1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfo.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Statepoint.h" 51 #include "llvm/MC/MCSymbol.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetFrameLowering.h" 58 #include "llvm/Target/TargetInstrInfo.h" 59 #include "llvm/Target/TargetIntrinsicInfo.h" 60 #include "llvm/Target/TargetLibraryInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 524 525 bool Smaller = ValueVT.bitsLE(PartVT); 526 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 527 DL, PartVT, Val); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), 554 TLI.getVectorIdxTy())); 555 else 556 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i, TLI.getVectorIdxTy())); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 namespace { 580 /// RegsForValue - This struct represents the registers (physical or virtual) 581 /// that a particular set of values is assigned, and the type information 582 /// about the value. The most common situation is to represent one value at a 583 /// time, but struct or array values are handled element-wise as multiple 584 /// values. The splitting of aggregates is performed recursively, so that we 585 /// never have aggregate-typed registers. The values at this point do not 586 /// necessarily have legal types, so each value may require one or more 587 /// registers of some legal type. 588 /// 589 struct RegsForValue { 590 /// ValueVTs - The value types of the values, which may not be legal, and 591 /// may need be promoted or synthesized from one or more registers. 592 /// 593 SmallVector<EVT, 4> ValueVTs; 594 595 /// RegVTs - The value types of the registers. This is the same size as 596 /// ValueVTs and it records, for each value, what the type of the assigned 597 /// register or registers are. (Individual values are never synthesized 598 /// from more than one type of register.) 599 /// 600 /// With virtual registers, the contents of RegVTs is redundant with TLI's 601 /// getRegisterType member function, however when with physical registers 602 /// it is necessary to have a separate record of the types. 603 /// 604 SmallVector<MVT, 4> RegVTs; 605 606 /// Regs - This list holds the registers assigned to the values. 607 /// Each legal or promoted value requires one register, and each 608 /// expanded value requires multiple registers. 609 /// 610 SmallVector<unsigned, 4> Regs; 611 612 RegsForValue() {} 613 614 RegsForValue(const SmallVector<unsigned, 4> ®s, 615 MVT regvt, EVT valuevt) 616 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 617 618 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 619 unsigned Reg, Type *Ty) { 620 ComputeValueVTs(tli, Ty, ValueVTs); 621 622 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 623 EVT ValueVT = ValueVTs[Value]; 624 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 625 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 626 for (unsigned i = 0; i != NumRegs; ++i) 627 Regs.push_back(Reg + i); 628 RegVTs.push_back(RegisterVT); 629 Reg += NumRegs; 630 } 631 } 632 633 /// append - Add the specified values to this one. 634 void append(const RegsForValue &RHS) { 635 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 636 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 637 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 638 } 639 640 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 641 /// this value and returns the result as a ValueVTs value. This uses 642 /// Chain/Flag as the input and updates them for the output Chain/Flag. 643 /// If the Flag pointer is NULL, no flag is used. 644 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 645 SDLoc dl, 646 SDValue &Chain, SDValue *Flag, 647 const Value *V = nullptr) const; 648 649 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 650 /// specified value into the registers specified by this object. This uses 651 /// Chain/Flag as the input and updates them for the output Chain/Flag. 652 /// If the Flag pointer is NULL, no flag is used. 653 void 654 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 655 SDValue *Flag, const Value *V, 656 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 657 658 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 659 /// operand list. This adds the code marker, matching input operand index 660 /// (if applicable), and includes the number of values added into it. 661 void AddInlineAsmOperands(unsigned Kind, 662 bool HasMatching, unsigned MatchingIdx, 663 SelectionDAG &DAG, 664 std::vector<SDValue> &Ops) const; 665 }; 666 } 667 668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 669 /// this value and returns the result as a ValueVT value. This uses 670 /// Chain/Flag as the input and updates them for the output Chain/Flag. 671 /// If the Flag pointer is NULL, no flag is used. 672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 673 FunctionLoweringInfo &FuncInfo, 674 SDLoc dl, 675 SDValue &Chain, SDValue *Flag, 676 const Value *V) const { 677 // A Value with type {} or [0 x %t] needs no registers. 678 if (ValueVTs.empty()) 679 return SDValue(); 680 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Assemble the legal parts into the final values. 684 SmallVector<SDValue, 4> Values(ValueVTs.size()); 685 SmallVector<SDValue, 8> Parts; 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 // Copy the legal parts from the registers. 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 MVT RegisterVT = RegVTs[Value]; 691 692 Parts.resize(NumRegs); 693 for (unsigned i = 0; i != NumRegs; ++i) { 694 SDValue P; 695 if (!Flag) { 696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 697 } else { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 699 *Flag = P.getValue(2); 700 } 701 702 Chain = P.getValue(1); 703 Parts[i] = P; 704 705 // If the source register was virtual and if we know something about it, 706 // add an assert node. 707 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 708 !RegisterVT.isInteger() || RegisterVT.isVector()) 709 continue; 710 711 const FunctionLoweringInfo::LiveOutInfo *LOI = 712 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 713 if (!LOI) 714 continue; 715 716 unsigned RegSize = RegisterVT.getSizeInBits(); 717 unsigned NumSignBits = LOI->NumSignBits; 718 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 719 720 if (NumZeroBits == RegSize) { 721 // The current value is a zero. 722 // Explicitly express that as it would be easier for 723 // optimizations to kick in. 724 Parts[i] = DAG.getConstant(0, RegisterVT); 725 continue; 726 } 727 728 // FIXME: We capture more information than the dag can represent. For 729 // now, just use the tightest assertzext/assertsext possible. 730 bool isSExt = true; 731 EVT FromVT(MVT::Other); 732 if (NumSignBits == RegSize) 733 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 734 else if (NumZeroBits >= RegSize-1) 735 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 736 else if (NumSignBits > RegSize-8) 737 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 738 else if (NumZeroBits >= RegSize-8) 739 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 740 else if (NumSignBits > RegSize-16) 741 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 742 else if (NumZeroBits >= RegSize-16) 743 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 744 else if (NumSignBits > RegSize-32) 745 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 746 else if (NumZeroBits >= RegSize-32) 747 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 748 else 749 continue; 750 751 // Add an assertion node. 752 assert(FromVT != MVT::Other); 753 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 754 RegisterVT, P, DAG.getValueType(FromVT)); 755 } 756 757 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 758 NumRegs, RegisterVT, ValueVT, V); 759 Part += NumRegs; 760 Parts.clear(); 761 } 762 763 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 764 } 765 766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 767 /// specified value into the registers specified by this object. This uses 768 /// Chain/Flag as the input and updates them for the output Chain/Flag. 769 /// If the Flag pointer is NULL, no flag is used. 770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 771 SDValue &Chain, SDValue *Flag, const Value *V, 772 ISD::NodeType PreferredExtendType) const { 773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 774 ISD::NodeType ExtendKind = PreferredExtendType; 775 776 // Get the list of the values's legal parts. 777 unsigned NumRegs = Regs.size(); 778 SmallVector<SDValue, 8> Parts(NumRegs); 779 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 780 EVT ValueVT = ValueVTs[Value]; 781 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 782 MVT RegisterVT = RegVTs[Value]; 783 784 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 785 ExtendKind = ISD::ZERO_EXTEND; 786 787 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 788 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 789 Part += NumParts; 790 } 791 792 // Copy the parts into the registers. 793 SmallVector<SDValue, 8> Chains(NumRegs); 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 SDValue Part; 796 if (!Flag) { 797 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 798 } else { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 800 *Flag = Part.getValue(1); 801 } 802 803 Chains[i] = Part.getValue(0); 804 } 805 806 if (NumRegs == 1 || Flag) 807 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 808 // flagged to it. That is the CopyToReg nodes and the user are considered 809 // a single scheduling unit. If we create a TokenFactor and return it as 810 // chain, then the TokenFactor is both a predecessor (operand) of the 811 // user as well as a successor (the TF operands are flagged to the user). 812 // c1, f1 = CopyToReg 813 // c2, f2 = CopyToReg 814 // c3 = TokenFactor c1, c2 815 // ... 816 // = op c3, ..., f2 817 Chain = Chains[NumRegs-1]; 818 else 819 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 820 } 821 822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 823 /// operand list. This adds the code marker and includes the number of 824 /// values added into it. 825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 826 unsigned MatchingIdx, 827 SelectionDAG &DAG, 828 std::vector<SDValue> &Ops) const { 829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 830 831 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 832 if (HasMatching) 833 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 834 else if (!Regs.empty() && 835 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 836 // Put the register class of the virtual registers in the flag word. That 837 // way, later passes can recompute register class constraints for inline 838 // assembly as well as normal instructions. 839 // Don't do this for tied operands that can use the regclass information 840 // from the def. 841 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 842 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 843 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 844 } 845 846 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 847 Ops.push_back(Res); 848 849 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 unsigned TheReg = Regs[Reg++]; 856 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 857 858 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 859 // If we clobbered the stack pointer, MFI should know about it. 860 assert(DAG.getMachineFunction().getFrameInfo()-> 861 hasInlineAsmWithSPAdjust()); 862 } 863 } 864 } 865 } 866 867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 868 const TargetLibraryInfo *li) { 869 AA = &aa; 870 GFI = gfi; 871 LibInfo = li; 872 DL = DAG.getSubtarget().getDataLayout(); 873 Context = DAG.getContext(); 874 LPadToCallSiteMap.clear(); 875 } 876 877 /// clear - Clear out the current SelectionDAG and the associated 878 /// state and prepare this SelectionDAGBuilder object to be used 879 /// for a new block. This doesn't clear out information about 880 /// additional blocks that are needed to complete switch lowering 881 /// or PHI node updating; that information is cleared out as it is 882 /// consumed. 883 void SelectionDAGBuilder::clear() { 884 NodeMap.clear(); 885 UnusedArgNodeMap.clear(); 886 PendingLoads.clear(); 887 PendingExports.clear(); 888 CurInst = nullptr; 889 HasTailCall = false; 890 SDNodeOrder = LowestSDNodeOrder; 891 StatepointLowering.clear(); 892 } 893 894 /// clearDanglingDebugInfo - Clear the dangling debug information 895 /// map. This function is separated from the clear so that debug 896 /// information that is dangling in a basic block can be properly 897 /// resolved in a different basic block. This allows the 898 /// SelectionDAG to resolve dangling debug information attached 899 /// to PHI nodes. 900 void SelectionDAGBuilder::clearDanglingDebugInfo() { 901 DanglingDebugInfoMap.clear(); 902 } 903 904 /// getRoot - Return the current virtual root of the Selection DAG, 905 /// flushing any PendingLoad items. This must be done before emitting 906 /// a store or any other node that may need to be ordered after any 907 /// prior load instructions. 908 /// 909 SDValue SelectionDAGBuilder::getRoot() { 910 if (PendingLoads.empty()) 911 return DAG.getRoot(); 912 913 if (PendingLoads.size() == 1) { 914 SDValue Root = PendingLoads[0]; 915 DAG.setRoot(Root); 916 PendingLoads.clear(); 917 return Root; 918 } 919 920 // Otherwise, we have to make a token factor node. 921 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 922 PendingLoads); 923 PendingLoads.clear(); 924 DAG.setRoot(Root); 925 return Root; 926 } 927 928 /// getControlRoot - Similar to getRoot, but instead of flushing all the 929 /// PendingLoad items, flush all the PendingExports items. It is necessary 930 /// to do this before emitting a terminator instruction. 931 /// 932 SDValue SelectionDAGBuilder::getControlRoot() { 933 SDValue Root = DAG.getRoot(); 934 935 if (PendingExports.empty()) 936 return Root; 937 938 // Turn all of the CopyToReg chains into one factored node. 939 if (Root.getOpcode() != ISD::EntryToken) { 940 unsigned i = 0, e = PendingExports.size(); 941 for (; i != e; ++i) { 942 assert(PendingExports[i].getNode()->getNumOperands() > 1); 943 if (PendingExports[i].getNode()->getOperand(0) == Root) 944 break; // Don't add the root if we already indirectly depend on it. 945 } 946 947 if (i == e) 948 PendingExports.push_back(Root); 949 } 950 951 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 952 PendingExports); 953 PendingExports.clear(); 954 DAG.setRoot(Root); 955 return Root; 956 } 957 958 void SelectionDAGBuilder::visit(const Instruction &I) { 959 // Set up outgoing PHI node register values before emitting the terminator. 960 if (isa<TerminatorInst>(&I)) 961 HandlePHINodesInSuccessorBlocks(I.getParent()); 962 963 ++SDNodeOrder; 964 965 CurInst = &I; 966 967 visit(I.getOpcode(), I); 968 969 if (!isa<TerminatorInst>(&I) && !HasTailCall) 970 CopyToExportRegsIfNeeded(&I); 971 972 CurInst = nullptr; 973 } 974 975 void SelectionDAGBuilder::visitPHI(const PHINode &) { 976 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 977 } 978 979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 980 // Note: this doesn't use InstVisitor, because it has to work with 981 // ConstantExpr's in addition to instructions. 982 switch (Opcode) { 983 default: llvm_unreachable("Unknown instruction type encountered!"); 984 // Build the switch statement using the Instruction.def file. 985 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 986 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 987 #include "llvm/IR/Instruction.def" 988 } 989 } 990 991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 992 // generate the debug data structures now that we've seen its definition. 993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 994 SDValue Val) { 995 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 996 if (DDI.getDI()) { 997 const DbgValueInst *DI = DDI.getDI(); 998 DebugLoc dl = DDI.getdl(); 999 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1000 MDNode *Variable = DI->getVariable(); 1001 MDNode *Expr = DI->getExpression(); 1002 uint64_t Offset = DI->getOffset(); 1003 // A dbg.value for an alloca is always indirect. 1004 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1005 SDDbgValue *SDV; 1006 if (Val.getNode()) { 1007 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1008 Val)) { 1009 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1010 IsIndirect, Offset, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getValue - Return an SDValue for the given Value. 1020 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1021 // If we already have an SDValue for this value, use it. It's important 1022 // to do this first, so that we don't create a CopyFromReg if we already 1023 // have a regular SDValue. 1024 SDValue &N = NodeMap[V]; 1025 if (N.getNode()) return N; 1026 1027 // If there's a virtual register allocated and initialized for this 1028 // value, use it. 1029 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1030 if (It != FuncInfo.ValueMap.end()) { 1031 unsigned InReg = It->second; 1032 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1033 V->getType()); 1034 SDValue Chain = DAG.getEntryNode(); 1035 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1036 resolveDanglingDebugInfo(V, N); 1037 return N; 1038 } 1039 1040 // Otherwise create a new SDValue and remember it. 1041 SDValue Val = getValueImpl(V); 1042 NodeMap[V] = Val; 1043 resolveDanglingDebugInfo(V, Val); 1044 return Val; 1045 } 1046 1047 /// getNonRegisterValue - Return an SDValue for the given Value, but 1048 /// don't look in FuncInfo.ValueMap for a virtual register. 1049 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1050 // If we already have an SDValue for this value, use it. 1051 SDValue &N = NodeMap[V]; 1052 if (N.getNode()) return N; 1053 1054 // Otherwise create a new SDValue and remember it. 1055 SDValue Val = getValueImpl(V); 1056 NodeMap[V] = Val; 1057 resolveDanglingDebugInfo(V, Val); 1058 return Val; 1059 } 1060 1061 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1062 /// Create an SDValue for the given value. 1063 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1065 1066 if (const Constant *C = dyn_cast<Constant>(V)) { 1067 EVT VT = TLI.getValueType(V->getType(), true); 1068 1069 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1070 return DAG.getConstant(*CI, VT); 1071 1072 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1073 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1074 1075 if (isa<ConstantPointerNull>(C)) { 1076 unsigned AS = V->getType()->getPointerAddressSpace(); 1077 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1078 } 1079 1080 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1081 return DAG.getConstantFP(*CFP, VT); 1082 1083 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1084 return DAG.getUNDEF(VT); 1085 1086 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1087 visit(CE->getOpcode(), *CE); 1088 SDValue N1 = NodeMap[V]; 1089 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1090 return N1; 1091 } 1092 1093 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1094 SmallVector<SDValue, 4> Constants; 1095 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1096 OI != OE; ++OI) { 1097 SDNode *Val = getValue(*OI).getNode(); 1098 // If the operand is an empty aggregate, there are no values. 1099 if (!Val) continue; 1100 // Add each leaf value from the operand to the Constants list 1101 // to form a flattened list of all the values. 1102 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1103 Constants.push_back(SDValue(Val, i)); 1104 } 1105 1106 return DAG.getMergeValues(Constants, getCurSDLoc()); 1107 } 1108 1109 if (const ConstantDataSequential *CDS = 1110 dyn_cast<ConstantDataSequential>(C)) { 1111 SmallVector<SDValue, 4> Ops; 1112 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1113 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1114 // Add each leaf value from the operand to the Constants list 1115 // to form a flattened list of all the values. 1116 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1117 Ops.push_back(SDValue(Val, i)); 1118 } 1119 1120 if (isa<ArrayType>(CDS->getType())) 1121 return DAG.getMergeValues(Ops, getCurSDLoc()); 1122 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1123 VT, Ops); 1124 } 1125 1126 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1127 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1128 "Unknown struct or array constant!"); 1129 1130 SmallVector<EVT, 4> ValueVTs; 1131 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1132 unsigned NumElts = ValueVTs.size(); 1133 if (NumElts == 0) 1134 return SDValue(); // empty struct 1135 SmallVector<SDValue, 4> Constants(NumElts); 1136 for (unsigned i = 0; i != NumElts; ++i) { 1137 EVT EltVT = ValueVTs[i]; 1138 if (isa<UndefValue>(C)) 1139 Constants[i] = DAG.getUNDEF(EltVT); 1140 else if (EltVT.isFloatingPoint()) 1141 Constants[i] = DAG.getConstantFP(0, EltVT); 1142 else 1143 Constants[i] = DAG.getConstant(0, EltVT); 1144 } 1145 1146 return DAG.getMergeValues(Constants, getCurSDLoc()); 1147 } 1148 1149 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1150 return DAG.getBlockAddress(BA, VT); 1151 1152 VectorType *VecTy = cast<VectorType>(V->getType()); 1153 unsigned NumElements = VecTy->getNumElements(); 1154 1155 // Now that we know the number and type of the elements, get that number of 1156 // elements into the Ops array based on what kind of constant it is. 1157 SmallVector<SDValue, 16> Ops; 1158 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1159 for (unsigned i = 0; i != NumElements; ++i) 1160 Ops.push_back(getValue(CV->getOperand(i))); 1161 } else { 1162 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1163 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1164 1165 SDValue Op; 1166 if (EltVT.isFloatingPoint()) 1167 Op = DAG.getConstantFP(0, EltVT); 1168 else 1169 Op = DAG.getConstant(0, EltVT); 1170 Ops.assign(NumElements, Op); 1171 } 1172 1173 // Create a BUILD_VECTOR node. 1174 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1175 } 1176 1177 // If this is a static alloca, generate it as the frameindex instead of 1178 // computation. 1179 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1180 DenseMap<const AllocaInst*, int>::iterator SI = 1181 FuncInfo.StaticAllocaMap.find(AI); 1182 if (SI != FuncInfo.StaticAllocaMap.end()) 1183 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1184 } 1185 1186 // If this is an instruction which fast-isel has deferred, select it now. 1187 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1188 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1189 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1190 SDValue Chain = DAG.getEntryNode(); 1191 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1192 } 1193 1194 llvm_unreachable("Can't get register for value!"); 1195 } 1196 1197 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1198 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1199 SDValue Chain = getControlRoot(); 1200 SmallVector<ISD::OutputArg, 8> Outs; 1201 SmallVector<SDValue, 8> OutVals; 1202 1203 if (!FuncInfo.CanLowerReturn) { 1204 unsigned DemoteReg = FuncInfo.DemoteRegister; 1205 const Function *F = I.getParent()->getParent(); 1206 1207 // Emit a store of the return value through the virtual register. 1208 // Leave Outs empty so that LowerReturn won't try to load return 1209 // registers the usual way. 1210 SmallVector<EVT, 1> PtrValueVTs; 1211 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1212 PtrValueVTs); 1213 1214 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1215 SDValue RetOp = getValue(I.getOperand(0)); 1216 1217 SmallVector<EVT, 4> ValueVTs; 1218 SmallVector<uint64_t, 4> Offsets; 1219 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1220 unsigned NumValues = ValueVTs.size(); 1221 1222 SmallVector<SDValue, 4> Chains(NumValues); 1223 for (unsigned i = 0; i != NumValues; ++i) { 1224 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1225 RetPtr.getValueType(), RetPtr, 1226 DAG.getIntPtrConstant(Offsets[i])); 1227 Chains[i] = 1228 DAG.getStore(Chain, getCurSDLoc(), 1229 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1230 // FIXME: better loc info would be nice. 1231 Add, MachinePointerInfo(), false, false, 0); 1232 } 1233 1234 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1235 MVT::Other, Chains); 1236 } else if (I.getNumOperands() != 0) { 1237 SmallVector<EVT, 4> ValueVTs; 1238 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1239 unsigned NumValues = ValueVTs.size(); 1240 if (NumValues) { 1241 SDValue RetOp = getValue(I.getOperand(0)); 1242 1243 const Function *F = I.getParent()->getParent(); 1244 1245 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1246 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::SExt)) 1248 ExtendKind = ISD::SIGN_EXTEND; 1249 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1250 Attribute::ZExt)) 1251 ExtendKind = ISD::ZERO_EXTEND; 1252 1253 LLVMContext &Context = F->getContext(); 1254 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1255 Attribute::InReg); 1256 1257 for (unsigned j = 0; j != NumValues; ++j) { 1258 EVT VT = ValueVTs[j]; 1259 1260 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1261 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1262 1263 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1264 MVT PartVT = TLI.getRegisterType(Context, VT); 1265 SmallVector<SDValue, 4> Parts(NumParts); 1266 getCopyToParts(DAG, getCurSDLoc(), 1267 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1268 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1269 1270 // 'inreg' on function refers to return value 1271 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1272 if (RetInReg) 1273 Flags.setInReg(); 1274 1275 // Propagate extension type if any 1276 if (ExtendKind == ISD::SIGN_EXTEND) 1277 Flags.setSExt(); 1278 else if (ExtendKind == ISD::ZERO_EXTEND) 1279 Flags.setZExt(); 1280 1281 for (unsigned i = 0; i < NumParts; ++i) { 1282 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1283 VT, /*isfixed=*/true, 0, 0)); 1284 OutVals.push_back(Parts[i]); 1285 } 1286 } 1287 } 1288 } 1289 1290 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1291 CallingConv::ID CallConv = 1292 DAG.getMachineFunction().getFunction()->getCallingConv(); 1293 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1294 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1295 1296 // Verify that the target's LowerReturn behaved as expected. 1297 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1298 "LowerReturn didn't return a valid chain!"); 1299 1300 // Update the DAG with the new chain value resulting from return lowering. 1301 DAG.setRoot(Chain); 1302 } 1303 1304 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1305 /// created for it, emit nodes to copy the value into the virtual 1306 /// registers. 1307 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1308 // Skip empty types 1309 if (V->getType()->isEmptyTy()) 1310 return; 1311 1312 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1313 if (VMI != FuncInfo.ValueMap.end()) { 1314 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1315 CopyValueToVirtualRegister(V, VMI->second); 1316 } 1317 } 1318 1319 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1320 /// the current basic block, add it to ValueMap now so that we'll get a 1321 /// CopyTo/FromReg. 1322 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1323 // No need to export constants. 1324 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1325 1326 // Already exported? 1327 if (FuncInfo.isExportedInst(V)) return; 1328 1329 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1330 CopyValueToVirtualRegister(V, Reg); 1331 } 1332 1333 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1334 const BasicBlock *FromBB) { 1335 // The operands of the setcc have to be in this block. We don't know 1336 // how to export them from some other block. 1337 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1338 // Can export from current BB. 1339 if (VI->getParent() == FromBB) 1340 return true; 1341 1342 // Is already exported, noop. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // If this is an argument, we can export it if the BB is the entry block or 1347 // if it is already exported. 1348 if (isa<Argument>(V)) { 1349 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1350 return true; 1351 1352 // Otherwise, can only export this if it is already exported. 1353 return FuncInfo.isExportedInst(V); 1354 } 1355 1356 // Otherwise, constants can always be exported. 1357 return true; 1358 } 1359 1360 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1361 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1362 const MachineBasicBlock *Dst) const { 1363 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1364 if (!BPI) 1365 return 0; 1366 const BasicBlock *SrcBB = Src->getBasicBlock(); 1367 const BasicBlock *DstBB = Dst->getBasicBlock(); 1368 return BPI->getEdgeWeight(SrcBB, DstBB); 1369 } 1370 1371 void SelectionDAGBuilder:: 1372 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1373 uint32_t Weight /* = 0 */) { 1374 if (!Weight) 1375 Weight = getEdgeWeight(Src, Dst); 1376 Src->addSuccessor(Dst, Weight); 1377 } 1378 1379 1380 static bool InBlock(const Value *V, const BasicBlock *BB) { 1381 if (const Instruction *I = dyn_cast<Instruction>(V)) 1382 return I->getParent() == BB; 1383 return true; 1384 } 1385 1386 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1387 /// This function emits a branch and is used at the leaves of an OR or an 1388 /// AND operator tree. 1389 /// 1390 void 1391 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1392 MachineBasicBlock *TBB, 1393 MachineBasicBlock *FBB, 1394 MachineBasicBlock *CurBB, 1395 MachineBasicBlock *SwitchBB, 1396 uint32_t TWeight, 1397 uint32_t FWeight) { 1398 const BasicBlock *BB = CurBB->getBasicBlock(); 1399 1400 // If the leaf of the tree is a comparison, merge the condition into 1401 // the caseblock. 1402 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1403 // The operands of the cmp have to be in this block. We don't know 1404 // how to export them from some other block. If this is the first block 1405 // of the sequence, no exporting is needed. 1406 if (CurBB == SwitchBB || 1407 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1408 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1409 ISD::CondCode Condition; 1410 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1411 Condition = getICmpCondCode(IC->getPredicate()); 1412 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1413 Condition = getFCmpCondCode(FC->getPredicate()); 1414 if (TM.Options.NoNaNsFPMath) 1415 Condition = getFCmpCodeWithoutNaN(Condition); 1416 } else { 1417 (void)Condition; // silence warning. 1418 llvm_unreachable("Unknown compare instruction"); 1419 } 1420 1421 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1422 TBB, FBB, CurBB, TWeight, FWeight); 1423 SwitchCases.push_back(CB); 1424 return; 1425 } 1426 } 1427 1428 // Create a CaseBlock record representing this branch. 1429 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1430 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1431 SwitchCases.push_back(CB); 1432 } 1433 1434 /// Scale down both weights to fit into uint32_t. 1435 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1436 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1437 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1438 NewTrue = NewTrue / Scale; 1439 NewFalse = NewFalse / Scale; 1440 } 1441 1442 /// FindMergedConditions - If Cond is an expression like 1443 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1444 MachineBasicBlock *TBB, 1445 MachineBasicBlock *FBB, 1446 MachineBasicBlock *CurBB, 1447 MachineBasicBlock *SwitchBB, 1448 unsigned Opc, uint32_t TWeight, 1449 uint32_t FWeight) { 1450 // If this node is not part of the or/and tree, emit it as a branch. 1451 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1452 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1453 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1454 BOp->getParent() != CurBB->getBasicBlock() || 1455 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1456 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1457 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1458 TWeight, FWeight); 1459 return; 1460 } 1461 1462 // Create TmpBB after CurBB. 1463 MachineFunction::iterator BBI = CurBB; 1464 MachineFunction &MF = DAG.getMachineFunction(); 1465 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1466 CurBB->getParent()->insert(++BBI, TmpBB); 1467 1468 if (Opc == Instruction::Or) { 1469 // Codegen X | Y as: 1470 // BB1: 1471 // jmp_if_X TBB 1472 // jmp TmpBB 1473 // TmpBB: 1474 // jmp_if_Y TBB 1475 // jmp FBB 1476 // 1477 1478 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1479 // The requirement is that 1480 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1481 // = TrueProb for orignal BB. 1482 // Assuming the orignal weights are A and B, one choice is to set BB1's 1483 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1484 // assumes that 1485 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1486 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1487 // TmpBB, but the math is more complicated. 1488 1489 uint64_t NewTrueWeight = TWeight; 1490 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1491 ScaleWeights(NewTrueWeight, NewFalseWeight); 1492 // Emit the LHS condition. 1493 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1494 NewTrueWeight, NewFalseWeight); 1495 1496 NewTrueWeight = TWeight; 1497 NewFalseWeight = 2 * (uint64_t)FWeight; 1498 ScaleWeights(NewTrueWeight, NewFalseWeight); 1499 // Emit the RHS condition into TmpBB. 