1 /* MIB service - proc.c - functionality based on service process tables */ 2 /* Eventually, the CTL_PROC subtree might end up here as well. */ 3 4 #include "mib.h" 5 6 #include <sys/exec.h> 7 #include <minix/sysinfo.h> 8 9 #include <machine/archtypes.h> 10 #include "kernel/proc.h" 11 #include "servers/pm/mproc.h" 12 #include "servers/vfs/const.h" 13 #include "servers/vfs/fproc.h" 14 15 typedef struct proc ixfer_proc_t; 16 typedef struct mproc ixfer_mproc_t; 17 typedef struct fproc ixfer_fproc_t; 18 19 static ixfer_proc_t proc_tab[NR_TASKS + NR_PROCS]; 20 static ixfer_mproc_t mproc_tab[NR_PROCS]; 21 static ixfer_fproc_t fproc_tab[NR_PROCS]; 22 23 /* 24 * The number of processes added to the current number of processes when doing 25 * a size estimation, so that the actual data retrieval does not end up with 26 * too little space if new processes have forked between the two calls. We do 27 * a process table update only once per clock tick, which means that typically 28 * no update will take place between the user process's size estimation request 29 * and its subsequent data retrieval request. On the other hand, if we do 30 * update process tables in between, quite a bit might have changed. 31 */ 32 #define EXTRA_PROCS 8 33 34 #define HASH_SLOTS (NR_PROCS / 4) /* expected nr. of processes in use */ 35 #define NO_SLOT (-1) 36 static int hash_tab[HASH_SLOTS]; /* hash table mapping from PID.. */ 37 static int hnext_tab[NR_PROCS]; /* ..to PM process slot */ 38 39 static clock_t tabs_updated = 0; /* when the tables were last updated */ 40 static int tabs_valid = TRUE; /* FALSE if obtaining tables failed */ 41 42 /* 43 * Update the process tables by pulling in new copies from the kernel, PM, and 44 * VFS, but only every so often and only if it has not failed before. Return 45 * TRUE iff the tables are now valid. 46 */ 47 static int 48 update_tables(void) 49 { 50 clock_t now; 51 pid_t pid; 52 int r, kslot, mslot, hslot; 53 54 /* 55 * If retrieving the tables failed at some point, do not keep trying 56 * all the time. Such a failure is very unlikely to be transient. 57 */ 58 if (tabs_valid == FALSE) 59 return FALSE; 60 61 /* 62 * Update the tables once per clock tick at most. The update operation 63 * is rather heavy, transferring several hundreds of kilobytes between 64 * servers. Userland should be able to live with information that is 65 * outdated by at most one clock tick. 66 */ 67 now = getticks(); 68 69 if (tabs_updated != 0 && tabs_updated == now) 70 return TRUE; 71 72 /* Perform an actual update now. */ 73 tabs_valid = FALSE; 74 75 /* Retrieve and check the kernel process table. */ 76 if ((r = sys_getproctab(proc_tab)) != OK) { 77 printf("MIB: unable to obtain kernel process table (%d)\n", r); 78 79 return FALSE; 80 } 81 82 for (kslot = 0; kslot < NR_TASKS + NR_PROCS; kslot++) { 83 if (proc_tab[kslot].p_magic != PMAGIC) { 84 printf("MIB: kernel process table mismatch\n"); 85 86 return FALSE; 87 } 88 } 89 90 /* Retrieve and check the PM process table. */ 91 r = getsysinfo(PM_PROC_NR, SI_PROC_TAB, mproc_tab, sizeof(mproc_tab)); 92 if (r != OK) { 93 printf("MIB: unable to obtain PM process table (%d)\n", r); 94 95 return FALSE; 96 } 97 98 for (mslot = 0; mslot < NR_PROCS; mslot++) { 99 if (mproc_tab[mslot].mp_magic != MP_MAGIC) { 100 printf("MIB: PM process table mismatch\n"); 101 102 return FALSE; 103 } 104 } 105 106 /* Retrieve the VFS process table, which has no magic number. */ 107 r = getsysinfo(VFS_PROC_NR, SI_PROC_TAB, fproc_tab, sizeof(fproc_tab)); 108 if (r != OK) { 109 printf("MIB: unable to obtain VFS process table (%d)\n", r); 110 111 return FALSE; 112 } 113 114 tabs_valid = TRUE; 115 tabs_updated = now; 116 117 /* 118 * Build a hash table mapping from process IDs to slot numbers, for 119 * fast access. TODO: decide if this is better done on demand only. 120 */ 121 for (hslot = 0; hslot < HASH_SLOTS; hslot++) 122 hash_tab[hslot] = NO_SLOT; 123 124 for (mslot = 0; mslot < NR_PROCS; mslot++) { 125 if (mproc_tab[mslot].mp_flags & IN_USE) { 126 if ((pid = mproc_tab[mslot].mp_pid) <= 0) 127 continue; 128 129 hslot = mproc_tab[mslot].mp_pid % HASH_SLOTS; 130 131 hnext_tab[mslot] = hash_tab[hslot]; 132 hash_tab[hslot] = mslot; 133 } 134 } 135 136 return TRUE; 137 } 138 139 /* 140 * Return the PM slot number for the given PID, or NO_SLOT if the PID is not in 141 * use by a process. 