1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 47 #include "llvm/Transforms/Instrumentation.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/DenseSet.h" 50 #include "llvm/ADT/DepthFirstIterator.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/Triple.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/DebugInfo.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstVisitor.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/MDBuilder.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/SpecialCaseList.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include <algorithm> 69 #include <iterator> 70 #include <set> 71 #include <utility> 72 73 using namespace llvm; 74 75 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 76 // alignment requirements provided by the input IR are correct. For example, 77 // if the input IR contains a load with alignment 8, this flag will cause 78 // the shadow load to have alignment 16. This flag is disabled by default as 79 // we have unfortunately encountered too much code (including Clang itself; 80 // see PR14291) which performs misaligned access. 81 static cl::opt<bool> ClPreserveAlignment( 82 "dfsan-preserve-alignment", 83 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 84 cl::init(false)); 85 86 // The ABI list file controls how shadow parameters are passed. The pass treats 87 // every function labelled "uninstrumented" in the ABI list file as conforming 88 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 89 // additional annotations for those functions, a call to one of those functions 90 // will produce a warning message, as the labelling behaviour of the function is 91 // unknown. The other supported annotations are "functional" and "discard", 92 // which are described below under DataFlowSanitizer::WrapperKind. 93 static cl::opt<std::string> ClABIListFile( 94 "dfsan-abilist", 95 cl::desc("File listing native ABI functions and how the pass treats them"), 96 cl::Hidden); 97 98 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 99 // functions (see DataFlowSanitizer::InstrumentedABI below). 100 static cl::opt<bool> ClArgsABI( 101 "dfsan-args-abi", 102 cl::desc("Use the argument ABI rather than the TLS ABI"), 103 cl::Hidden); 104 105 // Controls whether the pass includes or ignores the labels of pointers in load 106 // instructions. 107 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 108 "dfsan-combine-pointer-labels-on-load", 109 cl::desc("Combine the label of the pointer with the label of the data when " 110 "loading from memory."), 111 cl::Hidden, cl::init(true)); 112 113 // Controls whether the pass includes or ignores the labels of pointers in 114 // stores instructions. 115 static cl::opt<bool> ClCombinePointerLabelsOnStore( 116 "dfsan-combine-pointer-labels-on-store", 117 cl::desc("Combine the label of the pointer with the label of the data when " 118 "storing in memory."), 119 cl::Hidden, cl::init(false)); 120 121 static cl::opt<bool> ClDebugNonzeroLabels( 122 "dfsan-debug-nonzero-labels", 123 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 124 "load or return with a nonzero label"), 125 cl::Hidden); 126 127 namespace { 128 129 StringRef GetGlobalTypeString(const GlobalValue &G) { 130 // Types of GlobalVariables are always pointer types. 131 Type *GType = G.getType()->getElementType(); 132 // For now we support blacklisting struct types only. 133 if (StructType *SGType = dyn_cast<StructType>(GType)) { 134 if (!SGType->isLiteral()) 135 return SGType->getName(); 136 } 137 return "<unknown type>"; 138 } 139 140 class DFSanABIList { 141 std::unique_ptr<SpecialCaseList> SCL; 142 143 public: 144 DFSanABIList(std::unique_ptr<SpecialCaseList> SCL) : SCL(std::move(SCL)) {} 145 146 /// Returns whether either this function or its source file are listed in the 147 /// given category. 148 bool isIn(const Function &F, StringRef Category) const { 149 return isIn(*F.getParent(), Category) || 150 SCL->inSection("fun", F.getName(), Category); 151 } 152 153 /// Returns whether this global alias is listed in the given category. 154 /// 155 /// If GA aliases a function, the alias's name is matched as a function name 156 /// would be. Similarly, aliases of globals are matched like globals. 157 bool isIn(const GlobalAlias &GA, StringRef Category) const { 158 if (isIn(*GA.getParent(), Category)) 159 return true; 160 161 if (isa<FunctionType>(GA.getType()->getElementType())) 162 return SCL->inSection("fun", GA.getName(), Category); 163 164 return SCL->inSection("global", GA.getName(), Category) || 165 SCL->inSection("type", GetGlobalTypeString(GA), Category); 166 } 167 168 /// Returns whether this module is listed in the given category. 169 bool isIn(const Module &M, StringRef Category) const { 170 return SCL->inSection("src", M.getModuleIdentifier(), Category); 171 } 172 }; 173 174 class DataFlowSanitizer : public ModulePass { 175 friend struct DFSanFunction; 176 friend class DFSanVisitor; 177 178 enum { 179 ShadowWidth = 16 180 }; 181 182 /// Which ABI should be used for instrumented functions? 183 enum InstrumentedABI { 184 /// Argument and return value labels are passed through additional 185 /// arguments and by modifying the return type. 186 IA_Args, 187 188 /// Argument and return value labels are passed through TLS variables 189 /// __dfsan_arg_tls and __dfsan_retval_tls. 190 IA_TLS 191 }; 192 193 /// How should calls to uninstrumented functions be handled? 194 enum WrapperKind { 195 /// This function is present in an uninstrumented form but we don't know 196 /// how it should be handled. Print a warning and call the function anyway. 197 /// Don't label the return value. 198 WK_Warning, 199 200 /// This function does not write to (user-accessible) memory, and its return 201 /// value is unlabelled. 202 WK_Discard, 203 204 /// This function does not write to (user-accessible) memory, and the label 205 /// of its return value is the union of the label of its arguments. 