_dirops(fs); 659 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); 660 lfs_finalize_fs_seguse(fs); 661 } 662 if (do_ckp && um_error) { 663 lfs_segunlock_relock(fs); 664 sp = fs->lfs_sp; 665 } 666 } while (do_ckp && um_error != 0); 667 } 668 669 /* 670 * If we are doing a checkpoint, mark everything since the 671 * last checkpoint as no longer ACTIVE. 672 */ 673 if (do_ckp || fs->lfs_doifile) { 674 segleft = fs->lfs_nseg; 675 curseg = 0; 676 for (n = 0; n < fs->lfs_segtabsz; n++) { 677 dirty = 0; 678 if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n, 679 fs->lfs_bsize, NOCRED, B_MODIFY, &bp)) 680 panic("lfs_segwrite: ifile read"); 681 segusep = (SEGUSE *)bp->b_data; 682 maxseg = min(segleft, fs->lfs_sepb); 683 for (i = 0; i < maxseg; i++) { 684 sn = curseg + i; 685 if (sn != dtosn(fs, fs->lfs_curseg) && 686 segusep->su_flags & SEGUSE_ACTIVE) { 687 segusep->su_flags &= ~SEGUSE_ACTIVE; 688 --fs->lfs_nactive; 689 ++dirty; 690 } 691 fs->lfs_suflags[fs->lfs_activesb][sn] = 692 segusep->su_flags; 693 if (fs->lfs_version > 1) 694 ++segusep; 695 else 696 segusep = (SEGUSE *) 697 ((SEGUSE_V1 *)segusep + 1); 698 } 699 700 if (dirty) 701 error = LFS_BWRITE_LOG(bp); /* Ifile */ 702 else 703 brelse(bp, 0); 704 segleft -= fs->lfs_sepb; 705 curseg += fs->lfs_sepb; 706 } 707 } 708 709 KASSERT(LFS_SEGLOCK_HELD(fs)); 710 711 did_ckp = 0; 712 if (do_ckp || fs->lfs_doifile) { 713 vp = fs->lfs_ivnode; 714 vn_lock(vp, LK_EXCLUSIVE); 715 loopcount = 0; 716 do { 717 #ifdef DEBUG 718 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid); 719 #endif 720 mutex_enter(&lfs_lock); 721 fs->lfs_flags &= ~LFS_IFDIRTY; 722 mutex_exit(&lfs_lock); 723 724 ip = VTOI(vp); 725 726 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 727 /* 728 * Ifile has no pages, so we don't need 729 * to check error return here. 730 */ 731 lfs_writefile(fs, sp, vp); 732 /* 733 * Ensure the Ifile takes the current segment 734 * into account. See comment in lfs_vflush. 735 */ 736 lfs_writefile(fs, sp, vp); 737 lfs_writefile(fs, sp, vp); 738 } 739 740 if (ip->i_flag & IN_ALLMOD) 741 ++did_ckp; 742 #if 0 743 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0); 744 #else 745 redo = lfs_writeinode(fs, sp, ip); 746 #endif 747 redo += lfs_writeseg(fs, sp); 748 mutex_enter(&lfs_lock); 749 redo += (fs->lfs_flags & LFS_IFDIRTY); 750 mutex_exit(&lfs_lock); 751 #ifdef DEBUG 752 if (++loopcount > 2) 753 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n", 754 loopcount); 755 #endif 756 } while (redo && do_ckp); 757 758 /* 759 * Unless we are unmounting, the Ifile may continue to have 760 * dirty blocks even after a checkpoint, due to changes to 761 * inodes' atime. If we're checkpointing, it's "impossible" 762 * for other parts of the Ifile to be dirty after the loop 763 * above, since we hold the segment lock. 764 */ 765 mutex_enter(vp->v_interlock); 766 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 767 LFS_CLR_UINO(ip, IN_ALLMOD); 768 } 769 #ifdef DIAGNOSTIC 770 else if (do_ckp) { 771 int do_panic = 0; 772 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 773 if (bp->b_lblkno < fs->lfs_cleansz + 774 fs->lfs_segtabsz && 775 !(bp->b_flags & B_GATHERED)) { 776 printf("ifile lbn %ld still dirty (flags %lx)\n", 777 (long)bp->b_lblkno, 778 (long)bp->b_flags); 779 ++do_panic; 780 } 781 } 782 if (do_panic) 783 panic("dirty blocks"); 784 } 785 #endif 786 mutex_exit(vp->v_interlock); 787 VOP_UNLOCK(vp); 788 } else { 789 (void) lfs_writeseg(fs, sp); 790 } 791 792 /* Note Ifile no longer needs to be written */ 793 fs->lfs_doifile = 0; 794 if (writer_set) 795 lfs_writer_leave(fs); 796 797 /* 798 * If we didn't write the Ifile, we didn't really do anything. 799 * That means that (1) there is a checkpoint on disk and (2) 800 * nothing has changed since it was written. 801 * 802 * Take the flags off of the segment so that lfs_segunlock 803 * doesn't have to write the superblock either. 804 */ 805 if (do_ckp && !did_ckp) { 806 sp->seg_flags &= ~SEGM_CKP; 807 } 808 809 if (lfs_dostats) { 810 ++lfs_stats.nwrites; 811 if (sp->seg_flags & SEGM_SYNC) 812 ++lfs_stats.nsync_writes; 813 if (sp->seg_flags & SEGM_CKP) 814 ++lfs_stats.ncheckpoints; 815 } 816 lfs_segunlock(fs); 817 return (0); 818 } 819 820 /* 821 * Write the dirty blocks associated with a vnode. 822 */ 823 int 824 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 825 { 826 struct finfo *fip; 827 struct inode *ip; 828 int i, frag; 829 int error; 830 831 ASSERT_SEGLOCK(fs); 832 error = 0; 833 ip = VTOI(vp); 834 835 fip = sp->fip; 836 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); 837 838 if (vp->v_uflag & VU_DIROP) 839 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 840 841 if (sp->seg_flags & SEGM_CLEAN) { 842 lfs_gather(fs, sp, vp, lfs_match_fake); 843 /* 844 * For a file being flushed, we need to write *all* blocks. 845 * This means writing the cleaning blocks first, and then 846 * immediately following with any non-cleaning blocks. 847 * The same is true of the Ifile since checkpoints assume 848 * that all valid Ifile blocks are written. 849 */ 850 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) { 851 lfs_gather(fs, sp, vp, lfs_match_data); 852 /* 853 * Don't call VOP_PUTPAGES: if we're flushing, 854 * we've already done it, and the Ifile doesn't 855 * use the page cache. 856 */ 857 } 858 } else { 859 lfs_gather(fs, sp, vp, lfs_match_data); 860 /* 861 * If we're flushing, we've already called VOP_PUTPAGES 862 * so don't do it again. Otherwise, we want to write 863 * everything we've got. 864 */ 865 if (!IS_FLUSHING(fs, vp)) { 866 mutex_enter(vp->v_interlock); 867 error = VOP_PUTPAGES(vp, 0, 0, 868 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 869 } 870 } 871 872 /* 873 * It may not be necessary to write the meta-data blocks at this point, 874 * as the roll-forward recovery code should be able to reconstruct the 875 * list. 876 * 877 * We have to write them anyway, though, under two conditions: (1) the 878 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 879 * checkpointing. 880 * 881 * BUT if we are cleaning, we might have indirect blocks that refer to 882 * new blocks not being written yet, in addition to fragments being 883 * moved out of a cleaned segment. If that is the case, don't 884 * write the indirect blocks, or the finfo will have a small block 885 * in the middle of it! 886 * XXX in this case isn't the inode size wrong too? 887 */ 888 frag = 0; 889 if (sp->seg_flags & SEGM_CLEAN) { 890 for (i = 0; i < NDADDR; i++) 891 if (ip->i_lfs_fragsize[i] > 0 && 892 ip->i_lfs_fragsize[i] < fs->lfs_bsize) 893 ++frag; 894 } 895 #ifdef DIAGNOSTIC 896 if (frag > 1) 897 panic("lfs_writefile: more than one fragment!"); 898 #endif 899 if (IS_FLUSHING(fs, vp) || 900 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 901 lfs_gather(fs, sp, vp, lfs_match_indir); 902 lfs_gather(fs, sp, vp, lfs_match_dindir); 903 lfs_gather(fs, sp, vp, lfs_match_tindir); 904 } 905 fip = sp->fip; 906 lfs_release_finfo(fs); 907 908 return error; 909 } 910 911 /* 912 * Update segment accounting to reflect this inode's change of address. 913 */ 914 static int 915 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr) 916 { 917 struct buf *bp; 918 daddr_t daddr; 919 IFILE *ifp; 920 SEGUSE *sup; 921 ino_t ino; 922 int redo_ifile, error; 923 u_int32_t sn; 924 925 redo_ifile = 0; 926 927 /* 928 * If updating the ifile, update the super-block. Update the disk 929 * address and access times for this inode in the ifile. 930 */ 931 ino = ip->i_number; 932 if (ino == LFS_IFILE_INUM) { 933 daddr = fs->lfs_idaddr; 934 fs->lfs_idaddr = dbtofsb(fs, ndaddr); 935 } else { 936 LFS_IENTRY(ifp, fs, ino, bp); 937 daddr = ifp->if_daddr; 938 ifp->if_daddr = dbtofsb(fs, ndaddr); 939 error = LFS_BWRITE_LOG(bp); /* Ifile */ 940 } 941 942 /* 943 * If this is the Ifile and lfs_offset is set to the first block 944 * in the segment, dirty the new segment's accounting block 945 * (XXX should already be dirty?) and tell the caller to do it again. 