1500 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1501 NewTrueWeight, NewFalseWeight); 1502 } else { 1503 assert(Opc == Instruction::And && "Unknown merge op!"); 1504 // Codegen X & Y as: 1505 // BB1: 1506 // jmp_if_X TmpBB 1507 // jmp FBB 1508 // TmpBB: 1509 // jmp_if_Y TBB 1510 // jmp FBB 1511 // 1512 // This requires creation of TmpBB after CurBB. 1513 1514 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1515 // The requirement is that 1516 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1517 // = FalseProb for orignal BB. 1518 // Assuming the orignal weights are A and B, one choice is to set BB1's 1519 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1520 // assumes that 1521 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1522 1523 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1524 uint64_t NewFalseWeight = FWeight; 1525 ScaleWeights(NewTrueWeight, NewFalseWeight); 1526 // Emit the LHS condition. 1527 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1528 NewTrueWeight, NewFalseWeight); 1529 1530 NewTrueWeight = 2 * (uint64_t)TWeight; 1531 NewFalseWeight = FWeight; 1532 ScaleWeights(NewTrueWeight, NewFalseWeight); 1533 // Emit the RHS condition into TmpBB. 1534 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1535 NewTrueWeight, NewFalseWeight); 1536 } 1537 } 1538 1539 /// If the set of cases should be emitted as a series of branches, return true. 1540 /// If we should emit this as a bunch of and/or'd together conditions, return 1541 /// false. 1542 bool 1543 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1544 if (Cases.size() != 2) return true; 1545 1546 // If this is two comparisons of the same values or'd or and'd together, they 1547 // will get folded into a single comparison, so don't emit two blocks. 1548 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1549 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1550 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1551 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1552 return false; 1553 } 1554 1555 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1556 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1557 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1558 Cases[0].CC == Cases[1].CC && 1559 isa<Constant>(Cases[0].CmpRHS) && 1560 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1561 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1562 return false; 1563 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1564 return false; 1565 } 1566 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1571 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1572 1573 // Update machine-CFG edges. 1574 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1575 1576 // Figure out which block is immediately after the current one. 1577 MachineBasicBlock *NextBlock = nullptr; 1578 MachineFunction::iterator BBI = BrMBB; 1579 if (++BBI != FuncInfo.MF->end()) 1580 NextBlock = BBI; 1581 1582 if (I.isUnconditional()) { 1583 // Update machine-CFG edges. 1584 BrMBB->addSuccessor(Succ0MBB); 1585 1586 // If this is not a fall-through branch or optimizations are switched off, 1587 // emit the branch. 1588 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1589 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1590 MVT::Other, getControlRoot(), 1591 DAG.getBasicBlock(Succ0MBB))); 1592 1593 return; 1594 } 1595 1596 // If this condition is one of the special cases we handle, do special stuff 1597 // now. 1598 const Value *CondVal = I.getCondition(); 1599 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1600 1601 // If this is a series of conditions that are or'd or and'd together, emit 1602 // this as a sequence of branches instead of setcc's with and/or operations. 1603 // As long as jumps are not expensive, this should improve performance. 1604 // For example, instead of something like: 1605 // cmp A, B 1606 // C = seteq 1607 // cmp D, E 1608 // F = setle 1609 // or C, F 1610 // jnz foo 1611 // Emit: 1612 // cmp A, B 1613 // je foo 1614 // cmp D, E 1615 // jle foo 1616 // 1617 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1618 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1619 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1620 BOp->getOpcode() == Instruction::Or)) { 1621 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1622 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1623 getEdgeWeight(BrMBB, Succ1MBB)); 1624 // If the compares in later blocks need to use values not currently 1625 // exported from this block, export them now. This block should always 1626 // be the first entry. 1627 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1628 1629 // Allow some cases to be rejected. 1630 if (ShouldEmitAsBranches(SwitchCases)) { 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1632 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1633 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1634 } 1635 1636 // Emit the branch for this block. 1637 visitSwitchCase(SwitchCases[0], BrMBB); 1638 SwitchCases.erase(SwitchCases.begin()); 1639 return; 1640 } 1641 1642 // Okay, we decided not to do this, remove any inserted MBB's and clear 1643 // SwitchCases. 1644 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1645 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1646 1647 SwitchCases.clear(); 1648 } 1649 } 1650 1651 // Create a CaseBlock record representing this branch. 1652 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1653 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1654 1655 // Use visitSwitchCase to actually insert the fast branch sequence for this 1656 // cond branch. 1657 visitSwitchCase(CB, BrMBB); 1658 } 1659 1660 /// visitSwitchCase - Emits the necessary code to represent a single node in 1661 /// the binary search tree resulting from lowering a switch instruction. 1662 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1663 MachineBasicBlock *SwitchBB) { 1664 SDValue Cond; 1665 SDValue CondLHS = getValue(CB.CmpLHS); 1666 SDLoc dl = getCurSDLoc(); 1667 1668 // Build the setcc now. 1669 if (!CB.CmpMHS) { 1670 // Fold "(X == true)" to X and "(X == false)" to !X to 1671 // handle common cases produced by branch lowering. 1672 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1673 CB.CC == ISD::SETEQ) 1674 Cond = CondLHS; 1675 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1676 CB.CC == ISD::SETEQ) { 1677 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1678 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1679 } else 1680 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1681 } else { 1682 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1683 1684 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1685 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1686 1687 SDValue CmpOp = getValue(CB.CmpMHS); 1688 EVT VT = CmpOp.getValueType(); 1689 1690 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1691 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1692 ISD::SETLE); 1693 } else { 1694 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1695 VT, CmpOp, DAG.getConstant(Low, VT)); 1696 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1697 DAG.getConstant(High-Low, VT), ISD::SETULE); 1698 } 1699 } 1700 1701 // Update successor info 1702 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1703 // TrueBB and FalseBB are always different unless the incoming IR is 1704 // degenerate. This only happens when running llc on weird IR. 1705 if (CB.TrueBB != CB.FalseBB) 1706 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1707 1708 // Set NextBlock to be the MBB immediately after the current one, if any. 1709 // This is used to avoid emitting unnecessary branches to the next block. 1710 MachineBasicBlock *NextBlock = nullptr; 1711 MachineFunction::iterator BBI = SwitchBB; 1712 if (++BBI != FuncInfo.MF->end()) 1713 NextBlock = BBI; 1714 1715 // If the lhs block is the next block, invert the condition so that we can 1716 // fall through to the lhs instead of the rhs block. 1717 if (CB.TrueBB == NextBlock) { 1718 std::swap(CB.TrueBB, CB.FalseBB); 1719 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1720 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1721 } 1722 1723 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1724 MVT::Other, getControlRoot(), Cond, 1725 DAG.getBasicBlock(CB.TrueBB)); 1726 1727 // Insert the false branch. Do this even if it's a fall through branch, 1728 // this makes it easier to do DAG optimizations which require inverting 1729 // the branch condition. 1730 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1731 DAG.getBasicBlock(CB.FalseBB)); 1732 1733 DAG.setRoot(BrCond); 1734 } 1735 1736 /// visitJumpTable - Emit JumpTable node in the current MBB 1737 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1738 // Emit the code for the jump table 1739 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1740 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1741 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1742 JT.Reg, PTy); 1743 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1744 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1745 MVT::Other, Index.getValue(1), 1746 Table, Index); 1747 DAG.setRoot(BrJumpTable); 1748 } 1749 1750 /// visitJumpTableHeader - This function emits necessary code to produce index 1751 /// in the JumpTable from switch case. 1752 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1753 JumpTableHeader &JTH, 1754 MachineBasicBlock *SwitchBB) { 1755 // Subtract the lowest switch case value from the value being switched on and 1756 // conditional branch to default mbb if the result is greater than the 1757 // difference between smallest and largest cases. 1758 SDValue SwitchOp = getValue(JTH.SValue); 1759 EVT VT = SwitchOp.getValueType(); 1760 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1761 DAG.getConstant(JTH.First, VT)); 1762 1763 // The SDNode we just created, which holds the value being switched on minus 1764 // the smallest case value, needs to be copied to a virtual register so it 1765 // can be used as an index into the jump table in a subsequent basic block. 1766 // This value may be smaller or larger than the target's pointer type, and 1767 // therefore require extension or truncating. 1768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1769 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1770 1771 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1772 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1773 JumpTableReg, SwitchOp); 1774 JT.Reg = JumpTableReg; 1775 1776 // Emit the range check for the jump table, and branch to the default block 1777 // for the switch statement if the value being switched on exceeds the largest 1778 // case in the switch. 1779 SDValue CMP = 1780 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1781 Sub.getValueType()), 1782 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1783 1784 // Set NextBlock to be the MBB immediately after the current one, if any. 1785 // This is used to avoid emitting unnecessary branches to the next block. 1786 MachineBasicBlock *NextBlock = nullptr; 1787 MachineFunction::iterator BBI = SwitchBB; 1788 1789 if (++BBI != FuncInfo.MF->end()) 1790 NextBlock = BBI; 1791 1792 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1793 MVT::Other, CopyTo, CMP, 1794 DAG.getBasicBlock(JT.Default)); 1795 1796 if (JT.MBB != NextBlock) 1797 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1798 DAG.getBasicBlock(JT.MBB)); 1799 1800 DAG.setRoot(BrCond); 1801 } 1802 1803 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1804 /// tail spliced into a stack protector check success bb. 1805 /// 1806 /// For a high level explanation of how this fits into the stack protector 1807 /// generation see the comment on the declaration of class 1808 /// StackProtectorDescriptor. 1809 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1810 MachineBasicBlock *ParentBB) { 1811 1812 // First create the loads to the guard/stack slot for the comparison. 1813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1814 EVT PtrTy = TLI.getPointerTy(); 1815 1816 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1817 int FI = MFI->getStackProtectorIndex(); 1818 1819 const Value *IRGuard = SPD.getGuard(); 1820 SDValue GuardPtr = getValue(IRGuard); 1821 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1822 1823 unsigned Align = 1824 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1825 1826 SDValue Guard; 1827 1828 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1829 // guard value from the virtual register holding the value. Otherwise, emit a 1830 // volatile load to retrieve the stack guard value. 1831 unsigned GuardReg = SPD.getGuardReg(); 1832 1833 if (GuardReg && TLI.useLoadStackGuardNode()) 1834 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1835 PtrTy); 1836 else 1837 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1838 GuardPtr, MachinePointerInfo(IRGuard, 0), 1839 true, false, false, Align); 1840 1841 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1842 StackSlotPtr, 1843 MachinePointerInfo::getFixedStack(FI), 1844 true, false, false, Align); 1845 1846 // Perform the comparison via a subtract/getsetcc. 1847 EVT VT = Guard.getValueType(); 1848 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1849 1850 SDValue Cmp = 1851 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1852 Sub.getValueType()), 1853 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1854 1855 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1856 // branch to failure MBB. 1857 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1858 MVT::Other, StackSlot.getOperand(0), 1859 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1860 // Otherwise branch to success MBB. 1861 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1862 MVT::Other, BrCond, 1863 DAG.getBasicBlock(SPD.getSuccessMBB())); 1864 1865 DAG.setRoot(Br); 1866 } 1867 1868 /// Codegen the failure basic block for a stack protector check. 1869 /// 1870 /// A failure stack protector machine basic block consists simply of a call to 1871 /// __stack_chk_fail(). 1872 /// 1873 /// For a high level explanation of how this fits into the stack protector 1874 /// generation see the comment on the declaration of class 1875 /// StackProtectorDescriptor. 1876 void 1877 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1879 SDValue Chain = 1880 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1881 nullptr, 0, false, getCurSDLoc(), false, false).second; 1882 DAG.setRoot(Chain); 1883 } 1884 1885 /// visitBitTestHeader - This function emits necessary code to produce value 1886 /// suitable for "bit tests" 1887 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1888 MachineBasicBlock *SwitchBB) { 1889 // Subtract the minimum value 1890 SDValue SwitchOp = getValue(B.SValue); 1891 EVT VT = SwitchOp.getValueType(); 1892 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1893 DAG.getConstant(B.First, VT)); 1894 1895 // Check range 1896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1897 SDValue RangeCmp = 1898 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1899 Sub.getValueType()), 1900 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1901 1902 // Determine the type of the test operands. 1903 bool UsePtrType = false; 1904 if (!TLI.isTypeLegal(VT)) 1905 UsePtrType = true; 1906 else { 1907 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1908 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1909 // Switch table case range are encoded into series of masks. 1910 // Just use pointer type, it's guaranteed to fit. 1911 UsePtrType = true; 1912 break; 1913 } 1914 } 1915 if (UsePtrType) { 1916 VT = TLI.getPointerTy(); 1917 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1918 } 1919 1920 B.RegVT = VT.getSimpleVT(); 1921 B.Reg = FuncInfo.CreateReg(B.RegVT); 1922 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1923 B.Reg, Sub); 1924 1925 // Set NextBlock to be the MBB immediately after the current one, if any. 1926 // This is used to avoid emitting unnecessary branches to the next block. 1927 MachineBasicBlock *NextBlock = nullptr; 1928 MachineFunction::iterator BBI = SwitchBB; 1929 if (++BBI != FuncInfo.MF->end()) 1930 NextBlock = BBI; 1931 1932 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1933 1934 addSuccessorWithWeight(SwitchBB, B.Default); 1935 addSuccessorWithWeight(SwitchBB, MBB); 1936 1937 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1938 MVT::Other, CopyTo, RangeCmp, 1939 DAG.getBasicBlock(B.Default)); 1940 1941 if (MBB != NextBlock) 1942 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1943 DAG.getBasicBlock(MBB)); 1944 1945 DAG.setRoot(BrRange); 1946 } 1947 1948 /// visitBitTestCase - this function produces one "bit test" 1949 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1950 MachineBasicBlock* NextMBB, 1951 uint32_t BranchWeightToNext, 1952 unsigned Reg, 1953 BitTestCase &B, 1954 MachineBasicBlock *SwitchBB) { 1955 MVT VT = BB.RegVT; 1956 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1957 Reg, VT); 1958 SDValue Cmp; 1959 unsigned PopCount = CountPopulation_64(B.Mask); 1960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1961 if (PopCount == 1) { 1962 // Testing for a single bit; just compare the shift count with what it 1963 // would need to be to shift a 1 bit in that position. 1964 Cmp = DAG.getSetCC( 1965 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1966 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1967 } else if (PopCount == BB.Range) { 1968 // There is only one zero bit in the range, test for it directly. 1969 Cmp = DAG.getSetCC( 1970 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1971 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1972 } else { 1973 // Make desired shift 1974 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1975 DAG.getConstant(1, VT), ShiftOp); 1976 1977 // Emit bit tests and jumps 1978 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1979 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1980 Cmp = DAG.getSetCC(getCurSDLoc(), 1981 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1982 DAG.getConstant(0, VT), ISD::SETNE); 1983 } 1984 1985 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1986 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1987 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1988 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1989 1990 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1991 MVT::Other, getControlRoot(), 1992 Cmp, DAG.getBasicBlock(B.TargetBB)); 1993 1994 // Set NextBlock to be the MBB immediately after the current one, if any. 1995 // This is used to avoid emitting unnecessary branches to the next block. 1996 MachineBasicBlock *NextBlock = nullptr; 1997 MachineFunction::iterator BBI = SwitchBB; 1998 if (++BBI != FuncInfo.MF->end()) 1999 NextBlock = BBI; 2000 2001 if (NextMBB != NextBlock) 2002 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 2003 DAG.getBasicBlock(NextMBB)); 2004 2005 DAG.setRoot(BrAnd); 2006 } 2007 2008 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2009 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2010 2011 // Retrieve successors. 2012 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2013 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2014 2015 const Value *Callee(I.getCalledValue()); 2016 const Function *Fn = dyn_cast<Function>(Callee); 2017 if (isa<InlineAsm>(Callee)) 2018 visitInlineAsm(&I); 2019 else if (Fn && Fn->isIntrinsic()) { 2020 switch (Fn->getIntrinsicID()) { 2021 default: 2022 llvm_unreachable("Cannot invoke this intrinsic"); 2023 case Intrinsic::donothing: 2024 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2025 break; 2026 case Intrinsic::experimental_patchpoint_void: 2027 case Intrinsic::experimental_patchpoint_i64: 2028 visitPatchpoint(&I, LandingPad); 2029 break; 2030 } 2031 } else 2032 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2033 2034 // If the value of the invoke is used outside of its defining block, make it 2035 // available as a virtual register. 2036 CopyToExportRegsIfNeeded(&I); 2037 2038 // Update successor info 2039 addSuccessorWithWeight(InvokeMBB, Return); 2040 addSuccessorWithWeight(InvokeMBB, LandingPad); 2041 2042 // Drop into normal successor. 2043 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2044 MVT::Other, getControlRoot(), 2045 DAG.getBasicBlock(Return))); 2046 } 2047 2048 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2049 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2050 } 2051 2052 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2053 assert(FuncInfo.MBB->isLandingPad() && 2054 "Call to landingpad not in landing pad!"); 2055 2056 MachineBasicBlock *MBB = FuncInfo.MBB; 2057 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2058 AddLandingPadInfo(LP, MMI, MBB); 2059 2060 // If there aren't registers to copy the values into (e.g., during SjLj 2061 // exceptions), then don't bother to create these DAG nodes. 2062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2063 if (TLI.getExceptionPointerRegister() == 0 && 2064 TLI.getExceptionSelectorRegister() == 0) 2065 return; 2066 2067 SmallVector<EVT, 2> ValueVTs; 2068 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2069 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2070 2071 // Get the two live-in registers as SDValues. The physregs have already been 2072 // copied into virtual registers. 2073 SDValue Ops[2]; 2074 Ops[0] = DAG.getZExtOrTrunc( 2075 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2076 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2077 getCurSDLoc(), ValueVTs[0]); 2078 Ops[1] = DAG.getZExtOrTrunc( 2079 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2080 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2081 getCurSDLoc(), ValueVTs[1]); 2082 2083 // Merge into one. 2084 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2085 DAG.getVTList(ValueVTs), Ops); 2086 setValue(&LP, Res); 2087 } 2088 2089 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2090 /// small case ranges). 2091 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2092 CaseRecVector& WorkList, 2093 const Value* SV, 2094 MachineBasicBlock *Default, 2095 MachineBasicBlock *SwitchBB) { 2096 // Size is the number of Cases represented by this range. 2097 size_t Size = CR.Range.second - CR.Range.first; 2098 if (Size > 3) 2099 return false; 2100 2101 // Get the MachineFunction which holds the current MBB. This is used when 2102 // inserting any additional MBBs necessary to represent the switch. 2103 MachineFunction *CurMF = FuncInfo.MF; 2104 2105 // Figure out which block is immediately after the current one. 2106 MachineBasicBlock *NextBlock = nullptr; 2107 MachineFunction::iterator BBI = CR.CaseBB; 2108 2109 if (++BBI != FuncInfo.MF->end()) 2110 NextBlock = BBI; 2111 2112 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2113 // If any two of the cases has the same destination, and if one value 2114 // is the same as the other, but has one bit unset that the other has set, 2115 // use bit manipulation to do two compares at once. For example: 2116 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2117 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2118 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2119 if (Size == 2 && CR.CaseBB == SwitchBB) { 2120 Case &Small = *CR.Range.first; 2121 Case &Big = *(CR.Range.second-1); 2122 2123 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2124 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2125 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2126 2127 // Check that there is only one bit different. 2128 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2129 (SmallValue | BigValue) == BigValue) { 2130 // Isolate the common bit. 2131 APInt CommonBit = BigValue & ~SmallValue; 2132 assert((SmallValue | CommonBit) == BigValue && 2133 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2134 2135 SDValue CondLHS = getValue(SV); 2136 EVT VT = CondLHS.getValueType(); 2137 SDLoc DL = getCurSDLoc(); 2138 2139 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2140 DAG.getConstant(CommonBit, VT)); 2141 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2142 Or, DAG.getConstant(BigValue, VT), 2143 ISD::SETEQ); 2144 2145 // Update successor info. 2146 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2147 addSuccessorWithWeight(SwitchBB, Small.BB, 2148 Small.ExtraWeight + Big.ExtraWeight); 2149 addSuccessorWithWeight(SwitchBB, Default, 2150 // The default destination is the first successor in IR. 2151 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2152 2153 // Insert the true branch. 2154 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2155 getControlRoot(), Cond, 2156 DAG.getBasicBlock(Small.BB)); 2157 2158 // Insert the false branch. 2159 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2160 DAG.getBasicBlock(Default)); 2161 2162 DAG.setRoot(BrCond); 2163 return true; 2164 } 2165 } 2166 } 2167 2168 // Order cases by weight so the most likely case will be checked first. 2169 uint32_t UnhandledWeights = 0; 2170 if (BPI) { 2171 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2172 uint32_t IWeight = I->ExtraWeight; 2173 UnhandledWeights += IWeight; 2174 for (CaseItr J = CR.Range.first; J < I; ++J) { 2175 uint32_t JWeight = J->ExtraWeight; 2176 if (IWeight > JWeight) 2177 std::swap(*I, *J); 2178 } 2179 } 2180 } 2181 // Rearrange the case blocks so that the last one falls through if possible. 2182 Case &BackCase = *(CR.Range.second-1); 2183 if (Size > 1 && 2184 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2185 // The last case block won't fall through into 'NextBlock' if we emit the 2186 // branches in this order. See if rearranging a case value would help. 2187 // We start at the bottom as it's the case with the least weight. 2188 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2189 if (I->BB == NextBlock) { 2190 std::swap(*I, BackCase); 2191 break; 2192 } 2193 } 2194 2195 // Create a CaseBlock record representing a conditional branch to 2196 // the Case's target mbb if the value being switched on SV is equal 2197 // to C. 2198 MachineBasicBlock *CurBlock = CR.CaseBB; 2199 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2200 MachineBasicBlock *FallThrough; 2201 if (I != E-1) { 2202 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2203 CurMF->insert(BBI, FallThrough); 2204 2205 // Put SV in a virtual register to make it available from the new blocks. 2206 ExportFromCurrentBlock(SV); 2207 } else { 2208 // If the last case doesn't match, go to the default block. 2209 FallThrough = Default; 2210 } 2211 2212 const Value *RHS, *LHS, *MHS; 2213 ISD::CondCode CC; 2214 if (I->High == I->Low) { 2215 // This is just small small case range :) containing exactly 1 case 2216 CC = ISD::SETEQ; 2217 LHS = SV; RHS = I->High; MHS = nullptr; 2218 } else { 2219 CC = ISD::SETLE; 2220 LHS = I->Low; MHS = SV; RHS = I->High; 2221 } 2222 2223 // The false weight should be sum of all un-handled cases. 2224 UnhandledWeights -= I->ExtraWeight; 2225 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2226 /* me */ CurBlock, 2227 /* trueweight */ I->ExtraWeight, 2228 /* falseweight */ UnhandledWeights); 2229 2230 // If emitting the first comparison, just call visitSwitchCase to emit the 2231 // code into the current block. Otherwise, push the CaseBlock onto the 2232 // vector to be later processed by SDISel, and insert the node's MBB 2233 // before the next MBB. 2234 if (CurBlock == SwitchBB) 2235 visitSwitchCase(CB, SwitchBB); 2236 else 2237 SwitchCases.push_back(CB); 2238 2239 CurBlock = FallThrough; 2240 } 2241 2242 return true; 2243 } 2244 2245 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2246 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2247 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2248 } 2249 2250 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2251 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2252 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2253 return (LastExt - FirstExt + 1ULL); 2254 } 2255 2256 /// handleJTSwitchCase - Emit jumptable for current switch case range 2257 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2258 CaseRecVector &WorkList, 2259 const Value *SV, 2260 MachineBasicBlock *Default, 2261 MachineBasicBlock *SwitchBB) { 2262 Case& FrontCase = *CR.Range.first; 2263 Case& BackCase = *(CR.Range.second-1); 2264 2265 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2266 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2267 2268 APInt TSize(First.getBitWidth(), 0); 2269 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2270 TSize += I->size(); 2271 2272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2273 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2274 return false; 2275 2276 APInt Range = ComputeRange(First, Last); 2277 // The density is TSize / Range. Require at least 40%. 2278 // It should not be possible for IntTSize to saturate for sane code, but make 2279 // sure we handle Range saturation correctly. 2280 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2281 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2282 if (IntTSize * 10 < IntRange * 4) 2283 return false; 2284 2285 DEBUG(dbgs() << "Lowering jump table\n" 2286 << "First entry: " << First << ". Last entry: " << Last << '\n' 2287 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2288 2289 // Get the MachineFunction which holds the current MBB. This is used when 2290 // inserting any additional MBBs necessary to represent the switch. 2291 MachineFunction *CurMF = FuncInfo.MF; 2292 2293 // Figure out which block is immediately after the current one. 2294 MachineFunction::iterator BBI = CR.CaseBB; 2295 ++BBI; 2296 2297 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2298 2299 // Create a new basic block to hold the code for loading the address 2300 // of the jump table, and jumping to it. Update successor information; 2301 // we will either branch to the default case for the switch, or the jump 2302 // table. 2303 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2304 CurMF->insert(BBI, JumpTableBB); 2305 2306 addSuccessorWithWeight(CR.CaseBB, Default); 2307 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2308 2309 // Build a vector of destination BBs, corresponding to each target 2310 // of the jump table. If the value of the jump table slot corresponds to 2311 // a case statement, push the case's BB onto the vector, otherwise, push 2312 // the default BB. 2313 std::vector<MachineBasicBlock*> DestBBs; 2314 APInt TEI = First; 2315 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2316 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2317 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2318 2319 if (Low.sle(TEI) && TEI.sle(High)) { 2320 DestBBs.push_back(I->BB); 2321 if (TEI==High) 2322 ++I; 2323 } else { 2324 DestBBs.push_back(Default); 2325 } 2326 } 2327 2328 // Calculate weight for each unique destination in CR. 2329 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2330 if (FuncInfo.BPI) 2331 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2332 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2333 DestWeights.find(I->BB); 2334 if (Itr != DestWeights.end()) 2335 Itr->second += I->ExtraWeight; 2336 else 2337 DestWeights[I->BB] = I->ExtraWeight; 2338 } 2339 2340 // Update successor info. Add one edge to each unique successor. 2341 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2342 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2343 E = DestBBs.end(); I != E; ++I) { 2344 if (!SuccsHandled[(*I)->getNumber()]) { 2345 SuccsHandled[(*I)->getNumber()] = true; 2346 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2347 DestWeights.find(*I); 2348 addSuccessorWithWeight(JumpTableBB, *I, 2349 Itr != DestWeights.end() ? Itr->second : 0); 2350 } 2351 } 2352 2353 // Create a jump table index for this jump table. 2354 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2355 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2356 ->createJumpTableIndex(DestBBs); 2357 2358 // Set the jump table information so that we can codegen it as a second 2359 // MachineBasicBlock 2360 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2361 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2362 if (CR.CaseBB == SwitchBB) 2363 visitJumpTableHeader(JT, JTH, SwitchBB); 2364 2365 JTCases.push_back(JumpTableBlock(JTH, JT)); 2366 return true; 2367 } 2368 2369 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2370 /// 2 subtrees. 2371 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2372 CaseRecVector& WorkList, 2373 const Value* SV, 2374 MachineBasicBlock* SwitchBB) { 2375 // Get the MachineFunction which holds the current MBB. This is used when 2376 // inserting any additional MBBs necessary to represent the switch. 2377 MachineFunction *CurMF = FuncInfo.MF; 2378 2379 // Figure out which block is immediately after the current one. 2380 MachineFunction::iterator BBI = CR.CaseBB; 2381 ++BBI; 2382 2383 Case& FrontCase = *CR.Range.first; 2384 Case& BackCase = *(CR.Range.second-1); 2385 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2386 2387 // Size is the number of Cases represented by this range. 2388 unsigned Size = CR.Range.second - CR.Range.first; 2389 2390 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2391 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2392 double FMetric = 0; 2393 CaseItr Pivot = CR.Range.first + Size/2; 2394 2395 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2396 // (heuristically) allow us to emit JumpTable's later. 2397 APInt TSize(First.getBitWidth(), 0); 2398 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2399 I!=E; ++I) 2400 TSize += I->size(); 2401 2402 APInt LSize = FrontCase.size(); 2403 APInt RSize = TSize-LSize; 2404 DEBUG(dbgs() << "Selecting best pivot: \n" 2405 << "First: " << First << ", Last: " << Last <<'\n' 2406 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2407 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2408 J!