206 WK_Functional, 207 208 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 209 /// where F is the name of the function. This function may wrap the 210 /// original function or provide its own implementation. This is similar to 211 /// the IA_Args ABI, except that IA_Args uses a struct return type to 212 /// pass the return value shadow in a register, while WK_Custom uses an 213 /// extra pointer argument to return the shadow. This allows the wrapped 214 /// form of the function type to be expressed in C. 215 WK_Custom 216 }; 217 218 const DataLayout *DL; 219 Module *Mod; 220 LLVMContext *Ctx; 221 IntegerType *ShadowTy; 222 PointerType *ShadowPtrTy; 223 IntegerType *IntptrTy; 224 ConstantInt *ZeroShadow; 225 ConstantInt *ShadowPtrMask; 226 ConstantInt *ShadowPtrMul; 227 Constant *ArgTLS; 228 Constant *RetvalTLS; 229 void *(*GetArgTLSPtr)(); 230 void *(*GetRetvalTLSPtr)(); 231 Constant *GetArgTLS; 232 Constant *GetRetvalTLS; 233 FunctionType *DFSanUnionFnTy; 234 FunctionType *DFSanUnionLoadFnTy; 235 FunctionType *DFSanUnimplementedFnTy; 236 FunctionType *DFSanSetLabelFnTy; 237 FunctionType *DFSanNonzeroLabelFnTy; 238 FunctionType *DFSanVarargWrapperFnTy; 239 Constant *DFSanUnionFn; 240 Constant *DFSanCheckedUnionFn; 241 Constant *DFSanUnionLoadFn; 242 Constant *DFSanUnimplementedFn; 243 Constant *DFSanSetLabelFn; 244 Constant *DFSanNonzeroLabelFn; 245 Constant *DFSanVarargWrapperFn; 246 MDNode *ColdCallWeights; 247 DFSanABIList ABIList; 248 DenseMap<Value *, Function *> UnwrappedFnMap; 249 AttributeSet ReadOnlyNoneAttrs; 250 DenseMap<const Function *, DISubprogram> FunctionDIs; 251 252 Value *getShadowAddress(Value *Addr, Instruction *Pos); 253 bool isInstrumented(const Function *F); 254 bool isInstrumented(const GlobalAlias *GA); 255 FunctionType *getArgsFunctionType(FunctionType *T); 256 FunctionType *getTrampolineFunctionType(FunctionType *T); 257 FunctionType *getCustomFunctionType(FunctionType *T); 258 InstrumentedABI getInstrumentedABI(); 259 WrapperKind getWrapperKind(Function *F); 260 void addGlobalNamePrefix(GlobalValue *GV); 261 Function *buildWrapperFunction(Function *F, StringRef NewFName, 262 GlobalValue::LinkageTypes NewFLink, 263 FunctionType *NewFT); 264 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 265 266 public: 267 DataFlowSanitizer(StringRef ABIListFile = StringRef(), 268 void *(*getArgTLS)() = nullptr, 269 void *(*getRetValTLS)() = nullptr); 270 static char ID; 271 bool doInitialization(Module &M) override; 272 bool runOnModule(Module &M) override; 273 }; 274 275 struct DFSanFunction { 276 DataFlowSanitizer &DFS; 277 Function *F; 278 DominatorTree DT; 279 DataFlowSanitizer::InstrumentedABI IA; 280 bool IsNativeABI; 281 Value *ArgTLSPtr; 282 Value *RetvalTLSPtr; 283 AllocaInst *LabelReturnAlloca; 284 DenseMap<Value *, Value *> ValShadowMap; 285 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 286 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups; 287 DenseSet<Instruction *> SkipInsts; 288 std::vector<Value *> NonZeroChecks; 289 bool AvoidNewBlocks; 290 291 struct CachedCombinedShadow { 292 BasicBlock *Block; 293 Value *Shadow; 294 }; 295 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 296 CachedCombinedShadows; 297 DenseMap<Value *, std::set<Value *>> ShadowElements; 298 299 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 300 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), 301 IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr), 302 LabelReturnAlloca(nullptr) { 303 DT.recalculate(*F); 304 // FIXME: Need to track down the register allocator issue which causes poor 305 // performance in pathological cases with large numbers of basic blocks. 306 AvoidNewBlocks = F->size() > 1000; 307 } 308 Value *getArgTLSPtr(); 309 Value *getArgTLS(unsigned Index, Instruction *Pos); 310 Value *getRetvalTLS(); 311 Value *getShadow(Value *V); 312 void setShadow(Instruction *I, Value *Shadow); 313 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 314 Value *combineOperandShadows(Instruction *Inst); 315 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 316 Instruction *Pos); 317 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, 318 Instruction *Pos); 319 }; 320 321 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 322 public: 323 DFSanFunction &DFSF; 324 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 325 326 void visitOperandShadowInst(Instruction &I); 327 328 void visitBinaryOperator(BinaryOperator &BO); 329 void visitCastInst(CastInst &CI); 330 void visitCmpInst(CmpInst &CI); 331 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 332 void visitLoadInst(LoadInst &LI); 333 void visitStoreInst(StoreInst &SI); 334 void visitReturnInst(ReturnInst &RI); 335 void visitCallSite(CallSite CS); 336 void visitPHINode(PHINode &PN); 337 void visitExtractElementInst(ExtractElementInst &I); 338 void visitInsertElementInst(InsertElementInst &I); 339 void visitShuffleVectorInst(ShuffleVectorInst &I); 340 void visitExtractValueInst(ExtractValueInst &I); 341 void visitInsertValueInst(InsertValueInst &I); 342 void visitAllocaInst(AllocaInst &I); 343 void visitSelectInst(SelectInst &I); 344 void visitMemSetInst(MemSetInst &I); 345 void visitMemTransferInst(MemTransferInst &I); 346 }; 347 348 } 349 350 char DataFlowSanitizer::ID; 351 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 352 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 353 354 ModulePass *llvm::createDataFlowSanitizerPass(StringRef ABIListFile, 355 void *(*getArgTLS)(), 356 void *(*getRetValTLS)()) { 357 return new DataFlowSanitizer(ABIListFile, getArgTLS, getRetValTLS); 358 } 359 360 DataFlowSanitizer::DataFlowSanitizer(StringRef ABIListFile, 361 void *(*getArgTLS)(), 362 void *(*getRetValTLS)()) 363 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS), 364 ABIList(SpecialCaseList::createOrDie(ABIListFile.empty() ? ClABIListFile 365 : ABIListFile)) { 366 } 367 368 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 369 llvm::SmallVector<Type *, 4> ArgTypes; 370 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes)); 371 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 372 ArgTypes.push_back(ShadowTy); 373 if (T->isVarArg()) 374 ArgTypes.push_back(ShadowPtrTy); 375 Type *RetType = T->getReturnType(); 376 if (!RetType->isVoidTy()) 377 RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr); 378 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 379 } 380 381 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 382 assert(!T->isVarArg()); 383 llvm::SmallVector<Type *, 4> ArgTypes; 384 ArgTypes.push_back(T->getPointerTo()); 385 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes)); 386 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 387 ArgTypes.push_back(ShadowTy); 388 Type *RetType = T->getReturnType(); 389 if (!RetType->isVoidTy()) 390 ArgTypes.push_back(ShadowPtrTy); 391 return FunctionType::get(T->getReturnType(), ArgTypes, false); 392 } 393 394 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 395 llvm::SmallVector<Type *, 4> ArgTypes; 396 for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end(); 397 i != e; ++i) { 398 FunctionType *FT; 399 if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>( 400 *i)->getElementType()))) { 401 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 402 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 403 } else { 404 ArgTypes.push_back(*i); 405 } 406 } 407 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 408 ArgTypes.push_back(ShadowTy); 409 if (T->isVarArg()) 410 ArgTypes.push_back(ShadowPtrTy); 411 Type *RetType = T->getReturnType(); 412 if (!RetType->isVoidTy()) 413 ArgTypes.push_back(ShadowPtrTy); 414 return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()); 415 } 416 417 bool DataFlowSanitizer::doInitialization(Module &M) { 418 llvm::Triple TargetTriple(M.getTargetTriple()); 419 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 