1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 2<html> 3 4<head> 5<title>Lua 5.1 Reference Manual</title> 6<link rel="stylesheet" type="text/css" href="lua.css"> 7<link rel="stylesheet" type="text/css" href="manual.css"> 8<META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1"> 9</head> 10 11<body> 12 13<hr> 14<h1> 15<a href="http://www.lua.org/"><img src="logo.gif" alt="" border="0"></a> 16Lua 5.1 Reference Manual 17</h1> 18 19by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes 20<p> 21<small> 22Copyright © 2006–2012 Lua.org, PUC-Rio. 23Freely available under the terms of the 24<a href="http://www.lua.org/license.html">Lua license</a>. 25</small> 26<hr> 27<p> 28 29<a href="contents.html#contents">contents</A> 30· 31<a href="contents.html#index">index</A> 32· 33<A HREF="http://www.lua.org/manual/">other versions</A> 34 35<!-- ====================================================================== --> 36<p> 37 38<!-- $Id: manual.html,v 1.1.1.2 2012/03/15 00:08:20 alnsn Exp $ --> 39 40 41 42 43<h1>1 - <a name="1">Introduction</a></h1> 44 45<p> 46Lua is an extension programming language designed to support 47general procedural programming with data description 48facilities. 49It also offers good support for object-oriented programming, 50functional programming, and data-driven programming. 51Lua is intended to be used as a powerful, light-weight 52scripting language for any program that needs one. 53Lua is implemented as a library, written in <em>clean</em> C 54(that is, in the common subset of ANSI C and C++). 55 56 57<p> 58Being an extension language, Lua has no notion of a "main" program: 59it only works <em>embedded</em> in a host client, 60called the <em>embedding program</em> or simply the <em>host</em>. 61This host program can invoke functions to execute a piece of Lua code, 62can write and read Lua variables, 63and can register C functions to be called by Lua code. 64Through the use of C functions, Lua can be augmented to cope with 65a wide range of different domains, 66thus creating customized programming languages sharing a syntactical framework. 67The Lua distribution includes a sample host program called <code>lua</code>, 68which uses the Lua library to offer a complete, stand-alone Lua interpreter. 69 70 71<p> 72Lua is free software, 73and is provided as usual with no guarantees, 74as stated in its license. 75The implementation described in this manual is available 76at Lua's official web site, <code>www.lua.org</code>. 77 78 79<p> 80Like any other reference manual, 81this document is dry in places. 82For a discussion of the decisions behind the design of Lua, 83see the technical papers available at Lua's web site. 84For a detailed introduction to programming in Lua, 85see Roberto's book, <em>Programming in Lua (Second Edition)</em>. 86 87 88 89<h1>2 - <a name="2">The Language</a></h1> 90 91<p> 92This section describes the lexis, the syntax, and the semantics of Lua. 93In other words, 94this section describes 95which tokens are valid, 96how they can be combined, 97and what their combinations mean. 98 99 100<p> 101The language constructs will be explained using the usual extended BNF notation, 102in which 103{<em>a</em>} means 0 or more <em>a</em>'s, and 104[<em>a</em>] means an optional <em>a</em>. 105Non-terminals are shown like non-terminal, 106keywords are shown like <b>kword</b>, 107and other terminal symbols are shown like `<b>=</b>´. 108The complete syntax of Lua can be found in <a href="#8">§8</a> 109at the end of this manual. 110 111 112 113<h2>2.1 - <a name="2.1">Lexical Conventions</a></h2> 114 115<p> 116<em>Names</em> 117(also called <em>identifiers</em>) 118in Lua can be any string of letters, 119digits, and underscores, 120not beginning with a digit. 121This coincides with the definition of names in most languages. 122(The definition of letter depends on the current locale: 123any character considered alphabetic by the current locale 124can be used in an identifier.) 125Identifiers are used to name variables and table fields. 126 127 128<p> 129The following <em>keywords</em> are reserved 130and cannot be used as names: 131 132 133<pre> 134 and break do else elseif 135 end false for function if 136 in local nil not or 137 repeat return then true until while 138</pre> 139 140<p> 141Lua is a case-sensitive language: 142<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code> 143are two different, valid names. 144As a convention, names starting with an underscore followed by 145uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>) 146are reserved for internal global variables used by Lua. 147 148 149<p> 150The following strings denote other tokens: 151 152<pre> 153 + - * / % ^ # 154 == ~= <= >= < > = 155 ( ) { } [ ] 156 ; : , . .. ... 157</pre> 158 159<p> 160<em>Literal strings</em> 161can be delimited by matching single or double quotes, 162and can contain the following C-like escape sequences: 163'<code>\a</code>' (bell), 164'<code>\b</code>' (backspace), 165'<code>\f</code>' (form feed), 166'<code>\n</code>' (newline), 167'<code>\r</code>' (carriage return), 168'<code>\t</code>' (horizontal tab), 169'<code>\v</code>' (vertical tab), 170'<code>\\</code>' (backslash), 171'<code>\"</code>' (quotation mark [double quote]), 172and '<code>\'</code>' (apostrophe [single quote]). 173Moreover, a backslash followed by a real newline 174results in a newline in the string. 175A character in a string can also be specified by its numerical value 176using the escape sequence <code>\<em>ddd</em></code>, 177where <em>ddd</em> is a sequence of up to three decimal digits. 178(Note that if a numerical escape is to be followed by a digit, 179it must be expressed using exactly three digits.) 180Strings in Lua can contain any 8-bit value, including embedded zeros, 181which can be specified as '<code>\0</code>'. 182 183 184<p> 185Literal strings can also be defined using a long format 186enclosed by <em>long brackets</em>. 187We define an <em>opening long bracket of level <em>n</em></em> as an opening 188square bracket followed by <em>n</em> equal signs followed by another 189opening square bracket. 190So, an opening long bracket of level 0 is written as <code>[[</code>, 191an opening long bracket of level 1 is written as <code>[=[</code>, 192and so on. 193A <em>closing long bracket</em> is defined similarly; 194for instance, a closing long bracket of level 4 is written as <code>]====]</code>. 195A long string starts with an opening long bracket of any level and 196ends at the first closing long bracket of the same level. 197Literals in this bracketed form can run for several lines, 198do not interpret any escape sequences, 199and ignore long brackets of any other level. 200They can contain anything except a closing bracket of the proper level. 201 202 203<p> 204For convenience, 205when the opening long bracket is immediately followed by a newline, 206the newline is not included in the string. 207As an example, in a system using ASCII 208(in which '<code>a</code>' is coded as 97, 209newline is coded as 10, and '<code>1</code>' is coded as 49), 210the five literal strings below denote the same string: 211 212<pre> 213 a = 'alo\n123"' 214 a = "alo\n123\"" 215 a = '\97lo\10\04923"' 216 a = [[alo 217 123"]] 218 a = [==[ 219 alo 220 123"]==] 221</pre> 222 223<p> 224A <em>numerical constant</em> can be written with an optional decimal part 225and an optional decimal exponent. 226Lua also accepts integer hexadecimal constants, 227by prefixing them with <code>0x</code>. 228Examples of valid numerical constants are 229 230<pre> 231 3 3.0 3.1416 314.16e-2 0.31416E1 0xff 0x56 232</pre> 233 234<p> 235A <em>comment</em> starts with a double hyphen (<code>--</code>) 236anywhere outside a string. 237If the text immediately after <code>--</code> is not an opening long bracket, 238the comment is a <em>short comment</em>, 239which runs until the end of the line. 240Otherwise, it is a <em>long comment</em>, 241which runs until the corresponding closing long bracket. 242Long comments are frequently used to disable code temporarily. 243 244 245 246 247 248<h2>2.2 - <a name="2.2">Values and Types</a></h2> 249 250<p> 251Lua is a <em>dynamically typed language</em>. 252This means that 253variables do not have types; only values do. 254There are no type definitions in the language. 255All values carry their own type. 256 257 258<p> 259All values in Lua are <em>first-class values</em>. 260This means that all values can be stored in variables, 261passed as arguments to other functions, and returned as results. 262 263 264<p> 265There are eight basic types in Lua: 266<em>nil</em>, <em>boolean</em>, <em>number</em>, 267<em>string</em>, <em>function</em>, <em>userdata</em>, 268<em>thread</em>, and <em>table</em>. 269<em>Nil</em> is the type of the value <b>nil</b>, 270whose main property is to be different from any other value; 271it usually represents the absence of a useful value. 272<em>Boolean</em> is the type of the values <b>false</b> and <b>true</b>. 273Both <b>nil</b> and <b>false</b> make a condition false; 274any other value makes it true. 275<em>Number</em> represents real (double-precision floating-point) numbers. 276(It is easy to build Lua interpreters that use other 277internal representations for numbers, 278such as single-precision float or long integers; 279see file <code>luaconf.h</code>.) 280<em>String</em> represents arrays of characters. 281 282Lua is 8-bit clean: 283strings can contain any 8-bit character, 284including embedded zeros ('<code>\0</code>') (see <a href="#2.1">§2.1</a>). 285 286 287<p> 288Lua can call (and manipulate) functions written in Lua and 289functions written in C 290(see <a href="#2.5.8">§2.5.8</a>). 291 292 293<p> 294The type <em>userdata</em> is provided to allow arbitrary C data to 295be stored in Lua variables. 296This type corresponds to a block of raw memory 297and has no pre-defined operations in Lua, 298except assignment and identity test. 299However, by using <em>metatables</em>, 300the programmer can define operations for userdata values 301(see <a href="#2.8">§2.8</a>). 302Userdata values cannot be created or modified in Lua, 303only through the C API. 304This guarantees the integrity of data owned by the host program. 305 306 307<p> 308The type <em>thread</em> represents independent threads of execution 309and it is used to implement coroutines (see <a href="#2.11">§2.11</a>). 310Do not confuse Lua threads with operating-system threads. 311Lua supports coroutines on all systems, 312even those that do not support threads. 313 314 315<p> 316The type <em>table</em> implements associative arrays, 317that is, arrays that can be indexed not only with numbers, 318but with any value (except <b>nil</b>). 319Tables can be <em>heterogeneous</em>; 320that is, they can contain values of all types (except <b>nil</b>). 321Tables are the sole data structuring mechanism in Lua; 322they can be used to represent ordinary arrays, 323symbol tables, sets, records, graphs, trees, etc. 324To represent records, Lua uses the field name as an index. 325The language supports this representation by 326providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>. 327There are several convenient ways to create tables in Lua 328(see <a href="#2.5.7">§2.5.7</a>). 329 330 331<p> 332Like indices, 333the value of a table field can be of any type (except <b>nil</b>). 334In particular, 335because functions are first-class values, 336table fields can contain functions. 337Thus tables can also carry <em>methods</em> (see <a href="#2.5.9">§2.5.9</a>). 338 339 340<p> 341Tables, functions, threads, and (full) userdata values are <em>objects</em>: 342variables do not actually <em>contain</em> these values, 343only <em>references</em> to them. 344Assignment, parameter passing, and function returns 345always manipulate references to such values; 346these operations do not imply any kind of copy. 347 348 349<p> 350The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type 351of a given value. 352 353 354 355<h3>2.2.1 - <a name="2.2.1">Coercion</a></h3> 356 357<p> 358Lua provides automatic conversion between 359string and number values at run time. 360Any arithmetic operation applied to a string tries to convert 361this string to a number, following the usual conversion rules. 362Conversely, whenever a number is used where a string is expected, 363the number is converted to a string, in a reasonable format. 364For complete control over how numbers are converted to strings, 365use the <code>format</code> function from the string library 366(see <a href="#pdf-string.format"><code>string.format</code></a>). 367 368 369 370 371 372 373 374<h2>2.3 - <a name="2.3">Variables</a></h2> 375 376<p> 377Variables are places that store values. 378 379There are three kinds of variables in Lua: 380global variables, local variables, and table fields. 381 382 383<p> 384A single name can denote a global variable or a local variable 385(or a function's formal parameter, 386which is a particular kind of local variable): 387 388<pre> 389 var ::= Name 390</pre><p> 391Name denotes identifiers, as defined in <a href="#2.1">§2.1</a>. 392 393 394<p> 395Any variable is assumed to be global unless explicitly declared 396as a local (see <a href="#2.4.7">§2.4.7</a>). 397Local variables are <em>lexically scoped</em>: 398local variables can be freely accessed by functions 399defined inside their scope (see <a href="#2.6">§2.6</a>). 400 401 402<p> 403Before the first assignment to a variable, its value is <b>nil</b>. 404 405 406<p> 407Square brackets are used to index a table: 408 409<pre> 410 var ::= prefixexp `<b>[</b>´ exp `<b>]</b>´ 411</pre><p> 412The meaning of accesses to global variables 413and table fields can be changed via metatables. 414An access to an indexed variable <code>t[i]</code> is equivalent to 415a call <code>gettable_event(t,i)</code>. 416(See <a href="#2.8">§2.8</a> for a complete description of the 417<code>gettable_event</code> function. 418This function is not defined or callable in Lua. 419We use it here only for explanatory purposes.) 420 421 422<p> 423The syntax <code>var.Name</code> is just syntactic sugar for 424<code>var["Name"]</code>: 425 426<pre> 427 var ::= prefixexp `<b>.</b>´ Name 428</pre> 429 430<p> 431All global variables live as fields in ordinary Lua tables, 432called <em>environment tables</em> or simply 433<em>environments</em> (see <a href="#2.9">§2.9</a>). 434Each function has its own reference to an environment, 435so that all global variables in this function 436will refer to this environment table. 437When a function is created, 438it inherits the environment from the function that created it. 439To get the environment table of a Lua function, 440you call <a href="#pdf-getfenv"><code>getfenv</code></a>. 441To replace it, 442you call <a href="#pdf-setfenv"><code>setfenv</code></a>. 443(You can only manipulate the environment of C functions 444through the debug library; (see <a href="#5.9">§5.9</a>).) 445 446 447<p> 448An access to a global variable <code>x</code> 449is equivalent to <code>_env.x</code>, 450which in turn is equivalent to 451 452<pre> 453 gettable_event(_env, "x") 454</pre><p> 455where <code>_env</code> is the environment of the running function. 456(See <a href="#2.8">§2.8</a> for a complete description of the 457<code>gettable_event</code> function. 458This function is not defined or callable in Lua. 459Similarly, the <code>_env</code> variable is not defined in Lua. 460We use them here only for explanatory purposes.) 461 462 463 464 465 466<h2>2.4 - <a name="2.4">Statements</a></h2> 467 468<p> 469Lua supports an almost conventional set of statements, 470similar to those in Pascal or C. 471This set includes 472assignments, control structures, function calls, 473and variable declarations. 474 475 476 477<h3>2.4.1 - <a name="2.4.1">Chunks</a></h3> 478 479<p> 480The unit of execution of Lua is called a <em>chunk</em>. 481A chunk is simply a sequence of statements, 482which are executed sequentially. 483Each statement can be optionally followed by a semicolon: 484 485<pre> 486 chunk ::= {stat [`<b>;</b>´]} 487</pre><p> 488There are no empty statements and thus '<code>;;</code>' is not legal. 489 490 491<p> 492Lua handles a chunk as the body of an anonymous function 493with a variable number of arguments 494(see <a href="#2.5.9">§2.5.9</a>). 495As such, chunks can define local variables, 496receive arguments, and return values. 497 498 499<p> 500A chunk can be stored in a file or in a string inside the host program. 501To execute a chunk, 502Lua first pre-compiles the chunk into instructions for a virtual machine, 503and then it executes the compiled code 504with an interpreter for the virtual machine. 505 506 507<p> 508Chunks can also be pre-compiled into binary form; 509see program <code>luac</code> for details. 510Programs in source and compiled forms are interchangeable; 511Lua automatically detects the file type and acts accordingly. 512 513 514 515 516 517 518<h3>2.4.2 - <a name="2.4.2">Blocks</a></h3><p> 519A block is a list of statements; 520syntactically, a block is the same as a chunk: 521 522<pre> 523 block ::= chunk 524</pre> 525 526<p> 527A block can be explicitly delimited to produce a single statement: 528 529<pre> 530 stat ::= <b>do</b> block <b>end</b> 531</pre><p> 532Explicit blocks are useful 533to control the scope of variable declarations. 534Explicit blocks are also sometimes used to 535add a <b>return</b> or <b>break</b> statement in the middle 536of another block (see <a href="#2.4.4">§2.4.4</a>). 537 538 539 540 541 542<h3>2.4.3 - <a name="2.4.3">Assignment</a></h3> 543 544<p> 545Lua allows multiple assignments. 546Therefore, the syntax for assignment 547defines a list of variables on the left side 548and a list of expressions on the right side. 549The elements in both lists are separated by commas: 550 551<pre> 552 stat ::= varlist `<b>=</b>´ explist 553 varlist ::= var {`<b>,</b>´ var} 554 explist ::= exp {`<b>,</b>´ exp} 555</pre><p> 556Expressions are discussed in <a href="#2.5">§2.5</a>. 557 558 559<p> 560Before the assignment, 561the list of values is <em>adjusted</em> to the length of 562the list of variables. 563If there are more values than needed, 564the excess values are thrown away. 565If there are fewer values than needed, 566the list is extended with as many <b>nil</b>'s as needed. 567If the list of expressions ends with a function call, 568then all values returned by that call enter the list of values, 569before the adjustment 570(except when the call is enclosed in parentheses; see <a href="#2.5">§2.5</a>). 571 572 573<p> 574The assignment statement first evaluates all its expressions 575and only then are the assignments performed. 576Thus the code 577 578<pre> 579 i = 3 580 i, a[i] = i+1, 20 581</pre><p> 582sets <code>a[3]</code> to 20, without affecting <code>a[4]</code> 583because the <code>i</code> in <code>a[i]</code> is evaluated (to 3) 584before it is assigned 4. 585Similarly, the line 586 587<pre> 588 x, y = y, x 589</pre><p> 590exchanges the values of <code>x</code> and <code>y</code>, 591and 592 593<pre> 594 x, y, z = y, z, x 595</pre><p> 596cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>. 597 598 599<p> 600The meaning of assignments to global variables 601and table fields can be changed via metatables. 602An assignment to an indexed variable <code>t[i] = val</code> is equivalent to 603<code>settable_event(t,i,val)</code>. 604(See <a href="#2.8">§2.8</a> for a complete description of the 605<code>settable_event</code> function. 606This function is not defined or callable in Lua. 607We use it here only for explanatory purposes.) 608 609 610<p> 611An assignment to a global variable <code>x = val</code> 612is equivalent to the assignment 613<code>_env.x = val</code>, 614which in turn is equivalent to 615 616<pre> 617 settable_event(_env, "x", val) 618</pre><p> 619where <code>_env</code> is the environment of the running function. 620(The <code>_env</code> variable is not defined in Lua. 621We use it here only for explanatory purposes.) 622 623 624 625 626 627<h3>2.4.4 - <a name="2.4.4">Control Structures</a></h3><p> 628The control structures 629<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and 630familiar syntax: 631 632 633 634 635<pre> 636 stat ::= <b>while</b> exp <b>do</b> block <b>end</b> 637 stat ::= <b>repeat</b> block <b>until</b> exp 638 stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> 639</pre><p> 640Lua also has a <b>for</b> statement, in two flavors (see <a href="#2.4.5">§2.4.5</a>). 641 642 643<p> 644The condition expression of a 645control structure can return any value. 646Both <b>false</b> and <b>nil</b> are considered false. 647All values different from <b>nil</b> and <b>false</b> are considered true 648(in particular, the number 0 and the empty string are also true). 649 650 651<p> 652In the <b>repeat</b>–<b>until</b> loop, 653the inner block does not end at the <b>until</b> keyword, 654but only after the condition. 655So, the condition can refer to local variables 656declared inside the loop block. 657 658 659<p> 660The <b>return</b> statement is used to return values 661from a function or a chunk (which is just a function). 662 663Functions and chunks can return more than one value, 664and so the syntax for the <b>return</b> statement is 665 666<pre> 667 stat ::= <b>return</b> [explist] 668</pre> 669 670<p> 671The <b>break</b> statement is used to terminate the execution of a 672<b>while</b>, <b>repeat</b>, or <b>for</b> loop, 673skipping to the next statement after the loop: 674 675 676<pre> 677 stat ::= <b>break</b> 678</pre><p> 679A <b>break</b> ends the innermost enclosing loop. 680 681 682<p> 683The <b>return</b> and <b>break</b> 684statements can only be written as the <em>last</em> statement of a block. 685If it is really necessary to <b>return</b> or <b>break</b> in the 686middle of a block, 687then an explicit inner block can be used, 688as in the idioms 689<code>do return end</code> and <code>do break end</code>, 690because now <b>return</b> and <b>break</b> are the last statements in 691their (inner) blocks. 692 693 694 695 696 697<h3>2.4.5 - <a name="2.4.5">For Statement</a></h3> 698 699<p> 700 701The <b>for</b> statement has two forms: 702one numeric and one generic. 703 704 705<p> 706The numeric <b>for</b> loop repeats a block of code while a 707control variable runs through an arithmetic progression. 708It has the following syntax: 709 710<pre> 711 stat ::= <b>for</b> Name `<b>=</b>´ exp `<b>,</b>´ exp [`<b>,</b>´ exp] <b>do</b> block <b>end</b> 712</pre><p> 713The <em>block</em> is repeated for <em>name</em> starting at the value of 714the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the 715third <em>exp</em>. 716More precisely, a <b>for</b> statement like 717 718<pre> 719 for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end 720</pre><p> 721is equivalent to the code: 722 723<pre> 724 do 725 local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>) 726 if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end 727 while (<em>step</em> > 0 and <em>var</em> <= <em>limit</em>) or (<em>step</em> <= 0 and <em>var</em> >= <em>limit</em>) do 728 local v = <em>var</em> 729 <em>block</em> 730 <em>var</em> = <em>var</em> + <em>step</em> 731 end 732 end 733</pre><p> 734Note the following: 735 736<ul> 737 738<li> 739All three control expressions are evaluated only once, 740before the loop starts. 741They must all result in numbers. 742</li> 743 744<li> 745<code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables. 746The names shown here are for explanatory purposes only. 747</li> 748 749<li> 750If the third expression (the step) is absent, 751then a step of 1 is used. 752</li> 753 754<li> 755You can use <b>break</b> to exit a <b>for</b> loop. 756</li> 757 758<li> 759The loop variable <code>v</code> is local to the loop; 760you cannot use its value after the <b>for</b> ends or is broken. 761If you need this value, 762assign it to another variable before breaking or exiting the loop. 763</li> 764 765</ul> 766 767<p> 768The generic <b>for</b> statement works over functions, 769called <em>iterators</em>. 770On each iteration, the iterator function is called to produce a new value, 771stopping when this new value is <b>nil</b>. 772The generic <b>for</b> loop has the following syntax: 773 774<pre> 775 stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> 776 namelist ::= Name {`<b>,</b>´ Name} 777</pre><p> 778A <b>for</b> statement like 779 780<pre> 781 for <em>var_1</em>, ···, <em>var_n</em> in <em>explist</em> do <em>block</em> end 782</pre><p> 783is equivalent to the code: 784 785<pre> 786 do 787 local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em> 788 while true do 789 local <em>var_1</em>, ···, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>) 790 <em>var</em> = <em>var_1</em> 791 if <em>var</em> == nil then break end 792 <em>block</em> 793 end 794 end 795</pre><p> 796Note the following: 797 798<ul> 799 800<li> 801<code><em>explist</em></code> is evaluated only once. 802Its results are an <em>iterator</em> function, 803a <em>state</em>, 804and an initial value for the first <em>iterator variable</em>. 805</li> 806 807<li> 808<code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables. 809The names are here for explanatory purposes only. 810</li> 811 812<li> 813You can use <b>break</b> to exit a <b>for</b> loop. 814</li> 815 816<li> 817The loop variables <code><em>var_i</em></code> are local to the loop; 818you cannot use their values after the <b>for</b> ends. 819If you need these values, 820then assign them to other variables before breaking or exiting the loop. 821</li> 822 823</ul> 824 825 826 827 828<h3>2.4.6 - <a name="2.4.6">Function Calls as Statements</a></h3><p> 829To allow possible side-effects, 830function calls can be executed as statements: 831 832<pre> 833 stat ::= functioncall 834</pre><p> 835In this case, all returned values are thrown away. 836Function calls are explained in <a href="#2.5.8">§2.5.8</a>. 837 838 839 840 841 842<h3>2.4.7 - <a name="2.4.7">Local Declarations</a></h3><p> 843Local variables can be declared anywhere inside a block. 844The declaration can include an initial assignment: 845 846<pre> 847 stat ::= <b>local</b> namelist [`<b>=</b>´ explist] 848</pre><p> 849If present, an initial assignment has the same semantics 850of a multiple assignment (see <a href="#2.4.3">§2.4.3</a>). 851Otherwise, all variables are initialized with <b>nil</b>. 852 853 854<p> 855A chunk is also a block (see <a href="#2.4.1">§2.4.1</a>), 856and so local variables can be declared in a chunk outside any explicit block. 857The scope of such local variables extends until the end of the chunk. 858 859 860<p> 861The visibility rules for local variables are explained in <a href="#2.6">§2.6</a>. 862 863 864 865 866 867 868 869<h2>2.5 - <a name="2.5">Expressions</a></h2> 870 871<p> 872The basic expressions in Lua are the following: 873 874<pre> 875 exp ::= prefixexp 876 exp ::= <b>nil</b> | <b>false</b> | <b>true</b> 877 exp ::= Number 878 exp ::= String 879 exp ::= function 880 exp ::= tableconstructor 881 exp ::= `<b>...</b>´ 882 exp ::= exp binop exp 883 exp ::= unop exp 884 prefixexp ::= var | functioncall | `<b>(</b>´ exp `<b>)</b>´ 885</pre> 886 887<p> 888Numbers and literal strings are explained in <a href="#2.1">§2.1</a>; 889variables are explained in <a href="#2.3">§2.3</a>; 890function definitions are explained in <a href="#2.5.9">§2.5.9</a>; 891function calls are explained in <a href="#2.5.8">§2.5.8</a>; 892table constructors are explained in <a href="#2.5.7">§2.5.7</a>. 893Vararg expressions, 894denoted by three dots ('<code>...</code>'), can only be used when 895directly inside a vararg function; 896they are explained in <a href="#2.5.9">§2.5.9</a>. 897 898 899<p> 900Binary operators comprise arithmetic operators (see <a href="#2.5.1">§2.5.1</a>), 901relational operators (see <a href="#2.5.2">§2.5.2</a>), logical operators (see <a href="#2.5.3">§2.5.3</a>), 902and the concatenation operator (see <a href="#2.5.4">§2.5.4</a>). 903Unary operators comprise the unary minus (see <a href="#2.5.1">§2.5.1</a>), 904the unary <b>not</b> (see <a href="#2.5.3">§2.5.3</a>), 905and the unary <em>length operator</em> (see <a href="#2.5.5">§2.5.5</a>). 906 907 908<p> 909Both function calls and vararg expressions can result in multiple values. 910If an expression is used as a statement 911(only possible for function calls (see <a href="#2.4.6">§2.4.6</a>)), 912then its return list is adjusted to zero elements, 913thus discarding all returned values. 914If an expression is used as the last (or the only) element 915of a list of expressions, 916then no adjustment is made 917(unless the call is enclosed in parentheses). 918In all other contexts, 919Lua adjusts the result list to one element, 920discarding all values except the first one. 921 922 923<p> 924Here are some examples: 925 926<pre> 927 f() -- adjusted to 0 results 928 g(f(), x) -- f() is adjusted to 1 result 929 g(x, f()) -- g gets x plus all results from f() 930 a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil) 931 a,b = ... -- a gets the first vararg parameter, b gets 932 -- the second (both a and b can get nil if there 933 -- is no corresponding vararg parameter) 934 935 a,b,c = x, f() -- f() is adjusted to 2 results 936 a,b,c = f() -- f() is adjusted to 3 results 937 return f() -- returns all results from f() 938 return ... -- returns all received vararg parameters 939 return x,y,f() -- returns x, y, and all results from f() 940 {f()} -- creates a list with all results from f() 941 {...} -- creates a list with all vararg parameters 942 {f(), nil} -- f() is adjusted to 1 result 943</pre> 944 945<p> 946Any expression enclosed in parentheses always results in only one value. 947Thus, 948<code>(f(x,y,z))</code> is always a single value, 949even if <code>f</code> returns several values. 950(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code> 951or <b>nil</b> if <code>f</code> does not return any values.) 952 953 954 955<h3>2.5.1 - <a name="2.5.1">Arithmetic Operators</a></h3><p> 956Lua supports the usual arithmetic operators: 957the binary <code>+</code> (addition), 958<code>-</code> (subtraction), <code>*</code> (multiplication), 959<code>/</code> (division), <code>%</code> (modulo), and <code>^</code> (exponentiation); 960and unary <code>-</code> (negation). 961If the operands are numbers, or strings that can be converted to 962numbers (see <a href="#2.2.1">§2.2.1</a>), 963then all operations have the usual meaning. 964Exponentiation works for any exponent. 965For instance, <code>x^(-0.5)</code> computes the inverse of the square root of <code>x</code>. 966Modulo is defined as 967 968<pre> 969 a % b == a - math.floor(a/b)*b 970</pre><p> 971That is, it is the remainder of a division that rounds 972the quotient towards minus infinity. 973 974 975 976 977 978<h3>2.5.2 - <a name="2.5.2">Relational Operators</a></h3><p> 979The relational operators in Lua are 980 981<pre> 982 == ~= < > <= >= 983</pre><p> 984These operators always result in <b>false</b> or <b>true</b>. 985 986 987<p> 988Equality (<code>==</code>) first compares the type of its operands. 989If the types are different, then the result is <b>false</b>. 990Otherwise, the values of the operands are compared. 991Numbers and strings are compared in the usual way. 992Objects (tables, userdata, threads, and functions) 993are compared by <em>reference</em>: 994two objects are considered equal only if they are the <em>same</em> object. 995Every time you create a new object 996(a table, userdata, thread, or function), 997this new object is different from any previously existing object. 998 999 1000<p> 1001You can change the way that Lua compares tables and userdata 1002by using the "eq" metamethod (see <a href="#2.8">§2.8</a>). 1003 1004 1005<p> 1006The conversion rules of <a href="#2.2.1">§2.2.1</a> 1007<em>do not</em> apply to equality comparisons. 1008Thus, <code>"0"==0</code> evaluates to <b>false</b>, 1009and <code>t[0]</code> and <code>t["0"]</code> denote different 1010entries in a table. 1011 1012 1013<p> 1014The operator <code>~=</code> is exactly the negation of equality (<code>==</code>). 1015 1016 1017<p> 1018The order operators work as follows. 1019If both arguments are numbers, then they are compared as such. 1020Otherwise, if both arguments are strings, 1021then their values are compared according to the current locale. 1022Otherwise, Lua tries to call the "lt" or the "le" 1023metamethod (see <a href="#2.8">§2.8</a>). 1024A comparison <code>a > b</code> is translated to <code>b < a</code> 1025and <code>a >= b</code> is translated to <code>b <= a</code>. 1026 1027 1028 1029 1030 1031<h3>2.5.3 - <a name="2.5.3">Logical Operators</a></h3><p> 1032The logical operators in Lua are 1033<b>and</b>, <b>or</b>, and <b>not</b>. 1034Like the control structures (see <a href="#2.4.4">§2.4.4</a>), 1035all logical operators consider both <b>false</b> and <b>nil</b> as false 1036and anything else as true. 1037 1038 1039<p> 1040The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>. 1041The conjunction operator <b>and</b> returns its first argument 1042if this value is <b>false</b> or <b>nil</b>; 1043otherwise, <b>and</b> returns its second argument. 1044The disjunction operator <b>or</b> returns its first argument 1045if this value is different from <b>nil</b> and <b>false</b>; 1046otherwise, <b>or</b> returns its second argument. 1047Both <b>and</b> and <b>or</b> use short-cut evaluation; 1048that is, 1049the second operand is evaluated only if necessary. 1050Here are some examples: 1051 1052<pre> 1053 10 or 20 --> 10 1054 10 or error() --> 10 1055 nil or "a" --> "a" 1056 nil and 10 --> nil 1057 false and error() --> false 1058 false and nil --> false 1059 false or nil --> nil 1060 10 and 20 --> 20 1061</pre><p> 1062(In this manual, 1063<code>--></code> indicates the result of the preceding expression.) 