1 /* $NetBSD: kvm_proc.c,v 1.90 2014/02/19 20:21:22 dsl Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1989, 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software developed by the Computer Systems 37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 38 * BG 91-66 and contributed to Berkeley. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 */ 64 65 #include <sys/cdefs.h> 66 #if defined(LIBC_SCCS) && !defined(lint) 67 #if 0 68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 69 #else 70 __RCSID("$NetBSD: kvm_proc.c,v 1.90 2014/02/19 20:21:22 dsl Exp $"); 71 #endif 72 #endif /* LIBC_SCCS and not lint */ 73 74 /* 75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 76 * users of this code, so we've factored it out into a separate module. 77 * Thus, we keep this grunge out of the other kvm applications (i.e., 78 * most other applications are interested only in open/close/read/nlist). 79 */ 80 81 #include <sys/param.h> 82 #include <sys/lwp.h> 83 #include <sys/proc.h> 84 #include <sys/exec.h> 85 #include <sys/stat.h> 86 #include <sys/ioctl.h> 87 #include <sys/tty.h> 88 #include <sys/resourcevar.h> 89 #include <sys/mutex.h> 90 #include <sys/specificdata.h> 91 #include <sys/types.h> 92 93 #include <errno.h> 94 #include <stdlib.h> 95 #include <stddef.h> 96 #include <string.h> 97 #include <unistd.h> 98 #include <nlist.h> 99 #include <kvm.h> 100 101 #include <uvm/uvm_extern.h> 102 #include <uvm/uvm_param.h> 103 #include <uvm/uvm_amap.h> 104 #include <uvm/uvm_page.h> 105 106 #include <sys/sysctl.h> 107 108 #include <limits.h> 109 #include <db.h> 110 #include <paths.h> 111 112 #include "kvm_private.h" 113 114 /* 115 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 116 */ 117 struct miniproc { 118 struct vmspace *p_vmspace; 119 char p_stat; 120 struct proc *p_paddr; 121 pid_t p_pid; 122 }; 123 124 /* 125 * Convert from struct proc and kinfo_proc{,2} to miniproc. 126 */ 127 #define PTOMINI(kp, p) \ 128 do { \ 129 (p)->p_stat = (kp)->p_stat; \ 130 (p)->p_pid = (kp)->p_pid; \ 131 (p)->p_paddr = NULL; \ 132 (p)->p_vmspace = (kp)->p_vmspace; \ 133 } while (/*CONSTCOND*/0); 134 135 #define KPTOMINI(kp, p) \ 136 do { \ 137 (p)->p_stat = (kp)->kp_proc.p_stat; \ 138 (p)->p_pid = (kp)->kp_proc.p_pid; \ 139 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 140 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 141 } while (/*CONSTCOND*/0); 142 143 #define KP2TOMINI(kp, p) \ 144 do { \ 145 (p)->p_stat = (kp)->p_stat; \ 146 (p)->p_pid = (kp)->p_pid; \ 147 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 148 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 149 } while (/*CONSTCOND*/0); 150 151 /* 152 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, 153 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to 154 * kvm(3) so dumps can be read properly. 155 * 156 * Whenever NetBSD starts exporting credentials to userland consistently (using 157 * 'struct uucred', or something) this will have to be updated again. 158 */ 159 struct kvm_kauth_cred { 160 u_int cr_refcnt; /* reference count */ 161 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)]; 162 uid_t cr_uid; /* user id */ 163 uid_t cr_euid; /* effective user id */ 164 uid_t cr_svuid; /* saved effective user id */ 165 gid_t cr_gid; /* group id */ 166 gid_t cr_egid; /* effective group id */ 167 gid_t cr_svgid; /* saved effective group id */ 168 u_int cr_ngroups; /* number of groups */ 169 gid_t cr_groups[NGROUPS]; /* group memberships */ 170 specificdata_reference cr_sd; /* specific data */ 171 }; 172 173 /* XXX: What uses these two functions? */ 174 char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *); 175 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *, 176 size_t); 177 178 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 179 u_long *); 180 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 181 char *, size_t); 182 183 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int); 184 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int); 185 static char **kvm_doargv(kvm_t *, const struct miniproc *, int, 186 void (*)(struct ps_strings *, u_long *, int *)); 