142 */ 143 static int 144 get_mslot(pid_t pid) 145 { 146 int mslot; 147 148 /* PID 0 identifies the kernel; checking this is up to the caller. */ 149 if (pid <= 0) 150 return NO_SLOT; 151 152 for (mslot = hash_tab[pid % HASH_SLOTS]; mslot != NO_SLOT; 153 mslot = hnext_tab[mslot]) 154 if (mproc_tab[mslot].mp_pid == pid) 155 break; 156 157 return mslot; 158 } 159 160 /* 161 * Store the given number of clock ticks as a timeval structure. 162 */ 163 static void 164 ticks_to_timeval(struct timeval * tv, clock_t ticks) 165 { 166 clock_t hz; 167 168 hz = sys_hz(); 169 170 tv->tv_sec = ticks / hz; 171 tv->tv_usec = (long)((ticks % hz) * 1000000ULL / hz); 172 } 173 174 /* 175 * Generate a wchan message text for the cases that the process is blocked on 176 * IPC with another process, of which the endpoint is given as 'endpt' here. 177 * The name of the other process is to be stored in 'wmesg', which is a buffer 178 * of size 'wmsz'. The result should be null terminated. If 'ipc' is set, the 179 * process is blocked on a direct IPC call, in which case the name of the other 180 * process is enclosed in parentheses. If 'ipc' is not set, the call is made 181 * indirectly through VFS, and the name of the other process should not be 182 * enclosed in parentheses. If no name can be obtained, we use the endpoint of 183 * the other process instead. 184 */ 185 static void 186 fill_wmesg(char * wmesg, size_t wmsz, endpoint_t endpt, int ipc) 187 { 188 const char *name; 189 int mslot; 190 191 switch (endpt) { 192 case ANY: 193 name = "any"; 194 break; 195 case SELF: 196 name = "self"; 197 break; 198 case NONE: 199 name = "none"; 200 break; 201 default: 202 mslot = _ENDPOINT_P(endpt); 203 if (mslot >= -NR_TASKS && mslot < NR_PROCS && 204 (mslot < 0 || (mproc_tab[mslot].mp_flags & IN_USE))) 205 name = proc_tab[NR_TASKS + mslot].p_name; 206 else 207 name = NULL; 208 } 209 210 if (name != NULL) 211 snprintf(wmesg, wmsz, "%s%s%s", 212 ipc ? "(" : "", name, ipc ? ")" : ""); 213 else 214 snprintf(wmesg, wmsz, "%s%d%s", 215 ipc ? "(" : "", endpt, ipc ? ")" : ""); 216 } 217 218 /* 219 * Return the LWP status of a process, along with additional information in 220 * case the process is sleeping (LSSLEEP): a wchan value and text to indicate 221 * what the process is sleeping on, and possibly a flag field modification to 222 * indicate that the sleep is interruptible. 223 */ 224 static int 225 get_lwp_stat(int mslot, uint64_t * wcptr, char * wmptr, size_t wmsz, 226 int32_t * flag) 227 { 228 struct mproc *mp; 229 struct fproc *fp; 230 struct proc *kp; 231 const char *wmesg; 232 uint64_t wchan; 233 endpoint_t endpt; 234 235 mp = &mproc_tab[mslot]; 236 fp = &fproc_tab[mslot]; 237 kp = &proc_tab[NR_TASKS + mslot]; 238 239 /* 240 * First cover all the cases that the process is not sleeping. In 241 * those cases, we need not return additional sleep information either. 242 */ 243 if (mp->mp_flags & (TRACE_ZOMBIE | ZOMBIE)) 244 return LSZOMB; 245 246 if (mp->mp_flags & EXITING) 247 return LSDEAD; 248 249 if ((mp->mp_flags & TRACE_STOPPED) || RTS_ISSET(kp, RTS_P_STOP)) 250 return LSSTOP; 251 252 if (proc_is_runnable(kp)) 253 return LSRUN; 254 255 /* 256 * The process is sleeping. In that case, we must also figure out why, 257 * and return an appropriate wchan value and human-readable wmesg text. 258 * 259 * The process can be blocked on either a known sleep state in PM or 260 * VFS, or otherwise on IPC communication with another process, or 261 * otherwise on a kernel RTS flag. In each case, decide what to use as 262 * wchan value and wmesg text, and whether the sleep is interruptible. 263 * 264 * The wchan value should be unique for the sleep reason. We use its 265 * lower eight bits to indicate a class: 266 * 0x00 = kernel task 267 * 0x01 = kerel RTS block 268 * 0x02 = PM call 269 * 0x03 = VFS call 270 * 0x04 = MIB call 271 * 0xff = blocked on process 272 * The upper bits are used for class-specific information. The actual 273 * value does not really matter, as long as it is nonzero and there is 274 * no overlap between the different values. 