1064 1065 1066 1067 1068 1069<h3>2.5.4 - <a name="2.5.4">Concatenation</a></h3><p> 1070The string concatenation operator in Lua is 1071denoted by two dots ('<code>..</code>'). 1072If both operands are strings or numbers, then they are converted to 1073strings according to the rules mentioned in <a href="#2.2.1">§2.2.1</a>. 1074Otherwise, the "concat" metamethod is called (see <a href="#2.8">§2.8</a>). 1075 1076 1077 1078 1079 1080<h3>2.5.5 - <a name="2.5.5">The Length Operator</a></h3> 1081 1082<p> 1083The length operator is denoted by the unary operator <code>#</code>. 1084The length of a string is its number of bytes 1085(that is, the usual meaning of string length when each 1086character is one byte). 1087 1088 1089<p> 1090The length of a table <code>t</code> is defined to be any 1091integer index <code>n</code> 1092such that <code>t[n]</code> is not <b>nil</b> and <code>t[n+1]</code> is <b>nil</b>; 1093moreover, if <code>t[1]</code> is <b>nil</b>, <code>n</code> can be zero. 1094For a regular array, with non-nil values from 1 to a given <code>n</code>, 1095its length is exactly that <code>n</code>, 1096the index of its last value. 1097If the array has "holes" 1098(that is, <b>nil</b> values between other non-nil values), 1099then <code>#t</code> can be any of the indices that 1100directly precedes a <b>nil</b> value 1101(that is, it may consider any such <b>nil</b> value as the end of 1102the array). 1103 1104 1105 1106 1107 1108<h3>2.5.6 - <a name="2.5.6">Precedence</a></h3><p> 1109Operator precedence in Lua follows the table below, 1110from lower to higher priority: 1111 1112<pre> 1113 or 1114 and 1115 < > <= >= ~= == 1116 .. 1117 + - 1118 * / % 1119 not # - (unary) 1120 ^ 1121</pre><p> 1122As usual, 1123you can use parentheses to change the precedences of an expression. 1124The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>') 1125operators are right associative. 1126All other binary operators are left associative. 1127 1128 1129 1130 1131 1132<h3>2.5.7 - <a name="2.5.7">Table Constructors</a></h3><p> 1133Table constructors are expressions that create tables. 1134Every time a constructor is evaluated, a new table is created. 1135A constructor can be used to create an empty table 1136or to create a table and initialize some of its fields. 1137The general syntax for constructors is 1138 1139<pre> 1140 tableconstructor ::= `<b>{</b>´ [fieldlist] `<b>}</b>´ 1141 fieldlist ::= field {fieldsep field} [fieldsep] 1142 field ::= `<b>[</b>´ exp `<b>]</b>´ `<b>=</b>´ exp | Name `<b>=</b>´ exp | exp 1143 fieldsep ::= `<b>,</b>´ | `<b>;</b>´ 1144</pre> 1145 1146<p> 1147Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry 1148with key <code>exp1</code> and value <code>exp2</code>. 1149A field of the form <code>name = exp</code> is equivalent to 1150<code>["name"] = exp</code>. 1151Finally, fields of the form <code>exp</code> are equivalent to 1152<code>[i] = exp</code>, where <code>i</code> are consecutive numerical integers, 1153starting with 1. 1154Fields in the other formats do not affect this counting. 1155For example, 1156 1157<pre> 1158 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 } 1159</pre><p> 1160is equivalent to 1161 1162<pre> 1163 do 1164 local t = {} 1165 t[f(1)] = g 1166 t[1] = "x" -- 1st exp 1167 t[2] = "y" -- 2nd exp 1168 t.x = 1 -- t["x"] = 1 1169 t[3] = f(x) -- 3rd exp 1170 t[30] = 23 1171 t[4] = 45 -- 4th exp 1172 a = t 1173 end 1174</pre> 1175 1176<p> 1177If the last field in the list has the form <code>exp</code> 1178and the expression is a function call or a vararg expression, 1179then all values returned by this expression enter the list consecutively 1180(see <a href="#2.5.8">§2.5.8</a>). 1181To avoid this, 1182enclose the function call or the vararg expression 1183in parentheses (see <a href="#2.5">§2.5</a>). 1184 1185 1186<p> 1187The field list can have an optional trailing separator, 1188as a convenience for machine-generated code. 1189 1190 1191 1192 1193 1194<h3>2.5.8 - <a name="2.5.8">Function Calls</a></h3><p> 1195A function call in Lua has the following syntax: 1196 1197<pre> 1198 functioncall ::= prefixexp args 1199</pre><p> 1200In a function call, 1201first prefixexp and args are evaluated. 1202If the value of prefixexp has type <em>function</em>, 1203then this function is called 1204with the given arguments. 1205Otherwise, the prefixexp "call" metamethod is called, 1206having as first parameter the value of prefixexp, 1207followed by the original call arguments 1208(see <a href="#2.8">§2.8</a>). 1209 1210 1211<p> 1212The form 1213 1214<pre> 1215 functioncall ::= prefixexp `<b>:</b>´ Name args 1216</pre><p> 1217can be used to call "methods". 1218A call <code>v:name(<em>args</em>)</code> 1219is syntactic sugar for <code>v.name(v,<em>args</em>)</code>, 1220except that <code>v</code> is evaluated only once. 1221 1222 1223<p> 1224Arguments have the following syntax: 1225 1226<pre> 1227 args ::= `<b>(</b>´ [explist] `<b>)</b>´ 1228 args ::= tableconstructor 1229 args ::= String 1230</pre><p> 1231All argument expressions are evaluated before the call. 1232A call of the form <code>f{<em>fields</em>}</code> is 1233syntactic sugar for <code>f({<em>fields</em>})</code>; 1234that is, the argument list is a single new table. 1235A call of the form <code>f'<em>string</em>'</code> 1236(or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>) 1237is syntactic sugar for <code>f('<em>string</em>')</code>; 1238that is, the argument list is a single literal string. 1239 1240 1241<p> 1242As an exception to the free-format syntax of Lua, 1243you cannot put a line break before the '<code>(</code>' in a function call. 1244This restriction avoids some ambiguities in the language. 1245If you write 1246 1247<pre> 1248 a = f 1249 (g).x(a) 1250</pre><p> 1251Lua would see that as a single statement, <code>a = f(g).x(a)</code>. 1252So, if you want two statements, you must add a semi-colon between them. 1253If you actually want to call <code>f</code>, 1254you must remove the line break before <code>(g)</code>. 1255 1256 1257<p> 1258A call of the form <code>return</code> <em>functioncall</em> is called 1259a <em>tail call</em>. 1260Lua implements <em>proper tail calls</em> 1261(or <em>proper tail recursion</em>): 1262in a tail call, 1263the called function reuses the stack entry of the calling function. 1264Therefore, there is no limit on the number of nested tail calls that 1265a program can execute. 1266However, a tail call erases any debug information about the 1267calling function. 1268Note that a tail call only happens with a particular syntax, 1269where the <b>return</b> has one single function call as argument; 1270this syntax makes the calling function return exactly 1271the returns of the called function. 1272So, none of the following examples are tail calls: 1273 1274<pre> 1275 return (f(x)) -- results adjusted to 1 1276 return 2 * f(x) 1277 return x, f(x) -- additional results 1278 f(x); return -- results discarded 1279 return x or f(x) -- results adjusted to 1 1280</pre> 1281 1282 1283 1284 1285<h3>2.5.9 - <a name="2.5.9">Function Definitions</a></h3> 1286 1287<p> 1288The syntax for function definition is 1289 1290<pre> 1291 function ::= <b>function</b> funcbody 1292 funcbody ::= `<b>(</b>´ [parlist] `<b>)</b>´ block <b>end</b> 1293</pre> 1294 1295<p> 1296The following syntactic sugar simplifies function definitions: 1297 1298<pre> 1299 stat ::= <b>function</b> funcname funcbody 1300 stat ::= <b>local</b> <b>function</b> Name funcbody 1301 funcname ::= Name {`<b>.</b>´ Name} [`<b>:</b>´ Name] 1302</pre><p> 1303The statement 1304 1305<pre> 1306 function f () <em>body</em> end 1307</pre><p> 1308translates to 1309 1310<pre> 1311 f = function () <em>body</em> end 1312</pre><p> 1313The statement 1314 1315<pre> 1316 function t.a.b.c.f () <em>body</em> end 1317</pre><p> 1318translates to 1319 1320<pre> 1321 t.a.b.c.f = function () <em>body</em> end 1322</pre><p> 1323The statement 1324 1325<pre> 1326 local function f () <em>body</em> end 1327</pre><p> 1328translates to 1329 1330<pre> 1331 local f; f = function () <em>body</em> end 1332</pre><p> 1333<em>not</em> to 1334 1335<pre> 1336 local f = function () <em>body</em> end 1337</pre><p> 1338(This only makes a difference when the body of the function 1339contains references to <code>f</code>.) 1340 1341 1342<p> 1343A function definition is an executable expression, 1344whose value has type <em>function</em>. 1345When Lua pre-compiles a chunk, 1346all its function bodies are pre-compiled too. 1347Then, whenever Lua executes the function definition, 1348the function is <em>instantiated</em> (or <em>closed</em>). 1349This function instance (or <em>closure</em>) 1350is the final value of the expression. 1351Different instances of the same function 1352can refer to different external local variables 1353and can have different environment tables. 1354 1355 1356<p> 1357Parameters act as local variables that are 1358initialized with the argument values: 1359 1360<pre> 1361 parlist ::= namelist [`<b>,</b>´ `<b>...</b>´] | `<b>...</b>´ 1362</pre><p> 1363When a function is called, 1364the list of arguments is adjusted to 1365the length of the list of parameters, 1366unless the function is a variadic or <em>vararg function</em>, 1367which is 1368indicated by three dots ('<code>...</code>') at the end of its parameter list. 1369A vararg function does not adjust its argument list; 1370instead, it collects all extra arguments and supplies them 1371to the function through a <em>vararg expression</em>, 1372which is also written as three dots. 1373The value of this expression is a list of all actual extra arguments, 1374similar to a function with multiple results. 1375If a vararg expression is used inside another expression 1376or in the middle of a list of expressions, 1377then its return list is adjusted to one element. 1378If the expression is used as the last element of a list of expressions, 1379then no adjustment is made 1380(unless that last expression is enclosed in parentheses). 1381 1382 1383<p> 1384As an example, consider the following definitions: 1385 1386<pre> 1387 function f(a, b) end 1388 function g(a, b, ...) end 1389 function r() return 1,2,3 end 1390</pre><p> 1391Then, we have the following mapping from arguments to parameters and 1392to the vararg expression: 1393 1394<pre> 1395 CALL PARAMETERS 1396 1397 f(3) a=3, b=nil 1398 f(3, 4) a=3, b=4 1399 f(3, 4, 5) a=3, b=4 1400 f(r(), 10) a=1, b=10 1401 f(r()) a=1, b=2 1402 1403 g(3) a=3, b=nil, ... --> (nothing) 1404 g(3, 4) a=3, b=4, ... --> (nothing) 1405 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8 1406 g(5, r()) a=5, b=1, ... --> 2 3 1407</pre> 1408 1409<p> 1410Results are returned using the <b>return</b> statement (see <a href="#2.4.4">§2.4.4</a>). 1411If control reaches the end of a function 1412without encountering a <b>return</b> statement, 1413then the function returns with no results. 1414 1415 1416<p> 1417The <em>colon</em> syntax 1418is used for defining <em>methods</em>, 1419that is, functions that have an implicit extra parameter <code>self</code>. 1420Thus, the statement 1421 1422<pre> 1423 function t.a.b.c:f (<em>params</em>) <em>body</em> end 1424</pre><p> 1425is syntactic sugar for 1426 1427<pre> 1428 t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end 1429</pre> 1430 1431 1432 1433 1434 1435 1436<h2>2.6 - <a name="2.6">Visibility Rules</a></h2> 1437 1438<p> 1439 1440Lua is a lexically scoped language. 1441The scope of variables begins at the first statement <em>after</em> 1442their declaration and lasts until the end of the innermost block that 1443includes the declaration. 1444Consider the following example: 1445 1446<pre> 1447 x = 10 -- global variable 1448 do -- new block 1449 local x = x -- new 'x', with value 10 1450 print(x) --> 10 1451 x = x+1 1452 do -- another block 1453 local x = x+1 -- another 'x' 1454 print(x) --> 12 1455 end 1456 print(x) --> 11 1457 end 1458 print(x) --> 10 (the global one) 1459</pre> 1460 1461<p> 1462Notice that, in a declaration like <code>local x = x</code>, 1463the new <code>x</code> being declared is not in scope yet, 1464and so the second <code>x</code> refers to the outside variable. 1465 1466 1467<p> 1468Because of the lexical scoping rules, 1469local variables can be freely accessed by functions 1470defined inside their scope. 1471A local variable used by an inner function is called 1472an <em>upvalue</em>, or <em>external local variable</em>, 1473inside the inner function. 1474 1475 1476<p> 1477Notice that each execution of a <b>local</b> statement 1478defines new local variables. 1479Consider the following example: 1480 1481<pre> 1482 a = {} 1483 local x = 20 1484 for i=1,10 do 1485 local y = 0 1486 a[i] = function () y=y+1; return x+y end 1487 end 1488</pre><p> 1489The loop creates ten closures 1490(that is, ten instances of the anonymous function). 1491Each of these closures uses a different <code>y</code> variable, 1492while all of them share the same <code>x</code>. 1493 1494 1495 1496 1497 1498<h2>2.7 - <a name="2.7">Error Handling</a></h2> 1499 1500<p> 1501Because Lua is an embedded extension language, 1502all Lua actions start from C code in the host program 1503calling a function from the Lua library (see <a href="#lua_pcall"><code>lua_pcall</code></a>). 1504Whenever an error occurs during Lua compilation or execution, 1505control returns to C, 1506which can take appropriate measures 1507(such as printing an error message). 1508 1509 1510<p> 1511Lua code can explicitly generate an error by calling the 1512<a href="#pdf-error"><code>error</code></a> function. 1513If you need to catch errors in Lua, 1514you can use the <a href="#pdf-pcall"><code>pcall</code></a> function. 1515 1516 1517 1518 1519 1520<h2>2.8 - <a name="2.8">Metatables</a></h2> 1521 1522<p> 1523Every value in Lua can have a <em>metatable</em>. 1524This <em>metatable</em> is an ordinary Lua table 1525that defines the behavior of the original value 1526under certain special operations. 1527You can change several aspects of the behavior 1528of operations over a value by setting specific fields in its metatable. 1529For instance, when a non-numeric value is the operand of an addition, 1530Lua checks for a function in the field <code>"__add"</code> in its metatable. 1531If it finds one, 1532Lua calls this function to perform the addition. 1533 1534 1535<p> 1536We call the keys in a metatable <em>events</em> 1537and the values <em>metamethods</em>. 1538In the previous example, the event is <code>"add"</code> 1539and the metamethod is the function that performs the addition. 1540 1541 1542<p> 1543You can query the metatable of any value 1544through the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function. 1545 1546 1547<p> 1548You can replace the metatable of tables 1549through the <a href="#pdf-setmetatable"><code>setmetatable</code></a> 1550function. 1551You cannot change the metatable of other types from Lua 1552(except by using the debug library); 1553you must use the C API for that. 1554 1555 1556<p> 1557Tables and full userdata have individual metatables 1558(although multiple tables and userdata can share their metatables). 1559Values of all other types share one single metatable per type; 1560that is, there is one single metatable for all numbers, 1561one for all strings, etc. 1562 1563 1564<p> 1565A metatable controls how an object behaves in arithmetic operations, 1566order comparisons, concatenation, length operation, and indexing. 1567A metatable also can define a function to be called when a userdata 1568is garbage collected. 1569For each of these operations Lua associates a specific key 1570called an <em>event</em>. 1571When Lua performs one of these operations over a value, 1572it checks whether this value has a metatable with the corresponding event. 1573If so, the value associated with that key (the metamethod) 1574controls how Lua will perform the operation. 1575 1576 1577<p> 1578Metatables control the operations listed next. 1579Each operation is identified by its corresponding name. 1580The key for each operation is a string with its name prefixed by 1581two underscores, '<code>__</code>'; 1582for instance, the key for operation "add" is the 1583string <code>"__add"</code>. 1584The semantics of these operations is better explained by a Lua function 1585describing how the interpreter executes the operation. 1586 1587 1588<p> 1589The code shown here in Lua is only illustrative; 1590the real behavior is hard coded in the interpreter 1591and it is much more efficient than this simulation. 1592All functions used in these descriptions 1593(<a href="#pdf-rawget"><code>rawget</code></a>, <a href="#pdf-tonumber"><code>tonumber</code></a>, etc.) 1594are described in <a href="#5.1">§5.1</a>. 1595In particular, to retrieve the metamethod of a given object, 1596we use the expression 1597 1598<pre> 1599 metatable(obj)[event] 1600</pre><p> 1601This should be read as 1602 1603<pre> 1604 rawget(getmetatable(obj) or {}, event) 1605</pre><p> 1606 1607That is, the access to a metamethod does not invoke other metamethods, 1608and the access to objects with no metatables does not fail 1609(it simply results in <b>nil</b>). 1610 1611 1612 1613<ul> 1614 1615<li><b>"add":</b> 1616the <code>+</code> operation. 1617 1618 1619 1620<p> 1621The function <code>getbinhandler</code> below defines how Lua chooses a handler 1622for a binary operation. 1623First, Lua tries the first operand. 1624If its type does not define a handler for the operation, 1625then Lua tries the second operand. 1626 1627<pre> 1628 function getbinhandler (op1, op2, event) 1629 return metatable(op1)[event] or metatable(op2)[event] 1630 end 1631</pre><p> 1632By using this function, 1633the behavior of the <code>op1 + op2</code> is 1634 1635<pre> 1636 function add_event (op1, op2) 1637 local o1, o2 = tonumber(op1), tonumber(op2) 1638 if o1 and o2 then -- both operands are numeric? 1639 return o1 + o2 -- '+' here is the primitive 'add' 1640 else -- at least one of the operands is not numeric 1641 local h = getbinhandler(op1, op2, "__add") 1642 if h then 1643 -- call the handler with both operands 1644 return (h(op1, op2)) 1645 else -- no handler available: default behavior 1646 error(···) 1647 end 1648 end 1649 end 1650</pre><p> 1651</li> 1652 1653<li><b>"sub":</b> 1654the <code>-</code> operation. 1655 1656Behavior similar to the "add" operation. 1657</li> 1658 1659<li><b>"mul":</b> 1660the <code>*</code> operation. 1661 1662Behavior similar to the "add" operation. 1663</li> 1664 1665<li><b>"div":</b> 1666the <code>/</code> operation. 1667 1668Behavior similar to the "add" operation. 1669</li> 1670 1671<li><b>"mod":</b> 1672the <code>%</code> operation. 1673 1674Behavior similar to the "add" operation, 1675with the operation 1676<code>o1 - floor(o1/o2)*o2</code> as the primitive operation. 1677</li> 1678 1679<li><b>"pow":</b> 1680the <code>^</code> (exponentiation) operation. 1681 1682Behavior similar to the "add" operation, 1683with the function <code>pow</code> (from the C math library) 1684as the primitive operation. 1685</li> 1686 1687<li><b>"unm":</b> 1688the unary <code>-</code> operation. 1689 1690 1691<pre> 1692 function unm_event (op) 1693 local o = tonumber(op) 1694 if o then -- operand is numeric? 1695 return -o -- '-' here is the primitive 'unm' 1696 else -- the operand is not numeric. 1697 -- Try to get a handler from the operand 1698 local h = metatable(op).__unm 1699 if h then 1700 -- call the handler with the operand 1701 return (h(op)) 1702 else -- no handler available: default behavior 1703 error(···) 1704 end 1705 end 1706 end 1707</pre><p> 1708</li> 1709 1710<li><b>"concat":</b> 1711the <code>..</code> (concatenation) operation. 1712 1713 1714<pre> 1715 function concat_event (op1, op2) 1716 if (type(op1) == "string" or type(op1) == "number") and 1717 (type(op2) == "string" or type(op2) == "number") then 1718 return op1 .. op2 -- primitive string concatenation 1719 else 1720 local h = getbinhandler(op1, op2, "__concat") 1721 if h then 1722 return (h(op1, op2)) 1723 else 1724 error(···) 1725 end 1726 end 1727 end 1728</pre><p> 1729</li> 1730 1731<li><b>"len":</b> 1732the <code>#</code> operation. 1733 1734 1735<pre> 1736 function len_event (op) 1737 if type(op) == "string" then 1738 return strlen(op) -- primitive string length 1739 elseif type(op) == "table" then 1740 return #op -- primitive table length 1741 else 1742 local h = metatable(op).__len 1743 if h then 1744 -- call the handler with the operand 1745 return (h(op)) 1746 else -- no handler available: default behavior 1747 error(···) 1748 end 1749 end 1750 end 1751</pre><p> 1752See <a href="#2.5.5">§2.5.5</a> for a description of the length of a table. 1753</li> 1754 1755<li><b>"eq":</b> 1756the <code>==</code> operation. 1757 1758The function <code>getcomphandler</code> defines how Lua chooses a metamethod 1759for comparison operators. 1760A metamethod only is selected when both objects 1761being compared have the same type 1762and the same metamethod for the selected operation. 1763 1764<pre> 1765 function getcomphandler (op1, op2, event) 1766 if type(op1) ~= type(op2) then return nil end 1767 local mm1 = metatable(op1)[event] 1768 local mm2 = metatable(op2)[event] 1769 if mm1 == mm2 then return mm1 else return nil end 1770 end 1771</pre><p> 1772The "eq" event is defined as follows: 1773 1774<pre> 1775 function eq_event (op1, op2) 1776 if type(op1) ~= type(op2) then -- different types? 1777 return false -- different objects 1778 end 1779 if op1 == op2 then -- primitive equal? 1780 return true -- objects are equal 1781 end 1782 -- try metamethod 1783 local h = getcomphandler(op1, op2, "__eq") 1784 if h then 1785 return (h(op1, op2)) 1786 else 1787 return false 1788 end 1789 end 1790</pre><p> 1791<code>a ~= b</code> is equivalent to <code>not (a == b)</code>. 1792</li> 1793 1794<li><b>"lt":</b> 1795the <code><</code> operation. 1796 1797 1798<pre> 1799 function lt_event (op1, op2) 1800 if type(op1) == "number" and type(op2) == "number" then 1801 return op1 < op2 -- numeric comparison 1802 elseif type(op1) == "string" and type(op2) == "string" then 1803 return op1 < op2 -- lexicographic comparison 1804 else 1805 local h = getcomphandler(op1, op2, "__lt") 1806 if h then 1807 return (h(op1, op2)) 1808 else 1809 error(···) 1810 end 1811 end 1812 end 1813</pre><p> 1814<code>a > b</code> is equivalent to <code>b < a</code>. 1815</li> 1816 1817<li><b>"le":</b> 1818the <code><=</code> operation. 1819 1820 1821<pre> 1822 function le_event (op1, op2) 1823 if type(op1) == "number" and type(op2) == "number" then 1824 return op1 <= op2 -- numeric comparison 1825 elseif type(op1) == "string" and type(op2) == "string" then 1826 return op1 <= op2 -- lexicographic comparison 1827 else 1828 local h = getcomphandler(op1, op2, "__le") 1829 if h then 1830 return (h(op1, op2)) 1831 else 1832 h = getcomphandler(op1, op2, "__lt") 1833 if h then 1834 return not h(op2, op1) 1835 else 1836 error(···) 1837 end 1838 end 1839 end 1840 end 1841</pre><p> 1842<code>a >= b</code> is equivalent to <code>b <= a</code>. 1843Note that, in the absence of a "le" metamethod, 1844Lua tries the "lt", assuming that <code>a <= b</code> is 1845equivalent to <code>not (b < a)</code>. 1846</li> 1847 1848<li><b>"index":</b> 1849The indexing access <code>table[key]</code>. 1850 1851 1852<pre> 1853 function gettable_event (table, key) 1854 local h 1855 if type(table) == "table" then 1856 local v = rawget(table, key) 1857 if v ~= nil then return v end 1858 h = metatable(table).__index 1859 if h == nil then return nil end 1860 else 1861 h = metatable(table).__index 1862 if h == nil then 1863 error(···) 1864 end 1865 end 1866 if type(h) == "function" then 1867 return (h(table, key)) -- call the handler 1868 else return h[key] -- or repeat operation on it 1869 end 1870 end 1871</pre><p> 1872</li> 1873 1874<li><b>"newindex":</b> 1875The indexing assignment <code>table[key] = value</code>. 1876 1877 1878<pre> 1879 function settable_event (table, key, value) 1880 local h 1881 if type(table) == "table" then 1882 local v = rawget(table, key) 1883 if v ~= nil then rawset(table, key, value); return end 1884 h = metatable(table).__newindex 1885 if h == nil then rawset(table, key, value); return end 1886 else 1887 h = metatable(table).__newindex 1888 if h == nil then 1889 error(···) 1890 end 1891 end 1892 if type(h) == "function" then 1893 h(table, key,value) -- call the handler 1894 else h[key] = value -- or repeat operation on it 1895 end 1896 end 1897</pre><p> 1898</li> 1899 1900<li><b>"call":</b> 1901called when Lua calls a value. 1902 1903 1904<pre> 1905 function function_event (func, ...) 1906 if type(func) == "function" then 1907 return func(...) -- primitive call 1908 else 1909 local h = metatable(func).__call 1910 if h then 1911 return h(func, ...) 1912 else 1913 error(···) 1914 end 1915 end 1916 end 1917</pre><p> 1918</li> 1919 1920</ul> 1921 1922 1923 1924 1925<h2>2.9 - <a name="2.9">Environments</a></h2> 1926 1927<p> 1928Besides metatables, 1929objects of types thread, function, and userdata 1930have another table associated with them, 1931called their <em>environment</em>. 1932Like metatables, environments are regular tables and 1933multiple objects can share the same environment. 1934 1935 1936<p> 1937Threads are created sharing the environment of the creating thread. 1938Userdata and C functions are created sharing the environment 1939of the creating C function. 1940Non-nested Lua functions 1941(created by <a href="#pdf-loadfile"><code>loadfile</code></a>, <a href="#pdf-loadstring"><code>loadstring</code></a> or <a href="#pdf-load"><code>load</code></a>) 1942are created sharing the environment of the creating thread. 1943Nested Lua functions are created sharing the environment of 1944the creating Lua function. 1945 1946 1947<p> 1948Environments associated with userdata have no meaning for Lua. 1949It is only a convenience feature for programmers to associate a table to 1950a userdata. 1951 1952 1953<p> 1954Environments associated with threads are called 1955<em>global environments</em>. 1956They are used as the default environment for threads and 1957non-nested Lua functions created by the thread 1958and can be directly accessed by C code (see <a href="#3.3">§3.3</a>). 1959 1960 1961<p> 1962The environment associated with a C function can be directly 1963accessed by C code (see <a href="#3.3">§3.3</a>). 1964It is used as the default environment for other C functions 1965and userdata created by the function. 1966 1967 1968<p> 1969Environments associated with Lua functions are used to resolve 1970all accesses to global variables within the function (see <a href="#2.3">§2.3</a>). 1971They are used as the default environment for nested Lua functions 1972created by the function. 1973 1974 1975<p> 1976You can change the environment of a Lua function or the 1977running thread by calling <a href="#pdf-setfenv"><code>setfenv</code></a>. 1978You can get the environment of a Lua function or the running thread 1979by calling <a href="#pdf-getfenv"><code>getfenv</code></a>. 1980To manipulate the environment of other objects 1981(userdata, C functions, other threads) you must 1982use the C API. 1983 1984 1985 1986 1987 1988<h2>2.10 - <a name="2.10">Garbage Collection</a></h2> 1989 1990<p> 1991Lua performs automatic memory management. 1992This means that 1993you have to worry neither about allocating memory for new objects 1994nor about freeing it when the objects are no longer needed. 1995Lua manages memory automatically by running 1996a <em>garbage collector</em> from time to time 1997to collect all <em>dead objects</em> 1998(that is, objects that are no longer accessible from Lua). 1999All memory used by Lua is subject to automatic management: 2000tables, userdata, functions, threads, strings, etc. 2001 2002 2003<p> 2004Lua implements an incremental mark-and-sweep collector. 2005It uses two numbers to control its garbage-collection cycles: 2006the <em>garbage-collector pause</em> and 2007the <em>garbage-collector step multiplier</em>. 2008Both use percentage points as units 2009(so that a value of 100 means an internal value of 1). 2010 2011 2012<p> 2013The garbage-collector pause 2014controls how long the collector waits before starting a new cycle. 2015Larger values make the collector less aggressive. 2016Values smaller than 100 mean the collector will not wait to 2017start a new cycle. 2018A value of 200 means that the collector waits for the total memory in use 2019to double before starting a new cycle. 2020 2021 2022<p> 2023The step multiplier 2024controls the relative speed of the collector relative to 2025memory allocation. 2026Larger values make the collector more aggressive but also increase 2027the size of each incremental step. 2028Values smaller than 100 make the collector too slow and 2029can result in the collector never finishing a cycle. 2030The default, 200, means that the collector runs at "twice" 2031the speed of memory allocation. 2032 2033 2034<p> 2035You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C 2036or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua. 2037With these functions you can also control 2038the collector directly (e.g., stop and restart it). 2039 2040 2041 2042<h3>2.10.1 - <a name="2.10.1">Garbage-Collection Metamethods</a></h3> 2043 2044<p> 2045Using the C API, 2046you can set garbage-collector metamethods for userdata (see <a href="#2.8">§2.8</a>). 2047These metamethods are also called <em>finalizers</em>. 2048Finalizers allow you to coordinate Lua's garbage collection 2049with external resource management 2050(such as closing files, network or database connections, 2051or freeing your own memory). 2052 2053 2054<p> 2055Garbage userdata with a field <code>__gc</code> in their metatables are not 2056collected immediately by the garbage collector. 2057Instead, Lua puts them in a list. 2058After the collection, 2059Lua does the equivalent of the following function 2060for each userdata in that list: 2061 2062<pre> 2063 function gc_event (udata) 2064 local h = metatable(udata).__gc 2065 if h then 2066 h(udata) 2067 end 2068 end 2069</pre> 2070 2071<p> 2072At the end of each garbage-collection cycle, 2073the finalizers for userdata are called in <em>reverse</em> 2074order of their creation, 2075among those collected in that cycle. 2076That is, the first finalizer to be called is the one associated 2077with the userdata created last in the program. 2078The userdata itself is freed only in the next garbage-collection cycle. 2079 2080 2081 2082 2083 2084<h3>2.10.2 - <a name="2.10.2">Weak Tables</a></h3> 2085 2086<p> 2087A <em>weak table</em> is a table whose elements are 2088<em>weak references</em>. 2089A weak reference is ignored by the garbage collector. 2090In other words, 2091if the only references to an object are weak references, 2092then the garbage collector will collect this object. 2093 2094 2095<p> 2096A weak table can have weak keys, weak values, or both. 2097A table with weak keys allows the collection of its keys, 2098but prevents the collection of its values. 2099A table with both weak keys and weak values allows the collection of 2100both keys and values. 2101In any case, if either the key or the value is collected, 2102the whole pair is removed from the table. 2103The weakness of a table is controlled by the 2104<code>__mode</code> field of its metatable. 2105If the <code>__mode</code> field is a string containing the character '<code>k</code>', 2106the keys in the table are weak. 2107If <code>__mode</code> contains '<code>v</code>', 2108the values in the table are weak. 2109 2110 2111<p> 2112After you use a table as a metatable, 2113you should not change the value of its <code>__mode</code> field. 2114Otherwise, the weak behavior of the tables controlled by this 2115metatable is undefined. 2116 2117 2118 2119 2120 2121 2122 2123<h2>2.11 - <a name="2.11">Coroutines</a></h2> 2124 2125<p> 2126Lua supports coroutines, 2127also called <em>collaborative multithreading</em>. 2128A coroutine in Lua represents an independent thread of execution. 2129Unlike threads in multithread systems, however, 2130a coroutine only suspends its execution by explicitly calling 2131a yield function. 2132 2133 2134<p> 2135You create a coroutine with a call to <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>. 2136Its sole argument is a function 2137that is the main function of the coroutine. 2138The <code>create</code> function only creates a new coroutine and 2139returns a handle to it (an object of type <em>thread</em>); 2140it does not start the coroutine execution. 2141 2142 2143<p> 2144When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 2145passing as its first argument 2146a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>, 2147the coroutine starts its execution, 2148at the first line of its main function. 2149Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed on 2150to the coroutine main function. 2151After the coroutine starts running, 2152it runs until it terminates or <em>yields</em>. 2153 2154 2155<p> 2156A coroutine can terminate its execution in two ways: 2157normally, when its main function returns 2158(explicitly or implicitly, after the last instruction); 2159and abnormally, if there is an unprotected error. 2160In the first case, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>, 2161plus any values returned by the coroutine main function. 2162In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b> 2163plus an error message. 2164 2165 2166<p> 2167A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>. 2168When a coroutine yields, 2169the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately, 2170even if the yield happens inside nested function calls 2171(that is, not in the main function, 2172but in a function directly or indirectly called by the main function). 