946 */ 947 if (ip->i_number == LFS_IFILE_INUM) { 948 sn = dtosn(fs, fs->lfs_offset); 949 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) == 950 fs->lfs_offset) { 951 LFS_SEGENTRY(sup, fs, sn, bp); 952 KASSERT(bp->b_oflags & BO_DELWRI); 953 LFS_WRITESEGENTRY(sup, fs, sn, bp); 954 /* fs->lfs_flags |= LFS_IFDIRTY; */ 955 redo_ifile |= 1; 956 } 957 } 958 959 /* 960 * The inode's last address should not be in the current partial 961 * segment, except under exceptional circumstances (lfs_writevnodes 962 * had to start over, and in the meantime more blocks were written 963 * to a vnode). Both inodes will be accounted to this segment 964 * in lfs_writeseg so we need to subtract the earlier version 965 * here anyway. The segment count can temporarily dip below 966 * zero here; keep track of how many duplicates we have in 967 * "dupino" so we don't panic below. 968 */ 969 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) { 970 ++sp->ndupino; 971 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg " 972 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 973 (long long)daddr, sp->ndupino)); 974 } 975 /* 976 * Account the inode: it no longer belongs to its former segment, 977 * though it will not belong to the new segment until that segment 978 * is actually written. 979 */ 980 if (daddr != LFS_UNUSED_DADDR) { 981 u_int32_t oldsn = dtosn(fs, daddr); 982 #ifdef DIAGNOSTIC 983 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; 984 #endif 985 LFS_SEGENTRY(sup, fs, oldsn, bp); 986 #ifdef DIAGNOSTIC 987 if (sup->su_nbytes + 988 sizeof (struct ufs1_dinode) * ndupino 989 < sizeof (struct ufs1_dinode)) { 990 printf("lfs_writeinode: negative bytes " 991 "(segment %" PRIu32 " short by %d, " 992 "oldsn=%" PRIu32 ", cursn=%" PRIu32 993 ", daddr=%" PRId64 ", su_nbytes=%u, " 994 "ndupino=%d)\n", 995 dtosn(fs, daddr), 996 (int)sizeof (struct ufs1_dinode) * 997 (1 - sp->ndupino) - sup->su_nbytes, 998 oldsn, sp->seg_number, daddr, 999 (unsigned int)sup->su_nbytes, 1000 sp->ndupino); 1001 panic("lfs_writeinode: negative bytes"); 1002 sup->su_nbytes = sizeof (struct ufs1_dinode); 1003 } 1004 #endif 1005 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n", 1006 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino)); 1007 sup->su_nbytes -= sizeof (struct ufs1_dinode); 1008 redo_ifile |= 1009 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1010 if (redo_ifile) { 1011 mutex_enter(&lfs_lock); 1012 fs->lfs_flags |= LFS_IFDIRTY; 1013 mutex_exit(&lfs_lock); 1014 /* Don't double-account */ 1015 fs->lfs_idaddr = 0x0; 1016 } 1017 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1018 } 1019 1020 return redo_ifile; 1021 } 1022 1023 int 1024 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 1025 { 1026 struct buf *bp; 1027 struct ufs1_dinode *cdp; 1028 daddr_t daddr; 1029 int32_t *daddrp; /* XXX ondisk32 */ 1030 int i, ndx; 1031 int redo_ifile = 0; 1032 int gotblk = 0; 1033 int count; 1034 1035 ASSERT_SEGLOCK(fs); 1036 if (!(ip->i_flag & IN_ALLMOD)) 1037 return (0); 1038 1039 /* Can't write ifile when writer is not set */ 1040 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 || 1041 (sp->seg_flags & SEGM_CLEAN)); 1042 1043 /* 1044 * If this is the Ifile, see if writing it here will generate a 1045 * temporary misaccounting. If it will, do the accounting and write 1046 * the blocks, postponing the inode write until the accounting is 1047 * solid. 1048 */ 1049 count = 0; 1050 while (ip->i_number == LFS_IFILE_INUM) { 1051 int redo = 0; 1052 1053 if (sp->idp == NULL && sp->ibp == NULL && 1054 (sp->seg_bytes_left < fs->lfs_ibsize || 1055 sp->sum_bytes_left < sizeof(int32_t))) { 1056 (void) lfs_writeseg(fs, sp); 1057 continue; 1058 } 1059 1060 /* Look for dirty Ifile blocks */ 1061 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) { 1062 if (!(bp->b_flags & B_GATHERED)) { 1063 redo = 1; 1064 break; 1065 } 1066 } 1067 1068 if (redo == 0) 1069 redo = lfs_update_iaddr(fs, sp, ip, 0x0); 1070 if (redo == 0) 1071 break; 1072 1073 if (sp->idp) { 1074 sp->idp->di_inumber = 0; 1075 sp->idp = NULL; 1076 } 1077 ++count; 1078 if (count > 2) 1079 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count); 1080 lfs_writefile(fs, sp, fs->lfs_ivnode); 1081 } 1082 1083 /* Allocate a new inode block if necessary. */ 1084 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 1085 sp->ibp == NULL) { 1086 /* Allocate a new segment if necessary. */ 1087 if (sp->seg_bytes_left < fs->lfs_ibsize || 1088 sp->sum_bytes_left < sizeof(int32_t)) 1089 (void) lfs_writeseg(fs, sp); 1090 1091 /* Get next inode block. */ 1092 daddr = fs->lfs_offset; 1093 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); 1094 sp->ibp = *sp->cbpp++ = 1095 getblk(VTOI(fs->lfs_ivnode)->i_devvp, 1096 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0); 1097 gotblk++; 1098 1099 /* Zero out inode numbers */ 1100 for (i = 0; i < INOPB(fs); ++i) 1101 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 1102 0; 1103 1104 ++sp->start_bpp; 1105 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); 1106 /* Set remaining space counters. */ 1107 sp->seg_bytes_left -= fs->lfs_ibsize; 1108 sp->sum_bytes_left -= sizeof(int32_t); 1109 ndx = fs->lfs_sumsize / sizeof(int32_t) - 1110 sp->ninodes / INOPB(fs) - 1; 1111 ((int32_t *)(sp->segsum))[ndx] = daddr; 1112 } 1113 1114 /* Check VU_DIROP in case there is a new file with no data blocks */ 1115 if (ITOV(ip)->v_uflag & VU_DIROP) 1116 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 1117 1118 /* Update the inode times and copy the inode onto the inode page. */ 1119 /* XXX kludge --- don't redirty the ifile just to put times on it */ 1120 if (ip->i_number != LFS_IFILE_INUM) 1121 LFS_ITIMES(ip, NULL, NULL, NULL); 1122 1123 /* 1124 * If this is the Ifile, and we've already written the Ifile in this 1125 * partial segment, just overwrite it (it's not on disk yet) and 1126 * continue. 1127 * 1128 * XXX we know that the bp that we get the second time around has 1129 * already been gathered. 1130 */ 1131 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 1132 *(sp->idp) = *ip->i_din.ffs1_din; 1133 ip->i_lfs_osize = ip->i_size; 1134 return 0; 1135 } 1136 1137 bp = sp->ibp; 1138 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); 1139 *cdp = *ip->i_din.ffs1_din; 1140 1141 /* 1142 * If cleaning, link counts and directory file sizes cannot change, 1143 * since those would be directory operations---even if the file 1144 * we are writing is marked VU_DIROP we should write the old values. 1145 * If we're not cleaning, of course, update the values so we get 1146 * current values the next time we clean. 1147 */ 1148 if (sp->seg_flags & SEGM_CLEAN) { 1149 if (ITOV(ip)->v_uflag & VU_DIROP) { 1150 cdp->di_nlink = ip->i_lfs_odnlink; 1151 /* if (ITOV(ip)->v_type == VDIR) */ 1152 cdp->di_size = ip->i_lfs_osize; 1153 } 1154 } else { 1155 ip->i_lfs_odnlink = cdp->di_nlink; 1156 ip->i_lfs_osize = ip->i_size; 1157 } 1158 1159 1160 /* We can finish the segment accounting for truncations now */ 1161 lfs_finalize_ino_seguse(fs, ip); 1162 1163 /* 1164 * If we are cleaning, ensure that we don't write UNWRITTEN disk 1165 * addresses to disk; possibly change the on-disk record of 1166 * the inode size, either by reverting to the previous size 1167 * (in the case of cleaning) or by verifying the inode's block 1168 * holdings (in the case of files being allocated as they are being 1169 * written). 1170 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail 1171 * XXX count on disk wrong by the same amount. We should be 1172 * XXX able to "borrow" from lfs_avail and return it after the 1173 * XXX Ifile is written. See also in lfs_writeseg. 