xref: /minix3/minix/lib/libminixfs/cache.c (revision 08cbf5a04d9d252f1eec34cb0fea3101e5fa9b88)
1  
2  #define _SYSTEM
3  
4  #include <assert.h>
5  #include <string.h>
6  #include <errno.h>
7  #include <math.h>
8  #include <stdlib.h>
9  
10  #include <machine/vmparam.h>
11  
12  #include <sys/param.h>
13  #include <sys/mman.h>
14  
15  #include <minix/dmap.h>
16  #include <minix/libminixfs.h>
17  #include <minix/syslib.h>
18  #include <minix/sysutil.h>
19  #include <minix/u64.h>
20  #include <minix/bdev.h>
21  #include <minix/bitmap.h>
22  
23  #include "inc.h"
24  
25  /* Buffer (block) cache.  To acquire a block, a routine calls lmfs_get_block(),
26   * telling which block it wants.  The block is then regarded as "in use" and
27   * has its reference count incremented.  All the blocks that are not in use are
28   * chained together in an LRU list, with 'front' pointing to the least recently
29   * used block, and 'rear' to the most recently used block.  A reverse chain is
30   * also maintained.  Usage for LRU is measured by the time the put_block() is
31   * done.  The second parameter to put_block() can violate the LRU order and put
32   * a block on the front of the list, if it will probably not be needed again.
33   * This is used internally only; the lmfs_put_block() API call has no second
34   * parameter.  If a block is modified, the modifying routine must mark the
35   * block as dirty, so the block will eventually be rewritten to the disk.
36   */
37  
38  /* Flags to put_block(). */
39  #define ONE_SHOT      0x1	/* set if block will not be needed again */
40  
41  #define BUFHASH(b) ((unsigned int)((b) % nr_bufs))
42  #define MARKCLEAN  lmfs_markclean
43  
44  #define MINBUFS 6 	/* minimal no of bufs for sanity check */
45  
46  static struct buf *front;       /* points to least recently used free block */
47  static struct buf *rear;        /* points to most recently used free block */
48  static unsigned int bufs_in_use;/* # bufs currently in use (not on free list)*/
49  
50  static void rm_lru(struct buf *bp);
51  static int read_block(struct buf *bp, size_t size);
52  static void freeblock(struct buf *bp);
53  static void cache_heuristic_check(void);
54  static void put_block(struct buf *bp, int put_flags);
55  
56  static int vmcache = 0; /* are we using vm's secondary cache? (initially not) */
57  
58  static struct buf *buf;
59  static struct buf **buf_hash;   /* the buffer hash table */
60  static unsigned int nr_bufs;
61  static int may_use_vmcache;
62  
63  static size_t fs_block_size = PAGE_SIZE;	/* raw i/o block size */
64  
65  static fsblkcnt_t fs_btotal = 0, fs_bused = 0;
66  
67  static int quiet = 0;
68  
69  typedef struct buf *noxfer_buf_ptr_t; /* annotation for temporary buf ptrs */
70  
71  void lmfs_setquiet(int q) { quiet = q; }
72  
73  static int fs_bufs_heuristic(int minbufs, fsblkcnt_t btotal,
74  	fsblkcnt_t bused, int blocksize)
75  {
76    struct vm_stats_info vsi;
77    int bufs;
78    u32_t kbytes_used_fs, kbytes_total_fs, kbcache, kb_fsmax;
79    u32_t kbytes_remain_mem;
80  
81    /* set a reasonable cache size; cache at most a certain
82     * portion of the used FS, and at most a certain %age of remaining
83     * memory
84     */
85    if(vm_info_stats(&vsi) != OK) {
86  	bufs = 1024;
87  	if(!quiet)
88  	  printf("fslib: heuristic info fail: default to %d bufs\n", bufs);
89  	return bufs;
90    }
91  
92    /* remaining free memory is unused memory plus memory in used for cache,
93     * as the cache can be evicted
94     */
95    kbytes_remain_mem = (u64_t)(vsi.vsi_free + vsi.vsi_cached) *
96  	vsi.vsi_pagesize / 1024;
97  
98    /* check fs usage. */
99    kbytes_used_fs  = (unsigned long)(((u64_t)bused * blocksize) / 1024);
100    kbytes_total_fs = (unsigned long)(((u64_t)btotal * blocksize) / 1024);
101  
102    /* heuristic for a desired cache size based on FS usage;
103     * but never bigger than half of the total filesystem
104     */
105    kb_fsmax = sqrt_approx(kbytes_used_fs)*40;
106    kb_fsmax = MIN(kb_fsmax, kbytes_total_fs/2);
107  
108    /* heuristic for a maximum usage - 10% of remaining memory */
109    kbcache = MIN(kbytes_remain_mem/10, kb_fsmax);
110    bufs = kbcache * 1024 / blocksize;
111  
112    /* but we simply need MINBUFS no matter what */
113    if(bufs < minbufs)
114  	bufs = minbufs;
115  
116    return bufs;
117  }
118  
119  void lmfs_change_blockusage(int delta)
120  {
121          /* Change the number of allocated blocks by 'delta.'
122           * Also accumulate the delta since the last cache re-evaluation.
123           * If it is outside a certain band, ask the cache library to
124           * re-evaluate the cache size.
125           */
126          static int bitdelta = 0, warn_low = TRUE, warn_high = TRUE;
127  
128  	/* Adjust the file system block usage counter accordingly. Do bounds
129  	 * checking, and report file system misbehavior.
130  	 */
131  	if (delta > 0 && (fsblkcnt_t)delta > fs_btotal - fs_bused) {
132  		if (warn_high) {
133  			printf("libminixfs: block usage overflow\n");
134  			warn_high = FALSE;
135  		}
136  		delta = (int)(fs_btotal - fs_bused);
137  	} else if (delta < 0 && (fsblkcnt_t)-delta > fs_bused) {
138  		if (warn_low) {
139  			printf("libminixfs: block usage underflow\n");
140  			warn_low = FALSE;
141  		}
142  		delta = -(int)fs_bused;
143  	}
144  	fs_bused += delta;
145  
146  	bitdelta += delta;
147  
148  #define BAND_KB (10*1024)	/* recheck cache every 10MB change */
149  
150  	/* If the accumulated delta exceeds the configured threshold, resize
151  	 * the cache, but only if the cache isn't in use any more. In order to
152  	 * avoid that the latter case blocks a resize forever, we also call
153  	 * this function from lmfs_flushall(). Since lmfs_buf_pool() may call
154  	 * lmfs_flushall(), reset 'bitdelta' before doing the heuristics check.