187 static char **kvm_doargv2(kvm_t *, pid_t, int, int); 188 static int kvm_proclist(kvm_t *, int, int, struct proc *, 189 struct kinfo_proc *, int); 190 static int proc_verify(kvm_t *, u_long, const struct miniproc *); 191 static void ps_str_a(struct ps_strings *, u_long *, int *); 192 static void ps_str_e(struct ps_strings *, u_long *, int *); 193 194 195 static char * 196 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt) 197 { 198 u_long addr, head; 199 u_long offset; 200 struct vm_map_entry vme; 201 struct vm_amap amap; 202 struct vm_anon *anonp, anon; 203 struct vm_page pg; 204 u_long slot; 205 206 if (kd->swapspc == NULL) { 207 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 208 if (kd->swapspc == NULL) 209 return (NULL); 210 } 211 212 /* 213 * Look through the address map for the memory object 214 * that corresponds to the given virtual address. 215 * The header just has the entire valid range. 216 */ 217 head = (u_long)&p->p_vmspace->vm_map.header; 218 addr = head; 219 for (;;) { 220 if (KREAD(kd, addr, &vme)) 221 return (NULL); 222 223 if (va >= vme.start && va < vme.end && 224 vme.aref.ar_amap != NULL) 225 break; 226 227 addr = (u_long)vme.next; 228 if (addr == head) 229 return (NULL); 230 } 231 232 /* 233 * we found the map entry, now to find the object... 234 */ 235 if (vme.aref.ar_amap == NULL) 236 return (NULL); 237 238 addr = (u_long)vme.aref.ar_amap; 239 if (KREAD(kd, addr, &amap)) 240 return (NULL); 241 242 offset = va - vme.start; 243 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 244 /* sanity-check slot number */ 245 if (slot > amap.am_nslot) 246 return (NULL); 247 248 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 249 if (KREAD(kd, addr, &anonp)) 250 return (NULL); 251 252 addr = (u_long)anonp; 253 if (KREAD(kd, addr, &anon)) 254 return (NULL); 255 256 addr = (u_long)anon.an_page; 257 if (addr) { 258 if (KREAD(kd, addr, &pg)) 259 return (NULL); 260 261 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 262 (off_t)pg.phys_addr) != kd->nbpg) 263 return (NULL); 264 } else { 265 if (kd->swfd < 0 || 266 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg, 267 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 268 return (NULL); 269 } 270 271 /* Found the page. */ 272 offset %= kd->nbpg; 273 *cnt = kd->nbpg - offset; 274 return (&kd->swapspc[(size_t)offset]); 275 } 276 277 char * 278 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt) 279 { 280 struct miniproc mp; 281 282 PTOMINI(p, &mp); 283 return (_kvm_ureadm(kd, &mp, va, cnt)); 284 } 285 286 /* 287 * Convert credentials located in kernel space address 'cred' and store 288 * them in the appropriate members of 'eproc'. 289 */ 290 static int 291 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) 292 { 293 struct kvm_kauth_cred kauthcred; 294 struct ki_pcred *pc = &eproc->e_pcred; 295 struct ki_ucred *uc = &eproc->e_ucred; 296 297 if (KREAD(kd, cred, &kauthcred) != 0) 298 return (-1); 299 300 /* inlined version of kauth_cred_to_pcred, see kauth(9). */ 301 pc->p_ruid = kauthcred.cr_uid; 302 pc->p_svuid = kauthcred.cr_svuid; 303 pc->p_rgid = kauthcred.cr_gid; 304 pc->p_svgid = kauthcred.cr_svgid; 305 pc->p_refcnt = kauthcred.cr_refcnt; 306 pc->p_pad = NULL; 307 308 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ 309 uc->cr_ref = kauthcred.cr_refcnt; 310 uc->cr_uid = kauthcred.cr_euid; 311 uc->cr_gid = kauthcred.cr_egid; 312 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups, 313 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); 314 memcpy(uc->cr_groups, kauthcred.cr_groups, 315 uc->cr_ngroups * sizeof(uc->cr_groups[0])); 316 317 return (0); 318 } 319 320 /* 321 * Read proc's from memory file into buffer bp, which has space to hold 322 * at most maxcnt procs. 