1*0a6a1f1dSLionel Sambuc //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
2*0a6a1f1dSLionel Sambuc //
3*0a6a1f1dSLionel Sambuc // The LLVM Compiler Infrastructure
4*0a6a1f1dSLionel Sambuc //
5*0a6a1f1dSLionel Sambuc // This file is dual licensed under the MIT and the University of Illinois Open
6*0a6a1f1dSLionel Sambuc // Source Licenses. See LICENSE.TXT for details.
7*0a6a1f1dSLionel Sambuc //
8*0a6a1f1dSLionel Sambuc //===----------------------------------------------------------------------===//
9*0a6a1f1dSLionel Sambuc //
10*0a6a1f1dSLionel Sambuc // This file implements single-precision soft-float division
11*0a6a1f1dSLionel Sambuc // with the IEEE-754 default rounding (to nearest, ties to even).
12*0a6a1f1dSLionel Sambuc //
13*0a6a1f1dSLionel Sambuc // For simplicity, this implementation currently flushes denormals to zero.
14*0a6a1f1dSLionel Sambuc // It should be a fairly straightforward exercise to implement gradual
15*0a6a1f1dSLionel Sambuc // underflow with correct rounding.
16*0a6a1f1dSLionel Sambuc //
17*0a6a1f1dSLionel Sambuc //===----------------------------------------------------------------------===//
18*0a6a1f1dSLionel Sambuc
19*0a6a1f1dSLionel Sambuc #define SINGLE_PRECISION
20*0a6a1f1dSLionel Sambuc #include "fp_lib.h"
21*0a6a1f1dSLionel Sambuc
ARM_EABI_FNALIAS(fdiv,divsf3)22*0a6a1f1dSLionel Sambuc ARM_EABI_FNALIAS(fdiv, divsf3)
23*0a6a1f1dSLionel Sambuc
24*0a6a1f1dSLionel Sambuc COMPILER_RT_ABI fp_t
25*0a6a1f1dSLionel Sambuc __divsf3(fp_t a, fp_t b) {
26*0a6a1f1dSLionel Sambuc
27*0a6a1f1dSLionel Sambuc const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
28*0a6a1f1dSLionel Sambuc const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
29*0a6a1f1dSLionel Sambuc const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
30*0a6a1f1dSLionel Sambuc
31*0a6a1f1dSLionel Sambuc rep_t aSignificand = toRep(a) & significandMask;
32*0a6a1f1dSLionel Sambuc rep_t bSignificand = toRep(b) & significandMask;
33*0a6a1f1dSLionel Sambuc int scale = 0;
34*0a6a1f1dSLionel Sambuc
35*0a6a1f1dSLionel Sambuc // Detect if a or b is zero, denormal, infinity, or NaN.
36*0a6a1f1dSLionel Sambuc if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
37*0a6a1f1dSLionel Sambuc
38*0a6a1f1dSLionel Sambuc const rep_t aAbs = toRep(a) & absMask;
39*0a6a1f1dSLionel Sambuc const rep_t bAbs = toRep(b) & absMask;
40*0a6a1f1dSLionel Sambuc
41*0a6a1f1dSLionel Sambuc // NaN / anything = qNaN
42*0a6a1f1dSLionel Sambuc if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
43*0a6a1f1dSLionel Sambuc // anything / NaN = qNaN
44*0a6a1f1dSLionel Sambuc if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
45*0a6a1f1dSLionel Sambuc
46*0a6a1f1dSLionel Sambuc if (aAbs == infRep) {
47*0a6a1f1dSLionel Sambuc // infinity / infinity = NaN
48*0a6a1f1dSLionel Sambuc if (bAbs == infRep) return fromRep(qnanRep);
49*0a6a1f1dSLionel Sambuc // infinity / anything else = +/- infinity
50*0a6a1f1dSLionel Sambuc else return fromRep(aAbs | quotientSign);
51*0a6a1f1dSLionel Sambuc }
52*0a6a1f1dSLionel Sambuc
53*0a6a1f1dSLionel Sambuc // anything else / infinity = +/- 0
54*0a6a1f1dSLionel Sambuc if (bAbs == infRep) return fromRep(quotientSign);
55*0a6a1f1dSLionel Sambuc
56*0a6a1f1dSLionel Sambuc if (!aAbs) {
57*0a6a1f1dSLionel Sambuc // zero / zero = NaN
58*0a6a1f1dSLionel Sambuc if (!bAbs) return fromRep(qnanRep);
59*0a6a1f1dSLionel Sambuc // zero / anything else = +/- zero
60*0a6a1f1dSLionel Sambuc else return fromRep(quotientSign);
61*0a6a1f1dSLionel Sambuc }
62*0a6a1f1dSLionel Sambuc // anything else / zero = +/- infinity
63*0a6a1f1dSLionel Sambuc if (!bAbs) return fromRep(infRep | quotientSign);
64*0a6a1f1dSLionel Sambuc
65*0a6a1f1dSLionel Sambuc // one or both of a or b is denormal, the other (if applicable) is a
66*0a6a1f1dSLionel Sambuc // normal number. Renormalize one or both of a and b, and set scale to
67*0a6a1f1dSLionel Sambuc // include the necessary exponent adjustment.