420 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || 421 TargetTriple.getArch() == llvm::Triple::mips64el; 422 423 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 424 if (!DLP) 425 report_fatal_error("data layout missing"); 426 DL = &DLP->getDataLayout(); 427 428 Mod = &M; 429 Ctx = &M.getContext(); 430 ShadowTy = IntegerType::get(*Ctx, ShadowWidth); 431 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 432 IntptrTy = DL->getIntPtrType(*Ctx); 433 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 434 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); 435 if (IsX86_64) 436 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 437 else if (IsMIPS64) 438 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 439 else 440 report_fatal_error("unsupported triple"); 441 442 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 443 DFSanUnionFnTy = 444 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 445 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 446 DFSanUnionLoadFnTy = 447 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 448 DFSanUnimplementedFnTy = FunctionType::get( 449 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 450 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 451 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 452 DFSanSetLabelArgs, /*isVarArg=*/false); 453 DFSanNonzeroLabelFnTy = FunctionType::get( 454 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 455 DFSanVarargWrapperFnTy = FunctionType::get( 456 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 457 458 if (GetArgTLSPtr) { 459 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 460 ArgTLS = nullptr; 461 GetArgTLS = ConstantExpr::getIntToPtr( 462 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 463 PointerType::getUnqual( 464 FunctionType::get(PointerType::getUnqual(ArgTLSTy), 465 (Type *)nullptr))); 466 } 467 if (GetRetvalTLSPtr) { 468 RetvalTLS = nullptr; 469 GetRetvalTLS = ConstantExpr::getIntToPtr( 470 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 471 PointerType::getUnqual( 472 FunctionType::get(PointerType::getUnqual(ShadowTy), 473 (Type *)nullptr))); 474 } 475 476 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 477 return true; 478 } 479 480 bool DataFlowSanitizer::isInstrumented(const Function *F) { 481 return !ABIList.isIn(*F, "uninstrumented"); 482 } 483 484 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 485 return !ABIList.isIn(*GA, "uninstrumented"); 486 } 487 488 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 489 return ClArgsABI ? IA_Args : IA_TLS; 490 } 491 492 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 493 if (ABIList.isIn(*F, "functional")) 494 return WK_Functional; 495 if (ABIList.isIn(*F, "discard")) 496 return WK_Discard; 497 if (ABIList.isIn(*F, "custom")) 498 return WK_Custom; 499 500 return WK_Warning; 501 } 502 503 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 504 std::string GVName = GV->getName(), Prefix = "dfs$"; 505 GV->setName(Prefix + GVName); 506 507 // Try to change the name of the function in module inline asm. We only do 508 // this for specific asm directives, currently only ".symver", to try to avoid 509 // corrupting asm which happens to contain the symbol name as a substring. 510 // Note that the substitution for .symver assumes that the versioned symbol 511 // also has an instrumented name. 512 std::string Asm = GV->getParent()->getModuleInlineAsm(); 513 std::string SearchStr = ".symver " + GVName + ","; 514 size_t Pos = Asm.find(SearchStr); 515 if (Pos != std::string::npos) { 516 Asm.replace(Pos, SearchStr.size(), 517 ".symver " + Prefix + GVName + "," + Prefix); 518 GV->getParent()->setModuleInlineAsm(Asm); 519 } 520 } 521 522 Function * 523 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 524 GlobalValue::LinkageTypes NewFLink, 525 FunctionType *NewFT) { 526 FunctionType *FT = F->getFunctionType(); 527 Function *NewF = Function::Create(NewFT, NewFLink, NewFName, 528 F->getParent()); 529 NewF->copyAttributesFrom(F); 530 NewF->removeAttributes( 531 AttributeSet::ReturnIndex, 532 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 533 AttributeSet::ReturnIndex)); 534 535 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 536 if (F->isVarArg()) { 537 NewF->removeAttributes( 538 AttributeSet::FunctionIndex, 539 AttributeSet().addAttribute(*Ctx, AttributeSet::FunctionIndex, 540 "split-stack")); 541 CallInst::Create(DFSanVarargWrapperFn, 542 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 543 BB); 544 new UnreachableInst(*Ctx, BB); 545 } else { 546 std::vector<Value *> Args; 547 unsigned n = FT->getNumParams(); 548 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 549 Args.push_back(&*ai); 550 CallInst *CI = CallInst::Create(F, Args, "", BB); 551 if (FT->getReturnType()->isVoidTy()) 552 ReturnInst::Create(*Ctx, BB); 553 else 554 ReturnInst::Create(*Ctx, CI, BB); 555 } 556 557 return NewF; 558 } 559 560 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 561 StringRef FName) { 562 FunctionType *FTT = getTrampolineFunctionType(FT); 563 Constant *C = Mod->getOrInsertFunction(FName, FTT); 564 Function *F = dyn_cast<Function>(C); 565 if (F && F->isDeclaration()) { 566 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 567 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 568 std::vector<Value *> Args; 569 Function::arg_iterator AI = F->arg_begin(); ++AI; 570 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 571 Args.push_back(&*AI); 572 CallInst *CI = 573 CallInst::Create(&F->getArgumentList().front(), Args, "", BB); 574 ReturnInst *RI; 575 if (FT->getReturnType()->isVoidTy()) 576 RI = ReturnInst::Create(*Ctx, BB); 577 else 578 RI = ReturnInst::Create(*Ctx, CI, BB); 579 580 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 581 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 582 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 583 DFSF.ValShadowMap[ValAI] = ShadowAI; 584 DFSanVisitor(DFSF).visitCallInst(*CI); 585 if (!FT->getReturnType()->isVoidTy()) 586 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 587 &F->getArgumentList().back(), RI); 588 } 589 590 return C; 591 } 592 593 bool DataFlowSanitizer::runOnModule(Module &M) { 594 if (!DL) 595 return false; 596 597 if (ABIList.isIn(M, "skip")) 598 return false; 599 600 FunctionDIs = makeSubprogramMap(M); 601 602 if (!GetArgTLSPtr) { 603 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 604 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 605 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 606 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 607 } 608 if (!GetRetvalTLSPtr) { 609 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 610 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 611 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 612 } 613 614 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy); 615 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) { 