1*ef8d499eSDavid van Moolenbroek /* LWIP service - mempool.c - memory pool management and slab allocation */
2*ef8d499eSDavid van Moolenbroek /*
3*ef8d499eSDavid van Moolenbroek * This module should be considered a replacement for lwIP's PBUF_POOL and
4*ef8d499eSDavid van Moolenbroek * custom-pools functionality. lwIP's PBUF_POOL system allows a PBUF_POOL type
5*ef8d499eSDavid van Moolenbroek * allocation for a moderately large amount of memory, for example for a full-
6*ef8d499eSDavid van Moolenbroek * sized packet, to be turned into a chain of "pbuf" buffers, each of a static
7*ef8d499eSDavid van Moolenbroek * size. Most of lwIP can deal with such pbuf chains, because many other types
8*ef8d499eSDavid van Moolenbroek * of allocations also end up consisting of pbuf chains. However, lwIP will
9*ef8d499eSDavid van Moolenbroek * never use PBUF_POOL for its own memory allocations, and use PBUF_RAM
10*ef8d499eSDavid van Moolenbroek * allocations instead. Such PBUF_RAM allocations always return one single
11*ef8d499eSDavid van Moolenbroek * pbuf with a contiguous memory area. lwIP's custom pools support allows such
12*ef8d499eSDavid van Moolenbroek * PBUF_RAM allocations to draw from user-defined pools of statically allocated
13*ef8d499eSDavid van Moolenbroek * memory, as an alternative to turning such allocations into malloc() calls.
14*ef8d499eSDavid van Moolenbroek *
15*ef8d499eSDavid van Moolenbroek * However, lwIP itself does not offer a way to combine these two pool systems:
16*ef8d499eSDavid van Moolenbroek * the PBUF_POOL buffer pool and the custom pools are completely separate. We
17*ef8d499eSDavid van Moolenbroek * want to be able to draw both kinds of memory from the same pool. This is
18*ef8d499eSDavid van Moolenbroek * the first reason that we are using our own memory pools. The second is
19*ef8d499eSDavid van Moolenbroek * something that lwIP could never offer anyway: we would like to provide a
20*ef8d499eSDavid van Moolenbroek * certain amount of static/preallocated memory for those types of allocations,
21*ef8d499eSDavid van Moolenbroek * but optionally also add a much larger amount of dynamic memory when needed.
22*ef8d499eSDavid van Moolenbroek *
23*ef8d499eSDavid van Moolenbroek * In order to make this module work, we do not use PBUF_POOL anywhere.
24*ef8d499eSDavid van Moolenbroek * Instead, we use chained static-sized PBUF_RAM allocations for all types of
25*ef8d499eSDavid van Moolenbroek * allocations that we manage ourselves--see pchain_alloc(). We tell lwIP to
26*ef8d499eSDavid van Moolenbroek * use the functions in this module to do the malloc-type allocations for those
27*ef8d499eSDavid van Moolenbroek * PBUF_RAM buffers. As such, this module manages all PBUF_RAM allocations,
28*ef8d499eSDavid van Moolenbroek * both from our own code and from lwIP. Note that we do still use lwIP's own
29*ef8d499eSDavid van Moolenbroek * pools for various lwIP structures. We do want to keep the isolation
30*ef8d499eSDavid van Moolenbroek * provided by the use of such pools, even though that means that we have to
31*ef8d499eSDavid van Moolenbroek * provision some of those pools for the worst case, resulting in some memory
32*ef8d499eSDavid van Moolenbroek * overhead that is unnecessary for the common case.
33*ef8d499eSDavid van Moolenbroek *
34*ef8d499eSDavid van Moolenbroek * With PBUF_RAM allocation redirection system in place, this module has to
35*ef8d499eSDavid van Moolenbroek * manage the memory for those allocations. It does this based on the
36*ef8d499eSDavid van Moolenbroek * assertion that there are three main classes of PBUF_RAM allocation sizes:
37*ef8d499eSDavid van Moolenbroek *
38*ef8d499eSDavid van Moolenbroek * - "large" allocations: these are allocations for up to MEMPOOL_BUFSIZE bytes
39*ef8d499eSDavid van Moolenbroek * of PBUF_RAM data, where MEMPOOL_BUFSIZE is the allocation granularity that
40*ef8d499eSDavid van Moolenbroek * we have picked for the individual buffers in larger chains. It is set to
41*ef8d499eSDavid van Moolenbroek * 512 bytes right now, mainly to keep pbuf chains for full-sized ethernet
42*ef8d499eSDavid van Moolenbroek * packets short, which has many performance advantages. Since the pbuf
43*ef8d499eSDavid van Moolenbroek * header itself also takes some space (16 bytes, right now), this results in
44*ef8d499eSDavid van Moolenbroek * allocations seen by mempool_malloc() of up to just over 512 bytes.
45*ef8d499eSDavid van Moolenbroek * - "small" allocations: these are allocations mostly for packet headers, as
46*ef8d499eSDavid van Moolenbroek * needed by lwIP to prepend to (mainly TCP) packet data that we give to it.
47*ef8d499eSDavid van Moolenbroek * The size of these allocations varies, but most are 76 bytes (80 bytes if
48*ef8d499eSDavid van Moolenbroek * we ever add VLAN support), plus once again the pbuf header.
49*ef8d499eSDavid van Moolenbroek * - "excessive" allocations: these are allocations larger than the maximum
50*ef8d499eSDavid van Moolenbroek * we have configured, effectively requesting contiguous memory of (possibly
51*ef8d499eSDavid van Moolenbroek * far) more than 512 bytes. We do not make such allocations ourselves, as
52*ef8d499eSDavid van Moolenbroek * we only ever create pbuf chains. Thus, any such allocations come from
53*ef8d499eSDavid van Moolenbroek * lwIP. There are a few locations in lwIP that attempt to make those kinds
54*ef8d499eSDavid van Moolenbroek * of allocations, but we replace one important case in the lwIP code with
55*ef8d499eSDavid van Moolenbroek * a chained allocation, (currently) leaving only one case: allocation of
56*ef8d499eSDavid van Moolenbroek * ICMP ping reply packets. In this module, we outright *deny* any excessive
57*ef8d499eSDavid van Moolenbroek * allocations. Practically, that means that no replies are generated for
58*ef8d499eSDavid van Moolenbroek * requests exceeding around 460 bytes, which is in fact not bad, especially
59*ef8d499eSDavid van Moolenbroek * since we have multicast ICMP ping replying enabled. If any new cases of
60*ef8d499eSDavid van Moolenbroek * excessive allocations are added to lwIP in the future, we will have to
61*ef8d499eSDavid van Moolenbroek * deal with those on a case-by-case basis, but for now this should be all.
62*ef8d499eSDavid van Moolenbroek *
63*ef8d499eSDavid van Moolenbroek * This module caters to the first two types of allocations. For large buffer
64*ef8d499eSDavid van Moolenbroek * allocations, it provides a standard slab allocator, with a hardcoded slab
65*ef8d499eSDavid van Moolenbroek * size of MEMPOOL_LARGE_COUNT buffers with a 512-byte data area each. One
66*ef8d499eSDavid van Moolenbroek * slab is allocated at service start-up; additional slabs up to a configured
67*ef8d499eSDavid van Moolenbroek * maximum are allocated on demand. Once fallen out of use, all but one slabs
68*ef8d499eSDavid van Moolenbroek * will be freed after a while, using a timer. The current per-slab count of
69*ef8d499eSDavid van Moolenbroek * 512 large buffers, combined with the buffer size of 512 plus the pbuf header
70*ef8d499eSDavid van Moolenbroek * plus a bit of extra overhead, results in about 266 KB per slab.
71*ef8d499eSDavid van Moolenbroek *
72*ef8d499eSDavid van Moolenbroek * For small buffer allocations, there are two facilities. First, there is a
73*ef8d499eSDavid van Moolenbroek * static pool of small buffers. This pool currently provides 256 small-sized
74*ef8d499eSDavid van Moolenbroek * buffers, mainly in order to allow packet headers to be produced even in low-
75*ef8d499eSDavid van Moolenbroek * memory conditions. In addition, small buffers may be formed by allocating
76*ef8d499eSDavid van Moolenbroek * and then splitting up one large buffer. The module is currently configured
77*ef8d499eSDavid van Moolenbroek * to split one large buffer into four small buffers, which yields a small
78*ef8d499eSDavid van Moolenbroek * buffer size of just over 100 bytes--enough for the packet headers while
79*ef8d499eSDavid van Moolenbroek * leaving little slack on either side.