68*0a6a1f1dSLionel Sambuc if (aAbs < implicitBit) scale += normalize(&aSignificand);
69*0a6a1f1dSLionel Sambuc if (bAbs < implicitBit) scale -= normalize(&bSignificand);
70*0a6a1f1dSLionel Sambuc }
71*0a6a1f1dSLionel Sambuc
72*0a6a1f1dSLionel Sambuc // Or in the implicit significand bit. (If we fell through from the
73*0a6a1f1dSLionel Sambuc // denormal path it was already set by normalize( ), but setting it twice
74*0a6a1f1dSLionel Sambuc // won't hurt anything.)
75*0a6a1f1dSLionel Sambuc aSignificand |= implicitBit;
76*0a6a1f1dSLionel Sambuc bSignificand |= implicitBit;
77*0a6a1f1dSLionel Sambuc int quotientExponent = aExponent - bExponent + scale;
78*0a6a1f1dSLionel Sambuc
79*0a6a1f1dSLionel Sambuc // Align the significand of b as a Q31 fixed-point number in the range
80*0a6a1f1dSLionel Sambuc // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
81*0a6a1f1dSLionel Sambuc // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
82*0a6a1f1dSLionel Sambuc // is accurate to about 3.5 binary digits.
83*0a6a1f1dSLionel Sambuc uint32_t q31b = bSignificand << 8;
84*0a6a1f1dSLionel Sambuc uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
85*0a6a1f1dSLionel Sambuc
86*0a6a1f1dSLionel Sambuc // Now refine the reciprocal estimate using a Newton-Raphson iteration:
87*0a6a1f1dSLionel Sambuc //
88*0a6a1f1dSLionel Sambuc // x1 = x0 * (2 - x0 * b)
89*0a6a1f1dSLionel Sambuc //
90*0a6a1f1dSLionel Sambuc // This doubles the number of correct binary digits in the approximation
91*0a6a1f1dSLionel Sambuc // with each iteration, so after three iterations, we have about 28 binary
92*0a6a1f1dSLionel Sambuc // digits of accuracy.
93*0a6a1f1dSLionel Sambuc uint32_t correction;
94*0a6a1f1dSLionel Sambuc correction = -((uint64_t)reciprocal * q31b >> 32);
95*0a6a1f1dSLionel Sambuc reciprocal = (uint64_t)reciprocal * correction >> 31;
96*0a6a1f1dSLionel Sambuc correction = -((uint64_t)reciprocal * q31b >> 32);
97*0a6a1f1dSLionel Sambuc reciprocal = (uint64_t)reciprocal * correction >> 31;
98*0a6a1f1dSLionel Sambuc correction = -((uint64_t)reciprocal * q31b >> 32);
99*0a6a1f1dSLionel Sambuc reciprocal = (uint64_t)reciprocal * correction >> 31;
100*0a6a1f1dSLionel Sambuc
101*0a6a1f1dSLionel Sambuc // Exhaustive testing shows that the error in reciprocal after three steps
102*0a6a1f1dSLionel Sambuc // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
103*0a6a1f1dSLionel Sambuc // expectations. We bump the reciprocal by a tiny value to force the error
104*0a6a1f1dSLionel Sambuc // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
105*0a6a1f1dSLionel Sambuc // be specific). This also causes 1/1 to give a sensible approximation
106*0a6a1f1dSLionel Sambuc // instead of zero (due to overflow).
