1 2 #include "kernel/kernel.h" 3 #include "kernel/proc.h" 4 #include "kernel/vm.h" 5 6 #include <machine/vm.h> 7 8 #include <minix/type.h> 9 #include <minix/board.h> 10 #include <minix/syslib.h> 11 #include <minix/cpufeature.h> 12 #include <string.h> 13 #include <assert.h> 14 #include <signal.h> 15 #include <stdlib.h> 16 17 #include <machine/vm.h> 18 19 #include "arch_proto.h" 20 #include "kernel/proto.h" 21 #include "kernel/debug.h" 22 #include "bsp_timer.h" 23 24 25 #define HASPT(procptr) ((procptr)->p_seg.p_ttbr != 0) 26 static int nfreepdes = 0; 27 #define MAXFREEPDES 2 28 static int freepdes[MAXFREEPDES]; 29 30 static u32_t phys_get32(phys_bytes v); 31 32 /* list of requested physical mapping */ 33 static kern_phys_map *kern_phys_map_head; 34 35 void mem_clear_mapcache(void) 36 { 37 int i; 38 for(i = 0; i < nfreepdes; i++) { 39 struct proc *ptproc = get_cpulocal_var(ptproc); 40 int pde = freepdes[i]; 41 u32_t *ptv; 42 assert(ptproc); 43 ptv = ptproc->p_seg.p_ttbr_v; 44 assert(ptv); 45 ptv[pde] = 0; 46 } 47 } 48 49 /* This function sets up a mapping from within the kernel's address 50 * space to any other area of memory, either straight physical 51 * memory (pr == NULL) or a process view of memory, in 1MB windows. 52 * I.e., it maps in 1MB chunks of virtual (or physical) address space 53 * to 1MB chunks of kernel virtual address space. 54 * 55 * It recognizes pr already being in memory as a special case (no 56 * mapping required). 57 * 58 * The target (i.e. in-kernel) mapping area is one of the freepdes[] 59 * VM has earlier already told the kernel about that is available. It is 60 * identified as the 'pde' parameter. This value can be chosen freely 61 * by the caller, as long as it is in range (i.e. 0 or higher and corresponds 62 * to a known freepde slot). It is up to the caller to keep track of which 63 * freepde's are in use, and to determine which ones are free to use. 64 * 65 * The logical number supplied by the caller is translated into an actual 66 * pde number to be used, and a pointer to it (linear address) is returned 67 * for actual use by phys_copy or memset. 68 */ 69 static phys_bytes createpde( 70 const struct proc *pr, /* Requested process, NULL for physical. */ 71 const phys_bytes linaddr,/* Address after segment translation. */ 72 phys_bytes *bytes, /* Size of chunk, function may truncate it. */ 73 int free_pde_idx, /* index of the free slot to use */ 74 int *changed /* If mapping is made, this is set to 1. */ 75 ) 76 { 77 u32_t pdeval; 78 phys_bytes offset; 79 int pde; 80 81 assert(free_pde_idx >= 0 && free_pde_idx < nfreepdes); 82 pde = freepdes[free_pde_idx]; 83 assert(pde >= 0 && pde < 4096); 84 85 if(pr && ((pr == get_cpulocal_var(ptproc)) || iskernelp(pr))) { 86 /* Process memory is requested, and 87 * it's a process that is already in current page table, or 88 * the kernel, which is always there. 89 * Therefore linaddr is valid directly, with the requested 90 * size. 91 */ 92 return linaddr; 93 } 94 95 if(pr) { 96 /* Requested address is in a process that is not currently 97 * accessible directly. Grab the PDE entry of that process' 98 * page table that corresponds to the requested address. 99 */ 100 assert(pr->p_seg.p_ttbr_v); 101 pdeval = pr->p_seg.p_ttbr_v[ARM_VM_PDE(linaddr)]; 102 } else { 103 /* Requested address is physical. Make up the PDE entry. */ 104 assert (linaddr >= PHYS_MEM_BEGIN && linaddr <= PHYS_MEM_END); 105 106 /* memory */ 107 pdeval = (linaddr & ARM_VM_SECTION_MASK) 108 | ARM_VM_SECTION 109 | ARM_VM_SECTION_DOMAIN 110 | ARM_VM_SECTION_CACHED 111 | ARM_VM_SECTION_USER; 112 } 113 114 /* Write the pde value that we need into a pde that the kernel 115 * can access, into the currently loaded page table so it becomes 116 * visible. 