xref: /minix3/lib/libm/src/s_erf.c (revision 2fe8fb192fe7e8720e3e7a77f928da545e872a6a)
1*2fe8fb19SBen Gras /* @(#)s_erf.c 5.1 93/09/24 */
2*2fe8fb19SBen Gras /*
3*2fe8fb19SBen Gras  * ====================================================
4*2fe8fb19SBen Gras  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*2fe8fb19SBen Gras  *
6*2fe8fb19SBen Gras  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*2fe8fb19SBen Gras  * Permission to use, copy, modify, and distribute this
8*2fe8fb19SBen Gras  * software is freely granted, provided that this notice
9*2fe8fb19SBen Gras  * is preserved.
10*2fe8fb19SBen Gras  * ====================================================
11*2fe8fb19SBen Gras  */
12*2fe8fb19SBen Gras 
13*2fe8fb19SBen Gras #include <sys/cdefs.h>
14*2fe8fb19SBen Gras #if defined(LIBM_SCCS) && !defined(lint)
15*2fe8fb19SBen Gras __RCSID("$NetBSD: s_erf.c,v 1.11 2002/05/26 22:01:55 wiz Exp $");
16*2fe8fb19SBen Gras #endif
17*2fe8fb19SBen Gras 
18*2fe8fb19SBen Gras /* double erf(double x)
19*2fe8fb19SBen Gras  * double erfc(double x)
20*2fe8fb19SBen Gras  *			     x
21*2fe8fb19SBen Gras  *		      2      |\
22*2fe8fb19SBen Gras  *     erf(x)  =  ---------  | exp(-t*t)dt
23*2fe8fb19SBen Gras  *	 	   sqrt(pi) \|
24*2fe8fb19SBen Gras  *			     0
25*2fe8fb19SBen Gras  *
26*2fe8fb19SBen Gras  *     erfc(x) =  1-erf(x)
27*2fe8fb19SBen Gras  *  Note that
28*2fe8fb19SBen Gras  *		erf(-x) = -erf(x)
29*2fe8fb19SBen Gras  *		erfc(-x) = 2 - erfc(x)
30*2fe8fb19SBen Gras  *
31*2fe8fb19SBen Gras  * Method:
32*2fe8fb19SBen Gras  *	1. For |x| in [0, 0.84375]
33*2fe8fb19SBen Gras  *	    erf(x)  = x + x*R(x^2)
34*2fe8fb19SBen Gras  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
35*2fe8fb19SBen Gras  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
36*2fe8fb19SBen Gras  *	   where R = P/Q where P is an odd poly of degree 8 and
37*2fe8fb19SBen Gras  *	   Q is an odd poly of degree 10.
38*2fe8fb19SBen Gras  *						 -57.90
39*2fe8fb19SBen Gras  *			| R - (erf(x)-x)/x | <= 2
40*2fe8fb19SBen Gras  *
41*2fe8fb19SBen Gras  *
42*2fe8fb19SBen Gras  *	   Remark. The formula is derived by noting
43*2fe8fb19SBen Gras  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
44*2fe8fb19SBen Gras  *	   and that
45*2fe8fb19SBen Gras  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
46*2fe8fb19SBen Gras  *	   is close to one. The interval is chosen because the fix
47*2fe8fb19SBen Gras  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
48*2fe8fb19SBen Gras  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
49*2fe8fb19SBen Gras  * 	   guarantee the error is less than one ulp for erf.
50*2fe8fb19SBen Gras  *
51*2fe8fb19SBen Gras  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
52*2fe8fb19SBen Gras  *         c = 0.84506291151 rounded to single (24 bits)
53*2fe8fb19SBen Gras  *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
54*2fe8fb19SBen Gras  *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
55*2fe8fb19SBen Gras  *			  1+(c+P1(s)/Q1(s))    if x < 0
56*2fe8fb19SBen Gras  *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
57*2fe8fb19SBen Gras  *	   Remark: here we use the taylor series expansion at x=1.
