1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends. This makes it easier to access the data and
12 // provides a single place that needs to check it for validity. All of these
13 // classes abort on error conditions.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CodeGenTarget.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include <algorithm>
26 using namespace llvm;
27
28 static cl::opt<unsigned>
29 AsmParserNum("asmparsernum", cl::init(0),
30 cl::desc("Make -gen-asm-parser emit assembly parser #N"));
31
32 static cl::opt<unsigned>
33 AsmWriterNum("asmwriternum", cl::init(0),
34 cl::desc("Make -gen-asm-writer emit assembly writer #N"));
35
36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
37 /// record corresponds to.
getValueType(Record * Rec)38 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
39 return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
40 }
41
getName(MVT::SimpleValueType T)42 std::string llvm::getName(MVT::SimpleValueType T) {
43 switch (T) {
44 case MVT::Other: return "UNKNOWN";
45 case MVT::iPTR: return "TLI.getPointerTy()";
46 case MVT::iPTRAny: return "TLI.getPointerTy()";
47 default: return getEnumName(T);
48 }
49 }
50
getEnumName(MVT::SimpleValueType T)51 std::string llvm::getEnumName(MVT::SimpleValueType T) {
52 switch (T) {
53 case MVT::Other: return "MVT::Other";
54 case MVT::i1: return "MVT::i1";
55 case MVT::i8: return "MVT::i8";
56 case MVT::i16: return "MVT::i16";
57 case MVT::i32: return "MVT::i32";
58 case MVT::i64: return "MVT::i64";
59 case MVT::i128: return "MVT::i128";
60 case MVT::iAny: return "MVT::iAny";
61 case MVT::fAny: return "MVT::fAny";
62 case MVT::vAny: return "MVT::vAny";
63 case MVT::f16: return "MVT::f16";
64 case MVT::f32: return "MVT::f32";
65 case MVT::f64: return "MVT::f64";
66 case MVT::f80: return "MVT::f80";
67 case MVT::f128: return "MVT::f128";
68 case MVT::ppcf128: return "MVT::ppcf128";
69 case MVT::x86mmx: return "MVT::x86mmx";
70 case MVT::Glue: return "MVT::Glue";
71 case MVT::isVoid: return "MVT::isVoid";
72 case MVT::v2i1: return "MVT::v2i1";
73 case MVT::v4i1: return "MVT::v4i1";
74 case MVT::v8i1: return "MVT::v8i1";
75 case MVT::v16i1: return "MVT::v16i1";
76 case MVT::v32i1: return "MVT::v32i1";
77 case MVT::v64i1: return "MVT::v64i1";
78 case MVT::v1i8: return "MVT::v1i8";
79 case MVT::v2i8: return "MVT::v2i8";
80 case MVT::v4i8: return "MVT::v4i8";
81 case MVT::v8i8: return "MVT::v8i8";
82 case MVT::v16i8: return "MVT::v16i8";
83 case MVT::v32i8: return "MVT::v32i8";
84 case MVT::v64i8: return "MVT::v64i8";
85 case MVT::v1i16: return "MVT::v1i16";
86 case MVT::v2i16: return "MVT::v2i16";
87 case MVT::v4i16: return "MVT::v4i16";
88 case MVT::v8i16: return "MVT::v8i16";
89 case MVT::v16i16: return "MVT::v16i16";
90 case MVT::v32i16: return "MVT::v32i16";
91 case MVT::v1i32: return "MVT::v1i32";
92 case MVT::v2i32: return "MVT::v2i32";
93 case MVT::v4i32: return "MVT::v4i32";
94 case MVT::v8i32: return "MVT::v8i32";
95 case MVT::v16i32: return "MVT::v16i32";
96 case MVT::v1i64: return "MVT::v1i64";
97 case MVT::v2i64: return "MVT::v2i64";
98 case MVT::v4i64: return "MVT::v4i64";
99 case MVT::v8i64: return "MVT::v8i64";
100 case MVT::v16i64: return "MVT::v16i64";
101 case MVT::v2f16: return "MVT::v2f16";
102 case MVT::v4f16: return "MVT::v4f16";
103 case MVT::v8f16: return "MVT::v8f16";
104 case MVT::v1f32: return "MVT::v1f32";
105 case MVT::v2f32: return "MVT::v2f32";
106 case MVT::v4f32: return "MVT::v4f32";
107 case MVT::v8f32: return "MVT::v8f32";
108 case MVT::v16f32: return "MVT::v16f32";
109 case MVT::v1f64: return "MVT::v1f64";
110 case MVT::v2f64: return "MVT::v2f64";
111 case MVT::v4f64: return "MVT::v4f64";
112 case MVT::v8f64: return "MVT::v8f64";
113 case MVT::Metadata: return "MVT::Metadata";
114 case MVT::iPTR: return "MVT::iPTR";
115 case MVT::iPTRAny: return "MVT::iPTRAny";
116 case MVT::Untyped: return "MVT::Untyped";
117 default: llvm_unreachable("ILLEGAL VALUE TYPE!");
118 }
119 }
120
121 /// getQualifiedName - Return the name of the specified record, with a
122 /// namespace qualifier if the record contains one.