616 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 617 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 618 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 619 F->addAttribute(1, Attribute::ZExt); 620 F->addAttribute(2, Attribute::ZExt); 621 } 622 DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy); 623 if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) { 624 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 625 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 626 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 627 F->addAttribute(1, Attribute::ZExt); 628 F->addAttribute(2, Attribute::ZExt); 629 } 630 DFSanUnionLoadFn = 631 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy); 632 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) { 633 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 634 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly); 635 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 636 } 637 DFSanUnimplementedFn = 638 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 639 DFSanSetLabelFn = 640 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy); 641 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) { 642 F->addAttribute(1, Attribute::ZExt); 643 } 644 DFSanNonzeroLabelFn = 645 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 646 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 647 DFSanVarargWrapperFnTy); 648 649 std::vector<Function *> FnsToInstrument; 650 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI; 651 for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) { 652 if (!i->isIntrinsic() && 653 i != DFSanUnionFn && 654 i != DFSanCheckedUnionFn && 655 i != DFSanUnionLoadFn && 656 i != DFSanUnimplementedFn && 657 i != DFSanSetLabelFn && 658 i != DFSanNonzeroLabelFn && 659 i != DFSanVarargWrapperFn) 660 FnsToInstrument.push_back(&*i); 661 } 662 663 // Give function aliases prefixes when necessary, and build wrappers where the 664 // instrumentedness is inconsistent. 665 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 666 GlobalAlias *GA = &*i; 667 ++i; 668 // Don't stop on weak. We assume people aren't playing games with the 669 // instrumentedness of overridden weak aliases. 670 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 671 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 672 if (GAInst && FInst) { 673 addGlobalNamePrefix(GA); 674 } else if (GAInst != FInst) { 675 // Non-instrumented alias of an instrumented function, or vice versa. 676 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 677 // below will take care of instrumenting it. 678 Function *NewF = 679 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 680 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 681 NewF->takeName(GA); 682 GA->eraseFromParent(); 683 FnsToInstrument.push_back(NewF); 684 } 685 } 686 } 687 688 AttrBuilder B; 689 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone); 690 ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B); 691 692 // First, change the ABI of every function in the module. ABI-listed 693 // functions keep their original ABI and get a wrapper function. 694 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 695 e = FnsToInstrument.end(); 696 i != e; ++i) { 697 Function &F = **i; 698 FunctionType *FT = F.getFunctionType(); 699 700 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 701 FT->getReturnType()->isVoidTy()); 702 703 if (isInstrumented(&F)) { 704 // Instrumented functions get a 'dfs$' prefix. This allows us to more 705 // easily identify cases of mismatching ABIs. 706 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 707 FunctionType *NewFT = getArgsFunctionType(FT); 708 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M); 709 NewF->copyAttributesFrom(&F); 710 NewF->removeAttributes( 711 AttributeSet::ReturnIndex, 712 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 713 AttributeSet::ReturnIndex)); 714 for (Function::arg_iterator FArg = F.arg_begin(), 715 NewFArg = NewF->arg_begin(), 716 FArgEnd = F.arg_end(); 717 FArg != FArgEnd; ++FArg, ++NewFArg) { 718 FArg->replaceAllUsesWith(NewFArg); 719 } 720 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 721 722 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 723 UI != UE;) { 724 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 725 ++UI; 726 if (BA) { 727 BA->replaceAllUsesWith( 728 BlockAddress::get(NewF, BA->getBasicBlock())); 729 delete BA; 730 } 731 } 732 F.replaceAllUsesWith( 733 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 734 NewF->takeName(&F); 735 F.eraseFromParent(); 736 *i = NewF; 737 addGlobalNamePrefix(NewF); 738 } else { 739 addGlobalNamePrefix(&F); 740 } 741 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 742 // Build a wrapper function for F. The wrapper simply calls F, and is 743 // added to FnsToInstrument so that any instrumentation according to its 744 // WrapperKind is done in the second pass below. 745 FunctionType *NewFT = getInstrumentedABI() == IA_Args 746 ? getArgsFunctionType(FT) 747 : FT; 748 Function *NewF = buildWrapperFunction( 749 &F, std::string("dfsw$") + std::string(F.getName()), 750 GlobalValue::LinkOnceODRLinkage, NewFT); 751 if (getInstrumentedABI() == IA_TLS) 752 NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs); 753 754 Value *WrappedFnCst = 755 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 756 F.replaceAllUsesWith(WrappedFnCst); 757 758 // Patch the pointer to LLVM function in debug info descriptor. 759 auto DI = FunctionDIs.find(&F); 760 if (DI != FunctionDIs.end()) 761 DI->second.replaceFunction(&F); 762 763 UnwrappedFnMap[WrappedFnCst] = &F; 764 *i = NewF; 765 766 if (!F.isDeclaration()) { 767 // This function is probably defining an interposition of an 768 // uninstrumented function and hence needs to keep the original ABI. 769 // But any functions it may call need to use the instrumented ABI, so 770 // we instrument it in a mode which preserves the original ABI. 771 FnsWithNativeABI.insert(&F); 772 773 // This code needs to rebuild the iterators, as they may be invalidated 774 // by the push_back, taking care that the new range does not include 775 // any functions added by this code. 776 size_t N = i - FnsToInstrument.begin(), 777 Count = e - FnsToInstrument.begin(); 778 FnsToInstrument.push_back(&F); 779 i = FnsToInstrument.begin() + N; 780 e = FnsToInstrument.begin() + Count; 781 } 782 // Hopefully, nobody will try to indirectly call a vararg 783 // function... yet. 784 } else if (FT->isVarArg()) { 785 UnwrappedFnMap[&F] = &F; 786 *i = nullptr; 787 } 788 } 789 790 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 791 e = FnsToInstrument.end(); 792 i != e; ++i) { 793 if (!