1 //===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass converts vector operations into scalar operations, in order
11 // to expose optimization opportunities on the individual scalar operations.
12 // It is mainly intended for targets that do not have vector units, but it
13 // may also be useful for revectorizing code to different vector widths.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/InstVisitor.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "scalarizer"
28
29 namespace {
30 // Used to store the scattered form of a vector.
31 typedef SmallVector<Value *, 8> ValueVector;
32
33 // Used to map a vector Value to its scattered form. We use std::map
34 // because we want iterators to persist across insertion and because the
35 // values are relatively large.
36 typedef std::map<Value *, ValueVector> ScatterMap;
37
38 // Lists Instructions that have been replaced with scalar implementations,
39 // along with a pointer to their scattered forms.
40 typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
41
42 // Provides a very limited vector-like interface for lazily accessing one
43 // component of a scattered vector or vector pointer.
44 class Scatterer {
45 public:
Scatterer()46 Scatterer() {}
47
48 // Scatter V into Size components. If new instructions are needed,
49 // insert them before BBI in BB. If Cache is nonnull, use it to cache
50 // the results.
51 Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
52 ValueVector *cachePtr = nullptr);
53
54 // Return component I, creating a new Value for it if necessary.
55 Value *operator[](unsigned I);
56
57 // Return the number of components.
size() const58 unsigned size() const { return Size; }
59
60 private:
61 BasicBlock *BB;
62 BasicBlock::iterator BBI;
63 Value *V;
64 ValueVector *CachePtr;
65 PointerType *PtrTy;
66 ValueVector Tmp;
67 unsigned Size;
68 };
69
70 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
71 // called Name that compares X and Y in the same way as FCI.
72 struct FCmpSplitter {
FCmpSplitter__anon07a0b6760111::FCmpSplitter73 FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
operator ()__anon07a0b6760111::FCmpSplitter74 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
75 const Twine &Name) const {
76 return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
77 }
78 FCmpInst &FCI;
79 };
80
81 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
82 // called Name that compares X and Y in the same way as ICI.
83 struct ICmpSplitter {
ICmpSplitter__anon07a0b6760111::ICmpSplitter84 ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
operator ()__anon07a0b6760111::ICmpSplitter85 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
86 const Twine &Name) const {
87 return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
88 }
89 ICmpInst &ICI;
90 };
91
92 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
93 // a binary operator like BO called Name with operands X and Y.
94 struct BinarySplitter {
BinarySplitter__anon07a0b6760111::BinarySplitter95 BinarySplitter(BinaryOperator &bo) : BO(bo) {}
operator ()__anon07a0b6760111::BinarySplitter96 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
97 const Twine &Name) const {
98 return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
99 }
100 BinaryOperator &BO;
101 };
102
103 // Information about a load or store that we're scalarizing.
104 struct VectorLayout {
VectorLayout__anon07a0b6760111::VectorLayout105 VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
106
107 // Return the alignment of element I.
getElemAlign__anon07a0b6760111::VectorLayout108 uint64_t getElemAlign(unsigned I) {
109 return MinAlign(VecAlign, I * ElemSize);
110 }
111
112 // The type of the vector.
113 VectorType *VecTy;
114
115 // The type of each element.
116 Type *ElemTy;
117
118 // The alignment of the vector.
119 uint64_t VecAlign;
120
121 // The size of each element.
122 uint64_t ElemSize;
123 };
124
125 class Scalarizer : public FunctionPass,
126 public InstVisitor<Scalarizer, bool> {
127 public:
128 static char ID;
129
Scalarizer()130 Scalarizer() :
131 FunctionPass(ID) {
132 initializeScalarizerPass(*PassRegistry::getPassRegistry());
133 }
134
135 bool doInitialization(Module &M) override;
136 bool runOnFunction(Function &F) override;
137
138 // InstVisitor methods. They return true if the instruction was scalarized,
139 // false if nothing changed.