275 */ 276 wchan = 0; 277 wmesg = NULL; 278 279 /* 280 * First see if the process is marked as blocked in the tables of PM or 281 * VFS. Such a block reason is always an interruptible sleep. Note 282 * that we do not use the kernel table at all in this case: each of the 283 * three tables is consistent within itself, but not necessarily 284 * consistent with any of the other tables, so we avoid internal 285 * mismatches if we can. 286 */ 287 if (mp->mp_flags & WAITING) { 288 wchan = 0x102; 289 wmesg = "wait"; 290 } else if (mp->mp_flags & SIGSUSPENDED) { 291 wchan = 0x202; 292 wmesg = "pause"; 293 } else if (fp->fp_blocked_on != FP_BLOCKED_ON_NONE) { 294 wchan = (fp->fp_blocked_on << 8) | 0x03; 295 switch (fp->fp_blocked_on) { 296 case FP_BLOCKED_ON_PIPE: 297 wmesg = "pipe"; 298 break; 299 case FP_BLOCKED_ON_LOCK: 300 wmesg = "lock"; 301 break; 302 case FP_BLOCKED_ON_POPEN: 303 wmesg = "popen"; 304 break; 305 case FP_BLOCKED_ON_SELECT: 306 wmesg = "select"; 307 break; 308 case FP_BLOCKED_ON_OTHER: 309 /* 310 * Add the task (= character driver) endpoint to the 311 * wchan value, and use the driver's process name, 312 * without parentheses, as wmesg text. 313 */ 314 wchan |= (uint64_t)fp->fp_task << 16; 315 fill_wmesg(wmptr, wmsz, fp->fp_task, FALSE /*ipc*/); 316 break; 317 default: 318 /* A newly added flag we don't yet know about? */ 319 wmesg = "???"; 320 break; 321 } 322 } 323 if (wchan != 0) { 324 *wcptr = wchan; 325 if (wmesg != NULL) /* NULL means "already set" here */ 326 strlcpy(wmptr, wmesg, wmsz); 327 *flag |= L_SINTR; 328 } 329 330 /* 331 * See if the process is blocked on sending or receiving. If not, then 332 * use one of the kernel RTS flags as reason. 333 */ 334 endpt = P_BLOCKEDON(kp); 335 336 switch (endpt) { 337 case MIB_PROC_NR: 338 /* This is really just aesthetics. */ 339 wchan = 0x04; 340 wmesg = "sysctl"; 341 break; 342 case NONE: 343 /* 344 * The process is not running, but also not blocked on IPC with 345 * another process. This means it must be stopped on a kernel 346 * RTS flag. 347 */ 348 wchan = ((uint64_t)kp->p_rts_flags << 8) | 0x01; 349 if (RTS_ISSET(kp, RTS_PROC_STOP)) 350 wmesg = "kstop"; 351 else if (RTS_ISSET(kp, RTS_SIGNALED) || 352 RTS_ISSET(kp, RTS_SIGNALED)) 353 wmesg = "ksignal"; 354 else if (RTS_ISSET(kp, RTS_NO_PRIV)) 355 wmesg = "knopriv"; 356 else if (RTS_ISSET(kp, RTS_PAGEFAULT) || 357 RTS_ISSET(kp, RTS_VMREQTARGET)) 358 wmesg = "fault"; 359 else if (RTS_ISSET(kp, RTS_NO_QUANTUM)) 360 wmesg = "sched"; 361 else 362 wmesg = "kflag"; 363 break; 364 case ANY: 365 /* 366 * If the process is blocked receiving from ANY, mark it as 367 * being in an interruptible sleep. This looks nicer, even 368 * though "interruptible" is not applicable to services at all. 369 */ 370 *flag |= L_SINTR; 371 break; 372 } 373 374 /* 375 * If at this point wchan is still zero, the process is blocked sending 376 * or receiving. Use a wchan value based on the target endpoint, and 377 * use "(procname)" as wmesg text. 378 */ 379 if (wchan == 0) { 380 *wcptr = ((uint64_t)endpt << 8) | 0xff; 381 fill_wmesg(wmptr, wmsz, endpt, TRUE /*ipc*/); 382 } else { 383 *wcptr = wchan; 384 if (wmesg != NULL) /* NULL means "already set" here */ 385 strlcpy(wmptr, wmesg, wmsz); 386 } 387 388 return LSSLEEP; 389 } 390 391 392 /* 393 * Fill the part of a LWP structure that is common between kernel tasks and 394 * user processes. Also return a CPU estimate in 'estcpu', because we generate 395 * the value as a side effect here, and the LWP structure has no estcpu field. 396 */ 397 static void 398 fill_lwp_common(struct kinfo_lwp * l, int kslot, uint32_t * estcpu) 399 { 400 struct proc *kp; 401 struct timeval tv; 402 clock_t uptime; 403 uint32_t hz; 404 405 kp = &proc_tab[kslot]; 406 407 uptime = getticks(); 408 hz = sys_hz(); 409 410 /* 411 * We use the process endpoint as the LWP ID. Not only does this allow 412 * users to obtain process endpoints with "ps -s" (thus replacing the 413 * MINIX3 ps(1)'s "ps -E"), but if we ever do implement kernel threads, 414 * this is probably still going to be accurate. 415 */ 416 l->l_lid = kp->p_endpoint; 417 418 /* 419 * The time during which the process has not been swapped in or out is 420 * not applicable for us, and thus, we set it to the time the process 421 * has been running (in seconds). This value is relevant mostly for 422 * ps(1)'s CPU usage correction for processes that have just started. 423 */ 424 if (kslot >= NR_TASKS) 425 l->l_swtime = uptime - mproc_tab[kslot - NR_TASKS].mp_started; 426 else 427 l->l_swtime = uptime; 428 l->l_swtime /= hz; 429 430 /* 431 * Sleep (dequeue) times are not maintained for kernel tasks, so 432 * pretend they are never asleep (which is pretty accurate). 