xref: /minix3/sys/external/bsd/compiler_rt/dist/lib/builtins/divsf3.c (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1*0a6a1f1dSLionel Sambuc //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
2*0a6a1f1dSLionel Sambuc //
3*0a6a1f1dSLionel Sambuc //                     The LLVM Compiler Infrastructure
4*0a6a1f1dSLionel Sambuc //
5*0a6a1f1dSLionel Sambuc // This file is dual licensed under the MIT and the University of Illinois Open
6*0a6a1f1dSLionel Sambuc // Source Licenses. See LICENSE.TXT for details.
7*0a6a1f1dSLionel Sambuc //
8*0a6a1f1dSLionel Sambuc //===----------------------------------------------------------------------===//
9*0a6a1f1dSLionel Sambuc //
10*0a6a1f1dSLionel Sambuc // This file implements single-precision soft-float division
11*0a6a1f1dSLionel Sambuc // with the IEEE-754 default rounding (to nearest, ties to even).
12*0a6a1f1dSLionel Sambuc //
13*0a6a1f1dSLionel Sambuc // For simplicity, this implementation currently flushes denormals to zero.
14*0a6a1f1dSLionel Sambuc // It should be a fairly straightforward exercise to implement gradual
15*0a6a1f1dSLionel Sambuc // underflow with correct rounding.
16*0a6a1f1dSLionel Sambuc //
17*0a6a1f1dSLionel Sambuc //===----------------------------------------------------------------------===//
18*0a6a1f1dSLionel Sambuc 
19*0a6a1f1dSLionel Sambuc #define SINGLE_PRECISION
20*0a6a1f1dSLionel Sambuc #include "fp_lib.h"
21*0a6a1f1dSLionel Sambuc 
ARM_EABI_FNALIAS(fdiv,divsf3)22*0a6a1f1dSLionel Sambuc ARM_EABI_FNALIAS(fdiv, divsf3)
23*0a6a1f1dSLionel Sambuc 
24*0a6a1f1dSLionel Sambuc COMPILER_RT_ABI fp_t
25*0a6a1f1dSLionel Sambuc __divsf3(fp_t a, fp_t b) {
26*0a6a1f1dSLionel Sambuc 
27*0a6a1f1dSLionel Sambuc     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
28*0a6a1f1dSLionel Sambuc     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
29*0a6a1f1dSLionel Sambuc     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
30*0a6a1f1dSLionel Sambuc 
31*0a6a1f1dSLionel Sambuc     rep_t aSignificand = toRep(a) & significandMask;
32*0a6a1f1dSLionel Sambuc     rep_t bSignificand = toRep(b) & significandMask;
33*0a6a1f1dSLionel Sambuc     int scale = 0;
34*0a6a1f1dSLionel Sambuc 
35*0a6a1f1dSLionel Sambuc     // Detect if a or b is zero, denormal, infinity, or NaN.
36*0a6a1f1dSLionel Sambuc     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
37*0a6a1f1dSLionel Sambuc 
38*0a6a1f1dSLionel Sambuc         const rep_t aAbs = toRep(a) & absMask;
39*0a6a1f1dSLionel Sambuc         const rep_t bAbs = toRep(b) & absMask;
40*0a6a1f1dSLionel Sambuc 
41*0a6a1f1dSLionel Sambuc         // NaN / anything = qNaN
42*0a6a1f1dSLionel Sambuc         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
43*0a6a1f1dSLionel Sambuc         // anything / NaN = qNaN
44*0a6a1f1dSLionel Sambuc         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
45*0a6a1f1dSLionel Sambuc 
46*0a6a1f1dSLionel Sambuc         if (aAbs == infRep) {
47*0a6a1f1dSLionel Sambuc             // infinity / infinity = NaN
48*0a6a1f1dSLionel Sambuc             if (bAbs == infRep) return fromRep(qnanRep);
49*0a6a1f1dSLionel Sambuc             // infinity / anything else = +/- infinity
50*0a6a1f1dSLionel Sambuc             else return fromRep(aAbs | quotientSign);
51*0a6a1f1dSLionel Sambuc         }
52*0a6a1f1dSLionel Sambuc 
53*0a6a1f1dSLionel Sambuc         // anything else / infinity = +/- 0
54*0a6a1f1dSLionel Sambuc         if (bAbs == infRep) return fromRep(quotientSign);
55*0a6a1f1dSLionel Sambuc 
56*0a6a1f1dSLionel Sambuc         if (!aAbs) {
57*0a6a1f1dSLionel Sambuc             // zero / zero = NaN
58*0a6a1f1dSLionel Sambuc             if (!bAbs) return fromRep(qnanRep);
59*0a6a1f1dSLionel Sambuc             // zero / anything else = +/- zero
60*0a6a1f1dSLionel Sambuc             else return fromRep(quotientSign);
61*0a6a1f1dSLionel Sambuc         }
62*0a6a1f1dSLionel Sambuc         // anything else / zero = +/- infinity
63*0a6a1f1dSLionel Sambuc         if (!bAbs) return fromRep(infRep | quotientSign);
64*0a6a1f1dSLionel Sambuc 
65*0a6a1f1dSLionel Sambuc         // one or both of a or b is denormal, the other (if applicable) is a
66*0a6a1f1dSLionel Sambuc         // normal number.  Renormalize one or both of a and b, and set scale to
67*0a6a1f1dSLionel Sambuc         // include the necessary exponent adjustment.