2173In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>, 2174plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>. 2175The next time you resume the same coroutine, 2176it continues its execution from the point where it yielded, 2177with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra 2178arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 2179 2180 2181<p> 2182Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>, 2183the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine, 2184but instead of returning the coroutine itself, 2185it returns a function that, when called, resumes the coroutine. 2186Any arguments passed to this function 2187go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 2188<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 2189except the first one (the boolean error code). 2190Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 2191<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors; 2192any error is propagated to the caller. 2193 2194 2195<p> 2196As an example, 2197consider the following code: 2198 2199<pre> 2200 function foo (a) 2201 print("foo", a) 2202 return coroutine.yield(2*a) 2203 end 2204 2205 co = coroutine.create(function (a,b) 2206 print("co-body", a, b) 2207 local r = foo(a+1) 2208 print("co-body", r) 2209 local r, s = coroutine.yield(a+b, a-b) 2210 print("co-body", r, s) 2211 return b, "end" 2212 end) 2213 2214 print("main", coroutine.resume(co, 1, 10)) 2215 print("main", coroutine.resume(co, "r")) 2216 print("main", coroutine.resume(co, "x", "y")) 2217 print("main", coroutine.resume(co, "x", "y")) 2218</pre><p> 2219When you run it, it produces the following output: 2220 2221<pre> 2222 co-body 1 10 2223 foo 2 2224 2225 main true 4 2226 co-body r 2227 main true 11 -9 2228 co-body x y 2229 main true 10 end 2230 main false cannot resume dead coroutine 2231</pre> 2232 2233 2234 2235 2236<h1>3 - <a name="3">The Application Program Interface</a></h1> 2237 2238<p> 2239 2240This section describes the C API for Lua, that is, 2241the set of C functions available to the host program to communicate 2242with Lua. 2243All API functions and related types and constants 2244are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>. 2245 2246 2247<p> 2248Even when we use the term "function", 2249any facility in the API may be provided as a macro instead. 2250All such macros use each of their arguments exactly once 2251(except for the first argument, which is always a Lua state), 2252and so do not generate any hidden side-effects. 2253 2254 2255<p> 2256As in most C libraries, 2257the Lua API functions do not check their arguments for validity or consistency. 2258However, you can change this behavior by compiling Lua 2259with a proper definition for the macro <a name="pdf-luai_apicheck"><code>luai_apicheck</code></a>, 2260in file <code>luaconf.h</code>. 2261 2262 2263 2264<h2>3.1 - <a name="3.1">The Stack</a></h2> 2265 2266<p> 2267Lua uses a <em>virtual stack</em> to pass values to and from C. 2268Each element in this stack represents a Lua value 2269(<b>nil</b>, number, string, etc.). 2270 2271 2272<p> 2273Whenever Lua calls C, the called function gets a new stack, 2274which is independent of previous stacks and of stacks of 2275C functions that are still active. 2276This stack initially contains any arguments to the C function 2277and it is where the C function pushes its results 2278to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 2279 2280 2281<p> 2282For convenience, 2283most query operations in the API do not follow a strict stack discipline. 2284Instead, they can refer to any element in the stack 2285by using an <em>index</em>: 2286A positive index represents an <em>absolute</em> stack position 2287(starting at 1); 2288a negative index represents an <em>offset</em> relative to the top of the stack. 2289More specifically, if the stack has <em>n</em> elements, 2290then index 1 represents the first element 2291(that is, the element that was pushed onto the stack first) 2292and 2293index <em>n</em> represents the last element; 2294index -1 also represents the last element 2295(that is, the element at the top) 2296and index <em>-n</em> represents the first element. 2297We say that an index is <em>valid</em> 2298if it lies between 1 and the stack top 2299(that is, if <code>1 ≤ abs(index) ≤ top</code>). 2300 2301 2302 2303 2304 2305 2306<h2>3.2 - <a name="3.2">Stack Size</a></h2> 2307 2308<p> 2309When you interact with Lua API, 2310you are responsible for ensuring consistency. 2311In particular, 2312<em>you are responsible for controlling stack overflow</em>. 2313You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a> 2314to grow the stack size. 2315 2316 2317<p> 2318Whenever Lua calls C, 2319it ensures that at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> stack positions are available. 2320<code>LUA_MINSTACK</code> is defined as 20, 2321so that usually you do not have to worry about stack space 2322unless your code has loops pushing elements onto the stack. 2323 2324 2325<p> 2326Most query functions accept as indices any value inside the 2327available stack space, that is, indices up to the maximum stack size 2328you have set through <a href="#lua_checkstack"><code>lua_checkstack</code></a>. 2329Such indices are called <em>acceptable indices</em>. 2330More formally, we define an <em>acceptable index</em> 2331as follows: 2332 2333<pre> 2334 (index < 0 && abs(index) <= top) || 2335 (index > 0 && index <= stackspace) 2336</pre><p> 2337Note that 0 is never an acceptable index. 2338 2339 2340 2341 2342 2343<h2>3.3 - <a name="3.3">Pseudo-Indices</a></h2> 2344 2345<p> 2346Unless otherwise noted, 2347any function that accepts valid indices can also be called with 2348<em>pseudo-indices</em>, 2349which represent some Lua values that are accessible to C code 2350but which are not in the stack. 2351Pseudo-indices are used to access the thread environment, 2352the function environment, 2353the registry, 2354and the upvalues of a C function (see <a href="#3.4">§3.4</a>). 2355 2356 2357<p> 2358The thread environment (where global variables live) is 2359always at pseudo-index <a name="pdf-LUA_GLOBALSINDEX"><code>LUA_GLOBALSINDEX</code></a>. 2360The environment of the running C function is always 2361at pseudo-index <a name="pdf-LUA_ENVIRONINDEX"><code>LUA_ENVIRONINDEX</code></a>. 2362 2363 2364<p> 2365To access and change the value of global variables, 2366you can use regular table operations over an environment table. 2367For instance, to access the value of a global variable, do 2368 2369<pre> 2370 lua_getfield(L, LUA_GLOBALSINDEX, varname); 2371</pre> 2372 2373 2374 2375 2376<h2>3.4 - <a name="3.4">C Closures</a></h2> 2377 2378<p> 2379When a C function is created, 2380it is possible to associate some values with it, 2381thus creating a <em>C closure</em>; 2382these values are called <em>upvalues</em> and are 2383accessible to the function whenever it is called 2384(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>). 2385 2386 2387<p> 2388Whenever a C function is called, 2389its upvalues are located at specific pseudo-indices. 2390These pseudo-indices are produced by the macro 2391<a name="lua_upvalueindex"><code>lua_upvalueindex</code></a>. 2392The first value associated with a function is at position 2393<code>lua_upvalueindex(1)</code>, and so on. 2394Any access to <code>lua_upvalueindex(<em>n</em>)</code>, 2395where <em>n</em> is greater than the number of upvalues of the 2396current function (but not greater than 256), 2397produces an acceptable (but invalid) index. 2398 2399 2400 2401 2402 2403<h2>3.5 - <a name="3.5">Registry</a></h2> 2404 2405<p> 2406Lua provides a <em>registry</em>, 2407a pre-defined table that can be used by any C code to 2408store whatever Lua value it needs to store. 2409This table is always located at pseudo-index 2410<a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>. 2411Any C library can store data into this table, 2412but it should take care to choose keys different from those used 2413by other libraries, to avoid collisions. 2414Typically, you should use as key a string containing your library name 2415or a light userdata with the address of a C object in your code. 2416 2417 2418<p> 2419The integer keys in the registry are used by the reference mechanism, 2420implemented by the auxiliary library, 2421and therefore should not be used for other purposes. 2422 2423 2424 2425 2426 2427<h2>3.6 - <a name="3.6">Error Handling in C</a></h2> 2428 2429<p> 2430Internally, Lua uses the C <code>longjmp</code> facility to handle errors. 2431(You can also choose to use exceptions if you use C++; 2432see file <code>luaconf.h</code>.) 2433When Lua faces any error 2434(such as memory allocation errors, type errors, syntax errors, 2435and runtime errors) 2436it <em>raises</em> an error; 2437that is, it does a long jump. 2438A <em>protected environment</em> uses <code>setjmp</code> 2439to set a recover point; 2440any error jumps to the most recent active recover point. 2441 2442 2443<p> 2444Most functions in the API can throw an error, 2445for instance due to a memory allocation error. 2446The documentation for each function indicates whether 2447it can throw errors. 2448 2449 2450<p> 2451Inside a C function you can throw an error by calling <a href="#lua_error"><code>lua_error</code></a>. 2452 2453 2454 2455 2456 2457<h2>3.7 - <a name="3.7">Functions and Types</a></h2> 2458 2459<p> 2460Here we list all functions and types from the C API in 2461alphabetical order. 2462Each function has an indicator like this: 2463<span class="apii">[-o, +p, <em>x</em>]</span> 2464 2465 2466<p> 2467The first field, <code>o</code>, 2468is how many elements the function pops from the stack. 2469The second field, <code>p</code>, 2470is how many elements the function pushes onto the stack. 2471(Any function always pushes its results after popping its arguments.) 2472A field in the form <code>x|y</code> means the function can push (or pop) 2473<code>x</code> or <code>y</code> elements, 2474depending on the situation; 2475an interrogation mark '<code>?</code>' means that 2476we cannot know how many elements the function pops/pushes 2477by looking only at its arguments 2478(e.g., they may depend on what is on the stack). 2479The third field, <code>x</code>, 2480tells whether the function may throw errors: 2481'<code>-</code>' means the function never throws any error; 2482'<code>m</code>' means the function may throw an error 2483only due to not enough memory; 2484'<code>e</code>' means the function may throw other kinds of errors; 2485'<code>v</code>' means the function may throw an error on purpose. 2486 2487 2488 2489<hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3> 2490<pre>typedef void * (*lua_Alloc) (void *ud, 2491 void *ptr, 2492 size_t osize, 2493 size_t nsize);</pre> 2494 2495<p> 2496The type of the memory-allocation function used by Lua states. 2497The allocator function must provide a 2498functionality similar to <code>realloc</code>, 2499but not exactly the same. 2500Its arguments are 2501<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>; 2502<code>ptr</code>, a pointer to the block being allocated/reallocated/freed; 2503<code>osize</code>, the original size of the block; 2504<code>nsize</code>, the new size of the block. 2505<code>ptr</code> is <code>NULL</code> if and only if <code>osize</code> is zero. 2506When <code>nsize</code> is zero, the allocator must return <code>NULL</code>; 2507if <code>osize</code> is not zero, 2508it should free the block pointed to by <code>ptr</code>. 2509When <code>nsize</code> is not zero, the allocator returns <code>NULL</code> 2510if and only if it cannot fill the request. 2511When <code>nsize</code> is not zero and <code>osize</code> is zero, 2512the allocator should behave like <code>malloc</code>. 2513When <code>nsize</code> and <code>osize</code> are not zero, 2514the allocator behaves like <code>realloc</code>. 2515Lua assumes that the allocator never fails when 2516<code>osize >= nsize</code>. 2517 2518 2519<p> 2520Here is a simple implementation for the allocator function. 2521It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>. 2522 2523<pre> 2524 static void *l_alloc (void *ud, void *ptr, size_t osize, 2525 size_t nsize) { 2526 (void)ud; (void)osize; /* not used */ 2527 if (nsize == 0) { 2528 free(ptr); 2529 return NULL; 2530 } 2531 else 2532 return realloc(ptr, nsize); 2533 } 2534</pre><p> 2535This code assumes 2536that <code>free(NULL)</code> has no effect and that 2537<code>realloc(NULL, size)</code> is equivalent to <code>malloc(size)</code>. 2538ANSI C ensures both behaviors. 2539 2540 2541 2542 2543 2544<hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p> 2545<span class="apii">[-0, +0, <em>-</em>]</span> 2546<pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre> 2547 2548<p> 2549Sets a new panic function and returns the old one. 2550 2551 2552<p> 2553If an error happens outside any protected environment, 2554Lua calls a <em>panic function</em> 2555and then calls <code>exit(EXIT_FAILURE)</code>, 2556thus exiting the host application. 2557Your panic function can avoid this exit by 2558never returning (e.g., doing a long jump). 2559 2560 2561<p> 2562The panic function can access the error message at the top of the stack. 2563 2564 2565 2566 2567 2568<hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p> 2569<span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span> 2570<pre>void lua_call (lua_State *L, int nargs, int nresults);</pre> 2571 2572<p> 2573Calls a function. 2574 2575 2576<p> 2577To call a function you must use the following protocol: 2578first, the function to be called is pushed onto the stack; 2579then, the arguments to the function are pushed 2580in direct order; 2581that is, the first argument is pushed first. 2582Finally you call <a href="#lua_call"><code>lua_call</code></a>; 2583<code>nargs</code> is the number of arguments that you pushed onto the stack. 2584All arguments and the function value are popped from the stack 2585when the function is called. 2586The function results are pushed onto the stack when the function returns. 2587The number of results is adjusted to <code>nresults</code>, 2588unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>. 2589In this case, <em>all</em> results from the function are pushed. 2590Lua takes care that the returned values fit into the stack space. 2591The function results are pushed onto the stack in direct order 2592(the first result is pushed first), 2593so that after the call the last result is on the top of the stack. 2594 2595 2596<p> 2597Any error inside the called function is propagated upwards 2598(with a <code>longjmp</code>). 2599 2600 2601<p> 2602The following example shows how the host program can do the 2603equivalent to this Lua code: 2604 2605<pre> 2606 a = f("how", t.x, 14) 2607</pre><p> 2608Here it is in C: 2609 2610<pre> 2611 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* function to be called */ 2612 lua_pushstring(L, "how"); /* 1st argument */ 2613 lua_getfield(L, LUA_GLOBALSINDEX, "t"); /* table to be indexed */ 2614 lua_getfield(L, -1, "x"); /* push result of t.x (2nd arg) */ 2615 lua_remove(L, -2); /* remove 't' from the stack */ 2616 lua_pushinteger(L, 14); /* 3rd argument */ 2617 lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */ 2618 lua_setfield(L, LUA_GLOBALSINDEX, "a"); /* set global 'a' */ 2619</pre><p> 2620Note that the code above is "balanced": 2621at its end, the stack is back to its original configuration. 2622This is considered good programming practice. 2623 2624 2625 2626 2627 2628<hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3> 2629<pre>typedef int (*lua_CFunction) (lua_State *L);</pre> 2630 2631<p> 2632Type for C functions. 2633 2634 2635<p> 2636In order to communicate properly with Lua, 2637a C function must use the following protocol, 2638which defines the way parameters and results are passed: 2639a C function receives its arguments from Lua in its stack 2640in direct order (the first argument is pushed first). 2641So, when the function starts, 2642<code>lua_gettop(L)</code> returns the number of arguments received by the function. 2643The first argument (if any) is at index 1 2644and its last argument is at index <code>lua_gettop(L)</code>. 2645To return values to Lua, a C function just pushes them onto the stack, 2646in direct order (the first result is pushed first), 2647and returns the number of results. 2648Any other value in the stack below the results will be properly 2649discarded by Lua. 2650Like a Lua function, a C function called by Lua can also return 2651many results. 2652 2653 2654<p> 2655As an example, the following function receives a variable number 2656of numerical arguments and returns their average and sum: 2657 2658<pre> 2659 static int foo (lua_State *L) { 2660 int n = lua_gettop(L); /* number of arguments */ 2661 lua_Number sum = 0; 2662 int i; 2663 for (i = 1; i <= n; i++) { 2664 if (!lua_isnumber(L, i)) { 2665 lua_pushstring(L, "incorrect argument"); 2666 lua_error(L); 2667 } 2668 sum += lua_tonumber(L, i); 2669 } 2670 lua_pushnumber(L, sum/n); /* first result */ 2671 lua_pushnumber(L, sum); /* second result */ 2672 return 2; /* number of results */ 2673 } 2674</pre> 2675 2676 2677 2678 2679<hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p> 2680<span class="apii">[-0, +0, <em>m</em>]</span> 2681<pre>int lua_checkstack (lua_State *L, int extra);</pre> 2682 2683<p> 2684Ensures that there are at least <code>extra</code> free stack slots in the stack. 2685It returns false if it cannot grow the stack to that size. 2686This function never shrinks the stack; 2687if the stack is already larger than the new size, 2688it is left unchanged. 2689 2690 2691 2692 2693 2694<hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p> 2695<span class="apii">[-0, +0, <em>-</em>]</span> 2696<pre>void lua_close (lua_State *L);</pre> 2697 2698<p> 2699Destroys all objects in the given Lua state 2700(calling the corresponding garbage-collection metamethods, if any) 2701and frees all dynamic memory used by this state. 2702On several platforms, you may not need to call this function, 2703because all resources are naturally released when the host program ends. 2704On the other hand, long-running programs, 2705such as a daemon or a web server, 2706might need to release states as soon as they are not needed, 2707to avoid growing too large. 2708 2709 2710 2711 2712 2713<hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p> 2714<span class="apii">[-n, +1, <em>e</em>]</span> 2715<pre>void lua_concat (lua_State *L, int n);</pre> 2716 2717<p> 2718Concatenates the <code>n</code> values at the top of the stack, 2719pops them, and leaves the result at the top. 2720If <code>n</code> is 1, the result is the single value on the stack 2721(that is, the function does nothing); 2722if <code>n</code> is 0, the result is the empty string. 2723Concatenation is performed following the usual semantics of Lua 2724(see <a href="#2.5.4">§2.5.4</a>). 2725 2726 2727 2728 2729 2730<hr><h3><a name="lua_cpcall"><code>lua_cpcall</code></a></h3><p> 2731<span class="apii">[-0, +(0|1), <em>-</em>]</span> 2732<pre>int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);</pre> 2733 2734<p> 2735Calls the C function <code>func</code> in protected mode. 2736<code>func</code> starts with only one element in its stack, 2737a light userdata containing <code>ud</code>. 2738In case of errors, 2739<a href="#lua_cpcall"><code>lua_cpcall</code></a> returns the same error codes as <a href="#lua_pcall"><code>lua_pcall</code></a>, 2740plus the error object on the top of the stack; 2741otherwise, it returns zero, and does not change the stack. 2742All values returned by <code>func</code> are discarded. 2743 2744 2745 2746 2747 2748<hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p> 2749<span class="apii">[-0, +1, <em>m</em>]</span> 2750<pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre> 2751 2752<p> 2753Creates a new empty table and pushes it onto the stack. 2754The new table has space pre-allocated 2755for <code>narr</code> array elements and <code>nrec</code> non-array elements. 2756This pre-allocation is useful when you know exactly how many elements 2757the table will have. 2758Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>. 2759 2760 2761 2762 2763 2764<hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p> 2765<span class="apii">[-0, +0, <em>m</em>]</span> 2766<pre>int lua_dump (lua_State *L, lua_Writer writer, void *data);</pre> 2767 2768<p> 2769Dumps a function as a binary chunk. 2770Receives a Lua function on the top of the stack 2771and produces a binary chunk that, 2772if loaded again, 2773results in a function equivalent to the one dumped. 2774As it produces parts of the chunk, 2775<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>) 2776with the given <code>data</code> 2777to write them. 2778 2779 2780<p> 2781The value returned is the error code returned by the last 2782call to the writer; 27830 means no errors. 2784 2785 2786<p> 2787This function does not pop the Lua function from the stack. 2788 2789 2790 2791 2792 2793<hr><h3><a name="lua_equal"><code>lua_equal</code></a></h3><p> 2794<span class="apii">[-0, +0, <em>e</em>]</span> 2795<pre>int lua_equal (lua_State *L, int index1, int index2);</pre> 2796 2797<p> 2798Returns 1 if the two values in acceptable indices <code>index1</code> and 2799<code>index2</code> are equal, 2800following the semantics of the Lua <code>==</code> operator 2801(that is, may call metamethods). 2802Otherwise returns 0. 2803Also returns 0 if any of the indices is non valid. 2804 2805 2806 2807 2808 2809<hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p> 2810<span class="apii">[-1, +0, <em>v</em>]</span> 2811<pre>int lua_error (lua_State *L);</pre> 2812 2813<p> 2814Generates a Lua error. 2815The error message (which can actually be a Lua value of any type) 2816must be on the stack top. 2817This function does a long jump, 2818and therefore never returns. 2819(see <a href="#luaL_error"><code>luaL_error</code></a>). 2820 2821 2822 2823 2824 2825<hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p> 2826<span class="apii">[-0, +0, <em>e</em>]</span> 2827<pre>int lua_gc (lua_State *L, int what, int data);</pre> 2828 2829<p> 2830Controls the garbage collector. 2831 2832 2833<p> 2834This function performs several tasks, 2835according to the value of the parameter <code>what</code>: 2836 2837<ul> 2838 2839<li><b><code>LUA_GCSTOP</code>:</b> 2840stops the garbage collector. 2841</li> 2842 2843<li><b><code>LUA_GCRESTART</code>:</b> 2844restarts the garbage collector. 2845</li> 2846 2847<li><b><code>LUA_GCCOLLECT</code>:</b> 2848performs a full garbage-collection cycle. 2849</li> 2850 2851<li><b><code>LUA_GCCOUNT</code>:</b> 2852returns the current amount of memory (in Kbytes) in use by Lua. 2853</li> 2854 2855<li><b><code>LUA_GCCOUNTB</code>:</b> 2856returns the remainder of dividing the current amount of bytes of 2857memory in use by Lua by 1024. 2858</li> 2859 2860<li><b><code>LUA_GCSTEP</code>:</b> 2861performs an incremental step of garbage collection. 2862The step "size" is controlled by <code>data</code> 2863(larger values mean more steps) in a non-specified way. 2864If you want to control the step size 2865you must experimentally tune the value of <code>data</code>. 2866The function returns 1 if the step finished a 2867garbage-collection cycle. 2868</li> 2869 2870<li><b><code>LUA_GCSETPAUSE</code>:</b> 2871sets <code>data</code> as the new value 2872for the <em>pause</em> of the collector (see <a href="#2.10">§2.10</a>). 2873The function returns the previous value of the pause. 2874</li> 2875 2876<li><b><code>LUA_GCSETSTEPMUL</code>:</b> 2877sets <code>data</code> as the new value for the <em>step multiplier</em> of 2878the collector (see <a href="#2.10">§2.10</a>). 2879The function returns the previous value of the step multiplier. 2880</li> 2881 2882</ul> 2883 2884 2885 2886 2887<hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p> 2888<span class="apii">[-0, +0, <em>-</em>]</span> 2889<pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre> 2890 2891<p> 2892Returns the memory-allocation function of a given state. 2893If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the 2894opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>. 2895 2896 2897 2898 2899 2900<hr><h3><a name="lua_getfenv"><code>lua_getfenv</code></a></h3><p> 2901<span class="apii">[-0, +1, <em>-</em>]</span> 2902<pre>void lua_getfenv (lua_State *L, int index);</pre> 2903 2904<p> 2905Pushes onto the stack the environment table of 2906the value at the given index. 2907 2908 2909 2910 2911 2912<hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p> 2913<span class="apii">[-0, +1, <em>e</em>]</span> 2914<pre>void lua_getfield (lua_State *L, int index, const char *k);</pre> 2915 2916<p> 2917Pushes onto the stack the value <code>t[k]</code>, 2918where <code>t</code> is the value at the given valid index. 2919As in Lua, this function may trigger a metamethod 2920for the "index" event (see <a href="#2.8">§2.8</a>). 2921 2922 2923 2924 2925 2926<hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p> 2927<span class="apii">[-0, +1, <em>e</em>]</span> 2928<pre>void lua_getglobal (lua_State *L, const char *name);</pre> 2929 2930<p> 2931Pushes onto the stack the value of the global <code>name</code>. 2932It is defined as a macro: 2933 2934<pre> 2935 #define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, s) 2936</pre> 2937 2938 2939 2940 2941<hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p> 2942<span class="apii">[-0, +(0|1), <em>-</em>]</span> 2943<pre>int lua_getmetatable (lua_State *L, int index);</pre> 2944 2945<p> 2946Pushes onto the stack the metatable of the value at the given 2947acceptable index. 2948If the index is not valid, 2949or if the value does not have a metatable, 2950the function returns 0 and pushes nothing on the stack. 2951 2952 2953 2954 2955 2956<hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p> 2957<span class="apii">[-1, +1, <em>e</em>]</span> 2958<pre>void lua_gettable (lua_State *L, int index);</pre> 2959 2960<p> 2961Pushes onto the stack the value <code>t[k]</code>, 2962where <code>t</code> is the value at the given valid index 2963and <code>k</code> is the value at the top of the stack. 2964 2965 2966<p> 2967This function pops the key from the stack 2968(putting the resulting value in its place). 2969As in Lua, this function may trigger a metamethod 2970for the "index" event (see <a href="#2.8">§2.8</a>). 2971 2972 2973 2974 2975 2976<hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p> 2977<span class="apii">[-0, +0, <em>-</em>]</span> 2978<pre>int lua_gettop (lua_State *L);</pre> 2979 2980<p> 2981Returns the index of the top element in the stack. 2982Because indices start at 1, 2983this result is equal to the number of elements in the stack 2984(and so 0 means an empty stack). 2985 2986 2987 2988 2989 2990<hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p> 2991<span class="apii">[-1, +1, <em>-</em>]</span> 2992<pre>void lua_insert (lua_State *L, int index);</pre> 2993 2994<p> 2995Moves the top element into the given valid index, 2996shifting up the elements above this index to open space. 2997Cannot be called with a pseudo-index, 2998because a pseudo-index is not an actual stack position. 2999 3000 3001 3002 3003 3004<hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3> 3005<pre>typedef ptrdiff_t lua_Integer;</pre> 3006 3007<p> 3008The type used by the Lua API to represent integral values. 3009 3010 3011<p> 3012By default it is a <code>ptrdiff_t</code>, 3013which is usually the largest signed integral type the machine handles 3014"comfortably". 3015 3016 3017 3018 3019 3020<hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p> 3021<span class="apii">[-0, +0, <em>-</em>]</span> 3022<pre>int lua_isboolean (lua_State *L, int index);</pre> 3023 3024<p> 3025Returns 1 if the value at the given acceptable index has type boolean, 3026and 0 otherwise. 3027 3028 3029 3030 3031 3032<hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p> 3033<span class="apii">[-0, +0, <em>-</em>]</span> 3034<pre>int lua_iscfunction (lua_State *L, int index);</pre> 3035 3036<p> 3037Returns 1 if the value at the given acceptable index is a C function, 3038and 0 otherwise. 3039 3040 3041 3042 3043 3044<hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p> 3045<span class="apii">[-0, +0, <em>-</em>]</span> 3046<pre>int lua_isfunction (lua_State *L, int index);</pre> 3047 3048<p> 3049Returns 1 if the value at the given acceptable index is a function 3050(either C or Lua), and 0 otherwise. 3051 3052 3053 3054 3055 3056<hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p> 3057<span class="apii">[-0, +0, <em>-</em>]</span> 3058<pre>int lua_islightuserdata (lua_State *L, int index);</pre> 3059 3060<p> 3061Returns 1 if the value at the given acceptable index is a light userdata, 3062and 0 otherwise. 3063 3064 3065 3066 3067 3068<hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p> 3069<span class="apii">[-0, +0, <em>-</em>]</span> 3070<pre>int lua_isnil (lua_State *L, int index);</pre> 3071 3072<p> 3073Returns 1 if the value at the given acceptable index is <b>nil</b>, 3074and 0 otherwise. 3075 3076 3077 3078 3079 3080<hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p> 3081<span class="apii">[-0, +0, <em>-</em>]</span> 3082<pre>int lua_isnone (lua_State *L, int index);</pre> 3083 3084<p> 3085Returns 1 if the given acceptable index is not valid 3086(that is, it refers to an element outside the current stack), 3087and 0 otherwise. 3088 3089 3090 3091 3092 3093<hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p> 3094<span class="apii">[-0, +0, <em>-</em>]</span> 3095<pre>int lua_isnoneornil (lua_State *L, int index);</pre> 3096 3097<p> 3098Returns 1 if the given acceptable index is not valid 3099(that is, it refers to an element outside the current stack) 3100or if the value at this index is <b>nil</b>, 3101and 0 otherwise. 3102 3103 3104 3105 3106 3107<hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p> 3108<span class="apii">[-0, +0, <em>-</em>]</span> 3109<pre>int lua_isnumber (lua_State *L, int index);</pre> 3110 3111<p> 3112Returns 1 if the value at the given acceptable index is a number 3113or a string convertible to a number, 3114and 0 otherwise. 3115 3116 3117 3118 3119 3120<hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p> 3121<span class="apii">[-0, +0, <em>-</em>]</span> 3122<pre>int lua_isstring (lua_State *L, int index);</pre> 3123 3124<p> 3125Returns 1 if the value at the given acceptable index is a string 3126or a number (which is always convertible to a string), 3127and 0 otherwise. 3128 3129 3130 3131 3132 3133<hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p> 3134<span class="apii">[-0, +0, <em>-</em>]</span> 3135<pre>int lua_istable (lua_State *L, int index);</pre> 3136 3137<p> 3138Returns 1 if the value at the given acceptable index is a table, 3139and 0 otherwise. 3140 3141 3142 3143 3144 3145<hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p> 3146<span class="apii">[-0, +0, <em>-</em>]</span> 3147<pre>int lua_isthread (lua_State *L, int index);</pre> 3148 3149<p> 3150Returns 1 if the value at the given acceptable index is a thread, 3151and 0 otherwise. 3152 3153 3154 3155 3156 3157<hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p> 3158<span class="apii">[-0, +0, <em>-</em>]</span> 3159<pre>int lua_isuserdata (lua_State *L, int index);</pre> 3160 3161<p> 3162Returns 1 if the value at the given acceptable index is a userdata 3163(either full or light), and 0 otherwise. 3164 3165 3166 3167 3168 3169<hr><h3><a name="lua_lessthan"><code>lua_lessthan</code></a></h3><p> 3170<span class="apii">[-0, +0, <em>e</em>]</span> 3171<pre>int lua_lessthan (lua_State *L, int index1, int index2);</pre> 3172 3173<p> 3174Returns 1 if the value at acceptable index <code>index1</code> is smaller 3175than the value at acceptable index <code>index2</code>, 3176following the semantics of the Lua <code><</code> operator 3177(that is, may call metamethods). 3178Otherwise returns 0. 3179Also returns 0 if any of the indices is non valid. 3180 3181 3182 3183 3184 3185<hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p> 3186<span class="apii">[-0, +1, <em>-</em>]</span> 3187<pre>int lua_load (lua_State *L, 3188 lua_Reader reader, 3189 void *data, 3190 const char *chunkname);</pre> 3191 3192<p> 3193Loads a Lua chunk. 3194If there are no errors, 3195<a href="#lua_load"><code>lua_load</code></a> pushes the compiled chunk as a Lua 3196function on top of the stack. 3197Otherwise, it pushes an error message. 3198The return values of <a href="#lua_load"><code>lua_load</code></a> are: 3199 3200<ul> 3201 3202<li><b>0:</b> no errors;</li> 3203 3204<li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>:</b> 3205syntax error during pre-compilation;</li> 3206 3207<li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>:</b> 3208memory allocation error.</li> 3209 3210</ul> 3211 3212<p> 3213This function only loads a chunk; 3214it does not run it. 3215 3216 3217<p> 3218<a href="#lua_load"><code>lua_load</code></a> automatically detects whether the chunk is text or binary, 3219and loads it accordingly (see program <code>luac</code>). 3220 3221 3222<p> 3223The <a href="#lua_load"><code>lua_load</code></a> function uses a user-supplied <code>reader</code> function 3224to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>). 3225The <code>data</code> argument is an opaque value passed to the reader function. 3226 3227 3228<p> 3229The <code>chunkname</code> argument gives a name to the chunk, 3230which is used for error messages and in debug information (see <a href="#3.8">§3.8</a>). 3231 3232 3233 3234 3235 3236<hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p> 3237<span class="apii">[-0, +0, <em>-</em>]</span> 3238<pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre> 3239 3240<p> 3241Creates a new, independent state. 