433 */ 434 if (kslot < NR_TASKS) 435 l->l_slptime = 0; 436 else 437 l->l_slptime = (uptime - kp->p_dequeued) / hz; 438 439 l->l_priority = kp->p_priority; 440 l->l_usrpri = kp->p_priority; 441 l->l_cpuid = kp->p_cpu; 442 ticks_to_timeval(&tv, kp->p_user_time + kp->p_sys_time); 443 l->l_rtime_sec = tv.tv_sec; 444 l->l_rtime_usec = tv.tv_usec; 445 446 /* 447 * Obtain CPU usage percentages and estimates through library code 448 * shared between the kernel and this service; see its source for 449 * details. We note that the produced estcpu value is rather different 450 * from the one produced by NetBSD, but this should not be a problem. 451 */ 452 l->l_pctcpu = cpuavg_getstats(&kp->p_cpuavg, &l->l_cpticks, estcpu, 453 uptime, hz); 454 } 455 456 /* 457 * Fill a LWP structure for a kernel task. Each kernel task has its own LWP, 458 * and all of them have negative PIDs. 459 */ 460 static void 461 fill_lwp_kern(struct kinfo_lwp * l, int kslot) 462 { 463 uint32_t estcpu; 464 465 memset(l, 0, sizeof(*l)); 466 467 l->l_flag = L_INMEM | L_SINTR | L_SYSTEM; 468 l->l_stat = LSSLEEP; 469 l->l_pid = kslot - NR_TASKS; 470 471 /* 472 * When showing LWP entries, ps(1) uses the process name rather than 473 * the LWP name. All kernel tasks are therefore shown as "[kernel]" 474 * anyway. We use the wmesg field to show the actual kernel task name. 475 */ 476 l->l_wchan = ((uint64_t)(l->l_pid) << 8) | 0x00; 477 strlcpy(l->l_wmesg, proc_tab[kslot].p_name, sizeof(l->l_wmesg)); 478 strlcpy(l->l_name, "kernel", sizeof(l->l_name)); 479 480 fill_lwp_common(l, kslot, &estcpu); 481 } 482 483 /* 484 * Fill a LWP structure for a user process. 485 */ 486 static void 487 fill_lwp_user(struct kinfo_lwp * l, int mslot) 488 { 489 struct mproc *mp; 490 uint32_t estcpu; 491 492 memset(l, 0, sizeof(*l)); 493 494 mp = &mproc_tab[mslot]; 495 496 l->l_flag = L_INMEM; 497 l->l_stat = get_lwp_stat(mslot, &l->l_wchan, l->l_wmesg, 498 sizeof(l->l_wmesg), &l->l_flag); 499 l->l_pid = mp->mp_pid; 500 strlcpy(l->l_name, mp->mp_name, sizeof(l->l_name)); 501 502 fill_lwp_common(l, NR_TASKS + mslot, &estcpu); 503 } 504 505 /* 506 * Implementation of CTL_KERN KERN_LWP. 507 */ 508 ssize_t 509 mib_kern_lwp(struct mib_call * call, struct mib_node * node __unused, 510 struct mib_oldp * oldp, struct mib_newp * newp __unused) 511 { 512 struct kinfo_lwp lwp; 513 struct mproc *mp; 514 size_t copysz; 515 ssize_t off; 516 pid_t pid; 517 int r, elsz, elmax, kslot, mslot, last_mslot; 518 519 if (call->call_namelen != 3) 520 return EINVAL; 521 522 pid = (pid_t)call->call_name[0]; 523 elsz = call->call_name[1]; 524 elmax = call->call_name[2]; /* redundant with the given oldlen.. */ 525 526 if (pid < -1 || elsz <= 0 || elmax < 0) 527 return EINVAL; 528 529 if (!update_tables()) 530 return EINVAL; 531 532 off = 0; 533 copysz = MIN((size_t)elsz, sizeof(lwp)); 534 535 /* 536 * We model kernel tasks as LWP threads of the kernel (with PID 0). 537 * Modeling the kernel tasks as processes with negative PIDs, like 538 * ProcFS does, conflicts with the KERN_LWP API here: a PID of -1 539 * indicates that the caller wants a full listing of LWPs. 540 */ 541 if (pid <= 0) { 542 for (kslot = 0; kslot < NR_TASKS; kslot++) { 543 if (mib_inrange(oldp, off) && elmax > 0) { 544 fill_lwp_kern(&lwp, kslot); 545 if ((r = mib_copyout(oldp, off, &lwp, 546 copysz)) < 0) 547 return r; 548 elmax--; 549 } 550 off += elsz; 551 } 552 553 /* No need to add extra space here: NR_TASKS is static. */ 554 if (pid == 0) 555 return off; 556 } 557 558 /* 559 * With PID 0 out of the way: the user requested the LWP for either a 560 * specific user process (pid > 0), or for all processes (pid < 0). 561 */ 562 if (pid > 0) { 563 if ((mslot = get_mslot(pid)) == NO_SLOT || 564 (mproc_tab[mslot].mp_flags & (TRACE_ZOMBIE | ZOMBIE))) 565 return ESRCH; 566 last_mslot = mslot; 567 } else { 568 mslot = 0; 569 last_mslot = NR_PROCS - 1; 570 } 571 572 for (; mslot <= last_mslot; mslot++) { 573 mp = &mproc_tab[mslot]; 574 575 if ((mp->mp_flags & (IN_USE | TRACE_ZOMBIE | ZOMBIE)) != 576 IN_USE) 577 continue; 578 579 if (mib_inrange(oldp, off) && elmax > 0) { 580 fill_lwp_user(&lwp, mslot); 581 if ((r = mib_copyout(oldp, off, &lwp, copysz)) < 0) 582 return r; 583 elmax--; 584 } 585 off += elsz; 586 } 587 588 if (oldp == NULL && pid < 0) 589 off += EXTRA_PROCS * elsz; 590 591 return off; 592 } 593 594 595 /* 596 * Fill the part of a process structure that is common between kernel tasks and 597 * user processes. 