155  	 */
156  	if (bufs_in_use == 0 &&
157  	    (bitdelta*(int)fs_block_size/1024 > BAND_KB ||
158  	    bitdelta*(int)fs_block_size/1024 < -BAND_KB)) {
159  		bitdelta = 0;
160  		cache_heuristic_check();
161  	}
162  }
163  
164  void lmfs_markdirty(struct buf *bp)
165  {
166  	bp->lmfs_flags |= VMMC_DIRTY;
167  }
168  
169  void lmfs_markclean(struct buf *bp)
170  {
171  	bp->lmfs_flags &= ~VMMC_DIRTY;
172  }
173  
174  int lmfs_isclean(struct buf *bp)
175  {
176  	return !(bp->lmfs_flags & VMMC_DIRTY);
177  }
178  
179  static void free_unused_blocks(void)
180  {
181  	struct buf *bp;
182  
183  	int freed = 0, bytes = 0;
184  	printf("libminixfs: freeing; %d blocks in use\n", bufs_in_use);
185  	for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
186    		if(bp->lmfs_bytes > 0 && bp->lmfs_count == 0) {
187  			freed++;
188  			bytes += bp->lmfs_bytes;
189  			freeblock(bp);
190  		}
191  	}
192  	printf("libminixfs: freeing; %d blocks, %d bytes\n", freed, bytes);
193  }
194  
195  static void lmfs_alloc_block(struct buf *bp, size_t block_size)
196  {
197    ASSERT(!bp->data);
198    ASSERT(bp->lmfs_bytes == 0);
199  
200    if((bp->data = mmap(0, block_size, PROT_READ|PROT_WRITE,
201        MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
202  	free_unused_blocks();
203  	if((bp->data = mmap(0, block_size, PROT_READ|PROT_WRITE,
204  		MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
205  		panic("libminixfs: could not allocate block");
206  	}
207    }
208    assert(bp->data);
209    bp->lmfs_bytes = block_size;
210    bp->lmfs_needsetcache = 1;
211  }
212  
213  /*===========================================================================*
214   *				lmfs_get_block				     *
215   *===========================================================================*/
216  int lmfs_get_block(struct buf **bpp, dev_t dev, block64_t block, int how)
217  {
218  	return lmfs_get_block_ino(bpp, dev, block, how, VMC_NO_INODE, 0);
219  }
220  
221  static void munmap_t(void *a, int len)
222  {
223  	assert(a);
224  	assert(a != MAP_FAILED);
225  	assert(!((vir_bytes)a % PAGE_SIZE));
226  	assert(len > 0);
227  
228  	len = roundup(len, PAGE_SIZE);
229  
230  	assert(!(len % PAGE_SIZE));
231  
232  	if(munmap(a, len) < 0)
233  		panic("libminixfs cache: munmap failed");
234  }
235  
236  static void raisecount(struct buf *bp)
237  {
238    ASSERT(bp->lmfs_count < CHAR_MAX);
239    bp->lmfs_count++;
240    if(bp->lmfs_count == 1) bufs_in_use++;
241    assert(bufs_in_use > 0);
242  }
243  
244  static void lowercount(struct buf *bp)
245  {
246    assert(bufs_in_use > 0);
247    ASSERT(bp->lmfs_count > 0);
248    bp->lmfs_count--;
249    if(bp->lmfs_count == 0) bufs_in_use--;
250  }
251  
252  static void freeblock(struct buf *bp)
253  {
254    ASSERT(bp->lmfs_count == 0);
255    /* If the block taken is dirty, make it clean by writing it to the disk.
256     * Avoid hysteresis by flushing all other dirty blocks for the same device.
257     */
258    if (bp->lmfs_dev != NO_DEV) {
259  	if (!lmfs_isclean(bp)) lmfs_flushdev(bp->lmfs_dev);
260  	assert(bp->lmfs_bytes > 0);
261  	bp->lmfs_dev = NO_DEV;
262    }
263  
264    /* Fill in block's parameters and add it to the hash chain where it goes. */
265    MARKCLEAN(bp);		/* NO_DEV blocks may be marked dirty */
266    if(bp->lmfs_bytes > 0) {
267  	assert(bp->data);
268  	munmap_t(bp->data, bp->lmfs_bytes);
269  	bp->lmfs_bytes = 0;
270  	bp->data = NULL;
271    } else assert(!bp->data);
272  }
273  
274  /*===========================================================================*
275   *				find_block				     *
276   *===========================================================================*/
277  static struct buf *find_block(dev_t dev, block64_t block)
278  {
279  /* Search the hash chain for (dev, block). Return the buffer structure if
280   * found, or NULL otherwise.
281   */
282    struct buf *bp;
283    int b;
284  
285    assert(dev != NO_DEV);
286  
287    b = BUFHASH(block);
288    for (bp = buf_hash[b]; bp != NULL; bp = bp->lmfs_hash)
289  	if (bp->lmfs_blocknr == block && bp->lmfs_dev == dev)
290  		return bp;
291  
292    return NULL;
293  }
294  
295  /*===========================================================================*
296   *				get_block_ino				     *
297   *===========================================================================*/
298  static int get_block_ino(struct buf **bpp, dev_t dev, block64_t block, int how,
299  	ino_t ino, u64_t ino_off, size_t block_size)
300  {
301  /* Check to see if the requested block is in the block cache.  The requested
302   * block is identified by the block number in 'block' on device 'dev', counted
303   * in the file system block size.  The amount of data requested for this block
304   * is given in 'block_size', which may be less than the file system block size
305   * iff the requested block is the last (partial) block on a device.  Note that
306   * the given block size does *not* affect the conversion of 'block' to a byte
307   * offset!  Either way, if the block could be obtained, either from the cache
308   * or by reading from the device, return OK, with a pointer to the buffer
309   * structure stored in 'bpp'.  If not, return a negative error code (and no
310   * buffer).  If necessary, evict some other block and fetch the contents from
311   * disk (if 'how' is NORMAL).  If 'how' is NO_READ, the caller intends to
312   * overwrite the requested block in its entirety, so it is only necessary to
313   * see if it is in the cache; if it is not, any free buffer will do.  If 'how'
314   * is PEEK, the function returns the block if it is in the cache or the VM
315   * cache, and an ENOENT error code otherwise.
316   * In addition to the LRU chain, there is also a hash chain to link together
317   * blocks whose block numbers end with the same bit strings, for fast lookup.