3242Returns <code>NULL</code> if cannot create the state 3243(due to lack of memory). 3244The argument <code>f</code> is the allocator function; 3245Lua does all memory allocation for this state through this function. 3246The second argument, <code>ud</code>, is an opaque pointer that Lua 3247simply passes to the allocator in every call. 3248 3249 3250 3251 3252 3253<hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p> 3254<span class="apii">[-0, +1, <em>m</em>]</span> 3255<pre>void lua_newtable (lua_State *L);</pre> 3256 3257<p> 3258Creates a new empty table and pushes it onto the stack. 3259It is equivalent to <code>lua_createtable(L, 0, 0)</code>. 3260 3261 3262 3263 3264 3265<hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p> 3266<span class="apii">[-0, +1, <em>m</em>]</span> 3267<pre>lua_State *lua_newthread (lua_State *L);</pre> 3268 3269<p> 3270Creates a new thread, pushes it on the stack, 3271and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread. 3272The new state returned by this function shares with the original state 3273all global objects (such as tables), 3274but has an independent execution stack. 3275 3276 3277<p> 3278There is no explicit function to close or to destroy a thread. 3279Threads are subject to garbage collection, 3280like any Lua object. 3281 3282 3283 3284 3285 3286<hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p> 3287<span class="apii">[-0, +1, <em>m</em>]</span> 3288<pre>void *lua_newuserdata (lua_State *L, size_t size);</pre> 3289 3290<p> 3291This function allocates a new block of memory with the given size, 3292pushes onto the stack a new full userdata with the block address, 3293and returns this address. 3294 3295 3296<p> 3297Userdata represent C values in Lua. 3298A <em>full userdata</em> represents a block of memory. 3299It is an object (like a table): 3300you must create it, it can have its own metatable, 3301and you can detect when it is being collected. 3302A full userdata is only equal to itself (under raw equality). 3303 3304 3305<p> 3306When Lua collects a full userdata with a <code>gc</code> metamethod, 3307Lua calls the metamethod and marks the userdata as finalized. 3308When this userdata is collected again then 3309Lua frees its corresponding memory. 3310 3311 3312 3313 3314 3315<hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p> 3316<span class="apii">[-1, +(2|0), <em>e</em>]</span> 3317<pre>int lua_next (lua_State *L, int index);</pre> 3318 3319<p> 3320Pops a key from the stack, 3321and pushes a key-value pair from the table at the given index 3322(the "next" pair after the given key). 3323If there are no more elements in the table, 3324then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing). 3325 3326 3327<p> 3328A typical traversal looks like this: 3329 3330<pre> 3331 /* table is in the stack at index 't' */ 3332 lua_pushnil(L); /* first key */ 3333 while (lua_next(L, t) != 0) { 3334 /* uses 'key' (at index -2) and 'value' (at index -1) */ 3335 printf("%s - %s\n", 3336 lua_typename(L, lua_type(L, -2)), 3337 lua_typename(L, lua_type(L, -1))); 3338 /* removes 'value'; keeps 'key' for next iteration */ 3339 lua_pop(L, 1); 3340 } 3341</pre> 3342 3343<p> 3344While traversing a table, 3345do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key, 3346unless you know that the key is actually a string. 3347Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> <em>changes</em> 3348the value at the given index; 3349this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>. 3350 3351 3352 3353 3354 3355<hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3> 3356<pre>typedef double lua_Number;</pre> 3357 3358<p> 3359The type of numbers in Lua. 3360By default, it is double, but that can be changed in <code>luaconf.h</code>. 3361 3362 3363<p> 3364Through the configuration file you can change 3365Lua to operate with another type for numbers (e.g., float or long). 3366 3367 3368 3369 3370 3371<hr><h3><a name="lua_objlen"><code>lua_objlen</code></a></h3><p> 3372<span class="apii">[-0, +0, <em>-</em>]</span> 3373<pre>size_t lua_objlen (lua_State *L, int index);</pre> 3374 3375<p> 3376Returns the "length" of the value at the given acceptable index: 3377for strings, this is the string length; 3378for tables, this is the result of the length operator ('<code>#</code>'); 3379for userdata, this is the size of the block of memory allocated 3380for the userdata; 3381for other values, it is 0. 3382 3383 3384 3385 3386 3387<hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p> 3388<span class="apii">[-(nargs + 1), +(nresults|1), <em>-</em>]</span> 3389<pre>int lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);</pre> 3390 3391<p> 3392Calls a function in protected mode. 3393 3394 3395<p> 3396Both <code>nargs</code> and <code>nresults</code> have the same meaning as 3397in <a href="#lua_call"><code>lua_call</code></a>. 3398If there are no errors during the call, 3399<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>. 3400However, if there is any error, 3401<a href="#lua_pcall"><code>lua_pcall</code></a> catches it, 3402pushes a single value on the stack (the error message), 3403and returns an error code. 3404Like <a href="#lua_call"><code>lua_call</code></a>, 3405<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function 3406and its arguments from the stack. 3407 3408 3409<p> 3410If <code>errfunc</code> is 0, 3411then the error message returned on the stack 3412is exactly the original error message. 3413Otherwise, <code>errfunc</code> is the stack index of an 3414<em>error handler function</em>. 3415(In the current implementation, this index cannot be a pseudo-index.) 3416In case of runtime errors, 3417this function will be called with the error message 3418and its return value will be the message returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>. 3419 3420 3421<p> 3422Typically, the error handler function is used to add more debug 3423information to the error message, such as a stack traceback. 3424Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>, 3425since by then the stack has unwound. 3426 3427 3428<p> 3429The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns 0 in case of success 3430or one of the following error codes 3431(defined in <code>lua.h</code>): 3432 3433<ul> 3434 3435<li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>:</b> 3436a runtime error. 3437</li> 3438 3439<li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>:</b> 3440memory allocation error. 3441For such errors, Lua does not call the error handler function. 3442</li> 3443 3444<li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>:</b> 3445error while running the error handler function. 3446</li> 3447 3448</ul> 3449 3450 3451 3452 3453<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p> 3454<span class="apii">[-n, +0, <em>-</em>]</span> 3455<pre>void lua_pop (lua_State *L, int n);</pre> 3456 3457<p> 3458Pops <code>n</code> elements from the stack. 3459 3460 3461 3462 3463 3464<hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p> 3465<span class="apii">[-0, +1, <em>-</em>]</span> 3466<pre>void lua_pushboolean (lua_State *L, int b);</pre> 3467 3468<p> 3469Pushes a boolean value with value <code>b</code> onto the stack. 3470 3471 3472 3473 3474 3475<hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p> 3476<span class="apii">[-n, +1, <em>m</em>]</span> 3477<pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre> 3478 3479<p> 3480Pushes a new C closure onto the stack. 3481 3482 3483<p> 3484When a C function is created, 3485it is possible to associate some values with it, 3486thus creating a C closure (see <a href="#3.4">§3.4</a>); 3487these values are then accessible to the function whenever it is called. 3488To associate values with a C function, 3489first these values should be pushed onto the stack 3490(when there are multiple values, the first value is pushed first). 3491Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> 3492is called to create and push the C function onto the stack, 3493with the argument <code>n</code> telling how many values should be 3494associated with the function. 3495<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack. 3496 3497 3498<p> 3499The maximum value for <code>n</code> is 255. 3500 3501 3502 3503 3504 3505<hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p> 3506<span class="apii">[-0, +1, <em>m</em>]</span> 3507<pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre> 3508 3509<p> 3510Pushes a C function onto the stack. 3511This function receives a pointer to a C function 3512and pushes onto the stack a Lua value of type <code>function</code> that, 3513when called, invokes the corresponding C function. 3514 3515 3516<p> 3517Any function to be registered in Lua must 3518follow the correct protocol to receive its parameters 3519and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 3520 3521 3522<p> 3523<code>lua_pushcfunction</code> is defined as a macro: 3524 3525<pre> 3526 #define lua_pushcfunction(L,f) lua_pushcclosure(L,f,0) 3527</pre> 3528 3529 3530 3531 3532<hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p> 3533<span class="apii">[-0, +1, <em>m</em>]</span> 3534<pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre> 3535 3536<p> 3537Pushes onto the stack a formatted string 3538and returns a pointer to this string. 3539It is similar to the C function <code>sprintf</code>, 3540but has some important differences: 3541 3542<ul> 3543 3544<li> 3545You do not have to allocate space for the result: 3546the result is a Lua string and Lua takes care of memory allocation 3547(and deallocation, through garbage collection). 3548</li> 3549 3550<li> 3551The conversion specifiers are quite restricted. 3552There are no flags, widths, or precisions. 3553The conversion specifiers can only be 3554'<code>%%</code>' (inserts a '<code>%</code>' in the string), 3555'<code>%s</code>' (inserts a zero-terminated string, with no size restrictions), 3556'<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>), 3557'<code>%p</code>' (inserts a pointer as a hexadecimal numeral), 3558'<code>%d</code>' (inserts an <code>int</code>), and 3559'<code>%c</code>' (inserts an <code>int</code> as a character). 3560</li> 3561 3562</ul> 3563 3564 3565 3566 3567<hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p> 3568<span class="apii">[-0, +1, <em>-</em>]</span> 3569<pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre> 3570 3571<p> 3572Pushes a number with value <code>n</code> onto the stack. 3573 3574 3575 3576 3577 3578<hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p> 3579<span class="apii">[-0, +1, <em>-</em>]</span> 3580<pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre> 3581 3582<p> 3583Pushes a light userdata onto the stack. 3584 3585 3586<p> 3587Userdata represent C values in Lua. 3588A <em>light userdata</em> represents a pointer. 3589It is a value (like a number): 3590you do not create it, it has no individual metatable, 3591and it is not collected (as it was never created). 3592A light userdata is equal to "any" 3593light userdata with the same C address. 3594 3595 3596 3597 3598 3599<hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p> 3600<span class="apii">[-0, +1, <em>m</em>]</span> 3601<pre>void lua_pushliteral (lua_State *L, const char *s);</pre> 3602 3603<p> 3604This macro is equivalent to <a href="#lua_pushlstring"><code>lua_pushlstring</code></a>, 3605but can be used only when <code>s</code> is a literal string. 3606In these cases, it automatically provides the string length. 3607 3608 3609 3610 3611 3612<hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p> 3613<span class="apii">[-0, +1, <em>m</em>]</span> 3614<pre>void lua_pushlstring (lua_State *L, const char *s, size_t len);</pre> 3615 3616<p> 3617Pushes the string pointed to by <code>s</code> with size <code>len</code> 3618onto the stack. 3619Lua makes (or reuses) an internal copy of the given string, 3620so the memory at <code>s</code> can be freed or reused immediately after 3621the function returns. 3622The string can contain embedded zeros. 3623 3624 3625 3626 3627 3628<hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p> 3629<span class="apii">[-0, +1, <em>-</em>]</span> 3630<pre>void lua_pushnil (lua_State *L);</pre> 3631 3632<p> 3633Pushes a nil value onto the stack. 3634 3635 3636 3637 3638 3639<hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p> 3640<span class="apii">[-0, +1, <em>-</em>]</span> 3641<pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre> 3642 3643<p> 3644Pushes a number with value <code>n</code> onto the stack. 3645 3646 3647 3648 3649 3650<hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p> 3651<span class="apii">[-0, +1, <em>m</em>]</span> 3652<pre>void lua_pushstring (lua_State *L, const char *s);</pre> 3653 3654<p> 3655Pushes the zero-terminated string pointed to by <code>s</code> 3656onto the stack. 3657Lua makes (or reuses) an internal copy of the given string, 3658so the memory at <code>s</code> can be freed or reused immediately after 3659the function returns. 3660The string cannot contain embedded zeros; 3661it is assumed to end at the first zero. 3662 3663 3664 3665 3666 3667<hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p> 3668<span class="apii">[-0, +1, <em>-</em>]</span> 3669<pre>int lua_pushthread (lua_State *L);</pre> 3670 3671<p> 3672Pushes the thread represented by <code>L</code> onto the stack. 3673Returns 1 if this thread is the main thread of its state. 3674 3675 3676 3677 3678 3679<hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p> 3680<span class="apii">[-0, +1, <em>-</em>]</span> 3681<pre>void lua_pushvalue (lua_State *L, int index);</pre> 3682 3683<p> 3684Pushes a copy of the element at the given valid index 3685onto the stack. 3686 3687 3688 3689 3690 3691<hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p> 3692<span class="apii">[-0, +1, <em>m</em>]</span> 3693<pre>const char *lua_pushvfstring (lua_State *L, 3694 const char *fmt, 3695 va_list argp);</pre> 3696 3697<p> 3698Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code> 3699instead of a variable number of arguments. 3700 3701 3702 3703 3704 3705<hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p> 3706<span class="apii">[-0, +0, <em>-</em>]</span> 3707<pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre> 3708 3709<p> 3710Returns 1 if the two values in acceptable indices <code>index1</code> and 3711<code>index2</code> are primitively equal 3712(that is, without calling metamethods). 3713Otherwise returns 0. 3714Also returns 0 if any of the indices are non valid. 3715 3716 3717 3718 3719 3720<hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p> 3721<span class="apii">[-1, +1, <em>-</em>]</span> 3722<pre>void lua_rawget (lua_State *L, int index);</pre> 3723 3724<p> 3725Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access 3726(i.e., without metamethods). 3727 3728 3729 3730 3731 3732<hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p> 3733<span class="apii">[-0, +1, <em>-</em>]</span> 3734<pre>void lua_rawgeti (lua_State *L, int index, int n);</pre> 3735 3736<p> 3737Pushes onto the stack the value <code>t[n]</code>, 3738where <code>t</code> is the value at the given valid index. 3739The access is raw; 3740that is, it does not invoke metamethods. 3741 3742 3743 3744 3745 3746<hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p> 3747<span class="apii">[-2, +0, <em>m</em>]</span> 3748<pre>void lua_rawset (lua_State *L, int index);</pre> 3749 3750<p> 3751Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment 3752(i.e., without metamethods). 3753 3754 3755 3756 3757 3758<hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p> 3759<span class="apii">[-1, +0, <em>m</em>]</span> 3760<pre>void lua_rawseti (lua_State *L, int index, int n);</pre> 3761 3762<p> 3763Does the equivalent of <code>t[n] = v</code>, 3764where <code>t</code> is the value at the given valid index 3765and <code>v</code> is the value at the top of the stack. 3766 3767 3768<p> 3769This function pops the value from the stack. 3770The assignment is raw; 3771that is, it does not invoke metamethods. 3772 3773 3774 3775 3776 3777<hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3> 3778<pre>typedef const char * (*lua_Reader) (lua_State *L, 3779 void *data, 3780 size_t *size);</pre> 3781 3782<p> 3783The reader function used by <a href="#lua_load"><code>lua_load</code></a>. 3784Every time it needs another piece of the chunk, 3785<a href="#lua_load"><code>lua_load</code></a> calls the reader, 3786passing along its <code>data</code> parameter. 3787The reader must return a pointer to a block of memory 3788with a new piece of the chunk 3789and set <code>size</code> to the block size. 3790The block must exist until the reader function is called again. 3791To signal the end of the chunk, 3792the reader must return <code>NULL</code> or set <code>size</code> to zero. 3793The reader function may return pieces of any size greater than zero. 3794 3795 3796 3797 3798 3799<hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p> 3800<span class="apii">[-0, +0, <em>e</em>]</span> 3801<pre>void lua_register (lua_State *L, 3802 const char *name, 3803 lua_CFunction f);</pre> 3804 3805<p> 3806Sets the C function <code>f</code> as the new value of global <code>name</code>. 3807It is defined as a macro: 3808 3809<pre> 3810 #define lua_register(L,n,f) \ 3811 (lua_pushcfunction(L, f), lua_setglobal(L, n)) 3812</pre> 3813 3814 3815 3816 3817<hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p> 3818<span class="apii">[-1, +0, <em>-</em>]</span> 3819<pre>void lua_remove (lua_State *L, int index);</pre> 3820 3821<p> 3822Removes the element at the given valid index, 3823shifting down the elements above this index to fill the gap. 3824Cannot be called with a pseudo-index, 3825because a pseudo-index is not an actual stack position. 3826 3827 3828 3829 3830 3831<hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p> 3832<span class="apii">[-1, +0, <em>-</em>]</span> 3833<pre>void lua_replace (lua_State *L, int index);</pre> 3834 3835<p> 3836Moves the top element into the given position (and pops it), 3837without shifting any element 3838(therefore replacing the value at the given position). 3839 3840 3841 3842 3843 3844<hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p> 3845<span class="apii">[-?, +?, <em>-</em>]</span> 3846<pre>int lua_resume (lua_State *L, int narg);</pre> 3847 3848<p> 3849Starts and resumes a coroutine in a given thread. 3850 3851 3852<p> 3853To start a coroutine, you first create a new thread 3854(see <a href="#lua_newthread"><code>lua_newthread</code></a>); 3855then you push onto its stack the main function plus any arguments; 3856then you call <a href="#lua_resume"><code>lua_resume</code></a>, 3857with <code>narg</code> being the number of arguments. 3858This call returns when the coroutine suspends or finishes its execution. 3859When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>, 3860or all values returned by the body function. 3861<a href="#lua_resume"><code>lua_resume</code></a> returns 3862<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields, 38630 if the coroutine finishes its execution 3864without errors, 3865or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>). 3866In case of errors, 3867the stack is not unwound, 3868so you can use the debug API over it. 3869The error message is on the top of the stack. 3870To restart a coroutine, you put on its stack only the values to 3871be passed as results from <code>yield</code>, 3872and then call <a href="#lua_resume"><code>lua_resume</code></a>. 3873 3874 3875 3876 3877 3878<hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p> 3879<span class="apii">[-0, +0, <em>-</em>]</span> 3880<pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre> 3881 3882<p> 3883Changes the allocator function of a given state to <code>f</code> 3884with user data <code>ud</code>. 3885 3886 3887 3888 3889 3890<hr><h3><a name="lua_setfenv"><code>lua_setfenv</code></a></h3><p> 3891<span class="apii">[-1, +0, <em>-</em>]</span> 3892<pre>int lua_setfenv (lua_State *L, int index);</pre> 3893 3894<p> 3895Pops a table from the stack and sets it as 3896the new environment for the value at the given index. 3897If the value at the given index is 3898neither a function nor a thread nor a userdata, 3899<a href="#lua_setfenv"><code>lua_setfenv</code></a> returns 0. 3900Otherwise it returns 1. 3901 3902 3903 3904 3905 3906<hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p> 3907<span class="apii">[-1, +0, <em>e</em>]</span> 3908<pre>void lua_setfield (lua_State *L, int index, const char *k);</pre> 3909 3910<p> 3911Does the equivalent to <code>t[k] = v</code>, 3912where <code>t</code> is the value at the given valid index 3913and <code>v</code> is the value at the top of the stack. 3914 3915 3916<p> 3917This function pops the value from the stack. 3918As in Lua, this function may trigger a metamethod 3919for the "newindex" event (see <a href="#2.8">§2.8</a>). 3920 3921 3922 3923 3924 3925<hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p> 3926<span class="apii">[-1, +0, <em>e</em>]</span> 3927<pre>void lua_setglobal (lua_State *L, const char *name);</pre> 3928 3929<p> 3930Pops a value from the stack and 3931sets it as the new value of global <code>name</code>. 3932It is defined as a macro: 3933 3934<pre> 3935 #define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, s) 3936</pre> 3937 3938 3939 3940 3941<hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p> 3942<span class="apii">[-1, +0, <em>-</em>]</span> 3943<pre>int lua_setmetatable (lua_State *L, int index);</pre> 3944 3945<p> 3946Pops a table from the stack and 3947sets it as the new metatable for the value at the given 3948acceptable index. 3949 3950 3951 3952 3953 3954<hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p> 3955<span class="apii">[-2, +0, <em>e</em>]</span> 3956<pre>void lua_settable (lua_State *L, int index);</pre> 3957 3958<p> 3959Does the equivalent to <code>t[k] = v</code>, 3960where <code>t</code> is the value at the given valid index, 3961<code>v</code> is the value at the top of the stack, 3962and <code>k</code> is the value just below the top. 3963 3964 3965<p> 3966This function pops both the key and the value from the stack. 3967As in Lua, this function may trigger a metamethod 3968for the "newindex" event (see <a href="#2.8">§2.8</a>). 3969 3970 3971 3972 3973 3974<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p> 3975<span class="apii">[-?, +?, <em>-</em>]</span> 3976<pre>void lua_settop (lua_State *L, int index);</pre> 3977 3978<p> 3979Accepts any acceptable index, or 0, 3980and sets the stack top to this index. 3981If the new top is larger than the old one, 3982then the new elements are filled with <b>nil</b>. 3983If <code>index</code> is 0, then all stack elements are removed. 3984 3985 3986 3987 3988 3989<hr><h3><a name="lua_State"><code>lua_State</code></a></h3> 3990<pre>typedef struct lua_State lua_State;</pre> 3991 3992<p> 3993Opaque structure that keeps the whole state of a Lua interpreter. 3994The Lua library is fully reentrant: 3995it has no global variables. 3996All information about a state is kept in this structure. 3997 3998 3999<p> 4000A pointer to this state must be passed as the first argument to 4001every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>, 4002which creates a Lua state from scratch. 4003 4004 4005 4006 4007 4008<hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p> 4009<span class="apii">[-0, +0, <em>-</em>]</span> 4010<pre>int lua_status (lua_State *L);</pre> 4011 4012<p> 4013Returns the status of the thread <code>L</code>. 4014 4015 4016<p> 4017The status can be 0 for a normal thread, 4018an error code if the thread finished its execution with an error, 4019or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended. 4020 4021 4022 4023 4024 4025<hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p> 4026<span class="apii">[-0, +0, <em>-</em>]</span> 4027<pre>int lua_toboolean (lua_State *L, int index);</pre> 4028 4029<p> 4030Converts the Lua value at the given acceptable index to a C boolean 4031value (0 or 1). 4032Like all tests in Lua, 4033<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns 1 for any Lua value 4034different from <b>false</b> and <b>nil</b>; 4035otherwise it returns 0. 4036It also returns 0 when called with a non-valid index. 4037(If you want to accept only actual boolean values, 4038use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.) 4039 4040 4041 4042 4043 4044<hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p> 4045<span class="apii">[-0, +0, <em>-</em>]</span> 4046<pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre> 4047 4048<p> 4049Converts a value at the given acceptable index to a C function. 4050That value must be a C function; 4051otherwise, returns <code>NULL</code>. 4052 4053 4054 4055 4056 4057<hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p> 4058<span class="apii">[-0, +0, <em>-</em>]</span> 4059<pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre> 4060 4061<p> 4062Converts the Lua value at the given acceptable index 4063to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>. 4064The Lua value must be a number or a string convertible to a number 4065(see <a href="#2.2.1">§2.2.1</a>); 4066otherwise, <a href="#lua_tointeger"><code>lua_tointeger</code></a> returns 0. 4067 4068 4069<p> 4070If the number is not an integer, 4071it is truncated in some non-specified way. 4072 4073 4074 4075 4076 4077<hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p> 4078<span class="apii">[-0, +0, <em>m</em>]</span> 4079<pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre> 4080 4081<p> 4082Converts the Lua value at the given acceptable index to a C string. 4083If <code>len</code> is not <code>NULL</code>, 4084it also sets <code>*len</code> with the string length. 4085The Lua value must be a string or a number; 4086otherwise, the function returns <code>NULL</code>. 4087If the value is a number, 4088then <a href="#lua_tolstring"><code>lua_tolstring</code></a> also 4089<em>changes the actual value in the stack to a string</em>. 4090(This change confuses <a href="#lua_next"><code>lua_next</code></a> 4091when <a href="#lua_tolstring"><code>lua_tolstring</code></a> is applied to keys during a table traversal.) 4092 4093 4094<p> 4095<a href="#lua_tolstring"><code>lua_tolstring</code></a> returns a fully aligned pointer 4096to a string inside the Lua state. 4097This string always has a zero ('<code>\0</code>') 4098after its last character (as in C), 4099but can contain other zeros in its body. 4100Because Lua has garbage collection, 4101there is no guarantee that the pointer returned by <a href="#lua_tolstring"><code>lua_tolstring</code></a> 4102will be valid after the corresponding value is removed from the stack. 4103 4104 4105 4106 4107 4108<hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p> 4109<span class="apii">[-0, +0, <em>-</em>]</span> 4110<pre>lua_Number lua_tonumber (lua_State *L, int index);</pre> 4111 4112<p> 4113Converts the Lua value at the given acceptable index 4114to the C type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>). 4115The Lua value must be a number or a string convertible to a number 4116(see <a href="#2.2.1">§2.2.1</a>); 4117otherwise, <a href="#lua_tonumber"><code>lua_tonumber</code></a> returns 0. 4118 4119 4120 4121 4122 4123<hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p> 4124<span class="apii">[-0, +0, <em>-</em>]</span> 4125<pre>const void *lua_topointer (lua_State *L, int index);</pre> 4126 4127<p> 4128Converts the value at the given acceptable index to a generic 4129C pointer (<code>void*</code>). 4130The value can be a userdata, a table, a thread, or a function; 4131otherwise, <a href="#lua_topointer"><code>lua_topointer</code></a> returns <code>NULL</code>. 4132Different objects will give different pointers. 4133There is no way to convert the pointer back to its original value. 4134 4135 4136<p> 4137Typically this function is used only for debug information. 4138 4139 4140 4141 4142 4143<hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p> 4144<span class="apii">[-0, +0, <em>m</em>]</span> 4145<pre>const char *lua_tostring (lua_State *L, int index);</pre> 4146 4147<p> 4148Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>. 4149 4150 4151 4152 4153 4154<hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p> 4155<span class="apii">[-0, +0, <em>-</em>]</span> 4156<pre>lua_State *lua_tothread (lua_State *L, int index);</pre> 4157 4158<p> 4159Converts the value at the given acceptable index to a Lua thread 4160(represented as <code>lua_State*</code>). 4161This value must be a thread; 4162otherwise, the function returns <code>NULL</code>. 4163 4164 4165 4166 4167 4168<hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p> 4169<span class="apii">[-0, +0, <em>-</em>]</span> 4170<pre>void *lua_touserdata (lua_State *L, int index);</pre> 4171 4172<p> 4173If the value at the given acceptable index is a full userdata, 4174returns its block address. 4175If the value is a light userdata, 4176returns its pointer. 4177Otherwise, returns <code>NULL</code>. 4178 4179 4180 4181 4182 4183<hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p> 4184<span class="apii">[-0, +0, <em>-</em>]</span> 4185<pre>int lua_type (lua_State *L, int index);</pre> 4186 4187<p> 4188Returns the type of the value in the given acceptable index, 4189or <code>LUA_TNONE</code> for a non-valid index 4190(that is, an index to an "empty" stack position). 4191The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants 4192defined in <code>lua.h</code>: 4193<code>LUA_TNIL</code>, 4194<code>LUA_TNUMBER</code>, 4195<code>LUA_TBOOLEAN</code>, 4196<code>LUA_TSTRING</code>, 4197<code>LUA_TTABLE</code>, 4198<code>LUA_TFUNCTION</code>, 4199<code>LUA_TUSERDATA</code>, 4200<code>LUA_TTHREAD</code>, 4201and 4202<code>LUA_TLIGHTUSERDATA</code>. 4203 4204 4205 4206 4207 4208<hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p> 4209<span class="apii">[-0, +0, <em>-</em>]</span> 4210<pre>const char *lua_typename (lua_State *L, int tp);</pre> 4211 4212<p> 4213Returns the name of the type encoded by the value <code>tp</code>, 4214which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>. 4215 4216 4217 4218 4219 4220<hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3> 4221<pre>typedef int (*lua_Writer) (lua_State *L, 4222 const void* p, 4223 size_t sz, 4224 void* ud);</pre> 4225 4226<p> 4227The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>. 4228Every time it produces another piece of chunk, 4229<a href="#lua_dump"><code>lua_dump</code></a> calls the writer, 4230passing along the buffer to be written (<code>p</code>), 4231its size (<code>sz</code>), 4232and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>. 4233 4234 4235<p> 4236The writer returns an error code: 42370 means no errors; 4238any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from 4239calling the writer again. 4240 4241 4242 4243 4244 4245<hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p> 4246<span class="apii">[-?, +?, <em>-</em>]</span> 4247<pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre> 4248 4249<p> 4250Exchange values between different threads of the <em>same</em> global state. 4251 4252 4253<p> 4254This function pops <code>n</code> values from the stack <code>from</code>, 4255and pushes them onto the stack <code>to</code>. 4256 4257 4258 4259 4260 4261<hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p> 4262<span class="apii">[-?, +?, <em>-</em>]</span> 4263<pre>int lua_yield (lua_State *L, int nresults);</pre> 4264 4265<p> 4266Yields a coroutine. 4267 4268 4269<p> 4270This function should only be called as the 4271return expression of a C function, as follows: 4272 4273<pre> 4274 return lua_yield (L, nresults); 4275</pre><p> 4276When a C function calls <a href="#lua_yield"><code>lua_yield</code></a> in that way, 4277the running coroutine suspends its execution, 4278and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns. 4279The parameter <code>nresults</code> is the number of values from the stack 4280that are passed as results to <a href="#lua_resume"><code>lua_resume</code></a>. 4281 4282 4283 4284 4285 4286 4287 4288<h2>3.8 - <a name="3.8">The Debug Interface</a></h2> 4289 4290<p> 4291Lua has no built-in debugging facilities. 4292Instead, it offers a special interface 4293by means of functions and <em>hooks</em>. 4294This interface allows the construction of different 4295kinds of debuggers, profilers, and other tools 4296that need "inside information" from the interpreter. 4297 4298 4299 4300<hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3> 4301<pre>typedef struct lua_Debug { 4302 int event; 4303 const char *name; /* (n) */ 4304 const char *namewhat; /* (n) */ 4305 const char *what; /* (S) */ 4306 const char *source; /* (S) */ 4307 int currentline; /* (l) */ 4308 int nups; /* (u) number of upvalues */ 4309 int linedefined; /* (S) */ 4310 int lastlinedefined; /* (S) */ 4311 char short_src[LUA_IDSIZE]; /* (S) */ 4312 /* private part */ 4313 <em>other fields</em> 4314} lua_Debug;</pre> 4315 4316<p> 4317A structure used to carry different pieces of 4318information about an active function. 4319<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part 4320of this structure, for later use. 4321To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information, 4322call <a href="#lua_getinfo"><code>lua_getinfo</code></a>. 4323 4324 4325<p> 4326The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning: 4327 4328<ul> 4329 4330<li><b><code>source</code>:</b> 4331If the function was defined in a string, 4332then <code>source</code> is that string. 