1174 */ 1175 1176 /* Check file size based on highest allocated block */ 1177 if (((ip->i_ffs1_mode & IFMT) == IFREG || 1178 (ip->i_ffs1_mode & IFMT) == IFDIR) && 1179 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) { 1180 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift; 1181 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %" 1182 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size)); 1183 } 1184 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) { 1185 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)" 1186 " at %x\n", ip->i_number, ip->i_lfs_effnblks, 1187 ip->i_ffs1_blocks, fs->lfs_offset)); 1188 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR; 1189 daddrp++) { 1190 if (*daddrp == UNWRITTEN) { 1191 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); 1192 *daddrp = 0; 1193 } 1194 } 1195 } 1196 1197 #ifdef DIAGNOSTIC 1198 /* 1199 * Check dinode held blocks against dinode size. 1200 * This should be identical to the check in lfs_vget(). 1201 */ 1202 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift; 1203 i < NDADDR; i++) { 1204 KASSERT(i >= 0); 1205 if ((cdp->di_mode & IFMT) == IFLNK) 1206 continue; 1207 if (((cdp->di_mode & IFMT) == IFBLK || 1208 (cdp->di_mode & IFMT) == IFCHR) && i == 0) 1209 continue; 1210 if (cdp->di_db[i] != 0) { 1211 # ifdef DEBUG 1212 lfs_dump_dinode(cdp); 1213 # endif 1214 panic("writing inconsistent inode"); 1215 } 1216 } 1217 #endif /* DIAGNOSTIC */ 1218 1219 if (ip->i_flag & IN_CLEANING) 1220 LFS_CLR_UINO(ip, IN_CLEANING); 1221 else { 1222 /* XXX IN_ALLMOD */ 1223 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 1224 IN_UPDATE | IN_MODIFY); 1225 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks) 1226 LFS_CLR_UINO(ip, IN_MODIFIED); 1227 else { 1228 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real " 1229 "blks=%d, eff=%d\n", ip->i_number, 1230 ip->i_ffs1_blocks, ip->i_lfs_effnblks)); 1231 } 1232 } 1233 1234 if (ip->i_number == LFS_IFILE_INUM) { 1235 /* We know sp->idp == NULL */ 1236 sp->idp = ((struct ufs1_dinode *)bp->b_data) + 1237 (sp->ninodes % INOPB(fs)); 1238 1239 /* Not dirty any more */ 1240 mutex_enter(&lfs_lock); 1241 fs->lfs_flags &= ~LFS_IFDIRTY; 1242 mutex_exit(&lfs_lock); 1243 } 1244 1245 if (gotblk) { 1246 mutex_enter(&bufcache_lock); 1247 LFS_LOCK_BUF(bp); 1248 brelsel(bp, 0); 1249 mutex_exit(&bufcache_lock); 1250 } 1251 1252 /* Increment inode count in segment summary block. */ 1253 ++((SEGSUM *)(sp->segsum))->ss_ninos; 1254 1255 /* If this page is full, set flag to allocate a new page. */ 1256 if (++sp->ninodes % INOPB(fs) == 0) 1257 sp->ibp = NULL; 1258 1259 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno); 1260 1261 KASSERT(redo_ifile == 0); 1262 return (redo_ifile); 1263 } 1264 1265 int 1266 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr) 1267 { 1268 struct lfs *fs; 1269 int vers; 1270 int j, blksinblk; 1271 1272 ASSERT_SEGLOCK(sp->fs); 1273 /* 1274 * If full, finish this segment. We may be doing I/O, so 1275 * release and reacquire the splbio(). 1276 */ 1277 #ifdef DIAGNOSTIC 1278 if (sp->vp == NULL) 1279 panic ("lfs_gatherblock: Null vp in segment"); 1280 #endif 1281 fs = sp->fs; 1282 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); 1283 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1284 sp->seg_bytes_left < bp->b_bcount) { 1285 if (mptr) 1286 mutex_exit(mptr); 1287 lfs_updatemeta(sp); 1288 1289 vers = sp->fip->fi_version; 1290 (void) lfs_writeseg(fs, sp); 1291 1292 /* Add the current file to the segment summary. */ 1293 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers); 1294 1295 if (mptr) 1296 mutex_enter(mptr); 1297 return (1); 1298 } 1299 1300 if (bp->b_flags & B_GATHERED) { 1301 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d," 1302 " lbn %" PRId64 "\n", 1303 sp->fip->fi_ino, bp->b_lblkno)); 1304 return (0); 1305 } 1306 1307 /* Insert into the buffer list, update the FINFO block. */ 1308 bp->b_flags |= B_GATHERED; 1309 1310 *sp->cbpp++ = bp; 1311 for (j = 0; j < blksinblk; j++) { 1312 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; 1313 /* This block's accounting moves from lfs_favail to lfs_avail */ 1314 lfs_deregister_block(sp->vp, bp->b_lblkno + j); 1315 } 1316 1317 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1318 sp->seg_bytes_left -= bp->b_bcount; 1319 return (0); 1320 } 1321 1322 int 1323 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, 1324 int (*match)(struct lfs *, struct buf *)) 1325 { 1326 struct buf *bp, *nbp; 1327 int count = 0; 1328 1329 ASSERT_SEGLOCK(fs); 1330 if (vp->v_type == VBLK) 1331 return 0; 1332 KASSERT(sp->vp == NULL); 1333 sp->vp = vp; 1334 mutex_enter(&bufcache_lock); 1335 1336 #ifndef LFS_NO_BACKBUF_HACK 1337 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1338 # define BUF_OFFSET \ 1339 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp) 1340 # define BACK_BUF(BP) \ 1341 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1342 # define BEG_OF_LIST \ 1343 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1344 1345 loop: 1346 /* Find last buffer. */ 1347 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); 1348 bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1349 bp = LIST_NEXT(bp, b_vnbufs)) 1350 /* nothing */; 1351 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1352 nbp = BACK_BUF(bp); 1353 #else /* LFS_NO_BACKBUF_HACK */ 1354 loop: 1355 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1356 nbp = LIST_NEXT(bp, b_vnbufs); 1357 #endif /* LFS_NO_BACKBUF_HACK */ 1358 if ((bp->b_cflags & BC_BUSY) != 0 || 1359 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) { 1360 #ifdef DEBUG 1361 if (vp == fs->lfs_ivnode && 1362 (bp->b_cflags & BC_BUSY) != 0 && 1363 (bp->b_flags & B_GATHERED) == 0) 1364 log(LOG_NOTICE, "lfs_gather: ifile lbn %" 1365 PRId64 " busy (%x) at 0x%x", 1366 bp->b_lblkno, bp->b_flags, 1367 (unsigned)fs->lfs_offset); 1368 #endif 1369 continue; 1370 } 1371 #ifdef DIAGNOSTIC 1372 # ifdef LFS_USE_B_INVAL 1373 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) { 1374 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1375 " is BC_INVAL\n", bp->b_lblkno)); 1376 VOP_PRINT(bp->b_vp); 1377 } 1378 # endif /* LFS_USE_B_INVAL */ 1379 if (!(bp->b_oflags & BO_DELWRI)) 1380 panic("lfs_gather: bp not BO_DELWRI"); 1381 if (!(bp->b_flags & B_LOCKED)) { 1382 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1383 " blk %" PRId64 " not B_LOCKED\n", 1384 bp->b_lblkno, 1385 dbtofsb(fs, bp->b_blkno))); 1386 VOP_PRINT(bp->b_vp); 1387 panic("lfs_gather: bp not B_LOCKED"); 1388 } 1389 #endif 1390 if (lfs_gatherblock(sp, bp, &bufcache_lock)) { 1391 goto loop; 1392 } 1393 count++; 1394 } 1395 mutex_exit(&bufcache_lock); 1396 lfs_updatemeta(sp); 1397 KASSERT(sp->vp == vp); 1398 sp->vp = NULL; 1399 return count; 1400 } 1401 1402 #if DEBUG 1403 # define DEBUG_OOFF(n) do { \ 1404 if (ooff == 0) { \ 1405 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \ 1406 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1407 ", was 0x0 (or %" PRId64 ")\n", \ 1408 (n), ip->i_number, lbn, ndaddr, daddr)); \ 1409 } \ 1410 } while (0) 1411 #else 1412 # define DEBUG_OOFF(n) 1413 #endif 1414 1415 /* 1416 * Change the given block's address to ndaddr, finding its previous 1417 * location using ufs_bmaparray(). 1418 * 1419 * Account for this change in the segment table. 