107*0a6a1f1dSLionel Sambuc reciprocal -= 2;
108*0a6a1f1dSLionel Sambuc
109*0a6a1f1dSLionel Sambuc // The numerical reciprocal is accurate to within 2^-28, lies in the
110*0a6a1f1dSLionel Sambuc // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
111*0a6a1f1dSLionel Sambuc // than the true reciprocal of b. Multiplying a by this reciprocal thus
112*0a6a1f1dSLionel Sambuc // gives a numerical q = a/b in Q24 with the following properties:
113*0a6a1f1dSLionel Sambuc //
114*0a6a1f1dSLionel Sambuc // 1. q < a/b
115*0a6a1f1dSLionel Sambuc // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
116*0a6a1f1dSLionel Sambuc // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
117*0a6a1f1dSLionel Sambuc // from the fact that we truncate the product, and the 2^27 term
118*0a6a1f1dSLionel Sambuc // is the error in the reciprocal of b scaled by the maximum
119*0a6a1f1dSLionel Sambuc // possible value of a. As a consequence of this error bound,
120*0a6a1f1dSLionel Sambuc // either q or nextafter(q) is the correctly rounded
121*0a6a1f1dSLionel Sambuc rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
122*0a6a1f1dSLionel Sambuc
123*0a6a1f1dSLionel Sambuc // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
124*0a6a1f1dSLionel Sambuc // In either case, we are going to compute a residual of the form
125*0a6a1f1dSLionel Sambuc //
126*0a6a1f1dSLionel Sambuc // r = a - q*b
127*0a6a1f1dSLionel Sambuc //
128*0a6a1f1dSLionel Sambuc // We know from the construction of q that r satisfies:
129*0a6a1f1dSLionel Sambuc //
130*0a6a1f1dSLionel Sambuc // 0 <= r < ulp(q)*b
131*0a6a1f1dSLionel Sambuc //
132*0a6a1f1dSLionel Sambuc // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
133*0a6a1f1dSLionel Sambuc // already have the correct result. The exact halfway case cannot occur.
134*0a6a1f1dSLionel Sambuc // We also take this time to right shift quotient if it falls in the [1,2)
135*0a6a1f1dSLionel Sambuc // range and adjust the exponent accordingly.
136*0a6a1f1dSLionel Sambuc rep_t residual;
137*0a6a1f1dSLionel Sambuc if (quotient < (implicitBit << 1)) {
138*0a6a1f1dSLionel Sambuc residual = (aSignificand << 24) - quotient * bSignificand;
139*0a6a1f1dSLionel Sambuc quotientExponent--;
140*0a6a1f1dSLionel Sambuc } else {
141*0a6a1f1dSLionel Sambuc quotient >>= 1;
142*0a6a1f1dSLionel Sambuc residual = (aSignificand << 23) - quotient * bSignificand;
143*0a6a1f1dSLionel Sambuc }
144*0a6a1f1dSLionel Sambuc
145*0a6a1f1dSLionel Sambuc const int writtenExponent = quotientExponent + exponentBias;
146*0a6a1f1dSLionel Sambuc
147*0a6a1f1dSLionel Sambuc if (writtenExponent >= maxExponent) {
148*0a6a1f1dSLionel Sambuc // If we have overflowed the exponent, return infinity.
149*0a6a1f1dSLionel Sambuc return fromRep(infRep | quotientSign);
150*0a6a1f1dSLionel Sambuc }
151*0a6a1f1dSLionel Sambuc
152*0a6a1f1dSLionel Sambuc else if (writtenExponent < 1) {
153*0a6a1f1dSLionel Sambuc // Flush denormals to zero. In the future, it would be nice to add
154*0a6a1f1dSLionel Sambuc // code to round them correctly.
155*0a6a1f1dSLionel Sambuc return fromRep(quotientSign);
156*0a6a1f1dSLionel Sambuc }
157*0a6a1f1dSLionel Sambuc
158*0a6a1f1dSLionel Sambuc else {
159*0a6a1f1dSLionel Sambuc const bool round = (residual << 1) > bSignificand;
160*0a6a1f1dSLionel Sambuc // Clear the implicit bit
161*0a6a1f1dSLionel Sambuc rep_t absResult = quotient & significandMask;
162*0a6a1f1dSLionel Sambuc // Insert the exponent
163*0a6a1f1dSLionel Sambuc absResult |= (rep_t)writtenExponent << significandBits;
164*0a6a1f1dSLionel Sambuc // Round
165*0a6a1f1dSLionel Sambuc absResult += round;
166*0a6a1f1dSLionel Sambuc // Insert the sign and return
167*0a6a1f1dSLionel Sambuc return fromRep(absResult | quotientSign);
168*0a6a1f1dSLionel Sambuc }
169*0a6a1f1dSLionel Sambuc }
170