323 */ 324 static int 325 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 326 struct kinfo_proc *bp, int maxcnt) 327 { 328 int cnt = 0; 329 int nlwps; 330 struct kinfo_lwp *kl; 331 struct eproc eproc; 332 struct pgrp pgrp; 333 struct session sess; 334 struct tty tty; 335 struct proc proc; 336 337 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 338 if (KREAD(kd, (u_long)p, &proc)) { 339 _kvm_err(kd, kd->program, "can't read proc at %p", p); 340 return (-1); 341 } 342 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { 343 _kvm_err(kd, kd->program, 344 "can't read proc credentials at %p", p); 345 return (-1); 346 } 347 348 switch (what) { 349 350 case KERN_PROC_PID: 351 if (proc.p_pid != (pid_t)arg) 352 continue; 353 break; 354 355 case KERN_PROC_UID: 356 if (eproc.e_ucred.cr_uid != (uid_t)arg) 357 continue; 358 break; 359 360 case KERN_PROC_RUID: 361 if (eproc.e_pcred.p_ruid != (uid_t)arg) 362 continue; 363 break; 364 } 365 /* 366 * We're going to add another proc to the set. If this 367 * will overflow the buffer, assume the reason is because 368 * nprocs (or the proc list) is corrupt and declare an error. 369 */ 370 if (cnt >= maxcnt) { 371 _kvm_err(kd, kd->program, "nprocs corrupt"); 372 return (-1); 373 } 374 /* 375 * gather eproc 376 */ 377 eproc.e_paddr = p; 378 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 379 _kvm_err(kd, kd->program, "can't read pgrp at %p", 380 proc.p_pgrp); 381 return (-1); 382 } 383 eproc.e_sess = pgrp.pg_session; 384 eproc.e_pgid = pgrp.pg_id; 385 eproc.e_jobc = pgrp.pg_jobc; 386 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 387 _kvm_err(kd, kd->program, "can't read session at %p", 388 pgrp.pg_session); 389 return (-1); 390 } 391 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { 392 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 393 _kvm_err(kd, kd->program, 394 "can't read tty at %p", sess.s_ttyp); 395 return (-1); 396 } 397 eproc.e_tdev = (uint32_t)tty.t_dev; 398 eproc.e_tsess = tty.t_session; 399 if (tty.t_pgrp != NULL) { 400 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 401 _kvm_err(kd, kd->program, 402 "can't read tpgrp at %p", 403 tty.t_pgrp); 404 return (-1); 405 } 406 eproc.e_tpgid = pgrp.pg_id; 407 } else 408 eproc.e_tpgid = -1; 409 } else 410 eproc.e_tdev = (uint32_t)NODEV; 411 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 412 eproc.e_sid = sess.s_sid; 413 if (sess.s_leader == p) 414 eproc.e_flag |= EPROC_SLEADER; 415 /* 416 * Fill in the old-style proc.p_wmesg by copying the wmesg 417 * from the first available LWP. 418 */ 419 kl = kvm_getlwps(kd, proc.p_pid, 420 (u_long)PTRTOUINT64(eproc.e_paddr), 421 sizeof(struct kinfo_lwp), &nlwps); 422 if (kl) { 423 if (nlwps > 0) { 424 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 425 } 426 } 427 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 428 sizeof(eproc.e_vm)); 429 430 eproc.e_xsize = eproc.e_xrssize = 0; 431 eproc.e_xccount = eproc.e_xswrss = 0; 432 433 switch (what) { 434 435 case KERN_PROC_PGRP: 436 if (eproc.e_pgid != (pid_t)arg) 437 continue; 438 break; 439 440 case KERN_PROC_TTY: 441 if ((proc.p_lflag & PL_CONTROLT) == 0 || 442 eproc.e_tdev != (dev_t)arg) 443 continue; 444 break; 445 } 446 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 447 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 448 ++bp; 449 ++cnt; 450 } 451 return (cnt); 452 } 453 454 /* 455 * Build proc info array by reading in proc list from a crash dump. 456 * Return number of procs read. maxcnt is the max we will read. 457 */ 458 static int 459 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 460 u_long a_zombproc, int maxcnt) 461 { 462 struct kinfo_proc *bp = kd->procbase; 463 int acnt, zcnt; 464 struct proc *p; 465 466 if (KREAD(kd, a_allproc, &p)) { 467 _kvm_err(kd, kd->program, "cannot read allproc"); 468 return (-1); 469 } 470 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 471 if (acnt < 0) 472 return (acnt); 473 474 if (KREAD(kd, a_zombproc, &p)) { 475 _kvm_err(kd, kd->program, "cannot read zombproc"); 476 return (-1); 477 } 478 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 479 maxcnt - acnt); 480 if (zcnt < 0) 481 zcnt = 0; 482 483 return (acnt + zcnt); 484 } 485 486 struct kinfo_proc2 * 487 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt) 488 { 489 size_t size; 490 int mib[6], st, nprocs; 491 struct pstats pstats; 492 493 if (ISSYSCTL(kd)) { 494 size = 0; 495 mib[0] = CTL_KERN; 496 mib[1] = KERN_PROC2; 497 mib[2] = op; 498 mib[3] = arg; 499 mib[4] = (int)esize; 500 