318   */
319    int b, r;
320    static struct buf *bp;
321    uint64_t dev_off;
322    struct buf *prev_ptr;
323  
324    assert(buf_hash);
325    assert(buf);
326    assert(nr_bufs > 0);
327  
328    ASSERT(fs_block_size > 0);
329  
330    assert(dev != NO_DEV);
331  
332    assert(block <= UINT64_MAX / fs_block_size);
333  
334    dev_off = block * fs_block_size;
335  
336    if((ino_off % fs_block_size)) {
337  
338  	printf("cache: unaligned lmfs_get_block_ino ino_off %llu\n",
339  		ino_off);
340    	util_stacktrace();
341    }
342  
343    /* See if the block is in the cache. If so, we can return it right away. */
344    bp = find_block(dev, block);
345    if (bp != NULL && !(bp->lmfs_flags & VMMC_EVICTED)) {
346  	ASSERT(bp->lmfs_dev == dev);
347  	ASSERT(bp->lmfs_dev != NO_DEV);
348  
349  	/* The block must have exactly the requested number of bytes. */
350  	if (bp->lmfs_bytes != block_size)
351  		return EIO;
352  
353  	/* Block needed has been found. */
354  	if (bp->lmfs_count == 0) {
355  		rm_lru(bp);
356  		ASSERT(bp->lmfs_needsetcache == 0);
357  		ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
358  		/* FIXME: race condition against the VMMC_EVICTED check */
359  		bp->lmfs_flags |= VMMC_BLOCK_LOCKED;
360  	}
361  	raisecount(bp);
362  	ASSERT(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
363  	ASSERT(bp->data);
364  
365  	if(ino != VMC_NO_INODE) {
366  		if(bp->lmfs_inode == VMC_NO_INODE
367  		|| bp->lmfs_inode != ino
368  		|| bp->lmfs_inode_offset != ino_off) {
369  			bp->lmfs_inode = ino;
370  			bp->lmfs_inode_offset = ino_off;
371  			bp->lmfs_needsetcache = 1;
372  		}
373  	}
374  
375  	*bpp = bp;
376  	return OK;
377    }
378  
379    /* We had the block in the cache but VM evicted it; invalidate it. */
380    if (bp != NULL) {
381  	assert(bp->lmfs_flags & VMMC_EVICTED);
382  	ASSERT(bp->lmfs_count == 0);
383  	ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
384  	ASSERT(!(bp->lmfs_flags & VMMC_DIRTY));
385  	bp->lmfs_dev = NO_DEV;
386  	bp->lmfs_bytes = 0;
387  	bp->data = NULL;
388    }
389  
390    /* Desired block is not on available chain. Find a free block to use. */
391    if(bp) {
392    	ASSERT(bp->lmfs_flags & VMMC_EVICTED);
393    } else {
394  	if ((bp = front) == NULL) panic("all buffers in use: %d", nr_bufs);
395    }
396    assert(bp);
397  
398    rm_lru(bp);
399  
400    /* Remove the block that was just taken from its hash chain. */
401    b = BUFHASH(bp->lmfs_blocknr);
402    prev_ptr = buf_hash[b];
403    if (prev_ptr == bp) {
404  	buf_hash[b] = bp->lmfs_hash;
405    } else {
406  	/* The block just taken is not on the front of its hash chain. */
407  	while (prev_ptr->lmfs_hash != NULL)
408  		if (prev_ptr->lmfs_hash == bp) {
409  			prev_ptr->lmfs_hash = bp->lmfs_hash;	/* found it */
410  			break;
411  		} else {
412  			prev_ptr = prev_ptr->lmfs_hash;	/* keep looking */
413  		}
414    }
415  
416    freeblock(bp);
417  
418    bp->lmfs_inode = ino;
419    bp->lmfs_inode_offset = ino_off;
420  
421    bp->lmfs_flags = VMMC_BLOCK_LOCKED;
422    bp->lmfs_needsetcache = 0;
423    bp->lmfs_dev = dev;		/* fill in device number */
424    bp->lmfs_blocknr = block;	/* fill in block number */
425    ASSERT(bp->lmfs_count == 0);
426    raisecount(bp);
427    b = BUFHASH(bp->lmfs_blocknr);
428    bp->lmfs_hash = buf_hash[b];
429  
430    buf_hash[b] = bp;		/* add to hash list */
431  
432    assert(dev != NO_DEV);
433  
434    /* The block is not found in our cache, but we do want it if it's in the VM
435     * cache. The exception is NO_READ, purely for context switching performance
436     * reasons. NO_READ is used for 1) newly allocated blocks, 2) blocks being
437     * prefetched, and 3) blocks about to be fully overwritten. In the first two
438     * cases, VM will not have the block in its cache anyway, and for the third
439     * we save on one VM call only if the block is in the VM cache.
440     */
441    assert(!bp->data);
442    assert(!bp->lmfs_bytes);
443    if (how != NO_READ && vmcache) {
444  	if((bp->data = vm_map_cacheblock(dev, dev_off, ino, ino_off,
445  	    &bp->lmfs_flags, roundup(block_size, PAGE_SIZE))) != MAP_FAILED) {
446  		bp->lmfs_bytes = block_size;
447  		ASSERT(!bp->lmfs_needsetcache);
448  		*bpp = bp;
449  		return OK;
450  	}
451    }
452    bp->data = NULL;
453  
454    /* The block is not in the cache, and VM does not know about it. If we were
455     * requested to search for the block only, we can now return failure to the
456     * caller. Return the block to the pool without allocating data pages, since
457     * these would be freed upon recycling the block anyway.
458     */
459    if (how == PEEK) {
460  	bp->lmfs_dev = NO_DEV;
461  
462  	put_block(bp, ONE_SHOT);
463  
464  	return ENOENT;
465    }
466  
467    /* Not in the cache; reserve memory for its contents. */
468  
469    lmfs_alloc_block(bp, block_size);
470  
471    assert(bp->data);
472  
473    if (how == NORMAL) {
474  	/* Try to read the block. Return an error code on failure. */
475  	if ((r = read_block(bp, block_size)) != OK) {
476  		put_block(bp, 0);
477  
478  		return r;
479  	}
480    } else if(how == NO_READ) {
481    	/* This block will be overwritten by new contents. */
482    } else
483  	panic("unexpected 'how' value: %d", how);
484  
485    assert(bp->data);
486  
487    *bpp = bp;			/* return the newly acquired block */
488    return OK;
489  }
490  
491  /*===========================================================================*
492   *				lmfs_get_block_ino			     *
493   *===========================================================================*/
494  int lmfs_get_block_ino(struct buf **bpp, dev_t dev, block64_t block, int how,
495  	ino_t ino, u64_t ino_off)
496  {
497    return get_block_ino(bpp, dev, block, how, ino, ino_off, fs_block_size);
498  }
499  
500  /*===========================================================================*
501   *				lmfs_get_partial_block			     *
502   *===========================================================================*/
503  int lmfs_get_partial_block(struct buf **bpp, dev_t dev, block64_t block,
504  	int how, size_t block_size)
505  {
506    return get_block_ino(bpp, dev, block, how, VMC_NO_INODE, 0, block_size);
507  }
508  
509  /*===========================================================================*
510   *				put_block				     *
511   *===========================================================================*/
512  static void put_block(struct buf *bp, int put_flags)
513  {
514  /* Return a block to the list of available blocks.   Depending on 'put_flags'
515   * it may be put on the front or rear of the LRU chain.  Blocks that are
516   * expected to be needed again at some point go on the rear; blocks that are
517   * unlikely to be needed again at all go on the front.