117 */ 118 assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v); 119 if(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v[pde] != pdeval) { 120 get_cpulocal_var(ptproc)->p_seg.p_ttbr_v[pde] = pdeval; 121 *changed = 1; 122 } 123 124 /* Memory is now available, but only the 1MB window of virtual 125 * address space that we have mapped; calculate how much of 126 * the requested range is visible and return that in *bytes, 127 * if that is less than the requested range. 128 */ 129 offset = linaddr & ARM_VM_OFFSET_MASK_1MB; /* Offset in 1MB window. */ 130 *bytes = MIN(*bytes, ARM_SECTION_SIZE - offset); 131 132 /* Return the linear address of the start of the new mapping. */ 133 return ARM_SECTION_SIZE*pde + offset; 134 } 135 136 137 /*===========================================================================* 138 * check_resumed_caller * 139 *===========================================================================*/ 140 static int check_resumed_caller(struct proc *caller) 141 { 142 /* Returns the result from VM if caller was resumed, otherwise OK. */ 143 if (caller && (caller->p_misc_flags & MF_KCALL_RESUME)) { 144 assert(caller->p_vmrequest.vmresult != VMSUSPEND); 145 return caller->p_vmrequest.vmresult; 146 } 147 148 return OK; 149 } 150 151 /*===========================================================================* 152 * lin_lin_copy * 153 *===========================================================================*/ 154 static int lin_lin_copy(struct proc *srcproc, vir_bytes srclinaddr, 155 struct proc *dstproc, vir_bytes dstlinaddr, vir_bytes bytes) 156 { 157 u32_t addr; 158 proc_nr_t procslot; 159 160 assert(get_cpulocal_var(ptproc)); 161 assert(get_cpulocal_var(proc_ptr)); 162 assert(read_ttbr0() == get_cpulocal_var(ptproc)->p_seg.p_ttbr); 163 164 procslot = get_cpulocal_var(ptproc)->p_nr; 165 166 assert(procslot >= 0 && procslot < ARM_VM_DIR_ENTRIES); 167 168 if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE)); 169 if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE)); 170 assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE)); 171 assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v); 172 if(srcproc) assert(!RTS_ISSET(srcproc, RTS_VMINHIBIT)); 173 if(dstproc) assert(!RTS_ISSET(dstproc, RTS_VMINHIBIT)); 174 175 while(bytes > 0) { 176 phys_bytes srcptr, dstptr; 177 vir_bytes chunk = bytes; 178 int changed = 0; 179 180 #ifdef CONFIG_SMP 181 unsigned cpu = cpuid; 182 183 if (srcproc && GET_BIT(srcproc->p_stale_tlb, cpu)) { 184 changed = 1; 185 UNSET_BIT(srcproc->p_stale_tlb, cpu); 186 } 187 if (dstproc && GET_BIT(dstproc->p_stale_tlb, cpu)) { 188 changed = 1; 189 UNSET_BIT(dstproc->p_stale_tlb, cpu); 190 } 191 #endif 192 193 /* Set up 1MB ranges. */ 194 srcptr = createpde(srcproc, srclinaddr, &chunk, 0, &changed); 195 dstptr = createpde(dstproc, dstlinaddr, &chunk, 1, &changed); 196 if(changed) 197 reload_ttbr0(); 198 199 /* Check for overflow. */ 200 if (srcptr + chunk < srcptr) return EFAULT_SRC; 201 if (dstptr + chunk < dstptr) return EFAULT_DST; 202 203 /* Copy pages. */ 204 PHYS_COPY_CATCH(srcptr, dstptr, chunk, addr); 205 206 if(addr) { 207 /* If addr is nonzero, a page fault was caught. 