again: 501 mib[5] = 0; 502 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 503 if (st == -1) { 504 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 505 return (NULL); 506 } 507 508 mib[5] = (int) (size / esize); 509 KVM_ALLOC(kd, procbase2, size); 510 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 511 if (st == -1) { 512 if (errno == ENOMEM) { 513 goto again; 514 } 515 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 516 return (NULL); 517 } 518 nprocs = (int) (size / esize); 519 } else { 520 char *kp2c; 521 struct kinfo_proc *kp; 522 struct kinfo_proc2 kp2, *kp2p; 523 struct kinfo_lwp *kl; 524 int i, nlwps; 525 526 kp = kvm_getprocs(kd, op, arg, &nprocs); 527 if (kp == NULL) 528 return (NULL); 529 530 size = nprocs * esize; 531 KVM_ALLOC(kd, procbase2, size); 532 kp2c = (char *)(void *)kd->procbase2; 533 kp2p = &kp2; 534 for (i = 0; i < nprocs; i++, kp++) { 535 struct timeval tv; 536 537 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 538 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 539 sizeof(struct kinfo_lwp), &nlwps); 540 541 if (kl == NULL) { 542 _kvm_syserr(kd, NULL, 543 "kvm_getlwps() failed on process %u\n", 544 kp->kp_proc.p_pid); 545 if (nlwps == 0) 546 return NULL; 547 else 548 continue; 549 } 550 551 /* We use kl[0] as the "representative" LWP */ 552 memset(kp2p, 0, sizeof(kp2)); 553 kp2p->p_forw = kl[0].l_forw; 554 kp2p->p_back = kl[0].l_back; 555 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 556 kp2p->p_addr = kl[0].l_addr; 557 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 558 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 559 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 560 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 561 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 562 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 563 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 564 kp2p->p_tsess = 0; 565 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */ 566 kp2p->p_ru = 0; 567 #else 568 kp2p->p_ru = PTRTOUINT64(pstats.p_ru); 569 #endif 570 571 kp2p->p_eflag = 0; 572 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 573 kp2p->p_flag = kp->kp_proc.p_flag; 574 575 kp2p->p_pid = kp->kp_proc.p_pid; 576 577 kp2p->p_ppid = kp->kp_eproc.e_ppid; 578 kp2p->p_sid = kp->kp_eproc.e_sid; 579 kp2p->p__pgid = kp->kp_eproc.e_pgid; 580 581 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 582 583 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 584 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 585 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 586 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 587 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 588 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 589 590 /*CONSTCOND*/ 591 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 592 MIN(sizeof(kp2p->p_groups), 593 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 594 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 595 596 kp2p->p_jobc = kp->kp_eproc.e_jobc; 597 kp2p->p_tdev = kp->kp_eproc.e_tdev; 598 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 599 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 600 601 kp2p->p_estcpu = 0; 602 bintime2timeval(&kp->kp_proc.p_rtime, &tv); 603 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec; 604 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec; 605 kp2p->p_cpticks = kl[0].l_cpticks; 606 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 607 kp2p->p_swtime = kl[0].l_swtime; 608 kp2p->p_slptime = kl[0].l_slptime; 609 #if 0 /* XXX thorpej */ 610 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 611 #else 612 kp2p->p_schedflags = 0; 613 #endif 614 615 kp2p->p_uticks = kp->kp_proc.p_uticks; 616 kp2p->p_sticks = kp->kp_proc.p_sticks; 617 kp2p->p_iticks = kp->kp_proc.p_iticks; 618 619 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 620 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 621 622 kp2p->p_holdcnt = kl[0].l_holdcnt; 623 624 memcpy(&kp2p->p_siglist, 625 &kp->kp_proc.p_sigpend.sp_set, 626 sizeof(ki_sigset_t)); 627 memset(&kp2p->p_sigmask, 