518   */
519    dev_t dev;
520    uint64_t dev_off;
521    int r, setflags;
522  
523    assert(bp != NULL);
524  
525    dev = bp->lmfs_dev;
526  
527    dev_off = bp->lmfs_blocknr * fs_block_size;
528  
529    lowercount(bp);
530    if (bp->lmfs_count != 0) return;	/* block is still in use */
531  
532    /* Put this block back on the LRU chain.  */
533    if (dev == NO_DEV || dev == DEV_RAM || (put_flags & ONE_SHOT)) {
534  	/* Block will not be needed again. Put it on front of chain.
535    	 * It will be the next block to be evicted from the cache.
536    	 */
537  	bp->lmfs_prev = NULL;
538  	bp->lmfs_next = front;
539  	if (front == NULL)
540  		rear = bp;	/* LRU chain was empty */
541  	else
542  		front->lmfs_prev = bp;
543  	front = bp;
544    }
545    else {
546  	/* Block may be needed again.  Put it on rear of chain.
547    	 * It will not be evicted from the cache for a long time.
548    	 */
549  	bp->lmfs_prev = rear;
550  	bp->lmfs_next = NULL;
551  	if (rear == NULL)
552  		front = bp;
553  	else
554  		rear->lmfs_next = bp;
555  	rear = bp;
556    }
557  
558    assert(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
559    bp->lmfs_flags &= ~VMMC_BLOCK_LOCKED;
560  
561    /* block has sensible content - if necessary, identify it to VM */
562    if(vmcache && bp->lmfs_needsetcache && dev != NO_DEV) {
563  	assert(bp->data);
564  
565  	setflags = (put_flags & ONE_SHOT) ? VMSF_ONCE : 0;
566  
567  	if ((r = vm_set_cacheblock(bp->data, dev, dev_off, bp->lmfs_inode,
568  	    bp->lmfs_inode_offset, &bp->lmfs_flags,
569  	    roundup(bp->lmfs_bytes, PAGE_SIZE), setflags)) != OK) {
570  		if(r == ENOSYS) {
571  			printf("libminixfs: ENOSYS, disabling VM calls\n");
572  			vmcache = 0;
573  		} else if (r == ENOMEM) {
574  			/* Do not panic in this case. Running out of memory is
575  			 * bad, especially since it may lead to applications
576  			 * crashing when trying to access memory-mapped pages
577  			 * we haven't been able to pass off to the VM cache,
578  			 * but the entire file system crashing is always worse.
579  			 */
580  			printf("libminixfs: no memory for cache block!\n");
581  		} else {
582  			panic("libminixfs: setblock of %p dev 0x%llx off "
583  				"0x%llx failed\n", bp->data, dev, dev_off);
584  		}
585  	}
586    }
587    bp->lmfs_needsetcache = 0;
588  
589    /* Now that we (may) have given the block to VM, invalidate the block if it
590     * is a one-shot block.  Otherwise, it may still be reobtained immediately
591     * after, which could be a problem if VM already forgot the block and we are
592     * expected to pass it to VM again, which then wouldn't happen.
593     */
594    if (put_flags & ONE_SHOT)
595  	bp->lmfs_dev = NO_DEV;
596  }
597  
598  /*===========================================================================*
599   *				lmfs_put_block				     *
600   *===========================================================================*/
601  void lmfs_put_block(struct buf *bp)
602  {
603  /* User interface to put_block(). */
604  
605    if (bp == NULL) return;	/* for poorly written file systems */
606  
607    put_block(bp, 0);
608  }
609  
610  /*===========================================================================*
611   *				lmfs_free_block				     *
612   *===========================================================================*/
613  void lmfs_free_block(dev_t dev, block64_t block)
614  {
615  /* The file system has just freed the given block. The block may previously
616   * have been in use as data block for an inode. Therefore, we now need to tell
617   * VM that the block is no longer associated with an inode. If we fail to do so
618   * and the inode now has a hole at this location, mapping in the hole would
619   * yield the old block contents rather than a zeroed page. In addition, if the
620   * block is in the cache, it will be removed, even if it was dirty.
621   */
622    struct buf *bp;
623    int r;
624  
625    /* Tell VM to forget about the block. The primary purpose of this call is to
626     * break the inode association, but since the block is part of a mounted file
627     * system, it is not expected to be accessed directly anyway. So, save some
628     * cache memory by throwing it out of the VM cache altogether.
629     */
630    if (vmcache) {
631  	if ((r = vm_forget_cacheblock(dev, block * fs_block_size,
632  	    fs_block_size)) != OK)
633  		printf("libminixfs: vm_forget_cacheblock failed (%d)\n", r);
634    }
635  
636    if ((bp = find_block(dev, block)) != NULL) {
637  	lmfs_markclean(bp);
638  
639  	/* Invalidate the block. The block may or may not be in use right now,
640  	 * so don't be smart about freeing memory or repositioning in the LRU.
641  	 */
642  	bp->lmfs_dev = NO_DEV;
643    }
644  
645    /* Note that this is *not* the right place to implement TRIM support. Even
646     * though the block is freed, on the device it may still be part of a
647     * previous checkpoint or snapshot of some sort. Only the file system can
648     * be trusted to decide which blocks can be reused on the device!
649     */
650  }
651  
652  /*===========================================================================*
653   *				lmfs_zero_block_ino			     *
654   *===========================================================================*/
655  void lmfs_zero_block_ino(dev_t dev, ino_t ino, u64_t ino_off)
656  {
657  /* Files may have holes. From an application perspective, these are just file
658   * regions filled with zeroes. From a file system perspective however, holes
659   * may represent unallocated regions on disk. Thus, these holes do not have
660   * corresponding blocks on the disk, and therefore also no block number.