58*2fe8fb19SBen Gras  *		erf(1+s) = erf(1) + s*Poly(s)
59*2fe8fb19SBen Gras  *			 = 0.845.. + P1(s)/Q1(s)
60*2fe8fb19SBen Gras  *	   That is, we use rational approximation to approximate
61*2fe8fb19SBen Gras  *			erf(1+s) - (c = (single)0.84506291151)
62*2fe8fb19SBen Gras  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
63*2fe8fb19SBen Gras  *	   where
64*2fe8fb19SBen Gras  *		P1(s) = degree 6 poly in s
65*2fe8fb19SBen Gras  *		Q1(s) = degree 6 poly in s
66*2fe8fb19SBen Gras  *
67*2fe8fb19SBen Gras  *      3. For x in [1.25,1/0.35(~2.857143)],
68*2fe8fb19SBen Gras  *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
69*2fe8fb19SBen Gras  *         	erf(x)  = 1 - erfc(x)
70*2fe8fb19SBen Gras  *	   where
71*2fe8fb19SBen Gras  *		R1(z) = degree 7 poly in z, (z=1/x^2)
72*2fe8fb19SBen Gras  *		S1(z) = degree 8 poly in z
73*2fe8fb19SBen Gras  *
74*2fe8fb19SBen Gras  *      4. For x in [1/0.35,28]
75*2fe8fb19SBen Gras  *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
76*2fe8fb19SBen Gras  *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
77*2fe8fb19SBen Gras  *			= 2.0 - tiny		(if x <= -6)
78*2fe8fb19SBen Gras  *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
79*2fe8fb19SBen Gras  *         	erf(x)  = sign(x)*(1.0 - tiny)
80*2fe8fb19SBen Gras  *	   where
81*2fe8fb19SBen Gras  *		R2(z) = degree 6 poly in z, (z=1/x^2)
82*2fe8fb19SBen Gras  *		S2(z) = degree 7 poly in z
83*2fe8fb19SBen Gras  *
84*2fe8fb19SBen Gras  *      Note1:
85*2fe8fb19SBen Gras  *	   To compute exp(-x*x-0.5625+R/S), let s be a single
86*2fe8fb19SBen Gras  *	   precision number and s := x; then
87*2fe8fb19SBen Gras  *		-x*x = -s*s + (s-x)*(s+x)
88*2fe8fb19SBen Gras  *	        exp(-x*x-0.5626+R/S) =
89*2fe8fb19SBen Gras  *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
90*2fe8fb19SBen Gras  *      Note2:
91*2fe8fb19SBen Gras  *	   Here 4 and 5 make use of the asymptotic series
92*2fe8fb19SBen Gras  *			  exp(-x*x)
93*2fe8fb19SBen Gras  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
94*2fe8fb19SBen Gras  *			  x*sqrt(pi)
95*2fe8fb19SBen Gras  *	   We use rational approximation to approximate
96*2fe8fb19SBen Gras  *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
97*2fe8fb19SBen Gras  *	   Here is the error bound for R1/S1 and R2/S2
98*2fe8fb19SBen Gras  *      	|R1/S1 - f(x)|  < 2**(-62.57)
99*2fe8fb19SBen Gras  *      	|R2/S2 - f(x)|  < 2**(-61.52)
100*2fe8fb19SBen Gras  *
101*2fe8fb19SBen Gras  *      5. For inf > x >= 28
102*2fe8fb19SBen Gras  *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
103*2fe8fb19SBen Gras  *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
104*2fe8fb19SBen Gras  *			= 2 - tiny if x<0
105*2fe8fb19SBen Gras  *
106*2fe8fb19SBen Gras  *      7. Special case:
107*2fe8fb19SBen Gras  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
108*2fe8fb19SBen Gras  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
109*2fe8fb19SBen Gras  *	   	erfc/erf(NaN) is NaN
110*2fe8fb19SBen Gras  */
111*2fe8fb19SBen Gras 
112*2fe8fb19SBen Gras 
113*2fe8fb19SBen Gras #include "math.h"
114*2fe8fb19SBen Gras #include "math_private.h"
115*2fe8fb19SBen Gras 
116*2fe8fb19SBen Gras static const double
117*2fe8fb19SBen Gras tiny	    = 1e-300,
118*2fe8fb19SBen Gras half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
119*2fe8fb19SBen Gras one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
120*2fe8fb19SBen Gras two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
121*2fe8fb19SBen Gras 	/* c = (float)0.84506291151 */