visitInstruction(Instruction &)140 bool visitInstruction(Instruction &) { return false; }
141 bool visitSelectInst(SelectInst &SI);
142 bool visitICmpInst(ICmpInst &);
143 bool visitFCmpInst(FCmpInst &);
144 bool visitBinaryOperator(BinaryOperator &);
145 bool visitGetElementPtrInst(GetElementPtrInst &);
146 bool visitCastInst(CastInst &);
147 bool visitBitCastInst(BitCastInst &);
148 bool visitShuffleVectorInst(ShuffleVectorInst &);
149 bool visitPHINode(PHINode &);
150 bool visitLoadInst(LoadInst &);
151 bool visitStoreInst(StoreInst &);
152
registerOptions()153 static void registerOptions() {
154 // This is disabled by default because having separate loads and stores
155 // makes it more likely that the -combiner-alias-analysis limits will be
156 // reached.
157 OptionRegistry::registerOption<bool, Scalarizer,
158 &Scalarizer::ScalarizeLoadStore>(
159 "scalarize-load-store",
160 "Allow the scalarizer pass to scalarize loads and store", false);
161 }
162
163 private:
164 Scatterer scatter(Instruction *, Value *);
165 void gather(Instruction *, const ValueVector &);
166 bool canTransferMetadata(unsigned Kind);
167 void transferMetadata(Instruction *, const ValueVector &);
168 bool getVectorLayout(Type *, unsigned, VectorLayout &);
169 bool finish();
170
171 template<typename T> bool splitBinary(Instruction &, const T &);
172
173 ScatterMap Scattered;
174 GatherList Gathered;
175 unsigned ParallelLoopAccessMDKind;
176 const DataLayout *DL;
177 bool ScalarizeLoadStore;
178 };
179
180 char Scalarizer::ID = 0;
181 } // end anonymous namespace
182
183 INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
184 "Scalarize vector operations", false, false)
185
Scatterer(BasicBlock * bb,BasicBlock::iterator bbi,Value * v,ValueVector * cachePtr)186 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
187 ValueVector *cachePtr)
188 : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
189 Type *Ty = V->getType();
190 PtrTy = dyn_cast<PointerType>(Ty);
191 if (PtrTy)
192 Ty = PtrTy->getElementType();
193 Size = Ty->getVectorNumElements();
194 if (!CachePtr)
195 Tmp.resize(Size, nullptr);
196 else if (CachePtr->empty())
197 CachePtr->resize(Size, nullptr);
198 else
199 assert(Size == CachePtr->size() && "Inconsistent vector sizes");
200 }
201
202 // Return component I, creating a new Value for it if necessary.
operator [](unsigned I)203 Value *Scatterer::operator[](unsigned I) {
204 ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
205 // Try to reuse a previous value.
206 if (CV[I])
207 return CV[I];
208 IRBuilder<> Builder(BB, BBI);
209 if (PtrTy) {
210 if (!CV[0]) {
211 Type *Ty =
212 PointerType::get(PtrTy->getElementType()->getVectorElementType(),
213 PtrTy->getAddressSpace());
214 CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
215 }
216 if (I != 0)
217 CV[I] = Builder.CreateConstGEP1_32(CV[0], I,
218 V->getName() + ".i" + Twine(I));
219 } else {
220 // Search through a chain of InsertElementInsts looking for element I.
221 // Record other elements in the cache. The new V is still suitable
222 // for all uncached indices.
223 for (;;) {
224 InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
225 if (!Insert)
226 break;
227 ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
228 if (!Idx)
229 break;
230 unsigned J = Idx->getZExtValue();
231 CV[J] = Insert->getOperand(1);
232 V = Insert->getOperand(0);
233 if (I == J)
234 return CV[J];
235 }
236 CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
237 V->getName() + ".i" + Twine(I));
238 }
239 return CV[I];
240 }
241
doInitialization(Module & M)242 bool Scalarizer::doInitialization(Module &M) {
243 ParallelLoopAccessMDKind =
244 M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
245 ScalarizeLoadStore =
246 M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
247 return false;
248 }
249
runOnFunction(Function & F)250 bool Scalarizer::runOnFunction(Function &F) {
251 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
252 DL = DLP ? &DLP->getDataLayout() : nullptr;
253 for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
254 BasicBlock *BB = BBI;
255 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
256 Instruction *I = II;
257 bool Done = visit(I);
258 ++II;
259 if (Done && I->getType()->isVoidTy())
260 I->eraseFromParent();
261 }
262 }
263 return finish();
264 }
265
266 // Return a scattered form of V that can be accessed by Point. V must be a
267 // vector or a pointer to a vector.