=E; ++I, ++J) { 2409 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2410 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2411 APInt Range = ComputeRange(LEnd, RBegin); 2412 assert((Range - 2ULL).isNonNegative() && 2413 "Invalid case distance"); 2414 // Use volatile double here to avoid excess precision issues on some hosts, 2415 // e.g. that use 80-bit X87 registers. 2416 volatile double LDensity = 2417 (double)LSize.roundToDouble() / 2418 (LEnd - First + 1ULL).roundToDouble(); 2419 volatile double RDensity = 2420 (double)RSize.roundToDouble() / 2421 (Last - RBegin + 1ULL).roundToDouble(); 2422 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2423 // Should always split in some non-trivial place 2424 DEBUG(dbgs() <<"=>Step\n" 2425 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2426 << "LDensity: " << LDensity 2427 << ", RDensity: " << RDensity << '\n' 2428 << "Metric: " << Metric << '\n'); 2429 if (FMetric < Metric) { 2430 Pivot = J; 2431 FMetric = Metric; 2432 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2433 } 2434 2435 LSize += J->size(); 2436 RSize -= J->size(); 2437 } 2438 2439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2440 if (areJTsAllowed(TLI)) { 2441 // If our case is dense we *really* should handle it earlier! 2442 assert((FMetric > 0) && "Should handle dense range earlier!"); 2443 } else { 2444 Pivot = CR.Range.first + Size/2; 2445 } 2446 2447 CaseRange LHSR(CR.Range.first, Pivot); 2448 CaseRange RHSR(Pivot, CR.Range.second); 2449 const Constant *C = Pivot->Low; 2450 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2451 2452 // We know that we branch to the LHS if the Value being switched on is 2453 // less than the Pivot value, C. We use this to optimize our binary 2454 // tree a bit, by recognizing that if SV is greater than or equal to the 2455 // LHS's Case Value, and that Case Value is exactly one less than the 2456 // Pivot's Value, then we can branch directly to the LHS's Target, 2457 // rather than creating a leaf node for it. 2458 if ((LHSR.second - LHSR.first) == 1 && 2459 LHSR.first->High == CR.GE && 2460 cast<ConstantInt>(C)->getValue() == 2461 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2462 TrueBB = LHSR.first->BB; 2463 } else { 2464 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2465 CurMF->insert(BBI, TrueBB); 2466 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2467 2468 // Put SV in a virtual register to make it available from the new blocks. 2469 ExportFromCurrentBlock(SV); 2470 } 2471 2472 // Similar to the optimization above, if the Value being switched on is 2473 // known to be less than the Constant CR.LT, and the current Case Value 2474 // is CR.LT - 1, then we can branch directly to the target block for 2475 // the current Case Value, rather than emitting a RHS leaf node for it. 2476 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2477 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2478 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2479 FalseBB = RHSR.first->BB; 2480 } else { 2481 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2482 CurMF->insert(BBI, FalseBB); 2483 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2484 2485 // Put SV in a virtual register to make it available from the new blocks. 2486 ExportFromCurrentBlock(SV); 2487 } 2488 2489 // Create a CaseBlock record representing a conditional branch to 2490 // the LHS node if the value being switched on SV is less than C. 2491 // Otherwise, branch to LHS. 2492 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2493 2494 if (CR.CaseBB == SwitchBB) 2495 visitSwitchCase(CB, SwitchBB); 2496 else 2497 SwitchCases.push_back(CB); 2498 2499 return true; 2500 } 2501 2502 /// handleBitTestsSwitchCase - if current case range has few destination and 2503 /// range span less, than machine word bitwidth, encode case range into series 2504 /// of masks and emit bit tests with these masks. 2505 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2506 CaseRecVector& WorkList, 2507 const Value* SV, 2508 MachineBasicBlock* Default, 2509 MachineBasicBlock* SwitchBB) { 2510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2511 EVT PTy = TLI.getPointerTy(); 2512 unsigned IntPtrBits = PTy.getSizeInBits(); 2513 2514 Case& FrontCase = *CR.Range.first; 2515 Case& BackCase = *(CR.Range.second-1); 2516 2517 // Get the MachineFunction which holds the current MBB. This is used when 2518 // inserting any additional MBBs necessary to represent the switch. 2519 MachineFunction *CurMF = FuncInfo.MF; 2520 2521 // If target does not have legal shift left, do not emit bit tests at all. 2522 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2523 return false; 2524 2525 size_t numCmps = 0; 2526 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2527 // Single case counts one, case range - two. 2528 numCmps += (I->Low == I->High ? 1 : 2); 2529 } 2530 2531 // Count unique destinations 2532 SmallSet<MachineBasicBlock*, 4> Dests; 2533 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2534 Dests.insert(I->BB); 2535 if (Dests.size() > 3) 2536 // Don't bother the code below, if there are too much unique destinations 2537 return false; 2538 } 2539 DEBUG(dbgs() << "Total number of unique destinations: " 2540 << Dests.size() << '\n' 2541 << "Total number of comparisons: " << numCmps << '\n'); 2542 2543 // Compute span of values. 2544 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2545 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2546 APInt cmpRange = maxValue - minValue; 2547 2548 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2549 << "Low bound: " << minValue << '\n' 2550 << "High bound: " << maxValue << '\n'); 2551 2552 if (cmpRange.uge(IntPtrBits) || 2553 (!(Dests.size() == 1 && numCmps >= 3) && 2554 !(Dests.size() == 2 && numCmps >= 5) && 2555 !(Dests.size() >= 3 && numCmps >= 6))) 2556 return false; 2557 2558 DEBUG(dbgs() << "Emitting bit tests\n"); 2559 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2560 2561 // Optimize the case where all the case values fit in a 2562 // word without having to subtract minValue. In this case, 2563 // we can optimize away the subtraction. 2564 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2565 cmpRange = maxValue; 2566 } else { 2567 lowBound = minValue; 2568 } 2569 2570 CaseBitsVector CasesBits; 2571 unsigned i, count = 0; 2572 2573 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2574 MachineBasicBlock* Dest = I->BB; 2575 for (i = 0; i < count; ++i) 2576 if (Dest == CasesBits[i].BB) 2577 break; 2578 2579 if (i == count) { 2580 assert((count < 3) && "Too much destinations to test!"); 2581 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2582 count++; 2583 } 2584 2585 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2586 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2587 2588 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2589 uint64_t hi = (highValue - lowBound).getZExtValue(); 2590 CasesBits[i].ExtraWeight += I->ExtraWeight; 2591 2592 for (uint64_t j = lo; j <= hi; j++) { 2593 CasesBits[i].Mask |= 1ULL << j; 2594 CasesBits[i].Bits++; 2595 } 2596 2597 } 2598 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2599 2600 BitTestInfo BTC; 2601 2602 // Figure out which block is immediately after the current one. 2603 MachineFunction::iterator BBI = CR.CaseBB; 2604 ++BBI; 2605 2606 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2607 2608 DEBUG(dbgs() << "Cases:\n"); 2609 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2610 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2611 << ", Bits: " << CasesBits[i].Bits 2612 << ", BB: " << CasesBits[i].BB << '\n'); 2613 2614 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2615 CurMF->insert(BBI, CaseBB); 2616 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2617 CaseBB, 2618 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2619 2620 // Put SV in a virtual register to make it available from the new blocks. 2621 ExportFromCurrentBlock(SV); 2622 } 2623 2624 BitTestBlock BTB(lowBound, cmpRange, SV, 2625 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2626 CR.CaseBB, Default, std::move(BTC)); 2627 2628 if (CR.CaseBB == SwitchBB) 2629 visitBitTestHeader(BTB, SwitchBB); 2630 2631 BitTestCases.push_back(std::move(BTB)); 2632 2633 return true; 2634 } 2635 2636 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2637 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2638 const SwitchInst& SI) { 2639 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2640 // Start with "simple" cases. 2641 for (SwitchInst::ConstCaseIt i : SI.cases()) { 2642 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2643 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2644 2645 uint32_t ExtraWeight = 2646 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2647 2648 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2649 SMBB, ExtraWeight)); 2650 } 2651 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2652 2653 // Merge case into clusters 2654 if (Cases.size() >= 2) 2655 // Must recompute end() each iteration because it may be 2656 // invalidated by erase if we hold on to it 2657 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2658 J != Cases.end(); ) { 2659 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2660 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2661 MachineBasicBlock* nextBB = J->BB; 2662 MachineBasicBlock* currentBB = I->BB; 2663 2664 // If the two neighboring cases go to the same destination, merge them 2665 // into a single case. 2666 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2667 I->High = J->High; 2668 I->ExtraWeight += J->ExtraWeight; 2669 J = Cases.erase(J); 2670 } else { 2671 I = J++; 2672 } 2673 } 2674 2675 DEBUG({ 2676 size_t numCmps = 0; 2677 for (auto &I : Cases) 2678 // A range counts double, since it requires two compares. 2679 numCmps += I.Low != I.High ? 2 : 1; 2680 2681 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2682 << ". Total compares: " << numCmps << '\n'; 2683 }); 2684 } 2685 2686 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2687 MachineBasicBlock *Last) { 2688 // Update JTCases. 2689 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2690 if (JTCases[i].first.HeaderBB == First) 2691 JTCases[i].first.HeaderBB = Last; 2692 2693 // Update BitTestCases. 2694 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2695 if (BitTestCases[i].Parent == First) 2696 BitTestCases[i].Parent = Last; 2697 } 2698 2699 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2700 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2701 2702 // Figure out which block is immediately after the current one. 2703 MachineBasicBlock *NextBlock = nullptr; 2704 if (SwitchMBB + 1 != FuncInfo.MF->end()) 2705 NextBlock = SwitchMBB + 1; 2706 2707 2708 // Create a vector of Cases, sorted so that we can efficiently create a binary 2709 // search tree from them. 2710 CaseVector Cases; 2711 Clusterify(Cases, SI); 2712 2713 // Get the default destination MBB. 2714 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2715 2716 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2717 !Cases.empty()) { 2718 // Replace an unreachable default destination with the most popular case 2719 // destination. 2720 DenseMap<const BasicBlock *, unsigned> Popularity; 2721 unsigned MaxPop = 0; 2722 const BasicBlock *MaxBB = nullptr; 2723 for (auto I : SI.cases()) { 2724 const BasicBlock *BB = I.getCaseSuccessor(); 2725 if (++Popularity[BB] > MaxPop) { 2726 MaxPop = Popularity[BB]; 2727 MaxBB = BB; 2728 } 2729 } 2730 2731 // Set new default. 2732 assert(MaxPop > 0); 2733 assert(MaxBB); 2734 Default = FuncInfo.MBBMap[MaxBB]; 2735 2736 // Remove cases that were pointing to the destination that is now the default. 2737 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2738 [&](const Case &C) { return C.BB == Default; }), 2739 Cases.end()); 2740 } 2741 2742 // If there is only the default destination, go there directly. 2743 if (Cases.empty()) { 2744 // Update machine-CFG edges. 2745 SwitchMBB->addSuccessor(Default); 2746 2747 // If this is not a fall-through branch, emit the branch. 2748 if (Default != NextBlock) { 2749 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2750 getControlRoot(), DAG.getBasicBlock(Default))); 2751 } 2752 return; 2753 } 2754 2755 // Get the Value to be switched on. 2756 const Value *SV = SI.getCondition(); 2757 2758 // Push the initial CaseRec onto the worklist 2759 CaseRecVector WorkList; 2760 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2761 CaseRange(Cases.begin(),Cases.end()))); 2762 2763 while (!WorkList.empty()) { 2764 // Grab a record representing a case range to process off the worklist 2765 CaseRec CR = WorkList.back(); 2766 WorkList.pop_back(); 2767 2768 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2769 continue; 2770 2771 // If the range has few cases (two or less) emit a series of specific 2772 // tests. 2773 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2774 continue; 2775 2776 // If the switch has more than N blocks, and is at least 40% dense, and the 2777 // target supports indirect branches, then emit a jump table rather than 2778 // lowering the switch to a binary tree of conditional branches. 2779 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2780 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2781 continue; 2782 2783 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2784 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2785 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2786 } 2787 } 2788 2789 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2790 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2791 2792 // Update machine-CFG edges with unique successors. 2793 SmallSet<BasicBlock*, 32> Done; 2794 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2795 BasicBlock *BB = I.getSuccessor(i); 2796 bool Inserted = Done.insert(BB).second; 2797 if (!Inserted) 2798 continue; 2799 2800 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2801 addSuccessorWithWeight(IndirectBrMBB, Succ); 2802 } 2803 2804 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2805 MVT::Other, getControlRoot(), 2806 getValue(I.getAddress()))); 2807 } 2808 2809 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2810 if (DAG.getTarget().Options.TrapUnreachable) 2811 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2812 } 2813 2814 void SelectionDAGBuilder::visitFSub(const User &I) { 2815 // -0.0 - X --> fneg 2816 Type *Ty = I.getType(); 2817 if (isa<Constant>(I.getOperand(0)) && 2818 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2819 SDValue Op2 = getValue(I.getOperand(1)); 2820 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2821 Op2.getValueType(), Op2)); 2822 return; 2823 } 2824 2825 visitBinary(I, ISD::FSUB); 2826 } 2827 2828 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2829 SDValue Op1 = getValue(I.getOperand(0)); 2830 SDValue Op2 = getValue(I.getOperand(1)); 2831 2832 bool nuw = false; 2833 bool nsw = false; 2834 bool exact = false; 2835 if (const OverflowingBinaryOperator *OFBinOp = 2836 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2837 nuw = OFBinOp->hasNoUnsignedWrap(); 2838 nsw = OFBinOp->hasNoSignedWrap(); 2839 } 2840 if (const PossiblyExactOperator *ExactOp = 2841 dyn_cast<const PossiblyExactOperator>(&I)) 2842 exact = ExactOp->isExact(); 2843 2844 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2845 Op1, Op2, nuw, nsw, exact); 2846 setValue(&I, BinNodeValue); 2847 } 2848 2849 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2850 SDValue Op1 = getValue(I.getOperand(0)); 2851 SDValue Op2 = getValue(I.getOperand(1)); 2852 2853 EVT ShiftTy = 2854 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2855 2856 // Coerce the shift amount to the right type if we can. 2857 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2858 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2859 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2860 SDLoc DL = getCurSDLoc(); 2861 2862 // If the operand is smaller than the shift count type, promote it. 2863 if (ShiftSize > Op2Size) 2864 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2865 2866 // If the operand is larger than the shift count type but the shift 2867 // count type has enough bits to represent any shift value, truncate 2868 // it now. This is a common case and it exposes the truncate to 2869 // optimization early. 2870 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2871 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2872 // Otherwise we'll need to temporarily settle for some other convenient 2873 // type. Type legalization will make adjustments once the shiftee is split. 2874 else 2875 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2876 } 2877 2878 bool nuw = false; 2879 bool nsw = false; 2880 bool exact = false; 2881 2882 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2883 2884 if (const OverflowingBinaryOperator *OFBinOp = 2885 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2886 nuw = OFBinOp->hasNoUnsignedWrap(); 2887 nsw = OFBinOp->hasNoSignedWrap(); 2888 } 2889 if (const PossiblyExactOperator *ExactOp = 2890 dyn_cast<const PossiblyExactOperator>(&I)) 2891 exact = ExactOp->isExact(); 2892 } 2893 2894 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2895 nuw, nsw, exact); 2896 setValue(&I, Res); 2897 } 2898 2899 void SelectionDAGBuilder::visitSDiv(const User &I) { 2900 SDValue Op1 = getValue(I.getOperand(0)); 2901 SDValue Op2 = getValue(I.getOperand(1)); 2902 2903 // Turn exact SDivs into multiplications. 2904 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2905 // exact bit. 2906 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2907 !isa<ConstantSDNode>(Op1) && 2908 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2909 setValue(&I, DAG.getTargetLoweringInfo() 2910 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2911 else 2912 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2913 Op1, Op2)); 2914 } 2915 2916 void SelectionDAGBuilder::visitICmp(const User &I) { 2917 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2918 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2919 predicate = IC->getPredicate(); 2920 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2921 predicate = ICmpInst::Predicate(IC->getPredicate()); 2922 SDValue Op1 = getValue(I.getOperand(0)); 2923 SDValue Op2 = getValue(I.getOperand(1)); 2924 ISD::CondCode Opcode = getICmpCondCode(predicate); 2925 2926 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2927 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2928 } 2929 2930 void SelectionDAGBuilder::visitFCmp(const User &I) { 2931 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2932 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2933 predicate = FC->getPredicate(); 2934 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2935 predicate = FCmpInst::Predicate(FC->getPredicate()); 2936 SDValue Op1 = getValue(I.getOperand(0)); 2937 SDValue Op2 = getValue(I.getOperand(1)); 2938 ISD::CondCode Condition = getFCmpCondCode(predicate); 2939 if (TM.Options.NoNaNsFPMath) 2940 Condition = getFCmpCodeWithoutNaN(Condition); 2941 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2942 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2943 } 2944 2945 void SelectionDAGBuilder::visitSelect(const User &I) { 2946 SmallVector<EVT, 4> ValueVTs; 2947 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2948 unsigned NumValues = ValueVTs.size(); 2949 if (NumValues == 0) return; 2950 2951 SmallVector<SDValue, 4> Values(NumValues); 2952 SDValue Cond = getValue(I.getOperand(0)); 2953 SDValue TrueVal = getValue(I.getOperand(1)); 2954 SDValue FalseVal = getValue(I.getOperand(2)); 2955 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2956 ISD::VSELECT : ISD::SELECT; 2957 2958 for (unsigned i = 0; i != NumValues; ++i) 2959 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2960 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2961 Cond, 2962 SDValue(TrueVal.getNode(), 2963 TrueVal.getResNo() + i), 2964 SDValue(FalseVal.getNode(), 2965 FalseVal.getResNo() + i)); 2966 2967 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2968 DAG.getVTList(ValueVTs), Values)); 2969 } 2970 2971 void SelectionDAGBuilder::visitTrunc(const User &I) { 2972 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2973 SDValue N = getValue(I.getOperand(0)); 2974 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2975 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2976 } 2977 2978 void SelectionDAGBuilder::visitZExt(const User &I) { 2979 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2980 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2981 SDValue N = getValue(I.getOperand(0)); 2982 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2983 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2984 } 2985 2986 void SelectionDAGBuilder::visitSExt(const User &I) { 2987 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2988 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2989 SDValue N = getValue(I.getOperand(0)); 2990 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2991 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2992 } 2993 2994 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2995 // FPTrunc is never a no-op cast, no need to check 2996 SDValue N = getValue(I.getOperand(0)); 2997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2998 EVT DestVT = TLI.getValueType(I.getType()); 2999 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 3000 DAG.getTargetConstant(0, TLI.getPointerTy()))); 3001 } 3002 3003 void SelectionDAGBuilder::visitFPExt(const User &I) { 3004 // FPExt is never a no-op cast, no need to check 3005 SDValue N = getValue(I.getOperand(0)); 3006 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3007 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3008 } 3009 3010 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3011 // FPToUI is never a no-op cast, no need to check 3012 SDValue N = getValue(I.getOperand(0)); 3013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3014 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3015 } 3016 3017 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3018 // FPToSI is never a no-op cast, no need to check 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3021 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3022 } 3023 3024 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3025 // UIToFP is never a no-op cast, no need to check 3026 SDValue N = getValue(I.getOperand(0)); 3027 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3028 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3029 } 3030 3031 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3032 // SIToFP is never a no-op cast, no need to check 3033 SDValue N = getValue(I.getOperand(0)); 3034 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3035 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3036 } 3037 3038 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3039 // What to do depends on the size of the integer and the size of the pointer. 3040 // We can either truncate, zero extend, or no-op, accordingly. 3041 SDValue N = getValue(I.getOperand(0)); 3042 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3043 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3044 } 3045 3046 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3047 // What to do depends on the size of the integer and the size of the pointer. 3048 // We can either truncate, zero extend, or no-op, accordingly. 3049 SDValue N = getValue(I.getOperand(0)); 3050 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3051 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3052 } 3053 3054 void SelectionDAGBuilder::visitBitCast(const User &I) { 3055 SDValue N = getValue(I.getOperand(0)); 3056 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3057 3058 // BitCast assures us that source and destination are the same size so this is 3059 // either a BITCAST or a no-op. 3060 if (DestVT != N.getValueType()) 3061 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3062 DestVT, N)); // convert types. 3063 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3064 // might fold any kind of constant expression to an integer constant and that 3065 // is not what we are looking for. Only regcognize a bitcast of a genuine 3066 // constant integer as an opaque constant. 3067 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3068 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3069 /*isOpaque*/true)); 3070 else 3071 setValue(&I, N); // noop cast. 3072 } 3073 3074 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3075 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3076 const Value *SV = I.getOperand(0); 3077 SDValue N = getValue(SV); 3078 EVT DestVT = TLI.getValueType(I.getType()); 3079 3080 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3081 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3082 3083 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3084 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3085 3086 setValue(&I, N); 3087 } 3088 3089 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3091 SDValue InVec = getValue(I.getOperand(0)); 3092 SDValue InVal = getValue(I.getOperand(1)); 3093 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3094 getCurSDLoc(), TLI.getVectorIdxTy()); 3095 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3096 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3097 } 3098 3099 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3101 SDValue InVec = getValue(I.getOperand(0)); 3102 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3103 getCurSDLoc(), TLI.getVectorIdxTy()); 3104 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3105 TLI.getValueType(I.getType()), InVec, InIdx)); 3106 } 3107 3108 // Utility for visitShuffleVector - Return true if every element in Mask, 3109 // beginning from position Pos and ending in Pos+Size, falls within the 3110 // specified sequential range [L, L+Pos). or is undef. 3111 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3112 unsigned Pos, unsigned Size, int Low) { 3113 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3114 if (Mask[i] >= 0 && Mask[i] != Low) 3115 return false; 3116 return true; 3117 } 3118 3119 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3120 SDValue Src1 = getValue(I.getOperand(0)); 3121 SDValue Src2 = getValue(I.getOperand(1)); 3122 3123 SmallVector<int, 8> Mask; 3124 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3125 unsigned MaskNumElts = Mask.size(); 3126 3127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3128 EVT VT = TLI.getValueType(I.getType()); 3129 EVT SrcVT = Src1.getValueType(); 3130 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3131 3132 if (SrcNumElts == MaskNumElts) { 3133 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3134 &Mask[0])); 3135 return; 3136 } 3137 3138 // Normalize the shuffle vector since mask and vector length don't match. 3139 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3140 // Mask is longer than the source vectors and is a multiple of the source 3141 // vectors. We can use concatenate vector to make the mask and vectors 3142 // lengths match. 3143 if (SrcNumElts*2 == MaskNumElts) { 3144 // First check for Src1 in low and Src2 in high 3145 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3146 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3147 // The shuffle is concatenating two vectors together. 3148 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3149 VT, Src1, Src2)); 3150 return; 3151 } 3152 // Then check for Src2 in low and Src1 in high 3153 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3154 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3155 // The shuffle is concatenating two vectors together. 3156 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3157 VT, Src2, Src1)); 3158 return; 3159 } 3160 } 3161 3162 // Pad both vectors with undefs to make them the same length as the mask. 3163 unsigned NumConcat = MaskNumElts / SrcNumElts; 3164 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3165 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3166 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3167 3168 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3169 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3170 MOps1[0] = Src1; 3171 MOps2[0] = Src2; 3172 3173 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3174 getCurSDLoc(), VT, MOps1); 3175 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3176 getCurSDLoc(), VT, MOps2); 3177 3178 // Readjust mask for new input vector length. 3179 SmallVector<int, 8> MappedOps; 3180 for (unsigned i = 0; i != MaskNumElts; ++i) { 3181 int Idx = Mask[i]; 3182 if (Idx >= (int)SrcNumElts) 3183 Idx -= SrcNumElts - MaskNumElts; 3184 MappedOps.push_back(Idx); 3185 } 3186 3187 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3188 &MappedOps[0])); 3189 return; 3190 } 3191 3192 if (SrcNumElts > MaskNumElts) { 3193 // Analyze the access pattern of the vector to see if we can extract 3194 // two subvectors and do the shuffle. The analysis is done by calculating 3195 // the range of elements the mask access on both vectors. 3196 int MinRange[2] = { static_cast<int>(SrcNumElts), 3197 static_cast<int>(SrcNumElts)}; 3198 int MaxRange[2] = {-1, -1}; 3199 3200 for (unsigned i = 0; i != MaskNumElts; ++i) { 3201 int Idx = Mask[i]; 3202 unsigned Input = 0; 3203 if (Idx < 0) 3204 continue; 3205 3206 if (Idx >= (int)SrcNumElts) { 3207 Input = 1; 3208 Idx -= SrcNumElts; 3209 } 3210 if (Idx > MaxRange[Input]) 3211 MaxRange[Input] = Idx; 3212 if (Idx < MinRange[Input]) 3213 MinRange[Input] = Idx; 3214 } 3215 3216 // Check if the access is smaller than the vector size and can we find 3217 // a reasonable extract index. 3218 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3219 // Extract. 3220 int StartIdx[2]; // StartIdx to extract from 3221 for (unsigned Input = 0; Input < 2; ++Input) { 3222 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3223 RangeUse[Input] = 0; // Unused 3224 StartIdx[Input] = 0; 3225 continue; 3226 } 3227 3228 // Find a good start index that is a multiple of the mask length. Then 3229 // see if the rest of the elements are in range. 3230 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3231 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3232 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3233 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3234 } 3235 3236 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3237 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3238 return; 3239 } 3240 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3241 // Extract appropriate subvector and generate a vector shuffle 3242 for (unsigned Input = 0; Input < 2; ++Input) { 3243 SDValue &Src = Input == 0 ? Src1 : Src2; 3244 if (RangeUse[Input] == 0) 3245 Src = DAG.getUNDEF(VT); 3246 else 3247 Src = DAG.getNode( 3248 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3249 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3250 } 3251 3252 // Calculate new mask. 3253 SmallVector<int, 8> MappedOps; 3254 for (unsigned i = 0; i != MaskNumElts; ++i) { 3255 int Idx = Mask[i]; 3256 if (Idx >= 0) { 3257 if (Idx < (int)SrcNumElts) 3258 Idx -= StartIdx[0]; 3259 else 3260 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3261 } 3262 MappedOps.push_back(Idx); 3263 } 3264 3265 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3266 &MappedOps[0])); 3267 return; 3268 } 3269 } 3270 3271 // We can't use either concat vectors or extract subvectors so fall back to 3272 // replacing the shuffle with extract and build vector. 3273 // to insert and build vector. 3274 EVT EltVT = VT.getVectorElementType(); 3275 EVT IdxVT = TLI.getVectorIdxTy(); 3276 SmallVector<SDValue,8> Ops; 3277 for (unsigned i = 0; i != MaskNumElts; ++i) { 3278 int Idx = Mask[i]; 3279 SDValue Res; 3280 3281 if (Idx < 0) { 3282 Res = DAG.getUNDEF(EltVT); 3283 } else { 3284 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3285 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3286 3287 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3288 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3289 } 3290 3291 Ops.push_back(Res); 3292 } 3293 3294 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3295 } 3296 3297 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3298 const Value *Op0 = I.getOperand(0); 3299 const Value *Op1 = I.getOperand(1); 3300 Type *AggTy = I.getType(); 3301 Type *ValTy = Op1->getType(); 3302 bool IntoUndef = isa<UndefValue>(Op0); 3303 bool FromUndef = isa<UndefValue>(Op1); 3304 3305 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3306 3307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3308 SmallVector<EVT, 4> AggValueVTs; 3309 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3310 SmallVector<EVT, 4> ValValueVTs; 3311 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3312 3313 unsigned NumAggValues = AggValueVTs.size(); 3314 unsigned NumValValues = ValValueVTs.size(); 3315 SmallVector<SDValue, 4> Values(NumAggValues); 3316 3317 // Ignore an insertvalue that produces an empty object 3318 if (!NumAggValues) { 3319 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3320 return; 3321 } 3322 3323 SDValue Agg = getValue(Op0); 3324 unsigned i = 0; 3325 // Copy the beginning value(s) from the original aggregate. 3326 for (; i != LinearIndex; ++i) 3327 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3328 SDValue(Agg.getNode(), Agg.getResNo() + i); 3329 // Copy values from the inserted value(s). 