1*2fe8fb19SBen Gras /* @(#)e_exp.c 5.1 93/09/24 */
2*2fe8fb19SBen Gras /*
3*2fe8fb19SBen Gras * ====================================================
4*2fe8fb19SBen Gras * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*2fe8fb19SBen Gras *
6*2fe8fb19SBen Gras * Developed at SunPro, a Sun Microsystems, Inc. business.
7*2fe8fb19SBen Gras * Permission to use, copy, modify, and distribute this
8*2fe8fb19SBen Gras * software is freely granted, provided that this notice
9*2fe8fb19SBen Gras * is preserved.
10*2fe8fb19SBen Gras * ====================================================
11*2fe8fb19SBen Gras */
12*2fe8fb19SBen Gras
13*2fe8fb19SBen Gras #include <sys/cdefs.h>
14*2fe8fb19SBen Gras #if defined(LIBM_SCCS) && !defined(lint)
15*2fe8fb19SBen Gras __RCSID("$NetBSD: e_exp.c,v 1.11 2002/05/26 22:01:49 wiz Exp $");
16*2fe8fb19SBen Gras #endif
17*2fe8fb19SBen Gras
18*2fe8fb19SBen Gras /* __ieee754_exp(x)
19*2fe8fb19SBen Gras * Returns the exponential of x.
20*2fe8fb19SBen Gras *
21*2fe8fb19SBen Gras * Method
22*2fe8fb19SBen Gras * 1. Argument reduction:
23*2fe8fb19SBen Gras * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
24*2fe8fb19SBen Gras * Given x, find r and integer k such that
25*2fe8fb19SBen Gras *
26*2fe8fb19SBen Gras * x = k*ln2 + r, |r| <= 0.5*ln2.
27*2fe8fb19SBen Gras *
28*2fe8fb19SBen Gras * Here r will be represented as r = hi-lo for better
29*2fe8fb19SBen Gras * accuracy.
30*2fe8fb19SBen Gras *
31*2fe8fb19SBen Gras * 2. Approximation of exp(r) by a special rational function on
32*2fe8fb19SBen Gras * the interval [0,0.34658]:
33*2fe8fb19SBen Gras * Write
34*2fe8fb19SBen Gras * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
35*2fe8fb19SBen Gras * We use a special Reme algorithm on [0,0.34658] to generate
36*2fe8fb19SBen Gras * a polynomial of degree 5 to approximate R. The maximum error
37*2fe8fb19SBen Gras * of this polynomial approximation is bounded by 2**-59. In
38*2fe8fb19SBen Gras * other words,
39*2fe8fb19SBen Gras * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
40*2fe8fb19SBen Gras * (where z=r*r, and the values of P1 to P5 are listed below)
41*2fe8fb19SBen Gras * and
42*2fe8fb19SBen Gras * | 5 | -59
43*2fe8fb19SBen Gras * | 2.0+P1*z+...+P5*z - R(z) | <= 2
44*2fe8fb19SBen Gras * | |
45*2fe8fb19SBen Gras * The computation of exp(r) thus becomes
46*2fe8fb19SBen Gras * 2*r
47*2fe8fb19SBen Gras * exp(r) = 1 + -------
48*2fe8fb19SBen Gras * R - r
49*2fe8fb19SBen Gras * r*R1(r)
50*2fe8fb19SBen Gras * = 1 + r + ----------- (for better accuracy)
51*2fe8fb19SBen Gras * 2 - R1(r)
52*2fe8fb19SBen Gras * where
53*2fe8fb19SBen Gras * 2 4 10
54*2fe8fb19SBen Gras * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
55*2fe8fb19SBen Gras *
56*2fe8fb19SBen Gras * 3. Scale back to obtain exp(x):
57*2fe8fb19SBen Gras * From step 1, we have
58*2fe8fb19SBen Gras * exp(x) = 2^k * exp(r)
59*2fe8fb19SBen Gras *
60*2fe8fb19SBen Gras * Special cases:
61*2fe8fb19SBen Gras * exp(INF) is INF, exp(NaN) is NaN;
62*2fe8fb19SBen Gras * exp(-INF) is 0, and
63*2fe8fb19SBen Gras * for finite argument, only exp(0)=1 is exact.
64*2fe8fb19SBen Gras *
65*2fe8fb19SBen Gras * Accuracy:
66*2fe8fb19SBen Gras * according to an error analysis, the error is always less than
67*2fe8fb19SBen Gras * 1 ulp (unit in the last place).
68*2fe8fb19SBen Gras *
69*2fe8fb19SBen Gras * Misc. info.
70*2fe8fb19SBen Gras * For IEEE double
71*2fe8fb19SBen Gras * if x > 7.09782712893383973096e+02 then exp(x) overflow
72*2fe8fb19SBen Gras * if x < -7.45133219101941108420e+02 then exp(x) underflow
73*2fe8fb19SBen Gras *
74*2fe8fb19SBen Gras * Constants:
75*2fe8fb19SBen Gras * The hexadecimal values are the intended ones for the following
76*2fe8fb19SBen Gras * constants. The decimal values may be used, provided that the
77*2fe8fb19SBen Gras * compiler will convert from decimal to binary accurately enough
78*2fe8fb19SBen Gras * to produce the hexadecimal values shown.