80*ef8d499eSDavid van Moolenbroek *
81*ef8d499eSDavid van Moolenbroek * It is important to note that large and small buffer allocations are freed up
82*ef8d499eSDavid van Moolenbroek * through the same function, with no information on the original allocation
83*ef8d499eSDavid van Moolenbroek * size. As a result, we have to distinguish between large and small buffers
84*ef8d499eSDavid van Moolenbroek * using a unified system. In particular, this module prepends each of its
85*ef8d499eSDavid van Moolenbroek * allocations by a single pointer, which points to a header structure that is
86*ef8d499eSDavid van Moolenbroek * at the very beginning of the slab that contains the allocated buffer. That
87*ef8d499eSDavid van Moolenbroek * header structure contains information about the type of slab (large or
88*ef8d499eSDavid van Moolenbroek * small) as well as some accounting information used by both types.
89*ef8d499eSDavid van Moolenbroek *
90*ef8d499eSDavid van Moolenbroek * For large-buffer slabs, this header is part of a larger structure with for
91*ef8d499eSDavid van Moolenbroek * example the slab's list of free buffers. This larger structure is then
92*ef8d499eSDavid van Moolenbroek * followed by the actual buffers in the slab.
93*ef8d499eSDavid van Moolenbroek *
94*ef8d499eSDavid van Moolenbroek * For small-buffer slabs, the header is followed directly by the actual small
95*ef8d499eSDavid van Moolenbroek * buffers. Thus, when a large buffer is split up into four small buffers, the
96*ef8d499eSDavid van Moolenbroek * data area of that large buffer consists of a small-type slab header and four
97*ef8d499eSDavid van Moolenbroek * small buffers. The large buffer itself is simply considered in use, as
98*ef8d499eSDavid van Moolenbroek * though it was allocated for regular data. This nesting approach saves a lot
99*ef8d499eSDavid van Moolenbroek * of memory for small allocations, at the cost of a bit more computation.
100*ef8d499eSDavid van Moolenbroek *
101*ef8d499eSDavid van Moolenbroek * It should be noted that all allocations should be (and are) pointer-aligned.
102*ef8d499eSDavid van Moolenbroek * Normally lwIP would check for this, but we cannot tell lwIP the platform
103*ef8d499eSDavid van Moolenbroek * pointer size without hardcoding that size. This module performs proper
104*ef8d499eSDavid van Moolenbroek * alignment of all buffers itself though, regardless of the pointer size.
105*ef8d499eSDavid van Moolenbroek */
106*ef8d499eSDavid van Moolenbroek
107*ef8d499eSDavid van Moolenbroek #include "lwip.h"
108*ef8d499eSDavid van Moolenbroek
109*ef8d499eSDavid van Moolenbroek #include <sys/mman.h>
110*ef8d499eSDavid van Moolenbroek
111*ef8d499eSDavid van Moolenbroek /* Alignment to pointer sizes. */
112*ef8d499eSDavid van Moolenbroek #define MEMPOOL_ALIGN_DOWN(s) ((s) & ~(sizeof(void *) - 1))
113*ef8d499eSDavid van Moolenbroek #define MEMPOOL_ALIGN_UP(s) MEMPOOL_ALIGN_DOWN((s) + sizeof(void *) - 1)
114*ef8d499eSDavid van Moolenbroek
115*ef8d499eSDavid van Moolenbroek /* Large buffers: per-slab count and data area size. */
116*ef8d499eSDavid van Moolenbroek #define MEMPOOL_LARGE_COUNT 512
117*ef8d499eSDavid van Moolenbroek #define MEMPOOL_LARGE_SIZE \
118*ef8d499eSDavid van Moolenbroek (MEMPOOL_ALIGN_UP(sizeof(struct pbuf)) + MEMPOOL_BUFSIZE)
119*ef8d499eSDavid van Moolenbroek
120*ef8d499eSDavid van Moolenbroek /* Small buffers: per-slab count and data area size. */
121*ef8d499eSDavid van Moolenbroek #define MEMPOOL_SMALL_COUNT 4
122*ef8d499eSDavid van Moolenbroek #define MEMPOOL_SMALL_SIZE \
123*ef8d499eSDavid van Moolenbroek (MEMPOOL_ALIGN_DOWN(MEMPOOL_LARGE_SIZE / MEMPOOL_SMALL_COUNT) - \
124*ef8d499eSDavid van Moolenbroek sizeof(struct mempool_header))
125*ef8d499eSDavid van Moolenbroek
126*ef8d499eSDavid van Moolenbroek /* Memory pool slab header, part of both small and large slabs. */
127*ef8d499eSDavid van Moolenbroek struct mempool_header {
128*ef8d499eSDavid van Moolenbroek union {
129*ef8d499eSDavid van Moolenbroek struct {
130*ef8d499eSDavid van Moolenbroek uint8_t mhui_flags;
131*ef8d499eSDavid van Moolenbroek uint32_t mhui_inuse;
132*ef8d499eSDavid van Moolenbroek } mhu_info;
133*ef8d499eSDavid van Moolenbroek void *mhu_align; /* force pointer alignment */
134*ef8d499eSDavid van Moolenbroek } mh_u;
135*ef8d499eSDavid van Moolenbroek };
136*ef8d499eSDavid van Moolenbroek #define mh_flags mh_u.mhu_info.mhui_flags
137*ef8d499eSDavid van Moolenbroek #define mh_inuse mh_u.mhu_info.mhui_inuse
138*ef8d499eSDavid van Moolenbroek
139*ef8d499eSDavid van Moolenbroek /* Header flags. */
140*ef8d499eSDavid van Moolenbroek #define MHF_SMALL 0x01 /* slab is for small buffers, not large ones */
141*ef8d499eSDavid van Moolenbroek #define MHF_STATIC 0x02 /* small slab is statically allocated */
142*ef8d499eSDavid van Moolenbroek #define MHF_MARKED 0x04 /* large empty slab is up for deallocation */
143*ef8d499eSDavid van Moolenbroek
144*ef8d499eSDavid van Moolenbroek /*
145*ef8d499eSDavid van Moolenbroek * Large buffer. When allocated, mlb_header points to the (header of) the
146*ef8d499eSDavid van Moolenbroek * containing large slab, and mlb_data is returned for arbitrary use by the
147*ef8d499eSDavid van Moolenbroek * user of the buffer. When free, mlb_header is NULL and instead mlb_header2
148*ef8d499eSDavid van Moolenbroek * points to the containing slab (allowing for double-free detection), and the
149*ef8d499eSDavid van Moolenbroek * buffer is on the slab's free list by using mlb_next.
150*ef8d499eSDavid van Moolenbroek */
151*ef8d499eSDavid van Moolenbroek struct mempool_large_buf {
152*ef8d499eSDavid van Moolenbroek struct mempool_header *mlb_header;
153*ef8d499eSDavid van Moolenbroek union {
154*ef8d499eSDavid van Moolenbroek struct {
155*ef8d499eSDavid van Moolenbroek struct mempool_header *mlbuf_header2;
156*ef8d499eSDavid van Moolenbroek LIST_ENTRY(mempool_large_buf) mlbuf_next;
157*ef8d499eSDavid van Moolenbroek } mlbu_free;
158*ef8d499eSDavid van Moolenbroek char mlbu_data[MEMPOOL_LARGE_SIZE];
159*ef8d499eSDavid van Moolenbroek } mlb_u;
160*ef8d499eSDavid van Moolenbroek };
161*ef8d499eSDavid van Moolenbroek #define mlb_header2 mlb_u.mlbu_free.mlbuf_header2
162*ef8d499eSDavid van Moolenbroek #define mlb_next mlb_u.mlbu_free.mlbuf_next
163*ef8d499eSDavid van Moolenbroek #define mlb_data mlb_u.mlbu_data
164*ef8d499eSDavid van Moolenbroek
165*ef8d499eSDavid van Moolenbroek /* Small buffer. Same idea, different size. */
166*ef8d499eSDavid van Moolenbroek struct mempool_small_buf {
167*ef8d499eSDavid van Moolenbroek struct mempool_header *msb_header;
168*ef8d499eSDavid van Moolenbroek union {
169*ef8d499eSDavid van Moolenbroek struct {
170*ef8d499eSDavid van Moolenbroek struct mempool_header *msbuf_header2;
171*ef8d499eSDavid van Moolenbroek TAILQ_ENTRY(mempool_small_buf) msbuf_next;
172*ef8d499eSDavid van Moolenbroek } msbu_free;
173*ef8d499eSDavid van Moolenbroek char msbu_data[MEMPOOL_SMALL_SIZE];
174*ef8d499eSDavid van Moolenbroek } msb_u;
175*ef8d499eSDavid van Moolenbroek };
176*ef8d499eSDavid van Moolenbroek #define msb_header2 msb_u.msbu_free.msbuf_header2
177*ef8d499eSDavid van Moolenbroek #define msb_next msb_u.msbu_free.msbuf_next
178*ef8d499eSDavid van Moolenbroek #define msb_data msb_u.msbu_data
179*ef8d499eSDavid van Moolenbroek
180*ef8d499eSDavid van Moolenbroek /*
181*ef8d499eSDavid van Moolenbroek * A large slab, including header, other per-slab fields, and large buffers.