208 * 209 * phys_copy does all memory accesses word-aligned (rounded 210 * down), so pagefaults can occur at a lower address than 211 * the specified offsets. compute the lower bounds for sanity 212 * check use. 213 */ 214 vir_bytes src_aligned = srcptr & ~0x3, dst_aligned = dstptr & ~0x3; 215 216 if(addr >= src_aligned && addr < (srcptr + chunk)) { 217 return EFAULT_SRC; 218 } 219 if(addr >= dst_aligned && addr < (dstptr + chunk)) { 220 return EFAULT_DST; 221 } 222 223 panic("lin_lin_copy fault out of range"); 224 225 /* Not reached. */ 226 return EFAULT; 227 } 228 229 /* Update counter and addresses for next iteration, if any. */ 230 bytes -= chunk; 231 srclinaddr += chunk; 232 dstlinaddr += chunk; 233 } 234 235 if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE)); 236 if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE)); 237 assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE)); 238 assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v); 239 240 return OK; 241 } 242 243 static u32_t phys_get32(phys_bytes addr) 244 { 245 u32_t v; 246 int r; 247 248 if((r=lin_lin_copy(NULL, addr, 249 proc_addr(SYSTEM), (phys_bytes) &v, sizeof(v))) != OK) { 250 panic("lin_lin_copy for phys_get32 failed: %d", r); 251 } 252 253 return v; 254 } 255 256 /*===========================================================================* 257 * umap_virtual * 258 *===========================================================================*/ 259 phys_bytes umap_virtual( 260 register struct proc *rp, /* pointer to proc table entry for process */ 261 int seg, /* T, D, or S segment */ 262 vir_bytes vir_addr, /* virtual address in bytes within the seg */ 263 vir_bytes bytes /* # of bytes to be copied */ 264 ) 265 { 266 phys_bytes phys = 0; 267 268 if(vm_lookup(rp, vir_addr, &phys, NULL) != OK) { 269 printf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%x: 0x%lx failed\n", rp->p_name, seg, vir_addr); 270 phys = 0; 271 } else { 272 if(phys == 0) 273 panic("vm_lookup returned phys: 0x%lx", phys); 274 } 275 276 if(phys == 0) { 277 printf("SYSTEM:umap_virtual: lookup failed\n"); 278 return 0; 279 } 280 281 /* Now make sure addresses are contiguous in physical memory 282 * so that the umap makes sense. 283 */ 284 if(bytes > 0 && vm_lookup_range(rp, vir_addr, NULL, bytes) != bytes) { 285 printf("umap_virtual: %s: %lu at 0x%lx (vir 0x%lx) not contiguous\n", 286 rp->p_name, bytes, vir_addr, vir_addr); 287 return 0; 288 } 289 290 /* phys must be larger than 0 (or the caller will think the call 291 * failed), and address must not cross a page boundary. 292 */ 293 assert(phys); 294 295 return phys; 296 } 297 298 299 /*===========================================================================* 300 * vm_lookup * 301 *===========================================================================*/ 302 int vm_lookup(const struct proc *proc, const vir_bytes virtual, 303 phys_bytes *physical, u32_t *ptent) 304 { 305 u32_t *root, *pt; 306 int pde, pte; 307 u32_t pde_v, pte_v; 308 309 assert(proc); 310 assert(physical); 311 assert(!isemptyp(proc)); 312 assert(HASPT(proc)); 313 314 /* Retrieve page directory entry. */ 315 root = (u32_t *) (proc->p_seg.p_ttbr & ARM_TTBR_ADDR_MASK); 316 assert(!((u32_t) root % ARM_PAGEDIR_SIZE)); 317 pde = ARM_VM_PDE(virtual); 318 assert(pde >= 0 && pde < ARM_VM_DIR_ENTRIES); 319 pde_v = phys_get32((u32_t) (root + pde)); 320 321 if(! ((pde_v & ARM_VM_PDE_PRESENT) 322 || (pde_v & ARM_VM_SECTION_PRESENT) 323 )) { 324 return EFAULT; 325 } 326 327 if(pde_v & ARM_VM_SECTION) { 328 *physical = pde_v & ARM_VM_SECTION_MASK; 329 if(ptent) *ptent = pde_v; 330 *physical += virtual & ARM_VM_OFFSET_MASK_1MB; 331 } else { 332 /* Retrieve page table entry. */ 333 pt = (u32_t *) (pde_v & ARM_VM_PDE_MASK); 334 assert(!((u32_t) pt % ARM_PAGETABLE_SIZE)); 335 pte = ARM_VM_PTE(virtual); 336 assert(pte >= 0 && pte < ARM_VM_PT_ENTRIES); 337 pte_v = phys_get32((u32_t) (pt + pte)); 338 if(!