3330 if (NumValValues) { 3331 SDValue Val = getValue(Op1); 3332 for (; i != LinearIndex + NumValValues; ++i) 3333 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3334 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3335 } 3336 // Copy remaining value(s) from the original aggregate. 3337 for (; i != NumAggValues; ++i) 3338 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3339 SDValue(Agg.getNode(), Agg.getResNo() + i); 3340 3341 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3342 DAG.getVTList(AggValueVTs), Values)); 3343 } 3344 3345 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3346 const Value *Op0 = I.getOperand(0); 3347 Type *AggTy = Op0->getType(); 3348 Type *ValTy = I.getType(); 3349 bool OutOfUndef = isa<UndefValue>(Op0); 3350 3351 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3352 3353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3354 SmallVector<EVT, 4> ValValueVTs; 3355 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3356 3357 unsigned NumValValues = ValValueVTs.size(); 3358 3359 // Ignore a extractvalue that produces an empty object 3360 if (!NumValValues) { 3361 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3362 return; 3363 } 3364 3365 SmallVector<SDValue, 4> Values(NumValValues); 3366 3367 SDValue Agg = getValue(Op0); 3368 // Copy out the selected value(s). 3369 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3370 Values[i - LinearIndex] = 3371 OutOfUndef ? 3372 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3373 SDValue(Agg.getNode(), Agg.getResNo() + i); 3374 3375 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3376 DAG.getVTList(ValValueVTs), Values)); 3377 } 3378 3379 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3380 Value *Op0 = I.getOperand(0); 3381 // Note that the pointer operand may be a vector of pointers. Take the scalar 3382 // element which holds a pointer. 3383 Type *Ty = Op0->getType()->getScalarType(); 3384 unsigned AS = Ty->getPointerAddressSpace(); 3385 SDValue N = getValue(Op0); 3386 3387 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3388 OI != E; ++OI) { 3389 const Value *Idx = *OI; 3390 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3391 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3392 if (Field) { 3393 // N = N + Offset 3394 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3395 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3396 DAG.getConstant(Offset, N.getValueType())); 3397 } 3398 3399 Ty = StTy->getElementType(Field); 3400 } else { 3401 Ty = cast<SequentialType>(Ty)->getElementType(); 3402 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 3403 unsigned PtrSize = PtrTy.getSizeInBits(); 3404 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3405 3406 // If this is a constant subscript, handle it quickly. 3407 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 3408 if (CI->isZero()) 3409 continue; 3410 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3411 SDValue OffsVal = DAG.getConstant(Offs, PtrTy); 3412 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); 3413 continue; 3414 } 3415 3416 // N = N + Idx * ElementSize; 3417 SDValue IdxN = getValue(Idx); 3418 3419 // If the index is smaller or larger than intptr_t, truncate or extend 3420 // it. 3421 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3422 3423 // If this is a multiply by a power of two, turn it into a shl 3424 // immediately. This is a very common case. 3425 if (ElementSize != 1) { 3426 if (ElementSize.isPowerOf2()) { 3427 unsigned Amt = ElementSize.logBase2(); 3428 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3429 N.getValueType(), IdxN, 3430 DAG.getConstant(Amt, IdxN.getValueType())); 3431 } else { 3432 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3433 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3434 N.getValueType(), IdxN, Scale); 3435 } 3436 } 3437 3438 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3439 N.getValueType(), N, IdxN); 3440 } 3441 } 3442 3443 setValue(&I, N); 3444 } 3445 3446 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3447 // If this is a fixed sized alloca in the entry block of the function, 3448 // allocate it statically on the stack. 3449 if (FuncInfo.StaticAllocaMap.count(&I)) 3450 return; // getValue will auto-populate this. 3451 3452 Type *Ty = I.getAllocatedType(); 3453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3454 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3455 unsigned Align = 3456 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3457 I.getAlignment()); 3458 3459 SDValue AllocSize = getValue(I.getArraySize()); 3460 3461 EVT IntPtr = TLI.getPointerTy(); 3462 if (AllocSize.getValueType() != IntPtr) 3463 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3464 3465 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3466 AllocSize, 3467 DAG.getConstant(TySize, IntPtr)); 3468 3469 // Handle alignment. If the requested alignment is less than or equal to 3470 // the stack alignment, ignore it. If the size is greater than or equal to 3471 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3472 unsigned StackAlign = 3473 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3474 if (Align <= StackAlign) 3475 Align = 0; 3476 3477 // Round the size of the allocation up to the stack alignment size 3478 // by add SA-1 to the size. 3479 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3480 AllocSize.getValueType(), AllocSize, 3481 DAG.getIntPtrConstant(StackAlign-1)); 3482 3483 // Mask out the low bits for alignment purposes. 3484 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3485 AllocSize.getValueType(), AllocSize, 3486 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3487 3488 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3489 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3490 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3491 setValue(&I, DSA); 3492 DAG.setRoot(DSA.getValue(1)); 3493 3494 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3495 } 3496 3497 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3498 if (I.isAtomic()) 3499 return visitAtomicLoad(I); 3500 3501 const Value *SV = I.getOperand(0); 3502 SDValue Ptr = getValue(SV); 3503 3504 Type *Ty = I.getType(); 3505 3506 bool isVolatile = I.isVolatile(); 3507 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3508 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3509 unsigned Alignment = I.getAlignment(); 3510 3511 AAMDNodes AAInfo; 3512 I.getAAMetadata(AAInfo); 3513 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3514 3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3516 SmallVector<EVT, 4> ValueVTs; 3517 SmallVector<uint64_t, 4> Offsets; 3518 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3519 unsigned NumValues = ValueVTs.size(); 3520 if (NumValues == 0) 3521 return; 3522 3523 SDValue Root; 3524 bool ConstantMemory = false; 3525 if (isVolatile || NumValues > MaxParallelChains) 3526 // Serialize volatile loads with other side effects. 3527 Root = getRoot(); 3528 else if (AA->pointsToConstantMemory( 3529 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3530 // Do not serialize (non-volatile) loads of constant memory with anything. 3531 Root = DAG.getEntryNode(); 3532 ConstantMemory = true; 3533 } else { 3534 // Do not serialize non-volatile loads against each other. 3535 Root = DAG.getRoot(); 3536 } 3537 3538 if (isVolatile) 3539 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3540 3541 SmallVector<SDValue, 4> Values(NumValues); 3542 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3543 NumValues)); 3544 EVT PtrVT = Ptr.getValueType(); 3545 unsigned ChainI = 0; 3546 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3547 // Serializing loads here may result in excessive register pressure, and 3548 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3549 // could recover a bit by hoisting nodes upward in the chain by recognizing 3550 // they are side-effect free or do not alias. The optimizer should really 3551 // avoid this case by converting large object/array copies to llvm.memcpy 3552 // (MaxParallelChains should always remain as failsafe). 3553 if (ChainI == MaxParallelChains) { 3554 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3555 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3556 makeArrayRef(Chains.data(), ChainI)); 3557 Root = Chain; 3558 ChainI = 0; 3559 } 3560 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3561 PtrVT, Ptr, 3562 DAG.getConstant(Offsets[i], PtrVT)); 3563 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3564 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3565 isNonTemporal, isInvariant, Alignment, AAInfo, 3566 Ranges); 3567 3568 Values[i] = L; 3569 Chains[ChainI] = L.getValue(1); 3570 } 3571 3572 if (!ConstantMemory) { 3573 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3574 makeArrayRef(Chains.data(), ChainI)); 3575 if (isVolatile) 3576 DAG.setRoot(Chain); 3577 else 3578 PendingLoads.push_back(Chain); 3579 } 3580 3581 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3582 DAG.getVTList(ValueVTs), Values)); 3583 } 3584 3585 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3586 if (I.isAtomic()) 3587 return visitAtomicStore(I); 3588 3589 const Value *SrcV = I.getOperand(0); 3590 const Value *PtrV = I.getOperand(1); 3591 3592 SmallVector<EVT, 4> ValueVTs; 3593 SmallVector<uint64_t, 4> Offsets; 3594 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3595 ValueVTs, &Offsets); 3596 unsigned NumValues = ValueVTs.size(); 3597 if (NumValues == 0) 3598 return; 3599 3600 // Get the lowered operands. Note that we do this after 3601 // checking if NumResults is zero, because with zero results 3602 // the operands won't have values in the map. 3603 SDValue Src = getValue(SrcV); 3604 SDValue Ptr = getValue(PtrV); 3605 3606 SDValue Root = getRoot(); 3607 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3608 NumValues)); 3609 EVT PtrVT = Ptr.getValueType(); 3610 bool isVolatile = I.isVolatile(); 3611 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3612 unsigned Alignment = I.getAlignment(); 3613 3614 AAMDNodes AAInfo; 3615 I.getAAMetadata(AAInfo); 3616 3617 unsigned ChainI = 0; 3618 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3619 // See visitLoad comments. 3620 if (ChainI == MaxParallelChains) { 3621 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3622 makeArrayRef(Chains.data(), ChainI)); 3623 Root = Chain; 3624 ChainI = 0; 3625 } 3626 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3627 DAG.getConstant(Offsets[i], PtrVT)); 3628 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3629 SDValue(Src.getNode(), Src.getResNo() + i), 3630 Add, MachinePointerInfo(PtrV, Offsets[i]), 3631 isVolatile, isNonTemporal, Alignment, AAInfo); 3632 Chains[ChainI] = St; 3633 } 3634 3635 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3636 makeArrayRef(Chains.data(), ChainI)); 3637 DAG.setRoot(StoreNode); 3638 } 3639 3640 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3641 SDLoc sdl = getCurSDLoc(); 3642 3643 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3644 Value *PtrOperand = I.getArgOperand(1); 3645 SDValue Ptr = getValue(PtrOperand); 3646 SDValue Src0 = getValue(I.getArgOperand(0)); 3647 SDValue Mask = getValue(I.getArgOperand(3)); 3648 EVT VT = Src0.getValueType(); 3649 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3650 if (!Alignment) 3651 Alignment = DAG.getEVTAlignment(VT); 3652 3653 AAMDNodes AAInfo; 3654 I.getAAMetadata(AAInfo); 3655 3656 MachineMemOperand *MMO = 3657 DAG.getMachineFunction(). 3658 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3659 MachineMemOperand::MOStore, VT.getStoreSize(), 3660 Alignment, AAInfo); 3661 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3662 MMO, false); 3663 DAG.setRoot(StoreNode); 3664 setValue(&I, StoreNode); 3665 } 3666 3667 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3668 SDLoc sdl = getCurSDLoc(); 3669 3670 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3671 Value *PtrOperand = I.getArgOperand(0); 3672 SDValue Ptr = getValue(PtrOperand); 3673 SDValue Src0 = getValue(I.getArgOperand(3)); 3674 SDValue Mask = getValue(I.getArgOperand(2)); 3675 3676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3677 EVT VT = TLI.getValueType(I.getType()); 3678 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3679 if (!Alignment) 3680 Alignment = DAG.getEVTAlignment(VT); 3681 3682 AAMDNodes AAInfo; 3683 I.getAAMetadata(AAInfo); 3684 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3685 3686 SDValue InChain = DAG.getRoot(); 3687 if (AA->pointsToConstantMemory( 3688 AliasAnalysis::Location(PtrOperand, 3689 AA->getTypeStoreSize(I.getType()), 3690 AAInfo))) { 3691 // Do not serialize (non-volatile) loads of constant memory with anything. 3692 InChain = DAG.getEntryNode(); 3693 } 3694 3695 MachineMemOperand *MMO = 3696 DAG.getMachineFunction(). 3697 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3698 MachineMemOperand::MOLoad, VT.getStoreSize(), 3699 Alignment, AAInfo, Ranges); 3700 3701 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3702 ISD::NON_EXTLOAD); 3703 SDValue OutChain = Load.getValue(1); 3704 DAG.setRoot(OutChain); 3705 setValue(&I, Load); 3706 } 3707 3708 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3709 SDLoc dl = getCurSDLoc(); 3710 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3711 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3712 SynchronizationScope Scope = I.getSynchScope(); 3713 3714 SDValue InChain = getRoot(); 3715 3716 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3717 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3718 SDValue L = DAG.getAtomicCmpSwap( 3719 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3720 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3721 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3722 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3723 3724 SDValue OutChain = L.getValue(2); 3725 3726 setValue(&I, L); 3727 DAG.setRoot(OutChain); 3728 } 3729 3730 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3731 SDLoc dl = getCurSDLoc(); 3732 ISD::NodeType NT; 3733 switch (I.getOperation()) { 3734 default: llvm_unreachable("Unknown atomicrmw operation"); 3735 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3736 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3737 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3738 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3739 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3740 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3741 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3742 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3743 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3744 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3745 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3746 } 3747 AtomicOrdering Order = I.getOrdering(); 3748 SynchronizationScope Scope = I.getSynchScope(); 3749 3750 SDValue InChain = getRoot(); 3751 3752 SDValue L = 3753 DAG.getAtomic(NT, dl, 3754 getValue(I.getValOperand()).getSimpleValueType(), 3755 InChain, 3756 getValue(I.getPointerOperand()), 3757 getValue(I.getValOperand()), 3758 I.getPointerOperand(), 3759 /* Alignment=*/ 0, Order, Scope); 3760 3761 SDValue OutChain = L.getValue(1); 3762 3763 setValue(&I, L); 3764 DAG.setRoot(OutChain); 3765 } 3766 3767 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3768 SDLoc dl = getCurSDLoc(); 3769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3770 SDValue Ops[3]; 3771 Ops[0] = getRoot(); 3772 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3773 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3774 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3775 } 3776 3777 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3778 SDLoc dl = getCurSDLoc(); 3779 AtomicOrdering Order = I.getOrdering(); 3780 SynchronizationScope Scope = I.getSynchScope(); 3781 3782 SDValue InChain = getRoot(); 3783 3784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3785 EVT VT = TLI.getValueType(I.getType()); 3786 3787 if (I.getAlignment() < VT.getSizeInBits() / 8) 3788 report_fatal_error("Cannot generate unaligned atomic load"); 3789 3790 MachineMemOperand *MMO = 3791 DAG.getMachineFunction(). 3792 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3793 MachineMemOperand::MOVolatile | 3794 MachineMemOperand::MOLoad, 3795 VT.getStoreSize(), 3796 I.getAlignment() ? I.getAlignment() : 3797 DAG.getEVTAlignment(VT)); 3798 3799 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3800 SDValue L = 3801 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3802 getValue(I.getPointerOperand()), MMO, 3803 Order, Scope); 3804 3805 SDValue OutChain = L.getValue(1); 3806 3807 setValue(&I, L); 3808 DAG.setRoot(OutChain); 3809 } 3810 3811 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3812 SDLoc dl = getCurSDLoc(); 3813 3814 AtomicOrdering Order = I.getOrdering(); 3815 SynchronizationScope Scope = I.getSynchScope(); 3816 3817 SDValue InChain = getRoot(); 3818 3819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3820 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3821 3822 if (I.getAlignment() < VT.getSizeInBits() / 8) 3823 report_fatal_error("Cannot generate unaligned atomic store"); 3824 3825 SDValue OutChain = 3826 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3827 InChain, 3828 getValue(I.getPointerOperand()), 3829 getValue(I.getValueOperand()), 3830 I.getPointerOperand(), I.getAlignment(), 3831 Order, Scope); 3832 3833 DAG.setRoot(OutChain); 3834 } 3835 3836 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3837 /// node. 3838 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3839 unsigned Intrinsic) { 3840 bool HasChain = !I.doesNotAccessMemory(); 3841 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3842 3843 // Build the operand list. 3844 SmallVector<SDValue, 8> Ops; 3845 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3846 if (OnlyLoad) { 3847 // We don't need to serialize loads against other loads. 3848 Ops.push_back(DAG.getRoot()); 3849 } else { 3850 Ops.push_back(getRoot()); 3851 } 3852 } 3853 3854 // Info is set by getTgtMemInstrinsic 3855 TargetLowering::IntrinsicInfo Info; 3856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3857 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3858 3859 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3860 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3861 Info.opc == ISD::INTRINSIC_W_CHAIN) 3862 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3863 3864 // Add all operands of the call to the operand list. 3865 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3866 SDValue Op = getValue(I.getArgOperand(i)); 3867 Ops.push_back(Op); 3868 } 3869 3870 SmallVector<EVT, 4> ValueVTs; 3871 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3872 3873 if (HasChain) 3874 ValueVTs.push_back(MVT::Other); 3875 3876 SDVTList VTs = DAG.getVTList(ValueVTs); 3877 3878 // Create the node. 3879 SDValue Result; 3880 if (IsTgtIntrinsic) { 3881 // This is target intrinsic that touches memory 3882 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3883 VTs, Ops, Info.memVT, 3884 MachinePointerInfo(Info.ptrVal, Info.offset), 3885 Info.align, Info.vol, 3886 Info.readMem, Info.writeMem, Info.size); 3887 } else if (!HasChain) { 3888 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3889 } else if (!I.getType()->isVoidTy()) { 3890 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3891 } else { 3892 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3893 } 3894 3895 if (HasChain) { 3896 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3897 if (OnlyLoad) 3898 PendingLoads.push_back(Chain); 3899 else 3900 DAG.setRoot(Chain); 3901 } 3902 3903 if (!I.getType()->isVoidTy()) { 3904 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3905 EVT VT = TLI.getValueType(PTy); 3906 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3907 } 3908 3909 setValue(&I, Result); 3910 } 3911 } 3912 3913 /// GetSignificand - Get the significand and build it into a floating-point 3914 /// number with exponent of 1: 3915 /// 3916 /// Op = (Op & 0x007fffff) | 0x3f800000; 3917 /// 3918 /// where Op is the hexadecimal representation of floating point value. 3919 static SDValue 3920 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3921 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3922 DAG.getConstant(0x007fffff, MVT::i32)); 3923 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3924 DAG.getConstant(0x3f800000, MVT::i32)); 3925 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3926 } 3927 3928 /// GetExponent - Get the exponent: 3929 /// 3930 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3931 /// 3932 /// where Op is the hexadecimal representation of floating point value. 3933 static SDValue 3934 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3935 SDLoc dl) { 3936 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3937 DAG.getConstant(0x7f800000, MVT::i32)); 3938 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3939 DAG.getConstant(23, TLI.getPointerTy())); 3940 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3941 DAG.getConstant(127, MVT::i32)); 3942 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3943 } 3944 3945 /// getF32Constant - Get 32-bit floating point constant. 3946 static SDValue 3947 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3948 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3949 MVT::f32); 3950 } 3951 3952 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3953 /// limited-precision mode. 3954 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3955 const TargetLowering &TLI) { 3956 if (Op.getValueType() == MVT::f32 && 3957 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3958 3959 // Put the exponent in the right bit position for later addition to the 3960 // final result: 3961 // 3962 // #define LOG2OFe 1.4426950f 3963 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3964 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3965 getF32Constant(DAG, 0x3fb8aa3b)); 3966 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3967 3968 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3969 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3970 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3971 3972 // IntegerPartOfX <<= 23; 3973 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3974 DAG.getConstant(23, TLI.getPointerTy())); 3975 3976 SDValue TwoToFracPartOfX; 3977 if (LimitFloatPrecision <= 6) { 3978 // For floating-point precision of 6: 3979 // 3980 // TwoToFractionalPartOfX = 3981 // 0.997535578f + 3982 // (0.735607626f + 0.252464424f * x) * x; 3983 // 3984 // error 0.0144103317, which is 6 bits 3985 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3986 getF32Constant(DAG, 0x3e814304)); 3987 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3988 getF32Constant(DAG, 0x3f3c50c8)); 3989 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3990 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3991 getF32Constant(DAG, 0x3f7f5e7e)); 3992 } else if (LimitFloatPrecision <= 12) { 3993 // For floating-point precision of 12: 3994 // 3995 // TwoToFractionalPartOfX = 3996 // 0.999892986f + 3997 // (0.696457318f + 3998 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3999 // 4000 // 0.000107046256 error, which is 13 to 14 bits 4001 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4002 getF32Constant(DAG, 0x3da235e3)); 4003 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4004 getF32Constant(DAG, 0x3e65b8f3)); 4005 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4006 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4007 getF32Constant(DAG, 0x3f324b07)); 4008 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4009 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4010 getF32Constant(DAG, 0x3f7ff8fd)); 4011 } else { // LimitFloatPrecision <= 18 4012 // For floating-point precision of 18: 4013 // 4014 // TwoToFractionalPartOfX = 4015 // 0.999999982f + 4016 // (0.693148872f + 4017 // (0.240227044f + 4018 // (0.554906021e-1f + 4019 // (0.961591928e-2f + 4020 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4021 // 4022 // error 2.47208000*10^(-7), which is better than 18 bits 4023 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4024 getF32Constant(DAG, 0x3924b03e)); 4025 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4026 getF32Constant(DAG, 0x3ab24b87)); 4027 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4028 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4029 getF32Constant(DAG, 0x3c1d8c17)); 4030 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4031 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4032 getF32Constant(DAG, 0x3d634a1d)); 4033 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4034 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4035 getF32Constant(DAG, 0x3e75fe14)); 4036 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4037 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4038 getF32Constant(DAG, 0x3f317234)); 4039 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4040 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4041 getF32Constant(DAG, 0x3f800000)); 4042 } 4043 4044 // Add the exponent into the result in integer domain. 4045 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4046 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4047 DAG.getNode(ISD::ADD, dl, MVT::i32, 4048 t13, IntegerPartOfX)); 4049 } 4050 4051 // No special expansion. 4052 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4053 } 4054 4055 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4056 /// limited-precision mode. 4057 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4058 const TargetLowering &TLI) { 4059 if (Op.getValueType() == MVT::f32 && 4060 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4061 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4062 4063 // Scale the exponent by log(2) [0.69314718f]. 4064 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4065 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4066 getF32Constant(DAG, 0x3f317218)); 4067 4068 // Get the significand and build it into a floating-point number with 4069 // exponent of 1. 4070 SDValue X = GetSignificand(DAG, Op1, dl); 4071 4072 SDValue LogOfMantissa; 4073 if (LimitFloatPrecision <= 6) { 4074 // For floating-point precision of 6: 4075 // 4076 // LogofMantissa = 4077 // -1.1609546f + 4078 // (1.4034025f - 0.23903021f * x) * x; 4079 // 4080 // error 0.0034276066, which is better than 8 bits 4081 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4082 getF32Constant(DAG, 0xbe74c456)); 4083 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4084 getF32Constant(DAG, 0x3fb3a2b1)); 4085 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4086 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4087 getF32Constant(DAG, 0x3f949a29)); 4088 } else if (LimitFloatPrecision <= 12) { 4089 // For floating-point precision of 12: 4090 // 4091 // LogOfMantissa = 4092 // -1.7417939f + 4093 // (2.8212026f + 4094 // (-1.4699568f + 4095 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4096 // 4097 // error 0.000061011436, which is 14 bits 4098 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4099 getF32Constant(DAG, 0xbd67b6d6)); 4100 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4101 getF32Constant(DAG, 0x3ee4f4b8)); 4102 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4103 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4104 getF32Constant(DAG, 0x3fbc278b)); 4105 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4106 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4107 getF32Constant(DAG, 0x40348e95)); 4108 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4109 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4110 getF32Constant(DAG, 0x3fdef31a)); 4111 } else { // LimitFloatPrecision <= 18 4112 // For floating-point precision of 18: 4113 // 4114 // LogOfMantissa = 4115 // -2.1072184f + 4116 // (4.2372794f + 4117 // (-3.7029485f + 4118 // (2.2781945f + 4119 // (-0.87823314f + 4120 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4121 // 4122 // error 0.0000023660568, which is better than 18 bits 4123 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4124 getF32Constant(DAG, 0xbc91e5ac)); 4125 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4126 getF32Constant(DAG, 0x3e4350aa)); 4127 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4128 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4129 getF32Constant(DAG, 0x3f60d3e3)); 4130 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4131 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4132 getF32Constant(DAG, 0x4011cdf0)); 4133 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4134 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4135 getF32Constant(DAG, 0x406cfd1c)); 4136 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4137 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4138 getF32Constant(DAG, 0x408797cb)); 4139 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4140 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4141 getF32Constant(DAG, 0x4006dcab)); 4142 } 4143 4144 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4145 } 4146 4147 // No special expansion. 4148 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4149 } 4150 4151 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4152 /// limited-precision mode. 4153 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4154 const TargetLowering &TLI) { 4155 if (Op.getValueType() == MVT::f32 && 4156 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4157 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4158 4159 // Get the exponent. 4160 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4161 4162 // Get the significand and build it into a floating-point number with 4163 // exponent of 1. 4164 SDValue X = GetSignificand(DAG, Op1, dl); 4165 4166 // Different possible minimax approximations of significand in 4167 // floating-point for various degrees of accuracy over [1,2]. 4168 SDValue Log2ofMantissa; 4169 if (LimitFloatPrecision <= 6) { 4170 // For floating-point precision of 6: 4171 // 4172 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4173 // 4174 // error 0.0049451742, which is more than 7 bits 4175 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4176 getF32Constant(DAG, 0xbeb08fe0)); 4177 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4178 getF32Constant(DAG, 0x40019463)); 4179 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4180 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4181 getF32Constant(DAG, 0x3fd6633d)); 4182 } else if (LimitFloatPrecision <= 12) { 4183 // For floating-point precision of 12: 4184 // 4185 // Log2ofMantissa = 4186 // -2.51285454f + 4187 // (4.07009056f + 4188 // (-2.12067489f + 4189 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4190 // 4191 // error 0.0000876136000, which is better than 13 bits 4192 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4193 getF32Constant(DAG, 0xbda7262e)); 4194 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4195 getF32Constant(DAG, 0x3f25280b)); 4196 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4197 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4198 getF32Constant(DAG, 0x4007b923)); 4199 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4200 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4201 getF32Constant(DAG, 0x40823e2f)); 4202 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4203 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4204 getF32Constant(DAG, 0x4020d29c)); 4205 } else { // LimitFloatPrecision <= 18 4206 // For floating-point precision of 18: 4207 // 4208 // Log2ofMantissa = 4209 // -3.0400495f + 4210 // (6.1129976f + 4211 // (-5.3420409f + 4212 // (3.2865683f + 4213 // (-1.2669343f + 4214 // (0.27515199f - 4215 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4216 // 4217 // error 0.0000018516, which is better than 18 bits 4218 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4219 getF32Constant(DAG, 0xbcd2769e)); 4220 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4221 getF32Constant(DAG, 0x3e8ce0b9)); 4222 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4223 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4224 getF32Constant(DAG, 0x3fa22ae7)); 4225 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4226 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4227 getF32Constant(DAG, 0x40525723)); 4228 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4229 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4230 getF32Constant(DAG, 0x40aaf200)); 4231 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4232 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4233 getF32Constant(DAG, 0x40c39dad)); 4234 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4235 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4236 getF32Constant(DAG, 0x4042902c)); 4237 } 4238 4239 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4240 } 4241 4242 // No special expansion. 4243 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4244 } 4245 4246 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4247 /// limited-precision mode. 4248 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4249 const TargetLowering &TLI) { 4250 if (Op.getValueType() == MVT::f32 && 4251 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4252 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4253 4254 // Scale the exponent by log10(2) [0.30102999f]. 4255 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4256 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4257 getF32Constant(DAG, 0x3e9a209a)); 4258 4259 // Get the significand and build it into a floating-point number with 4260 // exponent of 1. 