1420 * 1421 * called with sp == NULL by roll-forwarding code. 1422 */ 1423 void 1424 lfs_update_single(struct lfs *fs, struct segment *sp, 1425 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size) 1426 { 1427 SEGUSE *sup; 1428 struct buf *bp; 1429 struct indir a[NIADDR + 2], *ap; 1430 struct inode *ip; 1431 daddr_t daddr, ooff; 1432 int num, error; 1433 int bb, osize, obb; 1434 1435 ASSERT_SEGLOCK(fs); 1436 KASSERT(sp == NULL || sp->vp == vp); 1437 ip = VTOI(vp); 1438 1439 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1440 if (error) 1441 panic("lfs_updatemeta: ufs_bmaparray returned %d", error); 1442 1443 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */ 1444 KASSERT(daddr <= LFS_MAX_DADDR); 1445 if (daddr > 0) 1446 daddr = dbtofsb(fs, daddr); 1447 1448 bb = numfrags(fs, size); 1449 switch (num) { 1450 case 0: 1451 ooff = ip->i_ffs1_db[lbn]; 1452 DEBUG_OOFF(0); 1453 if (ooff == UNWRITTEN) 1454 ip->i_ffs1_blocks += bb; 1455 else { 1456 /* possible fragment truncation or extension */ 1457 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); 1458 ip->i_ffs1_blocks += (bb - obb); 1459 } 1460 ip->i_ffs1_db[lbn] = ndaddr; 1461 break; 1462 case 1: 1463 ooff = ip->i_ffs1_ib[a[0].in_off]; 1464 DEBUG_OOFF(1); 1465 if (ooff == UNWRITTEN) 1466 ip->i_ffs1_blocks += bb; 1467 ip->i_ffs1_ib[a[0].in_off] = ndaddr; 1468 break; 1469 default: 1470 ap = &a[num - 1]; 1471 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, 1472 B_MODIFY, &bp)) 1473 panic("lfs_updatemeta: bread bno %" PRId64, 1474 ap->in_lbn); 1475 1476 /* XXX ondisk32 */ 1477 ooff = ((int32_t *)bp->b_data)[ap->in_off]; 1478 DEBUG_OOFF(num); 1479 if (ooff == UNWRITTEN) 1480 ip->i_ffs1_blocks += bb; 1481 /* XXX ondisk32 */ 1482 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr; 1483 (void) VOP_BWRITE(bp->b_vp, bp); 1484 } 1485 1486 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); 1487 1488 /* Update hiblk when extending the file */ 1489 if (lbn > ip->i_lfs_hiblk) 1490 ip->i_lfs_hiblk = lbn; 1491 1492 /* 1493 * Though we'd rather it couldn't, this *can* happen right now 1494 * if cleaning blocks and regular blocks coexist. 1495 */ 1496 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1497 1498 /* 1499 * Update segment usage information, based on old size 1500 * and location. 1501 */ 1502 if (daddr > 0) { 1503 u_int32_t oldsn = dtosn(fs, daddr); 1504 #ifdef DIAGNOSTIC 1505 int ndupino; 1506 1507 if (sp && sp->seg_number == oldsn) { 1508 ndupino = sp->ndupino; 1509 } else { 1510 ndupino = 0; 1511 } 1512 #endif 1513 KASSERT(oldsn < fs->lfs_nseg); 1514 if (lbn >= 0 && lbn < NDADDR) 1515 osize = ip->i_lfs_fragsize[lbn]; 1516 else 1517 osize = fs->lfs_bsize; 1518 LFS_SEGENTRY(sup, fs, oldsn, bp); 1519 #ifdef DIAGNOSTIC 1520 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino 1521 < osize) { 1522 printf("lfs_updatemeta: negative bytes " 1523 "(segment %" PRIu32 " short by %" PRId64 1524 ")\n", dtosn(fs, daddr), 1525 (int64_t)osize - 1526 (sizeof (struct ufs1_dinode) * ndupino + 1527 sup->su_nbytes)); 1528 printf("lfs_updatemeta: ino %llu, lbn %" PRId64 1529 ", addr = 0x%" PRIx64 "\n", 1530 (unsigned long long)ip->i_number, lbn, daddr); 1531 printf("lfs_updatemeta: ndupino=%d\n", ndupino); 1532 panic("lfs_updatemeta: negative bytes"); 1533 sup->su_nbytes = osize - 1534 sizeof (struct ufs1_dinode) * ndupino; 1535 } 1536 #endif 1537 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1538 " db 0x%" PRIx64 "\n", 1539 dtosn(fs, daddr), osize, 1540 ip->i_number, lbn, daddr)); 1541 sup->su_nbytes -= osize; 1542 if (!(bp->b_flags & B_GATHERED)) { 1543 mutex_enter(&lfs_lock); 1544 fs->lfs_flags |= LFS_IFDIRTY; 1545 mutex_exit(&lfs_lock); 1546 } 1547 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1548 } 1549 /* 1550 * Now that this block has a new address, and its old 1551 * segment no longer owns it, we can forget about its 1552 * old size. 1553 */ 1554 if (lbn >= 0 && lbn < NDADDR) 1555 ip->i_lfs_fragsize[lbn] = size; 1556 } 1557 1558 /* 1559 * Update the metadata that points to the blocks listed in the FINFO 1560 * array. 1561 */ 1562 void 1563 lfs_updatemeta(struct segment *sp) 1564 { 1565 struct buf *sbp; 1566 struct lfs *fs; 1567 struct vnode *vp; 1568 daddr_t lbn; 1569 int i, nblocks, num; 1570 int bb; 1571 int bytesleft, size; 1572 1573 ASSERT_SEGLOCK(sp->fs); 1574 vp = sp->vp; 1575 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1576 KASSERT(nblocks >= 0); 1577 KASSERT(vp != NULL); 1578 if (nblocks == 0) 1579 return; 1580 1581 /* 1582 * This count may be high due to oversize blocks from lfs_gop_write. 1583 * Correct for this. (XXX we should be able to keep track of these.) 1584 */ 1585 fs = sp->fs; 1586 for (i = 0; i < nblocks; i++) { 1587 if (sp->start_bpp[i] == NULL) { 1588 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks)); 1589 nblocks = i; 1590 break; 1591 } 1592 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); 1593 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1594 nblocks -= num - 1; 1595 } 1596 1597 KASSERT(vp->v_type == VREG || 1598 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1599 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1600 1601 /* 1602 * Sort the blocks. 1603 * 1604 * We have to sort even if the blocks come from the 1605 * cleaner, because there might be other pending blocks on the 1606 * same inode...and if we don't sort, and there are fragments 1607 * present, blocks may be written in the wrong place. 1608 */ 1609 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); 1610 1611 /* 1612 * Record the length of the last block in case it's a fragment. 1613 * If there are indirect blocks present, they sort last. An 1614 * indirect block will be lfs_bsize and its presence indicates 1615 * that you cannot have fragments. 1616 * 1617 * XXX This last is a lie. A cleaned fragment can coexist with 1618 * XXX a later indirect block. This will continue to be 1619 * XXX true until lfs_markv is fixed to do everything with 1620 * XXX fake blocks (including fake inodes and fake indirect blocks). 1621 */ 1622 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1623 fs->lfs_bmask) + 1; 1624 1625 /* 1626 * Assign disk addresses, and update references to the logical 1627 * block and the segment usage information. 1628 */ 1629 for (i = nblocks; i--; ++sp->start_bpp) { 1630 sbp = *sp->start_bpp; 1631 lbn = *sp->start_lbp; 1632 KASSERT(sbp->b_lblkno == lbn); 1633 1634 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); 1635 1636 /* 1637 * If we write a frag in the wrong place, the cleaner won't 1638 * be able to correctly identify its size later, and the 1639 * segment will be uncleanable. (Even worse, it will assume 1640 * that the indirect block that actually ends the list 1641 * is of a smaller size!) 1642 */ 1643 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) 1644 panic("lfs_updatemeta: fragment is not last block"); 1645 1646 /* 1647 * For each subblock in this possibly oversized block, 1648 * update its address on disk. 1649 */ 1650 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize); 1651 KASSERT(vp == sbp->b_vp); 1652 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1653 bytesleft -= fs->lfs_bsize) { 1654 size = MIN(bytesleft, fs->lfs_bsize); 1655 bb = numfrags(fs, size); 1656 lbn = *sp->start_lbp++; 1657 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset, 1658 size); 1659 fs->lfs_offset += bb; 1660 } 1661 1662 } 1663 1664 /* This inode has been modified */ 1665 LFS_SET_UINO(VTOI(vp), IN_MODIFIED); 1666 } 1667 1668 /* 1669 * Move lfs_offset to a segment earlier than sn. 1670 */ 1671 int 1672 lfs_rewind(struct lfs *fs, int newsn) 1673 { 1674 int sn, osn, isdirty; 1675 struct buf *bp; 1676 SEGUSE *sup; 1677 1678 ASSERT_SEGLOCK(fs); 1679 1680 osn = dtosn(fs, fs->lfs_offset); 1681 if (osn < newsn) 1682 return 0; 1683 1684 /* lfs_avail eats the remaining space in this segment */ 1685 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg); 1686 1687 /* Find a low-numbered segment */ 1688 for (sn = 0; sn < fs->lfs_nseg; ++sn) { 1689 LFS_SEGENTRY(sup, fs, sn, bp); 1690 isdirty = sup->su_flags & SEGUSE_DIRTY; 1691 brelse(bp, 0); 1692 1693 if (!isdirty) 1694 break; 1695 } 1696 if (sn == fs->lfs_nseg) 1697 panic("lfs_rewind: no clean segments"); 1698 if (newsn >= 0 && sn >= newsn) 1699 return ENOENT; 1700 fs->lfs_nextseg = sn; 1701 lfs_newseg(fs); 1702 fs->lfs_offset = fs->lfs_curseg; 1703 1704 return 0; 1705 } 1706 1707 /* 1708 * Start a new partial segment. 1709 * 1710 * Return 1 when we entered to a new segment. 1711 * Otherwise, return 0. 