*i || (*i)->isDeclaration()) 794 continue; 795 796 removeUnreachableBlocks(**i); 797 798 DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i)); 799 800 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 801 // Build a copy of the list before iterating over it. 802 llvm::SmallVector<BasicBlock *, 4> BBList( 803 depth_first(&(*i)->getEntryBlock())); 804 805 for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(), 806 e = BBList.end(); 807 i != e; ++i) { 808 Instruction *Inst = &(*i)->front(); 809 while (1) { 810 // DFSanVisitor may split the current basic block, changing the current 811 // instruction's next pointer and moving the next instruction to the 812 // tail block from which we should continue. 813 Instruction *Next = Inst->getNextNode(); 814 // DFSanVisitor may delete Inst, so keep track of whether it was a 815 // terminator. 816 bool IsTerminator = isa<TerminatorInst>(Inst); 817 if (!DFSF.SkipInsts.count(Inst)) 818 DFSanVisitor(DFSF).visit(Inst); 819 if (IsTerminator) 820 break; 821 Inst = Next; 822 } 823 } 824 825 // We will not necessarily be able to compute the shadow for every phi node 826 // until we have visited every block. Therefore, the code that handles phi 827 // nodes adds them to the PHIFixups list so that they can be properly 828 // handled here. 829 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator 830 i = DFSF.PHIFixups.begin(), 831 e = DFSF.PHIFixups.end(); 832 i != e; ++i) { 833 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 834 ++val) { 835 i->second->setIncomingValue( 836 val, DFSF.getShadow(i->first->getIncomingValue(val))); 837 } 838 } 839 840 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 841 // places (i.e. instructions in basic blocks we haven't even begun visiting 842 // yet). To make our life easier, do this work in a pass after the main 843 // instrumentation. 844 if (ClDebugNonzeroLabels) { 845 for (Value *V : DFSF.NonZeroChecks) { 846 Instruction *Pos; 847 if (Instruction *I = dyn_cast<Instruction>(V)) 848 Pos = I->getNextNode(); 849 else 850 Pos = DFSF.F->getEntryBlock().begin(); 851 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 852 Pos = Pos->getNextNode(); 853 IRBuilder<> IRB(Pos); 854 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 855 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 856 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 857 IRBuilder<> ThenIRB(BI); 858 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn); 859 } 860 } 861 } 862 863 return false; 864 } 865 866 Value *DFSanFunction::getArgTLSPtr() { 867 if (ArgTLSPtr) 868 return ArgTLSPtr; 869 if (DFS.ArgTLS) 870 return ArgTLSPtr = DFS.ArgTLS; 871 872 IRBuilder<> IRB(F->getEntryBlock().begin()); 873 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS); 874 } 875 876 Value *DFSanFunction::getRetvalTLS() { 877 if (RetvalTLSPtr) 878 return RetvalTLSPtr; 879 if (DFS.RetvalTLS) 880 return RetvalTLSPtr = DFS.RetvalTLS; 881 882 IRBuilder<> IRB(F->getEntryBlock().begin()); 883 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS); 884 } 885 886 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 887 IRBuilder<> IRB(Pos); 888 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx); 889 } 890 891 Value *DFSanFunction::getShadow(Value *V) { 892 if (!isa<Argument>(V) && !isa<Instruction>(V)) 893 return DFS.ZeroShadow; 894 Value *&Shadow = ValShadowMap[V]; 895 if (!Shadow) { 896 if (Argument *A = dyn_cast<Argument>(V)) { 897 if (IsNativeABI) 898 return DFS.ZeroShadow; 899 switch (IA) { 900 case DataFlowSanitizer::IA_TLS: { 901 Value *ArgTLSPtr = getArgTLSPtr(); 902 Instruction *ArgTLSPos = 903 DFS.ArgTLS ? &*F->getEntryBlock().begin() 904 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 905 IRBuilder<> IRB(ArgTLSPos); 906 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos)); 907 break; 908 } 909 case DataFlowSanitizer::IA_Args: { 910 unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2; 911 Function::arg_iterator i = F->arg_begin(); 912 while (ArgIdx--) 913 ++i; 914 Shadow = i; 915 assert(Shadow->getType() == DFS.ShadowTy); 916 break; 917 } 918 } 919 NonZeroChecks.push_back(Shadow); 920 } else { 921 Shadow = DFS.ZeroShadow; 922 } 923 } 924 return Shadow; 925 } 926 927 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 928 assert(!ValShadowMap.count(I)); 929 assert(Shadow->getType() == DFS.ShadowTy); 930 ValShadowMap[I] = Shadow; 931 } 932 933 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 934 assert(Addr != RetvalTLS && "Reinstrumenting?"); 935 IRBuilder<> IRB(Pos); 936 return IRB.CreateIntToPtr( 937 IRB.CreateMul( 938 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask), 939 ShadowPtrMul), 940 ShadowPtrTy); 941 } 942 943 // Generates IR to compute the union of the two given shadows, inserting it 944 // before Pos. Returns the computed union Value. 945 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 946 if (V1 == DFS.ZeroShadow) 947 return V2; 948 if (V2 == DFS.ZeroShadow) 949 return V1; 950 if (V1 == V2) 951 return V1; 952 953 auto V1Elems = ShadowElements.find(V1); 954 auto V2Elems = ShadowElements.find(V2); 955 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 956 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 957 V2Elems->second.begin(), V2Elems->second.end())) { 958 return V1; 959 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 960 V1Elems->second.begin(), V1Elems->second.end())) { 961 return V2; 962 } 963 } else if (V1Elems != ShadowElements.end()) { 964 if (V1Elems->second.count(V2)) 965 return V1; 966 } else if (V2Elems != ShadowElements.end()) { 967 if (V2Elems->second.count(V1)) 968 return V2; 969 } 970 971 auto Key = std::make_pair(V1, V2); 972 if (V1 > V2) 973 std::swap(Key.first, Key.second); 974 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 975 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 976 return CCS.Shadow; 977 978 IRBuilder<> IRB(Pos); 979 if (AvoidNewBlocks) { 980 CallInst *Call = IRB.CreateCall2(DFS.DFSanCheckedUnionFn, V1, V2); 981 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 982 Call->addAttribute(1, Attribute::ZExt); 983 Call->addAttribute(2, Attribute::ZExt); 984 985 CCS.Block = Pos->getParent(); 986 CCS.Shadow = Call; 987 } else { 988 BasicBlock *Head = Pos->getParent(); 989 Value *Ne = IRB.CreateICmpNE(V1, V2); 990 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 991 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 992 IRBuilder<> ThenIRB(BI); 993 CallInst *Call = ThenIRB.CreateCall2(DFS.DFSanUnionFn, V1, V2); 994 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 995 Call->addAttribute(1, Attribute::ZExt); 996 Call->addAttribute(2, Attribute::ZExt); 997 998 BasicBlock *Tail = BI->getSuccessor(0); 999 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", Tail->begin()); 1000 Phi->addIncoming(Call, Call->getParent()); 1001 Phi->addIncoming(V1, Head); 1002 1003 CCS.Block = Tail; 1004 CCS.Shadow = Phi; 1005 } 1006 1007 std::set<Value *> UnionElems; 1008 if (V1Elems != ShadowElements.end()) { 1009 UnionElems = V1Elems->second; 1010 } else { 1011 UnionElems.insert(V1); 1012 } 1013 if (V2Elems != ShadowElements.end()) { 1014 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1015 } else { 1016 UnionElems.insert(V2); 1017 } 1018 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1019 1020 return CCS.Shadow; 1021 } 1022 1023 // A convenience function which folds the shadows of each of the operands 1024 // of the provided instruction Inst, inserting the IR before Inst. Returns 1025 // the computed union Value. 