123 ///
getQualifiedName(const Record * R)124 std::string llvm::getQualifiedName(const Record *R) {
125 std::string Namespace;
126 if (R->getValue("Namespace"))
127 Namespace = R->getValueAsString("Namespace");
128 if (Namespace.empty()) return R->getName();
129 return Namespace + "::" + R->getName();
130 }
131
132
133 /// getTarget - Return the current instance of the Target class.
134 ///
CodeGenTarget(RecordKeeper & records)135 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
136 : Records(records) {
137 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
138 if (Targets.size() == 0)
139 PrintFatalError("ERROR: No 'Target' subclasses defined!");
140 if (Targets.size() != 1)
141 PrintFatalError("ERROR: Multiple subclasses of Target defined!");
142 TargetRec = Targets[0];
143 }
144
~CodeGenTarget()145 CodeGenTarget::~CodeGenTarget() {
146 }
147
getName() const148 const std::string &CodeGenTarget::getName() const {
149 return TargetRec->getName();
150 }
151
getInstNamespace() const152 std::string CodeGenTarget::getInstNamespace() const {
153 for (const CodeGenInstruction *Inst : instructions()) {
154 // Make sure not to pick up "TargetOpcode" by accidentally getting
155 // the namespace off the PHI instruction or something.
156 if (Inst->Namespace != "TargetOpcode")
157 return Inst->Namespace;
158 }
159
160 return "";
161 }
162
getInstructionSet() const163 Record *CodeGenTarget::getInstructionSet() const {
164 return TargetRec->getValueAsDef("InstructionSet");
165 }
166
167
168 /// getAsmParser - Return the AssemblyParser definition for this target.
169 ///
getAsmParser() const170 Record *CodeGenTarget::getAsmParser() const {
171 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
172 if (AsmParserNum >= LI.size())
173 PrintFatalError("Target does not have an AsmParser #" +
174 Twine(AsmParserNum) + "!");
175 return LI[AsmParserNum];
176 }
177
178 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
179 /// this target.
180 ///
getAsmParserVariant(unsigned i) const181 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
182 std::vector<Record*> LI =
183 TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
184 if (i >= LI.size())
185 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
186 "!");
187 return LI[i];
188 }
189
190 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
191 /// available for this target.
192 ///
getAsmParserVariantCount() const193 unsigned CodeGenTarget::getAsmParserVariantCount() const {
194 std::vector<Record*> LI =
195 TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
196 return LI.size();
197 }
198
199 /// getAsmWriter - Return the AssemblyWriter definition for this target.
200 ///
getAsmWriter() const201 Record *CodeGenTarget::getAsmWriter() const {
202 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
203 if (AsmWriterNum >= LI.size())
204 PrintFatalError("Target does not have an AsmWriter #" +
205 Twine(AsmWriterNum) + "!");
206 return LI[AsmWriterNum];
207 }
208
getRegBank() const209 CodeGenRegBank &CodeGenTarget::getRegBank() const {
210 if (!RegBank)
211 RegBank = llvm::make_unique<CodeGenRegBank>(Records);
212 return *RegBank;
213 }
214
ReadRegAltNameIndices() const215 void CodeGenTarget::ReadRegAltNameIndices() const {
216 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
217 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
218 }
219
220 /// getRegisterByName - If there is a register with the specific AsmName,
221 /// return it.
getRegisterByName(StringRef Name) const222 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
223 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
224 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
225 if (I == Regs.end())
226 return nullptr;
227 return I->second;
228 }
229
230 std::vector<MVT::SimpleValueType> CodeGenTarget::
getRegisterVTs(Record * R) const231 getRegisterVTs(Record *R) const {
232 const CodeGenRegister *Reg = getRegBank().getReg(R);
233 std::vector<MVT::SimpleValueType> Result;
234 for (const auto &RC : getRegBank().getRegClasses()) {
235 if (RC.contains(Reg)) {
236 ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
237 Result.insert(Result.end(), InVTs.begin(), InVTs.end());
238 }
239 }
240
241 // Remove duplicates.