182*ef8d499eSDavid van Moolenbroek * Each of these structures is on exactly one of three slab lists, depending
183*ef8d499eSDavid van Moolenbroek * on whether all its buffers are free (empty), some but not all of its buffers
184*ef8d499eSDavid van Moolenbroek * are in use (partial), or all of its buffers are in use (full). The mls_next
185*ef8d499eSDavid van Moolenbroek * field is used for that list. The mls_free field is the per-slab list of
186*ef8d499eSDavid van Moolenbroek * free buffers.
187*ef8d499eSDavid van Moolenbroek */
188*ef8d499eSDavid van Moolenbroek struct mempool_large_slab {
189*ef8d499eSDavid van Moolenbroek struct mempool_header mls_header; /* MUST be first */
190*ef8d499eSDavid van Moolenbroek LIST_ENTRY(mempool_large_slab) mls_next;
191*ef8d499eSDavid van Moolenbroek LIST_HEAD(, mempool_large_buf) mls_free;
192*ef8d499eSDavid van Moolenbroek struct mempool_large_buf mls_buf[MEMPOOL_LARGE_COUNT];
193*ef8d499eSDavid van Moolenbroek };
194*ef8d499eSDavid van Moolenbroek
195*ef8d499eSDavid van Moolenbroek /* The three slab lists for large slabs, as described above. */
196*ef8d499eSDavid van Moolenbroek static LIST_HEAD(, mempool_large_slab) mempool_empty_slabs;
197*ef8d499eSDavid van Moolenbroek static LIST_HEAD(, mempool_large_slab) mempool_partial_slabs;
198*ef8d499eSDavid van Moolenbroek static LIST_HEAD(, mempool_large_slab) mempool_full_slabs;
199*ef8d499eSDavid van Moolenbroek
200*ef8d499eSDavid van Moolenbroek /*
201*ef8d499eSDavid van Moolenbroek * A small slab, including header and small buffers. We use unified free lists
202*ef8d499eSDavid van Moolenbroek * for small buffers, and these small slabs are not part of any lists
203*ef8d499eSDavid van Moolenbroek * themselves, so we need neither of the two fields from large slabs for that.
204*ef8d499eSDavid van Moolenbroek */
205*ef8d499eSDavid van Moolenbroek struct mempool_small_slab {
206*ef8d499eSDavid van Moolenbroek struct mempool_header mss_header; /* MUST be first */
207*ef8d499eSDavid van Moolenbroek struct mempool_small_buf mss_buf[MEMPOOL_SMALL_COUNT];
208*ef8d499eSDavid van Moolenbroek };
209*ef8d499eSDavid van Moolenbroek
210*ef8d499eSDavid van Moolenbroek /*
211*ef8d499eSDavid van Moolenbroek * The free lists for static small buffers (from the static pool, see below)
212*ef8d499eSDavid van Moolenbroek * and dynamic small buffers (as obtained by splitting large buffers).
213*ef8d499eSDavid van Moolenbroek */
214*ef8d499eSDavid van Moolenbroek static TAILQ_HEAD(, mempool_small_buf) mempool_small_static_freelist;
215*ef8d499eSDavid van Moolenbroek static TAILQ_HEAD(, mempool_small_buf) mempool_small_dynamic_freelist;
216*ef8d499eSDavid van Moolenbroek
217*ef8d499eSDavid van Moolenbroek /*
218*ef8d499eSDavid van Moolenbroek * A static pool of small buffers. Small buffers are somewhat more important
219*ef8d499eSDavid van Moolenbroek * than large buffers, because they are used for packet headers. The purpose
220*ef8d499eSDavid van Moolenbroek * of this static pool is to be able to make progress even if all large buffers
221*ef8d499eSDavid van Moolenbroek * are allocated for data, typically in the case that the system is low on
222*ef8d499eSDavid van Moolenbroek * memory. Note that the number of static small buffers is the given number of
223*ef8d499eSDavid van Moolenbroek * small slabs multiplied by MEMPOOL_SMALL_COUNT, hence the division.
224*ef8d499eSDavid van Moolenbroek */
225*ef8d499eSDavid van Moolenbroek #define MEMPOOL_SMALL_SLABS (256 / MEMPOOL_SMALL_COUNT)
226*ef8d499eSDavid van Moolenbroek
227*ef8d499eSDavid van Moolenbroek static struct mempool_small_slab mempool_small_pool[MEMPOOL_SMALL_SLABS];
228*ef8d499eSDavid van Moolenbroek
229*ef8d499eSDavid van Moolenbroek /*
230*ef8d499eSDavid van Moolenbroek * The following setting (mempool_max_slabs) can be changed through sysctl(7).
231*ef8d499eSDavid van Moolenbroek * As such it may be set by userland to a completely arbitrary value and must
232*ef8d499eSDavid van Moolenbroek * be sanity-checked before any actual use. The default is picked such that
233*ef8d499eSDavid van Moolenbroek * all TCP sockets can fill up their send and receive queues: (TCP_SNDBUF_DEF +
234*ef8d499eSDavid van Moolenbroek * TCP_RCVBUF_DEF) * NR_TCPSOCK / (MEMPOOL_BUFSIZE * MEMPOOL_LARGE_COUNT) =
235*ef8d499eSDavid van Moolenbroek * (32768 + 32768) * 256 / (512 * 512) = 64. We put in the resulting number
236*ef8d499eSDavid van Moolenbroek * rather than the formula because not all those definitions are public.
237*ef8d499eSDavid van Moolenbroek */
238*ef8d499eSDavid van Moolenbroek #define MEMPOOL_DEFAULT_MAX_SLABS 64 /* about 17 MB of memory */
239*ef8d499eSDavid van Moolenbroek
240*ef8d499eSDavid van Moolenbroek static int mempool_max_slabs; /* maximum number of large slabs */
241*ef8d499eSDavid van Moolenbroek static int mempool_nr_slabs; /* current number of large slabs */
242*ef8d499eSDavid van Moolenbroek
243*ef8d499eSDavid van Moolenbroek static int mempool_nr_large; /* current number of large buffers */
244*ef8d499eSDavid van Moolenbroek static int mempool_used_large; /* large buffers currently in use */
245*ef8d499eSDavid van Moolenbroek static int mempool_used_small; /* small buffers currently in use */
246*ef8d499eSDavid van Moolenbroek
247*ef8d499eSDavid van Moolenbroek /*
248*ef8d499eSDavid van Moolenbroek * Number of clock ticks between timer invocations. The timer is used to
249*ef8d499eSDavid van Moolenbroek * deallocate unused slabs.
250*ef8d499eSDavid van Moolenbroek */
251*ef8d499eSDavid van Moolenbroek #define MEMPOOL_TIMER_TICKS (10 * sys_hz())
252*ef8d499eSDavid van Moolenbroek
253*ef8d499eSDavid van Moolenbroek static minix_timer_t mempool_timer;
254*ef8d499eSDavid van Moolenbroek
255*ef8d499eSDavid van Moolenbroek static int mempool_defer_alloc; /* allocation failed, defer next try */
256*ef8d499eSDavid van Moolenbroek
257*ef8d499eSDavid van Moolenbroek /* The CTL_MINIX MINIX_LWIP "mempool" subtree. Dynamically numbered. */
258*ef8d499eSDavid van Moolenbroek static struct rmib_node minix_lwip_mempool_table[] = {
259*ef8d499eSDavid van Moolenbroek RMIB_INTPTR(RMIB_RW, &mempool_max_slabs, "slab_max",
260*ef8d499eSDavid van Moolenbroek "Maximum number of memory slabs (configurable)"),
261*ef8d499eSDavid van Moolenbroek RMIB_INTPTR(RMIB_RO, &mempool_nr_slabs, "slab_num",
262*ef8d499eSDavid van Moolenbroek "Current number of memory slabs"),
263*ef8d499eSDavid van Moolenbroek RMIB_INT(RMIB_RO, sizeof(struct mempool_large_slab), "slab_size",
264*ef8d499eSDavid van Moolenbroek "Byte size of a single memory slab"),
265*ef8d499eSDavid van Moolenbroek RMIB_INT(RMIB_RO, MEMPOOL_LARGE_COUNT, "slab_bufs",
266*ef8d499eSDavid van Moolenbroek "Number of large buffers per memory slab"),
267*ef8d499eSDavid van Moolenbroek RMIB_INTPTR(RMIB_RO, &mempool_nr_large, "large_num",
268*ef8d499eSDavid van Moolenbroek "Current total number of large buffers"),
269*ef8d499eSDavid van Moolenbroek RMIB_INTPTR(RMIB_RO, &mempool_used_large, "large_used",
270*ef8d499eSDavid van Moolenbroek "Current number of used large buffers"),
271*ef8d499eSDavid van Moolenbroek RMIB_INT(RMIB_RO, MEMPOOL_LARGE_SIZE, "large_size",
272*ef8d499eSDavid van Moolenbroek "Byte size of a single large buffer"),
273*ef8d499eSDavid van Moolenbroek RMIB_INTPTR(RMIB_RO, &mempool_used_small, "small_used",
274*ef8d499eSDavid van Moolenbroek "Current number of used small buffers"),
275*ef8d499eSDavid van Moolenbroek RMIB_INT(RMIB_RO, MEMPOOL_SMALL_SIZE, "small_size",
276*ef8d499eSDavid van Moolenbroek "Byte size of a single small buffer"),
277*ef8d499eSDavid van Moolenbroek };
278*ef8d499eSDavid van Moolenbroek
279*ef8d499eSDavid van Moolenbroek static struct rmib_node minix_lwip_mempool_node =
280*ef8d499eSDavid van Moolenbroek RMIB_NODE(RMIB_RO, minix_lwip_mempool_table, "mempool",
281*ef8d499eSDavid van Moolenbroek "Memory pool settings");
282*ef8d499eSDavid van Moolenbroek
283*ef8d499eSDavid van Moolenbroek /*
284*ef8d499eSDavid van Moolenbroek * Initialize the given "slab" of small buffers. The slab may either come from
285*ef8d499eSDavid van Moolenbroek * the statically allocated pool ('is_static' is TRUE) or a single large buffer
286*ef8d499eSDavid van Moolenbroek * that we aim to chop up into small buffers.