598 */ 599 static void 600 fill_proc2_common(struct kinfo_proc2 * p, int kslot) 601 { 602 struct vm_usage_info vui; 603 struct timeval tv; 604 struct proc *kp; 605 struct kinfo_lwp l; 606 607 kp = &proc_tab[kslot]; 608 609 /* 610 * Much of the information in the LWP structure also ends up in the 611 * process structure. In order to avoid duplication of some important 612 * code, first generate LWP values and then copy it them into the 613 * process structure. 614 */ 615 memset(&l, 0, sizeof(l)); 616 fill_lwp_common(&l, kslot, &p->p_estcpu); 617 618 /* Obtain memory usage information from VM. Ignore failures. */ 619 memset(&vui, 0, sizeof(vui)); 620 (void)vm_info_usage(kp->p_endpoint, &vui); 621 622 ticks_to_timeval(&tv, kp->p_user_time + kp->p_sys_time); 623 p->p_rtime_sec = l.l_rtime_sec; 624 p->p_rtime_usec = l.l_rtime_usec; 625 p->p_cpticks = l.l_cpticks; 626 p->p_pctcpu = l.l_pctcpu; 627 p->p_swtime = l.l_swtime; 628 p->p_slptime = l.l_slptime; 629 p->p_uticks = kp->p_user_time; 630 p->p_sticks = kp->p_sys_time; 631 /* TODO: p->p_iticks */ 632 ticks_to_timeval(&tv, kp->p_user_time); 633 p->p_uutime_sec = tv.tv_sec; 634 p->p_uutime_usec = tv.tv_usec; 635 ticks_to_timeval(&tv, kp->p_sys_time); 636 p->p_ustime_sec = tv.tv_sec; 637 p->p_ustime_usec = tv.tv_usec; 638 639 p->p_priority = l.l_priority; 640 p->p_usrpri = l.l_usrpri; 641 642 p->p_vm_rssize = howmany(vui.vui_total, PAGE_SIZE); 643 p->p_vm_vsize = howmany(vui.vui_virtual, PAGE_SIZE); 644 p->p_vm_msize = howmany(vui.vui_mvirtual, PAGE_SIZE); 645 646 p->p_uru_maxrss = vui.vui_maxrss; 647 p->p_uru_minflt = vui.vui_minflt; 648 p->p_uru_majflt = vui.vui_majflt; 649 650 p->p_cpuid = l.l_cpuid; 651 } 652 653 /* 654 * Fill a process structure for the kernel pseudo-process (with PID 0). 655 */ 656 static void 657 fill_proc2_kern(struct kinfo_proc2 * p) 658 { 659 660 memset(p, 0, sizeof(*p)); 661 662 p->p_flag = L_INMEM | L_SYSTEM | L_SINTR; 663 p->p_pid = 0; 664 p->p_stat = LSSLEEP; 665 p->p_nice = NZERO; 666 667 /* Use the KERNEL task wchan, for consistency between ps and top. */ 668 p->p_wchan = ((uint64_t)KERNEL << 8) | 0x00; 669 strlcpy(p->p_wmesg, "kernel", sizeof(p->p_wmesg)); 670 671 strlcpy(p->p_comm, "kernel", sizeof(p->p_comm)); 672 p->p_realflag = P_INMEM | P_SYSTEM | P_SINTR; 673 p->p_realstat = SACTIVE; 674 p->p_nlwps = NR_TASKS; 675 676 /* 677 * By using the KERNEL slot here, the kernel process will get a proper 678 * CPU usage average. 679 */ 680 fill_proc2_common(p, KERNEL + NR_TASKS); 681 } 682 683 /* 684 * Fill a process structure for a user process. 685 */ 686 static void 687 fill_proc2_user(struct kinfo_proc2 * p, int mslot) 688 { 689 struct mproc *mp; 690 struct fproc *fp; 691 time_t boottime; 692 dev_t tty; 693 struct timeval tv; 694 int i, r, kslot, zombie; 695 696 memset(p, 0, sizeof(*p)); 697 698 if ((r = getuptime(NULL, NULL, &boottime)) != OK) 699 panic("getuptime failed: %d", r); 700 701 kslot = NR_TASKS + mslot; 702 mp = &mproc_tab[mslot]; 703 fp = &fproc_tab[mslot]; 704 705 zombie = (mp->mp_flags & (TRACE_ZOMBIE | ZOMBIE)); 706 tty = (!zombie) ? fp->fp_tty : NO_DEV; 707 708 p->p_eflag = 0; 709 if (tty != NO_DEV) 710 p->p_eflag |= EPROC_CTTY; 711 if (mp->mp_pid == mp->mp_procgrp) /* TODO: job control support */ 712 p->p_eflag |= EPROC_SLEADER; 713 714 p->p_exitsig = SIGCHLD; /* TODO */ 715 716 p->p_flag = P_INMEM; 717 if (mp->mp_flags & TAINTED) 718 p->p_flag |= P_SUGID; 719 if (mp->mp_tracer != NO_TRACER) 720 p->p_flag |= P_TRACED; 721 if (tty != NO_DEV) 722 p->p_flag |= P_CONTROLT; 723 p->p_pid = mp->mp_pid; 724 if (mp->mp_parent >= 0 && mp->mp_parent < NR_PROCS) 725 p->p_ppid = mproc_tab[mp->mp_parent].mp_pid; 726 p->p_sid = mp->mp_procgrp; /* TODO: job control supported */ 727 p->p__pgid = mp->mp_procgrp; 728 p->p_tpgid = (tty != NO_DEV) ? mp->mp_procgrp : 0; 729 p->p_uid = mp->mp_effuid; 730 p->p_ruid = mp->mp_realuid; 731 p->p_gid = mp->mp_effgid; 732 p->p_rgid = mp->mp_realgid; 733 p->p_ngroups = MIN(mp->mp_ngroups, KI_NGROUPS); 734 for (i = 0; i < p->p_ngroups; i++) 735 p->p_groups[i] = mp->mp_sgroups[i]; 736 p->p_tdev = tty; 737 