xref: /minix3/sys/external/bsd/compiler_rt/dist/lib/builtins/ppc/fixtfdi.c (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1*0a6a1f1dSLionel Sambuc /* This file is distributed under the University of Illinois Open Source
2*0a6a1f1dSLionel Sambuc  * License. See LICENSE.TXT for details.
3*0a6a1f1dSLionel Sambuc  */
4*0a6a1f1dSLionel Sambuc 
5*0a6a1f1dSLionel Sambuc /* int64_t __fixunstfdi(long double x);
6*0a6a1f1dSLionel Sambuc  * This file implements the PowerPC 128-bit double-double -> int64_t conversion
7*0a6a1f1dSLionel Sambuc  */
8*0a6a1f1dSLionel Sambuc 
9*0a6a1f1dSLionel Sambuc #include "DD.h"
10*0a6a1f1dSLionel Sambuc #include "../int_math.h"
11*0a6a1f1dSLionel Sambuc 
__fixtfdi(long double input)12*0a6a1f1dSLionel Sambuc uint64_t __fixtfdi(long double input)
13*0a6a1f1dSLionel Sambuc {
14*0a6a1f1dSLionel Sambuc 	const DD x = { .ld = input };
15*0a6a1f1dSLionel Sambuc 	const doublebits hibits = { .d = x.s.hi };
16*0a6a1f1dSLionel Sambuc 
17*0a6a1f1dSLionel Sambuc 	const uint32_t absHighWord = (uint32_t)(hibits.x >> 32) & UINT32_C(0x7fffffff);
18*0a6a1f1dSLionel Sambuc 	const uint32_t absHighWordMinusOne = absHighWord - UINT32_C(0x3ff00000);
19*0a6a1f1dSLionel Sambuc 
20*0a6a1f1dSLionel Sambuc 	/* If (1.0 - tiny) <= input < 0x1.0p63: */
21*0a6a1f1dSLionel Sambuc 	if (UINT32_C(0x03f00000) > absHighWordMinusOne)
22*0a6a1f1dSLionel Sambuc 	{
23*0a6a1f1dSLionel Sambuc 		/* Do an unsigned conversion of the absolute value, then restore the sign. */
24*0a6a1f1dSLionel Sambuc 		const int unbiasedHeadExponent = absHighWordMinusOne >> 20;
25*0a6a1f1dSLionel Sambuc 
26*0a6a1f1dSLionel Sambuc 		int64_t result = hibits.x & INT64_C(0x000fffffffffffff); /* mantissa(hi) */
27*0a6a1f1dSLionel Sambuc 		result |= INT64_C(0x0010000000000000); /* matissa(hi) with implicit bit */
28*0a6a1f1dSLionel Sambuc 		result <<= 10; /* mantissa(hi) with one zero preceding bit. */
29*0a6a1f1dSLionel Sambuc 
30*0a6a1f1dSLionel Sambuc 		const int64_t hiNegationMask = ((int64_t)(hibits.x)) >> 63;
31*0a6a1f1dSLionel Sambuc 
32*0a6a1f1dSLionel Sambuc 		/* If the tail is non-zero, we need to patch in the tail bits. */
33*0a6a1f1dSLionel Sambuc 		if (0.0 != x.s.lo)
34*0a6a1f1dSLionel Sambuc 		{
35*0a6a1f1dSLionel Sambuc 			const doublebits lobits = { .d = x.s.lo };
36*0a6a1f1dSLionel Sambuc 			int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
37*0a6a1f1dSLionel Sambuc 			tailMantissa |= INT64_C(0x0010000000000000);
38*0a6a1f1dSLionel Sambuc 
39*0a6a1f1dSLionel Sambuc 			/* At this point we have the mantissa of |tail| */
40*0a6a1f1dSLionel Sambuc 			/* We need to negate it if head and tail have different signs. */
41*0a6a1f1dSLionel Sambuc 			const int64_t loNegationMask = ((int64_t)(lobits.x)) >> 63;
42*0a6a1f1dSLionel Sambuc 			const int64_t negationMask = loNegationMask ^ hiNegationMask;
43*0a6a1f1dSLionel Sambuc 			tailMantissa = (tailMantissa ^ negationMask) - negationMask;
44*0a6a1f1dSLionel Sambuc 
45*0a6a1f1dSLionel Sambuc 			/* Now we have the mantissa of tail as a signed 2s-complement integer */
46*0a6a1f1dSLionel Sambuc 
47*0a6a1f1dSLionel Sambuc 			const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
48*0a6a1f1dSLionel Sambuc 
49*0a6a1f1dSLionel Sambuc 			/* Shift the tail mantissa into the right position, accounting for the
50*0a6a1f1dSLionel Sambuc 			 * bias of 10 that we shifted the head mantissa by.