661   * Therefore, we cannot simply use lmfs_get_block_ino() for them. For reads,
662   * this is not a problem, since the file system can just zero out the target
663   * application buffer instead. For mapped pages however, this *is* a problem,
664   * since the VM cache needs to be told about the corresponding block, and VM
665   * does not accept blocks without a device offset. The role of this function is
666   * therefore to tell VM about the hole using a fake device offset. The device
667   * offsets are picked so that the VM cache will see a block memory-mapped for
668   * the hole in the file, while the same block is not visible when
669   * memory-mapping the block device.
670   */
671    struct buf *bp;
672    static block64_t fake_block = 0;
673    int r;
674  
675    if (!vmcache)
676  	return;
677  
678    assert(fs_block_size > 0);
679  
680    /* Pick a block number which is above the threshold of what can possibly be
681     * mapped in by mmap'ing the device, since off_t is signed, and it is safe to
682     * say that it will take a while before we have 8-exabyte devices. Pick a
683     * different block number each time to avoid possible concurrency issues.
684     * FIXME: it does not seem like VM actually verifies mmap offsets though..
685     */
686    if (fake_block == 0 || ++fake_block >= UINT64_MAX / fs_block_size)
687  	fake_block = ((uint64_t)INT64_MAX + 1) / fs_block_size;
688  
689    /* Obtain a block. */
690    if ((r = lmfs_get_block_ino(&bp, dev, fake_block, NO_READ, ino,
691        ino_off)) != OK)
692  	panic("libminixfs: getting a NO_READ block failed: %d", r);
693    assert(bp != NULL);
694    assert(bp->lmfs_dev != NO_DEV);
695  
696    /* The block is already zeroed, as it has just been allocated with mmap. File
697     * systems do not rely on this assumption yet, so if VM ever gets changed to
698     * not clear the blocks we allocate (e.g., by recycling pages in the VM cache
699     * for the same process, which would be safe), we need to add a memset here.
700     */
701  
702    /* Release the block. We don't expect it to be accessed ever again. Moreover,
703     * if we keep the block around in the VM cache, it may erroneously be mapped
704     * in beyond the file end later. Hence, use VMSF_ONCE when passing it to VM.
705     * TODO: tell VM that it is an all-zeroes block, so that VM can deduplicate
706     * all such pages in its cache.
707     */
708    put_block(bp, ONE_SHOT);
709  }
710  
711  void lmfs_set_blockusage(fsblkcnt_t btotal, fsblkcnt_t bused)
712  {
713  
714    assert(bused <= btotal);
715    fs_btotal = btotal;
716    fs_bused = bused;
717  
718    /* if the cache isn't in use, we could resize it. */
719    if (bufs_in_use == 0)
720  	cache_heuristic_check();
721  }
722  
723  /*===========================================================================*
724   *				read_block				     *
725   *===========================================================================*/
726  static int read_block(struct buf *bp, size_t block_size)
727  {
728  /* Read a disk block of 'size' bytes.  The given size is always the FS block
729   * size, except for the last block of a device.  If an I/O error occurs,
730   * invalidate the block and return an error code.
731   */
732    ssize_t r;
733    off_t pos;
734    dev_t dev = bp->lmfs_dev;
735  
736    assert(dev != NO_DEV);
737  
738    ASSERT(bp->lmfs_bytes == block_size);
739    ASSERT(fs_block_size > 0);
740  
741    pos = (off_t)bp->lmfs_blocknr * fs_block_size;
742    if (block_size > PAGE_SIZE) {
743  #define MAXPAGES 20
744  	vir_bytes blockrem, vaddr = (vir_bytes) bp->data;
745  	int p = 0;
746    	static iovec_t iovec[MAXPAGES];
747  	blockrem = block_size;
748  	while(blockrem > 0) {
749  		vir_bytes chunk = blockrem >= PAGE_SIZE ? PAGE_SIZE : blockrem;
750  		iovec[p].iov_addr = vaddr;
751  		iovec[p].iov_size = chunk;
752  		vaddr += chunk;
753  		blockrem -= chunk;
754  		p++;
755  	}
756    	r = bdev_gather(dev, pos, iovec, p, BDEV_NOFLAGS);
757    } else {
758  	r = bdev_read(dev, pos, bp->data, block_size, BDEV_NOFLAGS);
759    }
760    if (r != (ssize_t)block_size) {
761  	/* Aesthetics: do not report EOF errors on superblock reads, because
762  	 * this is a fairly common occurrence, e.g. during system installation.
763  	 */
764  	if (bp->lmfs_blocknr != 0 /*first block*/ || r != 0 /*EOF*/)
765  		printf("fs cache: I/O error on device %d/%d, block %"PRIu64
766  		    " (%zd)\n", major(dev), minor(dev), bp->lmfs_blocknr, r);
767  
768  	if (r >= 0)
769  		r = EIO; /* TODO: retry retrieving (just) the remaining part */
770  
771  	bp->lmfs_dev = NO_DEV;	/* invalidate block */
772  
773  	return r;
774    }
775  
776    return OK;
777  }
778  
779  /*===========================================================================*
780   *				lmfs_invalidate				     *
781   *===========================================================================*/
782  void lmfs_invalidate(
783    dev_t device			/* device whose blocks are to be purged */
784  )
785  {
786  /* Remove all the blocks belonging to some device from the cache. */
787  
788    register struct buf *bp;
789  
790    assert(device != NO_DEV);
791  
792    for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
793  	if (bp->lmfs_dev == device) {
794  		assert(bp->data);
795  		assert(bp->lmfs_bytes > 0);
796  		munmap_t(bp->data, bp->lmfs_bytes);
797  		bp->lmfs_dev = NO_DEV;
798  		bp->lmfs_bytes = 0;
799  		bp->data = NULL;
800  	}
801    }
802  
803    /* Clear the cache even if VM caching is disabled for the file system:
804     * caching may be disabled as side effect of an error, leaving blocks behind
805     * in the actual VM cache.