1712 */ 1713 int 1714 lfs_initseg(struct lfs *fs) 1715 { 1716 struct segment *sp = fs->lfs_sp; 1717 SEGSUM *ssp; 1718 struct buf *sbp; /* buffer for SEGSUM */ 1719 int repeat = 0; /* return value */ 1720 1721 ASSERT_SEGLOCK(fs); 1722 /* Advance to the next segment. */ 1723 if (!LFS_PARTIAL_FITS(fs)) { 1724 SEGUSE *sup; 1725 struct buf *bp; 1726 1727 /* lfs_avail eats the remaining space */ 1728 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - 1729 fs->lfs_curseg); 1730 /* Wake up any cleaning procs waiting on this file system. */ 1731 lfs_wakeup_cleaner(fs); 1732 lfs_newseg(fs); 1733 repeat = 1; 1734 fs->lfs_offset = fs->lfs_curseg; 1735 1736 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1737 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); 1738 1739 /* 1740 * If the segment contains a superblock, update the offset 1741 * and summary address to skip over it. 1742 */ 1743 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1744 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1745 fs->lfs_offset += btofsb(fs, LFS_SBPAD); 1746 sp->seg_bytes_left -= LFS_SBPAD; 1747 } 1748 brelse(bp, 0); 1749 /* Segment zero could also contain the labelpad */ 1750 if (fs->lfs_version > 1 && sp->seg_number == 0 && 1751 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { 1752 fs->lfs_offset += 1753 btofsb(fs, LFS_LABELPAD) - fs->lfs_start; 1754 sp->seg_bytes_left -= 1755 LFS_LABELPAD - fsbtob(fs, fs->lfs_start); 1756 } 1757 } else { 1758 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1759 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - 1760 (fs->lfs_offset - fs->lfs_curseg)); 1761 } 1762 fs->lfs_lastpseg = fs->lfs_offset; 1763 1764 /* Record first address of this partial segment */ 1765 if (sp->seg_flags & SEGM_CLEAN) { 1766 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset; 1767 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1768 /* "1" is the artificial inc in lfs_seglock */ 1769 mutex_enter(&lfs_lock); 1770 while (fs->lfs_iocount > 1) { 1771 mtsleep(&fs->lfs_iocount, PRIBIO + 1, 1772 "lfs_initseg", 0, &lfs_lock); 1773 } 1774 mutex_exit(&lfs_lock); 1775 fs->lfs_cleanind = 0; 1776 } 1777 } 1778 1779 sp->fs = fs; 1780 sp->ibp = NULL; 1781 sp->idp = NULL; 1782 sp->ninodes = 0; 1783 sp->ndupino = 0; 1784 1785 sp->cbpp = sp->bpp; 1786 1787 /* Get a new buffer for SEGSUM */ 1788 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1789 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY); 1790 1791 /* ... and enter it into the buffer list. */ 1792 *sp->cbpp = sbp; 1793 sp->cbpp++; 1794 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); 1795 1796 sp->start_bpp = sp->cbpp; 1797 1798 /* Set point to SEGSUM, initialize it. */ 1799 ssp = sp->segsum = sbp->b_data; 1800 memset(ssp, 0, fs->lfs_sumsize); 1801 ssp->ss_next = fs->lfs_nextseg; 1802 ssp->ss_nfinfo = ssp->ss_ninos = 0; 1803 ssp->ss_magic = SS_MAGIC; 1804 1805 /* Set pointer to first FINFO, initialize it. */ 1806 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs)); 1807 sp->fip->fi_nblocks = 0; 1808 sp->start_lbp = &sp->fip->fi_blocks[0]; 1809 sp->fip->fi_lastlength = 0; 1810 1811 sp->seg_bytes_left -= fs->lfs_sumsize; 1812 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); 1813 1814 return (repeat); 1815 } 1816 1817 /* 1818 * Remove SEGUSE_INVAL from all segments. 1819 */ 1820 void 1821 lfs_unset_inval_all(struct lfs *fs) 1822 { 1823 SEGUSE *sup; 1824 struct buf *bp; 1825 int i; 1826 1827 for (i = 0; i < fs->lfs_nseg; i++) { 1828 LFS_SEGENTRY(sup, fs, i, bp); 1829 if (sup->su_flags & SEGUSE_INVAL) { 1830 sup->su_flags &= ~SEGUSE_INVAL; 1831 LFS_WRITESEGENTRY(sup, fs, i, bp); 1832 } else 1833 brelse(bp, 0); 1834 } 1835 } 1836 1837 /* 1838 * Return the next segment to write. 1839 */ 1840 void 1841 lfs_newseg(struct lfs *fs) 1842 { 1843 CLEANERINFO *cip; 1844 SEGUSE *sup; 1845 struct buf *bp; 1846 int curseg, isdirty, sn, skip_inval; 1847 1848 ASSERT_SEGLOCK(fs); 1849 1850 /* Honor LFCNWRAPSTOP */ 1851 mutex_enter(&lfs_lock); 1852 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) { 1853 if (fs->lfs_wrappass) { 1854 log(LOG_NOTICE, "%s: wrappass=%d\n", 1855 fs->lfs_fsmnt, fs->lfs_wrappass); 1856 fs->lfs_wrappass = 0; 1857 break; 1858 } 1859 fs->lfs_wrapstatus = LFS_WRAP_WAITING; 1860 wakeup(&fs->lfs_nowrap); 1861 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt); 1862 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz, 1863 &lfs_lock); 1864 } 1865 fs->lfs_wrapstatus = LFS_WRAP_GOING; 1866 mutex_exit(&lfs_lock); 1867 1868 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1869 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n", 1870 dtosn(fs, fs->lfs_nextseg))); 1871 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1872 sup->su_nbytes = 0; 1873 sup->su_nsums = 0; 1874 sup->su_ninos = 0; 1875 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1876 1877 LFS_CLEANERINFO(cip, fs, bp); 1878 --cip->clean; 1879 ++cip->dirty; 1880 fs->lfs_nclean = cip->clean; 1881 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1882 1883 fs->lfs_lastseg = fs->lfs_curseg; 1884 fs->lfs_curseg = fs->lfs_nextseg; 1885 skip_inval = 1; 1886 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { 1887 sn = (sn + 1) % fs->lfs_nseg; 1888 1889 if (sn == curseg) { 1890 if (skip_inval) 1891 skip_inval = 0; 1892 else 1893 panic("lfs_nextseg: no clean segments"); 1894 } 1895 LFS_SEGENTRY(sup, fs, sn, bp); 1896 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0)); 1897 /* Check SEGUSE_EMPTY as we go along */ 1898 if (isdirty && sup->su_nbytes == 0 && 1899 !(sup->su_flags & SEGUSE_EMPTY)) 1900 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1901 else 1902 brelse(bp, 0); 1903 1904 if (!isdirty) 1905 break; 1906 } 1907 if (skip_inval == 0) 1908 lfs_unset_inval_all(fs); 1909 1910 ++fs->lfs_nactive; 1911 fs->lfs_nextseg = sntod(fs, sn); 1912 if (lfs_dostats) { 1913 ++lfs_stats.segsused; 1914 } 1915 } 1916 1917 static struct buf * 1918 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, 1919 int n) 1920 { 1921 struct lfs_cluster *cl; 1922 struct buf **bpp, *bp; 1923 1924 ASSERT_SEGLOCK(fs); 1925 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 1926 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 1927 memset(cl, 0, sizeof(*cl)); 1928 cl->fs = fs; 1929 cl->bpp = bpp; 1930 cl->bufcount = 0; 1931 cl->bufsize = 0; 1932 1933 /* If this segment is being written synchronously, note that */ 1934 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 1935 cl->flags |= LFS_CL_SYNC; 1936 cl->seg = fs->lfs_sp; 1937 ++cl->seg->seg_iocount; 1938 } 1939 1940 /* Get an empty buffer header, or maybe one with something on it */ 1941 bp = getiobuf(vp, true); 1942 bp->b_dev = NODEV; 1943 bp->b_blkno = bp->b_lblkno = addr; 1944 bp->b_iodone = lfs_cluster_callback; 1945 bp->b_private = cl; 1946 1947 return bp; 1948 } 1949 1950 int 1951 lfs_writeseg(struct lfs *fs, struct segment *sp) 1952 { 1953 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp; 1954 SEGUSE *sup; 1955 SEGSUM *ssp; 1956 int i; 1957 int do_again, nblocks, byteoffset; 1958 size_t el_size; 1959 struct lfs_cluster *cl; 1960 u_short ninos; 1961 struct vnode *devvp; 1962 char *p = NULL; 1963 struct vnode *vp; 1964 int32_t *daddrp; /* XXX ondisk32 */ 1965 int changed; 1966 u_int32_t sum; 1967 #ifdef DEBUG 1968 FINFO *fip; 1969 int findex; 1970 #endif 1971 1972 ASSERT_SEGLOCK(fs); 1973 1974 ssp = (SEGSUM *)sp->segsum; 1975 1976 /* 1977 * If there are no buffers other than the segment summary to write, 1978 * don't do anything. If we are the end of a dirop sequence, however, 1979 * write the empty segment summary anyway, to help out the 1980 * roll-forward agent. 