4261 SDValue X = GetSignificand(DAG, Op1, dl); 4262 4263 SDValue Log10ofMantissa; 4264 if (LimitFloatPrecision <= 6) { 4265 // For floating-point precision of 6: 4266 // 4267 // Log10ofMantissa = 4268 // -0.50419619f + 4269 // (0.60948995f - 0.10380950f * x) * x; 4270 // 4271 // error 0.0014886165, which is 6 bits 4272 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4273 getF32Constant(DAG, 0xbdd49a13)); 4274 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4275 getF32Constant(DAG, 0x3f1c0789)); 4276 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4277 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4278 getF32Constant(DAG, 0x3f011300)); 4279 } else if (LimitFloatPrecision <= 12) { 4280 // For floating-point precision of 12: 4281 // 4282 // Log10ofMantissa = 4283 // -0.64831180f + 4284 // (0.91751397f + 4285 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4286 // 4287 // error 0.00019228036, which is better than 12 bits 4288 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4289 getF32Constant(DAG, 0x3d431f31)); 4290 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4291 getF32Constant(DAG, 0x3ea21fb2)); 4292 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4293 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4294 getF32Constant(DAG, 0x3f6ae232)); 4295 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4296 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4297 getF32Constant(DAG, 0x3f25f7c3)); 4298 } else { // LimitFloatPrecision <= 18 4299 // For floating-point precision of 18: 4300 // 4301 // Log10ofMantissa = 4302 // -0.84299375f + 4303 // (1.5327582f + 4304 // (-1.0688956f + 4305 // (0.49102474f + 4306 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4307 // 4308 // error 0.0000037995730, which is better than 18 bits 4309 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4310 getF32Constant(DAG, 0x3c5d51ce)); 4311 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4312 getF32Constant(DAG, 0x3e00685a)); 4313 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4314 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4315 getF32Constant(DAG, 0x3efb6798)); 4316 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4317 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4318 getF32Constant(DAG, 0x3f88d192)); 4319 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4320 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4321 getF32Constant(DAG, 0x3fc4316c)); 4322 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4323 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4324 getF32Constant(DAG, 0x3f57ce70)); 4325 } 4326 4327 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4328 } 4329 4330 // No special expansion. 4331 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4332 } 4333 4334 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4335 /// limited-precision mode. 4336 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4337 const TargetLowering &TLI) { 4338 if (Op.getValueType() == MVT::f32 && 4339 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4340 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4341 4342 // FractionalPartOfX = x - (float)IntegerPartOfX; 4343 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4344 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4345 4346 // IntegerPartOfX <<= 23; 4347 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4348 DAG.getConstant(23, TLI.getPointerTy())); 4349 4350 SDValue TwoToFractionalPartOfX; 4351 if (LimitFloatPrecision <= 6) { 4352 // For floating-point precision of 6: 4353 // 4354 // TwoToFractionalPartOfX = 4355 // 0.997535578f + 4356 // (0.735607626f + 0.252464424f * x) * x; 4357 // 4358 // error 0.0144103317, which is 6 bits 4359 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4360 getF32Constant(DAG, 0x3e814304)); 4361 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4362 getF32Constant(DAG, 0x3f3c50c8)); 4363 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4364 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4365 getF32Constant(DAG, 0x3f7f5e7e)); 4366 } else if (LimitFloatPrecision <= 12) { 4367 // For floating-point precision of 12: 4368 // 4369 // TwoToFractionalPartOfX = 4370 // 0.999892986f + 4371 // (0.696457318f + 4372 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4373 // 4374 // error 0.000107046256, which is 13 to 14 bits 4375 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4376 getF32Constant(DAG, 0x3da235e3)); 4377 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4378 getF32Constant(DAG, 0x3e65b8f3)); 4379 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4380 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4381 getF32Constant(DAG, 0x3f324b07)); 4382 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4383 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4384 getF32Constant(DAG, 0x3f7ff8fd)); 4385 } else { // LimitFloatPrecision <= 18 4386 // For floating-point precision of 18: 4387 // 4388 // TwoToFractionalPartOfX = 4389 // 0.999999982f + 4390 // (0.693148872f + 4391 // (0.240227044f + 4392 // (0.554906021e-1f + 4393 // (0.961591928e-2f + 4394 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4395 // error 2.47208000*10^(-7), which is better than 18 bits 4396 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4397 getF32Constant(DAG, 0x3924b03e)); 4398 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4399 getF32Constant(DAG, 0x3ab24b87)); 4400 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4401 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4402 getF32Constant(DAG, 0x3c1d8c17)); 4403 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4404 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4405 getF32Constant(DAG, 0x3d634a1d)); 4406 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4407 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4408 getF32Constant(DAG, 0x3e75fe14)); 4409 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4410 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4411 getF32Constant(DAG, 0x3f317234)); 4412 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4413 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4414 getF32Constant(DAG, 0x3f800000)); 4415 } 4416 4417 // Add the exponent into the result in integer domain. 4418 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4419 TwoToFractionalPartOfX); 4420 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4421 DAG.getNode(ISD::ADD, dl, MVT::i32, 4422 t13, IntegerPartOfX)); 4423 } 4424 4425 // No special expansion. 4426 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4427 } 4428 4429 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4430 /// limited-precision mode with x == 10.0f. 4431 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4432 SelectionDAG &DAG, const TargetLowering &TLI) { 4433 bool IsExp10 = false; 4434 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4435 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4436 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4437 APFloat Ten(10.0f); 4438 IsExp10 = LHSC->isExactlyValue(Ten); 4439 } 4440 } 4441 4442 if (IsExp10) { 4443 // Put the exponent in the right bit position for later addition to the 4444 // final result: 4445 // 4446 // #define LOG2OF10 3.3219281f 4447 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4448 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4449 getF32Constant(DAG, 0x40549a78)); 4450 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4451 4452 // FractionalPartOfX = x - (float)IntegerPartOfX; 4453 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4454 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4455 4456 // IntegerPartOfX <<= 23; 4457 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4458 DAG.getConstant(23, TLI.getPointerTy())); 4459 4460 SDValue TwoToFractionalPartOfX; 4461 if (LimitFloatPrecision <= 6) { 4462 // For floating-point precision of 6: 4463 // 4464 // twoToFractionalPartOfX = 4465 // 0.997535578f + 4466 // (0.735607626f + 0.252464424f * x) * x; 4467 // 4468 // error 0.0144103317, which is 6 bits 4469 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4470 getF32Constant(DAG, 0x3e814304)); 4471 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4472 getF32Constant(DAG, 0x3f3c50c8)); 4473 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4474 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4475 getF32Constant(DAG, 0x3f7f5e7e)); 4476 } else if (LimitFloatPrecision <= 12) { 4477 // For floating-point precision of 12: 4478 // 4479 // TwoToFractionalPartOfX = 4480 // 0.999892986f + 4481 // (0.696457318f + 4482 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4483 // 4484 // error 0.000107046256, which is 13 to 14 bits 4485 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4486 getF32Constant(DAG, 0x3da235e3)); 4487 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4488 getF32Constant(DAG, 0x3e65b8f3)); 4489 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4490 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4491 getF32Constant(DAG, 0x3f324b07)); 4492 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4493 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4494 getF32Constant(DAG, 0x3f7ff8fd)); 4495 } else { // LimitFloatPrecision <= 18 4496 // For floating-point precision of 18: 4497 // 4498 // TwoToFractionalPartOfX = 4499 // 0.999999982f + 4500 // (0.693148872f + 4501 // (0.240227044f + 4502 // (0.554906021e-1f + 4503 // (0.961591928e-2f + 4504 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4505 // error 2.47208000*10^(-7), which is better than 18 bits 4506 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4507 getF32Constant(DAG, 0x3924b03e)); 4508 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4509 getF32Constant(DAG, 0x3ab24b87)); 4510 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4511 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4512 getF32Constant(DAG, 0x3c1d8c17)); 4513 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4514 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4515 getF32Constant(DAG, 0x3d634a1d)); 4516 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4517 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4518 getF32Constant(DAG, 0x3e75fe14)); 4519 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4520 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4521 getF32Constant(DAG, 0x3f317234)); 4522 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4523 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4524 getF32Constant(DAG, 0x3f800000)); 4525 } 4526 4527 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4528 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4529 DAG.getNode(ISD::ADD, dl, MVT::i32, 4530 t13, IntegerPartOfX)); 4531 } 4532 4533 // No special expansion. 4534 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4535 } 4536 4537 4538 /// ExpandPowI - Expand a llvm.powi intrinsic. 4539 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4540 SelectionDAG &DAG) { 4541 // If RHS is a constant, we can expand this out to a multiplication tree, 4542 // otherwise we end up lowering to a call to __powidf2 (for example). When 4543 // optimizing for size, we only want to do this if the expansion would produce 4544 // a small number of multiplies, otherwise we do the full expansion. 4545 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4546 // Get the exponent as a positive value. 4547 unsigned Val = RHSC->getSExtValue(); 4548 if ((int)Val < 0) Val = -Val; 4549 4550 // powi(x, 0) -> 1.0 4551 if (Val == 0) 4552 return DAG.getConstantFP(1.0, LHS.getValueType()); 4553 4554 const Function *F = DAG.getMachineFunction().getFunction(); 4555 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4556 Attribute::OptimizeForSize) || 4557 // If optimizing for size, don't insert too many multiplies. This 4558 // inserts up to 5 multiplies. 4559 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4560 // We use the simple binary decomposition method to generate the multiply 4561 // sequence. There are more optimal ways to do this (for example, 4562 // powi(x,15) generates one more multiply than it should), but this has 4563 // the benefit of being both really simple and much better than a libcall. 4564 SDValue Res; // Logically starts equal to 1.0 4565 SDValue CurSquare = LHS; 4566 while (Val) { 4567 if (Val & 1) { 4568 if (Res.getNode()) 4569 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4570 else 4571 Res = CurSquare; // 1.0*CurSquare. 4572 } 4573 4574 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4575 CurSquare, CurSquare); 4576 Val >>= 1; 4577 } 4578 4579 // If the original was negative, invert the result, producing 1/(x*x*x). 4580 if (RHSC->getSExtValue() < 0) 4581 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4582 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4583 return Res; 4584 } 4585 } 4586 4587 // Otherwise, expand to a libcall. 4588 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4589 } 4590 4591 // getTruncatedArgReg - Find underlying register used for an truncated 4592 // argument. 4593 static unsigned getTruncatedArgReg(const SDValue &N) { 4594 if (N.getOpcode() != ISD::TRUNCATE) 4595 return 0; 4596 4597 const SDValue &Ext = N.getOperand(0); 4598 if (Ext.getOpcode() == ISD::AssertZext || 4599 Ext.getOpcode() == ISD::AssertSext) { 4600 const SDValue &CFR = Ext.getOperand(0); 4601 if (CFR.getOpcode() == ISD::CopyFromReg) 4602 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4603 if (CFR.getOpcode() == ISD::TRUNCATE) 4604 return getTruncatedArgReg(CFR); 4605 } 4606 return 0; 4607 } 4608 4609 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4610 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4611 /// At the end of instruction selection, they will be inserted to the entry BB. 4612 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4613 MDNode *Variable, 4614 MDNode *Expr, int64_t Offset, 4615 bool IsIndirect, 4616 const SDValue &N) { 4617 const Argument *Arg = dyn_cast<Argument>(V); 4618 if (!Arg) 4619 return false; 4620 4621 MachineFunction &MF = DAG.getMachineFunction(); 4622 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4623 4624 // Ignore inlined function arguments here. 4625 DIVariable DV(Variable); 4626 if (DV.isInlinedFnArgument(MF.getFunction())) 4627 return false; 4628 4629 Optional<MachineOperand> Op; 4630 // Some arguments' frame index is recorded during argument lowering. 4631 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4632 Op = MachineOperand::CreateFI(FI); 4633 4634 if (!Op && N.getNode()) { 4635 unsigned Reg; 4636 if (N.getOpcode() == ISD::CopyFromReg) 4637 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4638 else 4639 Reg = getTruncatedArgReg(N); 4640 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4641 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4642 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4643 if (PR) 4644 Reg = PR; 4645 } 4646 if (Reg) 4647 Op = MachineOperand::CreateReg(Reg, false); 4648 } 4649 4650 if (!Op) { 4651 // Check if ValueMap has reg number. 4652 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4653 if (VMI != FuncInfo.ValueMap.end()) 4654 Op = MachineOperand::CreateReg(VMI->second, false); 4655 } 4656 4657 if (!Op && N.getNode()) 4658 // Check if frame index is available. 4659 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4660 if (FrameIndexSDNode *FINode = 4661 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4662 Op = MachineOperand::CreateFI(FINode->getIndex()); 4663 4664 if (!Op) 4665 return false; 4666 4667 if (Op->isReg()) 4668 FuncInfo.ArgDbgValues.push_back( 4669 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4670 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4671 else 4672 FuncInfo.ArgDbgValues.push_back( 4673 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4674 .addOperand(*Op) 4675 .addImm(Offset) 4676 .addMetadata(Variable) 4677 .addMetadata(Expr)); 4678 4679 return true; 4680 } 4681 4682 // VisualStudio defines setjmp as _setjmp 4683 #if defined(_MSC_VER) && defined(setjmp) && \ 4684 !defined(setjmp_undefined_for_msvc) 4685 # pragma push_macro("setjmp") 4686 # undef setjmp 4687 # define setjmp_undefined_for_msvc 4688 #endif 4689 4690 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4691 /// we want to emit this as a call to a named external function, return the name 4692 /// otherwise lower it and return null. 4693 const char * 4694 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4696 SDLoc sdl = getCurSDLoc(); 4697 DebugLoc dl = getCurDebugLoc(); 4698 SDValue Res; 4699 4700 switch (Intrinsic) { 4701 default: 4702 // By default, turn this into a target intrinsic node. 4703 visitTargetIntrinsic(I, Intrinsic); 4704 return nullptr; 4705 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4706 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4707 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4708 case Intrinsic::returnaddress: 4709 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4710 getValue(I.getArgOperand(0)))); 4711 return nullptr; 4712 case Intrinsic::frameaddress: 4713 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4714 getValue(I.getArgOperand(0)))); 4715 return nullptr; 4716 case Intrinsic::read_register: { 4717 Value *Reg = I.getArgOperand(0); 4718 SDValue RegName = 4719 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4720 EVT VT = TLI.getValueType(I.getType()); 4721 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4722 return nullptr; 4723 } 4724 case Intrinsic::write_register: { 4725 Value *Reg = I.getArgOperand(0); 4726 Value *RegValue = I.getArgOperand(1); 4727 SDValue Chain = getValue(RegValue).getOperand(0); 4728 SDValue RegName = 4729 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4730 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4731 RegName, getValue(RegValue))); 4732 return nullptr; 4733 } 4734 case Intrinsic::setjmp: 4735 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4736 case Intrinsic::longjmp: 4737 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4738 case Intrinsic::memcpy: { 4739 // Assert for address < 256 since we support only user defined address 4740 // spaces. 4741 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4742 < 256 && 4743 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4744 < 256 && 4745 "Unknown address space"); 4746 SDValue Op1 = getValue(I.getArgOperand(0)); 4747 SDValue Op2 = getValue(I.getArgOperand(1)); 4748 SDValue Op3 = getValue(I.getArgOperand(2)); 4749 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4750 if (!Align) 4751 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4752 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4753 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4754 MachinePointerInfo(I.getArgOperand(0)), 4755 MachinePointerInfo(I.getArgOperand(1)))); 4756 return nullptr; 4757 } 4758 case Intrinsic::memset: { 4759 // Assert for address < 256 since we support only user defined address 4760 // spaces. 4761 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4762 < 256 && 4763 "Unknown address space"); 4764 SDValue Op1 = getValue(I.getArgOperand(0)); 4765 SDValue Op2 = getValue(I.getArgOperand(1)); 4766 SDValue Op3 = getValue(I.getArgOperand(2)); 4767 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4768 if (!Align) 4769 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4770 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4771 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4772 MachinePointerInfo(I.getArgOperand(0)))); 4773 return nullptr; 4774 } 4775 case Intrinsic::memmove: { 4776 // Assert for address < 256 since we support only user defined address 4777 // spaces. 4778 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4779 < 256 && 4780 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4781 < 256 && 4782 "Unknown address space"); 4783 SDValue Op1 = getValue(I.getArgOperand(0)); 4784 SDValue Op2 = getValue(I.getArgOperand(1)); 4785 SDValue Op3 = getValue(I.getArgOperand(2)); 4786 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4787 if (!Align) 4788 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4789 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4790 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4791 MachinePointerInfo(I.getArgOperand(0)), 4792 MachinePointerInfo(I.getArgOperand(1)))); 4793 return nullptr; 4794 } 4795 case Intrinsic::dbg_declare: { 4796 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4797 MDNode *Variable = DI.getVariable(); 4798 MDNode *Expression = DI.getExpression(); 4799 const Value *Address = DI.getAddress(); 4800 DIVariable DIVar(Variable); 4801 assert((!DIVar || DIVar.isVariable()) && 4802 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4803 if (!Address || !DIVar) { 4804 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4805 return nullptr; 4806 } 4807 4808 // Check if address has undef value. 4809 if (isa<UndefValue>(Address) || 4810 (Address->use_empty() && !isa<Argument>(Address))) { 4811 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4812 return nullptr; 4813 } 4814 4815 SDValue &N = NodeMap[Address]; 4816 if (!N.getNode() && isa<Argument>(Address)) 4817 // Check unused arguments map. 4818 N = UnusedArgNodeMap[Address]; 4819 SDDbgValue *SDV; 4820 if (N.getNode()) { 4821 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4822 Address = BCI->getOperand(0); 4823 // Parameters are handled specially. 4824 bool isParameter = 4825 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4826 isa<Argument>(Address)); 4827 4828 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4829 4830 if (isParameter && !AI) { 4831 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4832 if (FINode) 4833 // Byval parameter. We have a frame index at this point. 4834 SDV = DAG.getFrameIndexDbgValue( 4835 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4836 else { 4837 // Address is an argument, so try to emit its dbg value using 4838 // virtual register info from the FuncInfo.ValueMap. 4839 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4840 return nullptr; 4841 } 4842 } else if (AI) 4843 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4844 true, 0, dl, SDNodeOrder); 4845 else { 4846 // Can't do anything with other non-AI cases yet. 4847 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4848 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4849 DEBUG(Address->dump()); 4850 return nullptr; 4851 } 4852 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4853 } else { 4854 // If Address is an argument then try to emit its dbg value using 4855 // virtual register info from the FuncInfo.ValueMap. 4856 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4857 N)) { 4858 // If variable is pinned by a alloca in dominating bb then 4859 // use StaticAllocaMap. 4860 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4861 if (AI->getParent() != DI.getParent()) { 4862 DenseMap<const AllocaInst*, int>::iterator SI = 4863 FuncInfo.StaticAllocaMap.find(AI); 4864 if (SI != FuncInfo.StaticAllocaMap.end()) { 4865 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4866 0, dl, SDNodeOrder); 4867 DAG.AddDbgValue(SDV, nullptr, false); 4868 return nullptr; 4869 } 4870 } 4871 } 4872 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4873 } 4874 } 4875 return nullptr; 4876 } 4877 case Intrinsic::dbg_value: { 4878 const DbgValueInst &DI = cast<DbgValueInst>(I); 4879 DIVariable DIVar(DI.getVariable()); 4880 assert((!DIVar || DIVar.isVariable()) && 4881 "Variable in DbgValueInst should be either null or a DIVariable."); 4882 if (!DIVar) 4883 return nullptr; 4884 4885 MDNode *Variable = DI.getVariable(); 4886 MDNode *Expression = DI.getExpression(); 4887 uint64_t Offset = DI.getOffset(); 4888 const Value *V = DI.getValue(); 4889 if (!V) 4890 return nullptr; 4891 4892 SDDbgValue *SDV; 4893 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4894 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4895 SDNodeOrder); 4896 DAG.AddDbgValue(SDV, nullptr, false); 4897 } else { 4898 // Do not use getValue() in here; we don't want to generate code at 4899 // this point if it hasn't been done yet. 4900 SDValue N = NodeMap[V]; 4901 if (!N.getNode() && isa<Argument>(V)) 4902 // Check unused arguments map. 4903 N = UnusedArgNodeMap[V]; 4904 if (N.getNode()) { 4905 // A dbg.value for an alloca is always indirect. 4906 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4907 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4908 IsIndirect, N)) { 4909 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4910 IsIndirect, Offset, dl, SDNodeOrder); 4911 DAG.AddDbgValue(SDV, N.getNode(), false); 4912 } 4913 } else if (!V->use_empty() ) { 4914 // Do not call getValue(V) yet, as we don't want to generate code. 4915 // Remember it for later. 4916 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4917 DanglingDebugInfoMap[V] = DDI; 4918 } else { 4919 // We may expand this to cover more cases. One case where we have no 4920 // data available is an unreferenced parameter. 4921 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4922 } 4923 } 4924 4925 // Build a debug info table entry. 4926 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4927 V = BCI->getOperand(0); 4928 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4929 // Don't handle byval struct arguments or VLAs, for example. 4930 if (!AI) { 4931 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4932 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4933 return nullptr; 4934 } 4935 DenseMap<const AllocaInst*, int>::iterator SI = 4936 FuncInfo.StaticAllocaMap.find(AI); 4937 if (SI == FuncInfo.StaticAllocaMap.end()) 4938 return nullptr; // VLAs. 4939 return nullptr; 4940 } 4941 4942 case Intrinsic::eh_typeid_for: { 4943 // Find the type id for the given typeinfo. 4944 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4945 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4946 Res = DAG.getConstant(TypeID, MVT::i32); 4947 setValue(&I, Res); 4948 return nullptr; 4949 } 4950 4951 case Intrinsic::eh_return_i32: 4952 case Intrinsic::eh_return_i64: 4953 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4954 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4955 MVT::Other, 4956 getControlRoot(), 4957 getValue(I.getArgOperand(0)), 4958 getValue(I.getArgOperand(1)))); 4959 return nullptr; 4960 case Intrinsic::eh_unwind_init: 4961 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4962 return nullptr; 4963 case Intrinsic::eh_dwarf_cfa: { 4964 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4965 TLI.getPointerTy()); 4966 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4967 CfaArg.getValueType(), 4968 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4969 CfaArg.getValueType()), 4970 CfaArg); 4971 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4972 DAG.getConstant(0, TLI.getPointerTy())); 4973 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4974 FA, Offset)); 4975 return nullptr; 4976 } 4977 case Intrinsic::eh_sjlj_callsite: { 4978 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4979 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4980 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4981 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4982 4983 MMI.setCurrentCallSite(CI->getZExtValue()); 4984 return nullptr; 4985 } 4986 case Intrinsic::eh_sjlj_functioncontext: { 4987 // Get and store the index of the function context. 4988 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4989 AllocaInst *FnCtx = 4990 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4991 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4992 MFI->setFunctionContextIndex(FI); 4993 return nullptr; 4994 } 4995 case Intrinsic::eh_sjlj_setjmp: { 4996 SDValue Ops[2]; 4997 Ops[0] = getRoot(); 4998 Ops[1] = getValue(I.getArgOperand(0)); 4999 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5000 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5001 setValue(&I, Op.getValue(0)); 5002 DAG.setRoot(Op.getValue(1)); 5003 return nullptr; 5004 } 5005 case Intrinsic::eh_sjlj_longjmp: { 5006 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5007 getRoot(), getValue(I.getArgOperand(0)))); 5008 return nullptr; 5009 } 5010 5011 case Intrinsic::masked_load: 5012 visitMaskedLoad(I); 5013 return nullptr; 5014 case Intrinsic::masked_store: 5015 visitMaskedStore(I); 5016 return nullptr; 5017 case Intrinsic::x86_mmx_pslli_w: 5018 case Intrinsic::x86_mmx_pslli_d: 5019 case Intrinsic::x86_mmx_pslli_q: 5020 case Intrinsic::x86_mmx_psrli_w: 5021 case Intrinsic::x86_mmx_psrli_d: 5022 case Intrinsic::x86_mmx_psrli_q: 5023 case Intrinsic::x86_mmx_psrai_w: 5024 case Intrinsic::x86_mmx_psrai_d: { 5025 SDValue ShAmt = getValue(I.getArgOperand(1)); 5026 if (isa<ConstantSDNode>(ShAmt)) { 5027 visitTargetIntrinsic(I, Intrinsic); 5028 return nullptr; 5029 } 5030 unsigned NewIntrinsic = 0; 5031 EVT ShAmtVT = MVT::v2i32; 5032 switch (Intrinsic) { 5033 case Intrinsic::x86_mmx_pslli_w: 5034 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5035 break; 5036 case Intrinsic::x86_mmx_pslli_d: 5037 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5038 break; 5039 case Intrinsic::x86_mmx_pslli_q: 5040 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5041 break; 5042 case Intrinsic::x86_mmx_psrli_w: 5043 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5044 break; 5045 case Intrinsic::x86_mmx_psrli_d: 5046 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5047 break; 5048 case Intrinsic::x86_mmx_psrli_q: 5049 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5050 break; 5051 case Intrinsic::x86_mmx_psrai_w: 5052 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5053 break; 5054 case Intrinsic::x86_mmx_psrai_d: 5055 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5056 break; 5057 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5058 } 5059 5060 // The vector shift intrinsics with scalars uses 32b shift amounts but 5061 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5062 // to be zero. 5063 // We must do this early because v2i32 is not a legal type. 5064 SDValue ShOps[2]; 5065 ShOps[0] = ShAmt; 5066 ShOps[1] = DAG.getConstant(0, MVT::i32); 5067 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5068 EVT DestVT = TLI.getValueType(I.getType()); 5069 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5070 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5071 DAG.getConstant(NewIntrinsic, MVT::i32), 5072 getValue(I.getArgOperand(0)), ShAmt); 5073 setValue(&I, Res); 5074 return nullptr; 5075 } 5076 case Intrinsic::x86_avx_vinsertf128_pd_256: 5077 case Intrinsic::x86_avx_vinsertf128_ps_256: 5078 case Intrinsic::x86_avx_vinsertf128_si_256: 5079 case Intrinsic::x86_avx2_vinserti128: { 5080 EVT DestVT = TLI.getValueType(I.getType()); 5081 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 5082 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5083 ElVT.getVectorNumElements(); 5084 Res = 5085 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5086 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 5087 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5088 setValue(&I, Res); 5089 return nullptr; 5090 } 5091 case Intrinsic::x86_avx_vextractf128_pd_256: 5092 case Intrinsic::x86_avx_vextractf128_ps_256: 5093 case Intrinsic::x86_avx_vextractf128_si_256: 5094 case Intrinsic::x86_avx2_vextracti128: { 5095 EVT DestVT = TLI.getValueType(I.getType()); 5096 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5097 DestVT.getVectorNumElements(); 5098 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5099 getValue(I.getArgOperand(0)), 5100 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5101 setValue(&I, Res); 5102 return nullptr; 5103 } 5104 case Intrinsic::convertff: 5105 case Intrinsic::convertfsi: 5106 case Intrinsic::convertfui: 5107 case Intrinsic::convertsif: 5108 case Intrinsic::convertuif: 5109 case Intrinsic::convertss: 5110 case Intrinsic::convertsu: 5111 case Intrinsic::convertus: 5112 case Intrinsic::convertuu: { 5113 ISD::CvtCode Code = ISD::CVT_INVALID; 5114 switch (Intrinsic) { 5115 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5116 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5117 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5118 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5119 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5120 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5121 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5122 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5123 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5124 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5125 } 5126 EVT DestVT = TLI.getValueType(I.getType()); 5127 const Value *Op1 = I.getArgOperand(0); 5128 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5129 DAG.getValueType(DestVT), 5130 DAG.getValueType(getValue(Op1).getValueType()), 5131 getValue(I.getArgOperand(1)), 5132 getValue(I.getArgOperand(2)), 5133 Code); 5134 setValue(&I, Res); 5135 return nullptr; 5136 } 5137 case Intrinsic::powi: 5138 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5139 getValue(I.getArgOperand(1)), DAG)); 5140 return nullptr; 5141 case Intrinsic::log: 5142 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5143 return nullptr; 5144 case Intrinsic::log2: 5145 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5146 return nullptr; 5147 case Intrinsic::log10: 5148 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5149 return nullptr; 5150 case Intrinsic::exp: 5151 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5152 return nullptr; 5153 case Intrinsic::exp2: 5154 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5155 return nullptr; 5156 case Intrinsic::pow: 5157 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5158 getValue(I.getArgOperand(1)), DAG, TLI)); 5159 return nullptr; 5160 case Intrinsic::sqrt: 5161 case Intrinsic::fabs: 5162 case Intrinsic::sin: 5163 case Intrinsic::cos: 5164 case Intrinsic::floor: 5165 case Intrinsic::ceil: 5166 case Intrinsic::trunc: 5167 case