0, 628 sizeof(ki_sigset_t)); 629 memcpy(&kp2p->p_sigignore, 630 &kp->kp_proc.p_sigctx.ps_sigignore, 631 sizeof(ki_sigset_t)); 632 memcpy(&kp2p->p_sigcatch, 633 &kp->kp_proc.p_sigctx.ps_sigcatch, 634 sizeof(ki_sigset_t)); 635 636 kp2p->p_stat = kl[0].l_stat; 637 kp2p->p_priority = kl[0].l_priority; 638 kp2p->p_usrpri = kl[0].l_priority; 639 kp2p->p_nice = kp->kp_proc.p_nice; 640 641 kp2p->p_xstat = kp->kp_proc.p_xstat; 642 kp2p->p_acflag = kp->kp_proc.p_acflag; 643 644 /*CONSTCOND*/ 645 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 646 MIN(sizeof(kp2p->p_comm), 647 sizeof(kp->kp_proc.p_comm))); 648 649 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 650 sizeof(kp2p->p_wmesg)); 651 kp2p->p_wchan = kl[0].l_wchan; 652 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 653 sizeof(kp2p->p_login)); 654 655 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 656 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 657 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 658 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 659 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size 660 / kd->nbpg; 661 /* Adjust mapped size */ 662 kp2p->p_vm_msize = 663 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) - 664 kp->kp_eproc.e_vm.vm_issize + 665 kp->kp_eproc.e_vm.vm_ssize; 666 667 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 668 669 kp2p->p_realflag = kp->kp_proc.p_flag; 670 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 671 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 672 kp2p->p_realstat = kp->kp_proc.p_stat; 673 674 if (P_ZOMBIE(&kp->kp_proc) || 675 kp->kp_proc.p_stats == NULL || 676 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 677 kp2p->p_uvalid = 0; 678 } else { 679 kp2p->p_uvalid = 1; 680 681 kp2p->p_ustart_sec = (u_int32_t) 682 pstats.p_start.tv_sec; 683 kp2p->p_ustart_usec = (u_int32_t) 684 pstats.p_start.tv_usec; 685 686 kp2p->p_uutime_sec = (u_int32_t) 687 pstats.p_ru.ru_utime.tv_sec; 688 kp2p->p_uutime_usec = (u_int32_t) 689 pstats.p_ru.ru_utime.tv_usec; 690 kp2p->p_ustime_sec = (u_int32_t) 691 pstats.p_ru.ru_stime.tv_sec; 692 kp2p->p_ustime_usec = (u_int32_t) 693 pstats.p_ru.ru_stime.tv_usec; 694 695 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 696 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 697 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 698 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 699 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 700 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 701 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 702 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 703 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 704 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 705 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 706 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 707 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 708 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 709 710 kp2p->p_uctime_sec = (u_int32_t) 711 (pstats.p_cru.ru_utime.tv_sec + 712 pstats.p_cru.ru_stime.tv_sec); 713 kp2p->p_uctime_usec = (u_int32_t) 714 (pstats.p_cru.ru_utime.tv_usec + 715 pstats.p_cru.ru_stime.tv_usec); 716 } 717 718 memcpy(kp2c, &kp2, esize); 719 kp2c += esize; 720 } 721 } 722 *cnt = nprocs; 723 return (kd->procbase2); 724 } 725 726 struct kinfo_lwp * 727 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt) 728 { 729 size_t size; 730 int mib[5], nlwps; 731 ssize_t st; 732 struct kinfo_lwp *kl; 733 734 if (ISSYSCTL(kd)) { 735 size = 0; 736 mib[0] = CTL_KERN; 737 mib[1] = KERN_LWP; 738 mib[2] = pid; 739 mib[3] = (int)esize; 740 mib[4] = 0; 741 again: 742 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 743 if (st == -1) { 744 switch (errno) { 745 case ESRCH: /* Treat this as a soft error; see kvm.c */ 746 _kvm_syserr(kd, NULL, "kvm_getlwps"); 747 return NULL; 748 default: 749 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 750 return NULL; 751 } 752 } 753 mib[4] = (int) (size / esize); 754 KVM_ALLOC(kd, lwpbase, size); 755 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 