1026 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1027 if (Inst->getNumOperands() == 0) 1028 return DFS.ZeroShadow; 1029 1030 Value *Shadow = getShadow(Inst->getOperand(0)); 1031 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1032 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1033 } 1034 return Shadow; 1035 } 1036 1037 void DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1038 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1039 DFSF.setShadow(&I, CombinedShadow); 1040 } 1041 1042 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1043 // Addr has alignment Align, and take the union of each of those shadows. 1044 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1045 Instruction *Pos) { 1046 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1047 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1048 AllocaShadowMap.find(AI); 1049 if (i != AllocaShadowMap.end()) { 1050 IRBuilder<> IRB(Pos); 1051 return IRB.CreateLoad(i->second); 1052 } 1053 } 1054 1055 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1056 SmallVector<Value *, 2> Objs; 1057 GetUnderlyingObjects(Addr, Objs, DFS.DL); 1058 bool AllConstants = true; 1059 for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end(); 1060 i != e; ++i) { 1061 if (isa<Function>(*i) || isa<BlockAddress>(*i)) 1062 continue; 1063 if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant()) 1064 continue; 1065 1066 AllConstants = false; 1067 break; 1068 } 1069 if (AllConstants) 1070 return DFS.ZeroShadow; 1071 1072 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1073 switch (Size) { 1074 case 0: 1075 return DFS.ZeroShadow; 1076 case 1: { 1077 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos); 1078 LI->setAlignment(ShadowAlign); 1079 return LI; 1080 } 1081 case 2: { 1082 IRBuilder<> IRB(Pos); 1083 Value *ShadowAddr1 = 1084 IRB.CreateGEP(ShadowAddr, ConstantInt::get(DFS.IntptrTy, 1)); 1085 return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign), 1086 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos); 1087 } 1088 } 1089 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { 1090 // Fast path for the common case where each byte has identical shadow: load 1091 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1092 // shadow is non-equal. 1093 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1094 IRBuilder<> FallbackIRB(FallbackBB); 1095 CallInst *FallbackCall = FallbackIRB.CreateCall2( 1096 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 1097 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 1098 1099 // Compare each of the shadows stored in the loaded 64 bits to each other, 1100 // by computing (WideShadow rotl ShadowWidth) == WideShadow. 1101 IRBuilder<> IRB(Pos); 1102 Value *WideAddr = 1103 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1104 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1105 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1106 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); 1107 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); 1108 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1109 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1110 1111 BasicBlock *Head = Pos->getParent(); 1112 BasicBlock *Tail = Head->splitBasicBlock(Pos); 1113 1114 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1115 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1116 1117 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1118 for (auto Child : Children) 1119 DT.changeImmediateDominator(Child, NewNode); 1120 } 1121 1122 // In the following code LastBr will refer to the previous basic block's 1123 // conditional branch instruction, whose true successor is fixed up to point 1124 // to the next block during the loop below or to the tail after the final 1125 // iteration. 1126 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1127 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1128 DT.addNewBlock(FallbackBB, Head); 1129 1130 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; 1131 Ofs += 64 / DFS.ShadowWidth) { 1132 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1133 DT.addNewBlock(NextBB, LastBr->getParent()); 1134 IRBuilder<> NextIRB(NextBB); 1135 WideAddr = NextIRB.CreateGEP(WideAddr, ConstantInt::get(DFS.IntptrTy, 1)); 1136 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1137 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1138 LastBr->setSuccessor(0, NextBB); 1139 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1140 } 1141 1142 LastBr->setSuccessor(0, Tail); 1143 FallbackIRB.CreateBr(Tail); 1144 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1145 Shadow->addIncoming(FallbackCall, FallbackBB); 1146 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1147 return Shadow; 1148 } 1149 1150 IRBuilder<> IRB(Pos); 1151 CallInst *FallbackCall = IRB.CreateCall2( 1152 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 1153 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 1154 return FallbackCall; 1155 } 1156 1157 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1158 uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType()); 1159 if (Size == 0) { 1160 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1161 return; 1162 } 1163 1164 uint64_t Align; 1165 if (ClPreserveAlignment) { 1166 Align = LI.getAlignment(); 1167 if (Align == 0) 1168 Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType()); 1169 } else { 1170 Align = 1; 1171 } 1172 IRBuilder<> IRB(&LI); 1173 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1174 if (ClCombinePointerLabelsOnLoad) { 1175 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1176 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1177 } 1178 if (Shadow != DFSF.DFS.ZeroShadow) 1179 DFSF.NonZeroChecks.push_back(Shadow); 1180 1181 DFSF.setShadow(&LI, Shadow); 1182 } 1183 1184 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, 1185 Value *Shadow, Instruction *Pos) { 1186 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1187 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1188 AllocaShadowMap.find(AI); 1189 if (i != AllocaShadowMap.end()) { 1190 IRBuilder<> IRB(Pos); 1191 IRB.CreateStore(Shadow, i->second); 1192 return; 1193 } 1194 } 1195 1196 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1197 IRBuilder<> IRB(Pos); 1198 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1199 if (Shadow == DFS.ZeroShadow) { 1200 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); 1201 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1202 Value *ExtShadowAddr = 1203 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1204 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1205 return; 1206 } 1207 1208 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; 1209 uint64_t Offset = 0; 1210 if (Size >= ShadowVecSize) { 1211 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1212 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1213 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1214 ShadowVec = IRB.CreateInsertElement( 1215 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1216 } 1217 Value *ShadowVecAddr = 1218 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1219 do { 1220 Value *CurShadowVecAddr = IRB.CreateConstGEP1_32(ShadowVecAddr, Offset); 1221 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1222 Size -= ShadowVecSize; 1223 ++Offset; 1224 } while (Size >= ShadowVecSize); 1225 Offset *= ShadowVecSize; 1226 } 1227 while (Size > 0) { 1228 Value *CurShadowAddr = IRB.CreateConstGEP1_32(ShadowAddr, Offset); 1229 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1230 --Size; 1231 ++Offset; 1232 } 1233 } 1234 1235 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1236 uint64_t Size = 1237 DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType()); 1238 if (Size == 0) 1239 return; 1240 1241 uint64_t Align; 1242 if (ClPreserveAlignment) { 1243 Align = SI.getAlignment(); 1244 if (Align == 0) 1245 Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType()); 1246 } else { 1247 Align = 1; 1248 } 1249 1250 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1251 if (ClCombinePointerLabelsOnStore) { 1252 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1253 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1254 } 1255 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); 1256 } 1257 1258 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1259 visitOperandShadowInst(BO); 1260 } 1261 1262 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1263 1264 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } 1265 1266 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1267 visitOperandShadowInst(GEPI); 1268 } 1269 1270 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1271 visitOperandShadowInst(I); 1272 } 1273 1274 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1275 visitOperandShadowInst(I); 1276 } 1277 1278 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1279 visitOperandShadowInst(I); 1280 } 1281 1282 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1283 visitOperandShadowInst(I); 1284 } 1285 1286 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1287 visitOperandShadowInst(I); 1288 } 1289 1290 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1291 bool AllLoadsStores = true; 1292 for (User *U : I.users()) { 1293 if (isa<LoadInst>(U)) 1294 continue; 1295 1296 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1297 if (SI->getPointerOperand() == &I) 1298 continue; 1299 } 1300 1301 AllLoadsStores = false; 1302 break; 1303 } 1304 if (AllLoadsStores) { 1305 IRBuilder<> IRB(&I); 1306 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1307 } 1308 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1309 } 1310 1311 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1312 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1313 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1314 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1315 1316 if (isa<VectorType>(I.getCondition()->getType())) { 1317 DFSF.setShadow( 1318 &I, 1319 DFSF.combineShadows( 1320 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1321 } else { 1322 Value *ShadowSel; 1323 if (TrueShadow == FalseShadow) { 1324 ShadowSel = TrueShadow; 1325 } else { 1326 ShadowSel = 1327 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1328 } 1329 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1330 } 1331 } 1332 1333 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1334 IRBuilder<> IRB(&I); 1335 Value *ValShadow = DFSF.getShadow(I.getValue()); 1336 IRB.CreateCall3( 1337 DFSF.DFS.DFSanSetLabelFn, ValShadow, 1338 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 1339 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)); 1340 } 1341 1342 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1343 IRBuilder<> IRB(&I); 1344 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1345 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1346 Value *LenShadow = IRB.CreateMul( 1347 I.getLength(), 1348 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); 1349 Value *AlignShadow; 1350 if (ClPreserveAlignment) { 1351 AlignShadow = IRB.CreateMul(I.getAlignmentCst(), 1352 ConstantInt::get(I.getAlignmentCst()->getType(), 1353 DFSF.DFS.ShadowWidth / 8)); 1354 } else { 1355 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(), 1356 DFSF.DFS.ShadowWidth / 8); 1357 } 1358 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1359 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); 1360 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1361 IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow, 1362 AlignShadow, I.getVolatileCst()); 1363 } 1364 1365 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1366 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1367 switch (DFSF.IA) { 1368 case DataFlowSanitizer::IA_TLS: { 1369 Value *S = DFSF.getShadow(RI.getReturnValue()); 1370 IRBuilder<> IRB(&RI); 1371 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1372 break; 1373 } 1374 case DataFlowSanitizer::IA_Args: { 1375 IRBuilder<> IRB(&RI); 1376 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1377 Value *InsVal = 1378 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1379 Value *InsShadow = 1380 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1381 RI.setOperand(0, InsShadow); 1382 break; 1383 } 1384 } 1385 } 1386 } 1387 1388 void DFSanVisitor::visitCallSite(CallSite CS) { 1389 Function *F = CS.getCalledFunction(); 1390 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { 1391 visitOperandShadowInst(*CS.getInstruction()); 1392 return; 1393 } 1394 1395 // Calls to this function are synthesized in wrappers, and we shouldn't 1396 // instrument them. 1397 if (F == DFSF.DFS.DFSanVarargWrapperFn) 1398 return; 1399 1400 assert(!(cast<FunctionType>( 1401 CS.getCalledValue()->getType()->getPointerElementType())->isVarArg() && 1402 dyn_cast<InvokeInst>(CS.getInstruction()))); 1403 1404 IRBuilder<> IRB(CS.getInstruction()); 1405 1406 DenseMap<Value *, Function *>::iterator i = 1407 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); 1408 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1409 Function *F = i->second; 1410 switch (DFSF.DFS.getWrapperKind(F)) { 1411 case DataFlowSanitizer::WK_Warning: { 1412 CS.setCalledFunction(F); 1413 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1414 IRB.CreateGlobalStringPtr(F->getName())); 1415 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1416 return; 1417 } 1418 case DataFlowSanitizer::WK_Discard: { 1419 CS.setCalledFunction(F); 1420 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1421 return; 1422 } 1423 case DataFlowSanitizer::WK_Functional: { 1424 CS.setCalledFunction(F); 1425 visitOperandShadowInst(*CS.getInstruction()); 1426 return; 1427 } 1428 case DataFlowSanitizer::WK_Custom: { 1429 // Don't try to handle invokes of custom functions, it's too complicated. 