(pte_v & ARM_VM_PTE_PRESENT)) { 339 return EFAULT; 340 } 341 342 if(ptent) *ptent = pte_v; 343 344 /* Actual address now known; retrieve it and add page offset. */ 345 *physical = pte_v & ARM_VM_PTE_MASK; 346 *physical += virtual % ARM_PAGE_SIZE; 347 } 348 349 return OK; 350 } 351 352 /*===========================================================================* 353 * vm_lookup_range * 354 *===========================================================================*/ 355 size_t vm_lookup_range(const struct proc *proc, vir_bytes vir_addr, 356 phys_bytes *phys_addr, size_t bytes) 357 { 358 /* Look up the physical address corresponding to linear virtual address 359 * 'vir_addr' for process 'proc'. Return the size of the range covered 360 * by contiguous physical memory starting from that address; this may 361 * be anywhere between 0 and 'bytes' inclusive. If the return value is 362 * nonzero, and 'phys_addr' is non-NULL, 'phys_addr' will be set to the 363 * base physical address of the range. 'vir_addr' and 'bytes' need not 364 * be page-aligned, but the caller must have verified that the given 365 * linear range is valid for the given process at all. 366 */ 367 phys_bytes phys, next_phys; 368 size_t len; 369 370 assert(proc); 371 assert(bytes > 0); 372 assert(HASPT(proc)); 373 374 /* Look up the first page. */ 375 if (vm_lookup(proc, vir_addr, &phys, NULL) != OK) 376 return 0; 377 378 if (phys_addr != NULL) 379 *phys_addr = phys; 380 381 len = ARM_PAGE_SIZE - (vir_addr % ARM_PAGE_SIZE); 382 vir_addr += len; 383 next_phys = phys + len; 384 385 /* Look up any next pages and test physical contiguity. */ 386 while (len < bytes) { 387 if (vm_lookup(proc, vir_addr, &phys, NULL) != OK) 388 break; 389 390 if (next_phys != phys) 391 break; 392 393 len += ARM_PAGE_SIZE; 394 vir_addr += ARM_PAGE_SIZE; 395 next_phys += ARM_PAGE_SIZE; 396 } 397 398 /* We might now have overshot the requested length somewhat. */ 399 return MIN(bytes, len); 400 } 401 402 /*===========================================================================* 403 * vm_check_range * 404 *===========================================================================*/ 405 int vm_check_range(struct proc *caller, struct proc *target, 406 vir_bytes vir_addr, size_t bytes, int writeflag) 407 { 408 /* Public interface to vm_suspend(), for use by kernel calls. On behalf 409 * of 'caller', call into VM to check linear virtual address range of 410 * process 'target', starting at 'vir_addr', for 'bytes' bytes. This 411 * function assumes that it will called twice if VM returned an error 412 * the first time (since nothing has changed in that case), and will 413 * then return the error code resulting from the first call. Upon the 414 * first call, a non-success error code is returned as well. 415 */ 416 int r; 417 418 if ((caller->p_misc_flags & MF_KCALL_RESUME) && 419 (r = caller->p_vmrequest.vmresult) != OK) 420 return r; 421 422 vm_suspend(caller, target, vir_addr, bytes, VMSTYPE_KERNELCALL, 423 writeflag); 424 425 return VMSUSPEND; 426 } 427 428 /*===========================================================================* 429 * vmmemset * 430 *===========================================================================*/ 431 int vm_memset(struct proc* caller, endpoint_t who, phys_bytes ph, int c, 432 phys_bytes count) 433 { 434 u32_t pattern; 435 struct proc *whoptr = NULL; 436 phys_bytes cur_ph = ph; 437 phys_bytes left = count; 438 phys_bytes ptr, chunk, pfa = 0; 439 int new_ttbr, r = OK; 440 441 if ((r = check_resumed_caller(caller)) != OK) 442 return r; 443 444 /* NONE for physical, otherwise virtual */ 445 if (who != NONE && !