Intrinsic::rint: 5168 case Intrinsic::nearbyint: 5169 case Intrinsic::round: { 5170 unsigned Opcode; 5171 switch (Intrinsic) { 5172 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5173 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5174 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5175 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5176 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5177 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5178 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5179 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5180 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5181 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5182 case Intrinsic::round: Opcode = ISD::FROUND; break; 5183 } 5184 5185 setValue(&I, DAG.getNode(Opcode, sdl, 5186 getValue(I.getArgOperand(0)).getValueType(), 5187 getValue(I.getArgOperand(0)))); 5188 return nullptr; 5189 } 5190 case Intrinsic::minnum: 5191 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5192 getValue(I.getArgOperand(0)).getValueType(), 5193 getValue(I.getArgOperand(0)), 5194 getValue(I.getArgOperand(1)))); 5195 return nullptr; 5196 case Intrinsic::maxnum: 5197 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5198 getValue(I.getArgOperand(0)).getValueType(), 5199 getValue(I.getArgOperand(0)), 5200 getValue(I.getArgOperand(1)))); 5201 return nullptr; 5202 case Intrinsic::copysign: 5203 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5204 getValue(I.getArgOperand(0)).getValueType(), 5205 getValue(I.getArgOperand(0)), 5206 getValue(I.getArgOperand(1)))); 5207 return nullptr; 5208 case Intrinsic::fma: 5209 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5210 getValue(I.getArgOperand(0)).getValueType(), 5211 getValue(I.getArgOperand(0)), 5212 getValue(I.getArgOperand(1)), 5213 getValue(I.getArgOperand(2)))); 5214 return nullptr; 5215 case Intrinsic::fmuladd: { 5216 EVT VT = TLI.getValueType(I.getType()); 5217 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5218 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5219 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5220 getValue(I.getArgOperand(0)).getValueType(), 5221 getValue(I.getArgOperand(0)), 5222 getValue(I.getArgOperand(1)), 5223 getValue(I.getArgOperand(2)))); 5224 } else { 5225 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5226 getValue(I.getArgOperand(0)).getValueType(), 5227 getValue(I.getArgOperand(0)), 5228 getValue(I.getArgOperand(1))); 5229 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5230 getValue(I.getArgOperand(0)).getValueType(), 5231 Mul, 5232 getValue(I.getArgOperand(2))); 5233 setValue(&I, Add); 5234 } 5235 return nullptr; 5236 } 5237 case Intrinsic::convert_to_fp16: 5238 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5239 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5240 getValue(I.getArgOperand(0)), 5241 DAG.getTargetConstant(0, MVT::i32)))); 5242 return nullptr; 5243 case Intrinsic::convert_from_fp16: 5244 setValue(&I, 5245 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5246 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5247 getValue(I.getArgOperand(0))))); 5248 return nullptr; 5249 case Intrinsic::pcmarker: { 5250 SDValue Tmp = getValue(I.getArgOperand(0)); 5251 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5252 return nullptr; 5253 } 5254 case Intrinsic::readcyclecounter: { 5255 SDValue Op = getRoot(); 5256 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5257 DAG.getVTList(MVT::i64, MVT::Other), Op); 5258 setValue(&I, Res); 5259 DAG.setRoot(Res.getValue(1)); 5260 return nullptr; 5261 } 5262 case Intrinsic::bswap: 5263 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5264 getValue(I.getArgOperand(0)).getValueType(), 5265 getValue(I.getArgOperand(0)))); 5266 return nullptr; 5267 case Intrinsic::cttz: { 5268 SDValue Arg = getValue(I.getArgOperand(0)); 5269 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5270 EVT Ty = Arg.getValueType(); 5271 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5272 sdl, Ty, Arg)); 5273 return nullptr; 5274 } 5275 case Intrinsic::ctlz: { 5276 SDValue Arg = getValue(I.getArgOperand(0)); 5277 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5278 EVT Ty = Arg.getValueType(); 5279 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5280 sdl, Ty, Arg)); 5281 return nullptr; 5282 } 5283 case Intrinsic::ctpop: { 5284 SDValue Arg = getValue(I.getArgOperand(0)); 5285 EVT Ty = Arg.getValueType(); 5286 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5287 return nullptr; 5288 } 5289 case Intrinsic::stacksave: { 5290 SDValue Op = getRoot(); 5291 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5292 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5293 setValue(&I, Res); 5294 DAG.setRoot(Res.getValue(1)); 5295 return nullptr; 5296 } 5297 case Intrinsic::stackrestore: { 5298 Res = getValue(I.getArgOperand(0)); 5299 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5300 return nullptr; 5301 } 5302 case Intrinsic::stackprotector: { 5303 // Emit code into the DAG to store the stack guard onto the stack. 5304 MachineFunction &MF = DAG.getMachineFunction(); 5305 MachineFrameInfo *MFI = MF.getFrameInfo(); 5306 EVT PtrTy = TLI.getPointerTy(); 5307 SDValue Src, Chain = getRoot(); 5308 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5309 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5310 5311 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5312 // global variable __stack_chk_guard. 5313 if (!GV) 5314 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5315 if (BC->getOpcode() == Instruction::BitCast) 5316 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5317 5318 if (GV && TLI.useLoadStackGuardNode()) { 5319 // Emit a LOAD_STACK_GUARD node. 5320 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5321 sdl, PtrTy, Chain); 5322 MachinePointerInfo MPInfo(GV); 5323 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5324 unsigned Flags = MachineMemOperand::MOLoad | 5325 MachineMemOperand::MOInvariant; 5326 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5327 PtrTy.getSizeInBits() / 8, 5328 DAG.getEVTAlignment(PtrTy)); 5329 Node->setMemRefs(MemRefs, MemRefs + 1); 5330 5331 // Copy the guard value to a virtual register so that it can be 5332 // retrieved in the epilogue. 5333 Src = SDValue(Node, 0); 5334 const TargetRegisterClass *RC = 5335 TLI.getRegClassFor(Src.getSimpleValueType()); 5336 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5337 5338 SPDescriptor.setGuardReg(Reg); 5339 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5340 } else { 5341 Src = getValue(I.getArgOperand(0)); // The guard's value. 5342 } 5343 5344 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5345 5346 int FI = FuncInfo.StaticAllocaMap[Slot]; 5347 MFI->setStackProtectorIndex(FI); 5348 5349 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5350 5351 // Store the stack protector onto the stack. 5352 Res = DAG.getStore(Chain, sdl, Src, FIN, 5353 MachinePointerInfo::getFixedStack(FI), 5354 true, false, 0); 5355 setValue(&I, Res); 5356 DAG.setRoot(Res); 5357 return nullptr; 5358 } 5359 case Intrinsic::objectsize: { 5360 // If we don't know by now, we're never going to know. 5361 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5362 5363 assert(CI && "Non-constant type in __builtin_object_size?"); 5364 5365 SDValue Arg = getValue(I.getCalledValue()); 5366 EVT Ty = Arg.getValueType(); 5367 5368 if (CI->isZero()) 5369 Res = DAG.getConstant(-1ULL, Ty); 5370 else 5371 Res = DAG.getConstant(0, Ty); 5372 5373 setValue(&I, Res); 5374 return nullptr; 5375 } 5376 case Intrinsic::annotation: 5377 case Intrinsic::ptr_annotation: 5378 // Drop the intrinsic, but forward the value 5379 setValue(&I, getValue(I.getOperand(0))); 5380 return nullptr; 5381 case Intrinsic::assume: 5382 case Intrinsic::var_annotation: 5383 // Discard annotate attributes and assumptions 5384 return nullptr; 5385 5386 case Intrinsic::init_trampoline: { 5387 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5388 5389 SDValue Ops[6]; 5390 Ops[0] = getRoot(); 5391 Ops[1] = getValue(I.getArgOperand(0)); 5392 Ops[2] = getValue(I.getArgOperand(1)); 5393 Ops[3] = getValue(I.getArgOperand(2)); 5394 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5395 Ops[5] = DAG.getSrcValue(F); 5396 5397 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5398 5399 DAG.setRoot(Res); 5400 return nullptr; 5401 } 5402 case Intrinsic::adjust_trampoline: { 5403 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5404 TLI.getPointerTy(), 5405 getValue(I.getArgOperand(0)))); 5406 return nullptr; 5407 } 5408 case Intrinsic::gcroot: 5409 if (GFI) { 5410 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5411 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5412 5413 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5414 GFI->addStackRoot(FI->getIndex(), TypeMap); 5415 } 5416 return nullptr; 5417 case Intrinsic::gcread: 5418 case Intrinsic::gcwrite: 5419 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5420 case Intrinsic::flt_rounds: 5421 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5422 return nullptr; 5423 5424 case Intrinsic::expect: { 5425 // Just replace __builtin_expect(exp, c) with EXP. 5426 setValue(&I, getValue(I.getArgOperand(0))); 5427 return nullptr; 5428 } 5429 5430 case Intrinsic::debugtrap: 5431 case Intrinsic::trap: { 5432 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5433 if (TrapFuncName.empty()) { 5434 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5435 ISD::TRAP : ISD::DEBUGTRAP; 5436 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5437 return nullptr; 5438 } 5439 TargetLowering::ArgListTy Args; 5440 5441 TargetLowering::CallLoweringInfo CLI(DAG); 5442 CLI.setDebugLoc(sdl).setChain(getRoot()) 5443 .setCallee(CallingConv::C, I.getType(), 5444 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5445 std::move(Args), 0); 5446 5447 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5448 DAG.setRoot(Result.second); 5449 return nullptr; 5450 } 5451 5452 case Intrinsic::uadd_with_overflow: 5453 case Intrinsic::sadd_with_overflow: 5454 case Intrinsic::usub_with_overflow: 5455 case Intrinsic::ssub_with_overflow: 5456 case Intrinsic::umul_with_overflow: 5457 case Intrinsic::smul_with_overflow: { 5458 ISD::NodeType Op; 5459 switch (Intrinsic) { 5460 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5461 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5462 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5463 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5464 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5465 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5466 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5467 } 5468 SDValue Op1 = getValue(I.getArgOperand(0)); 5469 SDValue Op2 = getValue(I.getArgOperand(1)); 5470 5471 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5472 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5473 return nullptr; 5474 } 5475 case Intrinsic::prefetch: { 5476 SDValue Ops[5]; 5477 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5478 Ops[0] = getRoot(); 5479 Ops[1] = getValue(I.getArgOperand(0)); 5480 Ops[2] = getValue(I.getArgOperand(1)); 5481 Ops[3] = getValue(I.getArgOperand(2)); 5482 Ops[4] = getValue(I.getArgOperand(3)); 5483 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5484 DAG.getVTList(MVT::Other), Ops, 5485 EVT::getIntegerVT(*Context, 8), 5486 MachinePointerInfo(I.getArgOperand(0)), 5487 0, /* align */ 5488 false, /* volatile */ 5489 rw==0, /* read */ 5490 rw==1)); /* write */ 5491 return nullptr; 5492 } 5493 case Intrinsic::lifetime_start: 5494 case Intrinsic::lifetime_end: { 5495 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5496 // Stack coloring is not enabled in O0, discard region information. 5497 if (TM.getOptLevel() == CodeGenOpt::None) 5498 return nullptr; 5499 5500 SmallVector<Value *, 4> Allocas; 5501 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5502 5503 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5504 E = Allocas.end(); Object != E; ++Object) { 5505 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5506 5507 // Could not find an Alloca. 5508 if (!LifetimeObject) 5509 continue; 5510 5511 // First check that the Alloca is static, otherwise it won't have a 5512 // valid frame index. 5513 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5514 if (SI == FuncInfo.StaticAllocaMap.end()) 5515 return nullptr; 5516 5517 int FI = SI->second; 5518 5519 SDValue Ops[2]; 5520 Ops[0] = getRoot(); 5521 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5522 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5523 5524 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5525 DAG.setRoot(Res); 5526 } 5527 return nullptr; 5528 } 5529 case Intrinsic::invariant_start: 5530 // Discard region information. 5531 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5532 return nullptr; 5533 case Intrinsic::invariant_end: 5534 // Discard region information. 5535 return nullptr; 5536 case Intrinsic::stackprotectorcheck: { 5537 // Do not actually emit anything for this basic block. Instead we initialize 5538 // the stack protector descriptor and export the guard variable so we can 5539 // access it in FinishBasicBlock. 5540 const BasicBlock *BB = I.getParent(); 5541 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5542 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5543 5544 // Flush our exports since we are going to process a terminator. 5545 (void)getControlRoot(); 5546 return nullptr; 5547 } 5548 case Intrinsic::clear_cache: 5549 return TLI.getClearCacheBuiltinName(); 5550 case Intrinsic::donothing: 5551 // ignore 5552 return nullptr; 5553 case Intrinsic::experimental_stackmap: { 5554 visitStackmap(I); 5555 return nullptr; 5556 } 5557 case Intrinsic::experimental_patchpoint_void: 5558 case Intrinsic::experimental_patchpoint_i64: { 5559 visitPatchpoint(&I); 5560 return nullptr; 5561 } 5562 case Intrinsic::experimental_gc_statepoint: { 5563 visitStatepoint(I); 5564 return nullptr; 5565 } 5566 case Intrinsic::experimental_gc_result_int: 5567 case Intrinsic::experimental_gc_result_float: 5568 case Intrinsic::experimental_gc_result_ptr: { 5569 visitGCResult(I); 5570 return nullptr; 5571 } 5572 case Intrinsic::experimental_gc_relocate: { 5573 visitGCRelocate(I); 5574 return nullptr; 5575 } 5576 case Intrinsic::instrprof_increment: 5577 llvm_unreachable("instrprof failed to lower an increment"); 5578 5579 case Intrinsic::frameallocate: { 5580 MachineFunction &MF = DAG.getMachineFunction(); 5581 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5582 5583 // Do the allocation and map it as a normal value. 5584 // FIXME: Maybe we should add this to the alloca map so that we don't have 5585 // to register allocate it? 5586 uint64_t Size = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 5587 int Alloc = MF.getFrameInfo()->CreateFrameAllocation(Size); 5588 MVT PtrVT = TLI.getPointerTy(0); 5589 SDValue FIVal = DAG.getFrameIndex(Alloc, PtrVT); 5590 setValue(&I, FIVal); 5591 5592 // Directly emit a FRAME_ALLOC machine instr. Label assignment emission is 5593 // the same on all targets. 5594 MCSymbol *FrameAllocSym = 5595 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName()); 5596 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5597 TII->get(TargetOpcode::FRAME_ALLOC)) 5598 .addSym(FrameAllocSym) 5599 .addFrameIndex(Alloc); 5600 5601 return nullptr; 5602 } 5603 5604 case Intrinsic::framerecover: { 5605 // i8* @llvm.framerecover(i8* %fn, i8* %fp) 5606 MachineFunction &MF = DAG.getMachineFunction(); 5607 MVT PtrVT = TLI.getPointerTy(0); 5608 5609 // Get the symbol that defines the frame offset. 5610 Function *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5611 MCSymbol *FrameAllocSym = 5612 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName()); 5613 5614 // Create a TargetExternalSymbol for the label to avoid any target lowering 5615 // that would make this PC relative. 5616 StringRef Name = FrameAllocSym->getName(); 5617 assert(Name.size() == strlen(Name.data()) && "not null terminated"); 5618 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 5619 SDValue OffsetVal = 5620 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5621 5622 // Add the offset to the FP. 5623 Value *FP = I.getArgOperand(1); 5624 SDValue FPVal = getValue(FP); 5625 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5626 setValue(&I, Add); 5627 5628 return nullptr; 5629 } 5630 } 5631 } 5632 5633 std::pair<SDValue, SDValue> 5634 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5635 MachineBasicBlock *LandingPad) { 5636 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5637 MCSymbol *BeginLabel = nullptr; 5638 5639 if (LandingPad) { 5640 // Insert a label before the invoke call to mark the try range. This can be 5641 // used to detect deletion of the invoke via the MachineModuleInfo. 5642 BeginLabel = MMI.getContext().CreateTempSymbol(); 5643 5644 // For SjLj, keep track of which landing pads go with which invokes 5645 // so as to maintain the ordering of pads in the LSDA. 5646 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5647 if (CallSiteIndex) { 5648 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5649 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5650 5651 // Now that the call site is handled, stop tracking it. 5652 MMI.setCurrentCallSite(0); 5653 } 5654 5655 // Both PendingLoads and PendingExports must be flushed here; 5656 // this call might not return. 5657 (void)getRoot(); 5658 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5659 5660 CLI.setChain(getRoot()); 5661 } 5662 5663 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5664 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5665 5666 assert((CLI.IsTailCall || Result.second.getNode()) && 5667 "Non-null chain expected with non-tail call!"); 5668 assert((Result.second.getNode() || !Result.first.getNode()) && 5669 "Null value expected with tail call!"); 5670 5671 if (!Result.second.getNode()) { 5672 // As a special case, a null chain means that a tail call has been emitted 5673 // and the DAG root is already updated. 5674 HasTailCall = true; 5675 5676 // Since there's no actual continuation from this block, nothing can be 5677 // relying on us setting vregs for them. 5678 PendingExports.clear(); 5679 } else { 5680 DAG.setRoot(Result.second); 5681 } 5682 5683 if (LandingPad) { 5684 // Insert a label at the end of the invoke call to mark the try range. This 5685 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5686 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5687 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5688 5689 // Inform MachineModuleInfo of range. 5690 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5691 } 5692 5693 return Result; 5694 } 5695 5696 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5697 bool isTailCall, 5698 MachineBasicBlock *LandingPad) { 5699 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5700 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5701 Type *RetTy = FTy->getReturnType(); 5702 5703 TargetLowering::ArgListTy Args; 5704 TargetLowering::ArgListEntry Entry; 5705 Args.reserve(CS.arg_size()); 5706 5707 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5708 i != e; ++i) { 5709 const Value *V = *i; 5710 5711 // Skip empty types 5712 if (V->getType()->isEmptyTy()) 5713 continue; 5714 5715 SDValue ArgNode = getValue(V); 5716 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5717 5718 // Skip the first return-type Attribute to get to params. 5719 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5720 Args.push_back(Entry); 5721 5722 // If we have an explicit sret argument that is an Instruction, (i.e., it 5723 // might point to function-local memory), we can't meaningfully tail-call. 5724 if (Entry.isSRet && isa<Instruction>(V)) 5725 isTailCall = false; 5726 } 5727 5728 // Check if target-independent constraints permit a tail call here. 5729 // Target-dependent constraints are checked within TLI->LowerCallTo. 5730 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5731 isTailCall = false; 5732 5733 TargetLowering::CallLoweringInfo CLI(DAG); 5734 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5735 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5736 .setTailCall(isTailCall); 5737 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5738 5739 if (Result.first.getNode()) 5740 setValue(CS.getInstruction(), Result.first); 5741 } 5742 5743 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5744 /// value is equal or not-equal to zero. 5745 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5746 for (const User *U : V->users()) { 5747 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5748 if (IC->isEquality()) 5749 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5750 if (C->isNullValue()) 5751 continue; 5752 // Unknown instruction. 5753 return false; 5754 } 5755 return true; 5756 } 5757 5758 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5759 Type *LoadTy, 5760 SelectionDAGBuilder &Builder) { 5761 5762 // Check to see if this load can be trivially constant folded, e.g. if the 5763 // input is from a string literal. 5764 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5765 // Cast pointer to the type we really want to load. 5766 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5767 PointerType::getUnqual(LoadTy)); 5768 5769 if (const Constant *LoadCst = 5770 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5771 Builder.DL)) 5772 return Builder.getValue(LoadCst); 5773 } 5774 5775 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5776 // still constant memory, the input chain can be the entry node. 5777 SDValue Root; 5778 bool ConstantMemory = false; 5779 5780 // Do not serialize (non-volatile) loads of constant memory with anything. 5781 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5782 Root = Builder.DAG.getEntryNode(); 5783 ConstantMemory = true; 5784 } else { 5785 // Do not serialize non-volatile loads against each other. 5786 Root = Builder.DAG.getRoot(); 5787 } 5788 5789 SDValue Ptr = Builder.getValue(PtrVal); 5790 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5791 Ptr, MachinePointerInfo(PtrVal), 5792 false /*volatile*/, 5793 false /*nontemporal*/, 5794 false /*isinvariant*/, 1 /* align=1 */); 5795 5796 if (!ConstantMemory) 5797 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5798 return LoadVal; 5799 } 5800 5801 /// processIntegerCallValue - Record the value for an instruction that 5802 /// produces an integer result, converting the type where necessary. 5803 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5804 SDValue Value, 5805 bool IsSigned) { 5806 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5807 if (IsSigned) 5808 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5809 else 5810 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5811 setValue(&I, Value); 5812 } 5813 5814 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5815 /// If so, return true and lower it, otherwise return false and it will be 5816 /// lowered like a normal call. 5817 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5818 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5819 if (I.getNumArgOperands() != 3) 5820 return false; 5821 5822 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5823 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5824 !I.getArgOperand(2)->getType()->isIntegerTy() || 5825 !I.getType()->isIntegerTy()) 5826 return false; 5827 5828 const Value *Size = I.getArgOperand(2); 5829 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5830 if (CSize && CSize->getZExtValue() == 0) { 5831 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5832 setValue(&I, DAG.getConstant(0, CallVT)); 5833 return true; 5834 } 5835 5836 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5837 std::pair<SDValue, SDValue> Res = 5838 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5839 getValue(LHS), getValue(RHS), getValue(Size), 5840 MachinePointerInfo(LHS), 5841 MachinePointerInfo(RHS)); 5842 if (Res.first.getNode()) { 5843 processIntegerCallValue(I, Res.first, true); 5844 PendingLoads.push_back(Res.second); 5845 return true; 5846 } 5847 5848 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5849 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5850 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5851 bool ActuallyDoIt = true; 5852 MVT LoadVT; 5853 Type *LoadTy; 5854 switch (CSize->getZExtValue()) { 5855 default: 5856 LoadVT = MVT::Other; 5857 LoadTy = nullptr; 5858 ActuallyDoIt = false; 5859 break; 5860 case 2: 5861 LoadVT = MVT::i16; 5862 LoadTy = Type::getInt16Ty(CSize->getContext()); 5863 break; 5864 case 4: 5865 LoadVT = MVT::i32; 5866 LoadTy = Type::getInt32Ty(CSize->getContext()); 5867 break; 5868 case 8: 5869 LoadVT = MVT::i64; 5870 LoadTy = Type::getInt64Ty(CSize->getContext()); 5871 break; 5872 /* 5873 case 16: 5874 LoadVT = MVT::v4i32; 5875 LoadTy = Type::getInt32Ty(CSize->getContext()); 5876 LoadTy = VectorType::get(LoadTy, 4); 5877 break; 5878 */ 5879 } 5880 5881 // This turns into unaligned loads. We only do this if the target natively 5882 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5883 // we'll only produce a small number of byte loads. 5884 5885 // Require that we can find a legal MVT, and only do this if the target 5886 // supports unaligned loads of that type. Expanding into byte loads would 5887 // bloat the code. 5888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5889 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5890 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5891 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5892 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5893 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5894 // TODO: Check alignment of src and dest ptrs. 5895 if (!TLI.isTypeLegal(LoadVT) || 5896 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5897 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5898 ActuallyDoIt = false; 5899 } 5900 5901 if (ActuallyDoIt) { 5902 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5903 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5904 5905 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5906 ISD::SETNE); 5907 processIntegerCallValue(I, Res, false); 5908 return true; 5909 } 5910 } 5911 5912 5913 return false; 5914 } 5915 5916 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5917 /// form. If so, return true and lower it, otherwise return false and it 5918 /// will be lowered like a normal call. 5919 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5920 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5921 if (I.getNumArgOperands() != 3) 5922 return false; 5923 5924 const Value *Src = I.getArgOperand(0); 5925 const Value *Char = I.getArgOperand(1); 5926 const Value *Length = I.getArgOperand(2); 5927 if (!Src->getType()->isPointerTy() || 5928 !Char->getType()->isIntegerTy() || 5929 !Length->getType()->isIntegerTy() || 5930 !I.getType()->isPointerTy()) 5931 return false; 5932 5933 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5934 std::pair<SDValue, SDValue> Res = 5935 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5936 getValue(Src), getValue(Char), getValue(Length), 5937 MachinePointerInfo(Src)); 5938 if (Res.first.getNode()) { 5939 setValue(&I, Res.first); 5940 PendingLoads.push_back(Res.second); 5941 return true; 5942 } 5943 5944 return false; 5945 } 5946 5947 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5948 /// optimized form. If so, return true and lower it, otherwise return false 5949 /// and it will be lowered like a normal call. 5950 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5951 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5952 if (I.getNumArgOperands() != 2) 5953 return false; 5954 5955 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5956 if (!Arg0->getType()->isPointerTy() || 5957 !Arg1->getType()->isPointerTy() || 5958 !I.getType()->isPointerTy()) 5959 return false; 5960 5961 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5962 std::pair<SDValue, SDValue> Res = 5963 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5964 getValue(Arg0), getValue(Arg1), 5965 MachinePointerInfo(Arg0), 5966 MachinePointerInfo(Arg1), isStpcpy); 5967 if (Res.first.getNode()) { 5968 setValue(&I, Res.first); 5969 DAG.setRoot(Res.second); 5970 return true; 5971 } 5972 5973 return false; 5974 } 5975 5976 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5977 /// If so, return true and lower it, otherwise return false and it will be 5978 /// lowered like a normal call. 5979 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5980 // Verify that the prototype makes sense. int strcmp(void*,void*) 5981 if (I.getNumArgOperands() != 2) 5982 return false; 5983 5984 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5985 if (!Arg0->getType()->isPointerTy() || 5986 !Arg1->getType()->isPointerTy() || 5987 !I.getType()->isIntegerTy()) 5988 return false; 5989 5990 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5991 std::pair<SDValue, SDValue> Res = 5992 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5993 getValue(Arg0), getValue(Arg1), 5994 MachinePointerInfo(Arg0), 5995 MachinePointerInfo(Arg1)); 5996 if (Res.first.getNode()) { 5997 processIntegerCallValue(I, Res.first, true); 5998 PendingLoads.push_back(Res.second); 5999 return true; 6000 } 6001 6002 return false; 6003 } 6004 6005 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6006 /// form. If so, return true and lower it, otherwise return false and it 6007 /// will be lowered like a normal call. 6008 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6009 // Verify that the prototype makes sense. size_t strlen(char *) 6010 if (I.getNumArgOperands() != 1) 6011 return false; 6012 6013 const Value *Arg0 = I.getArgOperand(0); 6014 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6015 return false; 6016 6017 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6018 std::pair<SDValue, SDValue> Res = 6019 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6020 getValue(Arg0), MachinePointerInfo(Arg0)); 6021 if (Res.first.getNode()) { 6022 processIntegerCallValue(I, Res.first, false); 6023 PendingLoads.push_back(Res.second); 6024 return true; 6025 } 6026 6027 return false; 6028 } 6029 6030 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6031 /// form. If so, return true and lower it, otherwise return false and it 6032 /// will be lowered like a normal call. 6033 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6034 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6035 if (I.getNumArgOperands() != 2) 6036 return false; 6037 6038 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6039 if (!Arg0->getType()->isPointerTy() || 6040 !Arg1->getType()->isIntegerTy() || 6041 !I.getType()->isIntegerTy()) 6042 return false; 6043 6044 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6045 std::pair<SDValue, SDValue> Res = 6046 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6047 getValue(Arg0), getValue(Arg1), 6048 MachinePointerInfo(Arg0)); 6049 if (Res.first.getNode()) { 6050 processIntegerCallValue(I, Res.first, false); 6051 PendingLoads.push_back(Res.second); 6052 return true; 6053 } 6054 6055 return false; 6056 } 6057 6058 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6059 /// operation (as expected), translate it to an SDNode with the specified opcode 6060 /// and return true. 6061 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6062 unsigned Opcode) { 6063 // Sanity check that it really is a unary floating-point call. 6064 if (I.getNumArgOperands() != 1 || 6065 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6066 I.getType() != I.getArgOperand(0)->getType() || 6067 !I.onlyReadsMemory()) 6068 return false; 6069 6070 SDValue Tmp = getValue(I.getArgOperand(0)); 6071 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6072 return true; 6073 } 6074 6075 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6076 /// operation (as expected), translate it to an SDNode with the specified opcode 6077 /// and return true. 6078 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6079 unsigned Opcode) { 6080 // Sanity check that it really is a binary floating-point call. 6081 if (I.getNumArgOperands() != 2 || 6082 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6083 I.getType() != I.getArgOperand(0)->getType() || 6084 I.getType() != I.getArgOperand(1)->getType() || 6085 !I.onlyReadsMemory()) 6086 return false; 6087 6088 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6089 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6090 EVT VT = Tmp0.getValueType(); 6091 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6092 return true; 6093 } 6094 6095 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6096 // Handle inline assembly differently. 