287*ef8d499eSDavid van Moolenbroek */
288*ef8d499eSDavid van Moolenbroek static void
mempool_prepare_small(struct mempool_small_slab * mss,int is_static)289*ef8d499eSDavid van Moolenbroek mempool_prepare_small(struct mempool_small_slab * mss, int is_static)
290*ef8d499eSDavid van Moolenbroek {
291*ef8d499eSDavid van Moolenbroek struct mempool_small_buf *msb;
292*ef8d499eSDavid van Moolenbroek unsigned int count;
293*ef8d499eSDavid van Moolenbroek
294*ef8d499eSDavid van Moolenbroek mss->mss_header.mh_flags = MHF_SMALL | ((is_static) ? MHF_STATIC : 0);
295*ef8d499eSDavid van Moolenbroek mss->mss_header.mh_inuse = 0;
296*ef8d499eSDavid van Moolenbroek
297*ef8d499eSDavid van Moolenbroek msb = mss->mss_buf;
298*ef8d499eSDavid van Moolenbroek
299*ef8d499eSDavid van Moolenbroek for (count = 0; count < MEMPOOL_SMALL_COUNT; count++, msb++) {
300*ef8d499eSDavid van Moolenbroek msb->msb_header = NULL;
301*ef8d499eSDavid van Moolenbroek msb->msb_header2 = &mss->mss_header;
302*ef8d499eSDavid van Moolenbroek
303*ef8d499eSDavid van Moolenbroek if (is_static)
304*ef8d499eSDavid van Moolenbroek TAILQ_INSERT_HEAD(&mempool_small_static_freelist, msb,
305*ef8d499eSDavid van Moolenbroek msb_next);
306*ef8d499eSDavid van Moolenbroek else
307*ef8d499eSDavid van Moolenbroek TAILQ_INSERT_HEAD(&mempool_small_dynamic_freelist, msb,
308*ef8d499eSDavid van Moolenbroek msb_next);
309*ef8d499eSDavid van Moolenbroek }
310*ef8d499eSDavid van Moolenbroek }
311*ef8d499eSDavid van Moolenbroek
312*ef8d499eSDavid van Moolenbroek /*
313*ef8d499eSDavid van Moolenbroek * Allocate a new slab for large buffers, if allowed by policy and possible.
314*ef8d499eSDavid van Moolenbroek */
315*ef8d499eSDavid van Moolenbroek static void
mempool_new_slab(void)316*ef8d499eSDavid van Moolenbroek mempool_new_slab(void)
317*ef8d499eSDavid van Moolenbroek {
318*ef8d499eSDavid van Moolenbroek struct mempool_large_slab *mls;
319*ef8d499eSDavid van Moolenbroek struct mempool_large_buf *mlb;
320*ef8d499eSDavid van Moolenbroek unsigned int count;
321*ef8d499eSDavid van Moolenbroek
322*ef8d499eSDavid van Moolenbroek /*
323*ef8d499eSDavid van Moolenbroek * See if allocating a new slab would result in overrunning the
324*ef8d499eSDavid van Moolenbroek * configured maximum number of large buffers. Round the maximum,
325*ef8d499eSDavid van Moolenbroek * which is probably what the user intended.
326*ef8d499eSDavid van Moolenbroek */
327*ef8d499eSDavid van Moolenbroek if (mempool_cur_buffers() + MEMPOOL_LARGE_COUNT / 2 >
328*ef8d499eSDavid van Moolenbroek mempool_max_buffers()) {
329*ef8d499eSDavid van Moolenbroek assert(mempool_nr_slabs > 0);
330*ef8d499eSDavid van Moolenbroek
331*ef8d499eSDavid van Moolenbroek return;
332*ef8d499eSDavid van Moolenbroek }
333*ef8d499eSDavid van Moolenbroek
334*ef8d499eSDavid van Moolenbroek /*
335*ef8d499eSDavid van Moolenbroek * If a previous allocation failed before during this timer interval,
336*ef8d499eSDavid van Moolenbroek * do not try again now.
337*ef8d499eSDavid van Moolenbroek */
338*ef8d499eSDavid van Moolenbroek if (mempool_defer_alloc)
339*ef8d499eSDavid van Moolenbroek return;
340*ef8d499eSDavid van Moolenbroek
341*ef8d499eSDavid van Moolenbroek /*
342*ef8d499eSDavid van Moolenbroek * Allocate the slab. Preallocate the memory, or we might crash later
343*ef8d499eSDavid van Moolenbroek * during low-memory conditions. If allocation fails, simply do
344*ef8d499eSDavid van Moolenbroek * nothing further. The caller will check the free lists.
345*ef8d499eSDavid van Moolenbroek */
346*ef8d499eSDavid van Moolenbroek mls = (struct mempool_large_slab *)mmap(NULL,
347*ef8d499eSDavid van Moolenbroek sizeof(struct mempool_large_slab), PROT_READ | PROT_WRITE,
348*ef8d499eSDavid van Moolenbroek MAP_ANON | MAP_PRIVATE | MAP_PREALLOC, -1, 0);
349*ef8d499eSDavid van Moolenbroek
350*ef8d499eSDavid van Moolenbroek if (mls == MAP_FAILED) {
351*ef8d499eSDavid van Moolenbroek if (mempool_nr_slabs == 0)
352*ef8d499eSDavid van Moolenbroek panic("unable to allocate initial memory pool");
353*ef8d499eSDavid van Moolenbroek
354*ef8d499eSDavid van Moolenbroek /*
355*ef8d499eSDavid van Moolenbroek * Do not keep hammering VM with mmap requests when the system
356*ef8d499eSDavid van Moolenbroek * is out of memory. Try again after the next timer tick.
357*ef8d499eSDavid van Moolenbroek */
358*ef8d499eSDavid van Moolenbroek mempool_defer_alloc = TRUE;
359*ef8d499eSDavid van Moolenbroek
360*ef8d499eSDavid van Moolenbroek return;
361*ef8d499eSDavid van Moolenbroek }
362*ef8d499eSDavid van Moolenbroek
363*ef8d499eSDavid van Moolenbroek /* Initialize the new slab. */
364*ef8d499eSDavid van Moolenbroek mls->mls_header.mh_flags = 0;
365*ef8d499eSDavid van Moolenbroek mls->mls_header.mh_inuse = 0;
366*ef8d499eSDavid van Moolenbroek
367*ef8d499eSDavid van Moolenbroek mlb = mls->mls_buf;
368*ef8d499eSDavid van Moolenbroek
369*ef8d499eSDavid van Moolenbroek LIST_INIT(&mls->mls_free);
370*ef8d499eSDavid van Moolenbroek
371*ef8d499eSDavid van Moolenbroek for (count = 0; count < MEMPOOL_LARGE_COUNT; count++, mlb++) {
372*ef8d499eSDavid van Moolenbroek mlb->mlb_header = NULL;
373*ef8d499eSDavid van Moolenbroek mlb->mlb_header2 = &mls->mls_header;
374*ef8d499eSDavid van Moolenbroek
375*ef8d499eSDavid van Moolenbroek LIST_INSERT_HEAD(&mls->mls_free, mlb, mlb_next);
376*ef8d499eSDavid van Moolenbroek }
377*ef8d499eSDavid van Moolenbroek
378*ef8d499eSDavid van Moolenbroek LIST_INSERT_HEAD(&mempool_empty_slabs, mls, mls_next);
379*ef8d499eSDavid van Moolenbroek
380*ef8d499eSDavid van Moolenbroek mempool_nr_slabs++;
381*ef8d499eSDavid van Moolenbroek mempool_nr_large += MEMPOOL_LARGE_COUNT;
382*ef8d499eSDavid van Moolenbroek }
383*ef8d499eSDavid van Moolenbroek
384*ef8d499eSDavid van Moolenbroek /*
385*ef8d499eSDavid van Moolenbroek * Deallocate a slab for large buffers, if allowed.