1430 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1431 // wrapper. 1432 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { 1433 FunctionType *FT = F->getFunctionType(); 1434 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT); 1435 std::string CustomFName = "__dfsw_"; 1436 CustomFName += F->getName(); 1437 Constant *CustomF = 1438 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT); 1439 if (Function *CustomFn = dyn_cast<Function>(CustomF)) { 1440 CustomFn->copyAttributesFrom(F); 1441 1442 // Custom functions returning non-void will write to the return label. 1443 if (!FT->getReturnType()->isVoidTy()) { 1444 CustomFn->removeAttributes(AttributeSet::FunctionIndex, 1445 DFSF.DFS.ReadOnlyNoneAttrs); 1446 } 1447 } 1448 1449 std::vector<Value *> Args; 1450 1451 CallSite::arg_iterator i = CS.arg_begin(); 1452 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1453 Type *T = (*i)->getType(); 1454 FunctionType *ParamFT; 1455 if (isa<PointerType>(T) && 1456 (ParamFT = dyn_cast<FunctionType>( 1457 cast<PointerType>(T)->getElementType()))) { 1458 std::string TName = "dfst"; 1459 TName += utostr(FT->getNumParams() - n); 1460 TName += "$"; 1461 TName += F->getName(); 1462 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1463 Args.push_back(T); 1464 Args.push_back( 1465 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1466 } else { 1467 Args.push_back(*i); 1468 } 1469 } 1470 1471 i = CS.arg_begin(); 1472 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1473 Args.push_back(DFSF.getShadow(*i)); 1474 1475 if (FT->isVarArg()) { 1476 auto LabelVAAlloca = 1477 new AllocaInst(ArrayType::get(DFSF.DFS.ShadowTy, 1478 CS.arg_size() - FT->getNumParams()), 1479 "labelva", DFSF.F->getEntryBlock().begin()); 1480 1481 for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { 1482 auto LabelVAPtr = IRB.CreateStructGEP(LabelVAAlloca, n); 1483 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1484 } 1485 1486 Args.push_back(IRB.CreateStructGEP(LabelVAAlloca, 0)); 1487 } 1488 1489 if (!FT->getReturnType()->isVoidTy()) { 1490 if (!DFSF.LabelReturnAlloca) { 1491 DFSF.LabelReturnAlloca = 1492 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn", 1493 DFSF.F->getEntryBlock().begin()); 1494 } 1495 Args.push_back(DFSF.LabelReturnAlloca); 1496 } 1497 1498 for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) 1499 Args.push_back(*i); 1500 1501 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1502 CustomCI->setCallingConv(CI->getCallingConv()); 1503 CustomCI->setAttributes(CI->getAttributes()); 1504 1505 if (!FT->getReturnType()->isVoidTy()) { 1506 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca); 1507 DFSF.setShadow(CustomCI, LabelLoad); 1508 } 1509 1510 CI->replaceAllUsesWith(CustomCI); 1511 CI->eraseFromParent(); 1512 return; 1513 } 1514 break; 1515 } 1516 } 1517 } 1518 1519 FunctionType *FT = cast<FunctionType>( 1520 CS.getCalledValue()->getType()->getPointerElementType()); 1521 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1522 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1523 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), 1524 DFSF.getArgTLS(i, CS.getInstruction())); 1525 } 1526 } 1527 1528 Instruction *Next = nullptr; 1529 if (!CS.getType()->isVoidTy()) { 1530 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1531 if (II->getNormalDest()->getSinglePredecessor()) { 1532 Next = II->getNormalDest()->begin(); 1533 } else { 1534 BasicBlock *NewBB = 1535 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DFS); 1536 Next = NewBB->begin(); 1537 } 1538 } else { 1539 Next = CS->getNextNode(); 1540 } 1541 1542 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1543 IRBuilder<> NextIRB(Next); 1544 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS()); 1545 DFSF.SkipInsts.insert(LI); 1546 DFSF.setShadow(CS.getInstruction(), LI); 1547 DFSF.NonZeroChecks.push_back(LI); 1548 } 1549 } 1550 1551 // Do all instrumentation for IA_Args down here to defer tampering with the 1552 // CFG in a way that SplitEdge may be able to detect. 1553 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1554 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1555 Value *Func = 1556 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); 1557 std::vector<Value *> Args; 1558 1559 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1560 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1561 Args.push_back(*i); 1562 1563 i = CS.arg_begin(); 1564 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1565 Args.push_back(DFSF.getShadow(*i)); 1566 1567 if (FT->isVarArg()) { 1568 unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); 1569 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1570 AllocaInst *VarArgShadow = 1571 new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin()); 1572 Args.push_back(IRB.CreateConstGEP2_32(VarArgShadow, 0, 0)); 1573 for (unsigned n = 0; i != e; ++i, ++n) { 1574 IRB.CreateStore(DFSF.getShadow(*i), 1575 IRB.CreateConstGEP2_32(VarArgShadow, 0, n)); 1576 Args.push_back(*i); 1577 } 1578 } 1579 1580 CallSite NewCS; 1581 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1582 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(), 1583 Args); 1584 } else { 1585 NewCS = IRB.CreateCall(Func, Args); 1586 } 1587 NewCS.setCallingConv(CS.getCallingConv()); 1588 NewCS.setAttributes(CS.getAttributes().removeAttributes( 1589 *DFSF.DFS.Ctx, AttributeSet::ReturnIndex, 1590 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(), 1591 AttributeSet::ReturnIndex))); 1592 1593 if (Next) { 1594 ExtractValueInst *ExVal = 1595 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); 1596 DFSF.SkipInsts.insert(ExVal); 1597 ExtractValueInst *ExShadow = 1598 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); 1599 DFSF.SkipInsts.insert(ExShadow); 1600 DFSF.setShadow(ExVal, ExShadow); 1601 DFSF.NonZeroChecks.push_back(ExShadow); 1602 1603 CS.getInstruction()->replaceAllUsesWith(ExVal); 1604 } 1605 1606 CS.getInstruction()->eraseFromParent(); 1607 } 1608 } 1609 1610 void DFSanVisitor::visitPHINode(PHINode &PN) { 1611 PHINode *ShadowPN = 1612 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1613 1614 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1615 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1616 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1617 ++i) { 1618 ShadowPN->addIncoming(UndefShadow, *i); 1619 } 1620 1621 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1622 DFSF.setShadow(&PN, ShadowPN); 1623 } 1624