756 if (st == -1) { 757 switch (errno) { 758 case ESRCH: /* Treat this as a soft error; see kvm.c */ 759 _kvm_syserr(kd, NULL, "kvm_getlwps"); 760 return NULL; 761 case ENOMEM: 762 goto again; 763 default: 764 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 765 return NULL; 766 } 767 } 768 nlwps = (int) (size / esize); 769 } else { 770 /* grovel through the memory image */ 771 struct proc p; 772 struct lwp l; 773 u_long laddr; 774 void *back; 775 int i; 776 777 st = kvm_read(kd, paddr, &p, sizeof(p)); 778 if (st == -1) { 779 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 780 return (NULL); 781 } 782 783 nlwps = p.p_nlwps; 784 size = nlwps * sizeof(*kd->lwpbase); 785 KVM_ALLOC(kd, lwpbase, size); 786 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 787 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 788 st = kvm_read(kd, laddr, &l, sizeof(l)); 789 if (st == -1) { 790 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 791 return (NULL); 792 } 793 kl = &kd->lwpbase[i]; 794 kl->l_laddr = laddr; 795 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next); 796 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev); 797 st = kvm_read(kd, laddr, &back, sizeof(back)); 798 if (st == -1) { 799 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 800 return (NULL); 801 } 802 kl->l_back = PTRTOUINT64(back); 803 kl->l_addr = PTRTOUINT64(l.l_addr); 804 kl->l_lid = l.l_lid; 805 kl->l_flag = l.l_flag; 806 kl->l_swtime = l.l_swtime; 807 kl->l_slptime = l.l_slptime; 808 kl->l_schedflags = 0; /* XXX */ 809 kl->l_holdcnt = 0; 810 kl->l_priority = l.l_priority; 811 kl->l_usrpri = l.l_priority; 812 kl->l_stat = l.l_stat; 813 kl->l_wchan = PTRTOUINT64(l.l_wchan); 814 if (l.l_wmesg) 815 (void)kvm_read(kd, (u_long)l.l_wmesg, 816 kl->l_wmesg, (size_t)WMESGLEN); 817 kl->l_cpuid = KI_NOCPU; 818 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 819 } 820 } 821 822 *cnt = nlwps; 823 return (kd->lwpbase); 824 } 825 826 struct kinfo_proc * 827 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 828 { 829 size_t size; 830 int mib[4], st, nprocs; 831 832 if (ISALIVE(kd)) { 833 size = 0; 834 mib[0] = CTL_KERN; 835 mib[1] = KERN_PROC; 836 mib[2] = op; 837 mib[3] = arg; 838 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 839 if (st == -1) { 840 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 841 return (NULL); 842 } 843 KVM_ALLOC(kd, procbase, size); 844 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 845 if (st == -1) { 846 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 847 return (NULL); 848 } 849 if (size % sizeof(struct kinfo_proc) != 0) { 850 _kvm_err(kd, kd->program, 851 "proc size mismatch (%lu total, %lu chunks)", 852 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 853 return (NULL); 854 } 855 nprocs = (int) (size / sizeof(struct kinfo_proc)); 856 } else { 857 struct nlist nl[4], *p; 858 859 (void)memset(nl, 0, sizeof(nl)); 860 nl[0].n_name = "_nprocs"; 861 nl[1].n_name = "_allproc"; 862 nl[2].n_name = "_zombproc"; 863 nl[3].n_name = NULL; 864 865 if (kvm_nlist(kd, nl) != 0) { 866 for (p = nl; p->n_type != 0; ++p) 867 continue; 868 _kvm_err(kd, kd->program, 869 "%s: no such symbol", p->n_name); 870 return (NULL); 871 } 872 if (KREAD(kd, nl[0].n_value, &nprocs)) { 873 _kvm_err(kd, kd->program, "can't read nprocs"); 874 return (NULL); 875 } 876 size = nprocs * sizeof(*kd->procbase); 877 KVM_ALLOC(kd, procbase, size); 878 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 879 nl[2].n_value, nprocs); 880 if (nprocs < 0) 881 return (NULL); 882 #ifdef notdef 883 size = nprocs * sizeof(struct kinfo_proc); 884 (void)realloc(kd->procbase, size); 885 #endif 886 } 887 *cnt = nprocs; 888 return (kd->procbase); 889 } 890 891 void * 892 _kvm_realloc(kvm_t *kd, void *p, size_t n) 893 { 894 void *np = realloc(p, n); 895 896 if (np == NULL) 897 _kvm_err(kd, kd->program, "out of memory"); 898 return (np); 899 } 900 901 /* 902 * Read in an argument vector from the user address space of process p. 903 * addr if the user-space base address of narg null-terminated contiguous 904 * strings. This is used to read in both the command arguments and 905 * environment strings. Read at most maxcnt characters of strings. 