memcpy(&p->p_siglist, &mp->mp_sigpending, sizeof(p->p_siglist)); 738 memcpy(&p->p_sigmask, &mp->mp_sigmask, sizeof(p->p_sigmask)); 739 memcpy(&p->p_sigcatch, &mp->mp_catch, sizeof(p->p_sigcatch)); 740 memcpy(&p->p_sigignore, &mp->mp_ignore, sizeof(p->p_sigignore)); 741 p->p_nice = mp->mp_nice + NZERO; 742 strlcpy(p->p_comm, mp->mp_name, sizeof(p->p_comm)); 743 p->p_uvalid = 1; 744 ticks_to_timeval(&tv, mp->mp_started); 745 p->p_ustart_sec = boottime + tv.tv_sec; 746 p->p_ustart_usec = tv.tv_usec; 747 /* TODO: other rusage fields */ 748 ticks_to_timeval(&tv, mp->mp_child_utime + mp->mp_child_stime); 749 p->p_uctime_sec = tv.tv_sec; 750 p->p_uctime_usec = tv.tv_usec; 751 p->p_realflag = p->p_flag; 752 p->p_nlwps = (zombie) ? 0 : 1; 753 754 p->p_stat = get_lwp_stat(mslot, &p->p_wchan, p->p_wmesg, 755 sizeof(p->p_wmesg), &p->p_flag); 756 757 switch (p->p_stat) { 758 case LSRUN: 759 p->p_realstat = SACTIVE; 760 p->p_nrlwps = 1; 761 break; 762 case LSSLEEP: 763 p->p_realstat = SACTIVE; 764 if (p->p_flag & L_SINTR) 765 p->p_realflag |= P_SINTR; 766 break; 767 case LSSTOP: 768 p->p_realstat = SSTOP; 769 break; 770 case LSZOMB: 771 p->p_realstat = SZOMB; 772 break; 773 case LSDEAD: 774 p->p_stat = LSZOMB; /* ps(1) STAT does not know LSDEAD */ 775 p->p_realstat = SDEAD; 776 break; 777 default: 778 assert(0); 779 } 780 781 if (!zombie) 782 fill_proc2_common(p, kslot); 783 } 784 785 /* 786 * Implementation of CTL_KERN KERN_PROC2. 787 */ 788 ssize_t 789 mib_kern_proc2(struct mib_call * call, struct mib_node * node __unused, 790 struct mib_oldp * oldp, struct mib_newp * newp __unused) 791 { 792 struct kinfo_proc2 proc2; 793 struct mproc *mp; 794 size_t copysz; 795 ssize_t off; 796 dev_t tty; 797 int r, req, arg, elsz, elmax, kmatch, zombie, mslot; 798 799 if (call->call_namelen != 4) 800 return EINVAL; 801 802 req = call->call_name[0]; 803 arg = call->call_name[1]; 804 elsz = call->call_name[2]; 805 elmax = call->call_name[3]; /* redundant with the given oldlen.. */ 806 807 /* 808 * The kernel is special, in that it does not have a slot in the PM or 809 * VFS tables. As such, it is dealt with separately. While checking 810 * arguments, we might as well check whether the kernel is matched. 811 */ 812 switch (req) { 813 case KERN_PROC_ALL: 814 kmatch = TRUE; 815 break; 816 case KERN_PROC_PID: 817 case KERN_PROC_SESSION: 818 case KERN_PROC_PGRP: 819 case KERN_PROC_UID: 820 case KERN_PROC_RUID: 821 case KERN_PROC_GID: 822 case KERN_PROC_RGID: 823 kmatch = (arg == 0); 824 break; 825 case KERN_PROC_TTY: 826 kmatch = ((dev_t)arg == KERN_PROC_TTY_NODEV); 827 break; 828 default: 829 return EINVAL; 830 } 831 832 if (elsz <= 0 || elmax < 0) 833 return EINVAL; 834 835 if (!update_tables()) 836 return EINVAL; 837 838 off = 0; 839 copysz = MIN((size_t)elsz, sizeof(proc2)); 840 841 if (kmatch) { 842 if (mib_inrange(oldp, off) && elmax > 0) { 843 fill_proc2_kern(&proc2); 844 if ((r = mib_copyout(oldp, off, &proc2, copysz)) < 0) 845 return r; 846 elmax--; 847 } 848 off += elsz; 849 } 850 851 for (mslot = 0; mslot < NR_PROCS; mslot++) { 852 mp = &mproc_tab[mslot]; 853 854 if (!(mp->mp_flags & IN_USE)) 855 continue; 856 857 switch (req) { 858 case KERN_PROC_PID: 859 if ((pid_t)arg != mp->mp_pid) 860 continue; 861 break; 862 case KERN_PROC_SESSION: /* TODO: job control support */ 863 case KERN_PROC_PGRP: 864 if ((pid_t)arg != mp->mp_procgrp) 865 continue; 866 break; 867 case KERN_PROC_TTY: 868 if ((dev_t)arg == KERN_PROC_TTY_REVOKE) 869 continue; /* TODO: revoke(2) support */ 870 /* Do not access the fproc_tab slot of zombies. */ 871 zombie = (mp->mp_flags & (TRACE_ZOMBIE | ZOMBIE)); 872 tty = (zombie) ? fproc_tab[mslot].fp_tty : NO_DEV; 873 if ((dev_t)arg == KERN_PROC_TTY_NODEV) { 874 if (tty != NO_DEV) 875 continue; 876 } else if ((dev_t)arg == NO_DEV || (dev_t)arg != tty) 877 continue; 878 break; 879 case KERN_PROC_UID: 880 if ((uid_t)arg != mp->mp_effuid) 881 continue; 882 break; 883 case KERN_PROC_RUID: 884 if ((uid_t)arg != mp->mp_realuid) 885 continue; 886 break; 887 case KERN_PROC_GID: 888 if ((gid_t)arg != mp->mp_effgid) 889 continue; 890 break; 891 case KERN_PROC_RGID: 892 if ((gid_t)arg != mp->mp_realgid) 893 continue; 894 break; 895 } 896 897 if (mib_inrange(oldp, off) && elmax > 0) { 898 fill_proc2_user(&proc2, mslot); 899 if ((r = mib_copyout(oldp, off, &proc2, copysz)) < 0) 900 return r; 901 