scatter(Instruction * Point,Value * V)268 Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
269 if (Argument *VArg = dyn_cast<Argument>(V)) {
270 // Put the scattered form of arguments in the entry block,
271 // so that it can be used everywhere.
272 Function *F = VArg->getParent();
273 BasicBlock *BB = &F->getEntryBlock();
274 return Scatterer(BB, BB->begin(), V, &Scattered[V]);
275 }
276 if (Instruction *VOp = dyn_cast<Instruction>(V)) {
277 // Put the scattered form of an instruction directly after the
278 // instruction.
279 BasicBlock *BB = VOp->getParent();
280 return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
281 V, &Scattered[V]);
282 }
283 // In the fallback case, just put the scattered before Point and
284 // keep the result local to Point.
285 return Scatterer(Point->getParent(), Point, V);
286 }
287
288 // Replace Op with the gathered form of the components in CV. Defer the
289 // deletion of Op and creation of the gathered form to the end of the pass,
290 // so that we can avoid creating the gathered form if all uses of Op are
291 // replaced with uses of CV.
gather(Instruction * Op,const ValueVector & CV)292 void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
293 // Since we're not deleting Op yet, stub out its operands, so that it
294 // doesn't make anything live unnecessarily.
295 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
296 Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
297
298 transferMetadata(Op, CV);
299
300 // If we already have a scattered form of Op (created from ExtractElements
301 // of Op itself), replace them with the new form.
302 ValueVector &SV = Scattered[Op];
303 if (!SV.empty()) {
304 for (unsigned I = 0, E = SV.size(); I != E; ++I) {
305 Instruction *Old = cast<Instruction>(SV[I]);
306 CV[I]->takeName(Old);
307 Old->replaceAllUsesWith(CV[I]);
308 Old->eraseFromParent();
309 }
310 }
311 SV = CV;
312 Gathered.push_back(GatherList::value_type(Op, &SV));
313 }
314
315 // Return true if it is safe to transfer the given metadata tag from
316 // vector to scalar instructions.
canTransferMetadata(unsigned Tag)317 bool Scalarizer::canTransferMetadata(unsigned Tag) {
318 return (Tag == LLVMContext::MD_tbaa
319 || Tag == LLVMContext::MD_fpmath
320 || Tag == LLVMContext::MD_tbaa_struct
321 || Tag == LLVMContext::MD_invariant_load
322 || Tag == LLVMContext::MD_alias_scope
323 || Tag == LLVMContext::MD_noalias
324 || Tag == ParallelLoopAccessMDKind);
325 }
326
327 // Transfer metadata from Op to the instructions in CV if it is known
328 // to be safe to do so.
transferMetadata(Instruction * Op,const ValueVector & CV)329 void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
330 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
331 Op->getAllMetadataOtherThanDebugLoc(MDs);
332 for (unsigned I = 0, E = CV.size(); I != E; ++I) {
333 if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
334 for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
335 MI = MDs.begin(),
336 ME = MDs.end();
337 MI != ME; ++MI)
338 if (canTransferMetadata(MI->first))
339 New->setMetadata(MI->first, MI->second);
340 New->setDebugLoc(Op->getDebugLoc());
341 }
342 }
343 }
344
345 // Try to fill in Layout from Ty, returning true on success. Alignment is
346 // the alignment of the vector, or 0 if the ABI default should be used.
getVectorLayout(Type * Ty,unsigned Alignment,VectorLayout & Layout)347 bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
348 VectorLayout &Layout) {
349 if (!DL)
350 return false;
351
352 // Make sure we're dealing with a vector.