4333If the function was defined in a file, 4334then <code>source</code> starts with a '<code>@</code>' followed by the file name. 4335</li> 4336 4337<li><b><code>short_src</code>:</b> 4338a "printable" version of <code>source</code>, to be used in error messages. 4339</li> 4340 4341<li><b><code>linedefined</code>:</b> 4342the line number where the definition of the function starts. 4343</li> 4344 4345<li><b><code>lastlinedefined</code>:</b> 4346the line number where the definition of the function ends. 4347</li> 4348 4349<li><b><code>what</code>:</b> 4350the string <code>"Lua"</code> if the function is a Lua function, 4351<code>"C"</code> if it is a C function, 4352<code>"main"</code> if it is the main part of a chunk, 4353and <code>"tail"</code> if it was a function that did a tail call. 4354In the latter case, 4355Lua has no other information about the function. 4356</li> 4357 4358<li><b><code>currentline</code>:</b> 4359the current line where the given function is executing. 4360When no line information is available, 4361<code>currentline</code> is set to -1. 4362</li> 4363 4364<li><b><code>name</code>:</b> 4365a reasonable name for the given function. 4366Because functions in Lua are first-class values, 4367they do not have a fixed name: 4368some functions can be the value of multiple global variables, 4369while others can be stored only in a table field. 4370The <code>lua_getinfo</code> function checks how the function was 4371called to find a suitable name. 4372If it cannot find a name, 4373then <code>name</code> is set to <code>NULL</code>. 4374</li> 4375 4376<li><b><code>namewhat</code>:</b> 4377explains the <code>name</code> field. 4378The value of <code>namewhat</code> can be 4379<code>"global"</code>, <code>"local"</code>, <code>"method"</code>, 4380<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string), 4381according to how the function was called. 4382(Lua uses the empty string when no other option seems to apply.) 4383</li> 4384 4385<li><b><code>nups</code>:</b> 4386the number of upvalues of the function. 4387</li> 4388 4389</ul> 4390 4391 4392 4393 4394<hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p> 4395<span class="apii">[-0, +0, <em>-</em>]</span> 4396<pre>lua_Hook lua_gethook (lua_State *L);</pre> 4397 4398<p> 4399Returns the current hook function. 4400 4401 4402 4403 4404 4405<hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p> 4406<span class="apii">[-0, +0, <em>-</em>]</span> 4407<pre>int lua_gethookcount (lua_State *L);</pre> 4408 4409<p> 4410Returns the current hook count. 4411 4412 4413 4414 4415 4416<hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p> 4417<span class="apii">[-0, +0, <em>-</em>]</span> 4418<pre>int lua_gethookmask (lua_State *L);</pre> 4419 4420<p> 4421Returns the current hook mask. 4422 4423 4424 4425 4426 4427<hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p> 4428<span class="apii">[-(0|1), +(0|1|2), <em>m</em>]</span> 4429<pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre> 4430 4431<p> 4432Returns information about a specific function or function invocation. 4433 4434 4435<p> 4436To get information about a function invocation, 4437the parameter <code>ar</code> must be a valid activation record that was 4438filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or 4439given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>). 4440 4441 4442<p> 4443To get information about a function you push it onto the stack 4444and start the <code>what</code> string with the character '<code>></code>'. 4445(In that case, 4446<code>lua_getinfo</code> pops the function in the top of the stack.) 4447For instance, to know in which line a function <code>f</code> was defined, 4448you can write the following code: 4449 4450<pre> 4451 lua_Debug ar; 4452 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* get global 'f' */ 4453 lua_getinfo(L, ">S", &ar); 4454 printf("%d\n", ar.linedefined); 4455</pre> 4456 4457<p> 4458Each character in the string <code>what</code> 4459selects some fields of the structure <code>ar</code> to be filled or 4460a value to be pushed on the stack: 4461 4462<ul> 4463 4464<li><b>'<code>n</code>':</b> fills in the field <code>name</code> and <code>namewhat</code>; 4465</li> 4466 4467<li><b>'<code>S</code>':</b> 4468fills in the fields <code>source</code>, <code>short_src</code>, 4469<code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>; 4470</li> 4471 4472<li><b>'<code>l</code>':</b> fills in the field <code>currentline</code>; 4473</li> 4474 4475<li><b>'<code>u</code>':</b> fills in the field <code>nups</code>; 4476</li> 4477 4478<li><b>'<code>f</code>':</b> 4479pushes onto the stack the function that is 4480running at the given level; 4481</li> 4482 4483<li><b>'<code>L</code>':</b> 4484pushes onto the stack a table whose indices are the 4485numbers of the lines that are valid on the function. 4486(A <em>valid line</em> is a line with some associated code, 4487that is, a line where you can put a break point. 4488Non-valid lines include empty lines and comments.) 4489</li> 4490 4491</ul> 4492 4493<p> 4494This function returns 0 on error 4495(for instance, an invalid option in <code>what</code>). 4496 4497 4498 4499 4500 4501<hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p> 4502<span class="apii">[-0, +(0|1), <em>-</em>]</span> 4503<pre>const char *lua_getlocal (lua_State *L, lua_Debug *ar, int n);</pre> 4504 4505<p> 4506Gets information about a local variable of a given activation record. 4507The parameter <code>ar</code> must be a valid activation record that was 4508filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or 4509given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>). 4510The index <code>n</code> selects which local variable to inspect 4511(1 is the first parameter or active local variable, and so on, 4512until the last active local variable). 4513<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack 4514and returns its name. 4515 4516 4517<p> 4518Variable names starting with '<code>(</code>' (open parentheses) 4519represent internal variables 4520(loop control variables, temporaries, and C function locals). 4521 4522 4523<p> 4524Returns <code>NULL</code> (and pushes nothing) 4525when the index is greater than 4526the number of active local variables. 4527 4528 4529 4530 4531 4532<hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p> 4533<span class="apii">[-0, +0, <em>-</em>]</span> 4534<pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre> 4535 4536<p> 4537Get information about the interpreter runtime stack. 4538 4539 4540<p> 4541This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with 4542an identification of the <em>activation record</em> 4543of the function executing at a given level. 4544Level 0 is the current running function, 4545whereas level <em>n+1</em> is the function that has called level <em>n</em>. 4546When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1; 4547when called with a level greater than the stack depth, 4548it returns 0. 4549 4550 4551 4552 4553 4554<hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p> 4555<span class="apii">[-0, +(0|1), <em>-</em>]</span> 4556<pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre> 4557 4558<p> 4559Gets information about a closure's upvalue. 4560(For Lua functions, 4561upvalues are the external local variables that the function uses, 4562and that are consequently included in its closure.) 4563<a href="#lua_getupvalue"><code>lua_getupvalue</code></a> gets the index <code>n</code> of an upvalue, 4564pushes the upvalue's value onto the stack, 4565and returns its name. 4566<code>funcindex</code> points to the closure in the stack. 4567(Upvalues have no particular order, 4568as they are active through the whole function. 4569So, they are numbered in an arbitrary order.) 4570 4571 4572<p> 4573Returns <code>NULL</code> (and pushes nothing) 4574when the index is greater than the number of upvalues. 4575For C functions, this function uses the empty string <code>""</code> 4576as a name for all upvalues. 4577 4578 4579 4580 4581 4582<hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3> 4583<pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre> 4584 4585<p> 4586Type for debugging hook functions. 4587 4588 4589<p> 4590Whenever a hook is called, its <code>ar</code> argument has its field 4591<code>event</code> set to the specific event that triggered the hook. 4592Lua identifies these events with the following constants: 4593<a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>, 4594<a name="pdf-LUA_HOOKTAILRET"><code>LUA_HOOKTAILRET</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>, 4595and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>. 4596Moreover, for line events, the field <code>currentline</code> is also set. 4597To get the value of any other field in <code>ar</code>, 4598the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>. 4599For return events, <code>event</code> can be <code>LUA_HOOKRET</code>, 4600the normal value, or <code>LUA_HOOKTAILRET</code>. 4601In the latter case, Lua is simulating a return from 4602a function that did a tail call; 4603in this case, it is useless to call <a href="#lua_getinfo"><code>lua_getinfo</code></a>. 4604 4605 4606<p> 4607While Lua is running a hook, it disables other calls to hooks. 4608Therefore, if a hook calls back Lua to execute a function or a chunk, 4609this execution occurs without any calls to hooks. 4610 4611 4612 4613 4614 4615<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p> 4616<span class="apii">[-0, +0, <em>-</em>]</span> 4617<pre>int lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre> 4618 4619<p> 4620Sets the debugging hook function. 4621 4622 4623<p> 4624Argument <code>f</code> is the hook function. 4625<code>mask</code> specifies on which events the hook will be called: 4626it is formed by a bitwise or of the constants 4627<a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>, 4628<a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>, 4629<a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>, 4630and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>. 4631The <code>count</code> argument is only meaningful when the mask 4632includes <code>LUA_MASKCOUNT</code>. 4633For each event, the hook is called as explained below: 4634 4635<ul> 4636 4637<li><b>The call hook:</b> is called when the interpreter calls a function. 4638The hook is called just after Lua enters the new function, 4639before the function gets its arguments. 4640</li> 4641 4642<li><b>The return hook:</b> is called when the interpreter returns from a function. 4643The hook is called just before Lua leaves the function. 4644You have no access to the values to be returned by the function. 4645</li> 4646 4647<li><b>The line hook:</b> is called when the interpreter is about to 4648start the execution of a new line of code, 4649or when it jumps back in the code (even to the same line). 4650(This event only happens while Lua is executing a Lua function.) 4651</li> 4652 4653<li><b>The count hook:</b> is called after the interpreter executes every 4654<code>count</code> instructions. 4655(This event only happens while Lua is executing a Lua function.) 4656</li> 4657 4658</ul> 4659 4660<p> 4661A hook is disabled by setting <code>mask</code> to zero. 4662 4663 4664 4665 4666 4667<hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p> 4668<span class="apii">[-(0|1), +0, <em>-</em>]</span> 4669<pre>const char *lua_setlocal (lua_State *L, lua_Debug *ar, int n);</pre> 4670 4671<p> 4672Sets the value of a local variable of a given activation record. 4673Parameters <code>ar</code> and <code>n</code> are as in <a href="#lua_getlocal"><code>lua_getlocal</code></a> 4674(see <a href="#lua_getlocal"><code>lua_getlocal</code></a>). 4675<a href="#lua_setlocal"><code>lua_setlocal</code></a> assigns the value at the top of the stack 4676to the variable and returns its name. 4677It also pops the value from the stack. 4678 4679 4680<p> 4681Returns <code>NULL</code> (and pops nothing) 4682when the index is greater than 4683the number of active local variables. 4684 4685 4686 4687 4688 4689<hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p> 4690<span class="apii">[-(0|1), +0, <em>-</em>]</span> 4691<pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre> 4692 4693<p> 4694Sets the value of a closure's upvalue. 4695It assigns the value at the top of the stack 4696to the upvalue and returns its name. 4697It also pops the value from the stack. 4698Parameters <code>funcindex</code> and <code>n</code> are as in the <a href="#lua_getupvalue"><code>lua_getupvalue</code></a> 4699(see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>). 4700 4701 4702<p> 4703Returns <code>NULL</code> (and pops nothing) 4704when the index is greater than the number of upvalues. 4705 4706 4707 4708 4709 4710 4711 4712<h1>4 - <a name="4">The Auxiliary Library</a></h1> 4713 4714<p> 4715 4716The <em>auxiliary library</em> provides several convenient functions 4717to interface C with Lua. 4718While the basic API provides the primitive functions for all 4719interactions between C and Lua, 4720the auxiliary library provides higher-level functions for some 4721common tasks. 4722 4723 4724<p> 4725All functions from the auxiliary library 4726are defined in header file <code>lauxlib.h</code> and 4727have a prefix <code>luaL_</code>. 4728 4729 4730<p> 4731All functions in the auxiliary library are built on 4732top of the basic API, 4733and so they provide nothing that cannot be done with this API. 4734 4735 4736<p> 4737Several functions in the auxiliary library are used to 4738check C function arguments. 4739Their names are always <code>luaL_check*</code> or <code>luaL_opt*</code>. 4740All of these functions throw an error if the check is not satisfied. 4741Because the error message is formatted for arguments 4742(e.g., "<code>bad argument #1</code>"), 4743you should not use these functions for other stack values. 4744 4745 4746 4747<h2>4.1 - <a name="4.1">Functions and Types</a></h2> 4748 4749<p> 4750Here we list all functions and types from the auxiliary library 4751in alphabetical order. 4752 4753 4754 4755<hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p> 4756<span class="apii">[-0, +0, <em>m</em>]</span> 4757<pre>void luaL_addchar (luaL_Buffer *B, char c);</pre> 4758 4759<p> 4760Adds the character <code>c</code> to the buffer <code>B</code> 4761(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 4762 4763 4764 4765 4766 4767<hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p> 4768<span class="apii">[-0, +0, <em>m</em>]</span> 4769<pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre> 4770 4771<p> 4772Adds the string pointed to by <code>s</code> with length <code>l</code> to 4773the buffer <code>B</code> 4774(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 4775The string may contain embedded zeros. 4776 4777 4778 4779 4780 4781<hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p> 4782<span class="apii">[-0, +0, <em>m</em>]</span> 4783<pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre> 4784 4785<p> 4786Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>) 4787a string of length <code>n</code> previously copied to the 4788buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>). 4789 4790 4791 4792 4793 4794<hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p> 4795<span class="apii">[-0, +0, <em>m</em>]</span> 4796<pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre> 4797 4798<p> 4799Adds the zero-terminated string pointed to by <code>s</code> 4800to the buffer <code>B</code> 4801(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 4802The string may not contain embedded zeros. 4803 4804 4805 4806 4807 4808<hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p> 4809<span class="apii">[-1, +0, <em>m</em>]</span> 4810<pre>void luaL_addvalue (luaL_Buffer *B);</pre> 4811 4812<p> 4813Adds the value at the top of the stack 4814to the buffer <code>B</code> 4815(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 4816Pops the value. 4817 4818 4819<p> 4820This is the only function on string buffers that can (and must) 4821be called with an extra element on the stack, 4822which is the value to be added to the buffer. 4823 4824 4825 4826 4827 4828<hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p> 4829<span class="apii">[-0, +0, <em>v</em>]</span> 4830<pre>void luaL_argcheck (lua_State *L, 4831 int cond, 4832 int narg, 4833 const char *extramsg);</pre> 4834 4835<p> 4836Checks whether <code>cond</code> is true. 4837If not, raises an error with the following message, 4838where <code>func</code> is retrieved from the call stack: 4839 4840<pre> 4841 bad argument #<narg> to <func> (<extramsg>) 4842</pre> 4843 4844 4845 4846 4847<hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p> 4848<span class="apii">[-0, +0, <em>v</em>]</span> 4849<pre>int luaL_argerror (lua_State *L, int narg, const char *extramsg);</pre> 4850 4851<p> 4852Raises an error with the following message, 4853where <code>func</code> is retrieved from the call stack: 4854 4855<pre> 4856 bad argument #<narg> to <func> (<extramsg>) 4857</pre> 4858 4859<p> 4860This function never returns, 4861but it is an idiom to use it in C functions 4862as <code>return luaL_argerror(<em>args</em>)</code>. 4863 4864 4865 4866 4867 4868<hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3> 4869<pre>typedef struct luaL_Buffer luaL_Buffer;</pre> 4870 4871<p> 4872Type for a <em>string buffer</em>. 4873 4874 4875<p> 4876A string buffer allows C code to build Lua strings piecemeal. 4877Its pattern of use is as follows: 4878 4879<ul> 4880 4881<li>First you declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li> 4882 4883<li>Then you initialize it with a call <code>luaL_buffinit(L, &b)</code>.</li> 4884 4885<li> 4886Then you add string pieces to the buffer calling any of 4887the <code>luaL_add*</code> functions. 4888</li> 4889 4890<li> 4891You finish by calling <code>luaL_pushresult(&b)</code>. 4892This call leaves the final string on the top of the stack. 4893</li> 4894 4895</ul> 4896 4897<p> 4898During its normal operation, 4899a string buffer uses a variable number of stack slots. 4900So, while using a buffer, you cannot assume that you know where 4901the top of the stack is. 4902You can use the stack between successive calls to buffer operations 4903as long as that use is balanced; 4904that is, 4905when you call a buffer operation, 4906the stack is at the same level 4907it was immediately after the previous buffer operation. 4908(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.) 4909After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its 4910level when the buffer was initialized, 4911plus the final string on its top. 4912 4913 4914 4915 4916 4917<hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p> 4918<span class="apii">[-0, +0, <em>-</em>]</span> 4919<pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre> 4920 4921<p> 4922Initializes a buffer <code>B</code>. 4923This function does not allocate any space; 4924the buffer must be declared as a variable 4925(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 4926 4927 4928 4929 4930 4931<hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p> 4932<span class="apii">[-0, +(0|1), <em>e</em>]</span> 4933<pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre> 4934 4935<p> 4936Calls a metamethod. 4937 4938 4939<p> 4940If the object at index <code>obj</code> has a metatable and this 4941metatable has a field <code>e</code>, 4942this function calls this field and passes the object as its only argument. 4943In this case this function returns 1 and pushes onto the 4944stack the value returned by the call. 4945If there is no metatable or no metamethod, 4946this function returns 0 (without pushing any value on the stack). 4947 4948 4949 4950 4951 4952<hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p> 4953<span class="apii">[-0, +0, <em>v</em>]</span> 4954<pre>void luaL_checkany (lua_State *L, int narg);</pre> 4955 4956<p> 4957Checks whether the function has an argument 4958of any type (including <b>nil</b>) at position <code>narg</code>. 4959 4960 4961 4962 4963 4964<hr><h3><a name="luaL_checkint"><code>luaL_checkint</code></a></h3><p> 4965<span class="apii">[-0, +0, <em>v</em>]</span> 4966<pre>int luaL_checkint (lua_State *L, int narg);</pre> 4967 4968<p> 4969Checks whether the function argument <code>narg</code> is a number 4970and returns this number cast to an <code>int</code>. 4971 4972 4973 4974 4975 4976<hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p> 4977<span class="apii">[-0, +0, <em>v</em>]</span> 4978<pre>lua_Integer luaL_checkinteger (lua_State *L, int narg);</pre> 4979 4980<p> 4981Checks whether the function argument <code>narg</code> is a number 4982and returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>. 4983 4984 4985 4986 4987 4988<hr><h3><a name="luaL_checklong"><code>luaL_checklong</code></a></h3><p> 4989<span class="apii">[-0, +0, <em>v</em>]</span> 4990<pre>long luaL_checklong (lua_State *L, int narg);</pre> 4991 4992<p> 4993Checks whether the function argument <code>narg</code> is a number 4994and returns this number cast to a <code>long</code>. 4995 4996 4997 4998 4999 5000<hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p> 5001<span class="apii">[-0, +0, <em>v</em>]</span> 5002<pre>const char *luaL_checklstring (lua_State *L, int narg, size_t *l);</pre> 5003 5004<p> 5005Checks whether the function argument <code>narg</code> is a string 5006and returns this string; 5007if <code>l</code> is not <code>NULL</code> fills <code>*l</code> 5008with the string's length. 5009 5010 5011<p> 5012This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result, 5013so all conversions and caveats of that function apply here. 5014 5015 5016 5017 5018 5019<hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p> 5020<span class="apii">[-0, +0, <em>v</em>]</span> 5021<pre>lua_Number luaL_checknumber (lua_State *L, int narg);</pre> 5022 5023<p> 5024Checks whether the function argument <code>narg</code> is a number 5025and returns this number. 5026 5027 5028 5029 5030 5031<hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p> 5032<span class="apii">[-0, +0, <em>v</em>]</span> 5033<pre>int luaL_checkoption (lua_State *L, 5034 int narg, 5035 const char *def, 5036 const char *const lst[]);</pre> 5037 5038<p> 5039Checks whether the function argument <code>narg</code> is a string and 5040searches for this string in the array <code>lst</code> 5041(which must be NULL-terminated). 5042Returns the index in the array where the string was found. 5043Raises an error if the argument is not a string or 5044if the string cannot be found. 5045 5046 5047<p> 5048If <code>def</code> is not <code>NULL</code>, 5049the function uses <code>def</code> as a default value when 5050there is no argument <code>narg</code> or if this argument is <b>nil</b>. 5051 5052 5053<p> 5054This is a useful function for mapping strings to C enums. 5055(The usual convention in Lua libraries is 5056to use strings instead of numbers to select options.) 5057 5058 5059 5060 5061 5062<hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p> 5063<span class="apii">[-0, +0, <em>v</em>]</span> 5064<pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre> 5065 5066<p> 5067Grows the stack size to <code>top + sz</code> elements, 5068raising an error if the stack cannot grow to that size. 5069<code>msg</code> is an additional text to go into the error message. 5070 5071 5072 5073 5074 5075<hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p> 5076<span class="apii">[-0, +0, <em>v</em>]</span> 5077<pre>const char *luaL_checkstring (lua_State *L, int narg);</pre> 5078 5079<p> 5080Checks whether the function argument <code>narg</code> is a string 5081and returns this string. 5082 5083 5084<p> 5085This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result, 5086so all conversions and caveats of that function apply here. 5087 5088 5089 5090 5091 5092<hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p> 5093<span class="apii">[-0, +0, <em>v</em>]</span> 5094<pre>void luaL_checktype (lua_State *L, int narg, int t);</pre> 5095 5096<p> 5097Checks whether the function argument <code>narg</code> has type <code>t</code>. 5098See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>. 5099 5100 5101 5102 5103 5104<hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p> 5105<span class="apii">[-0, +0, <em>v</em>]</span> 5106<pre>void *luaL_checkudata (lua_State *L, int narg, const char *tname);</pre> 5107 5108<p> 5109Checks whether the function argument <code>narg</code> is a userdata 5110of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>). 5111 5112 5113 5114 5115 5116<hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p> 5117<span class="apii">[-0, +?, <em>m</em>]</span> 5118<pre>int luaL_dofile (lua_State *L, const char *filename);</pre> 5119 5120<p> 5121Loads and runs the given file. 5122It is defined as the following macro: 5123 5124<pre> 5125 (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0)) 5126</pre><p> 5127It returns 0 if there are no errors 5128or 1 in case of errors. 5129 5130 5131 5132 5133 5134<hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p> 5135<span class="apii">[-0, +?, <em>m</em>]</span> 5136<pre>int luaL_dostring (lua_State *L, const char *str);</pre> 5137 5138<p> 5139Loads and runs the given string. 5140It is defined as the following macro: 5141 5142<pre> 5143 (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0)) 5144</pre><p> 5145It returns 0 if there are no errors 5146or 1 in case of errors. 5147 5148 5149 5150 5151 5152<hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p> 5153<span class="apii">[-0, +0, <em>v</em>]</span> 5154<pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre> 5155 5156<p> 5157Raises an error. 5158The error message format is given by <code>fmt</code> 5159plus any extra arguments, 5160following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>. 5161It also adds at the beginning of the message the file name and 5162the line number where the error occurred, 5163if this information is available. 5164 5165 5166<p> 5167This function never returns, 5168but it is an idiom to use it in C functions 5169as <code>return luaL_error(<em>args</em>)</code>. 5170 5171 5172 5173 5174 5175<hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p> 5176<span class="apii">[-0, +(0|1), <em>m</em>]</span> 5177<pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre> 5178 5179<p> 5180Pushes onto the stack the field <code>e</code> from the metatable 5181of the object at index <code>obj</code>. 5182If the object does not have a metatable, 5183or if the metatable does not have this field, 5184returns 0 and pushes nothing. 5185 5186 5187 5188 5189 5190<hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p> 5191<span class="apii">[-0, +1, <em>-</em>]</span> 5192<pre>void luaL_getmetatable (lua_State *L, const char *tname);</pre> 5193 5194<p> 5195Pushes onto the stack the metatable associated with name <code>tname</code> 5196in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>). 5197 5198 5199 5200 5201 5202<hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p> 5203<span class="apii">[-0, +1, <em>m</em>]</span> 5204<pre>const char *luaL_gsub (lua_State *L, 5205 const char *s, 5206 const char *p, 5207 const char *r);</pre> 5208 5209<p> 5210Creates a copy of string <code>s</code> by replacing 5211any occurrence of the string <code>p</code> 5212with the string <code>r</code>. 5213Pushes the resulting string on the stack and returns it. 5214 5215 5216 5217 5218 5219<hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p> 5220<span class="apii">[-0, +1, <em>m</em>]</span> 5221<pre>int luaL_loadbuffer (lua_State *L, 5222 const char *buff, 5223 size_t sz, 5224 const char *name);</pre> 5225 5226<p> 5227Loads a buffer as a Lua chunk. 5228This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the 5229buffer pointed to by <code>buff</code> with size <code>sz</code>. 5230 5231 5232<p> 5233This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>. 5234<code>name</code> is the chunk name, 5235used for debug information and error messages. 5236 5237 5238 5239 5240 5241<hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p> 5242<span class="apii">[-0, +1, <em>m</em>]</span> 5243<pre>int luaL_loadfile (lua_State *L, const char *filename);</pre> 5244 5245<p> 5246Loads a file as a Lua chunk. 5247This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file 5248named <code>filename</code>. 5249If <code>filename</code> is <code>NULL</code>, 5250then it loads from the standard input. 5251The first line in the file is ignored if it starts with a <code>#</code>. 5252 5253 5254<p> 5255This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>, 5256but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a> 5257if it cannot open/read the file. 5258 5259 5260<p> 5261As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk; 5262it does not run it. 5263 5264 5265 5266 5267 5268<hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p> 5269<span class="apii">[-0, +1, <em>m</em>]</span> 5270<pre>int luaL_loadstring (lua_State *L, const char *s);</pre> 5271 5272<p> 5273Loads a string as a Lua chunk. 5274This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in 5275the zero-terminated string <code>s</code>. 5276 5277 5278<p> 5279This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>. 5280 5281 5282<p> 5283Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk; 5284it does not run it. 5285 5286 5287 5288 5289 5290<hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p> 5291<span class="apii">[-0, +1, <em>m</em>]</span> 5292<pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre> 5293 5294<p> 5295If the registry already has the key <code>tname</code>, 5296returns 0. 5297Otherwise, 5298creates a new table to be used as a metatable for userdata, 5299adds it to the registry with key <code>tname</code>, 5300and returns 1. 5301 5302 5303<p> 5304In both cases pushes onto the stack the final value associated 5305with <code>tname</code> in the registry. 5306 5307 5308 5309 5310 5311<hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p> 5312<span class="apii">[-0, +0, <em>-</em>]</span> 5313<pre>lua_State *luaL_newstate (void);</pre> 5314 5315<p> 5316Creates a new Lua state. 5317It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an 5318allocator based on the standard C <code>realloc</code> function 5319and then sets a panic function (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>) that prints 5320an error message to the standard error output in case of fatal 5321errors. 5322 5323 5324<p> 5325Returns the new state, 5326or <code>NULL</code> if there is a memory allocation error. 5327 5328 5329 5330 5331 5332<hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p> 5333<span class="apii">[-0, +0, <em>m</em>]</span> 5334<pre>void luaL_openlibs (lua_State *L);</pre> 5335 5336<p> 5337Opens all standard Lua libraries into the given state. 5338 5339 5340 5341 5342 5343<hr><h3><a name="luaL_optint"><code>luaL_optint</code></a></h3><p> 5344<span class="apii">[-0, +0, <em>v</em>]</span> 5345<pre>int luaL_optint (lua_State *L, int narg, int d);</pre> 5346 5347<p> 5348If the function argument <code>narg</code> is a number, 5349returns this number cast to an <code>int</code>. 5350If this argument is absent or is <b>nil</b>, 5351returns <code>d</code>. 5352Otherwise, raises an error. 5353 5354 5355 5356 5357 5358<hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p> 5359<span class="apii">[-0, +0, <em>v</em>]</span> 5360<pre>lua_Integer luaL_optinteger (lua_State *L, 5361 int narg, 5362 lua_Integer d);</pre> 5363 5364<p> 5365If the function argument <code>narg</code> is a number, 5366returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>. 5367If this argument is absent or is <b>nil</b>, 5368returns <code>d</code>. 5369Otherwise, raises an error. 5370 5371 5372 5373 5374 5375<hr><h3><a name="luaL_optlong"><code>luaL_optlong</code></a></h3><p> 5376<span class="apii">[-0, +0, <em>v</em>]</span> 5377<pre>long luaL_optlong (lua_State *L, int narg, long d);</pre> 5378 5379<p> 5380If the function argument <code>narg</code> is a number, 5381returns this number cast to a <code>long</code>. 5382If this argument is absent or is <b>nil</b>, 5383returns <code>d</code>. 5384Otherwise, raises an error. 5385 5386 5387 5388 5389 5390<hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p> 5391<span class="apii">[-0, +0, <em>v</em>]</span> 5392<pre>const char *luaL_optlstring (lua_State *L, 5393 int narg, 5394 const char *d, 5395 size_t *l);</pre> 5396 5397<p> 5398If the function argument <code>narg</code> is a string, 5399returns this string. 5400If this argument is absent or is <b>nil</b>, 5401returns <code>d</code>. 5402Otherwise, raises an error. 5403 5404 5405<p> 5406If <code>l</code> is not <code>NULL</code>, 5407fills the position <code>*l</code> with the results's length. 5408 5409 5410 5411 5412 5413<hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p> 5414<span class="apii">[-0, +0, <em>v</em>]</span> 5415<pre>lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number d);</pre> 5416 5417<p> 5418If the function argument <code>narg</code> is a number, 5419returns this number. 5420If this argument is absent or is <b>nil</b>, 5421returns <code>d</code>. 5422Otherwise, raises an error. 5423 5424 5425 5426 5427 5428<hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p> 5429<span class="apii">[-0, +0, <em>v</em>]</span> 5430<pre>const char *luaL_optstring (lua_State *L, 5431 int narg, 5432 const char *d);</pre> 5433 5434<p> 5435If the function argument <code>narg</code> is a string, 5436returns this string. 5437If this argument is absent or is <b>nil</b>, 5438returns <code>d</code>. 5439Otherwise, raises an error. 