79*2fe8fb19SBen Gras */
80*2fe8fb19SBen Gras
81*2fe8fb19SBen Gras #include "math.h"
82*2fe8fb19SBen Gras #include "math_private.h"
83*2fe8fb19SBen Gras
84*2fe8fb19SBen Gras static const double
85*2fe8fb19SBen Gras one = 1.0,
86*2fe8fb19SBen Gras halF[2] = {0.5,-0.5,},
87*2fe8fb19SBen Gras huge = 1.0e+300,
88*2fe8fb19SBen Gras twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
89*2fe8fb19SBen Gras o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
90*2fe8fb19SBen Gras u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
91*2fe8fb19SBen Gras ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
92*2fe8fb19SBen Gras -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
93*2fe8fb19SBen Gras ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
94*2fe8fb19SBen Gras -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
95*2fe8fb19SBen Gras invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
96*2fe8fb19SBen Gras P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
97*2fe8fb19SBen Gras P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
98*2fe8fb19SBen Gras P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
99*2fe8fb19SBen Gras P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
100*2fe8fb19SBen Gras P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
101*2fe8fb19SBen Gras
102*2fe8fb19SBen Gras
103*2fe8fb19SBen Gras double
__ieee754_exp(double x)104*2fe8fb19SBen Gras __ieee754_exp(double x) /* default IEEE double exp */
105*2fe8fb19SBen Gras {
106*2fe8fb19SBen Gras double y,hi,lo,c,t;
107*2fe8fb19SBen Gras int32_t k,xsb;
108*2fe8fb19SBen Gras u_int32_t hx;
109*2fe8fb19SBen Gras
110*2fe8fb19SBen Gras hi = lo = 0;
111*2fe8fb19SBen Gras k = 0;
112*2fe8fb19SBen Gras GET_HIGH_WORD(hx,x);
113*2fe8fb19SBen Gras xsb = (hx>>31)&1; /* sign bit of x */
114*2fe8fb19SBen Gras hx &= 0x7fffffff; /* high word of |x| */
115*2fe8fb19SBen Gras
116*2fe8fb19SBen Gras /* filter out non-finite argument */
117*2fe8fb19SBen Gras if(hx >= 0x40862E42) { /* if |x|>=709.78... */
118*2fe8fb19SBen Gras if(hx>=0x7ff00000) {
119*2fe8fb19SBen Gras u_int32_t lx;
120*2fe8fb19SBen Gras GET_LOW_WORD(lx,x);
121*2fe8fb19SBen Gras if(((hx&0xfffff)|lx)!=0)
122*2fe8fb19SBen Gras return x+x; /* NaN */
123*2fe8fb19SBen Gras else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
124*2fe8fb19SBen Gras }
125*2fe8fb19SBen Gras if(x > o_threshold) return huge*huge; /* overflow */
126*2fe8fb19SBen Gras if(x < u_threshold) return twom1000*twom1000; /* underflow */
127*2fe8fb19SBen Gras }
128*2fe8fb19SBen Gras
129*2fe8fb19SBen Gras /* argument reduction */
130*2fe8fb19SBen Gras if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
131*2fe8fb19SBen Gras if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
132*2fe8fb19SBen Gras hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
133*2fe8fb19SBen Gras } else {
134*2fe8fb19SBen Gras k = invln2*x+halF[xsb];
135*2fe8fb19SBen Gras t = k;
136*2fe8fb19SBen Gras hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
137*2fe8fb19SBen Gras lo = t*ln2LO[0];
138*2fe8fb19SBen Gras }
139*2fe8fb19SBen Gras x = hi - lo;
140*2fe8fb19SBen Gras }
141*2fe8fb19SBen Gras else if(hx < 0x3e300000) { /* when |x|<2**-28 */
142*2fe8fb19SBen Gras if(huge+x>one) return one+x;/* trigger inexact */
143*2fe8fb19SBen Gras }
144*2fe8fb19SBen Gras else k = 0;
145*2fe8fb19SBen Gras
146*2fe8fb19SBen Gras /* x is now in primary range */
147*2fe8fb19SBen Gras t = x*x;
148*2fe8fb19SBen Gras c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
149*2fe8fb19SBen Gras if(k==0) return one-((x*c)/(c-2.0)-x);
150*2fe8fb19SBen Gras else y = one-((lo-(x*c)/(2.0-c))-hi);
151*2fe8fb19SBen Gras if(k >= -1021) {
152*2fe8fb19SBen Gras u_int32_t hy;
153*2fe8fb19SBen Gras GET_HIGH_WORD(hy,y);
154*2fe8fb19SBen Gras SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
155*2fe8fb19SBen Gras return y;
156*2fe8fb19SBen Gras } else {
157*2fe8fb19SBen Gras u_int32_t hy;
158*2fe8fb19SBen Gras GET_HIGH_WORD(hy,y);
159*2fe8fb19SBen Gras SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
160*2fe8fb19SBen Gras return y*twom1000;
161*2fe8fb19SBen Gras }
162*2fe8fb19SBen Gras }
163