353 Layout.VecTy = dyn_cast<VectorType>(Ty);
354 if (!Layout.VecTy)
355 return false;
356
357 // Check that we're dealing with full-byte elements.
358 Layout.ElemTy = Layout.VecTy->getElementType();
359 if (DL->getTypeSizeInBits(Layout.ElemTy) !=
360 DL->getTypeStoreSizeInBits(Layout.ElemTy))
361 return false;
362
363 if (Alignment)
364 Layout.VecAlign = Alignment;
365 else
366 Layout.VecAlign = DL->getABITypeAlignment(Layout.VecTy);
367 Layout.ElemSize = DL->getTypeStoreSize(Layout.ElemTy);
368 return true;
369 }
370
371 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
372 // to create an instruction like I with operands X and Y and name Name.
373 template<typename Splitter>
splitBinary(Instruction & I,const Splitter & Split)374 bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
375 VectorType *VT = dyn_cast<VectorType>(I.getType());
376 if (!VT)
377 return false;
378
379 unsigned NumElems = VT->getNumElements();
380 IRBuilder<> Builder(I.getParent(), &I);
381 Scatterer Op0 = scatter(&I, I.getOperand(0));
382 Scatterer Op1 = scatter(&I, I.getOperand(1));
383 assert(Op0.size() == NumElems && "Mismatched binary operation");
384 assert(Op1.size() == NumElems && "Mismatched binary operation");
385 ValueVector Res;
386 Res.resize(NumElems);
387 for (unsigned Elem = 0; Elem < NumElems; ++Elem)
388 Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
389 I.getName() + ".i" + Twine(Elem));
390 gather(&I, Res);
391 return true;
392 }
393
visitSelectInst(SelectInst & SI)394 bool Scalarizer::visitSelectInst(SelectInst &SI) {
395 VectorType *VT = dyn_cast<VectorType>(SI.getType());
396 if (!VT)
397 return false;
398
399 unsigned NumElems = VT->getNumElements();
400 IRBuilder<> Builder(SI.getParent(), &SI);
401 Scatterer Op1 = scatter(&SI, SI.getOperand(1));
402 Scatterer Op2 = scatter(&SI, SI.getOperand(2));
403 assert(Op1.size() == NumElems && "Mismatched select");
404 assert(Op2.size() == NumElems && "Mismatched select");
405 ValueVector Res;
406 Res.resize(NumElems);
407
408 if (SI.getOperand(0)->getType()->isVectorTy()) {
409 Scatterer Op0 = scatter(&SI, SI.getOperand(0));
410 assert(Op0.size() == NumElems && "Mismatched select");
411 for (unsigned I = 0; I < NumElems; ++I)
412 Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
413 SI.getName() + ".i" + Twine(I));
414 } else {
415 Value *Op0 = SI.getOperand(0);
416 for (unsigned I = 0; I < NumElems; ++I)
417 Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
418 SI.getName() + ".i" + Twine(I));
419 }
420 gather(&SI, Res);
421 return true;
422 }
423
visitICmpInst(ICmpInst & ICI)424 bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
425 return splitBinary(ICI, ICmpSplitter(ICI));
426 }
427
visitFCmpInst(FCmpInst & FCI)428 bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
429 return splitBinary(FCI, FCmpSplitter(FCI));
430 }
431
visitBinaryOperator(BinaryOperator & BO)432 bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
433 return splitBinary(BO, BinarySplitter(BO));
434 }
435
visitGetElementPtrInst(GetElementPtrInst & GEPI)436 bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
437 VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
438 if (!VT)
439 return false;
440
441 IRBuilder<> Builder(GEPI.getParent(), &GEPI);
442 unsigned NumElems = VT->getNumElements();
443 unsigned NumIndices = GEPI.getNumIndices();
444
445 Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
446
447 SmallVector<Scatterer, 8> Ops;
448 Ops.resize(NumIndices);
449 for (unsigned I = 0; I < NumIndices; ++I)
450 Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
451
452 ValueVector Res;
453 Res.resize(NumElems);
454 for (unsigned I = 0; I < NumElems; ++I) {
455 SmallVector<Value *, 8> Indices;