122*2fe8fb19SBen Gras erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
123*2fe8fb19SBen Gras /*
124*2fe8fb19SBen Gras  * Coefficients for approximation to  erf on [0,0.84375]
125*2fe8fb19SBen Gras  */
126*2fe8fb19SBen Gras efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
127*2fe8fb19SBen Gras efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
128*2fe8fb19SBen Gras pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
129*2fe8fb19SBen Gras pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
130*2fe8fb19SBen Gras pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
131*2fe8fb19SBen Gras pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
132*2fe8fb19SBen Gras pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
133*2fe8fb19SBen Gras qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
134*2fe8fb19SBen Gras qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
135*2fe8fb19SBen Gras qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
136*2fe8fb19SBen Gras qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
137*2fe8fb19SBen Gras qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
138*2fe8fb19SBen Gras /*
139*2fe8fb19SBen Gras  * Coefficients for approximation to  erf  in [0.84375,1.25]
140*2fe8fb19SBen Gras  */
141*2fe8fb19SBen Gras pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
142*2fe8fb19SBen Gras pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
143*2fe8fb19SBen Gras pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
144*2fe8fb19SBen Gras pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
145*2fe8fb19SBen Gras pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
146*2fe8fb19SBen Gras pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
147*2fe8fb19SBen Gras pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
148*2fe8fb19SBen Gras qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
149*2fe8fb19SBen Gras qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
150*2fe8fb19SBen Gras qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
151*2fe8fb19SBen Gras qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
152*2fe8fb19SBen Gras qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
153*2fe8fb19SBen Gras qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
154*2fe8fb19SBen Gras /*
155*2fe8fb19SBen Gras  * Coefficients for approximation to  erfc in [1.25,1/0.35]
156*2fe8fb19SBen Gras  */
157*2fe8fb19SBen Gras ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
158*2fe8fb19SBen Gras ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
159*2fe8fb19SBen Gras ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
160*2fe8fb19SBen Gras ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
161*2fe8fb19SBen Gras ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
162*2fe8fb19SBen Gras ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
163*2fe8fb19SBen Gras ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
164*2fe8fb19SBen Gras ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
165*2fe8fb19SBen Gras sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
166*2fe8fb19SBen Gras sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
167*2fe8fb19SBen Gras sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
168*2fe8fb19SBen Gras sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
169*2fe8fb19SBen Gras sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
170*2fe8fb19SBen Gras sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
171*2fe8fb19SBen Gras sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