906 */ 907 static char ** 908 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg, 909 int maxcnt) 910 { 911 char *np, *cp, *ep, *ap; 912 u_long oaddr = (u_long)~0L; 913 u_long len; 914 size_t cc; 915 char **argv; 916 917 /* 918 * Check that there aren't an unreasonable number of arguments, 919 * and that the address is in user space. 920 */ 921 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 922 return (NULL); 923 924 if (kd->argv == NULL) { 925 /* 926 * Try to avoid reallocs. 927 */ 928 kd->argc = MAX(narg + 1, 32); 929 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 930 if (kd->argv == NULL) 931 return (NULL); 932 } else if (narg + 1 > kd->argc) { 933 kd->argc = MAX(2 * kd->argc, narg + 1); 934 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 935 sizeof(*kd->argv)); 936 if (kd->argv == NULL) 937 return (NULL); 938 } 939 if (kd->argspc == NULL) { 940 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 941 if (kd->argspc == NULL) 942 return (NULL); 943 kd->argspc_len = kd->nbpg; 944 } 945 if (kd->argbuf == NULL) { 946 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 947 if (kd->argbuf == NULL) 948 return (NULL); 949 } 950 cc = sizeof(char *) * narg; 951 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 952 return (NULL); 953 ap = np = kd->argspc; 954 argv = kd->argv; 955 len = 0; 956 /* 957 * Loop over pages, filling in the argument vector. 958 */ 959 while (argv < kd->argv + narg && *argv != NULL) { 960 addr = (u_long)*argv & ~(kd->nbpg - 1); 961 if (addr != oaddr) { 962 if (kvm_ureadm(kd, p, addr, kd->argbuf, 963 (size_t)kd->nbpg) != kd->nbpg) 964 return (NULL); 965 oaddr = addr; 966 } 967 addr = (u_long)*argv & (kd->nbpg - 1); 968 cp = kd->argbuf + (size_t)addr; 969 cc = kd->nbpg - (size_t)addr; 970 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 971 cc = (size_t)(maxcnt - len); 972 ep = memchr(cp, '\0', cc); 973 if (ep != NULL) 974 cc = ep - cp + 1; 975 if (len + cc > kd->argspc_len) { 976 ptrdiff_t off; 977 char **pp; 978 char *op = kd->argspc; 979 980 kd->argspc_len *= 2; 981 kd->argspc = _kvm_realloc(kd, kd->argspc, 982 kd->argspc_len); 983 if (kd->argspc == NULL) 984 return (NULL); 985 /* 986 * Adjust argv pointers in case realloc moved 987 * the string space. 988 */ 989 off = kd->argspc - op; 990 for (pp = kd->argv; pp < argv; pp++) 991 *pp += off; 992 ap += off; 993 np += off; 994 } 995 memcpy(np, cp, cc); 996 np += cc; 997 len += cc; 998 if (ep != NULL) { 999 *argv++ = ap; 1000 ap = np; 1001 } else 1002 *argv += cc; 1003 if (maxcnt > 0 && len >= maxcnt) { 1004 /* 1005 * We're stopping prematurely. Terminate the 1006 * current string. 1007 */ 1008 if (ep == NULL) { 1009 *np = '\0'; 1010 *argv++ = ap; 1011 } 1012 break; 1013 } 1014 } 1015 /* Make sure argv is terminated. */ 1016 *argv = NULL; 1017 return (kd->argv); 1018 } 1019 1020 static void 1021 ps_str_a(struct ps_strings *p, u_long *addr, int *n) 1022 { 1023 1024 *addr = (u_long)p->ps_argvstr; 1025 *n = p->ps_nargvstr; 1026 } 1027 1028 static void 1029 ps_str_e(struct ps_strings *p, u_long *addr, int *n) 1030 { 1031 1032 *addr = (u_long)p->ps_envstr; 1033 *n = p->ps_nenvstr; 1034 } 1035 1036 /* 1037 * Determine if the proc indicated by p is still active. 1038 * This test is not 100% foolproof in theory, but chances of 1039 * being wrong are very low. 1040 */ 1041 static int 1042 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p) 1043 { 1044 struct proc kernproc; 1045 1046 /* 1047 * Just read in the whole proc. It's not that big relative 1048 * to the cost of the read system call. 1049 */ 1050 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1051 sizeof(kernproc)) 1052 return (0); 1053 return (p->p_pid == kernproc.p_pid && 1054 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1055 } 1056 1057 static char ** 1058 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr, 1059 void (*info)(struct ps_strings *, u_long *, int *)) 1060 { 1061 char **ap; 1062 u_long addr; 1063 int cnt; 1064 struct ps_strings arginfo; 1065 1066 /* 1067 * Pointers are stored at the top of the user stack. 