(whoptr = endpoint_lookup(who))) 446 return ESRCH; 447 448 c &= 0xFF; 449 pattern = c | (c << 8) | (c << 16) | (c << 24); 450 451 assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v); 452 assert(!catch_pagefaults); 453 catch_pagefaults = 1; 454 455 /* We can memset as many bytes as we have remaining, 456 * or as many as remain in the 1MB chunk we mapped in. 457 */ 458 while (left > 0) { 459 new_ttbr = 0; 460 chunk = left; 461 ptr = createpde(whoptr, cur_ph, &chunk, 0, &new_ttbr); 462 463 if (new_ttbr) { 464 reload_ttbr0(); 465 } 466 /* If a page fault happens, pfa is non-null */ 467 if ((pfa = phys_memset(ptr, pattern, chunk))) { 468 469 /* If a process pagefaults, VM may help out */ 470 if (whoptr) { 471 vm_suspend(caller, whoptr, ph, count, 472 VMSTYPE_KERNELCALL, 1); 473 assert(catch_pagefaults); 474 catch_pagefaults = 0; 475 return VMSUSPEND; 476 } 477 478 /* Pagefault when phys copying ?! */ 479 panic("vm_memset: pf %lx addr=%lx len=%lu\n", 480 pfa , ptr, chunk); 481 } 482 483 cur_ph += chunk; 484 left -= chunk; 485 } 486 487 assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v); 488 assert(catch_pagefaults); 489 catch_pagefaults = 0; 490 491 return OK; 492 } 493 494 /*===========================================================================* 495 * virtual_copy_f * 496 *===========================================================================*/ 497 int virtual_copy_f( 498 struct proc * caller, 499 struct vir_addr *src_addr, /* source virtual address */ 500 struct vir_addr *dst_addr, /* destination virtual address */ 501 vir_bytes bytes, /* # of bytes to copy */ 502 int vmcheck /* if nonzero, can return VMSUSPEND */ 503 ) 504 { 505 /* Copy bytes from virtual address src_addr to virtual address dst_addr. */ 506 struct vir_addr *vir_addr[2]; /* virtual source and destination address */ 507 int i, r; 508 struct proc *procs[2]; 509 510 assert((vmcheck && caller) || (!vmcheck && !caller)); 511 512 /* Check copy count. */ 513 if (bytes <= 0) return(EDOM); 514 515 /* Do some more checks and map virtual addresses to physical addresses. */ 516 vir_addr[_SRC_] = src_addr; 517 vir_addr[_DST_] = dst_addr; 518 519 for (i=_SRC_; i<=_DST_; i++) { 520 endpoint_t proc_e = vir_addr[i]->proc_nr_e; 521 int proc_nr; 522 struct proc *p; 523 524 if(proc_e == NONE) { 525 p = NULL; 526 } else { 527 if(!isokendpt(proc_e, &proc_nr)) { 528 printf("virtual_copy: no reasonable endpoint\n"); 529 return ESRCH; 530 } 531 p = proc_addr(proc_nr); 532 } 533 534 procs[i] = p; 535 } 536 537 if ((r = check_resumed_caller(caller)) != OK) 538 return r; 539 540 if((r=lin_lin_copy(procs[_SRC_], vir_addr[_SRC_]->offset, 541 procs[_DST_], vir_addr[_DST_]->offset, bytes)) != OK) { 542 int writeflag; 543 struct proc *target = NULL; 544 phys_bytes lin; 545 if(r != EFAULT_SRC && r != EFAULT_DST) 546 panic("lin_lin_copy failed: %d", r); 547 if(!vmcheck || !caller) { 548 return r; 549 } 550 551 if(r == EFAULT_SRC) { 552 lin = vir_addr[_SRC_]->offset; 553 target = procs[_SRC_]; 554 writeflag = 0; 555 } else if(r == EFAULT_DST) { 556 lin = vir_addr[_DST_]->offset; 557 target = procs[_DST_]; 558 writeflag = 1; 559 } else { 560 panic("r strange: %d", r); 561 } 562 563 assert(caller); 564 assert(target); 565 566 vm_suspend(caller, target, lin, bytes, VMSTYPE_KERNELCALL, writeflag); 567 return VMSUSPEND; 568 } 569 570 return OK; 571 } 572 573 /*===========================================================================* 574 * data_copy * 575 *===========================================================================*/ 576 int data_copy(const endpoint_t from_proc, const vir_bytes from_addr, 577 const endpoint_t to_proc, const vir_bytes to_addr, 578 size_t bytes) 579 { 580 struct vir_addr src, dst; 581 582 src.offset = from_addr; 583 dst.offset = to_addr; 584 