172*2fe8fb19SBen Gras sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
173*2fe8fb19SBen Gras /*
174*2fe8fb19SBen Gras  * Coefficients for approximation to  erfc in [1/.35,28]
175*2fe8fb19SBen Gras  */
176*2fe8fb19SBen Gras rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
177*2fe8fb19SBen Gras rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
178*2fe8fb19SBen Gras rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
179*2fe8fb19SBen Gras rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
180*2fe8fb19SBen Gras rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
181*2fe8fb19SBen Gras rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
182*2fe8fb19SBen Gras rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
183*2fe8fb19SBen Gras sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
184*2fe8fb19SBen Gras sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
185*2fe8fb19SBen Gras sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
186*2fe8fb19SBen Gras sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
187*2fe8fb19SBen Gras sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
188*2fe8fb19SBen Gras sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
189*2fe8fb19SBen Gras sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
190*2fe8fb19SBen Gras 
191*2fe8fb19SBen Gras double
erf(double x)192*2fe8fb19SBen Gras erf(double x)
193*2fe8fb19SBen Gras {
194*2fe8fb19SBen Gras 	int32_t hx,ix,i;
195*2fe8fb19SBen Gras 	double R,S,P,Q,s,y,z,r;
196*2fe8fb19SBen Gras 	GET_HIGH_WORD(hx,x);
197*2fe8fb19SBen Gras 	ix = hx&0x7fffffff;
198*2fe8fb19SBen Gras 	if(ix>=0x7ff00000) {		/* erf(nan)=nan */
199*2fe8fb19SBen Gras 	    i = ((u_int32_t)hx>>31)<<1;
200*2fe8fb19SBen Gras 	    return (double)(1-i)+one/x;	/* erf(+-inf)=+-1 */
201*2fe8fb19SBen Gras 	}
202*2fe8fb19SBen Gras 
203*2fe8fb19SBen Gras 	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
204*2fe8fb19SBen Gras 	    if(ix < 0x3e300000) { 	/* |x|<2**-28 */
205*2fe8fb19SBen Gras 	        if (ix < 0x00800000)
206*2fe8fb19SBen Gras 		    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
207*2fe8fb19SBen Gras 		return x + efx*x;
208*2fe8fb19SBen Gras 	    }
209*2fe8fb19SBen Gras 	    z = x*x;
210*2fe8fb19SBen Gras 	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
211*2fe8fb19SBen Gras 	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
212*2fe8fb19SBen Gras 	    y = r/s;
213*2fe8fb19SBen Gras 	    return x + x*y;
214*2fe8fb19SBen Gras 	}
215*2fe8fb19SBen Gras 	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
216*2fe8fb19SBen Gras 	    s = fabs(x)-one;
217*2fe8fb19SBen Gras 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
218*2fe8fb19SBen Gras 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
219*2fe8fb19SBen Gras 	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
220*2fe8fb19SBen Gras 	}
221*2fe8fb19SBen Gras 	if (ix >= 0x40180000) {		/* inf>|x|>=6 */
222*2fe8fb19SBen Gras 	    if(hx>=0) return one-tiny; else return tiny-one;
223*2fe8fb19SBen Gras 	}
224*2fe8fb19SBen Gras 	x = fabs(x);
225*2fe8fb19SBen Gras  	s = one/(x*x);
226*2fe8fb19SBen Gras 	if(ix< 0x4006DB6E) {	/* |x| < 1/0.35 */
227*2fe8fb19SBen Gras 	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
228*2fe8fb19SBen Gras 				ra5+s*(ra6+s*ra7))))));
229*2fe8fb19SBen Gras 	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
230*2fe8fb19SBen Gras 				sa5+s*(sa6+s*(sa7+s*sa8)))))));
231*2fe8fb19SBen Gras 	} else {	/* |x| >= 1/0.35 */
232*2fe8fb19SBen Gras 	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
233*2fe8fb19SBen Gras 				rb5+s*rb6)))));