68*0a6a1f1dSLionel Sambuc         if (aAbs < implicitBit) scale += normalize(&aSignificand);
69*0a6a1f1dSLionel Sambuc         if (bAbs < implicitBit) scale -= normalize(&bSignificand);
70*0a6a1f1dSLionel Sambuc     }
71*0a6a1f1dSLionel Sambuc 
72*0a6a1f1dSLionel Sambuc     // Or in the implicit significand bit.  (If we fell through from the
73*0a6a1f1dSLionel Sambuc     // denormal path it was already set by normalize( ), but setting it twice
74*0a6a1f1dSLionel Sambuc     // won't hurt anything.)
75*0a6a1f1dSLionel Sambuc     aSignificand |= implicitBit;
76*0a6a1f1dSLionel Sambuc     bSignificand |= implicitBit;
77*0a6a1f1dSLionel Sambuc     int quotientExponent = aExponent - bExponent + scale;
78*0a6a1f1dSLionel Sambuc 
79*0a6a1f1dSLionel Sambuc     // Align the significand of b as a Q31 fixed-point number in the range
80*0a6a1f1dSLionel Sambuc     // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
81*0a6a1f1dSLionel Sambuc     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
82*0a6a1f1dSLionel Sambuc     // is accurate to about 3.5 binary digits.
83*0a6a1f1dSLionel Sambuc     uint32_t q31b = bSignificand << 8;
84*0a6a1f1dSLionel Sambuc     uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
85*0a6a1f1dSLionel Sambuc 
86*0a6a1f1dSLionel Sambuc     // Now refine the reciprocal estimate using a Newton-Raphson iteration:
87*0a6a1f1dSLionel Sambuc     //
88*0a6a1f1dSLionel Sambuc     //     x1 = x0 * (2 - x0 * b)
89*0a6a1f1dSLionel Sambuc     //
90*0a6a1f1dSLionel Sambuc     // This doubles the number of correct binary digits in the approximation
91*0a6a1f1dSLionel Sambuc     // with each iteration, so after three iterations, we have about 28 binary
92*0a6a1f1dSLionel Sambuc     // digits of accuracy.
93*0a6a1f1dSLionel Sambuc     uint32_t correction;
94*0a6a1f1dSLionel Sambuc     correction = -((uint64_t)reciprocal * q31b >> 32);
95*0a6a1f1dSLionel Sambuc     reciprocal = (uint64_t)reciprocal * correction >> 31;
96*0a6a1f1dSLionel Sambuc     correction = -((uint64_t)reciprocal * q31b >> 32);
97*0a6a1f1dSLionel Sambuc     reciprocal = (uint64_t)reciprocal * correction >> 31;
98*0a6a1f1dSLionel Sambuc     correction = -((uint64_t)reciprocal * q31b >> 32);
99*0a6a1f1dSLionel Sambuc     reciprocal = (uint64_t)reciprocal * correction >> 31;
100*0a6a1f1dSLionel Sambuc 
101*0a6a1f1dSLionel Sambuc     // Exhaustive testing shows that the error in reciprocal after three steps
102*0a6a1f1dSLionel Sambuc     // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
103*0a6a1f1dSLionel Sambuc     // expectations.  We bump the reciprocal by a tiny value to force the error
104*0a6a1f1dSLionel Sambuc     // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
105*0a6a1f1dSLionel Sambuc     // be specific).  This also causes 1/1 to give a sensible approximation
106*0a6a1f1dSLionel Sambuc     // instead of zero (due to overflow).