elmax--; 902 } 903 off += elsz; 904 } 905 906 if (oldp == NULL && req != KERN_PROC_PID) 907 off += EXTRA_PROCS * elsz; 908 909 return off; 910 } 911 912 /* 913 * Implementation of CTL_KERN KERN_PROC_ARGS. 914 */ 915 ssize_t 916 mib_kern_proc_args(struct mib_call * call, struct mib_node * node __unused, 917 struct mib_oldp * oldp, struct mib_newp * newp __unused) 918 { 919 char vbuf[PAGE_SIZE], sbuf[PAGE_SIZE], obuf[PAGE_SIZE]; 920 struct ps_strings pss; 921 struct mproc *mp; 922 char *buf, *p, *q, *pptr; 923 vir_bytes vaddr, vpage, spage, paddr, ppage; 924 size_t max, off, olen, oleft, oldlen, bytes, pleft; 925 unsigned int copybudget; 926 pid_t pid; 927 int req, mslot, count, aborted, ended; 928 ssize_t r; 929 930 if (call->call_namelen != 2) 931 return EINVAL; 932 933 pid = call->call_name[0]; 934 req = call->call_name[1]; 935 936 switch (req) { 937 case KERN_PROC_ARGV: 938 case KERN_PROC_ENV: 939 case KERN_PROC_NARGV: 940 case KERN_PROC_NENV: 941 break; 942 default: 943 return EOPNOTSUPP; 944 } 945 946 if (!update_tables()) 947 return EINVAL; 948 949 if ((mslot = get_mslot(pid)) == NO_SLOT) 950 return ESRCH; 951 mp = &mproc_tab[mslot]; 952 if (mp->mp_flags & (TRACE_ZOMBIE | ZOMBIE)) 953 return ESRCH; 954 955 /* We can return the count field size without copying in any data. */ 956 if (oldp == NULL && (req == KERN_PROC_NARGV || req == KERN_PROC_NENV)) 957 return sizeof(count); 958 959 if (sys_datacopy(mp->mp_endpoint, 960 mp->mp_frame_addr + mp->mp_frame_len - sizeof(pss), 961 SELF, (vir_bytes)&pss, sizeof(pss)) != OK) 962 return EINVAL; 963 964 /* 965 * Determine the upper size limit of the requested data. Not only may 966 * the size never exceed ARG_MAX, it may also not exceed the frame 967 * length as given in its original exec call. In fact, the frame 968 * length should be substantially larger: all strings for both the 969 * arguments and the environment are in there, along with other stuff, 970 * and there must be no overlap between strings. It is possible that 971 * the application called setproctitle(3), in which case the ps_strings 972 * pointers refer to data outside the frame altogether. However, this 973 * data should not exceed 2048 bytes, and we cover this by rounding up 974 * the frame length to a multiple of the page size. Anyhow, NetBSD 975 * blindly returns ARG_MAX when asked for a size estimate, so with this 976 * maximum we are already quite a bit more accurate. 977 */ 978 max = roundup(MIN(mp->mp_frame_len, ARG_MAX), PAGE_SIZE); 979 980 switch (req) { 981 case KERN_PROC_NARGV: 982 count = pss.ps_nargvstr; 983 return mib_copyout(oldp, 0, &count, sizeof(count)); 984 case KERN_PROC_NENV: 985 count = pss.ps_nenvstr; 986 return mib_copyout(oldp, 0, &count, sizeof(count)); 987 case KERN_PROC_ARGV: 988 if (oldp == NULL) 989 return max; 990 vaddr = (vir_bytes)pss.ps_argvstr; 991 count = pss.ps_nargvstr; 992 break; 993 case KERN_PROC_ENV: 994 if (oldp == NULL) 995 return max; 996 vaddr = (vir_bytes)pss.ps_envstr; 997 count = pss.ps_nenvstr; 998 break; 999 } 1000 1001 /* 1002 * Go through the strings. Copy in entire, machine-aligned pages at 1003 * once, in the hope that all data is stored consecutively, which it 1004 * should be: we expect that the vector is followed by the strings, and 1005 * that the strings are stored in order of vector reference. We keep 1006 * up to two pages with copied-in data: one for the vector, and 1007 * optionally one for string data. In addition, we keep one page with 1008 * data to be copied out, so that we do not cause a lot of copy 1009 * overhead for short strings. 1010 * 1011 * We stop whenever any of the following conditions are met: 1012 * - copying in data from the target process fails for any reason; 1013 * - we have processed the last index ('count') into the vector; 1014 * - the current vector element is a NULL pointer; 1015 * - the requested number of output bytes ('oldlen') has been reached; 1016 * - the maximum number of output bytes ('max') has been reached; 1017 * - the number of page copy-ins exceeds an estimated threshold; 1018 * - copying out data fails for any reason (we then return the error). 