234*2fe8fb19SBen Gras 	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
235*2fe8fb19SBen Gras 				sb5+s*(sb6+s*sb7))))));
236*2fe8fb19SBen Gras 	}
237*2fe8fb19SBen Gras 	z  = x;
238*2fe8fb19SBen Gras 	SET_LOW_WORD(z,0);
239*2fe8fb19SBen Gras 	r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
240*2fe8fb19SBen Gras 	if(hx>=0) return one-r/x; else return  r/x-one;
241*2fe8fb19SBen Gras }
242*2fe8fb19SBen Gras 
243*2fe8fb19SBen Gras double
erfc(double x)244*2fe8fb19SBen Gras erfc(double x)
245*2fe8fb19SBen Gras {
246*2fe8fb19SBen Gras 	int32_t hx,ix;
247*2fe8fb19SBen Gras 	double R,S,P,Q,s,y,z,r;
248*2fe8fb19SBen Gras 	GET_HIGH_WORD(hx,x);
249*2fe8fb19SBen Gras 	ix = hx&0x7fffffff;
250*2fe8fb19SBen Gras 	if(ix>=0x7ff00000) {			/* erfc(nan)=nan */
251*2fe8fb19SBen Gras 						/* erfc(+-inf)=0,2 */
252*2fe8fb19SBen Gras 	    return (double)(((u_int32_t)hx>>31)<<1)+one/x;
253*2fe8fb19SBen Gras 	}
254*2fe8fb19SBen Gras 
255*2fe8fb19SBen Gras 	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
256*2fe8fb19SBen Gras 	    if(ix < 0x3c700000)  	/* |x|<2**-56 */
257*2fe8fb19SBen Gras 		return one-x;
258*2fe8fb19SBen Gras 	    z = x*x;
259*2fe8fb19SBen Gras 	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
260*2fe8fb19SBen Gras 	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
261*2fe8fb19SBen Gras 	    y = r/s;
262*2fe8fb19SBen Gras 	    if(hx < 0x3fd00000) {  	/* x<1/4 */
263*2fe8fb19SBen Gras 		return one-(x+x*y);
264*2fe8fb19SBen Gras 	    } else {
265*2fe8fb19SBen Gras 		r = x*y;
266*2fe8fb19SBen Gras 		r += (x-half);
267*2fe8fb19SBen Gras 	        return half - r ;
268*2fe8fb19SBen Gras 	    }
269*2fe8fb19SBen Gras 	}
270*2fe8fb19SBen Gras 	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
271*2fe8fb19SBen Gras 	    s = fabs(x)-one;
272*2fe8fb19SBen Gras 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
273*2fe8fb19SBen Gras 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
274*2fe8fb19SBen Gras 	    if(hx>=0) {
275*2fe8fb19SBen Gras 	        z  = one-erx; return z - P/Q;
276*2fe8fb19SBen Gras 	    } else {
277*2fe8fb19SBen Gras 		z = erx+P/Q; return one+z;
278*2fe8fb19SBen Gras 	    }
279*2fe8fb19SBen Gras 	}
280*2fe8fb19SBen Gras 	if (ix < 0x403c0000) {		/* |x|<28 */
281*2fe8fb19SBen Gras 	    x = fabs(x);
282*2fe8fb19SBen Gras  	    s = one/(x*x);
283*2fe8fb19SBen Gras 	    if(ix< 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
284*2fe8fb19SBen Gras 	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
285*2fe8fb19SBen Gras 				ra5+s*(ra6+s*ra7))))));
286*2fe8fb19SBen Gras 	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
287*2fe8fb19SBen Gras 				sa5+s*(sa6+s*(sa7+s*sa8)))))));
288*2fe8fb19SBen Gras 	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
289*2fe8fb19SBen Gras 		if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
290*2fe8fb19SBen Gras 	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
291*2fe8fb19SBen Gras 				rb5+s*rb6)))));
292*2fe8fb19SBen Gras 	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
293*2fe8fb19SBen Gras 				sb5+s*(sb6+s*sb7))))));
294*2fe8fb19SBen Gras 	    }
295*2fe8fb19SBen Gras 	    z  = x;
296*2fe8fb19SBen Gras 	    SET_LOW_WORD(z,0);
297*2fe8fb19SBen Gras 	    r  =  __ieee754_exp(-z*z-0.5625)*
298*2fe8fb19SBen Gras 			__ieee754_exp((z-x)*(z+x)+R/S);
299*2fe8fb19SBen Gras 	    if(hx>0) return r/x; else return two-r/x;
300*2fe8fb19SBen Gras 	} else {
301*2fe8fb19SBen Gras 	    if(hx>0) return tiny*tiny; else return two-tiny;
302*2fe8fb19SBen Gras 	}
303*2fe8fb19SBen Gras }
304