806     */
807    vm_clear_cache(device);
808  }
809  
810  /*===========================================================================*
811   *				sort_blocks				     *
812   *===========================================================================*/
813  static void sort_blocks(struct buf **bufq, unsigned int bufqsize)
814  {
815    struct buf *bp;
816    int i, j, gap;
817  
818    gap = 1;
819    do
820  	gap = 3 * gap + 1;
821    while ((unsigned int)gap <= bufqsize);
822  
823    while (gap != 1) {
824  	gap /= 3;
825  	for (j = gap; (unsigned int)j < bufqsize; j++) {
826  		for (i = j - gap; i >= 0 &&
827  		    bufq[i]->lmfs_blocknr > bufq[i + gap]->lmfs_blocknr;
828  		    i -= gap) {
829  			bp = bufq[i];
830  			bufq[i] = bufq[i + gap];
831  			bufq[i + gap] = bp;
832  		}
833  	}
834    }
835  }
836  
837  /*===========================================================================*
838   *				rw_scattered				     *
839   *===========================================================================*/
840  static void rw_scattered(
841    dev_t dev,			/* major-minor device number */
842    struct buf **bufq,		/* pointer to array of buffers */
843    unsigned int bufqsize,	/* number of buffers */
844    int rw_flag			/* READING or WRITING */
845  )
846  {
847  /* Read or write scattered data from a device. */
848  
849    register struct buf *bp;
850    register iovec_t *iop;
851    static iovec_t iovec[NR_IOREQS];
852    off_t pos;
853    unsigned int i, iov_per_block;
854  #if !defined(NDEBUG)
855    unsigned int start_in_use = bufs_in_use, start_bufqsize = bufqsize;
856  #endif /* !defined(NDEBUG) */
857  
858    if(bufqsize == 0) return;
859  
860  #if !defined(NDEBUG)
861    /* for READING, check all buffers on the list are obtained and held
862     * (count > 0)
863     */
864    if (rw_flag == READING) {
865  	assert(bufqsize <= LMFS_MAX_PREFETCH);
866  
867  	for(i = 0; i < bufqsize; i++) {
868  		assert(bufq[i] != NULL);
869  		assert(bufq[i]->lmfs_count > 0);
870    	}
871  
872    	/* therefore they are all 'in use' and must be at least this many */
873  	assert(start_in_use >= start_bufqsize);
874    }
875  
876    assert(dev != NO_DEV);
877    assert(fs_block_size > 0);
878    assert(howmany(fs_block_size, PAGE_SIZE) <= NR_IOREQS);
879  #endif /* !defined(NDEBUG) */
880  
881    /* For WRITING, (Shell) sort buffers on lmfs_blocknr.
882     * For READING, the buffers are already sorted.
883     */
884    if (rw_flag == WRITING)
885  	sort_blocks(bufq, bufqsize);
886  
887    /* Set up I/O vector and do I/O.  The result of bdev I/O is OK if everything
888     * went fine, otherwise the error code for the first failed transfer.
889     */
890    while (bufqsize > 0) {
891  	unsigned int p, nblocks = 0, niovecs = 0;
892  	int r;
893  	for (iop = iovec; nblocks < bufqsize; nblocks++) {
894  		vir_bytes vdata, blockrem;
895  		bp = bufq[nblocks];
896  		if (bp->lmfs_blocknr != bufq[0]->lmfs_blocknr + nblocks)
897  			break;
898  		blockrem = bp->lmfs_bytes;
899  		iov_per_block = howmany(blockrem, PAGE_SIZE);
900  		if (niovecs > NR_IOREQS - iov_per_block) break;
901  		vdata = (vir_bytes) bp->data;
902  		for(p = 0; p < iov_per_block; p++) {
903  			vir_bytes chunk =
904  			    blockrem < PAGE_SIZE ? blockrem : PAGE_SIZE;
905  			iop->iov_addr = vdata;
906  			iop->iov_size = chunk;
907  			vdata += PAGE_SIZE;
908  			blockrem -= chunk;
909  			iop++;
910  			niovecs++;
911  		}
912  		assert(p == iov_per_block);
913  		assert(blockrem == 0);
914  	}
915  
916  	assert(nblocks > 0);
917  	assert(niovecs > 0 && niovecs <= NR_IOREQS);
918  
919  	pos = (off_t)bufq[0]->lmfs_blocknr * fs_block_size;
920  	if (rw_flag == READING)
921  		r = bdev_gather(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
922  	else
923  		r = bdev_scatter(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
924  
925  	/* Harvest the results.  The driver may have returned an error, or it
926  	 * may have done less than what we asked for.
927  	 */
928  	if (r < 0) {
929  		printf("fs cache: I/O error %d on device %d/%d, "
930  		    "block %"PRIu64"\n",
931  		    r, major(dev), minor(dev), bufq[0]->lmfs_blocknr);
932  	}
933  	for (i = 0; i < nblocks; i++) {
934  		bp = bufq[i];
935  		if (r < (ssize_t)bp->lmfs_bytes) {
936  			/* Transfer failed. */
937  			if (i == 0) {
938  				bp->lmfs_dev = NO_DEV;	/* Invalidate block */
939  			}
940  			break;
941  		}
942  		if (rw_flag == READING) {
943  			lmfs_put_block(bp);
944  		} else {
945  			MARKCLEAN(bp);
946  		}
947  		r -= bp->lmfs_bytes;
948  	}
949  
950  	bufq += i;
951  	bufqsize -= i;
952  
953  	if (rw_flag == READING) {
954  		/* Don't bother reading more than the device is willing to
955  		 * give at this time.  Don't forget to release those extras.
956  		 */
957  		while (bufqsize > 0) {
958  			bp = *bufq++;
959  			bp->lmfs_dev = NO_DEV;	/* invalidate block */
960  			lmfs_put_block(bp);
961  			bufqsize--;
962  		}
963  	}
964  	if (rw_flag == WRITING && i == 0) {
965  		/* We're not making progress, this means we might keep
966  		 * looping. Buffers remain dirty if un-written. Buffers are
967  		 * lost if invalidate()d or LRU-removed while dirty. This
968  		 * is better than keeping unwritable blocks around forever..
969  		 */
970  		break;
971  	}
972    }
973  
974  #if !defined(NDEBUG)
975    if(rw_flag == READING) {
976    	assert(start_in_use >= start_bufqsize);
977  
978  	/* READING callers assume all bufs are released. */
979  	assert(start_in_use - start_bufqsize == bufs_in_use);
980    }
981  #endif /* !defined(NDEBUG) */
982  }
983  
984  /*===========================================================================*
985   *				lmfs_readahead				     *
986   *===========================================================================*/
987  void lmfs_readahead(dev_t dev, block64_t base_block, unsigned int nblocks,
988  	size_t last_size)
989  {
990  /* Read ahead 'nblocks' blocks starting from the block 'base_block' on device
991   * 'dev'. The number of blocks must be between 1 and LMFS_MAX_PREFETCH,
992   * inclusive. All blocks have the file system's block size, possibly except the
993   * last block in the range, which is of size 'last_size'. The caller must
994   * ensure that none of the blocks in the range are already in the cache.