386*ef8d499eSDavid van Moolenbroek */
387*ef8d499eSDavid van Moolenbroek static void
mempool_destroy_slab(struct mempool_large_slab * mls)388*ef8d499eSDavid van Moolenbroek mempool_destroy_slab(struct mempool_large_slab * mls)
389*ef8d499eSDavid van Moolenbroek {
390*ef8d499eSDavid van Moolenbroek
391*ef8d499eSDavid van Moolenbroek assert(mempool_nr_slabs > 0);
392*ef8d499eSDavid van Moolenbroek
393*ef8d499eSDavid van Moolenbroek assert(!(mls->mls_header.mh_flags & MHF_SMALL));
394*ef8d499eSDavid van Moolenbroek assert(mls->mls_header.mh_inuse == 0);
395*ef8d499eSDavid van Moolenbroek
396*ef8d499eSDavid van Moolenbroek /* Never deallocate the last large slab. */
397*ef8d499eSDavid van Moolenbroek if (mempool_nr_slabs == 1)
398*ef8d499eSDavid van Moolenbroek return;
399*ef8d499eSDavid van Moolenbroek
400*ef8d499eSDavid van Moolenbroek LIST_REMOVE(mls, mls_next);
401*ef8d499eSDavid van Moolenbroek
402*ef8d499eSDavid van Moolenbroek if (munmap(mls, sizeof(*mls)) != 0)
403*ef8d499eSDavid van Moolenbroek panic("munmap failed: %d", -errno);
404*ef8d499eSDavid van Moolenbroek
405*ef8d499eSDavid van Moolenbroek assert(mempool_nr_large > MEMPOOL_LARGE_COUNT);
406*ef8d499eSDavid van Moolenbroek mempool_nr_large -= MEMPOOL_LARGE_COUNT;
407*ef8d499eSDavid van Moolenbroek mempool_nr_slabs--;
408*ef8d499eSDavid van Moolenbroek }
409*ef8d499eSDavid van Moolenbroek
410*ef8d499eSDavid van Moolenbroek /*
411*ef8d499eSDavid van Moolenbroek * Regular timer. Deallocate empty slabs already marked for deallocation, and
412*ef8d499eSDavid van Moolenbroek * mark any other empty slabs for deallocation.
413*ef8d499eSDavid van Moolenbroek */
414*ef8d499eSDavid van Moolenbroek static void
mempool_tick(int arg __unused)415*ef8d499eSDavid van Moolenbroek mempool_tick(int arg __unused)
416*ef8d499eSDavid van Moolenbroek {
417*ef8d499eSDavid van Moolenbroek struct mempool_large_slab *mls, *tmls;
418*ef8d499eSDavid van Moolenbroek
419*ef8d499eSDavid van Moolenbroek /*
420*ef8d499eSDavid van Moolenbroek * Go through all the empty slabs, destroying marked slabs and marking
421*ef8d499eSDavid van Moolenbroek * unmarked slabs.
422*ef8d499eSDavid van Moolenbroek */
423*ef8d499eSDavid van Moolenbroek LIST_FOREACH_SAFE(mls, &mempool_empty_slabs, mls_next, tmls) {
424*ef8d499eSDavid van Moolenbroek if (mls->mls_header.mh_flags & MHF_MARKED)
425*ef8d499eSDavid van Moolenbroek mempool_destroy_slab(mls);
426*ef8d499eSDavid van Moolenbroek else
427*ef8d499eSDavid van Moolenbroek mls->mls_header.mh_flags |= MHF_MARKED;
428*ef8d499eSDavid van Moolenbroek }
429*ef8d499eSDavid van Moolenbroek
430*ef8d499eSDavid van Moolenbroek /*
431*ef8d499eSDavid van Moolenbroek * If allocation failed during the last interval, allow a new attempt
432*ef8d499eSDavid van Moolenbroek * during the next.
433*ef8d499eSDavid van Moolenbroek */
434*ef8d499eSDavid van Moolenbroek mempool_defer_alloc = FALSE;
435*ef8d499eSDavid van Moolenbroek
436*ef8d499eSDavid van Moolenbroek /* Set the next timer. */
437*ef8d499eSDavid van Moolenbroek set_timer(&mempool_timer, MEMPOOL_TIMER_TICKS, mempool_tick, 0);
438*ef8d499eSDavid van Moolenbroek }
439*ef8d499eSDavid van Moolenbroek
440*ef8d499eSDavid van Moolenbroek /*
441*ef8d499eSDavid van Moolenbroek * Initialize the memory pool module.
442*ef8d499eSDavid van Moolenbroek */
443*ef8d499eSDavid van Moolenbroek void
mempool_init(void)444*ef8d499eSDavid van Moolenbroek mempool_init(void)
445*ef8d499eSDavid van Moolenbroek {
446*ef8d499eSDavid van Moolenbroek unsigned int slot;
447*ef8d499eSDavid van Moolenbroek
448*ef8d499eSDavid van Moolenbroek /* These checks are for absolutely essential points. */
449*ef8d499eSDavid van Moolenbroek assert(sizeof(void *) == MEM_ALIGNMENT);
450*ef8d499eSDavid van Moolenbroek assert(sizeof(struct mempool_small_slab) <= MEMPOOL_LARGE_SIZE);
451*ef8d499eSDavid van Moolenbroek assert(offsetof(struct mempool_small_buf, msb_data) == sizeof(void *));
452*ef8d499eSDavid van Moolenbroek assert(offsetof(struct mempool_large_buf, mlb_data) == sizeof(void *));
453*ef8d499eSDavid van Moolenbroek
454*ef8d499eSDavid van Moolenbroek /* Initialize module-local variables. */
455*ef8d499eSDavid van Moolenbroek LIST_INIT(&mempool_empty_slabs);
456*ef8d499eSDavid van Moolenbroek LIST_INIT(&mempool_partial_slabs);
457*ef8d499eSDavid van Moolenbroek LIST_INIT(&mempool_full_slabs);
458*ef8d499eSDavid van Moolenbroek
459*ef8d499eSDavid van Moolenbroek TAILQ_INIT(&mempool_small_static_freelist);
460*ef8d499eSDavid van Moolenbroek TAILQ_INIT(&mempool_small_dynamic_freelist);
461*ef8d499eSDavid van Moolenbroek
462*ef8d499eSDavid van Moolenbroek mempool_max_slabs = MEMPOOL_DEFAULT_MAX_SLABS;
463*ef8d499eSDavid van Moolenbroek mempool_nr_slabs = 0;
464*ef8d499eSDavid van Moolenbroek
465*ef8d499eSDavid van Moolenbroek mempool_nr_large = 0;
466*ef8d499eSDavid van Moolenbroek mempool_used_large = 0;
467*ef8d499eSDavid van Moolenbroek mempool_used_small = 0;
468*ef8d499eSDavid van Moolenbroek
469*ef8d499eSDavid van Moolenbroek mempool_defer_alloc = FALSE;
470*ef8d499eSDavid van Moolenbroek
471*ef8d499eSDavid van Moolenbroek /* Initialize the static pool of small buffers. */
472*ef8d499eSDavid van Moolenbroek for (slot = 0; slot < __arraycount(mempool_small_pool); slot++)
473*ef8d499eSDavid van Moolenbroek mempool_prepare_small(&mempool_small_pool[slot],
474*ef8d499eSDavid van Moolenbroek TRUE /*is_static*/);
475*ef8d499eSDavid van Moolenbroek
476*ef8d499eSDavid van Moolenbroek /*
477*ef8d499eSDavid van Moolenbroek * Allocate one large slab. The service needs at least one large slab
478*ef8d499eSDavid van Moolenbroek * for basic operation, and therefore will never deallocate the last.
479*ef8d499eSDavid van Moolenbroek */
480*ef8d499eSDavid van Moolenbroek mempool_new_slab();
481*ef8d499eSDavid van Moolenbroek
482*ef8d499eSDavid van Moolenbroek /* Set a regular low-frequency timer to deallocate unused slabs. */
483*ef8d499eSDavid van Moolenbroek set_timer(&mempool_timer, MEMPOOL_TIMER_TICKS, mempool_tick, 0);
484*ef8d499eSDavid van Moolenbroek
485*ef8d499eSDavid van Moolenbroek /* Register the minix.lwip.mempool subtree. */
486*ef8d499eSDavid van Moolenbroek mibtree_register_lwip(&minix_lwip_mempool_node);
487*ef8d499eSDavid van Moolenbroek }
488*ef8d499eSDavid van Moolenbroek
489*ef8d499eSDavid van Moolenbroek /*
490*ef8d499eSDavid van Moolenbroek * Return the total number of large buffers currently in the system, regardless
491*ef8d499eSDavid van Moolenbroek * of allocation status.