456 Indices.resize(NumIndices);
457 for (unsigned J = 0; J < NumIndices; ++J)
458 Indices[J] = Ops[J][I];
459 Res[I] = Builder.CreateGEP(Base[I], Indices,
460 GEPI.getName() + ".i" + Twine(I));
461 if (GEPI.isInBounds())
462 if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
463 NewGEPI->setIsInBounds();
464 }
465 gather(&GEPI, Res);
466 return true;
467 }
468
visitCastInst(CastInst & CI)469 bool Scalarizer::visitCastInst(CastInst &CI) {
470 VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
471 if (!VT)
472 return false;
473
474 unsigned NumElems = VT->getNumElements();
475 IRBuilder<> Builder(CI.getParent(), &CI);
476 Scatterer Op0 = scatter(&CI, CI.getOperand(0));
477 assert(Op0.size() == NumElems && "Mismatched cast");
478 ValueVector Res;
479 Res.resize(NumElems);
480 for (unsigned I = 0; I < NumElems; ++I)
481 Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
482 CI.getName() + ".i" + Twine(I));
483 gather(&CI, Res);
484 return true;
485 }
486
visitBitCastInst(BitCastInst & BCI)487 bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
488 VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
489 VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
490 if (!DstVT || !SrcVT)
491 return false;
492
493 unsigned DstNumElems = DstVT->getNumElements();
494 unsigned SrcNumElems = SrcVT->getNumElements();
495 IRBuilder<> Builder(BCI.getParent(), &BCI);
496 Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
497 ValueVector Res;
498 Res.resize(DstNumElems);
499
500 if (DstNumElems == SrcNumElems) {
501 for (unsigned I = 0; I < DstNumElems; ++I)
502 Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
503 BCI.getName() + ".i" + Twine(I));
504 } else if (DstNumElems > SrcNumElems) {
505 // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
506 // individual elements to the destination.
507 unsigned FanOut = DstNumElems / SrcNumElems;
508 Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
509 unsigned ResI = 0;
510 for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
511 Value *V = Op0[Op0I];
512 Instruction *VI;
513 // Look through any existing bitcasts before converting to <N x t2>.
514 // In the best case, the resulting conversion might be a no-op.
515 while ((VI = dyn_cast<Instruction>(V)) &&
516 VI->getOpcode() == Instruction::BitCast)
517 V = VI->getOperand(0);
518 V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
519 Scatterer Mid = scatter(&BCI, V);
520 for (unsigned MidI = 0; MidI < FanOut; ++MidI)
521 Res[ResI++] = Mid[MidI];
522 }
523 } else {
524 // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
525 unsigned FanIn = SrcNumElems / DstNumElems;
526 Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
527 unsigned Op0I = 0;
528 for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
529 Value *V = UndefValue::get(MidTy);
530 for (unsigned MidI = 0; MidI < FanIn; ++MidI)
531 V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
532 BCI.getName() + ".i" + Twine(ResI)
533 + ".upto" + Twine(MidI));
534 Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
535 BCI.getName() + ".i" + Twine(ResI));
536 }
537 }
538 gather(&BCI, Res);
539 return true;
540 }
541
visitShuffleVectorInst(ShuffleVectorInst & SVI)542 bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
543 VectorType *VT = dyn_cast<VectorType>(SVI.getType());
544 if (!VT)
545 return false;
546
547 unsigned NumElems = VT->getNumElements();
548 Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
549 Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
550 ValueVector Res;
551 Res.resize(NumElems);
552
553 for (unsigned I = 0; I < NumElems; ++I) {
554 int Selector = SVI.getMaskValue(I);
555 if (Selector < 0)