5440 5441 5442 5443 5444 5445<hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p> 5446<span class="apii">[-0, +0, <em>-</em>]</span> 5447<pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre> 5448 5449<p> 5450Returns an address to a space of size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a> 5451where you can copy a string to be added to buffer <code>B</code> 5452(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5453After copying the string into this space you must call 5454<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add 5455it to the buffer. 5456 5457 5458 5459 5460 5461<hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p> 5462<span class="apii">[-?, +1, <em>m</em>]</span> 5463<pre>void luaL_pushresult (luaL_Buffer *B);</pre> 5464 5465<p> 5466Finishes the use of buffer <code>B</code> leaving the final string on 5467the top of the stack. 5468 5469 5470 5471 5472 5473<hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p> 5474<span class="apii">[-1, +0, <em>m</em>]</span> 5475<pre>int luaL_ref (lua_State *L, int t);</pre> 5476 5477<p> 5478Creates and returns a <em>reference</em>, 5479in the table at index <code>t</code>, 5480for the object at the top of the stack (and pops the object). 5481 5482 5483<p> 5484A reference is a unique integer key. 5485As long as you do not manually add integer keys into table <code>t</code>, 5486<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns. 5487You can retrieve an object referred by reference <code>r</code> 5488by calling <code>lua_rawgeti(L, t, r)</code>. 5489Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object. 5490 5491 5492<p> 5493If the object at the top of the stack is <b>nil</b>, 5494<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>. 5495The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different 5496from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>. 5497 5498 5499 5500 5501 5502<hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3> 5503<pre>typedef struct luaL_Reg { 5504 const char *name; 5505 lua_CFunction func; 5506} luaL_Reg;</pre> 5507 5508<p> 5509Type for arrays of functions to be registered by 5510<a href="#luaL_register"><code>luaL_register</code></a>. 5511<code>name</code> is the function name and <code>func</code> is a pointer to 5512the function. 5513Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with an sentinel entry 5514in which both <code>name</code> and <code>func</code> are <code>NULL</code>. 5515 5516 5517 5518 5519 5520<hr><h3><a name="luaL_register"><code>luaL_register</code></a></h3><p> 5521<span class="apii">[-(0|1), +1, <em>m</em>]</span> 5522<pre>void luaL_register (lua_State *L, 5523 const char *libname, 5524 const luaL_Reg *l);</pre> 5525 5526<p> 5527Opens a library. 5528 5529 5530<p> 5531When called with <code>libname</code> equal to <code>NULL</code>, 5532it simply registers all functions in the list <code>l</code> 5533(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack. 5534 5535 5536<p> 5537When called with a non-null <code>libname</code>, 5538<code>luaL_register</code> creates a new table <code>t</code>, 5539sets it as the value of the global variable <code>libname</code>, 5540sets it as the value of <code>package.loaded[libname]</code>, 5541and registers on it all functions in the list <code>l</code>. 5542If there is a table in <code>package.loaded[libname]</code> or in 5543variable <code>libname</code>, 5544reuses this table instead of creating a new one. 5545 5546 5547<p> 5548In any case the function leaves the table 5549on the top of the stack. 5550 5551 5552 5553 5554 5555<hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p> 5556<span class="apii">[-0, +0, <em>-</em>]</span> 5557<pre>const char *luaL_typename (lua_State *L, int index);</pre> 5558 5559<p> 5560Returns the name of the type of the value at the given index. 5561 5562 5563 5564 5565 5566<hr><h3><a name="luaL_typerror"><code>luaL_typerror</code></a></h3><p> 5567<span class="apii">[-0, +0, <em>v</em>]</span> 5568<pre>int luaL_typerror (lua_State *L, int narg, const char *tname);</pre> 5569 5570<p> 5571Generates an error with a message like the following: 5572 5573<pre> 5574 <em>location</em>: bad argument <em>narg</em> to '<em>func</em>' (<em>tname</em> expected, got <em>rt</em>) 5575</pre><p> 5576where <code><em>location</em></code> is produced by <a href="#luaL_where"><code>luaL_where</code></a>, 5577<code><em>func</em></code> is the name of the current function, 5578and <code><em>rt</em></code> is the type name of the actual argument. 5579 5580 5581 5582 5583 5584<hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p> 5585<span class="apii">[-0, +0, <em>-</em>]</span> 5586<pre>void luaL_unref (lua_State *L, int t, int ref);</pre> 5587 5588<p> 5589Releases reference <code>ref</code> from the table at index <code>t</code> 5590(see <a href="#luaL_ref"><code>luaL_ref</code></a>). 5591The entry is removed from the table, 5592so that the referred object can be collected. 5593The reference <code>ref</code> is also freed to be used again. 5594 5595 5596<p> 5597If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>, 5598<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing. 5599 5600 5601 5602 5603 5604<hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p> 5605<span class="apii">[-0, +1, <em>m</em>]</span> 5606<pre>void luaL_where (lua_State *L, int lvl);</pre> 5607 5608<p> 5609Pushes onto the stack a string identifying the current position 5610of the control at level <code>lvl</code> in the call stack. 5611Typically this string has the following format: 5612 5613<pre> 5614 <em>chunkname</em>:<em>currentline</em>: 5615</pre><p> 5616Level 0 is the running function, 5617level 1 is the function that called the running function, 5618etc. 5619 5620 5621<p> 5622This function is used to build a prefix for error messages. 5623 5624 5625 5626 5627 5628 5629 5630<h1>5 - <a name="5">Standard Libraries</a></h1> 5631 5632<p> 5633The standard Lua libraries provide useful functions 5634that are implemented directly through the C API. 5635Some of these functions provide essential services to the language 5636(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>); 5637others provide access to "outside" services (e.g., I/O); 5638and others could be implemented in Lua itself, 5639but are quite useful or have critical performance requirements that 5640deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>). 5641 5642 5643<p> 5644All libraries are implemented through the official C API 5645and are provided as separate C modules. 5646Currently, Lua has the following standard libraries: 5647 5648<ul> 5649 5650<li>basic library, which includes the coroutine sub-library;</li> 5651 5652<li>package library;</li> 5653 5654<li>string manipulation;</li> 5655 5656<li>table manipulation;</li> 5657 5658<li>mathematical functions (sin, log, etc.);</li> 5659 5660<li>input and output;</li> 5661 5662<li>operating system facilities;</li> 5663 5664<li>debug facilities.</li> 5665 5666</ul><p> 5667Except for the basic and package libraries, 5668each library provides all its functions as fields of a global table 5669or as methods of its objects. 5670 5671 5672<p> 5673To have access to these libraries, 5674the C host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function, 5675which opens all standard libraries. 5676Alternatively, 5677it can open them individually by calling 5678<a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library), 5679<a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library), 5680<a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library), 5681<a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library), 5682<a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library), 5683<a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library), 5684<a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the Operating System library), 5685and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library). 5686These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a> 5687and should not be called directly: 5688you must call them like any other Lua C function, 5689e.g., by using <a href="#lua_call"><code>lua_call</code></a>. 5690 5691 5692 5693<h2>5.1 - <a name="5.1">Basic Functions</a></h2> 5694 5695<p> 5696The basic library provides some core functions to Lua. 5697If you do not include this library in your application, 5698you should check carefully whether you need to provide 5699implementations for some of its facilities. 5700 5701 5702<p> 5703<hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3> 5704Issues an error when 5705the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>); 5706otherwise, returns all its arguments. 5707<code>message</code> is an error message; 5708when absent, it defaults to "assertion failed!" 5709 5710 5711 5712 5713<p> 5714<hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3> 5715 5716 5717<p> 5718This function is a generic interface to the garbage collector. 5719It performs different functions according to its first argument, <code>opt</code>: 5720 5721<ul> 5722 5723<li><b>"collect":</b> 5724performs a full garbage-collection cycle. 5725This is the default option. 5726</li> 5727 5728<li><b>"stop":</b> 5729stops the garbage collector. 5730</li> 5731 5732<li><b>"restart":</b> 5733restarts the garbage collector. 5734</li> 5735 5736<li><b>"count":</b> 5737returns the total memory in use by Lua (in Kbytes). 5738</li> 5739 5740<li><b>"step":</b> 5741performs a garbage-collection step. 5742The step "size" is controlled by <code>arg</code> 5743(larger values mean more steps) in a non-specified way. 5744If you want to control the step size 5745you must experimentally tune the value of <code>arg</code>. 5746Returns <b>true</b> if the step finished a collection cycle. 5747</li> 5748 5749<li><b>"setpause":</b> 5750sets <code>arg</code> as the new value for the <em>pause</em> of 5751the collector (see <a href="#2.10">§2.10</a>). 5752Returns the previous value for <em>pause</em>. 5753</li> 5754 5755<li><b>"setstepmul":</b> 5756sets <code>arg</code> as the new value for the <em>step multiplier</em> of 5757the collector (see <a href="#2.10">§2.10</a>). 5758Returns the previous value for <em>step</em>. 5759</li> 5760 5761</ul> 5762 5763 5764 5765<p> 5766<hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3> 5767Opens the named file and executes its contents as a Lua chunk. 5768When called without arguments, 5769<code>dofile</code> executes the contents of the standard input (<code>stdin</code>). 5770Returns all values returned by the chunk. 5771In case of errors, <code>dofile</code> propagates the error 5772to its caller (that is, <code>dofile</code> does not run in protected mode). 5773 5774 5775 5776 5777<p> 5778<hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3> 5779Terminates the last protected function called 5780and returns <code>message</code> as the error message. 5781Function <code>error</code> never returns. 5782 5783 5784<p> 5785Usually, <code>error</code> adds some information about the error position 5786at the beginning of the message. 5787The <code>level</code> argument specifies how to get the error position. 5788With level 1 (the default), the error position is where the 5789<code>error</code> function was called. 5790Level 2 points the error to where the function 5791that called <code>error</code> was called; and so on. 5792Passing a level 0 avoids the addition of error position information 5793to the message. 5794 5795 5796 5797 5798<p> 5799<hr><h3><a name="pdf-_G"><code>_G</code></a></h3> 5800A global variable (not a function) that 5801holds the global environment (that is, <code>_G._G = _G</code>). 5802Lua itself does not use this variable; 5803changing its value does not affect any environment, 5804nor vice-versa. 5805(Use <a href="#pdf-setfenv"><code>setfenv</code></a> to change environments.) 5806 5807 5808 5809 5810<p> 5811<hr><h3><a name="pdf-getfenv"><code>getfenv ([f])</code></a></h3> 5812Returns the current environment in use by the function. 5813<code>f</code> can be a Lua function or a number 5814that specifies the function at that stack level: 5815Level 1 is the function calling <code>getfenv</code>. 5816If the given function is not a Lua function, 5817or if <code>f</code> is 0, 5818<code>getfenv</code> returns the global environment. 5819The default for <code>f</code> is 1. 5820 5821 5822 5823 5824<p> 5825<hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3> 5826 5827 5828<p> 5829If <code>object</code> does not have a metatable, returns <b>nil</b>. 5830Otherwise, 5831if the object's metatable has a <code>"__metatable"</code> field, 5832returns the associated value. 5833Otherwise, returns the metatable of the given object. 5834 5835 5836 5837 5838<p> 5839<hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3> 5840 5841 5842<p> 5843Returns three values: an iterator function, the table <code>t</code>, and 0, 5844so that the construction 5845 5846<pre> 5847 for i,v in ipairs(t) do <em>body</em> end 5848</pre><p> 5849will iterate over the pairs (<code>1,t[1]</code>), (<code>2,t[2]</code>), ···, 5850up to the first integer key absent from the table. 5851 5852 5853 5854 5855<p> 5856<hr><h3><a name="pdf-load"><code>load (func [, chunkname])</code></a></h3> 5857 5858 5859<p> 5860Loads a chunk using function <code>func</code> to get its pieces. 5861Each call to <code>func</code> must return a string that concatenates 5862with previous results. 5863A return of an empty string, <b>nil</b>, or no value signals the end of the chunk. 5864 5865 5866<p> 5867If there are no errors, 5868returns the compiled chunk as a function; 5869otherwise, returns <b>nil</b> plus the error message. 5870The environment of the returned function is the global environment. 5871 5872 5873<p> 5874<code>chunkname</code> is used as the chunk name for error messages 5875and debug information. 5876When absent, 5877it defaults to "<code>=(load)</code>". 5878 5879 5880 5881 5882<p> 5883<hr><h3><a name="pdf-loadfile"><code>loadfile ([filename])</code></a></h3> 5884 5885 5886<p> 5887Similar to <a href="#pdf-load"><code>load</code></a>, 5888but gets the chunk from file <code>filename</code> 5889or from the standard input, 5890if no file name is given. 5891 5892 5893 5894 5895<p> 5896<hr><h3><a name="pdf-loadstring"><code>loadstring (string [, chunkname])</code></a></h3> 5897 5898 5899<p> 5900Similar to <a href="#pdf-load"><code>load</code></a>, 5901but gets the chunk from the given string. 5902 5903 5904<p> 5905To load and run a given string, use the idiom 5906 5907<pre> 5908 assert(loadstring(s))() 5909</pre> 5910 5911<p> 5912When absent, 5913<code>chunkname</code> defaults to the given string. 5914 5915 5916 5917 5918<p> 5919<hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3> 5920 5921 5922<p> 5923Allows a program to traverse all fields of a table. 5924Its first argument is a table and its second argument 5925is an index in this table. 5926<code>next</code> returns the next index of the table 5927and its associated value. 5928When called with <b>nil</b> as its second argument, 5929<code>next</code> returns an initial index 5930and its associated value. 5931When called with the last index, 5932or with <b>nil</b> in an empty table, 5933<code>next</code> returns <b>nil</b>. 5934If the second argument is absent, then it is interpreted as <b>nil</b>. 5935In particular, 5936you can use <code>next(t)</code> to check whether a table is empty. 5937 5938 5939<p> 5940The order in which the indices are enumerated is not specified, 5941<em>even for numeric indices</em>. 5942(To traverse a table in numeric order, 5943use a numerical <b>for</b> or the <a href="#pdf-ipairs"><code>ipairs</code></a> function.) 5944 5945 5946<p> 5947The behavior of <code>next</code> is <em>undefined</em> if, 5948during the traversal, 5949you assign any value to a non-existent field in the table. 5950You may however modify existing fields. 5951In particular, you may clear existing fields. 5952 5953 5954 5955 5956<p> 5957<hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3> 5958 5959 5960<p> 5961Returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>, 5962so that the construction 5963 5964<pre> 5965 for k,v in pairs(t) do <em>body</em> end 5966</pre><p> 5967will iterate over all key–value pairs of table <code>t</code>. 5968 5969 5970<p> 5971See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying 5972the table during its traversal. 5973 5974 5975 5976 5977<p> 5978<hr><h3><a name="pdf-pcall"><code>pcall (f, arg1, ···)</code></a></h3> 5979 5980 5981<p> 5982Calls function <code>f</code> with 5983the given arguments in <em>protected mode</em>. 5984This means that any error inside <code>f</code> is not propagated; 5985instead, <code>pcall</code> catches the error 5986and returns a status code. 5987Its first result is the status code (a boolean), 5988which is true if the call succeeds without errors. 5989In such case, <code>pcall</code> also returns all results from the call, 5990after this first result. 5991In case of any error, <code>pcall</code> returns <b>false</b> plus the error message. 5992 5993 5994 5995 5996<p> 5997<hr><h3><a name="pdf-print"><code>print (···)</code></a></h3> 5998Receives any number of arguments, 5999and prints their values to <code>stdout</code>, 6000using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert them to strings. 6001<code>print</code> is not intended for formatted output, 6002but only as a quick way to show a value, 6003typically for debugging. 6004For formatted output, use <a href="#pdf-string.format"><code>string.format</code></a>. 6005 6006 6007 6008 6009<p> 6010<hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3> 6011Checks whether <code>v1</code> is equal to <code>v2</code>, 6012without invoking any metamethod. 6013Returns a boolean. 6014 6015 6016 6017 6018<p> 6019<hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3> 6020Gets the real value of <code>table[index]</code>, 6021without invoking any metamethod. 6022<code>table</code> must be a table; 6023<code>index</code> may be any value. 6024 6025 6026 6027 6028<p> 6029<hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3> 6030Sets the real value of <code>table[index]</code> to <code>value</code>, 6031without invoking any metamethod. 6032<code>table</code> must be a table, 6033<code>index</code> any value different from <b>nil</b>, 6034and <code>value</code> any Lua value. 6035 6036 6037<p> 6038This function returns <code>table</code>. 6039 6040 6041 6042 6043<p> 6044<hr><h3><a name="pdf-select"><code>select (index, ···)</code></a></h3> 6045 6046 6047<p> 6048If <code>index</code> is a number, 6049returns all arguments after argument number <code>index</code>. 6050Otherwise, <code>index</code> must be the string <code>"#"</code>, 6051and <code>select</code> returns the total number of extra arguments it received. 6052 6053 6054 6055 6056<p> 6057<hr><h3><a name="pdf-setfenv"><code>setfenv (f, table)</code></a></h3> 6058 6059 6060<p> 6061Sets the environment to be used by the given function. 6062<code>f</code> can be a Lua function or a number 6063that specifies the function at that stack level: 6064Level 1 is the function calling <code>setfenv</code>. 6065<code>setfenv</code> returns the given function. 6066 6067 6068<p> 6069As a special case, when <code>f</code> is 0 <code>setfenv</code> changes 6070the environment of the running thread. 6071In this case, <code>setfenv</code> returns no values. 6072 6073 6074 6075 6076<p> 6077<hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3> 6078 6079 6080<p> 6081Sets the metatable for the given table. 6082(You cannot change the metatable of other types from Lua, only from C.) 6083If <code>metatable</code> is <b>nil</b>, 6084removes the metatable of the given table. 6085If the original metatable has a <code>"__metatable"</code> field, 6086raises an error. 6087 6088 6089<p> 6090This function returns <code>table</code>. 6091 6092 6093 6094 6095<p> 6096<hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3> 6097Tries to convert its argument to a number. 6098If the argument is already a number or a string convertible 6099to a number, then <code>tonumber</code> returns this number; 6100otherwise, it returns <b>nil</b>. 6101 6102 6103<p> 6104An optional argument specifies the base to interpret the numeral. 6105The base may be any integer between 2 and 36, inclusive. 6106In bases above 10, the letter '<code>A</code>' (in either upper or lower case) 6107represents 10, '<code>B</code>' represents 11, and so forth, 6108with '<code>Z</code>' representing 35. 6109In base 10 (the default), the number can have a decimal part, 6110as well as an optional exponent part (see <a href="#2.1">§2.1</a>). 6111In other bases, only unsigned integers are accepted. 6112 6113 6114 6115 6116<p> 6117<hr><h3><a name="pdf-tostring"><code>tostring (e)</code></a></h3> 6118Receives an argument of any type and 6119converts it to a string in a reasonable format. 6120For complete control of how numbers are converted, 6121use <a href="#pdf-string.format"><code>string.format</code></a>. 6122 6123 6124<p> 6125If the metatable of <code>e</code> has a <code>"__tostring"</code> field, 6126then <code>tostring</code> calls the corresponding value 6127with <code>e</code> as argument, 6128and uses the result of the call as its result. 6129 6130 6131 6132 6133<p> 6134<hr><h3><a name="pdf-type"><code>type (v)</code></a></h3> 6135Returns the type of its only argument, coded as a string. 6136The possible results of this function are 6137"<code>nil</code>" (a string, not the value <b>nil</b>), 6138"<code>number</code>", 6139"<code>string</code>", 6140"<code>boolean</code>", 6141"<code>table</code>", 6142"<code>function</code>", 6143"<code>thread</code>", 6144and "<code>userdata</code>". 6145 6146 6147 6148 6149<p> 6150<hr><h3><a name="pdf-unpack"><code>unpack (list [, i [, j]])</code></a></h3> 6151Returns the elements from the given table. 6152This function is equivalent to 6153 6154<pre> 6155 return list[i], list[i+1], ···, list[j] 6156</pre><p> 6157except that the above code can be written only for a fixed number 6158of elements. 6159By default, <code>i</code> is 1 and <code>j</code> is the length of the list, 6160as defined by the length operator (see <a href="#2.5.5">§2.5.5</a>). 6161 6162 6163 6164 6165<p> 6166<hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3> 6167A global variable (not a function) that 6168holds a string containing the current interpreter version. 6169The current contents of this variable is "<code>Lua 5.1</code>". 6170 6171 6172 6173 6174<p> 6175<hr><h3><a name="pdf-xpcall"><code>xpcall (f, err)</code></a></h3> 6176 6177 6178<p> 6179This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>, 6180except that you can set a new error handler. 6181 6182 6183<p> 6184<code>xpcall</code> calls function <code>f</code> in protected mode, 6185using <code>err</code> as the error handler. 6186Any error inside <code>f</code> is not propagated; 6187instead, <code>xpcall</code> catches the error, 6188calls the <code>err</code> function with the original error object, 6189and returns a status code. 6190Its first result is the status code (a boolean), 6191which is true if the call succeeds without errors. 6192In this case, <code>xpcall</code> also returns all results from the call, 6193after this first result. 6194In case of any error, 6195<code>xpcall</code> returns <b>false</b> plus the result from <code>err</code>. 6196 6197 6198 6199 6200 6201 6202 6203<h2>5.2 - <a name="5.2">Coroutine Manipulation</a></h2> 6204 6205<p> 6206The operations related to coroutines comprise a sub-library of 6207the basic library and come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>. 6208See <a href="#2.11">§2.11</a> for a general description of coroutines. 6209 6210 6211<p> 6212<hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3> 6213 6214 6215<p> 6216Creates a new coroutine, with body <code>f</code>. 6217<code>f</code> must be a Lua function. 6218Returns this new coroutine, 6219an object with type <code>"thread"</code>. 6220 6221 6222 6223 6224<p> 6225<hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, ···])</code></a></h3> 6226 6227 6228<p> 6229Starts or continues the execution of coroutine <code>co</code>. 6230The first time you resume a coroutine, 6231it starts running its body. 6232The values <code>val1</code>, ··· are passed 6233as the arguments to the body function. 6234If the coroutine has yielded, 6235<code>resume</code> restarts it; 6236the values <code>val1</code>, ··· are passed 6237as the results from the yield. 6238 6239 6240<p> 6241If the coroutine runs without any errors, 6242<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code> 6243(if the coroutine yields) or any values returned by the body function 6244(if the coroutine terminates). 6245If there is any error, 6246<code>resume</code> returns <b>false</b> plus the error message. 6247 6248 6249 6250 6251<p> 6252<hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3> 6253 6254 6255<p> 6256Returns the running coroutine, 6257or <b>nil</b> when called by the main thread. 6258 6259 6260 6261 6262<p> 6263<hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3> 6264 6265 6266<p> 6267Returns the status of coroutine <code>co</code>, as a string: 6268<code>"running"</code>, 6269if the coroutine is running (that is, it called <code>status</code>); 6270<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>, 6271or if it has not started running yet; 6272<code>"normal"</code> if the coroutine is active but not running 6273(that is, it has resumed another coroutine); 6274and <code>"dead"</code> if the coroutine has finished its body function, 6275or if it has stopped with an error. 6276 6277 6278 6279 6280<p> 6281<hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3> 6282 6283 6284<p> 6285Creates a new coroutine, with body <code>f</code>. 6286<code>f</code> must be a Lua function. 6287Returns a function that resumes the coroutine each time it is called. 6288Any arguments passed to the function behave as the 6289extra arguments to <code>resume</code>. 6290Returns the same values returned by <code>resume</code>, 6291except the first boolean. 6292In case of error, propagates the error. 6293 6294 6295 6296 6297<p> 6298<hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (···)</code></a></h3> 6299 6300 6301<p> 6302Suspends the execution of the calling coroutine. 6303The coroutine cannot be running a C function, 6304a metamethod, or an iterator. 6305Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>. 6306 6307 6308 6309 6310 6311 6312 6313<h2>5.3 - <a name="5.3">Modules</a></h2> 6314 6315<p> 6316The package library provides basic 6317facilities for loading and building modules in Lua. 6318It exports two of its functions directly in the global environment: 6319<a href="#pdf-require"><code>require</code></a> and <a href="#pdf-module"><code>module</code></a>. 6320Everything else is exported in a table <a name="pdf-package"><code>package</code></a>. 6321 6322 6323<p> 6324<hr><h3><a name="pdf-module"><code>module (name [, ···])</code></a></h3> 6325 6326 6327<p> 6328Creates a module. 6329If there is a table in <code>package.loaded[name]</code>, 6330this table is the module. 6331Otherwise, if there is a global table <code>t</code> with the given name, 6332this table is the module. 6333Otherwise creates a new table <code>t</code> and 6334sets it as the value of the global <code>name</code> and 6335the value of <code>package.loaded[name]</code>. 6336This function also initializes <code>t._NAME</code> with the given name, 6337<code>t._M</code> with the module (<code>t</code> itself), 6338and <code>t._PACKAGE</code> with the package name 6339(the full module name minus last component; see below). 6340Finally, <code>module</code> sets <code>t</code> as the new environment 6341of the current function and the new value of <code>package.loaded[name]</code>, 6342so that <a href="#pdf-require"><code>require</code></a> returns <code>t</code>. 6343 6344 6345<p> 6346If <code>name</code> is a compound name 6347(that is, one with components separated by dots), 6348<code>module</code> creates (or reuses, if they already exist) 6349tables for each component. 6350For instance, if <code>name</code> is <code>a.b.c</code>, 6351then <code>module</code> stores the module table in field <code>c</code> of 6352field <code>b</code> of global <code>a</code>. 6353 6354 6355<p> 6356This function can receive optional <em>options</em> after 6357the module name, 6358where each option is a function to be applied over the module. 6359 6360 6361 6362 6363<p> 6364<hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3> 6365 6366 6367<p> 6368Loads the given module. 6369The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table 6370to determine whether <code>modname</code> is already loaded. 6371If it is, then <code>require</code> returns the value stored 6372at <code>package.loaded[modname]</code>. 6373Otherwise, it tries to find a <em>loader</em> for the module. 6374 6375 6376<p> 6377To find a loader, 6378<code>require</code> is guided by the <a href="#pdf-package.loaders"><code>package.loaders</code></a> array. 6379By changing this array, 6380we can change how <code>require</code> looks for a module. 6381The following explanation is based on the default configuration 6382for <a href="#pdf-package.loaders"><code>package.loaders</code></a>. 6383 6384 6385<p> 6386First <code>require</code> queries <code>package.preload[modname]</code>. 6387If it has a value, 6388this value (which should be a function) is the loader. 6389Otherwise <code>require</code> searches for a Lua loader using the 6390path stored in <a href="#pdf-package.path"><code>package.path</code></a>. 6391If that also fails, it searches for a C loader using the 6392path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>. 6393If that also fails, 6394it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.loaders"><code>package.loaders</code></a>). 6395 6396 6397<p> 6398Once a loader is found, 6399<code>require</code> calls the loader with a single argument, <code>modname</code>. 6400If the loader returns any value, 6401<code>require</code> assigns the returned value to <code>package.loaded[modname]</code>. 6402If the loader returns no value and 6403has not assigned any value to <code>package.loaded[modname]</code>, 6404then <code>require</code> assigns <b>true</b> to this entry. 6405In any case, <code>require</code> returns the 6406final value of <code>package.loaded[modname]</code>. 6407 6408 6409<p> 6410If there is any error loading or running the module, 6411or if it cannot find any loader for the module, 6412then <code>require</code> signals an error. 6413 6414 6415 6416 6417<p> 6418<hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3> 6419 6420 6421<p> 6422The path used by <a href="#pdf-require"><code>require</code></a> to search for a C loader. 6423 6424 6425<p> 6426Lua initializes the C path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way 6427it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>, 6428using the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a> 6429or a default path defined in <code>luaconf.h</code>. 6430 6431 6432 6433 6434<p> 6435 6436<hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3> 6437 6438 6439<p> 6440A table used by <a href="#pdf-require"><code>require</code></a> to control which 6441modules are already loaded. 6442When you require a module <code>modname</code> and 6443<code>package.loaded[modname]</code> is not false, 6444<a href="#pdf-require"><code>require</code></a> simply returns the value stored there. 6445 6446 6447 6448 6449<p> 6450<hr><h3><a name="pdf-package.loaders"><code>package.loaders</code></a></h3> 6451 6452 6453<p> 6454A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules. 6455 6456 6457<p> 6458Each entry in this table is a <em>searcher function</em>. 6459When looking for a module, 6460<a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order, 6461with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its 6462sole parameter. 6463The function can return another function (the module <em>loader</em>) 6464or a string explaining why it did not find that module 6465(or <b>nil</b> if it has nothing to say). 6466Lua initializes this table with four functions. 6467 6468 6469<p> 6470The first searcher simply looks for a loader in the 6471<a href="#pdf-package.preload"><code>package.preload</code></a> table. 6472 6473 6474<p> 6475The second searcher looks for a loader as a Lua library, 6476using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>. 6477A path is a sequence of <em>templates</em> separated by semicolons. 6478For each template, 6479the searcher will change each interrogation 6480mark in the template by <code>filename</code>, 6481which is the module name with each dot replaced by a 6482"directory separator" (such as "<code>/</code>" in Unix); 6483then it will try to open the resulting file name. 6484So, for instance, if the Lua path is the string 6485 6486<pre> 6487 "./?.lua;./?.lc;/usr/local/?/init.lua" 6488</pre><p> 6489the search for a Lua file for module <code>foo</code> 6490will try to open the files 6491<code>./foo.lua</code>, <code>./foo.lc</code>, and 6492<code>/usr/local/foo/init.lua</code>, in that order. 6493 6494 6495<p> 6496The third searcher looks for a loader as a C library, 6497using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>. 6498For instance, 6499if the C path is the string 6500 6501<pre> 6502 "./?.so;./?.dll;/usr/local/?/init.so" 6503</pre><p> 6504the searcher for module <code>foo</code> 6505will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>, 6506and <code>/usr/local/foo/init.so</code>, in that order. 6507Once it finds a C library, 6508this searcher first uses a dynamic link facility to link the 6509application with the library. 6510Then it tries to find a C function inside the library to 6511be used as the loader. 6512The name of this C function is the string "<code>luaopen_</code>" 6513concatenated with a copy of the module name where each dot 6514is replaced by an underscore. 