492*ef8d499eSDavid van Moolenbroek */
493*ef8d499eSDavid van Moolenbroek unsigned int
mempool_cur_buffers(void)494*ef8d499eSDavid van Moolenbroek mempool_cur_buffers(void)
495*ef8d499eSDavid van Moolenbroek {
496*ef8d499eSDavid van Moolenbroek
497*ef8d499eSDavid van Moolenbroek return mempool_nr_large;
498*ef8d499eSDavid van Moolenbroek }
499*ef8d499eSDavid van Moolenbroek
500*ef8d499eSDavid van Moolenbroek /*
501*ef8d499eSDavid van Moolenbroek * Return the maximum number of large buffers that the system has been allowed
502*ef8d499eSDavid van Moolenbroek * to allocate. Note that due to low-memory conditions, this maximum may not
503*ef8d499eSDavid van Moolenbroek * be allocated in practice even when desired.
504*ef8d499eSDavid van Moolenbroek */
505*ef8d499eSDavid van Moolenbroek unsigned int
mempool_max_buffers(void)506*ef8d499eSDavid van Moolenbroek mempool_max_buffers(void)
507*ef8d499eSDavid van Moolenbroek {
508*ef8d499eSDavid van Moolenbroek
509*ef8d499eSDavid van Moolenbroek if (mempool_max_slabs <= 1)
510*ef8d499eSDavid van Moolenbroek return MEMPOOL_LARGE_COUNT;
511*ef8d499eSDavid van Moolenbroek
512*ef8d499eSDavid van Moolenbroek if ((size_t)mempool_max_slabs >
513*ef8d499eSDavid van Moolenbroek INT_MAX / sizeof(struct mempool_large_slab))
514*ef8d499eSDavid van Moolenbroek return INT_MAX / sizeof(struct mempool_large_slab);
515*ef8d499eSDavid van Moolenbroek
516*ef8d499eSDavid van Moolenbroek return (size_t)mempool_max_slabs * MEMPOOL_LARGE_COUNT;
517*ef8d499eSDavid van Moolenbroek }
518*ef8d499eSDavid van Moolenbroek
519*ef8d499eSDavid van Moolenbroek /*
520*ef8d499eSDavid van Moolenbroek * Allocate a large buffer, either by taking one off a free list or by
521*ef8d499eSDavid van Moolenbroek * allocating a new large slab. On success, return a pointer to the data area
522*ef8d499eSDavid van Moolenbroek * of the large buffer. This data area is exactly MEMPOOL_LARGE_SIZE bytes in
523*ef8d499eSDavid van Moolenbroek * size. If no large buffer could be allocated, return NULL.
524*ef8d499eSDavid van Moolenbroek */
525*ef8d499eSDavid van Moolenbroek static void *
mempool_alloc_large(void)526*ef8d499eSDavid van Moolenbroek mempool_alloc_large(void)
527*ef8d499eSDavid van Moolenbroek {
528*ef8d499eSDavid van Moolenbroek struct mempool_large_slab *mls;
529*ef8d499eSDavid van Moolenbroek struct mempool_large_buf *mlb;
530*ef8d499eSDavid van Moolenbroek
531*ef8d499eSDavid van Moolenbroek /*
532*ef8d499eSDavid van Moolenbroek * Find a large slab that has free large blocks. As is standard for
533*ef8d499eSDavid van Moolenbroek * slab allocation, favor partially used slabs over empty slabs for
534*ef8d499eSDavid van Moolenbroek * eventual consolidation. If both lists are empty, try allocating a
535*ef8d499eSDavid van Moolenbroek * new slab. If that fails, we are out of memory, and return NULL.
536*ef8d499eSDavid van Moolenbroek */
537*ef8d499eSDavid van Moolenbroek if (!LIST_EMPTY(&mempool_partial_slabs))
538*ef8d499eSDavid van Moolenbroek mls = LIST_FIRST(&mempool_partial_slabs);
539*ef8d499eSDavid van Moolenbroek else {
540*ef8d499eSDavid van Moolenbroek if (LIST_EMPTY(&mempool_empty_slabs)) {
541*ef8d499eSDavid van Moolenbroek mempool_new_slab();
542*ef8d499eSDavid van Moolenbroek
543*ef8d499eSDavid van Moolenbroek if (LIST_EMPTY(&mempool_empty_slabs))
544*ef8d499eSDavid van Moolenbroek return NULL; /* out of memory */
545*ef8d499eSDavid van Moolenbroek }
546*ef8d499eSDavid van Moolenbroek
547*ef8d499eSDavid van Moolenbroek mls = LIST_FIRST(&mempool_empty_slabs);
548*ef8d499eSDavid van Moolenbroek }
549*ef8d499eSDavid van Moolenbroek
550*ef8d499eSDavid van Moolenbroek /* Allocate a block from the slab that we picked. */
551*ef8d499eSDavid van Moolenbroek assert(mls != NULL);
552*ef8d499eSDavid van Moolenbroek assert(!LIST_EMPTY(&mls->mls_free));
553*ef8d499eSDavid van Moolenbroek
554*ef8d499eSDavid van Moolenbroek mlb = LIST_FIRST(&mls->mls_free);
555*ef8d499eSDavid van Moolenbroek LIST_REMOVE(mlb, mlb_next);
556*ef8d499eSDavid van Moolenbroek
557*ef8d499eSDavid van Moolenbroek assert(mlb->mlb_header == NULL);
558*ef8d499eSDavid van Moolenbroek assert(mlb->mlb_header2 == &mls->mls_header);
559*ef8d499eSDavid van Moolenbroek
560*ef8d499eSDavid van Moolenbroek mlb->mlb_header = &mls->mls_header;
561*ef8d499eSDavid van Moolenbroek
562*ef8d499eSDavid van Moolenbroek /*
563*ef8d499eSDavid van Moolenbroek * Adjust accounting for the large slab, which may involve moving it
564*ef8d499eSDavid van Moolenbroek * to another list.
565*ef8d499eSDavid van Moolenbroek */
566*ef8d499eSDavid van Moolenbroek assert(mls->mls_header.mh_inuse < MEMPOOL_LARGE_COUNT);
567*ef8d499eSDavid van Moolenbroek mls->mls_header.mh_inuse++;
568*ef8d499eSDavid van Moolenbroek
569*ef8d499eSDavid van Moolenbroek if (mls->mls_header.mh_inuse == MEMPOOL_LARGE_COUNT) {
570*ef8d499eSDavid van Moolenbroek LIST_REMOVE(mls, mls_next);
571*ef8d499eSDavid van Moolenbroek
572*ef8d499eSDavid van Moolenbroek LIST_INSERT_HEAD(&mempool_full_slabs, mls, mls_next);
573*ef8d499eSDavid van Moolenbroek } else if (mls->mls_header.mh_inuse == 1) {
574*ef8d499eSDavid van Moolenbroek LIST_REMOVE(mls, mls_next);
575*ef8d499eSDavid van Moolenbroek
576*ef8d499eSDavid van Moolenbroek LIST_INSERT_HEAD(&mempool_partial_slabs, mls, mls_next);
577*ef8d499eSDavid van Moolenbroek }
578*ef8d499eSDavid van Moolenbroek
579*ef8d499eSDavid van Moolenbroek assert(mempool_used_large < mempool_nr_large);
580*ef8d499eSDavid van Moolenbroek mempool_used_large++;
581*ef8d499eSDavid van Moolenbroek
582*ef8d499eSDavid van Moolenbroek /* Return the block's data area. */
583*ef8d499eSDavid van Moolenbroek return (void *)mlb->mlb_data;
584*ef8d499eSDavid van Moolenbroek }
585*ef8d499eSDavid van Moolenbroek
586*ef8d499eSDavid van Moolenbroek /*
587*ef8d499eSDavid van Moolenbroek * Allocate a small buffer, either by taking one off a free list or by
588*ef8d499eSDavid van Moolenbroek * allocating a large buffer and splitting it up in new free small buffers. On
589*ef8d499eSDavid van Moolenbroek * success, return a pointer to the data area of the small buffer. This data
590*ef8d499eSDavid van Moolenbroek * area is exactly MEMPOOL_SMALL_SIZE bytes in size. If no small buffer could
591*ef8d499eSDavid van Moolenbroek * be allocated, return NULL.