556 Res[I] = UndefValue::get(VT->getElementType());
557 else if (unsigned(Selector) < Op0.size())
558 Res[I] = Op0[Selector];
559 else
560 Res[I] = Op1[Selector - Op0.size()];
561 }
562 gather(&SVI, Res);
563 return true;
564 }
565
visitPHINode(PHINode & PHI)566 bool Scalarizer::visitPHINode(PHINode &PHI) {
567 VectorType *VT = dyn_cast<VectorType>(PHI.getType());
568 if (!VT)
569 return false;
570
571 unsigned NumElems = VT->getNumElements();
572 IRBuilder<> Builder(PHI.getParent(), &PHI);
573 ValueVector Res;
574 Res.resize(NumElems);
575
576 unsigned NumOps = PHI.getNumOperands();
577 for (unsigned I = 0; I < NumElems; ++I)
578 Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
579 PHI.getName() + ".i" + Twine(I));
580
581 for (unsigned I = 0; I < NumOps; ++I) {
582 Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
583 BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
584 for (unsigned J = 0; J < NumElems; ++J)
585 cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
586 }
587 gather(&PHI, Res);
588 return true;
589 }
590
visitLoadInst(LoadInst & LI)591 bool Scalarizer::visitLoadInst(LoadInst &LI) {
592 if (!ScalarizeLoadStore)
593 return false;
594 if (!LI.isSimple())
595 return false;
596
597 VectorLayout Layout;
598 if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout))
599 return false;
600
601 unsigned NumElems = Layout.VecTy->getNumElements();
602 IRBuilder<> Builder(LI.getParent(), &LI);
603 Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
604 ValueVector Res;
605 Res.resize(NumElems);
606
607 for (unsigned I = 0; I < NumElems; ++I)
608 Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
609 LI.getName() + ".i" + Twine(I));
610 gather(&LI, Res);
611 return true;
612 }
613
visitStoreInst(StoreInst & SI)614 bool Scalarizer::visitStoreInst(StoreInst &SI) {
615 if (!ScalarizeLoadStore)
616 return false;
617 if (!SI.isSimple())
618 return false;
619
620 VectorLayout Layout;
621 Value *FullValue = SI.getValueOperand();
622 if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout))
623 return false;
624
625 unsigned NumElems = Layout.VecTy->getNumElements();
626 IRBuilder<> Builder(SI.getParent(), &SI);
627 Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
628 Scatterer Val = scatter(&SI, FullValue);
629
630 ValueVector Stores;
631 Stores.resize(NumElems);
632 for (unsigned I = 0; I < NumElems; ++I) {
633 unsigned Align = Layout.getElemAlign(I);
634 Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
635 }
636 transferMetadata(&SI, Stores);
637 return true;
638 }
639
640 // Delete the instructions that we scalarized. If a full vector result
641 // is still needed, recreate it using InsertElements.
finish()642 bool Scalarizer::finish() {
643 if (Gathered.empty())
644 return false;
645 for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
646 GMI != GME; ++GMI) {
647 Instruction *Op = GMI->first;
648 ValueVector &CV = *GMI->second;
649 if (!Op->use_empty()) {
650 // The value is still needed, so recreate it using a series of
651 // InsertElements.
652 Type *Ty = Op->getType();
653 Value *Res = UndefValue::get(Ty);
654 BasicBlock *BB = Op->getParent();
655 unsigned Count = Ty->getVectorNumElements();
656 IRBuilder<> Builder(BB, Op);
657 if (isa<PHINode>(Op))
658 Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
659 for (unsigned I = 0; I < Count; ++I)
660 Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
661 Op->getName() + ".upto" + Twine(I));
662 Res->takeName(Op);
663 Op->replaceAllUsesWith(Res);
664 }
665 Op->eraseFromParent();
666 }
667 Gathered.clear();
668 Scattered.clear();
669 return true;
670 }
671
createScalarizerPass()672 FunctionPass *llvm::createScalarizerPass() {
673 return new Scalarizer();
674 }
675