1068 */ 1069 if (p->p_stat == SZOMB) 1070 return (NULL); 1071 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1072 (void *)&arginfo, sizeof(arginfo)); 1073 if (cnt != sizeof(arginfo)) 1074 return (NULL); 1075 1076 (*info)(&arginfo, &addr, &cnt); 1077 if (cnt == 0) 1078 return (NULL); 1079 ap = kvm_argv(kd, p, addr, cnt, nchr); 1080 /* 1081 * For live kernels, make sure this process didn't go away. 1082 */ 1083 if (ap != NULL && ISALIVE(kd) && 1084 !proc_verify(kd, (u_long)p->p_paddr, p)) 1085 ap = NULL; 1086 return (ap); 1087 } 1088 1089 /* 1090 * Get the command args. This code is now machine independent. 1091 */ 1092 char ** 1093 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1094 { 1095 struct miniproc p; 1096 1097 KPTOMINI(kp, &p); 1098 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1099 } 1100 1101 char ** 1102 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1103 { 1104 struct miniproc p; 1105 1106 KPTOMINI(kp, &p); 1107 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1108 } 1109 1110 static char ** 1111 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr) 1112 { 1113 size_t bufs; 1114 int narg, mib[4]; 1115 size_t newargspc_len; 1116 char **ap, *bp, *endp; 1117 1118 /* 1119 * Check that there aren't an unreasonable number of arguments. 1120 */ 1121 if (nchr > ARG_MAX) 1122 return (NULL); 1123 1124 if (nchr == 0) 1125 nchr = ARG_MAX; 1126 1127 /* Get number of strings in argv */ 1128 mib[0] = CTL_KERN; 1129 mib[1] = KERN_PROC_ARGS; 1130 mib[2] = pid; 1131 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1132 bufs = sizeof(narg); 1133 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1134 return (NULL); 1135 1136 if (kd->argv == NULL) { 1137 /* 1138 * Try to avoid reallocs. 1139 */ 1140 kd->argc = MAX(narg + 1, 32); 1141 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1142 if (kd->argv == NULL) 1143 return (NULL); 1144 } else if (narg + 1 > kd->argc) { 1145 kd->argc = MAX(2 * kd->argc, narg + 1); 1146 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1147 sizeof(*kd->argv)); 1148 if (kd->argv == NULL) 1149 return (NULL); 1150 } 1151 1152 newargspc_len = MIN(nchr, ARG_MAX); 1153 KVM_ALLOC(kd, argspc, newargspc_len); 1154 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1155 1156 mib[0] = CTL_KERN; 1157 mib[1] = KERN_PROC_ARGS; 1158 mib[2] = pid; 1159 mib[3] = type; 1160 bufs = kd->argspc_len; 1161 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1162 return (NULL); 1163 1164 bp = kd->argspc; 1165 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1166 ap = kd->argv; 1167 endp = bp + MIN(nchr, bufs); 1168 1169 while (bp < endp) { 1170 *ap++ = bp; 1171 /* 1172 * XXX: don't need following anymore, or stick check 1173 * for max argc in above while loop? 1174 */ 1175 if (ap >= kd->argv + kd->argc) { 1176 kd->argc *= 2; 1177 kd->argv = _kvm_realloc(kd, kd->argv, 1178 kd->argc * sizeof(*kd->argv)); 1179 ap = kd->argv; 1180 } 1181 bp += strlen(bp) + 1; 1182 } 1183 *ap = NULL; 1184 1185 return (kd->argv); 1186 } 1187 1188 char ** 1189 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1190 { 1191 1192 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1193 } 1194 1195 char ** 1196 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1197 { 1198 1199 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1200 } 1201 1202 /* 1203 * Read from user space. The user context is given by p. 1204 */ 1205 static ssize_t 1206 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, 1207 char *buf, size_t len) 1208 { 1209 char *cp; 1210 1211 cp = buf; 1212 while (len > 0) { 1213 size_t cc; 1214 char *dp; 1215 u_long cnt; 1216 1217 dp = _kvm_ureadm(kd, p, uva, &cnt); 1218 if (dp == NULL) { 1219 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1220 return (0); 1221 } 1222 cc = (size_t)MIN(cnt, len); 1223 memcpy(cp, dp, cc); 1224 cp += cc; 1225 uva += cc; 1226 len -= cc; 1227 } 1228 return (ssize_t)(cp - buf); 1229 } 1230 1231 ssize_t 1232 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len) 1233 { 1234 struct miniproc mp; 1235 1236 PTOMINI(p, &mp); 1237 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1238 } 1239