592*ef8d499eSDavid van Moolenbroek */
593*ef8d499eSDavid van Moolenbroek static void *
mempool_alloc_small(void)594*ef8d499eSDavid van Moolenbroek mempool_alloc_small(void)
595*ef8d499eSDavid van Moolenbroek {
596*ef8d499eSDavid van Moolenbroek struct mempool_small_slab *mss;
597*ef8d499eSDavid van Moolenbroek struct mempool_small_buf *msb;
598*ef8d499eSDavid van Moolenbroek struct mempool_header *mh;
599*ef8d499eSDavid van Moolenbroek
600*ef8d499eSDavid van Moolenbroek /*
601*ef8d499eSDavid van Moolenbroek * Find a free small block and take it off the free list. Try the
602*ef8d499eSDavid van Moolenbroek * static free list before the dynamic one, so that after a peak in
603*ef8d499eSDavid van Moolenbroek * buffer usage we are likely to be able to free up the dynamic slabs
604*ef8d499eSDavid van Moolenbroek * quickly. If both lists are empty, try allocating a large block to
605*ef8d499eSDavid van Moolenbroek * divvy up into small blocks. If that fails, we are out of memory.
606*ef8d499eSDavid van Moolenbroek */
607*ef8d499eSDavid van Moolenbroek if (!TAILQ_EMPTY(&mempool_small_static_freelist)) {
608*ef8d499eSDavid van Moolenbroek msb = TAILQ_FIRST(&mempool_small_static_freelist);
609*ef8d499eSDavid van Moolenbroek
610*ef8d499eSDavid van Moolenbroek TAILQ_REMOVE(&mempool_small_static_freelist, msb, msb_next);
611*ef8d499eSDavid van Moolenbroek } else {
612*ef8d499eSDavid van Moolenbroek if (TAILQ_EMPTY(&mempool_small_dynamic_freelist)) {
613*ef8d499eSDavid van Moolenbroek mss =
614*ef8d499eSDavid van Moolenbroek (struct mempool_small_slab *)mempool_alloc_large();
615*ef8d499eSDavid van Moolenbroek
616*ef8d499eSDavid van Moolenbroek if (mss == NULL)
617*ef8d499eSDavid van Moolenbroek return NULL; /* out of memory */
618*ef8d499eSDavid van Moolenbroek
619*ef8d499eSDavid van Moolenbroek /* Initialize the small slab, including its blocks. */
620*ef8d499eSDavid van Moolenbroek mempool_prepare_small(mss, FALSE /*is_static*/);
621*ef8d499eSDavid van Moolenbroek }
622*ef8d499eSDavid van Moolenbroek
623*ef8d499eSDavid van Moolenbroek msb = TAILQ_FIRST(&mempool_small_dynamic_freelist);
624*ef8d499eSDavid van Moolenbroek assert(msb != NULL);
625*ef8d499eSDavid van Moolenbroek
626*ef8d499eSDavid van Moolenbroek TAILQ_REMOVE(&mempool_small_dynamic_freelist, msb, msb_next);
627*ef8d499eSDavid van Moolenbroek }
628*ef8d499eSDavid van Moolenbroek
629*ef8d499eSDavid van Moolenbroek /* Mark the small block as allocated, and return its data area. */
630*ef8d499eSDavid van Moolenbroek assert(msb != NULL);
631*ef8d499eSDavid van Moolenbroek
632*ef8d499eSDavid van Moolenbroek assert(msb->msb_header == NULL);
633*ef8d499eSDavid van Moolenbroek assert(msb->msb_header2 != NULL);
634*ef8d499eSDavid van Moolenbroek
635*ef8d499eSDavid van Moolenbroek mh = msb->msb_header2;
636*ef8d499eSDavid van Moolenbroek msb->msb_header = mh;
637*ef8d499eSDavid van Moolenbroek
638*ef8d499eSDavid van Moolenbroek assert(mh->mh_inuse < MEMPOOL_SMALL_COUNT);
639*ef8d499eSDavid van Moolenbroek mh->mh_inuse++;
640*ef8d499eSDavid van Moolenbroek
641*ef8d499eSDavid van Moolenbroek mempool_used_small++;
642*ef8d499eSDavid van Moolenbroek
643*ef8d499eSDavid van Moolenbroek return (void *)msb->msb_data;
644*ef8d499eSDavid van Moolenbroek }
645*ef8d499eSDavid van Moolenbroek
646*ef8d499eSDavid van Moolenbroek /*
647*ef8d499eSDavid van Moolenbroek * Memory pool wrapper function for malloc() calls from lwIP.
648*ef8d499eSDavid van Moolenbroek */
649*ef8d499eSDavid van Moolenbroek void *
mempool_malloc(size_t size)650*ef8d499eSDavid van Moolenbroek mempool_malloc(size_t size)
651*ef8d499eSDavid van Moolenbroek {
652*ef8d499eSDavid van Moolenbroek
653*ef8d499eSDavid van Moolenbroek /*
654*ef8d499eSDavid van Moolenbroek * It is currently expected that there will be allocation attempts for
655*ef8d499eSDavid van Moolenbroek * sizes larger than our large size, in particular for ICMP ping
656*ef8d499eSDavid van Moolenbroek * replies as described elsewhere. As such, we cannot print any
657*ef8d499eSDavid van Moolenbroek * warnings here. For now, refusing these excessive allocations should
658*ef8d499eSDavid van Moolenbroek * not be a problem in practice.
659*ef8d499eSDavid van Moolenbroek */
660*ef8d499eSDavid van Moolenbroek if (size > MEMPOOL_LARGE_SIZE)
661*ef8d499eSDavid van Moolenbroek return NULL;
662*ef8d499eSDavid van Moolenbroek
663*ef8d499eSDavid van Moolenbroek if (size <= MEMPOOL_SMALL_SIZE)
664*ef8d499eSDavid van Moolenbroek return mempool_alloc_small();
665*ef8d499eSDavid van Moolenbroek else
666*ef8d499eSDavid van Moolenbroek return mempool_alloc_large();
667*ef8d499eSDavid van Moolenbroek }
668*ef8d499eSDavid van Moolenbroek
669*ef8d499eSDavid van Moolenbroek /*
670*ef8d499eSDavid van Moolenbroek * Memory pool wrapper function for free() calls from lwIP.
671*ef8d499eSDavid van Moolenbroek */
672*ef8d499eSDavid van Moolenbroek void
mempool_free(void * ptr)673*ef8d499eSDavid van Moolenbroek mempool_free(void * ptr)
674*ef8d499eSDavid van Moolenbroek {
675*ef8d499eSDavid van Moolenbroek struct mempool_large_slab *mls;
676*ef8d499eSDavid van Moolenbroek struct mempool_large_buf *mlb;
677*ef8d499eSDavid van Moolenbroek struct mempool_small_slab *mss;
678*ef8d499eSDavid van Moolenbroek struct mempool_small_buf *msb;
679*ef8d499eSDavid van Moolenbroek struct mempool_header *mh;
680*ef8d499eSDavid van Moolenbroek unsigned int count;
681*ef8d499eSDavid van Moolenbroek
682*ef8d499eSDavid van Moolenbroek /*
683*ef8d499eSDavid van Moolenbroek * Get a pointer to the slab header, which is right before the data
684*ef8d499eSDavid van Moolenbroek * area for both large and small buffers. This pointer is NULL if the
685*ef8d499eSDavid van Moolenbroek * buffer is free, which would indicate that something is very wrong.
686*ef8d499eSDavid van Moolenbroek */
687*ef8d499eSDavid van Moolenbroek ptr = (void *)((char *)ptr - sizeof(mh));
688*ef8d499eSDavid van Moolenbroek
689*ef8d499eSDavid van Moolenbroek memcpy(&mh, ptr, sizeof(mh));
690*ef8d499eSDavid van Moolenbroek
691*ef8d499eSDavid van Moolenbroek if (mh == NULL)
692*ef8d499eSDavid van Moolenbroek panic("mempool_free called on unallocated object!");
693*ef8d499eSDavid van Moolenbroek
694*ef8d499eSDavid van Moolenbroek /*
695*ef8d499eSDavid van Moolenbroek * If the slab header says that the slab is for small buffers, deal
696*ef8d499eSDavid van Moolenbroek * with that case first. If we free up the last small buffer of a
697*ef8d499eSDavid van Moolenbroek * dynamically allocated small slab, we also free up the entire small
698*ef8d499eSDavid van Moolenbroek * slab, which is in fact the data area of a large buffer.
699*ef8d499eSDavid van Moolenbroek */
700*ef8d499eSDavid van Moolenbroek if (mh->mh_flags & MHF_SMALL) {
701*ef8d499eSDavid van Moolenbroek /*
702*ef8d499eSDavid van Moolenbroek * Move the small buffer onto the appropriate small free list.
703*ef8d499eSDavid van Moolenbroek */
704*ef8d499eSDavid van Moolenbroek msb = (struct mempool_small_buf *)ptr;
705*ef8d499eSDavid van Moolenbroek
706*ef8d499eSDavid van Moolenbroek msb->msb_header2 = mh;
707*ef8d499eSDavid van Moolenbroek msb->msb_header = NULL;
708*ef8d499eSDavid van Moolenbroek
709*ef8d499eSDavid van Moolenbroek /*
710*ef8d499eSDavid van Moolenbroek * Simple heuristic, unless the buffer is static: favor reuse
711*ef8d499eSDavid van Moolenbroek * of small buffers in containers that are already in use
712*ef8d499eSDavid van Moolenbroek * for other small buffers as well, for consolidation.