242 array_pod_sort(Result.begin(), Result.end());
243 Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
244 return Result;
245 }
246
247
ReadLegalValueTypes() const248 void CodeGenTarget::ReadLegalValueTypes() const {
249 for (const auto &RC : getRegBank().getRegClasses())
250 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
251
252 // Remove duplicates.
253 std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
254 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
255 LegalValueTypes.end()),
256 LegalValueTypes.end());
257 }
258
getSchedModels() const259 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
260 if (!SchedModels)
261 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
262 return *SchedModels;
263 }
264
ReadInstructions() const265 void CodeGenTarget::ReadInstructions() const {
266 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
267 if (Insts.size() <= 2)
268 PrintFatalError("No 'Instruction' subclasses defined!");
269
270 // Parse the instructions defined in the .td file.
271 for (unsigned i = 0, e = Insts.size(); i != e; ++i)
272 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
273 }
274
275 static const CodeGenInstruction *
GetInstByName(const char * Name,const DenseMap<const Record *,std::unique_ptr<CodeGenInstruction>> & Insts,RecordKeeper & Records)276 GetInstByName(const char *Name,
277 const DenseMap<const Record*,
278 std::unique_ptr<CodeGenInstruction>> &Insts,
279 RecordKeeper &Records) {
280 const Record *Rec = Records.getDef(Name);
281
282 const auto I = Insts.find(Rec);
283 if (!Rec || I == Insts.end())
284 PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
285 return I->second.get();
286 }
287
288 /// \brief Return all of the instructions defined by the target, ordered by
289 /// their enum value.
ComputeInstrsByEnum() const290 void CodeGenTarget::ComputeInstrsByEnum() const {
291 // The ordering here must match the ordering in TargetOpcodes.h.
292 static const char *const FixedInstrs[] = {
293 "PHI", "INLINEASM", "CFI_INSTRUCTION", "EH_LABEL",
294 "GC_LABEL", "KILL", "EXTRACT_SUBREG", "INSERT_SUBREG",
295 "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE",
296 "REG_SEQUENCE", "COPY", "BUNDLE", "LIFETIME_START",
297 "LIFETIME_END", "STACKMAP", "PATCHPOINT", "LOAD_STACK_GUARD",
298 "STATEPOINT", "FRAME_ALLOC",
299 nullptr};
300 const auto &Insts = getInstructions();
301 for (const char *const *p = FixedInstrs; *p; ++p) {
302 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
303 assert(Instr && "Missing target independent instruction");
304 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
305 InstrsByEnum.push_back(Instr);
306 }
307 unsigned EndOfPredefines = InstrsByEnum.size();
308
309 for (const auto &I : Insts) {
310 const CodeGenInstruction *CGI = I.second.get();
311 if (CGI->Namespace != "TargetOpcode")
312 InstrsByEnum.push_back(CGI);
313 }
314
315 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
316
317 // All of the instructions are now in random order based on the map iteration.
318 // Sort them by name.
319 std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
320 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
321 return Rec1->TheDef->getName() < Rec2->TheDef->getName();
322 });
323 }
324
325
326 /// isLittleEndianEncoding - Return whether this target encodes its instruction
327 /// in little-endian format, i.e. bits laid out in the order [0..n]
328 ///
isLittleEndianEncoding() const329 bool CodeGenTarget::isLittleEndianEncoding() const {
330 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
331 }
332
333 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
334 /// encodings, reverse the bit order of all instructions.
reverseBitsForLittleEndianEncoding()335 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
336 if (!isLittleEndianEncoding())
337 return;
338
339 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
340 for (Record *R : Insts) {
341 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
342 R->getValueAsBit("isPseudo"))
343 continue;
344
345 BitsInit *BI = R->getValueAsBitsInit("Inst");
346
347 unsigned numBits = BI->getNumBits();
348
349 SmallVector<Init *, 16> NewBits(numBits);
350
351 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
352 unsigned bitSwapIdx = numBits - bit - 1;
353 Init *OrigBit = BI->getBit(bit);
354 Init *BitSwap = BI->getBit(bitSwapIdx);
355 NewBits[bit] = BitSwap;
356 NewBits[bitSwapIdx] = OrigBit;
357 }
358 if (numBits % 2) {
359 unsigned middle = (numBits + 1) / 2;
360 NewBits[middle] = BI->getBit(middle);
361 }
362
363 BitsInit *NewBI = BitsInit::get(NewBits);
364
365 // Update the bits in reversed order so that emitInstrOpBits will get the
366 // correct endianness.