51*0a6a1f1dSLionel Sambuc 			 */
52*0a6a1f1dSLionel Sambuc 			tailMantissa >>= (unbiasedHeadExponent - (biasedTailExponent - (1023 - 10)));
53*0a6a1f1dSLionel Sambuc 
54*0a6a1f1dSLionel Sambuc 			result += tailMantissa;
55*0a6a1f1dSLionel Sambuc 		}
56*0a6a1f1dSLionel Sambuc 
57*0a6a1f1dSLionel Sambuc 		result >>= (62 - unbiasedHeadExponent);
58*0a6a1f1dSLionel Sambuc 
59*0a6a1f1dSLionel Sambuc 		/* Restore the sign of the result and return */
60*0a6a1f1dSLionel Sambuc 		result = (result ^ hiNegationMask) - hiNegationMask;
61*0a6a1f1dSLionel Sambuc 		return result;
62*0a6a1f1dSLionel Sambuc 
63*0a6a1f1dSLionel Sambuc 	}
64*0a6a1f1dSLionel Sambuc 
65*0a6a1f1dSLionel Sambuc 	/* Edge cases handled here: */
66*0a6a1f1dSLionel Sambuc 
67*0a6a1f1dSLionel Sambuc 	/* |x| < 1, result is zero. */
68*0a6a1f1dSLionel Sambuc 	if (1.0 > crt_fabs(x.s.hi))
69*0a6a1f1dSLionel Sambuc 		return INT64_C(0);
70*0a6a1f1dSLionel Sambuc 
71*0a6a1f1dSLionel Sambuc 	/* x very close to INT64_MIN, care must be taken to see which side we are on. */
72*0a6a1f1dSLionel Sambuc 	if (x.s.hi == -0x1.0p63) {
73*0a6a1f1dSLionel Sambuc 
74*0a6a1f1dSLionel Sambuc 		int64_t result = INT64_MIN;
75*0a6a1f1dSLionel Sambuc 
76*0a6a1f1dSLionel Sambuc 		if (0.0 < x.s.lo)
77*0a6a1f1dSLionel Sambuc 		{
78*0a6a1f1dSLionel Sambuc 			/* If the tail is positive, the correct result is something other than INT64_MIN.
79*0a6a1f1dSLionel Sambuc 			 * we'll need to figure out what it is.
80*0a6a1f1dSLionel Sambuc 			 */
81*0a6a1f1dSLionel Sambuc 
82*0a6a1f1dSLionel Sambuc 			const doublebits lobits = { .d = x.s.lo };
83*0a6a1f1dSLionel Sambuc 			int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
84*0a6a1f1dSLionel Sambuc 			tailMantissa |= INT64_C(0x0010000000000000);
85*0a6a1f1dSLionel Sambuc 
86*0a6a1f1dSLionel Sambuc 			/* Now we negate the tailMantissa */
87*0a6a1f1dSLionel Sambuc 			tailMantissa = (tailMantissa ^ INT64_C(-1)) + INT64_C(1);
88*0a6a1f1dSLionel Sambuc 
89*0a6a1f1dSLionel Sambuc 			/* And shift it by the appropriate amount */
90*0a6a1f1dSLionel Sambuc 			const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
91*0a6a1f1dSLionel Sambuc 			tailMantissa >>= 1075 - biasedTailExponent;
92*0a6a1f1dSLionel Sambuc 
93*0a6a1f1dSLionel Sambuc 			result -= tailMantissa;
94*0a6a1f1dSLionel Sambuc 		}
95*0a6a1f1dSLionel Sambuc 
96*0a6a1f1dSLionel Sambuc 		return result;
97*0a6a1f1dSLionel Sambuc 	}
98*0a6a1f1dSLionel Sambuc 
99*0a6a1f1dSLionel Sambuc 	/* Signed overflows, infinities, and NaNs */
100*0a6a1f1dSLionel Sambuc 	if (x.s.hi > 0.0)
101*0a6a1f1dSLionel Sambuc 		return INT64_MAX;
102*0a6a1f1dSLionel Sambuc 	else
103*0a6a1f1dSLionel Sambuc 		return INT64_MIN;
104*0a6a1f1dSLionel Sambuc }
105