6515Moreover, if the module name has a hyphen, 6516its prefix up to (and including) the first hyphen is removed. 6517For instance, if the module name is <code>a.v1-b.c</code>, 6518the function name will be <code>luaopen_b_c</code>. 6519 6520 6521<p> 6522The fourth searcher tries an <em>all-in-one loader</em>. 6523It searches the C path for a library for 6524the root name of the given module. 6525For instance, when requiring <code>a.b.c</code>, 6526it will search for a C library for <code>a</code>. 6527If found, it looks into it for an open function for 6528the submodule; 6529in our example, that would be <code>luaopen_a_b_c</code>. 6530With this facility, a package can pack several C submodules 6531into one single library, 6532with each submodule keeping its original open function. 6533 6534 6535 6536 6537<p> 6538<hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3> 6539 6540 6541<p> 6542Dynamically links the host program with the C library <code>libname</code>. 6543Inside this library, looks for a function <code>funcname</code> 6544and returns this function as a C function. 6545(So, <code>funcname</code> must follow the protocol (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>)). 6546 6547 6548<p> 6549This is a low-level function. 6550It completely bypasses the package and module system. 6551Unlike <a href="#pdf-require"><code>require</code></a>, 6552it does not perform any path searching and 6553does not automatically adds extensions. 6554<code>libname</code> must be the complete file name of the C library, 6555including if necessary a path and extension. 6556<code>funcname</code> must be the exact name exported by the C library 6557(which may depend on the C compiler and linker used). 6558 6559 6560<p> 6561This function is not supported by ANSI C. 6562As such, it is only available on some platforms 6563(Windows, Linux, Mac OS X, Solaris, BSD, 6564plus other Unix systems that support the <code>dlfcn</code> standard). 6565 6566 6567 6568 6569<p> 6570<hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3> 6571 6572 6573<p> 6574The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader. 6575 6576 6577<p> 6578At start-up, Lua initializes this variable with 6579the value of the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or 6580with a default path defined in <code>luaconf.h</code>, 6581if the environment variable is not defined. 6582Any "<code>;;</code>" in the value of the environment variable 6583is replaced by the default path. 6584 6585 6586 6587 6588<p> 6589<hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3> 6590 6591 6592<p> 6593A table to store loaders for specific modules 6594(see <a href="#pdf-require"><code>require</code></a>). 6595 6596 6597 6598 6599<p> 6600<hr><h3><a name="pdf-package.seeall"><code>package.seeall (module)</code></a></h3> 6601 6602 6603<p> 6604Sets a metatable for <code>module</code> with 6605its <code>__index</code> field referring to the global environment, 6606so that this module inherits values 6607from the global environment. 6608To be used as an option to function <a href="#pdf-module"><code>module</code></a>. 6609 6610 6611 6612 6613 6614 6615 6616<h2>5.4 - <a name="5.4">String Manipulation</a></h2> 6617 6618<p> 6619This library provides generic functions for string manipulation, 6620such as finding and extracting substrings, and pattern matching. 6621When indexing a string in Lua, the first character is at position 1 6622(not at 0, as in C). 6623Indices are allowed to be negative and are interpreted as indexing backwards, 6624from the end of the string. 6625Thus, the last character is at position -1, and so on. 6626 6627 6628<p> 6629The string library provides all its functions inside the table 6630<a name="pdf-string"><code>string</code></a>. 6631It also sets a metatable for strings 6632where the <code>__index</code> field points to the <code>string</code> table. 6633Therefore, you can use the string functions in object-oriented style. 6634For instance, <code>string.byte(s, i)</code> 6635can be written as <code>s:byte(i)</code>. 6636 6637 6638<p> 6639The string library assumes one-byte character encodings. 6640 6641 6642<p> 6643<hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3> 6644Returns the internal numerical codes of the characters <code>s[i]</code>, 6645<code>s[i+1]</code>, ···, <code>s[j]</code>. 6646The default value for <code>i</code> is 1; 6647the default value for <code>j</code> is <code>i</code>. 6648 6649 6650<p> 6651Note that numerical codes are not necessarily portable across platforms. 6652 6653 6654 6655 6656<p> 6657<hr><h3><a name="pdf-string.char"><code>string.char (···)</code></a></h3> 6658Receives zero or more integers. 6659Returns a string with length equal to the number of arguments, 6660in which each character has the internal numerical code equal 6661to its corresponding argument. 6662 6663 6664<p> 6665Note that numerical codes are not necessarily portable across platforms. 6666 6667 6668 6669 6670<p> 6671<hr><h3><a name="pdf-string.dump"><code>string.dump (function)</code></a></h3> 6672 6673 6674<p> 6675Returns a string containing a binary representation of the given function, 6676so that a later <a href="#pdf-loadstring"><code>loadstring</code></a> on this string returns 6677a copy of the function. 6678<code>function</code> must be a Lua function without upvalues. 6679 6680 6681 6682 6683<p> 6684<hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3> 6685Looks for the first match of 6686<code>pattern</code> in the string <code>s</code>. 6687If it finds a match, then <code>find</code> returns the indices of <code>s</code> 6688where this occurrence starts and ends; 6689otherwise, it returns <b>nil</b>. 6690A third, optional numerical argument <code>init</code> specifies 6691where to start the search; 6692its default value is 1 and can be negative. 6693A value of <b>true</b> as a fourth, optional argument <code>plain</code> 6694turns off the pattern matching facilities, 6695so the function does a plain "find substring" operation, 6696with no characters in <code>pattern</code> being considered "magic". 6697Note that if <code>plain</code> is given, then <code>init</code> must be given as well. 6698 6699 6700<p> 6701If the pattern has captures, 6702then in a successful match 6703the captured values are also returned, 6704after the two indices. 6705 6706 6707 6708 6709<p> 6710<hr><h3><a name="pdf-string.format"><code>string.format (formatstring, ···)</code></a></h3> 6711Returns a formatted version of its variable number of arguments 6712following the description given in its first argument (which must be a string). 6713The format string follows the same rules as the <code>printf</code> family of 6714standard C functions. 6715The only differences are that the options/modifiers 6716<code>*</code>, <code>l</code>, <code>L</code>, <code>n</code>, <code>p</code>, 6717and <code>h</code> are not supported 6718and that there is an extra option, <code>q</code>. 6719The <code>q</code> option formats a string in a form suitable to be safely read 6720back by the Lua interpreter: 6721the string is written between double quotes, 6722and all double quotes, newlines, embedded zeros, 6723and backslashes in the string 6724are correctly escaped when written. 6725For instance, the call 6726 6727<pre> 6728 string.format('%q', 'a string with "quotes" and \n new line') 6729</pre><p> 6730will produce the string: 6731 6732<pre> 6733 "a string with \"quotes\" and \ 6734 new line" 6735</pre> 6736 6737<p> 6738The options <code>c</code>, <code>d</code>, <code>E</code>, <code>e</code>, <code>f</code>, 6739<code>g</code>, <code>G</code>, <code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code> all 6740expect a number as argument, 6741whereas <code>q</code> and <code>s</code> expect a string. 6742 6743 6744<p> 6745This function does not accept string values 6746containing embedded zeros, 6747except as arguments to the <code>q</code> option. 6748 6749 6750 6751 6752<p> 6753<hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3> 6754Returns an iterator function that, 6755each time it is called, 6756returns the next captures from <code>pattern</code> over string <code>s</code>. 6757If <code>pattern</code> specifies no captures, 6758then the whole match is produced in each call. 6759 6760 6761<p> 6762As an example, the following loop 6763 6764<pre> 6765 s = "hello world from Lua" 6766 for w in string.gmatch(s, "%a+") do 6767 print(w) 6768 end 6769</pre><p> 6770will iterate over all the words from string <code>s</code>, 6771printing one per line. 6772The next example collects all pairs <code>key=value</code> from the 6773given string into a table: 6774 6775<pre> 6776 t = {} 6777 s = "from=world, to=Lua" 6778 for k, v in string.gmatch(s, "(%w+)=(%w+)") do 6779 t[k] = v 6780 end 6781</pre> 6782 6783<p> 6784For this function, a '<code>^</code>' at the start of a pattern does not 6785work as an anchor, as this would prevent the iteration. 6786 6787 6788 6789 6790<p> 6791<hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3> 6792Returns a copy of <code>s</code> 6793in which all (or the first <code>n</code>, if given) 6794occurrences of the <code>pattern</code> have been 6795replaced by a replacement string specified by <code>repl</code>, 6796which can be a string, a table, or a function. 6797<code>gsub</code> also returns, as its second value, 6798the total number of matches that occurred. 6799 6800 6801<p> 6802If <code>repl</code> is a string, then its value is used for replacement. 6803The character <code>%</code> works as an escape character: 6804any sequence in <code>repl</code> of the form <code>%<em>n</em></code>, 6805with <em>n</em> between 1 and 9, 6806stands for the value of the <em>n</em>-th captured substring (see below). 6807The sequence <code>%0</code> stands for the whole match. 6808The sequence <code>%%</code> stands for a single <code>%</code>. 6809 6810 6811<p> 6812If <code>repl</code> is a table, then the table is queried for every match, 6813using the first capture as the key; 6814if the pattern specifies no captures, 6815then the whole match is used as the key. 6816 6817 6818<p> 6819If <code>repl</code> is a function, then this function is called every time a 6820match occurs, with all captured substrings passed as arguments, 6821in order; 6822if the pattern specifies no captures, 6823then the whole match is passed as a sole argument. 6824 6825 6826<p> 6827If the value returned by the table query or by the function call 6828is a string or a number, 6829then it is used as the replacement string; 6830otherwise, if it is <b>false</b> or <b>nil</b>, 6831then there is no replacement 6832(that is, the original match is kept in the string). 6833 6834 6835<p> 6836Here are some examples: 6837 6838<pre> 6839 x = string.gsub("hello world", "(%w+)", "%1 %1") 6840 --> x="hello hello world world" 6841 6842 x = string.gsub("hello world", "%w+", "%0 %0", 1) 6843 --> x="hello hello world" 6844 6845 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1") 6846 --> x="world hello Lua from" 6847 6848 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv) 6849 --> x="home = /home/roberto, user = roberto" 6850 6851 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s) 6852 return loadstring(s)() 6853 end) 6854 --> x="4+5 = 9" 6855 6856 local t = {name="lua", version="5.1"} 6857 x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t) 6858 --> x="lua-5.1.tar.gz" 6859</pre> 6860 6861 6862 6863<p> 6864<hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3> 6865Receives a string and returns its length. 6866The empty string <code>""</code> has length 0. 6867Embedded zeros are counted, 6868so <code>"a\000bc\000"</code> has length 5. 6869 6870 6871 6872 6873<p> 6874<hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3> 6875Receives a string and returns a copy of this string with all 6876uppercase letters changed to lowercase. 6877All other characters are left unchanged. 6878The definition of what an uppercase letter is depends on the current locale. 6879 6880 6881 6882 6883<p> 6884<hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3> 6885Looks for the first <em>match</em> of 6886<code>pattern</code> in the string <code>s</code>. 6887If it finds one, then <code>match</code> returns 6888the captures from the pattern; 6889otherwise it returns <b>nil</b>. 6890If <code>pattern</code> specifies no captures, 6891then the whole match is returned. 6892A third, optional numerical argument <code>init</code> specifies 6893where to start the search; 6894its default value is 1 and can be negative. 6895 6896 6897 6898 6899<p> 6900<hr><h3><a name="pdf-string.rep"><code>string.rep (s, n)</code></a></h3> 6901Returns a string that is the concatenation of <code>n</code> copies of 6902the string <code>s</code>. 6903 6904 6905 6906 6907<p> 6908<hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3> 6909Returns a string that is the string <code>s</code> reversed. 6910 6911 6912 6913 6914<p> 6915<hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3> 6916Returns the substring of <code>s</code> that 6917starts at <code>i</code> and continues until <code>j</code>; 6918<code>i</code> and <code>j</code> can be negative. 6919If <code>j</code> is absent, then it is assumed to be equal to -1 6920(which is the same as the string length). 6921In particular, 6922the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code> 6923with length <code>j</code>, 6924and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code> 6925with length <code>i</code>. 6926 6927 6928 6929 6930<p> 6931<hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3> 6932Receives a string and returns a copy of this string with all 6933lowercase letters changed to uppercase. 6934All other characters are left unchanged. 6935The definition of what a lowercase letter is depends on the current locale. 6936 6937 6938 6939<h3>5.4.1 - <a name="5.4.1">Patterns</a></h3> 6940 6941 6942<h4>Character Class:</h4><p> 6943A <em>character class</em> is used to represent a set of characters. 6944The following combinations are allowed in describing a character class: 6945 6946<ul> 6947 6948<li><b><em>x</em>:</b> 6949(where <em>x</em> is not one of the <em>magic characters</em> 6950<code>^$()%.[]*+-?</code>) 6951represents the character <em>x</em> itself. 6952</li> 6953 6954<li><b><code>.</code>:</b> (a dot) represents all characters.</li> 6955 6956<li><b><code>%a</code>:</b> represents all letters.</li> 6957 6958<li><b><code>%c</code>:</b> represents all control characters.</li> 6959 6960<li><b><code>%d</code>:</b> represents all digits.</li> 6961 6962<li><b><code>%l</code>:</b> represents all lowercase letters.</li> 6963 6964<li><b><code>%p</code>:</b> represents all punctuation characters.</li> 6965 6966<li><b><code>%s</code>:</b> represents all space characters.</li> 6967 6968<li><b><code>%u</code>:</b> represents all uppercase letters.</li> 6969 6970<li><b><code>%w</code>:</b> represents all alphanumeric characters.</li> 6971 6972<li><b><code>%x</code>:</b> represents all hexadecimal digits.</li> 6973 6974<li><b><code>%z</code>:</b> represents the character with representation 0.</li> 6975 6976<li><b><code>%<em>x</em></code>:</b> (where <em>x</em> is any non-alphanumeric character) 6977represents the character <em>x</em>. 6978This is the standard way to escape the magic characters. 6979Any punctuation character (even the non magic) 6980can be preceded by a '<code>%</code>' 6981when used to represent itself in a pattern. 6982</li> 6983 6984<li><b><code>[<em>set</em>]</code>:</b> 6985represents the class which is the union of all 6986characters in <em>set</em>. 6987A range of characters can be specified by 6988separating the end characters of the range with a '<code>-</code>'. 6989All classes <code>%</code><em>x</em> described above can also be used as 6990components in <em>set</em>. 6991All other characters in <em>set</em> represent themselves. 6992For example, <code>[%w_]</code> (or <code>[_%w]</code>) 6993represents all alphanumeric characters plus the underscore, 6994<code>[0-7]</code> represents the octal digits, 6995and <code>[0-7%l%-]</code> represents the octal digits plus 6996the lowercase letters plus the '<code>-</code>' character. 6997 6998 6999<p> 7000The interaction between ranges and classes is not defined. 7001Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code> 7002have no meaning. 7003</li> 7004 7005<li><b><code>[^<em>set</em>]</code>:</b> 7006represents the complement of <em>set</em>, 7007where <em>set</em> is interpreted as above. 7008</li> 7009 7010</ul><p> 7011For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.), 7012the corresponding uppercase letter represents the complement of the class. 7013For instance, <code>%S</code> represents all non-space characters. 7014 7015 7016<p> 7017The definitions of letter, space, and other character groups 7018depend on the current locale. 7019In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>. 7020 7021 7022 7023 7024 7025<h4>Pattern Item:</h4><p> 7026A <em>pattern item</em> can be 7027 7028<ul> 7029 7030<li> 7031a single character class, 7032which matches any single character in the class; 7033</li> 7034 7035<li> 7036a single character class followed by '<code>*</code>', 7037which matches 0 or more repetitions of characters in the class. 7038These repetition items will always match the longest possible sequence; 7039</li> 7040 7041<li> 7042a single character class followed by '<code>+</code>', 7043which matches 1 or more repetitions of characters in the class. 7044These repetition items will always match the longest possible sequence; 7045</li> 7046 7047<li> 7048a single character class followed by '<code>-</code>', 7049which also matches 0 or more repetitions of characters in the class. 7050Unlike '<code>*</code>', 7051these repetition items will always match the <em>shortest</em> possible sequence; 7052</li> 7053 7054<li> 7055a single character class followed by '<code>?</code>', 7056which matches 0 or 1 occurrence of a character in the class; 7057</li> 7058 7059<li> 7060<code>%<em>n</em></code>, for <em>n</em> between 1 and 9; 7061such item matches a substring equal to the <em>n</em>-th captured string 7062(see below); 7063</li> 7064 7065<li> 7066<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters; 7067such item matches strings that start with <em>x</em>, end with <em>y</em>, 7068and where the <em>x</em> and <em>y</em> are <em>balanced</em>. 7069This means that, if one reads the string from left to right, 7070counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>, 7071the ending <em>y</em> is the first <em>y</em> where the count reaches 0. 7072For instance, the item <code>%b()</code> matches expressions with 7073balanced parentheses. 7074</li> 7075 7076</ul> 7077 7078 7079 7080 7081<h4>Pattern:</h4><p> 7082A <em>pattern</em> is a sequence of pattern items. 7083A '<code>^</code>' at the beginning of a pattern anchors the match at the 7084beginning of the subject string. 7085A '<code>$</code>' at the end of a pattern anchors the match at the 7086end of the subject string. 7087At other positions, 7088'<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves. 7089 7090 7091 7092 7093 7094<h4>Captures:</h4><p> 7095A pattern can contain sub-patterns enclosed in parentheses; 7096they describe <em>captures</em>. 7097When a match succeeds, the substrings of the subject string 7098that match captures are stored (<em>captured</em>) for future use. 7099Captures are numbered according to their left parentheses. 7100For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>, 7101the part of the string matching <code>"a*(.)%w(%s*)"</code> is 7102stored as the first capture (and therefore has number 1); 7103the character matching "<code>.</code>" is captured with number 2, 7104and the part matching "<code>%s*</code>" has number 3. 7105 7106 7107<p> 7108As a special case, the empty capture <code>()</code> captures 7109the current string position (a number). 7110For instance, if we apply the pattern <code>"()aa()"</code> on the 7111string <code>"flaaap"</code>, there will be two captures: 3 and 5. 7112 7113 7114<p> 7115A pattern cannot contain embedded zeros. Use <code>%z</code> instead. 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127<h2>5.5 - <a name="5.5">Table Manipulation</a></h2><p> 7128This library provides generic functions for table manipulation. 7129It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>. 7130 7131 7132<p> 7133Most functions in the table library assume that the table 7134represents an array or a list. 7135For these functions, when we talk about the "length" of a table 7136we mean the result of the length operator. 7137 7138 7139<p> 7140<hr><h3><a name="pdf-table.concat"><code>table.concat (table [, sep [, i [, j]]])</code></a></h3> 7141Given an array where all elements are strings or numbers, 7142returns <code>table[i]..sep..table[i+1] ··· sep..table[j]</code>. 7143The default value for <code>sep</code> is the empty string, 7144the default for <code>i</code> is 1, 7145and the default for <code>j</code> is the length of the table. 7146If <code>i</code> is greater than <code>j</code>, returns the empty string. 7147 7148 7149 7150 7151<p> 7152<hr><h3><a name="pdf-table.insert"><code>table.insert (table, [pos,] value)</code></a></h3> 7153 7154 7155<p> 7156Inserts element <code>value</code> at position <code>pos</code> in <code>table</code>, 7157shifting up other elements to open space, if necessary. 7158The default value for <code>pos</code> is <code>n+1</code>, 7159where <code>n</code> is the length of the table (see <a href="#2.5.5">§2.5.5</a>), 7160so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end 7161of table <code>t</code>. 7162 7163 7164 7165 7166<p> 7167<hr><h3><a name="pdf-table.maxn"><code>table.maxn (table)</code></a></h3> 7168 7169 7170<p> 7171Returns the largest positive numerical index of the given table, 7172or zero if the table has no positive numerical indices. 7173(To do its job this function does a linear traversal of 7174the whole table.) 7175 7176 7177 7178 7179<p> 7180<hr><h3><a name="pdf-table.remove"><code>table.remove (table [, pos])</code></a></h3> 7181 7182 7183<p> 7184Removes from <code>table</code> the element at position <code>pos</code>, 7185shifting down other elements to close the space, if necessary. 7186Returns the value of the removed element. 7187The default value for <code>pos</code> is <code>n</code>, 7188where <code>n</code> is the length of the table, 7189so that a call <code>table.remove(t)</code> removes the last element 7190of table <code>t</code>. 7191 7192 7193 7194 7195<p> 7196<hr><h3><a name="pdf-table.sort"><code>table.sort (table [, comp])</code></a></h3> 7197Sorts table elements in a given order, <em>in-place</em>, 7198from <code>table[1]</code> to <code>table[n]</code>, 7199where <code>n</code> is the length of the table. 7200If <code>comp</code> is given, 7201then it must be a function that receives two table elements, 7202and returns true 7203when the first is less than the second 7204(so that <code>not comp(a[i+1],a[i])</code> will be true after the sort). 7205If <code>comp</code> is not given, 7206then the standard Lua operator <code><</code> is used instead. 7207 7208 7209<p> 7210The sort algorithm is not stable; 7211that is, elements considered equal by the given order 7212may have their relative positions changed by the sort. 7213 7214 7215 7216 7217 7218 7219 7220<h2>5.6 - <a name="5.6">Mathematical Functions</a></h2> 7221 7222<p> 7223This library is an interface to the standard C math library. 7224It provides all its functions inside the table <a name="pdf-math"><code>math</code></a>. 7225 7226 7227<p> 7228<hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3> 7229 7230 7231<p> 7232Returns the absolute value of <code>x</code>. 7233 7234 7235 7236 7237<p> 7238<hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3> 7239 7240 7241<p> 7242Returns the arc cosine of <code>x</code> (in radians). 7243 7244 7245 7246 7247<p> 7248<hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3> 7249 7250 7251<p> 7252Returns the arc sine of <code>x</code> (in radians). 7253 7254 7255 7256 7257<p> 7258<hr><h3><a name="pdf-math.atan"><code>math.atan (x)</code></a></h3> 7259 7260 7261<p> 7262Returns the arc tangent of <code>x</code> (in radians). 7263 7264 7265 7266 7267<p> 7268<hr><h3><a name="pdf-math.atan2"><code>math.atan2 (y, x)</code></a></h3> 7269 7270 7271<p> 7272Returns the arc tangent of <code>y/x</code> (in radians), 7273but uses the signs of both parameters to find the 7274quadrant of the result. 7275(It also handles correctly the case of <code>x</code> being zero.) 7276 7277 7278 7279 7280<p> 7281<hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3> 7282 7283 7284<p> 7285Returns the smallest integer larger than or equal to <code>x</code>. 7286 7287 7288 7289 7290<p> 7291<hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3> 7292 7293 7294<p> 7295Returns the cosine of <code>x</code> (assumed to be in radians). 7296 7297 7298 7299 7300<p> 7301<hr><h3><a name="pdf-math.cosh"><code>math.cosh (x)</code></a></h3> 7302 7303 7304<p> 7305Returns the hyperbolic cosine of <code>x</code>. 7306 7307 7308 7309 7310<p> 7311<hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3> 7312 7313 7314<p> 7315Returns the angle <code>x</code> (given in radians) in degrees. 7316 7317 7318 7319 7320<p> 7321<hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3> 7322 7323 7324<p> 7325Returns the value <em>e<sup>x</sup></em>. 7326 7327 7328 7329 7330<p> 7331<hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3> 7332 7333 7334<p> 7335Returns the largest integer smaller than or equal to <code>x</code>. 7336 7337 7338 7339 7340<p> 7341<hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3> 7342 7343 7344<p> 7345Returns the remainder of the division of <code>x</code> by <code>y</code> 7346that rounds the quotient towards zero. 7347 7348 7349 7350 7351<p> 7352<hr><h3><a name="pdf-math.frexp"><code>math.frexp (x)</code></a></h3> 7353 7354 7355<p> 7356Returns <code>m</code> and <code>e</code> such that <em>x = m2<sup>e</sup></em>, 7357<code>e</code> is an integer and the absolute value of <code>m</code> is 7358in the range <em>[0.5, 1)</em> 7359(or zero when <code>x</code> is zero). 7360 7361 7362 7363 7364<p> 7365<hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3> 7366 7367 7368<p> 7369The value <code>HUGE_VAL</code>, 7370a value larger than or equal to any other numerical value. 7371 7372 7373 7374 7375<p> 7376<hr><h3><a name="pdf-math.ldexp"><code>math.ldexp (m, e)</code></a></h3> 7377 7378 7379<p> 7380Returns <em>m2<sup>e</sup></em> (<code>e</code> should be an integer). 7381 7382 7383 7384 7385<p> 7386<hr><h3><a name="pdf-math.log"><code>math.log (x)</code></a></h3> 7387 7388 7389<p> 7390Returns the natural logarithm of <code>x</code>. 7391 7392 7393 7394 7395<p> 7396<hr><h3><a name="pdf-math.log10"><code>math.log10 (x)</code></a></h3> 7397 7398 7399<p> 7400Returns the base-10 logarithm of <code>x</code>. 7401 7402 7403 7404 7405<p> 7406<hr><h3><a name="pdf-math.max"><code>math.max (x, ···)</code></a></h3> 7407 7408 7409<p> 7410Returns the maximum value among its arguments. 7411 7412 7413 7414 7415<p> 7416<hr><h3><a name="pdf-math.min"><code>math.min (x, ···)</code></a></h3> 7417 7418 7419<p> 7420Returns the minimum value among its arguments. 7421 7422 7423 7424 7425<p> 7426<hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3> 7427 7428 7429<p> 7430Returns two numbers, 7431the integral part of <code>x</code> and the fractional part of <code>x</code>. 7432 7433 7434 7435 7436<p> 7437<hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3> 7438 7439 7440<p> 7441The value of <em>pi</em>. 7442 7443 7444 7445 7446<p> 7447<hr><h3><a name="pdf-math.pow"><code>math.pow (x, y)</code></a></h3> 7448 7449 7450<p> 7451Returns <em>x<sup>y</sup></em>. 7452(You can also use the expression <code>x^y</code> to compute this value.) 7453 7454 7455 7456 7457<p> 7458<hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3> 7459 7460 7461<p> 7462Returns the angle <code>x</code> (given in degrees) in radians. 7463 7464 7465 7466 7467<p> 7468<hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3> 7469 7470 7471<p> 7472This function is an interface to the simple 7473pseudo-random generator function <code>rand</code> provided by ANSI C. 7474(No guarantees can be given for its statistical properties.) 7475 7476 7477<p> 7478When called without arguments, 7479returns a uniform pseudo-random real number 7480in the range <em>[0,1)</em>. 7481When called with an integer number <code>m</code>, 7482<code>math.random</code> returns 7483a uniform pseudo-random integer in the range <em>[1, m]</em>. 7484When called with two integer numbers <code>m</code> and <code>n</code>, 7485<code>math.random</code> returns a uniform pseudo-random 7486integer in the range <em>[m, n]</em>. 7487 7488 7489 7490 7491<p> 7492<hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3> 7493 7494 7495<p> 7496Sets <code>x</code> as the "seed" 7497for the pseudo-random generator: 7498equal seeds produce equal sequences of numbers. 7499 7500 7501 7502 7503<p> 7504<hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3> 7505 7506 7507<p> 7508Returns the sine of <code>x</code> (assumed to be in radians). 7509 7510 7511 7512 7513<p> 7514<hr><h3><a name="pdf-math.sinh"><code>math.sinh (x)</code></a></h3> 7515 7516 7517<p> 7518Returns the hyperbolic sine of <code>x</code>. 7519 7520 7521 7522 7523<p> 7524<hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3> 7525 7526 7527<p> 7528Returns the square root of <code>x</code>. 7529(You can also use the expression <code>x^0.5</code> to compute this value.) 7530 7531 7532 7533 7534<p> 7535<hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3> 7536 7537 7538<p> 7539Returns the tangent of <code>x</code> (assumed to be in radians). 7540 7541 7542 7543 7544<p> 7545<hr><h3><a name="pdf-math.tanh"><code>math.tanh (x)</code></a></h3> 7546 7547 7548<p> 7549Returns the hyperbolic tangent of <code>x</code>. 7550 7551 7552 7553 7554 7555 7556 7557<h2>5.7 - <a name="5.7">Input and Output Facilities</a></h2> 7558 7559<p> 7560The I/O library provides two different styles for file manipulation. 7561The first one uses implicit file descriptors; 7562that is, there are operations to set a default input file and a 7563default output file, 7564and all input/output operations are over these default files. 7565The second style uses explicit file descriptors. 7566 7567 7568<p> 7569When using implicit file descriptors, 7570all operations are supplied by table <a name="pdf-io"><code>io</code></a>. 7571When using explicit file descriptors, 7572the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file descriptor 7573and then all operations are supplied as methods of the file descriptor. 7574 7575 7576<p> 7577The table <code>io</code> also provides 7578three predefined file descriptors with their usual meanings from C: 7579<a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>. 7580The I/O library never closes these files. 7581 7582 7583<p> 7584Unless otherwise stated, 7585all I/O functions return <b>nil</b> on failure 7586(plus an error message as a second result and 7587a system-dependent error code as a third result) 7588and some value different from <b>nil</b> on success. 7589 7590 7591<p> 7592<hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3> 7593 7594 7595<p> 7596Equivalent to <code>file:close()</code>. 7597Without a <code>file</code>, closes the default output file. 7598 7599 7600 7601 7602<p> 7603<hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3> 7604 7605 7606<p> 7607Equivalent to <code>file:flush</code> over the default output file. 7608 7609 7610 7611 7612<p> 7613<hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3> 7614 7615 7616<p> 7617When called with a file name, it opens the named file (in text mode), 7618and sets its handle as the default input file. 7619When called with a file handle, 7620it simply sets this file handle as the default input file. 7621When called without parameters, 7622it returns the current default input file. 7623 7624 7625<p> 7626In case of errors this function raises the error, 7627instead of returning an error code. 7628 7629 7630 7631 7632<p> 7633<hr><h3><a name="pdf-io.lines"><code>io.lines ([filename])</code></a></h3> 7634 7635 7636<p> 7637Opens the given file name in read mode 7638and returns an iterator function that, 7639each time it is called, 7640returns a new line from the file. 7641Therefore, the construction 7642 7643<pre> 7644 for line in io.lines(filename) do <em>body</em> end 7645</pre><p> 7646will iterate over all lines of the file. 7647When the iterator function detects the end of file, 7648it returns <b>nil</b> (to finish the loop) and automatically closes the file. 7649 7650 7651<p> 7652The call <code>io.lines()</code> (with no file name) is equivalent 7653to <code>io.input():lines()</code>; 7654that is, it iterates over the lines of the default input file. 7655In this case it does not close the file when the loop ends. 7656 7657 7658 7659 7660<p> 7661<hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3> 7662 7663 7664<p> 7665This function opens a file, 7666in the mode specified in the string <code>mode</code>. 7667It returns a new file handle, 7668or, in case of errors, <b>nil</b> plus an error message. 7669 7670 7671<p> 7672The <code>mode</code> string can be any of the following: 7673 7674<ul> 7675<li><b>"r":</b> read mode (the default);</li> 7676<li><b>"w":</b> write mode;</li> 7677<li><b>"a":</b> append mode;</li> 7678<li><b>"r+":</b> update mode, all previous data is preserved;</li> 7679<li><b>"w+":</b> update mode, all previous data is erased;</li> 7680<li><b>"a+":</b> append update mode, previous data is preserved, 7681 writing is only allowed at the end of file.