367 R->getValue("Inst")->setValue(NewBI);
368 }
369 }
370
371 /// guessInstructionProperties - Return true if it's OK to guess instruction
372 /// properties instead of raising an error.
373 ///
374 /// This is configurable as a temporary migration aid. It will eventually be
375 /// permanently false.
guessInstructionProperties() const376 bool CodeGenTarget::guessInstructionProperties() const {
377 return getInstructionSet()->getValueAsBit("guessInstructionProperties");
378 }
379
380 //===----------------------------------------------------------------------===//
381 // ComplexPattern implementation
382 //
ComplexPattern(Record * R)383 ComplexPattern::ComplexPattern(Record *R) {
384 Ty = ::getValueType(R->getValueAsDef("Ty"));
385 NumOperands = R->getValueAsInt("NumOperands");
386 SelectFunc = R->getValueAsString("SelectFunc");
387 RootNodes = R->getValueAsListOfDefs("RootNodes");
388
389 // Parse the properties.
390 Properties = 0;
391 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
392 for (unsigned i = 0, e = PropList.size(); i != e; ++i)
393 if (PropList[i]->getName() == "SDNPHasChain") {
394 Properties |= 1 << SDNPHasChain;
395 } else if (PropList[i]->getName() == "SDNPOptInGlue") {
396 Properties |= 1 << SDNPOptInGlue;
397 } else if (PropList[i]->getName() == "SDNPMayStore") {
398 Properties |= 1 << SDNPMayStore;
399 } else if (PropList[i]->getName() == "SDNPMayLoad") {
400 Properties |= 1 << SDNPMayLoad;
401 } else if (PropList[i]->getName() == "SDNPSideEffect") {
402 Properties |= 1 << SDNPSideEffect;
403 } else if (PropList[i]->getName() == "SDNPMemOperand") {
404 Properties |= 1 << SDNPMemOperand;
405 } else if (PropList[i]->getName() == "SDNPVariadic") {
406 Properties |= 1 << SDNPVariadic;
407 } else if (PropList[i]->getName() == "SDNPWantRoot") {
408 Properties |= 1 << SDNPWantRoot;
409 } else if (PropList[i]->getName() == "SDNPWantParent") {
410 Properties |= 1 << SDNPWantParent;
411 } else {
412 errs() << "Unsupported SD Node property '" << PropList[i]->getName()
413 << "' on ComplexPattern '" << R->getName() << "'!\n";
414 exit(1);
415 }
416 }
417
418 //===----------------------------------------------------------------------===//
419 // CodeGenIntrinsic Implementation
420 //===----------------------------------------------------------------------===//
421
LoadIntrinsics(const RecordKeeper & RC,bool TargetOnly)422 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
423 bool TargetOnly) {
424 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
425
426 std::vector<CodeGenIntrinsic> Result;
427
428 for (unsigned i = 0, e = I.size(); i != e; ++i) {
429 bool isTarget = I[i]->getValueAsBit("isTarget");
430 if (isTarget == TargetOnly)
431 Result.push_back(CodeGenIntrinsic(I[i]));
432 }
433 return Result;
434 }
435
CodeGenIntrinsic(Record * R)436 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
437 TheDef = R;
438 std::string DefName = R->getName();
439 ModRef = ReadWriteMem;
440 isOverloaded = false;
441 isCommutative = false;
442 canThrow = false;
443 isNoReturn = false;
444 isNoDuplicate = false;
445
446 if (DefName.size() <= 4 ||
447 std::string(DefName.begin(), DefName.begin() + 4) != "int_")
448 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
449
450 EnumName = std::string(DefName.begin()+4, DefName.end());
451
452 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
453 GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
454 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
455 MSBuiltinName = R->getValueAsString("MSBuiltinName");
456
457 TargetPrefix = R->getValueAsString("TargetPrefix");
458 Name = R->getValueAsString("LLVMName");
459
460 if (Name == "") {
461 // If an explicit name isn't specified, derive one from the DefName.
462 Name = "llvm.";
463
464 for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
465 Name += (EnumName[i] == '_') ? '.' : EnumName[i];
466 } else {
467 // Verify it starts with "llvm.".
468 if (Name.size() <= 5 ||
469 std::string(Name.begin(), Name.begin() + 5) != "llvm.")
470 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
471 }
472
473 // If TargetPrefix is specified, make sure that Name starts with
474 // "llvm.<targetprefix>.".
475 if (!TargetPrefix.empty()) {
476 if (Name.size() < 6+TargetPrefix.size() ||
477 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
478 != (TargetPrefix + "."))