713*ef8d499eSDavid van Moolenbroek */
714*ef8d499eSDavid van Moolenbroek if (mh->mh_flags & MHF_STATIC)
715*ef8d499eSDavid van Moolenbroek TAILQ_INSERT_HEAD(&mempool_small_static_freelist, msb,
716*ef8d499eSDavid van Moolenbroek msb_next);
717*ef8d499eSDavid van Moolenbroek else if (mh->mh_inuse > 1)
718*ef8d499eSDavid van Moolenbroek TAILQ_INSERT_HEAD(&mempool_small_dynamic_freelist, msb,
719*ef8d499eSDavid van Moolenbroek msb_next);
720*ef8d499eSDavid van Moolenbroek else
721*ef8d499eSDavid van Moolenbroek TAILQ_INSERT_TAIL(&mempool_small_dynamic_freelist, msb,
722*ef8d499eSDavid van Moolenbroek msb_next);
723*ef8d499eSDavid van Moolenbroek
724*ef8d499eSDavid van Moolenbroek assert(mh->mh_inuse > 0);
725*ef8d499eSDavid van Moolenbroek mh->mh_inuse--;
726*ef8d499eSDavid van Moolenbroek
727*ef8d499eSDavid van Moolenbroek assert(mempool_used_small > 0);
728*ef8d499eSDavid van Moolenbroek mempool_used_small--;
729*ef8d499eSDavid van Moolenbroek
730*ef8d499eSDavid van Moolenbroek /*
731*ef8d499eSDavid van Moolenbroek * If the small buffer is statically allocated, or it was not
732*ef8d499eSDavid van Moolenbroek * the last allocated small buffer in its containing large
733*ef8d499eSDavid van Moolenbroek * buffer, then we are done.
734*ef8d499eSDavid van Moolenbroek */
735*ef8d499eSDavid van Moolenbroek if (mh->mh_inuse > 0 || (mh->mh_flags & MHF_STATIC))
736*ef8d499eSDavid van Moolenbroek return;
737*ef8d499eSDavid van Moolenbroek
738*ef8d499eSDavid van Moolenbroek /*
739*ef8d499eSDavid van Moolenbroek * Otherwise, free the containing large buffer as well. First,
740*ef8d499eSDavid van Moolenbroek * remove all its small buffers from the free list.
741*ef8d499eSDavid van Moolenbroek */
742*ef8d499eSDavid van Moolenbroek mss = (struct mempool_small_slab *)mh;
743*ef8d499eSDavid van Moolenbroek msb = mss->mss_buf;
744*ef8d499eSDavid van Moolenbroek
745*ef8d499eSDavid van Moolenbroek for (count = 0; count < MEMPOOL_SMALL_COUNT; count++, msb++) {
746*ef8d499eSDavid van Moolenbroek assert(msb->msb_header == NULL);
747*ef8d499eSDavid van Moolenbroek assert(msb->msb_header2 == mh);
748*ef8d499eSDavid van Moolenbroek
749*ef8d499eSDavid van Moolenbroek TAILQ_REMOVE(&mempool_small_dynamic_freelist, msb,
750*ef8d499eSDavid van Moolenbroek msb_next);
751*ef8d499eSDavid van Moolenbroek }
752*ef8d499eSDavid van Moolenbroek
753*ef8d499eSDavid van Moolenbroek /* Then, fall through to the large-buffer free code. */
754*ef8d499eSDavid van Moolenbroek ptr = (void *)((char *)mh - sizeof(mh));
755*ef8d499eSDavid van Moolenbroek
756*ef8d499eSDavid van Moolenbroek memcpy(&mh, ptr, sizeof(mh));
757*ef8d499eSDavid van Moolenbroek
758*ef8d499eSDavid van Moolenbroek assert(mh != NULL);
759*ef8d499eSDavid van Moolenbroek assert(!(mh->mh_flags & MHF_SMALL));
760*ef8d499eSDavid van Moolenbroek }
761*ef8d499eSDavid van Moolenbroek
762*ef8d499eSDavid van Moolenbroek /*
763*ef8d499eSDavid van Moolenbroek * Move the large buffer onto the free list of the large slab to which
764*ef8d499eSDavid van Moolenbroek * it belongs.
765*ef8d499eSDavid van Moolenbroek */
766*ef8d499eSDavid van Moolenbroek mls = (struct mempool_large_slab *)mh;
767*ef8d499eSDavid van Moolenbroek mlb = (struct mempool_large_buf *)ptr;
768*ef8d499eSDavid van Moolenbroek
769*ef8d499eSDavid van Moolenbroek mlb->mlb_header2 = &mls->mls_header;
770*ef8d499eSDavid van Moolenbroek mlb->mlb_header = NULL;
771*ef8d499eSDavid van Moolenbroek
772*ef8d499eSDavid van Moolenbroek LIST_INSERT_HEAD(&mls->mls_free, mlb, mlb_next);
773*ef8d499eSDavid van Moolenbroek
774*ef8d499eSDavid van Moolenbroek /*
775*ef8d499eSDavid van Moolenbroek * Adjust accounting for the large slab, which may involve moving it
776*ef8d499eSDavid van Moolenbroek * to another list.
777*ef8d499eSDavid van Moolenbroek */
778*ef8d499eSDavid van Moolenbroek assert(mls->mls_header.mh_inuse > 0);
779*ef8d499eSDavid van Moolenbroek mls->mls_header.mh_inuse--;
780*ef8d499eSDavid van Moolenbroek
781*ef8d499eSDavid van Moolenbroek if (mls->mls_header.mh_inuse == 0) {
782*ef8d499eSDavid van Moolenbroek LIST_REMOVE(mls, mls_next);
783*ef8d499eSDavid van Moolenbroek
784*ef8d499eSDavid van Moolenbroek LIST_INSERT_HEAD(&mempool_empty_slabs, mls, mls_next);
785*ef8d499eSDavid van Moolenbroek
786*ef8d499eSDavid van Moolenbroek mls->mls_header.mh_flags &= ~MHF_MARKED;
787*ef8d499eSDavid van Moolenbroek } else if (mls->mls_header.mh_inuse == MEMPOOL_LARGE_COUNT - 1) {
788*ef8d499eSDavid van Moolenbroek LIST_REMOVE(mls, mls_next);
789*ef8d499eSDavid van Moolenbroek
790*ef8d499eSDavid van Moolenbroek LIST_INSERT_HEAD(&mempool_partial_slabs, mls, mls_next);
791*ef8d499eSDavid van Moolenbroek }
792*ef8d499eSDavid van Moolenbroek
793*ef8d499eSDavid van Moolenbroek assert(mempool_used_large > 0);
794*ef8d499eSDavid van Moolenbroek mempool_used_large--;
795*ef8d499eSDavid van Moolenbroek }
796*ef8d499eSDavid van Moolenbroek
797*ef8d499eSDavid van Moolenbroek /*
798*ef8d499eSDavid van Moolenbroek * Memory pool wrapper function for calloc() calls from lwIP.
799*ef8d499eSDavid van Moolenbroek */
800*ef8d499eSDavid van Moolenbroek void *
mempool_calloc(size_t num,size_t size)801*ef8d499eSDavid van Moolenbroek mempool_calloc(size_t num, size_t size)
802*ef8d499eSDavid van Moolenbroek {
803*ef8d499eSDavid van Moolenbroek void *ptr;
804*ef8d499eSDavid van Moolenbroek size_t total;
805*ef8d499eSDavid van Moolenbroek
806*ef8d499eSDavid van Moolenbroek /*
807*ef8d499eSDavid van Moolenbroek * Standard overflow check. This can be improved, but it doesn't have
808*ef8d499eSDavid van Moolenbroek * to be, because in practice lwIP never calls calloc() anyway.
809*ef8d499eSDavid van Moolenbroek */
810*ef8d499eSDavid van Moolenbroek if (num > 0 && size > 0 && (size_t)-1 / size < num)
811*ef8d499eSDavid van Moolenbroek return NULL;
812*ef8d499eSDavid van Moolenbroek
813*ef8d499eSDavid van Moolenbroek total = num * size;
814*ef8d499eSDavid van Moolenbroek
815*ef8d499eSDavid van Moolenbroek if ((ptr = mempool_malloc(total)) == NULL)
816*ef8d499eSDavid van Moolenbroek return NULL;
817*ef8d499eSDavid van Moolenbroek
818*ef8d499eSDavid van Moolenbroek memset(ptr, 0, total);
819*ef8d499eSDavid van Moolenbroek
820*ef8d499eSDavid van Moolenbroek return ptr;
821*ef8d499eSDavid van Moolenbroek }
822