</li> 7682</ul><p> 7683The <code>mode</code> string can also have a '<code>b</code>' at the end, 7684which is needed in some systems to open the file in binary mode. 7685This string is exactly what is used in the 7686standard C function <code>fopen</code>. 7687 7688 7689 7690 7691<p> 7692<hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3> 7693 7694 7695<p> 7696Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file. 7697 7698 7699 7700 7701<p> 7702<hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3> 7703 7704 7705<p> 7706Starts program <code>prog</code> in a separated process and returns 7707a file handle that you can use to read data from this program 7708(if <code>mode</code> is <code>"r"</code>, the default) 7709or to write data to this program 7710(if <code>mode</code> is <code>"w"</code>). 7711 7712 7713<p> 7714This function is system dependent and is not available 7715on all platforms. 7716 7717 7718 7719 7720<p> 7721<hr><h3><a name="pdf-io.read"><code>io.read (···)</code></a></h3> 7722 7723 7724<p> 7725Equivalent to <code>io.input():read</code>. 7726 7727 7728 7729 7730<p> 7731<hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3> 7732 7733 7734<p> 7735Returns a handle for a temporary file. 7736This file is opened in update mode 7737and it is automatically removed when the program ends. 7738 7739 7740 7741 7742<p> 7743<hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3> 7744 7745 7746<p> 7747Checks whether <code>obj</code> is a valid file handle. 7748Returns the string <code>"file"</code> if <code>obj</code> is an open file handle, 7749<code>"closed file"</code> if <code>obj</code> is a closed file handle, 7750or <b>nil</b> if <code>obj</code> is not a file handle. 7751 7752 7753 7754 7755<p> 7756<hr><h3><a name="pdf-io.write"><code>io.write (···)</code></a></h3> 7757 7758 7759<p> 7760Equivalent to <code>io.output():write</code>. 7761 7762 7763 7764 7765<p> 7766<hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3> 7767 7768 7769<p> 7770Closes <code>file</code>. 7771Note that files are automatically closed when 7772their handles are garbage collected, 7773but that takes an unpredictable amount of time to happen. 7774 7775 7776 7777 7778<p> 7779<hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3> 7780 7781 7782<p> 7783Saves any written data to <code>file</code>. 7784 7785 7786 7787 7788<p> 7789<hr><h3><a name="pdf-file:lines"><code>file:lines ()</code></a></h3> 7790 7791 7792<p> 7793Returns an iterator function that, 7794each time it is called, 7795returns a new line from the file. 7796Therefore, the construction 7797 7798<pre> 7799 for line in file:lines() do <em>body</em> end 7800</pre><p> 7801will iterate over all lines of the file. 7802(Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file 7803when the loop ends.) 7804 7805 7806 7807 7808<p> 7809<hr><h3><a name="pdf-file:read"><code>file:read (···)</code></a></h3> 7810 7811 7812<p> 7813Reads the file <code>file</code>, 7814according to the given formats, which specify what to read. 7815For each format, 7816the function returns a string (or a number) with the characters read, 7817or <b>nil</b> if it cannot read data with the specified format. 7818When called without formats, 7819it uses a default format that reads the entire next line 7820(see below). 7821 7822 7823<p> 7824The available formats are 7825 7826<ul> 7827 7828<li><b>"*n":</b> 7829reads a number; 7830this is the only format that returns a number instead of a string. 7831</li> 7832 7833<li><b>"*a":</b> 7834reads the whole file, starting at the current position. 7835On end of file, it returns the empty string. 7836</li> 7837 7838<li><b>"*l":</b> 7839reads the next line (skipping the end of line), 7840returning <b>nil</b> on end of file. 7841This is the default format. 7842</li> 7843 7844<li><b><em>number</em>:</b> 7845reads a string with up to this number of characters, 7846returning <b>nil</b> on end of file. 7847If number is zero, 7848it reads nothing and returns an empty string, 7849or <b>nil</b> on end of file. 7850</li> 7851 7852</ul> 7853 7854 7855 7856<p> 7857<hr><h3><a name="pdf-file:seek"><code>file:seek ([whence] [, offset])</code></a></h3> 7858 7859 7860<p> 7861Sets and gets the file position, 7862measured from the beginning of the file, 7863to the position given by <code>offset</code> plus a base 7864specified by the string <code>whence</code>, as follows: 7865 7866<ul> 7867<li><b>"set":</b> base is position 0 (beginning of the file);</li> 7868<li><b>"cur":</b> base is current position;</li> 7869<li><b>"end":</b> base is end of file;</li> 7870</ul><p> 7871In case of success, function <code>seek</code> returns the final file position, 7872measured in bytes from the beginning of the file. 7873If this function fails, it returns <b>nil</b>, 7874plus a string describing the error. 7875 7876 7877<p> 7878The default value for <code>whence</code> is <code>"cur"</code>, 7879and for <code>offset</code> is 0. 7880Therefore, the call <code>file:seek()</code> returns the current 7881file position, without changing it; 7882the call <code>file:seek("set")</code> sets the position to the 7883beginning of the file (and returns 0); 7884and the call <code>file:seek("end")</code> sets the position to the 7885end of the file, and returns its size. 7886 7887 7888 7889 7890<p> 7891<hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3> 7892 7893 7894<p> 7895Sets the buffering mode for an output file. 7896There are three available modes: 7897 7898<ul> 7899 7900<li><b>"no":</b> 7901no buffering; the result of any output operation appears immediately. 7902</li> 7903 7904<li><b>"full":</b> 7905full buffering; output operation is performed only 7906when the buffer is full (or when you explicitly <code>flush</code> the file 7907(see <a href="#pdf-io.flush"><code>io.flush</code></a>)). 7908</li> 7909 7910<li><b>"line":</b> 7911line buffering; output is buffered until a newline is output 7912or there is any input from some special files 7913(such as a terminal device). 7914</li> 7915 7916</ul><p> 7917For the last two cases, <code>size</code> 7918specifies the size of the buffer, in bytes. 7919The default is an appropriate size. 7920 7921 7922 7923 7924<p> 7925<hr><h3><a name="pdf-file:write"><code>file:write (···)</code></a></h3> 7926 7927 7928<p> 7929Writes the value of each of its arguments to 7930the <code>file</code>. 7931The arguments must be strings or numbers. 7932To write other values, 7933use <a href="#pdf-tostring"><code>tostring</code></a> or <a href="#pdf-string.format"><code>string.format</code></a> before <code>write</code>. 7934 7935 7936 7937 7938 7939 7940 7941<h2>5.8 - <a name="5.8">Operating System Facilities</a></h2> 7942 7943<p> 7944This library is implemented through table <a name="pdf-os"><code>os</code></a>. 7945 7946 7947<p> 7948<hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3> 7949 7950 7951<p> 7952Returns an approximation of the amount in seconds of CPU time 7953used by the program. 7954 7955 7956 7957 7958<p> 7959<hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3> 7960 7961 7962<p> 7963Returns a string or a table containing date and time, 7964formatted according to the given string <code>format</code>. 7965 7966 7967<p> 7968If the <code>time</code> argument is present, 7969this is the time to be formatted 7970(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value). 7971Otherwise, <code>date</code> formats the current time. 7972 7973 7974<p> 7975If <code>format</code> starts with '<code>!</code>', 7976then the date is formatted in Coordinated Universal Time. 7977After this optional character, 7978if <code>format</code> is the string "<code>*t</code>", 7979then <code>date</code> returns a table with the following fields: 7980<code>year</code> (four digits), <code>month</code> (1--12), <code>day</code> (1--31), 7981<code>hour</code> (0--23), <code>min</code> (0--59), <code>sec</code> (0--61), 7982<code>wday</code> (weekday, Sunday is 1), 7983<code>yday</code> (day of the year), 7984and <code>isdst</code> (daylight saving flag, a boolean). 7985 7986 7987<p> 7988If <code>format</code> is not "<code>*t</code>", 7989then <code>date</code> returns the date as a string, 7990formatted according to the same rules as the C function <code>strftime</code>. 7991 7992 7993<p> 7994When called without arguments, 7995<code>date</code> returns a reasonable date and time representation that depends on 7996the host system and on the current locale 7997(that is, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>). 7998 7999 8000 8001 8002<p> 8003<hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3> 8004 8005 8006<p> 8007Returns the number of seconds from time <code>t1</code> to time <code>t2</code>. 8008In POSIX, Windows, and some other systems, 8009this value is exactly <code>t2</code><em>-</em><code>t1</code>. 8010 8011 8012 8013 8014<p> 8015<hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3> 8016 8017 8018<p> 8019This function is equivalent to the C function <code>system</code>. 8020It passes <code>command</code> to be executed by an operating system shell. 8021It returns a status code, which is system-dependent. 8022If <code>command</code> is absent, then it returns nonzero if a shell is available 8023and zero otherwise. 8024 8025 8026 8027 8028<p> 8029<hr><h3><a name="pdf-os.exit"><code>os.exit ([code])</code></a></h3> 8030 8031 8032<p> 8033Calls the C function <code>exit</code>, 8034with an optional <code>code</code>, 8035to terminate the host program. 8036The default value for <code>code</code> is the success code. 8037 8038 8039 8040 8041<p> 8042<hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3> 8043 8044 8045<p> 8046Returns the value of the process environment variable <code>varname</code>, 8047or <b>nil</b> if the variable is not defined. 8048 8049 8050 8051 8052<p> 8053<hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3> 8054 8055 8056<p> 8057Deletes the file or directory with the given name. 8058Directories must be empty to be removed. 8059If this function fails, it returns <b>nil</b>, 8060plus a string describing the error. 8061 8062 8063 8064 8065<p> 8066<hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3> 8067 8068 8069<p> 8070Renames file or directory named <code>oldname</code> to <code>newname</code>. 8071If this function fails, it returns <b>nil</b>, 8072plus a string describing the error. 8073 8074 8075 8076 8077<p> 8078<hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3> 8079 8080 8081<p> 8082Sets the current locale of the program. 8083<code>locale</code> is a string specifying a locale; 8084<code>category</code> is an optional string describing which category to change: 8085<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>, 8086<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>; 8087the default category is <code>"all"</code>. 8088The function returns the name of the new locale, 8089or <b>nil</b> if the request cannot be honored. 8090 8091 8092<p> 8093If <code>locale</code> is the empty string, 8094the current locale is set to an implementation-defined native locale. 8095If <code>locale</code> is the string "<code>C</code>", 8096the current locale is set to the standard C locale. 8097 8098 8099<p> 8100When called with <b>nil</b> as the first argument, 8101this function only returns the name of the current locale 8102for the given category. 8103 8104 8105 8106 8107<p> 8108<hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3> 8109 8110 8111<p> 8112Returns the current time when called without arguments, 8113or a time representing the date and time specified by the given table. 8114This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>, 8115and may have fields <code>hour</code>, <code>min</code>, <code>sec</code>, and <code>isdst</code> 8116(for a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function). 8117 8118 8119<p> 8120The returned value is a number, whose meaning depends on your system. 8121In POSIX, Windows, and some other systems, this number counts the number 8122of seconds since some given start time (the "epoch"). 8123In other systems, the meaning is not specified, 8124and the number returned by <code>time</code> can be used only as an argument to 8125<code>date</code> and <code>difftime</code>. 8126 8127 8128 8129 8130<p> 8131<hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3> 8132 8133 8134<p> 8135Returns a string with a file name that can 8136be used for a temporary file. 8137The file must be explicitly opened before its use 8138and explicitly removed when no longer needed. 8139 8140 8141<p> 8142On some systems (POSIX), 8143this function also creates a file with that name, 8144to avoid security risks. 8145(Someone else might create the file with wrong permissions 8146in the time between getting the name and creating the file.) 8147You still have to open the file to use it 8148and to remove it (even if you do not use it). 8149 8150 8151<p> 8152When possible, 8153you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>, 8154which automatically removes the file when the program ends. 8155 8156 8157 8158 8159 8160 8161 8162<h2>5.9 - <a name="5.9">The Debug Library</a></h2> 8163 8164<p> 8165This library provides 8166the functionality of the debug interface to Lua programs. 8167You should exert care when using this library. 8168The functions provided here should be used exclusively for debugging 8169and similar tasks, such as profiling. 8170Please resist the temptation to use them as a 8171usual programming tool: 8172they can be very slow. 8173Moreover, several of these functions 8174violate some assumptions about Lua code 8175(e.g., that variables local to a function 8176cannot be accessed from outside or 8177that userdata metatables cannot be changed by Lua code) 8178and therefore can compromise otherwise secure code. 8179 8180 8181<p> 8182All functions in this library are provided 8183inside the <a name="pdf-debug"><code>debug</code></a> table. 8184All functions that operate over a thread 8185have an optional first argument which is the 8186thread to operate over. 8187The default is always the current thread. 8188 8189 8190<p> 8191<hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3> 8192 8193 8194<p> 8195Enters an interactive mode with the user, 8196running each string that the user enters. 8197Using simple commands and other debug facilities, 8198the user can inspect global and local variables, 8199change their values, evaluate expressions, and so on. 8200A line containing only the word <code>cont</code> finishes this function, 8201so that the caller continues its execution. 8202 8203 8204<p> 8205Note that commands for <code>debug.debug</code> are not lexically nested 8206within any function, and so have no direct access to local variables. 8207 8208 8209 8210 8211<p> 8212<hr><h3><a name="pdf-debug.getfenv"><code>debug.getfenv (o)</code></a></h3> 8213Returns the environment of object <code>o</code>. 8214 8215 8216 8217 8218<p> 8219<hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3> 8220 8221 8222<p> 8223Returns the current hook settings of the thread, as three values: 8224the current hook function, the current hook mask, 8225and the current hook count 8226(as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function). 8227 8228 8229 8230 8231<p> 8232<hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] function [, what])</code></a></h3> 8233 8234 8235<p> 8236Returns a table with information about a function. 8237You can give the function directly, 8238or you can give a number as the value of <code>function</code>, 8239which means the function running at level <code>function</code> of the call stack 8240of the given thread: 8241level 0 is the current function (<code>getinfo</code> itself); 8242level 1 is the function that called <code>getinfo</code>; 8243and so on. 8244If <code>function</code> is a number larger than the number of active functions, 8245then <code>getinfo</code> returns <b>nil</b>. 8246 8247 8248<p> 8249The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>, 8250with the string <code>what</code> describing which fields to fill in. 8251The default for <code>what</code> is to get all information available, 8252except the table of valid lines. 8253If present, 8254the option '<code>f</code>' 8255adds a field named <code>func</code> with the function itself. 8256If present, 8257the option '<code>L</code>' 8258adds a field named <code>activelines</code> with the table of 8259valid lines. 8260 8261 8262<p> 8263For instance, the expression <code>debug.getinfo(1,"n").name</code> returns 8264a table with a name for the current function, 8265if a reasonable name can be found, 8266and the expression <code>debug.getinfo(print)</code> 8267returns a table with all available information 8268about the <a href="#pdf-print"><code>print</code></a> function. 8269 8270 8271 8272 8273<p> 8274<hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] level, local)</code></a></h3> 8275 8276 8277<p> 8278This function returns the name and the value of the local variable 8279with index <code>local</code> of the function at level <code>level</code> of the stack. 8280(The first parameter or local variable has index 1, and so on, 8281until the last active local variable.) 8282The function returns <b>nil</b> if there is no local 8283variable with the given index, 8284and raises an error when called with a <code>level</code> out of range. 8285(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.) 8286 8287 8288<p> 8289Variable names starting with '<code>(</code>' (open parentheses) 8290represent internal variables 8291(loop control variables, temporaries, and C function locals). 8292 8293 8294 8295 8296<p> 8297<hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (object)</code></a></h3> 8298 8299 8300<p> 8301Returns the metatable of the given <code>object</code> 8302or <b>nil</b> if it does not have a metatable. 8303 8304 8305 8306 8307<p> 8308<hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3> 8309 8310 8311<p> 8312Returns the registry table (see <a href="#3.5">§3.5</a>). 8313 8314 8315 8316 8317<p> 8318<hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (func, up)</code></a></h3> 8319 8320 8321<p> 8322This function returns the name and the value of the upvalue 8323with index <code>up</code> of the function <code>func</code>. 8324The function returns <b>nil</b> if there is no upvalue with the given index. 8325 8326 8327 8328 8329<p> 8330<hr><h3><a name="pdf-debug.setfenv"><code>debug.setfenv (object, table)</code></a></h3> 8331 8332 8333<p> 8334Sets the environment of the given <code>object</code> to the given <code>table</code>. 8335Returns <code>object</code>. 8336 8337 8338 8339 8340<p> 8341<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3> 8342 8343 8344<p> 8345Sets the given function as a hook. 8346The string <code>mask</code> and the number <code>count</code> describe 8347when the hook will be called. 8348The string mask may have the following characters, 8349with the given meaning: 8350 8351<ul> 8352<li><b><code>"c"</code>:</b> the hook is called every time Lua calls a function;</li> 8353<li><b><code>"r"</code>:</b> the hook is called every time Lua returns from a function;</li> 8354<li><b><code>"l"</code>:</b> the hook is called every time Lua enters a new line of code.</li> 8355</ul><p> 8356With a <code>count</code> different from zero, 8357the hook is called after every <code>count</code> instructions. 8358 8359 8360<p> 8361When called without arguments, 8362<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook. 8363 8364 8365<p> 8366When the hook is called, its first parameter is a string 8367describing the event that has triggered its call: 8368<code>"call"</code>, <code>"return"</code> (or <code>"tail return"</code>, 8369when simulating a return from a tail call), 8370<code>"line"</code>, and <code>"count"</code>. 8371For line events, 8372the hook also gets the new line number as its second parameter. 8373Inside a hook, 8374you can call <code>getinfo</code> with level 2 to get more information about 8375the running function 8376(level 0 is the <code>getinfo</code> function, 8377and level 1 is the hook function), 8378unless the event is <code>"tail return"</code>. 8379In this case, Lua is only simulating the return, 8380and a call to <code>getinfo</code> will return invalid data. 8381 8382 8383 8384 8385<p> 8386<hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3> 8387 8388 8389<p> 8390This function assigns the value <code>value</code> to the local variable 8391with index <code>local</code> of the function at level <code>level</code> of the stack. 8392The function returns <b>nil</b> if there is no local 8393variable with the given index, 8394and raises an error when called with a <code>level</code> out of range. 8395(You can call <code>getinfo</code> to check whether the level is valid.) 8396Otherwise, it returns the name of the local variable. 8397 8398 8399 8400 8401<p> 8402<hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (object, table)</code></a></h3> 8403 8404 8405<p> 8406Sets the metatable for the given <code>object</code> to the given <code>table</code> 8407(which can be <b>nil</b>). 8408 8409 8410 8411 8412<p> 8413<hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (func, up, value)</code></a></h3> 8414 8415 8416<p> 8417This function assigns the value <code>value</code> to the upvalue 8418with index <code>up</code> of the function <code>func</code>. 8419The function returns <b>nil</b> if there is no upvalue 8420with the given index. 8421Otherwise, it returns the name of the upvalue. 8422 8423 8424 8425 8426<p> 8427<hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3> 8428 8429 8430<p> 8431Returns a string with a traceback of the call stack. 8432An optional <code>message</code> string is appended 8433at the beginning of the traceback. 8434An optional <code>level</code> number tells at which level 8435to start the traceback 8436(default is 1, the function calling <code>traceback</code>). 8437 8438 8439 8440 8441 8442 8443 8444<h1>6 - <a name="6">Lua Stand-alone</a></h1> 8445 8446<p> 8447Although Lua has been designed as an extension language, 8448to be embedded in a host C program, 8449it is also frequently used as a stand-alone language. 8450An interpreter for Lua as a stand-alone language, 8451called simply <code>lua</code>, 8452is provided with the standard distribution. 8453The stand-alone interpreter includes 8454all standard libraries, including the debug library. 8455Its usage is: 8456 8457<pre> 8458 lua [options] [script [args]] 8459</pre><p> 8460The options are: 8461 8462<ul> 8463<li><b><code>-e <em>stat</em></code>:</b> executes string <em>stat</em>;</li> 8464<li><b><code>-l <em>mod</em></code>:</b> "requires" <em>mod</em>;</li> 8465<li><b><code>-i</code>:</b> enters interactive mode after running <em>script</em>;</li> 8466<li><b><code>-v</code>:</b> prints version information;</li> 8467<li><b><code>--</code>:</b> stops handling options;</li> 8468<li><b><code>-</code>:</b> executes <code>stdin</code> as a file and stops handling options.</li> 8469</ul><p> 8470After handling its options, <code>lua</code> runs the given <em>script</em>, 8471passing to it the given <em>args</em> as string arguments. 8472When called without arguments, 8473<code>lua</code> behaves as <code>lua -v -i</code> 8474when the standard input (<code>stdin</code>) is a terminal, 8475and as <code>lua -</code> otherwise. 8476 8477 8478<p> 8479Before running any argument, 8480the interpreter checks for an environment variable <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a>. 8481If its format is <code>@<em>filename</em></code>, 8482then <code>lua</code> executes the file. 8483Otherwise, <code>lua</code> executes the string itself. 8484 8485 8486<p> 8487All options are handled in order, except <code>-i</code>. 8488For instance, an invocation like 8489 8490<pre> 8491 $ lua -e'a=1' -e 'print(a)' script.lua 8492</pre><p> 8493will first set <code>a</code> to 1, then print the value of <code>a</code> (which is '<code>1</code>'), 8494and finally run the file <code>script.lua</code> with no arguments. 8495(Here <code>$</code> is the shell prompt. Your prompt may be different.) 8496 8497 8498<p> 8499Before starting to run the script, 8500<code>lua</code> collects all arguments in the command line 8501in a global table called <code>arg</code>. 8502The script name is stored at index 0, 8503the first argument after the script name goes to index 1, 8504and so on. 8505Any arguments before the script name 8506(that is, the interpreter name plus the options) 8507go to negative indices. 8508For instance, in the call 8509 8510<pre> 8511 $ lua -la b.lua t1 t2 8512</pre><p> 8513the interpreter first runs the file <code>a.lua</code>, 8514then creates a table 8515 8516<pre> 8517 arg = { [-2] = "lua", [-1] = "-la", 8518 [0] = "b.lua", 8519 [1] = "t1", [2] = "t2" } 8520</pre><p> 8521and finally runs the file <code>b.lua</code>. 8522The script is called with <code>arg[1]</code>, <code>arg[2]</code>, ··· 8523as arguments; 8524it can also access these arguments with the vararg expression '<code>...</code>'. 8525 8526 8527<p> 8528In interactive mode, 8529if you write an incomplete statement, 8530the interpreter waits for its completion 8531by issuing a different prompt. 8532 8533 8534<p> 8535If the global variable <a name="pdf-_PROMPT"><code>_PROMPT</code></a> contains a string, 8536then its value is used as the prompt. 8537Similarly, if the global variable <a name="pdf-_PROMPT2"><code>_PROMPT2</code></a> contains a string, 8538its value is used as the secondary prompt 8539(issued during incomplete statements). 8540Therefore, both prompts can be changed directly on the command line 8541or in any Lua programs by assigning to <code>_PROMPT</code>. 8542See the next example: 8543 8544<pre> 8545 $ lua -e"_PROMPT='myprompt> '" -i 8546</pre><p> 8547(The outer pair of quotes is for the shell, 8548the inner pair is for Lua.) 8549Note the use of <code>-i</code> to enter interactive mode; 8550otherwise, 8551the program would just end silently 8552right after the assignment to <code>_PROMPT</code>. 8553 8554 8555<p> 8556To allow the use of Lua as a 8557script interpreter in Unix systems, 8558the stand-alone interpreter skips 8559the first line of a chunk if it starts with <code>#</code>. 8560Therefore, Lua scripts can be made into executable programs 8561by using <code>chmod +x</code> and the <code>#!</code> form, 8562as in 8563 8564<pre> 8565 #!/usr/local/bin/lua 8566</pre><p> 8567(Of course, 8568the location of the Lua interpreter may be different in your machine. 8569If <code>lua</code> is in your <code>PATH</code>, 8570then 8571 8572<pre> 8573 #!/usr/bin/env lua 8574</pre><p> 8575is a more portable solution.) 8576 8577 8578 8579<h1>7 - <a name="7">Incompatibilities with the Previous Version</a></h1> 8580 8581<p> 8582Here we list the incompatibilities that you may find when moving a program 8583from Lua 5.0 to Lua 5.1. 8584You can avoid most of the incompatibilities compiling Lua with 8585appropriate options (see file <code>luaconf.h</code>). 8586However, 8587all these compatibility options will be removed in the next version of Lua. 8588 8589 8590 8591<h2>7.1 - <a name="7.1">Changes in the Language</a></h2> 8592<ul> 8593 8594<li> 8595The vararg system changed from the pseudo-argument <code>arg</code> with a 8596table with the extra arguments to the vararg expression. 8597(See compile-time option <code>LUA_COMPAT_VARARG</code> in <code>luaconf.h</code>.) 8598</li> 8599 8600<li> 8601There was a subtle change in the scope of the implicit 8602variables of the <b>for</b> statement and for the <b>repeat</b> statement. 8603</li> 8604 8605<li> 8606The long string/long comment syntax (<code>[[<em>string</em>]]</code>) 8607does not allow nesting. 8608You can use the new syntax (<code>[=[<em>string</em>]=]</code>) in these cases. 8609(See compile-time option <code>LUA_COMPAT_LSTR</code> in <code>luaconf.h</code>.) 8610</li> 8611 8612</ul> 8613 8614 8615 8616 8617<h2>7.2 - <a name="7.2">Changes in the Libraries</a></h2> 8618<ul> 8619 8620<li> 8621Function <code>string.gfind</code> was renamed <a href="#pdf-string.gmatch"><code>string.gmatch</code></a>. 8622(See compile-time option <code>LUA_COMPAT_GFIND</code> in <code>luaconf.h</code>.) 8623</li> 8624 8625<li> 8626When <a href="#pdf-string.gsub"><code>string.gsub</code></a> is called with a function as its 8627third argument, 8628whenever this function returns <b>nil</b> or <b>false</b> the 8629replacement string is the whole match, 8630instead of the empty string. 8631</li> 8632 8633<li> 8634Function <code>table.setn</code> was deprecated. 8635Function <code>table.getn</code> corresponds 8636to the new length operator (<code>#</code>); 8637use the operator instead of the function. 8638(See compile-time option <code>LUA_COMPAT_GETN</code> in <code>luaconf.h</code>.) 8639</li> 8640 8641<li> 8642Function <code>loadlib</code> was renamed <a href="#pdf-package.loadlib"><code>package.loadlib</code></a>. 8643(See compile-time option <code>LUA_COMPAT_LOADLIB</code> in <code>luaconf.h</code>.) 8644</li> 8645 8646<li> 8647Function <code>math.mod</code> was renamed <a href="#pdf-math.fmod"><code>math.fmod</code></a>. 8648(See compile-time option <code>LUA_COMPAT_MOD</code> in <code>luaconf.h</code>.) 8649</li> 8650 8651<li> 8652Functions <code>table.foreach</code> and <code>table.foreachi</code> are deprecated. 8653You can use a for loop with <code>pairs</code> or <code>ipairs</code> instead. 8654</li> 8655 8656<li> 8657There were substantial changes in function <a href="#pdf-require"><code>require</code></a> due to 8658the new module system. 8659However, the new behavior is mostly compatible with the old, 8660but <code>require</code> gets the path from <a href="#pdf-package.path"><code>package.path</code></a> instead 8661of from <code>LUA_PATH</code>. 8662</li> 8663 8664<li> 8665Function <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> has different arguments. 8666Function <code>gcinfo</code> is deprecated; 8667use <code>collectgarbage("count")</code> instead. 8668</li> 8669 8670</ul> 8671 8672 8673 8674 8675<h2>7.3 - <a name="7.3">Changes in the API</a></h2> 8676<ul> 8677 8678<li> 8679The <code>luaopen_*</code> functions (to open libraries) 8680cannot be called directly, 8681like a regular C function. 8682They must be called through Lua, 8683like a Lua function. 8684</li> 8685 8686<li> 8687Function <code>lua_open</code> was replaced by <a href="#lua_newstate"><code>lua_newstate</code></a> to 8688allow the user to set a memory-allocation function. 8689You can use <a href="#luaL_newstate"><code>luaL_newstate</code></a> from the standard library to 8690create a state with a standard allocation function 8691(based on <code>realloc</code>). 8692</li> 8693 8694<li> 8695Functions <code>luaL_getn</code> and <code>luaL_setn</code> 8696(from the auxiliary library) are deprecated. 8697Use <a href="#lua_objlen"><code>lua_objlen</code></a> instead of <code>luaL_getn</code> 8698and nothing instead of <code>luaL_setn</code>. 8699</li> 8700 8701<li> 8702Function <code>luaL_openlib</code> was replaced by <a href="#luaL_register"><code>luaL_register</code></a>. 8703</li> 8704 8705<li> 8706Function <code>luaL_checkudata</code> now throws an error when the given value 8707is not a userdata of the expected type. 8708(In Lua 5.0 it returned <code>NULL</code>.) 8709</li> 8710 8711</ul> 8712 8713 8714 8715 8716<h1>8 - <a name="8">The Complete Syntax of Lua</a></h1> 8717 8718<p> 8719Here is the complete syntax of Lua in extended BNF. 8720(It does not describe operator precedences.) 8721 8722 8723 8724 8725<pre> 8726 8727 chunk ::= {stat [`<b>;</b>´]} [laststat [`<b>;</b>´]] 8728 8729 block ::= chunk 8730 8731 stat ::= varlist `<b>=</b>´ explist | 8732 functioncall | 8733 <b>do</b> block <b>end</b> | 8734 <b>while</b> exp <b>do</b> block <b>end</b> | 8735 <b>repeat</b> block <b>until</b> exp | 8736 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> | 8737 <b>for</b> Name `<b>=</b>´ exp `<b>,</b>´ exp [`<b>,</b>´ exp] <b>do</b> block <b>end</b> | 8738 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> | 8739 <b>function</b> funcname funcbody | 8740 <b>local</b> <b>function</b> Name funcbody | 8741 <b>local</b> namelist [`<b>=</b>´ explist] 8742 8743 laststat ::= <b>return</b> [explist] | <b>break</b> 8744 8745 funcname ::= Name {`<b>.</b>´ Name} [`<b>:</b>´ Name] 8746 8747 varlist ::= var {`<b>,</b>´ var} 8748 8749 var ::= Name | prefixexp `<b>[</b>´ exp `<b>]</b>´ | prefixexp `<b>.</b>´ Name 8750 8751 namelist ::= Name {`<b>,</b>´ Name} 8752 8753 explist ::= {exp `<b>,</b>´} exp 8754 8755 exp ::= <b>nil</b> | <b>false</b> | <b>true</b> | Number | String | `<b>...</b>´ | function | 8756 prefixexp | tableconstructor | exp binop exp | unop exp 8757 8758 prefixexp ::= var | functioncall | `<b>(</b>´ exp `<b>)</b>´ 8759 8760 functioncall ::= prefixexp args | prefixexp `<b>:</b>´ Name args 8761 8762 args ::= `<b>(</b>´ [explist] `<b>)</b>´ | tableconstructor | String 8763 8764 function ::= <b>function</b> funcbody 8765 8766 funcbody ::= `<b>(</b>´ [parlist] `<b>)</b>´ block <b>end</b> 8767 8768 parlist ::= namelist [`<b>,</b>´ `<b>...</b>´] | `<b>...</b>´ 8769 8770 tableconstructor ::= `<b>{</b>´ [fieldlist] `<b>}</b>´ 8771 8772 fieldlist ::= field {fieldsep field} [fieldsep] 8773 8774 field ::= `<b>[</b>´ exp `<b>]</b>´ `<b>=</b>´ exp | Name `<b>=</b>´ exp | exp 8775 8776 fieldsep ::= `<b>,</b>´ | `<b>;</b>´ 8777 8778 binop ::= `<b>+</b>´ | `<b>-</b>´ | `<b>*</b>´ | `<b>/</b>´ | `<b>^</b>´ | `<b>%</b>´ | `<b>..</b>´ | 8779 `<b><</b>´ | `<b><=</b>´ | `<b>></b>´ | `<b>>=</b>´ | `<b>==</b>´ | `<b>~=</b>´ | 8780 <b>and</b> | <b>or</b> 8781 8782 unop ::= `<b>-</b>´ | <b>not</b> | `<b>#</b>´ 8783 8784</pre> 8785 8786<p> 8787 8788 8789 8790 8791 8792 8793 8794<HR> 8795<SMALL CLASS="footer"> 8796Last update: 8797Mon Feb 13 18:54:19 BRST 2012 8798</SMALL> 8799<!-- 8800Last change: revised for Lua 5.1.5 8801--> 8802 8803</body></html> 8804 8805