995   * However, the caller must also not rely on all or even any of the blocks to
996   * be present in the cache afterwards--failures are (deliberately!) ignored.
997   */
998    static noxfer_buf_ptr_t bufq[LMFS_MAX_PREFETCH]; /* static for size only */
999    struct buf *bp;
1000    unsigned int count;
1001    int r;
1002  
1003    assert(nblocks >= 1 && nblocks <= LMFS_MAX_PREFETCH);
1004  
1005    for (count = 0; count < nblocks; count++) {
1006  	if (count == nblocks - 1)
1007  		r = lmfs_get_partial_block(&bp, dev, base_block + count,
1008  		    NO_READ, last_size);
1009  	else
1010  		r = lmfs_get_block(&bp, dev, base_block + count, NO_READ);
1011  
1012  	if (r != OK)
1013  		break;
1014  
1015  	/* We could add a flag that makes the get_block() calls fail if the
1016  	 * block is already in the cache, but it is not a major concern if it
1017  	 * is: we just perform a useless read in that case. However, if the
1018  	 * block is cached *and* dirty, we are about to lose its new contents.
1019  	 */
1020  	assert(lmfs_isclean(bp));
1021  
1022  	bufq[count] = bp;
1023    }
1024  
1025    rw_scattered(dev, bufq, count, READING);
1026  }
1027  
1028  /*===========================================================================*
1029   *				lmfs_prefetch				     *
1030   *===========================================================================*/
1031  unsigned int lmfs_readahead_limit(void)
1032  {
1033  /* Return the maximum number of blocks that should be read ahead at once. The
1034   * return value is guaranteed to be between 1 and LMFS_MAX_PREFETCH, inclusive.
1035   */
1036    unsigned int max_transfer, max_bufs;
1037  
1038    /* The returned value is the minimum of two factors: the maximum number of
1039     * blocks that can be transferred in a single I/O gather request (see how
1040     * rw_scattered() generates I/O requests), and a policy limit on the number
1041     * of buffers that any read-ahead operation may use (that is, thrash).
1042     */
1043    max_transfer = NR_IOREQS / MAX(fs_block_size / PAGE_SIZE, 1);
1044  
1045    /* The constants have been imported from MFS as is, and may need tuning. */
1046    if (nr_bufs < 50)
1047  	max_bufs = 18;
1048    else
1049  	max_bufs = nr_bufs - 4;
1050  
1051    return MIN(max_transfer, max_bufs);
1052  }
1053  
1054  /*===========================================================================*
1055   *				lmfs_prefetch				     *
1056   *===========================================================================*/
1057  void lmfs_prefetch(dev_t dev, const block64_t *blockset, unsigned int nblocks)
1058  {
1059  /* The given set of blocks is expected to be needed soon, so prefetch a
1060   * convenient subset. The blocks are expected to be sorted by likelihood of
1061   * being accessed soon, making the first block of the set the most important
1062   * block to prefetch right now. The caller must have made sure that the blocks
1063   * are not in the cache already. The array may have duplicate block numbers.
1064   */
1065    bitchunk_t blocks_before[BITMAP_CHUNKS(LMFS_MAX_PREFETCH)];
1066    bitchunk_t blocks_after[BITMAP_CHUNKS(LMFS_MAX_PREFETCH)];
1067    block64_t block, base_block;
1068    unsigned int i, bit, nr_before, nr_after, span, limit, nr_blocks;
1069  
1070    if (nblocks == 0)
1071  	return;
1072  
1073    /* Here is the deal. We are going to prefetch one range only, because seeking
1074     * is too expensive for just prefetching. The range we select should at least
1075     * include the first ("base") block of the given set, since that is the block
1076     * the caller is primarily interested in. Thus, the rest of the range is
1077     * going to have to be directly around this base block. We first check which
1078     * blocks from the set fall just before and after the base block, which then
1079     * allows us to construct a contiguous range of desired blocks directly
1080     * around the base block, in O(n) time. As a natural part of this, we ignore
1081     * duplicate blocks in the given set. We then read from the beginning of this
1082     * range, in order to maximize the chance that a next prefetch request will
1083     * continue from the last disk position without requiring a seek. However, we
1084     * do correct for the maximum number of blocks we can (or should) read in at
1085     * once, such that we will still end up reading the base block.
1086     */
1087    base_block = blockset[0];
1088  
1089    memset(blocks_before, 0, sizeof(blocks_before));
1090    memset(blocks_after, 0, sizeof(blocks_after));
1091  
1092    for (i = 1; i < nblocks; i++) {
1093  	block = blockset[i];
1094  
1095  	if (block < base_block && block + LMFS_MAX_PREFETCH >= base_block) {
1096  		bit = base_block - block - 1;
1097  		assert(bit < LMFS_MAX_PREFETCH);
1098  		SET_BIT(blocks_before, bit);
1099  	} else if (block > base_block &&
1100  	    block - LMFS_MAX_PREFETCH <= base_block) {
1101  		bit = block - base_block - 1;
1102  		assert(bit < LMFS_MAX_PREFETCH);
1103  		SET_BIT(blocks_after, bit);
1104  	}
1105    }
1106  
1107    for (nr_before = 0; nr_before < LMFS_MAX_PREFETCH; nr_before++)
1108  	if (!GET_BIT(blocks_before, nr_before))
1109  		break;
1110  
1111    for (nr_after = 0; nr_after < LMFS_MAX_PREFETCH; nr_after++)
1112  	if (!GET_BIT(blocks_after, nr_after))
1113  		break;
1114  
1115    /* The number of blocks to prefetch is the minimum of two factors: the number
1116     * of blocks in the range around the base block, and the maximum number of
1117     * blocks that should be read ahead at once at all.
1118     */
1119    span = nr_before + 1 + nr_after;
1120    limit = lmfs_readahead_limit();
1121  
1122    nr_blocks = MIN(span, limit);
1123    assert(nr_blocks >= 1 && nr_blocks <= LMFS_MAX_PREFETCH);
1124  
1125    /* Start prefetching from the lowest block within the contiguous range, but
1126     * make sure that we read at least the original base block itself, too.