107*0a6a1f1dSLionel Sambuc     reciprocal -= 2;
108*0a6a1f1dSLionel Sambuc 
109*0a6a1f1dSLionel Sambuc     // The numerical reciprocal is accurate to within 2^-28, lies in the
110*0a6a1f1dSLionel Sambuc     // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
111*0a6a1f1dSLionel Sambuc     // than the true reciprocal of b.  Multiplying a by this reciprocal thus
112*0a6a1f1dSLionel Sambuc     // gives a numerical q = a/b in Q24 with the following properties:
113*0a6a1f1dSLionel Sambuc     //
114*0a6a1f1dSLionel Sambuc     //    1. q < a/b
115*0a6a1f1dSLionel Sambuc     //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
116*0a6a1f1dSLionel Sambuc     //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
117*0a6a1f1dSLionel Sambuc     //       from the fact that we truncate the product, and the 2^27 term
118*0a6a1f1dSLionel Sambuc     //       is the error in the reciprocal of b scaled by the maximum
119*0a6a1f1dSLionel Sambuc     //       possible value of a.  As a consequence of this error bound,
120*0a6a1f1dSLionel Sambuc     //       either q or nextafter(q) is the correctly rounded
121*0a6a1f1dSLionel Sambuc     rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
122*0a6a1f1dSLionel Sambuc 
123*0a6a1f1dSLionel Sambuc     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
124*0a6a1f1dSLionel Sambuc     // In either case, we are going to compute a residual of the form
125*0a6a1f1dSLionel Sambuc     //
126*0a6a1f1dSLionel Sambuc     //     r = a - q*b
127*0a6a1f1dSLionel Sambuc     //
128*0a6a1f1dSLionel Sambuc     // We know from the construction of q that r satisfies:
129*0a6a1f1dSLionel Sambuc     //
130*0a6a1f1dSLionel Sambuc     //     0 <= r < ulp(q)*b
131*0a6a1f1dSLionel Sambuc     //
132*0a6a1f1dSLionel Sambuc     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
133*0a6a1f1dSLionel Sambuc     // already have the correct result.  The exact halfway case cannot occur.
134*0a6a1f1dSLionel Sambuc     // We also take this time to right shift quotient if it falls in the [1,2)
135*0a6a1f1dSLionel Sambuc     // range and adjust the exponent accordingly.
136*0a6a1f1dSLionel Sambuc     rep_t residual;
137*0a6a1f1dSLionel Sambuc     if (quotient < (implicitBit << 1)) {
138*0a6a1f1dSLionel Sambuc         residual = (aSignificand << 24) - quotient * bSignificand;
139*0a6a1f1dSLionel Sambuc         quotientExponent--;
140*0a6a1f1dSLionel Sambuc     } else {
141*0a6a1f1dSLionel Sambuc         quotient >>= 1;
142*0a6a1f1dSLionel Sambuc         residual = (aSignificand << 23) - quotient * bSignificand;
143*0a6a1f1dSLionel Sambuc     }
144*0a6a1f1dSLionel Sambuc 
145*0a6a1f1dSLionel Sambuc     const int writtenExponent = quotientExponent + exponentBias;
146*0a6a1f1dSLionel Sambuc 
147*0a6a1f1dSLionel Sambuc     if (writtenExponent >= maxExponent) {
148*0a6a1f1dSLionel Sambuc         // If we have overflowed the exponent, return infinity.
149*0a6a1f1dSLionel Sambuc         return fromRep(infRep | quotientSign);
150*0a6a1f1dSLionel Sambuc     }
151*0a6a1f1dSLionel Sambuc 
152*0a6a1f1dSLionel Sambuc     else if (writtenExponent < 1) {
153*0a6a1f1dSLionel Sambuc         // Flush denormals to zero.  In the future, it would be nice to add
154*0a6a1f1dSLionel Sambuc         // code to round them correctly.
155*0a6a1f1dSLionel Sambuc         return fromRep(quotientSign);
156*0a6a1f1dSLionel Sambuc     }
157*0a6a1f1dSLionel Sambuc 
158*0a6a1f1dSLionel Sambuc     else {
159*0a6a1f1dSLionel Sambuc         const bool round = (residual << 1) > bSignificand;
160*0a6a1f1dSLionel Sambuc         // Clear the implicit bit
161*0a6a1f1dSLionel Sambuc         rep_t absResult = quotient & significandMask;
162*0a6a1f1dSLionel Sambuc         // Insert the exponent
163*0a6a1f1dSLionel Sambuc         absResult |= (rep_t)writtenExponent << significandBits;
164*0a6a1f1dSLionel Sambuc         // Round
165*0a6a1f1dSLionel Sambuc         absResult += round;
166*0a6a1f1dSLionel Sambuc         // Insert the sign and return
167*0a6a1f1dSLionel Sambuc         return fromRep(absResult | quotientSign);
168*0a6a1f1dSLionel Sambuc     }
169*0a6a1f1dSLionel Sambuc }
170