1019 * 1020 * We limit the number of page copy-ins because otherwise a rogue 1021 * process could create an argument vector consisting of only two-byte 1022 * strings that all span two pages, causing us to copy up to 1GB of 1023 * data with the current ARG_MAX value of 256K. No reasonable vector 1024 * should cause more than (ARG_MAX / PAGE_SIZE) page copies for 1025 * strings; we are nice enough to allow twice that. Vector copies do 1026 * not count, as they are linear anyway. 1027 * 1028 * Unlike every other sysctl(2) call, we are supposed to truncate the 1029 * resulting size (the returned 'oldlen') to the requested size (the 1030 * given 'oldlen') *and* return the resulting size, rather than ENOMEM 1031 * and the real size. Unfortunately, libkvm actually relies on this. 1032 * 1033 * Generally speaking, upon failure we just return a truncated result. 1034 * In case of truncation, the data we copy out need not be null 1035 * terminated. It is up to userland to process the data correctly. 1036 */ 1037 if (trunc_page(vaddr) == 0 || vaddr % sizeof(char *) != 0) 1038 return 0; 1039 1040 off = 0; 1041 olen = 0; 1042 aborted = FALSE; 1043 1044 oldlen = mib_getoldlen(oldp); 1045 if (oldlen > max) 1046 oldlen = max; 1047 1048 copybudget = (ARG_MAX / PAGE_SIZE) * 2; 1049 1050 vpage = 0; 1051 spage = 0; 1052 1053 while (count > 0 && off + olen < oldlen && !aborted) { 1054 /* 1055 * Start by fetching the page containing the current vector 1056 * element, if needed. We could limit the fetch to the vector 1057 * size, but our hope is that for the simple cases, the strings 1058 * are on the remainder of the same page, so we save a copy 1059 * call. TODO: since the strings should follow the vector, we 1060 * could start the copy at the base of the vector. 1061 */ 1062 if (trunc_page(vaddr) != vpage) { 1063 vpage = trunc_page(vaddr); 1064 if (sys_datacopy(mp->mp_endpoint, vpage, SELF, 1065 (vir_bytes)vbuf, PAGE_SIZE) != OK) 1066 break; 1067 } 1068 1069 /* Get the current vector element, pointing to a string. */ 1070 memcpy(&pptr, &vbuf[vaddr - vpage], sizeof(pptr)); 1071 paddr = (vir_bytes)pptr; 1072 ppage = trunc_page(paddr); 1073 if (ppage == 0) 1074 break; 1075 1076 /* Fetch the string itself, one page at a time at most. */ 1077 do { 1078 /* 1079 * See if the string pointer falls inside either the 1080 * vector page or the previously fetched string page 1081 * (if any). If not, fetch a string page. 1082 */ 1083 if (ppage == vpage) { 1084 buf = vbuf; 1085 } else if (ppage == spage) { 1086 buf = sbuf; 1087 } else { 1088 if (--copybudget == 0) { 1089 aborted = TRUE; 1090 break; 1091 } 1092 spage = ppage; 1093 if (sys_datacopy(mp->mp_endpoint, spage, SELF, 1094 (vir_bytes)sbuf, PAGE_SIZE) != OK) { 1095 aborted = TRUE; 1096 break; 1097 } 1098 buf = sbuf; 1099 } 1100 1101 /* 1102 * We now have a string fragment in a buffer. See if 1103 * the string is null terminated. If not, all the data 1104 * up to the buffer end is part of the string, and the 1105 * string continues on the next page. 1106 */ 1107 p = &buf[paddr - ppage]; 1108 pleft = PAGE_SIZE - (paddr - ppage); 1109 assert(pleft > 0); 1110 1111 if ((q = memchr(p, '\0', pleft)) != NULL) { 1112 bytes = (size_t)(q - p + 1); 1113 assert(bytes <= pleft); 1114 ended = TRUE; 1115 } else { 1116 bytes = pleft; 1117 ended = FALSE; 1118 } 1119 1120 /* Limit the result to the requested length. */ 1121 if (off + olen + bytes > oldlen) 1122 bytes = oldlen - off - olen; 1123 1124 /* 1125 * Add 'bytes' bytes from string pointer 'p' to the 1126 * output buffer, copying out its contents to userland 1127 * if it has filled up. 1128 */ 1129 if (olen + bytes > sizeof(obuf)) { 1130 oleft = sizeof(obuf) - olen; 1131 memcpy(&obuf[olen], p, oleft); 1132 1133 if ((r = mib_copyout(oldp, off, obuf, 1134 sizeof(obuf))) < 0) 1135 return r; 1136 off += sizeof(obuf); 1137 olen = 0; 1138 1139 p += oleft; 1140 bytes -= oleft; 1141 } 1142 if (bytes > 0) { 1143 memcpy(&obuf[olen], p, bytes); 1144 olen += bytes; 1145 } 1146 1147 /* 1148 * Continue as long as we have not yet found the string 1149 * end, and we have not yet filled the output buffer. 1150 */ 1151 paddr += pleft; 1152 assert(trunc_page(paddr) == paddr); 1153 ppage = paddr; 1154 } while (!ended && off + olen < oldlen); 1155 1156 vaddr += sizeof(char *); 1157 count--; 1158 } 1159 1160 /* Copy out any remainder of the output buffer. */ 1161 if (olen > 0) { 1162 if ((r = mib_copyout(oldp, off, obuf, olen)) < 0) 1163 return r; 1164 off += olen; 1165 } 1166 1167 assert(off <= oldlen); 1168 return off; 1169 } 1170