src.proc_nr_e = from_proc; 585 dst.proc_nr_e = to_proc; 586 assert(src.proc_nr_e != NONE); 587 assert(dst.proc_nr_e != NONE); 588 589 return virtual_copy(&src, &dst, bytes); 590 } 591 592 /*===========================================================================* 593 * data_copy_vmcheck * 594 *===========================================================================*/ 595 int data_copy_vmcheck(struct proc * caller, 596 const endpoint_t from_proc, const vir_bytes from_addr, 597 const endpoint_t to_proc, const vir_bytes to_addr, 598 size_t bytes) 599 { 600 struct vir_addr src, dst; 601 602 src.offset = from_addr; 603 dst.offset = to_addr; 604 src.proc_nr_e = from_proc; 605 dst.proc_nr_e = to_proc; 606 assert(src.proc_nr_e != NONE); 607 assert(dst.proc_nr_e != NONE); 608 609 return virtual_copy_vmcheck(caller, &src, &dst, bytes); 610 } 611 612 void memory_init(void) 613 { 614 assert(nfreepdes == 0); 615 616 freepdes[nfreepdes++] = kinfo.freepde_start++; 617 freepdes[nfreepdes++] = kinfo.freepde_start++; 618 619 assert(kinfo.freepde_start < ARM_VM_DIR_ENTRIES); 620 assert(nfreepdes == 2); 621 assert(nfreepdes <= MAXFREEPDES); 622 } 623 624 /*===========================================================================* 625 * arch_proc_init * 626 *===========================================================================*/ 627 void arch_proc_init(struct proc *pr, const u32_t ip, const u32_t sp, 628 const u32_t ps_str, char *name) 629 { 630 arch_proc_reset(pr); 631 strcpy(pr->p_name, name); 632 633 /* set custom state we know */ 634 pr->p_reg.pc = ip; 635 pr->p_reg.sp = sp; 636 pr->p_reg.retreg = ps_str; /* a.k.a r0*/ 637 } 638 639 static int usermapped_glo_index = -1, 640 usermapped_index = -1, first_um_idx = -1; 641 642 643 /* defined in kernel.lds */ 644 extern char usermapped_start, usermapped_end, usermapped_nonglo_start; 645 646 int arch_phys_map(const int index, 647 phys_bytes *addr, 648 phys_bytes *len, 649 int *flags) 650 { 651 static int first = 1; 652 kern_phys_map *phys_maps; 653 654 int freeidx = 0; 655 u32_t glo_len = (u32_t) &usermapped_nonglo_start - 656 (u32_t) &usermapped_start; 657 658 if(first) { 659 memset(&minix_kerninfo, 0, sizeof(minix_kerninfo)); 660 if(glo_len > 0) { 661 usermapped_glo_index = freeidx++; 662 } 663 664 usermapped_index = freeidx++; 665 first_um_idx = usermapped_index; 666 if(usermapped_glo_index != -1) 667 first_um_idx = usermapped_glo_index; 668 first = 0; 669 670 /* list over the maps and index them */ 671 phys_maps = kern_phys_map_head; 672 while(phys_maps != NULL){ 673 phys_maps->index = freeidx++; 674 phys_maps = phys_maps->next; 675 } 676 677 } 678 679 if(index == usermapped_glo_index) { 680 *addr = vir2phys(&usermapped_start); 681 *len = glo_len; 682 *flags = VMMF_USER | VMMF_GLO; 683 return OK; 684 } 685 else if(index == usermapped_index) { 686 *addr = vir2phys(&usermapped_nonglo_start); 687 *len = (u32_t) &usermapped_end - 688 (u32_t) &usermapped_nonglo_start; 689 *flags = VMMF_USER; 690 return OK; 691 } 692 693 /* if this all fails loop over the maps */ 694 phys_maps = kern_phys_map_head; 695 while(phys_maps != NULL){ 696 if(phys_maps->index == index){ 697 *addr = phys_maps->addr; 698 *len = phys_maps->size; 699 *flags = phys_maps->vm_flags; 700 return OK; 701 } 702 phys_maps = phys_maps->next; 703 } 704 705 return EINVAL; 706 } 707 708 int arch_phys_map_reply(const int index, const vir_bytes addr) 709 { 710 kern_phys_map *phys_maps; 711 712 if(index == first_um_idx) { 713 u32_t usermapped_offset; 714 assert(addr > (u32_t) &usermapped_start); 715 usermapped_offset = addr - (u32_t) &usermapped_start; 716 #define FIXEDPTR(ptr) (void *) ((u32_t)ptr + usermapped_offset) 717 #define FIXPTR(ptr) ptr = FIXEDPTR(ptr) 718 #define ASSIGN(minixstruct) minix_kerninfo.minixstruct = FIXEDPTR(&minixstruct) 719 ASSIGN(kinfo); 720 ASSIGN(machine); 721 ASSIGN(kmessages); 722 ASSIGN(loadinfo); 723 ASSIGN(kuserinfo); 724 ASSIGN(arm_frclock); 725 ASSIGN(kclockinfo); 726 727 /* adjust the pointers of the functions and the struct 728 * itself to the user-accessible mapping 729 */ 730 minix_kerninfo.kerninfo_magic = KERNINFO_MAGIC; 731 minix_kerninfo.minix_feature_flags = minix_feature_flags; 732 minix_kerninfo_user = (vir_bytes) FIXEDPTR(&minix_kerninfo); 733 734 minix_kerninfo.ki_flags |= MINIX_KIF_USERINFO; 735 736 return OK; 737 } 738 739 if (index == usermapped_index) { 740 return OK; 741 } 742 743 /* if this all fails loop over the maps */ 744 /* list over the maps and index them */ 745 phys_maps = kern_phys_map_head; 746 while(phys_maps != NULL){ 747 if(phys_maps->index == index){ 748 assert(phys_maps->cb != NULL); 749 /* only update the vir addr we are 750 going to call the callback in enable 751 paging 752 */ 753 phys_maps->vir = addr; 754 return OK; 755 } 756 phys_maps = phys_maps->next; 757 } 758 759 return EINVAL; 760 } 761 762 int arch_enable_paging(struct proc * caller) 763 { 764 kern_phys_map *phys_maps; 765 assert(caller->p_seg.p_ttbr); 766 767 768 /* load caller's page table */ 769 switch_address_space(caller); 770 771 /* We have now switched address spaces and the mappings are 772 valid. We can now remap previous mappings. This is not a 773 good time to do printf as the initial massing is gone and 774 the new mapping is not in place */ 775 phys_maps = kern_phys_map_head; 776 while(phys_maps != NULL){ 777 assert(phys_maps->cb != NULL); 778 phys_maps->cb(phys_maps->id, phys_maps->vir); 779 phys_maps = phys_maps->next; 780 } 781 782 return OK; 783 } 784 785 void release_address_space(struct proc *pr) 786 { 787 pr->p_seg.p_ttbr_v = NULL; 788 barrier(); 789 } 790 791 792 793 /* 794 * Request a physical mapping 795 */ 796 int kern_req_phys_map( phys_bytes base_address, vir_bytes io_size, 797 int vm_flags, kern_phys_map * priv, 798 kern_phys_map_mapped cb, vir_bytes id) 799 { 800 /* Assign the values to the given struct and add priv 801 to the list */ 802 assert(base_address != 0); 803 assert(io_size % ARM_PAGE_SIZE == 0); 804 assert(cb != NULL); 805 806 priv->addr = base_address; 807 priv->size = io_size; 808 priv->vm_flags = vm_flags; 809 priv->cb = cb; 810 priv->id = id; 811 priv->index = -1; 812 priv->next = NULL; 813 814 815 if (kern_phys_map_head == NULL){ 816 /* keep a list of items this is the first one */ 817 kern_phys_map_head = priv; 818 kern_phys_map_head->next = NULL; 819 } else { 820 /* insert the item head but first keep track 821 of the current by putting it in next */ 822 priv->next = kern_phys_map_head; 823 /* replace the head */ 824 kern_phys_map_head = priv; 825 } 826 return 0; 827 } 828 829 /* 830 * Callback implementation where the id given to the 831 * kern_phys_map is a pointer to the io map base address. 832 * this implementation will just change that base address. 833 * once that area is remapped. 834 */ 835 int kern_phys_map_mapped_ptr(vir_bytes id, phys_bytes address){ 836 *((vir_bytes*)id) = address; 837 return 0; 838 } 839 840 /* 841 * Request a physical mapping and put the result in the given prt 842 * Note that ptr will only be valid once the callback happened. 843 */ 844 int kern_phys_map_ptr( 845 phys_bytes base_address, 846 vir_bytes io_size, 847 int vm_flags, 848 kern_phys_map * priv, 849 vir_bytes ptr) 850 { 851 return kern_req_phys_map(base_address,io_size,vm_flags,priv,kern_phys_map_mapped_ptr,ptr); 852 } 853 854