1981 */ 1982 if ((nblocks = sp->cbpp - sp->bpp) == 1) { 1983 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP) 1984 return 0; 1985 } 1986 1987 /* Note if partial segment is being written by the cleaner */ 1988 if (sp->seg_flags & SEGM_CLEAN) 1989 ssp->ss_flags |= SS_CLEAN; 1990 1991 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 1992 1993 /* Update the segment usage information. */ 1994 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1995 1996 /* Loop through all blocks, except the segment summary. */ 1997 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 1998 if ((*bpp)->b_vp != devvp) { 1999 sup->su_nbytes += (*bpp)->b_bcount; 2000 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d" 2001 " lbn %" PRId64 " db 0x%" PRIx64 "\n", 2002 sp->seg_number, (*bpp)->b_bcount, 2003 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 2004 (*bpp)->b_blkno)); 2005 } 2006 } 2007 2008 #ifdef DEBUG 2009 /* Check for zero-length and zero-version FINFO entries. */ 2010 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs)); 2011 for (findex = 0; findex < ssp->ss_nfinfo; findex++) { 2012 KDASSERT(fip->fi_nblocks > 0); 2013 KDASSERT(fip->fi_version > 0); 2014 fip = (FINFO *)((char *)fip + FINFOSIZE + 2015 sizeof(int32_t) * fip->fi_nblocks); 2016 } 2017 #endif /* DEBUG */ 2018 2019 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 2020 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n", 2021 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode), 2022 ssp->ss_ninos)); 2023 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode); 2024 /* sup->su_nbytes += fs->lfs_sumsize; */ 2025 if (fs->lfs_version == 1) 2026 sup->su_olastmod = time_second; 2027 else 2028 sup->su_lastmod = time_second; 2029 sup->su_ninos += ninos; 2030 ++sup->su_nsums; 2031 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); 2032 2033 do_again = !(bp->b_flags & B_GATHERED); 2034 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 2035 2036 /* 2037 * Mark blocks B_BUSY, to prevent then from being changed between 2038 * the checksum computation and the actual write. 2039 * 2040 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 2041 * there are any, replace them with copies that have UNASSIGNED 2042 * instead. 2043 */ 2044 mutex_enter(&bufcache_lock); 2045 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 2046 ++bpp; 2047 bp = *bpp; 2048 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */ 2049 bp->b_cflags |= BC_BUSY; 2050 continue; 2051 } 2052 2053 while (bp->b_cflags & BC_BUSY) { 2054 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential" 2055 " data summary corruption for ino %d, lbn %" 2056 PRId64 "\n", 2057 VTOI(bp->b_vp)->i_number, bp->b_lblkno)); 2058 bp->b_cflags |= BC_WANTED; 2059 cv_wait(&bp->b_busy, &bufcache_lock); 2060 } 2061 bp->b_cflags |= BC_BUSY; 2062 mutex_exit(&bufcache_lock); 2063 unbusybp = NULL; 2064 2065 /* 2066 * Check and replace indirect block UNWRITTEN bogosity. 2067 * XXX See comment in lfs_writefile. 2068 */ 2069 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 2070 VTOI(bp->b_vp)->i_ffs1_blocks != 2071 VTOI(bp->b_vp)->i_lfs_effnblks) { 2072 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n", 2073 VTOI(bp->b_vp)->i_number, 2074 VTOI(bp->b_vp)->i_lfs_effnblks, 2075 VTOI(bp->b_vp)->i_ffs1_blocks)); 2076 /* Make a copy we'll make changes to */ 2077 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 2078 bp->b_bcount, LFS_NB_IBLOCK); 2079 newbp->b_blkno = bp->b_blkno; 2080 memcpy(newbp->b_data, bp->b_data, 2081 newbp->b_bcount); 2082 2083 changed = 0; 2084 /* XXX ondisk32 */ 2085 for (daddrp = (int32_t *)(newbp->b_data); 2086 daddrp < (int32_t *)((char *)newbp->b_data + 2087 newbp->b_bcount); daddrp++) { 2088 if (*daddrp == UNWRITTEN) { 2089 ++changed; 2090 *daddrp = 0; 2091 } 2092 } 2093 /* 2094 * Get rid of the old buffer. Don't mark it clean, 2095 * though, if it still has dirty data on it. 2096 */ 2097 if (changed) { 2098 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):" 2099 " bp = %p newbp = %p\n", changed, bp, 2100 newbp)); 2101 *bpp = newbp; 2102 bp->b_flags &= ~B_GATHERED; 2103 bp->b_error = 0; 2104 if (bp->b_iodone != NULL) { 2105 DLOG((DLOG_SEG, "lfs_writeseg: " 2106 "indir bp should not be B_CALL\n")); 2107 biodone(bp); 2108 bp = NULL; 2109 } else { 2110 /* Still on free list, leave it there */ 2111 unbusybp = bp; 2112 /* 2113 * We have to re-decrement lfs_avail 2114 * since this block is going to come 2115 * back around to us in the next 2116 * segment. 2117 */ 2118 fs->lfs_avail -= 2119 btofsb(fs, bp->b_bcount); 2120 } 2121 } else { 2122 lfs_freebuf(fs, newbp); 2123 } 2124 } 2125 mutex_enter(&bufcache_lock); 2126 if (unbusybp != NULL) { 2127 unbusybp->b_cflags &= ~BC_BUSY; 2128 if (unbusybp->b_cflags & BC_WANTED) 2129 cv_broadcast(&bp->b_busy); 2130 } 2131 } 2132 mutex_exit(&bufcache_lock); 2133 2134 /* 2135 * Compute checksum across data and then across summary; the first 2136 * block (the summary block) is skipped. Set the create time here 2137 * so that it's guaranteed to be later than the inode mod times. 2138 */ 2139 sum = 0; 2140 if (fs->lfs_version == 1) 2141 el_size = sizeof(u_long); 2142 else 2143 el_size = sizeof(u_int32_t); 2144 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 2145 ++bpp; 2146 /* Loop through gop_write cluster blocks */ 2147 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 2148 byteoffset += fs->lfs_bsize) { 2149 #ifdef LFS_USE_B_INVAL 2150 if (((*bpp)->b_cflags & BC_INVAL) != 0 && 2151 (*bpp)->b_iodone != NULL) { 2152 if (copyin((void *)(*bpp)->b_saveaddr + 2153 byteoffset, dp, el_size)) { 2154 panic("lfs_writeseg: copyin failed [1]:" 2155 " ino %d blk %" PRId64, 2156 VTOI((*bpp)->b_vp)->i_number, 2157 (*bpp)->b_lblkno); 2158 } 2159 } else 2160 #endif /* LFS_USE_B_INVAL */ 2161 { 2162 sum = lfs_cksum_part((char *) 2163 (*bpp)->b_data + byteoffset, el_size, sum); 2164 } 2165 } 2166 } 2167 if (fs->lfs_version == 1) 2168 ssp->ss_ocreate = time_second; 2169 else { 2170 ssp->ss_create = time_second; 2171 ssp->ss_serial = ++fs->lfs_serial; 2172 ssp->ss_ident = fs->lfs_ident; 2173 } 2174 ssp->ss_datasum = lfs_cksum_fold(sum); 2175 ssp->ss_sumsum = cksum(&ssp->ss_datasum, 2176 fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); 2177 2178 mutex_enter(&lfs_lock); 2179 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + 2180 btofsb(fs, fs->lfs_sumsize)); 2181 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) + 2182 btofsb(fs, fs->lfs_sumsize)); 2183 mutex_exit(&lfs_lock); 2184 2185 /* 2186 * When we simply write the blocks we lose a rotation for every block 2187 * written. To avoid this problem, we cluster the buffers into a 2188 * chunk and write the chunk. MAXPHYS is the largest size I/O 2189 * devices can handle, use that for the size of the chunks. 2190 * 2191 * Blocks that are already clusters (from GOP_WRITE), however, we 2192 * don't bother to copy into other clusters. 2193 */ 2194 2195 #define CHUNKSIZE MAXPHYS 2196 2197 if (devvp == NULL) 2198 panic("devvp is NULL"); 2199 for (bpp = sp->bpp, i = nblocks; i;) { 2200 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 2201 cl = cbp->b_private; 2202 2203 cbp->b_flags |= B_ASYNC; 2204 cbp->b_cflags |= BC_BUSY; 2205 cbp->b_bcount = 0; 2206 2207 #if defined(DEBUG) && defined(DIAGNOSTIC) 2208 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs)) 2209 / sizeof(int32_t)) { 2210 panic("lfs_writeseg: real bpp overwrite"); 2211 } 2212 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) { 2213 panic("lfs_writeseg: theoretical bpp overwrite"); 2214 } 2215 #endif 2216 2217 /* 2218 * Construct the cluster. 2219 */ 2220 mutex_enter(&lfs_lock); 2221 ++fs->lfs_iocount; 2222 mutex_exit(&lfs_lock); 2223 while (i && cbp->b_bcount < CHUNKSIZE) { 2224 bp = *bpp; 2225 2226 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 2227 break; 2228 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 2229 break; 2230 2231 /* Clusters from GOP_WRITE are expedited */ 2232 if (bp->b_bcount > fs->lfs_bsize) { 2233 if (cbp->b_bcount > 0) 2234 /* Put in its own buffer */ 2235 break; 2236 else { 2237 cbp->b_data = bp->b_data; 2238 } 2239 } else if (cbp->b_bcount == 0) { 2240 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 2241 LFS_NB_CLUSTER); 2242 cl->flags |= LFS_CL_MALLOC; 2243 } 2244 #ifdef DIAGNOSTIC 2245 if (dtosn(fs, dbtofsb(fs, bp->b_blkno + 2246 btodb(bp->b_bcount - 1))) != 2247 sp->seg_number) { 2248 printf("blk size %d daddr %" PRIx64 2249 " not in seg %d\n", 2250 bp->b_bcount, bp->b_blkno, 2251 sp->seg_number); 2252 panic("segment overwrite"); 2253 } 2254 #endif 2255 2256 #ifdef LFS_USE_B_INVAL 2257 /* 2258 * Fake buffers from the cleaner are marked as B_INVAL. 