6097 if (isa<InlineAsm>(I.getCalledValue())) { 6098 visitInlineAsm(&I); 6099 return; 6100 } 6101 6102 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6103 ComputeUsesVAFloatArgument(I, &MMI); 6104 6105 const char *RenameFn = nullptr; 6106 if (Function *F = I.getCalledFunction()) { 6107 if (F->isDeclaration()) { 6108 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6109 if (unsigned IID = II->getIntrinsicID(F)) { 6110 RenameFn = visitIntrinsicCall(I, IID); 6111 if (!RenameFn) 6112 return; 6113 } 6114 } 6115 if (unsigned IID = F->getIntrinsicID()) { 6116 RenameFn = visitIntrinsicCall(I, IID); 6117 if (!RenameFn) 6118 return; 6119 } 6120 } 6121 6122 // Check for well-known libc/libm calls. If the function is internal, it 6123 // can't be a library call. 6124 LibFunc::Func Func; 6125 if (!F->hasLocalLinkage() && F->hasName() && 6126 LibInfo->getLibFunc(F->getName(), Func) && 6127 LibInfo->hasOptimizedCodeGen(Func)) { 6128 switch (Func) { 6129 default: break; 6130 case LibFunc::copysign: 6131 case LibFunc::copysignf: 6132 case LibFunc::copysignl: 6133 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6134 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6135 I.getType() == I.getArgOperand(0)->getType() && 6136 I.getType() == I.getArgOperand(1)->getType() && 6137 I.onlyReadsMemory()) { 6138 SDValue LHS = getValue(I.getArgOperand(0)); 6139 SDValue RHS = getValue(I.getArgOperand(1)); 6140 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6141 LHS.getValueType(), LHS, RHS)); 6142 return; 6143 } 6144 break; 6145 case LibFunc::fabs: 6146 case LibFunc::fabsf: 6147 case LibFunc::fabsl: 6148 if (visitUnaryFloatCall(I, ISD::FABS)) 6149 return; 6150 break; 6151 case LibFunc::fmin: 6152 case LibFunc::fminf: 6153 case LibFunc::fminl: 6154 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6155 return; 6156 break; 6157 case LibFunc::fmax: 6158 case LibFunc::fmaxf: 6159 case LibFunc::fmaxl: 6160 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6161 return; 6162 break; 6163 case LibFunc::sin: 6164 case LibFunc::sinf: 6165 case LibFunc::sinl: 6166 if (visitUnaryFloatCall(I, ISD::FSIN)) 6167 return; 6168 break; 6169 case LibFunc::cos: 6170 case LibFunc::cosf: 6171 case LibFunc::cosl: 6172 if (visitUnaryFloatCall(I, ISD::FCOS)) 6173 return; 6174 break; 6175 case LibFunc::sqrt: 6176 case LibFunc::sqrtf: 6177 case LibFunc::sqrtl: 6178 case LibFunc::sqrt_finite: 6179 case LibFunc::sqrtf_finite: 6180 case LibFunc::sqrtl_finite: 6181 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6182 return; 6183 break; 6184 case LibFunc::floor: 6185 case LibFunc::floorf: 6186 case LibFunc::floorl: 6187 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6188 return; 6189 break; 6190 case LibFunc::nearbyint: 6191 case LibFunc::nearbyintf: 6192 case LibFunc::nearbyintl: 6193 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6194 return; 6195 break; 6196 case LibFunc::ceil: 6197 case LibFunc::ceilf: 6198 case LibFunc::ceill: 6199 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6200 return; 6201 break; 6202 case LibFunc::rint: 6203 case LibFunc::rintf: 6204 case LibFunc::rintl: 6205 if (visitUnaryFloatCall(I, ISD::FRINT)) 6206 return; 6207 break; 6208 case LibFunc::round: 6209 case LibFunc::roundf: 6210 case LibFunc::roundl: 6211 if (visitUnaryFloatCall(I, ISD::FROUND)) 6212 return; 6213 break; 6214 case LibFunc::trunc: 6215 case LibFunc::truncf: 6216 case LibFunc::truncl: 6217 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6218 return; 6219 break; 6220 case LibFunc::log2: 6221 case LibFunc::log2f: 6222 case LibFunc::log2l: 6223 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6224 return; 6225 break; 6226 case LibFunc::exp2: 6227 case LibFunc::exp2f: 6228 case LibFunc::exp2l: 6229 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6230 return; 6231 break; 6232 case LibFunc::memcmp: 6233 if (visitMemCmpCall(I)) 6234 return; 6235 break; 6236 case LibFunc::memchr: 6237 if (visitMemChrCall(I)) 6238 return; 6239 break; 6240 case LibFunc::strcpy: 6241 if (visitStrCpyCall(I, false)) 6242 return; 6243 break; 6244 case LibFunc::stpcpy: 6245 if (visitStrCpyCall(I, true)) 6246 return; 6247 break; 6248 case LibFunc::strcmp: 6249 if (visitStrCmpCall(I)) 6250 return; 6251 break; 6252 case LibFunc::strlen: 6253 if (visitStrLenCall(I)) 6254 return; 6255 break; 6256 case LibFunc::strnlen: 6257 if (visitStrNLenCall(I)) 6258 return; 6259 break; 6260 } 6261 } 6262 } 6263 6264 SDValue Callee; 6265 if (!RenameFn) 6266 Callee = getValue(I.getCalledValue()); 6267 else 6268 Callee = DAG.getExternalSymbol(RenameFn, 6269 DAG.getTargetLoweringInfo().getPointerTy()); 6270 6271 // Check if we can potentially perform a tail call. More detailed checking is 6272 // be done within LowerCallTo, after more information about the call is known. 6273 LowerCallTo(&I, Callee, I.isTailCall()); 6274 } 6275 6276 namespace { 6277 6278 /// AsmOperandInfo - This contains information for each constraint that we are 6279 /// lowering. 6280 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6281 public: 6282 /// CallOperand - If this is the result output operand or a clobber 6283 /// this is null, otherwise it is the incoming operand to the CallInst. 6284 /// This gets modified as the asm is processed. 6285 SDValue CallOperand; 6286 6287 /// AssignedRegs - If this is a register or register class operand, this 6288 /// contains the set of register corresponding to the operand. 6289 RegsForValue AssignedRegs; 6290 6291 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6292 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6293 } 6294 6295 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6296 /// corresponds to. If there is no Value* for this operand, it returns 6297 /// MVT::Other. 6298 EVT getCallOperandValEVT(LLVMContext &Context, 6299 const TargetLowering &TLI, 6300 const DataLayout *DL) const { 6301 if (!CallOperandVal) return MVT::Other; 6302 6303 if (isa<BasicBlock>(CallOperandVal)) 6304 return TLI.getPointerTy(); 6305 6306 llvm::Type *OpTy = CallOperandVal->getType(); 6307 6308 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6309 // If this is an indirect operand, the operand is a pointer to the 6310 // accessed type. 6311 if (isIndirect) { 6312 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6313 if (!PtrTy) 6314 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6315 OpTy = PtrTy->getElementType(); 6316 } 6317 6318 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6319 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6320 if (STy->getNumElements() == 1) 6321 OpTy = STy->getElementType(0); 6322 6323 // If OpTy is not a single value, it may be a struct/union that we 6324 // can tile with integers. 6325 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6326 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6327 switch (BitSize) { 6328 default: break; 6329 case 1: 6330 case 8: 6331 case 16: 6332 case 32: 6333 case 64: 6334 case 128: 6335 OpTy = IntegerType::get(Context, BitSize); 6336 break; 6337 } 6338 } 6339 6340 return TLI.getValueType(OpTy, true); 6341 } 6342 }; 6343 6344 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6345 6346 } // end anonymous namespace 6347 6348 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6349 /// specified operand. We prefer to assign virtual registers, to allow the 6350 /// register allocator to handle the assignment process. However, if the asm 6351 /// uses features that we can't model on machineinstrs, we have SDISel do the 6352 /// allocation. This produces generally horrible, but correct, code. 6353 /// 6354 /// OpInfo describes the operand. 6355 /// 6356 static void GetRegistersForValue(SelectionDAG &DAG, 6357 const TargetLowering &TLI, 6358 SDLoc DL, 6359 SDISelAsmOperandInfo &OpInfo) { 6360 LLVMContext &Context = *DAG.getContext(); 6361 6362 MachineFunction &MF = DAG.getMachineFunction(); 6363 SmallVector<unsigned, 4> Regs; 6364 6365 // If this is a constraint for a single physreg, or a constraint for a 6366 // register class, find it. 6367 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6368 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6369 OpInfo.ConstraintVT); 6370 6371 unsigned NumRegs = 1; 6372 if (OpInfo.ConstraintVT != MVT::Other) { 6373 // If this is a FP input in an integer register (or visa versa) insert a bit 6374 // cast of the input value. More generally, handle any case where the input 6375 // value disagrees with the register class we plan to stick this in. 6376 if (OpInfo.Type == InlineAsm::isInput && 6377 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6378 // Try to convert to the first EVT that the reg class contains. If the 6379 // types are identical size, use a bitcast to convert (e.g. two differing 6380 // vector types). 6381 MVT RegVT = *PhysReg.second->vt_begin(); 6382 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6383 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6384 RegVT, OpInfo.CallOperand); 6385 OpInfo.ConstraintVT = RegVT; 6386 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6387 // If the input is a FP value and we want it in FP registers, do a 6388 // bitcast to the corresponding integer type. This turns an f64 value 6389 // into i64, which can be passed with two i32 values on a 32-bit 6390 // machine. 6391 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6392 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6393 RegVT, OpInfo.CallOperand); 6394 OpInfo.ConstraintVT = RegVT; 6395 } 6396 } 6397 6398 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6399 } 6400 6401 MVT RegVT; 6402 EVT ValueVT = OpInfo.ConstraintVT; 6403 6404 // If this is a constraint for a specific physical register, like {r17}, 6405 // assign it now. 6406 if (unsigned AssignedReg = PhysReg.first) { 6407 const TargetRegisterClass *RC = PhysReg.second; 6408 if (OpInfo.ConstraintVT == MVT::Other) 6409 ValueVT = *RC->vt_begin(); 6410 6411 // Get the actual register value type. This is important, because the user 6412 // may have asked for (e.g.) the AX register in i32 type. We need to 6413 // remember that AX is actually i16 to get the right extension. 6414 RegVT = *RC->vt_begin(); 6415 6416 // This is a explicit reference to a physical register. 6417 Regs.push_back(AssignedReg); 6418 6419 // If this is an expanded reference, add the rest of the regs to Regs. 6420 if (NumRegs != 1) { 6421 TargetRegisterClass::iterator I = RC->begin(); 6422 for (; *I != AssignedReg; ++I) 6423 assert(I != RC->end() && "Didn't find reg!"); 6424 6425 // Already added the first reg. 6426 --NumRegs; ++I; 6427 for (; NumRegs; --NumRegs, ++I) { 6428 assert(I != RC->end() && "Ran out of registers to allocate!"); 6429 Regs.push_back(*I); 6430 } 6431 } 6432 6433 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6434 return; 6435 } 6436 6437 // Otherwise, if this was a reference to an LLVM register class, create vregs 6438 // for this reference. 6439 if (const TargetRegisterClass *RC = PhysReg.second) { 6440 RegVT = *RC->vt_begin(); 6441 if (OpInfo.ConstraintVT == MVT::Other) 6442 ValueVT = RegVT; 6443 6444 // Create the appropriate number of virtual registers. 6445 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6446 for (; NumRegs; --NumRegs) 6447 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6448 6449 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6450 return; 6451 } 6452 6453 // Otherwise, we couldn't allocate enough registers for this. 6454 } 6455 6456 /// visitInlineAsm - Handle a call to an InlineAsm object. 6457 /// 6458 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6459 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6460 6461 /// ConstraintOperands - Information about all of the constraints. 6462 SDISelAsmOperandInfoVector ConstraintOperands; 6463 6464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6465 TargetLowering::AsmOperandInfoVector 6466 TargetConstraints = TLI.ParseConstraints(CS); 6467 6468 bool hasMemory = false; 6469 6470 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6471 unsigned ResNo = 0; // ResNo - The result number of the next output. 6472 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6473 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6474 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6475 6476 MVT OpVT = MVT::Other; 6477 6478 // Compute the value type for each operand. 6479 switch (OpInfo.Type) { 6480 case InlineAsm::isOutput: 6481 // Indirect outputs just consume an argument. 6482 if (OpInfo.isIndirect) { 6483 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6484 break; 6485 } 6486 6487 // The return value of the call is this value. As such, there is no 6488 // corresponding argument. 6489 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6490 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6491 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6492 } else { 6493 assert(ResNo == 0 && "Asm only has one result!"); 6494 OpVT = TLI.getSimpleValueType(CS.getType()); 6495 } 6496 ++ResNo; 6497 break; 6498 case InlineAsm::isInput: 6499 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6500 break; 6501 case InlineAsm::isClobber: 6502 // Nothing to do. 6503 break; 6504 } 6505 6506 // If this is an input or an indirect output, process the call argument. 6507 // BasicBlocks are labels, currently appearing only in asm's. 6508 if (OpInfo.CallOperandVal) { 6509 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6510 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6511 } else { 6512 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6513 } 6514 6515 OpVT = 6516 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6517 } 6518 6519 OpInfo.ConstraintVT = OpVT; 6520 6521 // Indirect operand accesses access memory. 6522 if (OpInfo.isIndirect) 6523 hasMemory = true; 6524 else { 6525 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6526 TargetLowering::ConstraintType 6527 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6528 if (CType == TargetLowering::C_Memory) { 6529 hasMemory = true; 6530 break; 6531 } 6532 } 6533 } 6534 } 6535 6536 SDValue Chain, Flag; 6537 6538 // We won't need to flush pending loads if this asm doesn't touch 6539 // memory and is nonvolatile. 6540 if (hasMemory || IA->hasSideEffects()) 6541 Chain = getRoot(); 6542 else 6543 Chain = DAG.getRoot(); 6544 6545 // Second pass over the constraints: compute which constraint option to use 6546 // and assign registers to constraints that want a specific physreg. 6547 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6548 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6549 6550 // If this is an output operand with a matching input operand, look up the 6551 // matching input. If their types mismatch, e.g. one is an integer, the 6552 // other is floating point, or their sizes are different, flag it as an 6553 // error. 6554 if (OpInfo.hasMatchingInput()) { 6555 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6556 6557 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6558 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6559 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6560 OpInfo.ConstraintVT); 6561 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6562 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6563 Input.ConstraintVT); 6564 if ((OpInfo.ConstraintVT.isInteger() != 6565 Input.ConstraintVT.isInteger()) || 6566 (MatchRC.second != InputRC.second)) { 6567 report_fatal_error("Unsupported asm: input constraint" 6568 " with a matching output constraint of" 6569 " incompatible type!"); 6570 } 6571 Input.ConstraintVT = OpInfo.ConstraintVT; 6572 } 6573 } 6574 6575 // Compute the constraint code and ConstraintType to use. 6576 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6577 6578 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6579 OpInfo.Type == InlineAsm::isClobber) 6580 continue; 6581 6582 // If this is a memory input, and if the operand is not indirect, do what we 6583 // need to to provide an address for the memory input. 6584 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6585 !OpInfo.isIndirect) { 6586 assert((OpInfo.isMultipleAlternative || 6587 (OpInfo.Type == InlineAsm::isInput)) && 6588 "Can only indirectify direct input operands!"); 6589 6590 // Memory operands really want the address of the value. If we don't have 6591 // an indirect input, put it in the constpool if we can, otherwise spill 6592 // it to a stack slot. 6593 // TODO: This isn't quite right. We need to handle these according to 6594 // the addressing mode that the constraint wants. Also, this may take 6595 // an additional register for the computation and we don't want that 6596 // either. 6597 6598 // If the operand is a float, integer, or vector constant, spill to a 6599 // constant pool entry to get its address. 6600 const Value *OpVal = OpInfo.CallOperandVal; 6601 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6602 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6603 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6604 TLI.getPointerTy()); 6605 } else { 6606 // Otherwise, create a stack slot and emit a store to it before the 6607 // asm. 6608 Type *Ty = OpVal->getType(); 6609 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6610 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6611 MachineFunction &MF = DAG.getMachineFunction(); 6612 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6613 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6614 Chain = DAG.getStore(Chain, getCurSDLoc(), 6615 OpInfo.CallOperand, StackSlot, 6616 MachinePointerInfo::getFixedStack(SSFI), 6617 false, false, 0); 6618 OpInfo.CallOperand = StackSlot; 6619 } 6620 6621 // There is no longer a Value* corresponding to this operand. 6622 OpInfo.CallOperandVal = nullptr; 6623 6624 // It is now an indirect operand. 6625 OpInfo.isIndirect = true; 6626 } 6627 6628 // If this constraint is for a specific register, allocate it before 6629 // anything else. 6630 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6631 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6632 } 6633 6634 // Second pass - Loop over all of the operands, assigning virtual or physregs 6635 // to register class operands. 6636 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6637 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6638 6639 // C_Register operands have already been allocated, Other/Memory don't need 6640 // to be. 6641 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6642 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6643 } 6644 6645 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6646 std::vector<SDValue> AsmNodeOperands; 6647 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6648 AsmNodeOperands.push_back( 6649 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6650 TLI.getPointerTy())); 6651 6652 // If we have a !srcloc metadata node associated with it, we want to attach 6653 // this to the ultimately generated inline asm machineinstr. To do this, we 6654 // pass in the third operand as this (potentially null) inline asm MDNode. 6655 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6656 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6657 6658 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6659 // bits as operand 3. 6660 unsigned ExtraInfo = 0; 6661 if (IA->hasSideEffects()) 6662 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6663 if (IA->isAlignStack()) 6664 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6665 // Set the asm dialect. 6666 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6667 6668 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6669 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6670 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6671 6672 // Compute the constraint code and ConstraintType to use. 6673 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6674 6675 // Ideally, we would only check against memory constraints. However, the 6676 // meaning of an other constraint can be target-specific and we can't easily 6677 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6678 // for other constriants as well. 6679 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6680 OpInfo.ConstraintType == TargetLowering::C_Other) { 6681 if (OpInfo.Type == InlineAsm::isInput) 6682 ExtraInfo |= InlineAsm::Extra_MayLoad; 6683 else if (OpInfo.Type == InlineAsm::isOutput) 6684 ExtraInfo |= InlineAsm::Extra_MayStore; 6685 else if (OpInfo.Type == InlineAsm::isClobber) 6686 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6687 } 6688 } 6689 6690 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6691 TLI.getPointerTy())); 6692 6693 // Loop over all of the inputs, copying the operand values into the 6694 // appropriate registers and processing the output regs. 6695 RegsForValue RetValRegs; 6696 6697 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6698 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6699 6700 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6701 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6702 6703 switch (OpInfo.Type) { 6704 case InlineAsm::isOutput: { 6705 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6706 OpInfo.ConstraintType != TargetLowering::C_Register) { 6707 // Memory output, or 'other' output (e.g. 'X' constraint). 6708 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6709 6710 // Add information to the INLINEASM node to know about this output. 6711 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6712 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6713 TLI.getPointerTy())); 6714 AsmNodeOperands.push_back(OpInfo.CallOperand); 6715 break; 6716 } 6717 6718 // Otherwise, this is a register or register class output. 6719 6720 // Copy the output from the appropriate register. Find a register that 6721 // we can use. 6722 if (OpInfo.AssignedRegs.Regs.empty()) { 6723 LLVMContext &Ctx = *DAG.getContext(); 6724 Ctx.emitError(CS.getInstruction(), 6725 "couldn't allocate output register for constraint '" + 6726 Twine(OpInfo.ConstraintCode) + "'"); 6727 return; 6728 } 6729 6730 // If this is an indirect operand, store through the pointer after the 6731 // asm. 6732 if (OpInfo.isIndirect) { 6733 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6734 OpInfo.CallOperandVal)); 6735 } else { 6736 // This is the result value of the call. 6737 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6738 // Concatenate this output onto the outputs list. 6739 RetValRegs.append(OpInfo.AssignedRegs); 6740 } 6741 6742 // Add information to the INLINEASM node to know that this register is 6743 // set. 6744 OpInfo.AssignedRegs 6745 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6746 ? InlineAsm::Kind_RegDefEarlyClobber 6747 : InlineAsm::Kind_RegDef, 6748 false, 0, DAG, AsmNodeOperands); 6749 break; 6750 } 6751 case InlineAsm::isInput: { 6752 SDValue InOperandVal = OpInfo.CallOperand; 6753 6754 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6755 // If this is required to match an output register we have already set, 6756 // just use its register. 6757 unsigned OperandNo = OpInfo.getMatchedOperand(); 6758 6759 // Scan until we find the definition we already emitted of this operand. 6760 // When we find it, create a RegsForValue operand. 6761 unsigned CurOp = InlineAsm::Op_FirstOperand; 6762 for (; OperandNo; --OperandNo) { 6763 // Advance to the next operand. 6764 unsigned OpFlag = 6765 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6766 assert((InlineAsm::isRegDefKind(OpFlag) || 6767 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6768 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6769 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6770 } 6771 6772 unsigned OpFlag = 6773 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6774 if (InlineAsm::isRegDefKind(OpFlag) || 6775 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6776 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6777 if (OpInfo.isIndirect) { 6778 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6779 LLVMContext &Ctx = *DAG.getContext(); 6780 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6781 " don't know how to handle tied " 6782 "indirect register inputs"); 6783 return; 6784 } 6785 6786 RegsForValue MatchedRegs; 6787 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6788 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6789 MatchedRegs.RegVTs.push_back(RegVT); 6790 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6791 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6792 i != e; ++i) { 6793 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6794 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6795 else { 6796 LLVMContext &Ctx = *DAG.getContext(); 6797 Ctx.emitError(CS.getInstruction(), 6798 "inline asm error: This value" 6799 " type register class is not natively supported!"); 6800 return; 6801 } 6802 } 6803 // Use the produced MatchedRegs object to 6804 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6805 Chain, &Flag, CS.getInstruction()); 6806 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6807 true, OpInfo.getMatchedOperand(), 6808 DAG, AsmNodeOperands); 6809 break; 6810 } 6811 6812 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6813 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6814 "Unexpected number of operands"); 6815 // Add information to the INLINEASM node to know about this input. 6816 // See InlineAsm.h isUseOperandTiedToDef. 6817 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6818 OpInfo.getMatchedOperand()); 6819 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6820 TLI.getPointerTy())); 6821 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6822 break; 6823 } 6824 6825 // Treat indirect 'X' constraint as memory. 6826 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6827 OpInfo.isIndirect) 6828 OpInfo.ConstraintType = TargetLowering::C_Memory; 6829 6830 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6831 std::vector<SDValue> Ops; 6832 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6833 Ops, DAG); 6834 if (Ops.empty()) { 6835 LLVMContext &Ctx = *DAG.getContext(); 6836 Ctx.emitError(CS.getInstruction(), 6837 "invalid operand for inline asm constraint '" + 6838 Twine(OpInfo.ConstraintCode) + "'"); 6839 return; 6840 } 6841 6842 // Add information to the INLINEASM node to know about this input. 6843 unsigned ResOpType = 6844 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6845 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6846 TLI.getPointerTy())); 6847 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6848 break; 6849 } 6850 6851 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6852 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6853 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6854 "Memory operands expect pointer values"); 6855 6856 // Add information to the INLINEASM node to know about this input. 6857 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6858 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6859 TLI.getPointerTy())); 6860 AsmNodeOperands.push_back(InOperandVal); 6861 break; 6862 } 6863 6864 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6865 OpInfo.ConstraintType == TargetLowering::C_Register) && 6866 "Unknown constraint type!"); 6867 6868 // TODO: Support this. 6869 if (OpInfo.isIndirect) { 6870 LLVMContext &Ctx = *DAG.getContext(); 6871 Ctx.emitError(CS.getInstruction(), 6872 "Don't know how to handle indirect register inputs yet " 6873 "for constraint '" + 6874 Twine(OpInfo.ConstraintCode) + "'"); 6875 return; 6876 } 6877 6878 // Copy the input into the appropriate registers. 6879 if (OpInfo.AssignedRegs.Regs.empty()) { 6880 LLVMContext &Ctx = *DAG.getContext(); 6881 Ctx.emitError(CS.getInstruction(), 6882 "couldn't allocate input reg for constraint '" + 6883 Twine(OpInfo.ConstraintCode) + "'"); 6884 return; 6885 } 6886 6887 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6888 Chain, &Flag, CS.getInstruction()); 6889 6890 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6891 DAG, AsmNodeOperands); 6892 break; 6893 } 6894 case InlineAsm::isClobber: { 6895 // Add the clobbered value to the operand list, so that the register 6896 // allocator is aware that the physreg got clobbered. 6897 if (!OpInfo.AssignedRegs.Regs.empty()) 6898 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6899 false, 0, DAG, 6900 AsmNodeOperands); 6901 break; 6902 } 6903 } 6904 } 6905 6906 // Finish up input operands. Set the input chain and add the flag last. 6907 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6908 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6909 6910 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6911 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6912 Flag = Chain.getValue(1); 6913 6914 // If this asm returns a register value, copy the result from that register 6915 // and set it as the value of the call. 6916 if (!RetValRegs.Regs.empty()) { 6917 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6918 Chain, &Flag, CS.getInstruction()); 6919 6920 // FIXME: Why don't we do this for inline asms with MRVs? 6921 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6922 EVT ResultType = TLI.getValueType(CS.getType()); 6923 6924 // If any of the results of the inline asm is a vector, it may have the 6925 // wrong width/num elts. This can happen for register classes that can 6926 // contain multiple different value types. The preg or vreg allocated may 6927 // not have the same VT as was expected. Convert it to the right type 6928 // with bit_convert. 6929 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6930 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6931 ResultType, Val); 6932 6933 } else if (ResultType != Val.getValueType() && 6934 ResultType.isInteger() && Val.getValueType().isInteger()) { 6935 // If a result value was tied to an input value, the computed result may 6936 // have a wider width than the expected result. Extract the relevant 6937 // portion. 6938 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6939 } 6940 6941 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6942 } 6943 6944 setValue(CS.getInstruction(), Val); 6945 // Don't need to use this as a chain in this case. 6946 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6947 return; 6948 } 6949 6950 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6951 6952 // Process indirect outputs, first output all of the flagged copies out of 6953 // physregs. 6954 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6955 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6956 const Value *Ptr = IndirectStoresToEmit[i].second; 6957 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6958 Chain, &Flag, IA); 6959 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6960 } 6961 6962 // Emit the non-flagged stores from the physregs. 6963 SmallVector<SDValue, 8> OutChains; 6964 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6965 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6966 StoresToEmit[i].first, 6967 getValue(StoresToEmit[i].second), 6968 MachinePointerInfo(StoresToEmit[i].second), 6969 false, false, 0); 6970 OutChains.push_back(Val); 6971 } 6972 6973 if (!OutChains.empty()) 6974 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6975 6976 DAG.setRoot(Chain); 6977 } 6978 6979 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6980 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6981 MVT::Other, getRoot(), 6982 getValue(I.getArgOperand(0)), 6983 DAG.getSrcValue(I.getArgOperand(0)))); 6984 } 6985 6986 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6987 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6988 const DataLayout &DL = *TLI.getDataLayout(); 6989 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6990 getRoot(), getValue(I.getOperand(0)), 6991 DAG.getSrcValue(I.getOperand(0)), 6992 DL.getABITypeAlignment(I.getType())); 6993 setValue(&I, V); 6994 DAG.setRoot(V.getValue(1)); 6995 } 6996 6997 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6998 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6999 MVT::Other, getRoot(), 7000 getValue(I.getArgOperand(0)), 7001 DAG.getSrcValue(I.getArgOperand(0)))); 7002 } 7003 7004 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7005 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7006 MVT::Other, getRoot(), 7007 getValue(I.getArgOperand(0)), 7008 getValue(I.getArgOperand(1)), 7009 DAG.getSrcValue(I.getArgOperand(0)), 7010 DAG.getSrcValue(I.getArgOperand(1)))); 7011 } 7012 7013 /// \brief Lower an argument list according to the target calling convention. 7014 /// 7015 /// \return A tuple of <return-value, token-chain> 7016 /// 7017 /// This is a helper for lowering intrinsics that follow a target calling 7018 /// convention or require stack pointer adjustment. Only a subset of the 7019 /// intrinsic's operands need to participate in the calling convention. 7020 std::pair<SDValue, SDValue> 7021 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 7022 unsigned NumArgs, SDValue Callee, 7023 bool UseVoidTy, 7024 MachineBasicBlock *LandingPad, 7025 bool IsPatchPoint) { 7026 TargetLowering::ArgListTy Args; 7027 Args.reserve(NumArgs); 7028 7029 // Populate the argument list. 7030 // Attributes for args start at offset 1, after the return attribute. 7031 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7032 ArgI != ArgE; ++ArgI) { 7033 const Value *V = CS->getOperand(ArgI); 7034 7035 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7036 7037 TargetLowering::ArgListEntry Entry; 7038 Entry.Node = getValue(V); 7039 Entry.Ty = V->getType(); 7040 Entry.setAttributes(&CS, AttrI); 7041 Args.push_back(Entry); 7042 } 7043 7044 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7045 TargetLowering::CallLoweringInfo CLI(DAG); 7046 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 7047 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 7048 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 7049 7050 return lowerInvokable(CLI, LandingPad); 7051 } 7052 7053 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7054 /// or patchpoint target node's operand list. 7055 /// 7056 /// Constants are converted to TargetConstants purely as an optimization to 7057 /// avoid constant materialization and register allocation. 7058 /// 7059 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7060 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7061 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7062 /// address materialization and register allocation, but may also be required 7063 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7064 /// alloca in the entry block, then the runtime may assume that the alloca's 7065 /// StackMap location can be read immediately after compilation and that the 7066 /// location is valid at any point during execution (this is similar to the 7067 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7068 /// only available in a register, then the runtime would need to trap when 7069 /// execution reaches the StackMap in order to read the alloca's location. 