1127     */
1128    base_block -= MIN(nr_before, nr_blocks - 1);
1129  
1130    lmfs_readahead(dev, base_block, nr_blocks, fs_block_size);
1131  }
1132  
1133  /*===========================================================================*
1134   *				lmfs_flushdev				     *
1135   *===========================================================================*/
1136  void lmfs_flushdev(dev_t dev)
1137  {
1138  /* Flush all dirty blocks for one device. */
1139  
1140    register struct buf *bp;
1141    static noxfer_buf_ptr_t *dirty;
1142    static unsigned int dirtylistsize = 0;
1143    unsigned int ndirty;
1144  
1145    if(dirtylistsize != nr_bufs) {
1146  	if(dirtylistsize > 0) {
1147  		assert(dirty != NULL);
1148  		free(dirty);
1149  	}
1150  	if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
1151  		panic("couldn't allocate dirty buf list");
1152  	dirtylistsize = nr_bufs;
1153    }
1154  
1155    for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++) {
1156  	/* Do not flush dirty blocks that are in use (lmfs_count>0): the file
1157  	 * system may mark the block as dirty before changing its contents, in
1158  	 * which case the new contents could end up being lost.
1159  	 */
1160  	if (!lmfs_isclean(bp) && bp->lmfs_dev == dev && bp->lmfs_count == 0) {
1161  		dirty[ndirty++] = bp;
1162  	}
1163    }
1164  
1165    rw_scattered(dev, dirty, ndirty, WRITING);
1166  }
1167  
1168  /*===========================================================================*
1169   *				rm_lru					     *
1170   *===========================================================================*/
1171  static void rm_lru(struct buf *bp)
1172  {
1173  /* Remove a block from its LRU chain. */
1174    struct buf *next_ptr, *prev_ptr;
1175  
1176    next_ptr = bp->lmfs_next;	/* successor on LRU chain */
1177    prev_ptr = bp->lmfs_prev;	/* predecessor on LRU chain */
1178    if (prev_ptr != NULL)
1179  	prev_ptr->lmfs_next = next_ptr;
1180    else
1181  	front = next_ptr;	/* this block was at front of chain */
1182  
1183    if (next_ptr != NULL)
1184  	next_ptr->lmfs_prev = prev_ptr;
1185    else
1186  	rear = prev_ptr;	/* this block was at rear of chain */
1187  }
1188  
1189  /*===========================================================================*
1190   *				cache_resize				     *
1191   *===========================================================================*/
1192  static void cache_resize(size_t blocksize, unsigned int bufs)
1193  {
1194    struct buf *bp;
1195  
1196    assert(blocksize > 0);
1197    assert(bufs >= MINBUFS);
1198  
1199    for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
1200  	if(bp->lmfs_count != 0) panic("change blocksize with buffer in use");
1201  
1202    lmfs_buf_pool(bufs);
1203  
1204    fs_block_size = blocksize;
1205  }
1206  
1207  static void cache_heuristic_check(void)
1208  {
1209    int bufs, d;
1210  
1211    bufs = fs_bufs_heuristic(MINBUFS, fs_btotal, fs_bused, fs_block_size);
1212  
1213    /* set the cache to the new heuristic size if the new one
1214     * is more than 10% off from the current one.
1215     */
1216    d = bufs-nr_bufs;
1217    if(d < 0) d = -d;
1218    if(d*100/nr_bufs > 10) {
1219  	cache_resize(fs_block_size, bufs);
1220    }
1221  }
1222  
1223  /*===========================================================================*
1224   *			lmfs_set_blocksize				     *
1225   *===========================================================================*/
1226  void lmfs_set_blocksize(size_t new_block_size)
1227  {
1228    cache_resize(new_block_size, MINBUFS);
1229    cache_heuristic_check();
1230  
1231    /* Decide whether to use seconday cache or not.
1232     * Only do this if the block size is a multiple of the page size, and using
1233     * the VM cache has been enabled for this FS.
1234     */
1235  
1236    vmcache = 0;
1237  
1238    if(may_use_vmcache && !(new_block_size % PAGE_SIZE))
1239  	vmcache = 1;
1240  }
1241  
1242  /*===========================================================================*
1243   *                              lmfs_buf_pool                                *
1244   *===========================================================================*/
1245  void lmfs_buf_pool(int new_nr_bufs)
1246  {
1247  /* Initialize the buffer pool. */
1248    register struct buf *bp;
1249  
1250    assert(new_nr_bufs >= MINBUFS);
1251  
1252    if(nr_bufs > 0) {
1253  	assert(buf);
1254  	lmfs_flushall();
1255    	for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
1256  		if(bp->data) {
1257  			assert(bp->lmfs_bytes > 0);
1258  			munmap_t(bp->data, bp->lmfs_bytes);
1259  		}
1260  	}
1261    }
1262  
1263    if(buf)
1264  	free(buf);
1265  
1266    if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
1267  	panic("couldn't allocate buf list (%d)", new_nr_bufs);
1268  
1269    if(buf_hash)
1270  	free(buf_hash);
1271    if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
1272  	panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
1273  
1274    nr_bufs = new_nr_bufs;
1275  
1276    bufs_in_use = 0;
1277    front = &buf[0];
1278    rear = &buf[nr_bufs - 1];
1279  
1280    for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
1281          bp->lmfs_blocknr = NO_BLOCK;
1282          bp->lmfs_dev = NO_DEV;
1283          bp->lmfs_next = bp + 1;
1284          bp->lmfs_prev = bp - 1;
1285          bp->data = NULL;
1286          bp->lmfs_bytes = 0;
1287    }
1288    front->lmfs_prev = NULL;
1289    rear->lmfs_next = NULL;
1290  
1291    for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->lmfs_hash = bp->lmfs_next;
1292    buf_hash[0] = front;
1293  }
1294  
1295  void lmfs_flushall(void)
1296  {
1297  	struct buf *bp;
1298  	for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
1299  		if(bp->lmfs_dev != NO_DEV && !lmfs_isclean(bp))
1300  			lmfs_flushdev(bp->lmfs_dev);
1301  
1302  	/* This is the moment where it is least likely (although certainly not
1303  	 * impossible!) that there are buffers in use, since buffers should not
1304  	 * be held across file system syncs. See if we already intended to
1305  	 * resize the buffer cache, but couldn't. Be aware that we may be
1306  	 * called indirectly from within lmfs_change_blockusage(), so care must
1307  	 * be taken not to recurse infinitely. TODO: see if it is better to
1308  	 * resize the cache from here *only*, thus guaranteeing a clean cache.
1309  	 */
1310  	lmfs_change_blockusage(0);
1311  }
1312  
1313  size_t lmfs_fs_block_size(void)
1314  {
1315  	return fs_block_size;
1316  }
1317  
1318  void lmfs_may_use_vmcache(int ok)
1319  {
1320  	may_use_vmcache = ok;
1321  }
1322