2259 * We need to copy the data from user space rather than 2260 * from the buffer indicated. 2261 * XXX == what do I do on an error? 2262 */ 2263 if ((bp->b_cflags & BC_INVAL) != 0 && 2264 bp->b_iodone != NULL) { 2265 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 2266 panic("lfs_writeseg: " 2267 "copyin failed [2]"); 2268 } else 2269 #endif /* LFS_USE_B_INVAL */ 2270 if (cl->flags & LFS_CL_MALLOC) { 2271 /* copy data into our cluster. */ 2272 memcpy(p, bp->b_data, bp->b_bcount); 2273 p += bp->b_bcount; 2274 } 2275 2276 cbp->b_bcount += bp->b_bcount; 2277 cl->bufsize += bp->b_bcount; 2278 2279 bp->b_flags &= ~B_READ; 2280 bp->b_error = 0; 2281 cl->bpp[cl->bufcount++] = bp; 2282 2283 vp = bp->b_vp; 2284 mutex_enter(&bufcache_lock); 2285 mutex_enter(vp->v_interlock); 2286 bp->b_oflags &= ~(BO_DELWRI | BO_DONE); 2287 reassignbuf(bp, vp); 2288 vp->v_numoutput++; 2289 mutex_exit(vp->v_interlock); 2290 mutex_exit(&bufcache_lock); 2291 2292 bpp++; 2293 i--; 2294 } 2295 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2296 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); 2297 else 2298 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); 2299 mutex_enter(devvp->v_interlock); 2300 devvp->v_numoutput++; 2301 mutex_exit(devvp->v_interlock); 2302 VOP_STRATEGY(devvp, cbp); 2303 curlwp->l_ru.ru_oublock++; 2304 } 2305 2306 if (lfs_dostats) { 2307 ++lfs_stats.psegwrites; 2308 lfs_stats.blocktot += nblocks - 1; 2309 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2310 ++lfs_stats.psyncwrites; 2311 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 2312 ++lfs_stats.pcleanwrites; 2313 lfs_stats.cleanblocks += nblocks - 1; 2314 } 2315 } 2316 2317 return (lfs_initseg(fs) || do_again); 2318 } 2319 2320 void 2321 lfs_writesuper(struct lfs *fs, daddr_t daddr) 2322 { 2323 struct buf *bp; 2324 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2325 int s; 2326 2327 ASSERT_MAYBE_SEGLOCK(fs); 2328 #ifdef DIAGNOSTIC 2329 KASSERT(fs->lfs_magic == LFS_MAGIC); 2330 #endif 2331 /* 2332 * If we can write one superblock while another is in 2333 * progress, we risk not having a complete checkpoint if we crash. 2334 * So, block here if a superblock write is in progress. 2335 */ 2336 mutex_enter(&lfs_lock); 2337 s = splbio(); 2338 while (fs->lfs_sbactive) { 2339 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0, 2340 &lfs_lock); 2341 } 2342 fs->lfs_sbactive = daddr; 2343 splx(s); 2344 mutex_exit(&lfs_lock); 2345 2346 /* Set timestamp of this version of the superblock */ 2347 if (fs->lfs_version == 1) 2348 fs->lfs_otstamp = time_second; 2349 fs->lfs_tstamp = time_second; 2350 2351 /* Checksum the superblock and copy it into a buffer. */ 2352 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 2353 bp = lfs_newbuf(fs, devvp, 2354 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2355 memset((char *)bp->b_data + sizeof(struct dlfs), 0, 2356 LFS_SBPAD - sizeof(struct dlfs)); 2357 *(struct dlfs *)bp->b_data = fs->lfs_dlfs; 2358 2359 bp->b_cflags |= BC_BUSY; 2360 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC; 2361 bp->b_oflags &= ~(BO_DONE | BO_DELWRI); 2362 bp->b_error = 0; 2363 bp->b_iodone = lfs_supercallback; 2364 2365 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) 2366 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 2367 else 2368 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 2369 curlwp->l_ru.ru_oublock++; 2370 2371 mutex_enter(devvp->v_interlock); 2372 devvp->v_numoutput++; 2373 mutex_exit(devvp->v_interlock); 2374 2375 mutex_enter(&lfs_lock); 2376 ++fs->lfs_iocount; 2377 mutex_exit(&lfs_lock); 2378 VOP_STRATEGY(devvp, bp); 2379 } 2380 2381 /* 2382 * Logical block number match routines used when traversing the dirty block 2383 * chain. 2384 */ 2385 int 2386 lfs_match_fake(struct lfs *fs, struct buf *bp) 2387 { 2388 2389 ASSERT_SEGLOCK(fs); 2390 return LFS_IS_MALLOC_BUF(bp); 2391 } 2392 2393 #if 0 2394 int 2395 lfs_match_real(struct lfs *fs, struct buf *bp) 2396 { 2397 2398 ASSERT_SEGLOCK(fs); 2399 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2400 } 2401 #endif 2402 2403 int 2404 lfs_match_data(struct lfs *fs, struct buf *bp) 2405 { 2406 2407 ASSERT_SEGLOCK(fs); 2408 return (bp->b_lblkno >= 0); 2409 } 2410 2411 int 2412 lfs_match_indir(struct lfs *fs, struct buf *bp) 2413 { 2414 daddr_t lbn; 2415 2416 ASSERT_SEGLOCK(fs); 2417 lbn = bp->b_lblkno; 2418 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 2419 } 2420 2421 int 2422 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2423 { 2424 daddr_t lbn; 2425 2426 ASSERT_SEGLOCK(fs); 2427 lbn = bp->b_lblkno; 2428 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 2429 } 2430 2431 int 2432 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2433 { 2434 daddr_t lbn; 2435 2436 ASSERT_SEGLOCK(fs); 2437 lbn = bp->b_lblkno; 2438 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 2439 } 2440 2441 static void 2442 lfs_free_aiodone(struct buf *bp) 2443 { 2444 struct lfs *fs; 2445 2446 KERNEL_LOCK(1, curlwp); 2447 fs = bp->b_private; 2448 ASSERT_NO_SEGLOCK(fs); 2449 lfs_freebuf(fs, bp); 2450 KERNEL_UNLOCK_LAST(curlwp); 2451 } 2452 2453 static void 2454 lfs_super_aiodone(struct buf *bp) 2455 { 2456 struct lfs *fs; 2457 2458 KERNEL_LOCK(1, curlwp); 2459 fs = bp->b_private; 2460 ASSERT_NO_SEGLOCK(fs); 2461 mutex_enter(&lfs_lock); 2462 fs->lfs_sbactive = 0; 2463 if (--fs->lfs_iocount <= 1) 2464 wakeup(&fs->lfs_iocount); 2465 wakeup(&fs->lfs_sbactive); 2466 mutex_exit(&lfs_lock); 2467 lfs_freebuf(fs, bp); 2468 KERNEL_UNLOCK_LAST(curlwp); 2469 } 2470 2471 static void 2472 lfs_cluster_aiodone(struct buf *bp) 2473 { 2474 struct lfs_cluster *cl; 2475 struct lfs *fs; 2476 struct buf *tbp, *fbp; 2477 struct vnode *vp, *devvp, *ovp; 2478 struct inode *ip; 2479 int error; 2480 2481 KERNEL_LOCK(1, curlwp); 2482 2483 error = bp->b_error; 2484 cl = bp->b_private; 2485 fs = cl->fs; 2486 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2487 ASSERT_NO_SEGLOCK(fs); 2488 2489 /* Put the pages back, and release the buffer */ 2490 while (cl->bufcount--) { 2491 tbp = cl->bpp[cl->bufcount]; 2492 KASSERT(tbp->b_cflags & BC_BUSY); 2493 if (error) { 2494 tbp->b_error = error; 2495 } 2496 2497 /* 2498 * We're done with tbp. If it has not been re-dirtied since 2499 * the cluster was written, free it. Otherwise, keep it on 2500 * the locked list to be written again. 2501 */ 2502 vp = tbp->b_vp; 2503 2504 tbp->b_flags &= ~B_GATHERED; 2505 2506 LFS_BCLEAN_LOG(fs, tbp); 2507 2508 mutex_enter(&bufcache_lock); 2509 if (tbp->b_iodone == NULL) { 2510 KASSERT(tbp->b_flags & B_LOCKED); 2511 bremfree(tbp); 2512 if (vp) { 2513 mutex_enter(vp->v_interlock); 2514 reassignbuf(tbp, vp); 2515 mutex_exit(vp->v_interlock); 2516 } 2517 tbp->b_flags |= B_ASYNC; /* for biodone */ 2518 } 2519 2520 if (((tbp->b_flags | tbp->b_oflags) & 2521 (B_LOCKED | BO_DELWRI)) == B_LOCKED) 2522 LFS_UNLOCK_BUF(tbp); 2523 2524 if (tbp->b_oflags & BO_DONE) { 2525 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n", 2526 cl->bufcount, (long)tbp->b_flags)); 2527 } 2528 2529 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) { 2530 /* 2531 * A buffer from the page daemon. 2532 * We use the same iodone as it does, 2533 * so we must manually disassociate its 2534 * buffers from the vp. 2535 */ 2536 if ((ovp = tbp->b_vp) != NULL) { 2537 /* This is just silly */ 2538 mutex_enter(ovp->v_interlock); 2539 brelvp(tbp); 2540 mutex_exit(ovp->v_interlock); 2541 tbp->b_vp = vp; 2542 tbp->b_objlock = vp->v_interlock; 2543 } 2544 /* Put it back the way it was */ 2545 tbp->b_flags |= B_ASYNC; 2546 /* Master buffers have BC_AGE */ 2547 if (tbp->b_private == tbp) 2548 tbp->b_cflags |= BC_AGE; 2549 } 2550 mutex_exit(&bufcache_lock); 2551 2552 biodone(tbp); 2553 2554 /* 2555 * If this is the last block for this vnode, but 2556 * there are other blocks on its dirty list, 2557 * set IN_MODIFIED/IN_CLEANING depending on what 2558 * sort of block. Only do this for our mount point, 2559 * not for, e.g., inode blocks that are attached to 2560 * the devvp. 