479 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
480 TargetPrefix + ".'!");
481 }
482
483 // Parse the list of return types.
484 std::vector<MVT::SimpleValueType> OverloadedVTs;
485 ListInit *TypeList = R->getValueAsListInit("RetTypes");
486 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
487 Record *TyEl = TypeList->getElementAsRecord(i);
488 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
489 MVT::SimpleValueType VT;
490 if (TyEl->isSubClassOf("LLVMMatchType")) {
491 unsigned MatchTy = TyEl->getValueAsInt("Number");
492 assert(MatchTy < OverloadedVTs.size() &&
493 "Invalid matching number!");
494 VT = OverloadedVTs[MatchTy];
495 // It only makes sense to use the extended and truncated vector element
496 // variants with iAny types; otherwise, if the intrinsic is not
497 // overloaded, all the types can be specified directly.
498 assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
499 !TyEl->isSubClassOf("LLVMTruncatedType")) ||
500 VT == MVT::iAny || VT == MVT::vAny) &&
501 "Expected iAny or vAny type");
502 } else {
503 VT = getValueType(TyEl->getValueAsDef("VT"));
504 }
505 if (MVT(VT).isOverloaded()) {
506 OverloadedVTs.push_back(VT);
507 isOverloaded = true;
508 }
509
510 // Reject invalid types.
511 if (VT == MVT::isVoid)
512 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
513
514 IS.RetVTs.push_back(VT);
515 IS.RetTypeDefs.push_back(TyEl);
516 }
517
518 // Parse the list of parameter types.
519 TypeList = R->getValueAsListInit("ParamTypes");
520 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
521 Record *TyEl = TypeList->getElementAsRecord(i);
522 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
523 MVT::SimpleValueType VT;
524 if (TyEl->isSubClassOf("LLVMMatchType")) {
525 unsigned MatchTy = TyEl->getValueAsInt("Number");
526 assert(MatchTy < OverloadedVTs.size() &&
527 "Invalid matching number!");
528 VT = OverloadedVTs[MatchTy];
529 // It only makes sense to use the extended and truncated vector element
530 // variants with iAny types; otherwise, if the intrinsic is not
531 // overloaded, all the types can be specified directly.
532 assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
533 !TyEl->isSubClassOf("LLVMTruncatedType") &&
534 !TyEl->isSubClassOf("LLVMVectorSameWidth") &&
535 !TyEl->isSubClassOf("LLVMPointerToElt")) ||
536 VT == MVT::iAny || VT == MVT::vAny) &&
537 "Expected iAny or vAny type");
538 } else
539 VT = getValueType(TyEl->getValueAsDef("VT"));
540
541 if (MVT(VT).isOverloaded()) {
542 OverloadedVTs.push_back(VT);
543 isOverloaded = true;
544 }
545
546 // Reject invalid types.
547 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
548 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
549
550 IS.ParamVTs.push_back(VT);
551 IS.ParamTypeDefs.push_back(TyEl);
552 }
553
554 // Parse the intrinsic properties.
555 ListInit *PropList = R->getValueAsListInit("Properties");
556 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
557 Record *Property = PropList->getElementAsRecord(i);
558 assert(Property->isSubClassOf("IntrinsicProperty") &&
559 "Expected a property!");
560
561 if (Property->getName() == "IntrNoMem")
562 ModRef = NoMem;
563 else if (Property->getName() == "IntrReadArgMem")
564 ModRef = ReadArgMem;
565 else if (Property->getName() == "IntrReadMem")
566 ModRef = ReadMem;
567 else if (Property->getName() == "IntrReadWriteArgMem")
568 ModRef = ReadWriteArgMem;
569 else if (Property->getName() == "Commutative")
570 isCommutative = true;
571 else if (Property->getName() == "Throws")
572 canThrow = true;
573 else if (Property->getName() == "IntrNoDuplicate")
574 isNoDuplicate = true;
575 else if (Property->getName() == "IntrNoReturn")
576 isNoReturn = true;
577 else if (Property->isSubClassOf("NoCapture")) {
578 unsigned ArgNo = Property->getValueAsInt("ArgNo");
579 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
580 } else if (Property->isSubClassOf("ReadOnly")) {
581 unsigned ArgNo = Property->getValueAsInt("ArgNo");
582 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
583 } else if (Property->isSubClassOf("ReadNone")) {
584 unsigned ArgNo = Property->getValueAsInt("ArgNo");
585 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
586 } else
587 llvm_unreachable("Unknown property!");
588 }
589
590 // Sort the argument attributes for later benefit.
591 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
592 }
593