7070 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7071 SmallVectorImpl<SDValue> &Ops, 7072 SelectionDAGBuilder &Builder) { 7073 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7074 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7075 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7076 Ops.push_back( 7077 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 7078 Ops.push_back( 7079 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 7080 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7081 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7082 Ops.push_back( 7083 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 7084 } else 7085 Ops.push_back(OpVal); 7086 } 7087 } 7088 7089 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7090 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7091 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7092 // [live variables...]) 7093 7094 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7095 7096 SDValue Chain, InFlag, Callee, NullPtr; 7097 SmallVector<SDValue, 32> Ops; 7098 7099 SDLoc DL = getCurSDLoc(); 7100 Callee = getValue(CI.getCalledValue()); 7101 NullPtr = DAG.getIntPtrConstant(0, true); 7102 7103 // The stackmap intrinsic only records the live variables (the arguemnts 7104 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7105 // intrinsic, this won't be lowered to a function call. This means we don't 7106 // have to worry about calling conventions and target specific lowering code. 7107 // Instead we perform the call lowering right here. 7108 // 7109 // chain, flag = CALLSEQ_START(chain, 0) 7110 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7111 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7112 // 7113 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7114 InFlag = Chain.getValue(1); 7115 7116 // Add the <id> and <numBytes> constants. 7117 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7118 Ops.push_back(DAG.getTargetConstant( 7119 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7120 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7121 Ops.push_back(DAG.getTargetConstant( 7122 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7123 7124 // Push live variables for the stack map. 7125 addStackMapLiveVars(&CI, 2, Ops, *this); 7126 7127 // We are not pushing any register mask info here on the operands list, 7128 // because the stackmap doesn't clobber anything. 7129 7130 // Push the chain and the glue flag. 7131 Ops.push_back(Chain); 7132 Ops.push_back(InFlag); 7133 7134 // Create the STACKMAP node. 7135 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7136 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7137 Chain = SDValue(SM, 0); 7138 InFlag = Chain.getValue(1); 7139 7140 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7141 7142 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7143 7144 // Set the root to the target-lowered call chain. 7145 DAG.setRoot(Chain); 7146 7147 // Inform the Frame Information that we have a stackmap in this function. 7148 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7149 } 7150 7151 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7152 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7153 MachineBasicBlock *LandingPad) { 7154 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7155 // i32 <numBytes>, 7156 // i8* <target>, 7157 // i32 <numArgs>, 7158 // [Args...], 7159 // [live variables...]) 7160 7161 CallingConv::ID CC = CS.getCallingConv(); 7162 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7163 bool HasDef = !CS->getType()->isVoidTy(); 7164 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7165 7166 // Get the real number of arguments participating in the call <numArgs> 7167 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7168 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7169 7170 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7171 // Intrinsics include all meta-operands up to but not including CC. 7172 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7173 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7174 "Not enough arguments provided to the patchpoint intrinsic"); 7175 7176 // For AnyRegCC the arguments are lowered later on manually. 7177 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7178 std::pair<SDValue, SDValue> Result = 7179 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7180 LandingPad, true); 7181 7182 SDNode *CallEnd = Result.second.getNode(); 7183 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7184 CallEnd = CallEnd->getOperand(0).getNode(); 7185 7186 /// Get a call instruction from the call sequence chain. 7187 /// Tail calls are not allowed. 7188 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7189 "Expected a callseq node."); 7190 SDNode *Call = CallEnd->getOperand(0).getNode(); 7191 bool HasGlue = Call->getGluedNode(); 7192 7193 // Replace the target specific call node with the patchable intrinsic. 7194 SmallVector<SDValue, 8> Ops; 7195 7196 // Add the <id> and <numBytes> constants. 7197 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7198 Ops.push_back(DAG.getTargetConstant( 7199 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7200 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7201 Ops.push_back(DAG.getTargetConstant( 7202 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7203 7204 // Assume that the Callee is a constant address. 7205 // FIXME: handle function symbols in the future. 7206 Ops.push_back( 7207 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7208 /*isTarget=*/true)); 7209 7210 // Adjust <numArgs> to account for any arguments that have been passed on the 7211 // stack instead. 7212 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7213 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7214 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7215 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7216 7217 // Add the calling convention 7218 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7219 7220 // Add the arguments we omitted previously. The register allocator should 7221 // place these in any free register. 7222 if (IsAnyRegCC) 7223 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7224 Ops.push_back(getValue(CS.getArgument(i))); 7225 7226 // Push the arguments from the call instruction up to the register mask. 7227 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7228 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7229 Ops.push_back(*i); 7230 7231 // Push live variables for the stack map. 7232 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7233 7234 // Push the register mask info. 7235 if (HasGlue) 7236 Ops.push_back(*(Call->op_end()-2)); 7237 else 7238 Ops.push_back(*(Call->op_end()-1)); 7239 7240 // Push the chain (this is originally the first operand of the call, but 7241 // becomes now the last or second to last operand). 7242 Ops.push_back(*(Call->op_begin())); 7243 7244 // Push the glue flag (last operand). 7245 if (HasGlue) 7246 Ops.push_back(*(Call->op_end()-1)); 7247 7248 SDVTList NodeTys; 7249 if (IsAnyRegCC && HasDef) { 7250 // Create the return types based on the intrinsic definition 7251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7252 SmallVector<EVT, 3> ValueVTs; 7253 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7254 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7255 7256 // There is always a chain and a glue type at the end 7257 ValueVTs.push_back(MVT::Other); 7258 ValueVTs.push_back(MVT::Glue); 7259 NodeTys = DAG.getVTList(ValueVTs); 7260 } else 7261 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7262 7263 // Replace the target specific call node with a PATCHPOINT node. 7264 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7265 getCurSDLoc(), NodeTys, Ops); 7266 7267 // Update the NodeMap. 7268 if (HasDef) { 7269 if (IsAnyRegCC) 7270 setValue(CS.getInstruction(), SDValue(MN, 0)); 7271 else 7272 setValue(CS.getInstruction(), Result.first); 7273 } 7274 7275 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7276 // call sequence. Furthermore the location of the chain and glue can change 7277 // when the AnyReg calling convention is used and the intrinsic returns a 7278 // value. 7279 if (IsAnyRegCC && HasDef) { 7280 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7281 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7282 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7283 } else 7284 DAG.ReplaceAllUsesWith(Call, MN); 7285 DAG.DeleteNode(Call); 7286 7287 // Inform the Frame Information that we have a patchpoint in this function. 7288 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7289 } 7290 7291 /// Returns an AttributeSet representing the attributes applied to the return 7292 /// value of the given call. 7293 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7294 SmallVector<Attribute::AttrKind, 2> Attrs; 7295 if (CLI.RetSExt) 7296 Attrs.push_back(Attribute::SExt); 7297 if (CLI.RetZExt) 7298 Attrs.push_back(Attribute::ZExt); 7299 if (CLI.IsInReg) 7300 Attrs.push_back(Attribute::InReg); 7301 7302 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7303 Attrs); 7304 } 7305 7306 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7307 /// implementation, which just calls LowerCall. 7308 /// FIXME: When all targets are 7309 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7310 std::pair<SDValue, SDValue> 7311 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7312 // Handle the incoming return values from the call. 7313 CLI.Ins.clear(); 7314 Type *OrigRetTy = CLI.RetTy; 7315 SmallVector<EVT, 4> RetTys; 7316 SmallVector<uint64_t, 4> Offsets; 7317 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7318 7319 SmallVector<ISD::OutputArg, 4> Outs; 7320 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7321 7322 bool CanLowerReturn = 7323 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7324 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7325 7326 SDValue DemoteStackSlot; 7327 int DemoteStackIdx = -100; 7328 if (!CanLowerReturn) { 7329 // FIXME: equivalent assert? 7330 // assert(!CS.hasInAllocaArgument() && 7331 // "sret demotion is incompatible with inalloca"); 7332 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7333 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7334 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7335 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7336 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7337 7338 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7339 ArgListEntry Entry; 7340 Entry.Node = DemoteStackSlot; 7341 Entry.Ty = StackSlotPtrType; 7342 Entry.isSExt = false; 7343 Entry.isZExt = false; 7344 Entry.isInReg = false; 7345 Entry.isSRet = true; 7346 Entry.isNest = false; 7347 Entry.isByVal = false; 7348 Entry.isReturned = false; 7349 Entry.Alignment = Align; 7350 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7351 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7352 7353 // sret demotion isn't compatible with tail-calls, since the sret argument 7354 // points into the callers stack frame. 7355 CLI.IsTailCall = false; 7356 } else { 7357 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7358 EVT VT = RetTys[I]; 7359 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7360 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7361 for (unsigned i = 0; i != NumRegs; ++i) { 7362 ISD::InputArg MyFlags; 7363 MyFlags.VT = RegisterVT; 7364 MyFlags.ArgVT = VT; 7365 MyFlags.Used = CLI.IsReturnValueUsed; 7366 if (CLI.RetSExt) 7367 MyFlags.Flags.setSExt(); 7368 if (CLI.RetZExt) 7369 MyFlags.Flags.setZExt(); 7370 if (CLI.IsInReg) 7371 MyFlags.Flags.setInReg(); 7372 CLI.Ins.push_back(MyFlags); 7373 } 7374 } 7375 } 7376 7377 // Handle all of the outgoing arguments. 7378 CLI.Outs.clear(); 7379 CLI.OutVals.clear(); 7380 ArgListTy &Args = CLI.getArgs(); 7381 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7382 SmallVector<EVT, 4> ValueVTs; 7383 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7384 Type *FinalType = Args[i].Ty; 7385 if (Args[i].isByVal) 7386 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7387 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7388 FinalType, CLI.CallConv, CLI.IsVarArg); 7389 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7390 ++Value) { 7391 EVT VT = ValueVTs[Value]; 7392 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7393 SDValue Op = SDValue(Args[i].Node.getNode(), 7394 Args[i].Node.getResNo() + Value); 7395 ISD::ArgFlagsTy Flags; 7396 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7397 7398 if (Args[i].isZExt) 7399 Flags.setZExt(); 7400 if (Args[i].isSExt) 7401 Flags.setSExt(); 7402 if (Args[i].isInReg) 7403 Flags.setInReg(); 7404 if (Args[i].isSRet) 7405 Flags.setSRet(); 7406 if (Args[i].isByVal) 7407 Flags.setByVal(); 7408 if (Args[i].isInAlloca) { 7409 Flags.setInAlloca(); 7410 // Set the byval flag for CCAssignFn callbacks that don't know about 7411 // inalloca. This way we can know how many bytes we should've allocated 7412 // and how many bytes a callee cleanup function will pop. If we port 7413 // inalloca to more targets, we'll have to add custom inalloca handling 7414 // in the various CC lowering callbacks. 7415 Flags.setByVal(); 7416 } 7417 if (Args[i].isByVal || Args[i].isInAlloca) { 7418 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7419 Type *ElementTy = Ty->getElementType(); 7420 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7421 // For ByVal, alignment should come from FE. BE will guess if this 7422 // info is not there but there are cases it cannot get right. 7423 unsigned FrameAlign; 7424 if (Args[i].Alignment) 7425 FrameAlign = Args[i].Alignment; 7426 else 7427 FrameAlign = getByValTypeAlignment(ElementTy); 7428 Flags.setByValAlign(FrameAlign); 7429 } 7430 if (Args[i].isNest) 7431 Flags.setNest(); 7432 if (NeedsRegBlock) { 7433 Flags.setInConsecutiveRegs(); 7434 if (Value == NumValues - 1) 7435 Flags.setInConsecutiveRegsLast(); 7436 } 7437 Flags.setOrigAlign(OriginalAlignment); 7438 7439 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7440 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7441 SmallVector<SDValue, 4> Parts(NumParts); 7442 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7443 7444 if (Args[i].isSExt) 7445 ExtendKind = ISD::SIGN_EXTEND; 7446 else if (Args[i].isZExt) 7447 ExtendKind = ISD::ZERO_EXTEND; 7448 7449 // Conservatively only handle 'returned' on non-vectors for now 7450 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7451 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7452 "unexpected use of 'returned'"); 7453 // Before passing 'returned' to the target lowering code, ensure that 7454 // either the register MVT and the actual EVT are the same size or that 7455 // the return value and argument are extended in the same way; in these 7456 // cases it's safe to pass the argument register value unchanged as the 7457 // return register value (although it's at the target's option whether 7458 // to do so) 7459 // TODO: allow code generation to take advantage of partially preserved 7460 // registers rather than clobbering the entire register when the 7461 // parameter extension method is not compatible with the return 7462 // extension method 7463 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7464 (ExtendKind != ISD::ANY_EXTEND && 7465 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7466 Flags.setReturned(); 7467 } 7468 7469 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7470 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7471 7472 for (unsigned j = 0; j != NumParts; ++j) { 7473 // if it isn't first piece, alignment must be 1 7474 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7475 i < CLI.NumFixedArgs, 7476 i, j*Parts[j].getValueType().getStoreSize()); 7477 if (NumParts > 1 && j == 0) 7478 MyFlags.Flags.setSplit(); 7479 else if (j != 0) 7480 MyFlags.Flags.setOrigAlign(1); 7481 7482 CLI.Outs.push_back(MyFlags); 7483 CLI.OutVals.push_back(Parts[j]); 7484 } 7485 } 7486 } 7487 7488 SmallVector<SDValue, 4> InVals; 7489 CLI.Chain = LowerCall(CLI, InVals); 7490 7491 // Verify that the target's LowerCall behaved as expected. 7492 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7493 "LowerCall didn't return a valid chain!"); 7494 assert((!CLI.IsTailCall || InVals.empty()) && 7495 "LowerCall emitted a return value for a tail call!"); 7496 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7497 "LowerCall didn't emit the correct number of values!"); 7498 7499 // For a tail call, the return value is merely live-out and there aren't 7500 // any nodes in the DAG representing it. Return a special value to 7501 // indicate that a tail call has been emitted and no more Instructions 7502 // should be processed in the current block. 7503 if (CLI.IsTailCall) { 7504 CLI.DAG.setRoot(CLI.Chain); 7505 return std::make_pair(SDValue(), SDValue()); 7506 } 7507 7508 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7509 assert(InVals[i].getNode() && 7510 "LowerCall emitted a null value!"); 7511 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7512 "LowerCall emitted a value with the wrong type!"); 7513 }); 7514 7515 SmallVector<SDValue, 4> ReturnValues; 7516 if (!CanLowerReturn) { 7517 // The instruction result is the result of loading from the 7518 // hidden sret parameter. 7519 SmallVector<EVT, 1> PVTs; 7520 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7521 7522 ComputeValueVTs(*this, PtrRetTy, PVTs); 7523 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7524 EVT PtrVT = PVTs[0]; 7525 7526 unsigned NumValues = RetTys.size(); 7527 ReturnValues.resize(NumValues); 7528 SmallVector<SDValue, 4> Chains(NumValues); 7529 7530 for (unsigned i = 0; i < NumValues; ++i) { 7531 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7532 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7533 SDValue L = CLI.DAG.getLoad( 7534 RetTys[i], CLI.DL, CLI.Chain, Add, 7535 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7536 false, false, 1); 7537 ReturnValues[i] = L; 7538 Chains[i] = L.getValue(1); 7539 } 7540 7541 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7542 } else { 7543 // Collect the legal value parts into potentially illegal values 7544 // that correspond to the original function's return values. 7545 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7546 if (CLI.RetSExt) 7547 AssertOp = ISD::AssertSext; 7548 else if (CLI.RetZExt) 7549 AssertOp = ISD::AssertZext; 7550 unsigned CurReg = 0; 7551 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7552 EVT VT = RetTys[I]; 7553 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7554 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7555 7556 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7557 NumRegs, RegisterVT, VT, nullptr, 7558 AssertOp)); 7559 CurReg += NumRegs; 7560 } 7561 7562 // For a function returning void, there is no return value. We can't create 7563 // such a node, so we just return a null return value in that case. In 7564 // that case, nothing will actually look at the value. 7565 if (ReturnValues.empty()) 7566 return std::make_pair(SDValue(), CLI.Chain); 7567 } 7568 7569 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7570 CLI.DAG.getVTList(RetTys), ReturnValues); 7571 return std::make_pair(Res, CLI.Chain); 7572 } 7573 7574 void TargetLowering::LowerOperationWrapper(SDNode *N, 7575 SmallVectorImpl<SDValue> &Results, 7576 SelectionDAG &DAG) const { 7577 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7578 if (Res.getNode()) 7579 Results.push_back(Res); 7580 } 7581 7582 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7583 llvm_unreachable("LowerOperation not implemented for this target!"); 7584 } 7585 7586 void 7587 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7588 SDValue Op = getNonRegisterValue(V); 7589 assert((Op.getOpcode() != ISD::CopyFromReg || 7590 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7591 "Copy from a reg to the same reg!"); 7592 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7593 7594 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7595 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7596 SDValue Chain = DAG.getEntryNode(); 7597 7598 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7599 FuncInfo.PreferredExtendType.end()) 7600 ? ISD::ANY_EXTEND 7601 : FuncInfo.PreferredExtendType[V]; 7602 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7603 PendingExports.push_back(Chain); 7604 } 7605 7606 #include "llvm/CodeGen/SelectionDAGISel.h" 7607 7608 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7609 /// entry block, return true. This includes arguments used by switches, since 7610 /// the switch may expand into multiple basic blocks. 7611 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7612 // With FastISel active, we may be splitting blocks, so force creation 7613 // of virtual registers for all non-dead arguments. 7614 if (FastISel) 7615 return A->use_empty(); 7616 7617 const BasicBlock *Entry = A->getParent()->begin(); 7618 for (const User *U : A->users()) 7619 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7620 return false; // Use not in entry block. 7621 7622 return true; 7623 } 7624 7625 void SelectionDAGISel::LowerArguments(const Function &F) { 7626 SelectionDAG &DAG = SDB->DAG; 7627 SDLoc dl = SDB->getCurSDLoc(); 7628 const DataLayout *DL = TLI->getDataLayout(); 7629 SmallVector<ISD::InputArg, 16> Ins; 7630 7631 if (!FuncInfo->CanLowerReturn) { 7632 // Put in an sret pointer parameter before all the other parameters. 7633 SmallVector<EVT, 1> ValueVTs; 7634 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7635 7636 // NOTE: Assuming that a pointer will never break down to more than one VT 7637 // or one register. 7638 ISD::ArgFlagsTy Flags; 7639 Flags.setSRet(); 7640 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7641 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7642 ISD::InputArg::NoArgIndex, 0); 7643 Ins.push_back(RetArg); 7644 } 7645 7646 // Set up the incoming argument description vector. 7647 unsigned Idx = 1; 7648 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7649 I != E; ++I, ++Idx) { 7650 SmallVector<EVT, 4> ValueVTs; 7651 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7652 bool isArgValueUsed = !I->use_empty(); 7653 unsigned PartBase = 0; 7654 Type *FinalType = I->getType(); 7655 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7656 FinalType = cast<PointerType>(FinalType)->getElementType(); 7657 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7658 FinalType, F.getCallingConv(), F.isVarArg()); 7659 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7660 Value != NumValues; ++Value) { 7661 EVT VT = ValueVTs[Value]; 7662 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7663 ISD::ArgFlagsTy Flags; 7664 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7665 7666 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7667 Flags.setZExt(); 7668 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7669 Flags.setSExt(); 7670 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7671 Flags.setInReg(); 7672 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7673 Flags.setSRet(); 7674 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7675 Flags.setByVal(); 7676 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7677 Flags.setInAlloca(); 7678 // Set the byval flag for CCAssignFn callbacks that don't know about 7679 // inalloca. This way we can know how many bytes we should've allocated 7680 // and how many bytes a callee cleanup function will pop. If we port 7681 // inalloca to more targets, we'll have to add custom inalloca handling 7682 // in the various CC lowering callbacks. 7683 Flags.setByVal(); 7684 } 7685 if (Flags.isByVal() || Flags.isInAlloca()) { 7686 PointerType *Ty = cast<PointerType>(I->getType()); 7687 Type *ElementTy = Ty->getElementType(); 7688 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7689 // For ByVal, alignment should be passed from FE. BE will guess if 7690 // this info is not there but there are cases it cannot get right. 7691 unsigned FrameAlign; 7692 if (F.getParamAlignment(Idx)) 7693 FrameAlign = F.getParamAlignment(Idx); 7694 else 7695 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7696 Flags.setByValAlign(FrameAlign); 7697 } 7698 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7699 Flags.setNest(); 7700 if (NeedsRegBlock) { 7701 Flags.setInConsecutiveRegs(); 7702 if (Value == NumValues - 1) 7703 Flags.setInConsecutiveRegsLast(); 7704 } 7705 Flags.setOrigAlign(OriginalAlignment); 7706 7707 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7708 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7709 for (unsigned i = 0; i != NumRegs; ++i) { 7710 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7711 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7712 if (NumRegs > 1 && i == 0) 7713 MyFlags.Flags.setSplit(); 7714 // if it isn't first piece, alignment must be 1 7715 else if (i > 0) 7716 MyFlags.Flags.setOrigAlign(1); 7717 Ins.push_back(MyFlags); 7718 } 7719 PartBase += VT.getStoreSize(); 7720 } 7721 } 7722 7723 // Call the target to set up the argument values. 7724 SmallVector<SDValue, 8> InVals; 7725 SDValue NewRoot = TLI->LowerFormalArguments( 7726 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7727 7728 // Verify that the target's LowerFormalArguments behaved as expected. 7729 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7730 "LowerFormalArguments didn't return a valid chain!"); 7731 assert(InVals.size() == Ins.size() && 7732 "LowerFormalArguments didn't emit the correct number of values!"); 7733 DEBUG({ 7734 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7735 assert(InVals[i].getNode() && 7736 "LowerFormalArguments emitted a null value!"); 7737 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7738 "LowerFormalArguments emitted a value with the wrong type!"); 7739 } 7740 }); 7741 7742 // Update the DAG with the new chain value resulting from argument lowering. 7743 DAG.setRoot(NewRoot); 7744 7745 // Set up the argument values. 7746 unsigned i = 0; 7747 Idx = 1; 7748 if (!FuncInfo->CanLowerReturn) { 7749 // Create a virtual register for the sret pointer, and put in a copy 7750 // from the sret argument into it. 7751 SmallVector<EVT, 1> ValueVTs; 7752 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7753 MVT VT = ValueVTs[0].getSimpleVT(); 7754 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7755 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7756 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7757 RegVT, VT, nullptr, AssertOp); 7758 7759 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7760 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7761 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7762 FuncInfo->DemoteRegister = SRetReg; 7763 NewRoot = 7764 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7765 DAG.setRoot(NewRoot); 7766 7767 // i indexes lowered arguments. Bump it past the hidden sret argument. 7768 // Idx indexes LLVM arguments. Don't touch it. 7769 ++i; 7770 } 7771 7772 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7773 ++I, ++Idx) { 7774 SmallVector<SDValue, 4> ArgValues; 7775 SmallVector<EVT, 4> ValueVTs; 7776 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7777 unsigned NumValues = ValueVTs.size(); 7778 7779 // If this argument is unused then remember its value. It is used to generate 7780 // debugging information. 7781 if (I->use_empty() && NumValues) { 7782 SDB->setUnusedArgValue(I, InVals[i]); 7783 7784 // Also remember any frame index for use in FastISel. 7785 if (FrameIndexSDNode *FI = 7786 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7787 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7788 } 7789 7790 for (unsigned Val = 0; Val != NumValues; ++Val) { 7791 EVT VT = ValueVTs[Val]; 7792 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7793 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7794 7795 if (!I->use_empty()) { 7796 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7797 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7798 AssertOp = ISD::AssertSext; 7799 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7800 AssertOp = ISD::AssertZext; 7801 7802 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7803 NumParts, PartVT, VT, 7804 nullptr, AssertOp)); 7805 } 7806 7807 i += NumParts; 7808 } 7809 7810 // We don't need to do anything else for unused arguments. 7811 if (ArgValues.empty()) 7812 continue; 7813 7814 // Note down frame index. 7815 if (FrameIndexSDNode *FI = 7816 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7817 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7818 7819 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7820 SDB->getCurSDLoc()); 7821 7822 SDB->setValue(I, Res); 7823 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7824 if (LoadSDNode *LNode = 7825 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7826 if (FrameIndexSDNode *FI = 7827 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7828 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7829 } 7830 7831 // If this argument is live outside of the entry block, insert a copy from 7832 // wherever we got it to the vreg that other BB's will reference it as. 7833 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7834 // If we can, though, try to skip creating an unnecessary vreg. 7835 // FIXME: This isn't very clean... it would be nice to make this more 7836 // general. It's also subtly incompatible with the hacks FastISel 7837 // uses with vregs. 7838 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7839 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7840 FuncInfo->ValueMap[I] = Reg; 7841 continue; 7842 } 7843 } 7844 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7845 FuncInfo->InitializeRegForValue(I); 7846 SDB->CopyToExportRegsIfNeeded(I); 7847 } 7848 } 7849 7850 assert(i == InVals.size() && "Argument register count mismatch!"); 7851 7852 // Finally, if the target has anything special to do, allow it to do so. 7853 // FIXME: this should insert code into the DAG! 7854 EmitFunctionEntryCode(); 7855 } 7856 7857 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7858 /// ensure constants are generated when needed. Remember the virtual registers 7859 /// that need to be added to the Machine PHI nodes as input. We cannot just 7860 /// directly add them, because expansion might result in multiple MBB's for one 7861 /// BB. As such, the start of the BB might correspond to a different MBB than 7862 /// the end. 7863 /// 7864 void 7865 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7866 const TerminatorInst *TI = LLVMBB->getTerminator(); 7867 7868 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7869 7870 // Check successor nodes' PHI nodes that expect a constant to be available 7871 // from this block. 7872 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7873 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7874 if (!isa<PHINode>(SuccBB->begin())) continue; 7875 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7876 7877 // If this terminator has multiple identical successors (common for 7878 // switches), only handle each succ once. 7879 if (!SuccsHandled.insert(SuccMBB).second) 7880 continue; 7881 7882 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7883 7884 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7885 // nodes and Machine PHI nodes, but the incoming operands have not been 7886 // emitted yet. 7887 for (BasicBlock::const_iterator I = SuccBB->begin(); 7888 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7889 // Ignore dead phi's. 7890 if (PN->use_empty()) continue; 7891 7892 // Skip empty types 7893 if (PN->getType()->isEmptyTy()) 7894 continue; 7895 7896 unsigned Reg; 7897 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7898 7899 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7900 unsigned &RegOut = ConstantsOut[C]; 7901 if (RegOut == 0) { 7902 RegOut = FuncInfo.CreateRegs(C->getType()); 7903 CopyValueToVirtualRegister(C, RegOut); 7904 } 7905 Reg = RegOut; 7906 } else { 7907 DenseMap<const Value *, unsigned>::iterator I = 7908 FuncInfo.ValueMap.find(PHIOp); 7909 if (I != FuncInfo.ValueMap.end()) 7910 Reg = I->second; 7911 else { 7912 assert(isa<AllocaInst>(PHIOp) && 7913 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7914 "Didn't codegen value into a register!??"); 7915 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7916 CopyValueToVirtualRegister(PHIOp, Reg); 7917 } 7918 } 7919 7920 // Remember that this register needs to added to the machine PHI node as 7921 // the input for this MBB. 7922 SmallVector<EVT, 4> ValueVTs; 7923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7924 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7925 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7926 EVT VT = ValueVTs[vti]; 7927 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7928 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7929 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7930 Reg += NumRegisters; 7931 } 7932 } 7933 } 7934 7935 ConstantsOut.clear(); 7936 } 7937 7938 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7939 /// is 0. 7940 MachineBasicBlock * 7941 SelectionDAGBuilder::StackProtectorDescriptor:: 7942 AddSuccessorMBB(const BasicBlock *BB, 7943 MachineBasicBlock *ParentMBB, 7944 bool IsLikely, 7945 MachineBasicBlock *SuccMBB) { 7946 // If SuccBB has not been created yet, create it. 7947 if (!SuccMBB) { 7948 MachineFunction *MF = ParentMBB->getParent(); 7949 MachineFunction::iterator BBI = ParentMBB; 7950 SuccMBB = MF->CreateMachineBasicBlock(BB); 7951 MF->insert(++BBI, SuccMBB); 7952 } 7953 // Add it as a successor of ParentMBB. 7954 ParentMBB->addSuccessor( 7955 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7956 return SuccMBB; 7957 } 7958