2561 * XXX KS - Shouldn't we set *both* if both types 2562 * of blocks are present (traverse the dirty list?) 2563 */ 2564 mutex_enter(&lfs_lock); 2565 mutex_enter(vp->v_interlock); 2566 if (vp != devvp && vp->v_numoutput == 0 && 2567 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2568 ip = VTOI(vp); 2569 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n", 2570 ip->i_number)); 2571 if (LFS_IS_MALLOC_BUF(fbp)) 2572 LFS_SET_UINO(ip, IN_CLEANING); 2573 else 2574 LFS_SET_UINO(ip, IN_MODIFIED); 2575 } 2576 cv_broadcast(&vp->v_cv); 2577 mutex_exit(vp->v_interlock); 2578 mutex_exit(&lfs_lock); 2579 } 2580 2581 /* Fix up the cluster buffer, and release it */ 2582 if (cl->flags & LFS_CL_MALLOC) 2583 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2584 putiobuf(bp); 2585 2586 /* Note i/o done */ 2587 if (cl->flags & LFS_CL_SYNC) { 2588 if (--cl->seg->seg_iocount == 0) 2589 wakeup(&cl->seg->seg_iocount); 2590 } 2591 mutex_enter(&lfs_lock); 2592 #ifdef DIAGNOSTIC 2593 if (fs->lfs_iocount == 0) 2594 panic("lfs_cluster_aiodone: zero iocount"); 2595 #endif 2596 if (--fs->lfs_iocount <= 1) 2597 wakeup(&fs->lfs_iocount); 2598 mutex_exit(&lfs_lock); 2599 2600 KERNEL_UNLOCK_LAST(curlwp); 2601 2602 pool_put(&fs->lfs_bpppool, cl->bpp); 2603 cl->bpp = NULL; 2604 pool_put(&fs->lfs_clpool, cl); 2605 } 2606 2607 static void 2608 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) 2609 { 2610 /* reset b_iodone for when this is a single-buf i/o. */ 2611 bp->b_iodone = aiodone; 2612 2613 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL); 2614 } 2615 2616 static void 2617 lfs_cluster_callback(struct buf *bp) 2618 { 2619 2620 lfs_generic_callback(bp, lfs_cluster_aiodone); 2621 } 2622 2623 void 2624 lfs_supercallback(struct buf *bp) 2625 { 2626 2627 lfs_generic_callback(bp, lfs_super_aiodone); 2628 } 2629 2630 /* 2631 * The only buffers that are going to hit these functions are the 2632 * segment write blocks, or the segment summaries, or the superblocks. 2633 * 2634 * All of the above are created by lfs_newbuf, and so do not need to be 2635 * released via brelse. 2636 */ 2637 void 2638 lfs_callback(struct buf *bp) 2639 { 2640 2641 lfs_generic_callback(bp, lfs_free_aiodone); 2642 } 2643 2644 /* 2645 * Shellsort (diminishing increment sort) from Data Structures and 2646 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2647 * see also Knuth Vol. 3, page 84. The increments are selected from 2648 * formula (8), page 95. Roughly O(N^3/2). 2649 */ 2650 /* 2651 * This is our own private copy of shellsort because we want to sort 2652 * two parallel arrays (the array of buffer pointers and the array of 2653 * logical block numbers) simultaneously. Note that we cast the array 2654 * of logical block numbers to a unsigned in this routine so that the 2655 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2656 */ 2657 2658 void 2659 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size) 2660 { 2661 static int __rsshell_increments[] = { 4, 1, 0 }; 2662 int incr, *incrp, t1, t2; 2663 struct buf *bp_temp; 2664 2665 #ifdef DEBUG 2666 incr = 0; 2667 for (t1 = 0; t1 < nmemb; t1++) { 2668 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2669 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) { 2670 /* dump before panic */ 2671 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2672 nmemb, size); 2673 incr = 0; 2674 for (t1 = 0; t1 < nmemb; t1++) { 2675 const struct buf *bp = bp_array[t1]; 2676 2677 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2678 PRIu64 "\n", t1, 2679 (uint64_t)bp->b_bcount, 2680 (uint64_t)bp->b_lblkno); 2681 printf("lbns:"); 2682 for (t2 = 0; t2 * size < bp->b_bcount; 2683 t2++) { 2684 printf(" %" PRId32, 2685 lb_array[incr++]); 2686 } 2687 printf("\n"); 2688 } 2689 panic("lfs_shellsort: inconsistent input"); 2690 } 2691 } 2692 } 2693 #endif 2694 2695 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2696 for (t1 = incr; t1 < nmemb; ++t1) 2697 for (t2 = t1 - incr; t2 >= 0;) 2698 if ((u_int32_t)bp_array[t2]->b_lblkno > 2699 (u_int32_t)bp_array[t2 + incr]->b_lblkno) { 2700 bp_temp = bp_array[t2]; 2701 bp_array[t2] = bp_array[t2 + incr]; 2702 bp_array[t2 + incr] = bp_temp; 2703 t2 -= incr; 2704 } else 2705 break; 2706 2707 /* Reform the list of logical blocks */ 2708 incr = 0; 2709 for (t1 = 0; t1 < nmemb; t1++) { 2710 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2711 lb_array[incr++] = bp_array[t1]->b_lblkno + t2; 2712 } 2713 } 2714 } 2715 2716 /* 2717 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK, 2718 * however, we must press on. Just fake success in that case. 2719 */ 2720 int 2721 lfs_vref(struct vnode *vp) 2722 { 2723 int error; 2724 struct lfs *fs; 2725 2726 KASSERT(mutex_owned(vp->v_interlock)); 2727 2728 fs = VTOI(vp)->i_lfs; 2729 2730 ASSERT_MAYBE_SEGLOCK(fs); 2731 2732 /* 2733 * If we return 1 here during a flush, we risk vinvalbuf() not 2734 * being able to flush all of the pages from this vnode, which 2735 * will cause it to panic. So, return 0 if a flush is in progress. 2736 */ 2737 error = vget(vp, LK_NOWAIT); 2738 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) { 2739 ++fs->lfs_flushvp_fakevref; 2740 return 0; 2741 } 2742 return error; 2743 } 2744 2745 /* 2746 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We 2747 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. 2748 */ 2749 void 2750 lfs_vunref(struct vnode *vp) 2751 { 2752 struct lfs *fs; 2753 2754 fs = VTOI(vp)->i_lfs; 2755 ASSERT_MAYBE_SEGLOCK(fs); 2756 2757 /* 2758 * Analogous to lfs_vref, if the node is flushing, fake it. 2759 */ 2760 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) { 2761 --fs->lfs_flushvp_fakevref; 2762 return; 2763 } 2764 2765 /* does not call inactive */ 2766 mutex_enter(vp->v_interlock); 2767 vrelel(vp, 0); 2768 } 2769 2770 /* 2771 * We use this when we have vnodes that were loaded in solely for cleaning. 2772 * There is no reason to believe that these vnodes will be referenced again 2773 * soon, since the cleaning process is unrelated to normal filesystem 2774 * activity. Putting cleaned vnodes at the tail of the list has the effect 2775 * of flushing the vnode LRU. So, put vnodes that were loaded only for 2776 * cleaning at the head of the list, instead. 2777 */ 2778 void 2779 lfs_vunref_head(struct vnode *vp) 2780 { 2781 2782 ASSERT_SEGLOCK(VTOI(vp)->i_lfs); 2783 2784 /* does not call inactive, inserts non-held vnode at head of freelist */ 2785 mutex_enter(vp->v_interlock); 2786 vrelel(vp, 0); 2787 } 2788 2789 2790 /* 2791 * Set up an FINFO entry for a new file. The fip pointer is assumed to 2792 * point at uninitialized space. 2793 */ 2794 void 2795 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers) 2796 { 2797 struct segment *sp = fs->lfs_sp; 2798 2799 KASSERT(vers > 0); 2800 2801 if (sp->seg_bytes_left < fs->lfs_bsize || 2802 sp->sum_bytes_left < sizeof(struct finfo)) 2803 (void) lfs_writeseg(fs, fs->lfs_sp); 2804 2805 sp->sum_bytes_left -= FINFOSIZE; 2806 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 2807 sp->fip->fi_nblocks = 0; 2808 sp->fip->fi_ino = ino; 2809 sp->fip->fi_version = vers; 2810 } 2811 2812 /* 2813 * Release the FINFO entry, either clearing out an unused entry or 2814 * advancing us to the next available entry. 2815 */ 2816 void 2817 lfs_release_finfo(struct lfs *fs) 2818 { 2819 struct segment *sp = fs->lfs_sp; 2820 2821 if (sp->fip->fi_nblocks != 0) { 2822 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE + 2823 sizeof(int32_t) * sp->fip->fi_nblocks); 2824 sp->start_lbp = &sp->fip->fi_blocks[0]; 2825 } else { 2826 sp->sum_bytes_left += FINFOSIZE; 2827 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 2828 } 2829 } 2830