1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements a fast scheduler. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SchedulerRegistry.h" 15 #include "InstrEmitter.h" 16 #include "ScheduleDAGSDNodes.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/SelectionDAGISel.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetRegisterInfo.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "pre-RA-sched" 31 32 STATISTIC(NumUnfolds, "Number of nodes unfolded"); 33 STATISTIC(NumDups, "Number of duplicated nodes"); 34 STATISTIC(NumPRCopies, "Number of physical copies"); 35 36 static RegisterScheduler 37 fastDAGScheduler("fast", "Fast suboptimal list scheduling", 38 createFastDAGScheduler); 39 static RegisterScheduler 40 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling", 41 createDAGLinearizer); 42 43 44 namespace { 45 /// FastPriorityQueue - A degenerate priority queue that considers 46 /// all nodes to have the same priority. 47 /// 48 struct FastPriorityQueue { 49 SmallVector<SUnit *, 16> Queue; 50 51 bool empty() const { return Queue.empty(); } 52 53 void push(SUnit *U) { 54 Queue.push_back(U); 55 } 56 57 SUnit *pop() { 58 if (empty()) return nullptr; 59 SUnit *V = Queue.back(); 60 Queue.pop_back(); 61 return V; 62 } 63 }; 64 65 //===----------------------------------------------------------------------===// 66 /// ScheduleDAGFast - The actual "fast" list scheduler implementation. 67 /// 68 class ScheduleDAGFast : public ScheduleDAGSDNodes { 69 private: 70 /// AvailableQueue - The priority queue to use for the available SUnits. 71 FastPriorityQueue AvailableQueue; 72 73 /// LiveRegDefs - A set of physical registers and their definition 74 /// that are "live". These nodes must be scheduled before any other nodes that 75 /// modifies the registers can be scheduled. 76 unsigned NumLiveRegs; 77 std::vector<SUnit*> LiveRegDefs; 78 std::vector<unsigned> LiveRegCycles; 79 80 public: 81 ScheduleDAGFast(MachineFunction &mf) 82 : ScheduleDAGSDNodes(mf) {} 83 84 void Schedule() override; 85 86 /// AddPred - adds a predecessor edge to SUnit SU. 87 /// This returns true if this is a new predecessor. 88 void AddPred(SUnit *SU, const SDep &D) { 89 SU->addPred(D); 90 } 91 92 /// RemovePred - removes a predecessor edge from SUnit SU. 93 /// This returns true if an edge was removed. 94 void RemovePred(SUnit *SU, const SDep &D) { 95 SU->removePred(D); 96 } 97 98 private: 99 void ReleasePred(SUnit *SU, SDep *PredEdge); 100 void ReleasePredecessors(SUnit *SU, unsigned CurCycle); 101 void ScheduleNodeBottomUp(SUnit*, unsigned); 102 SUnit *CopyAndMoveSuccessors(SUnit*); 103 void InsertCopiesAndMoveSuccs(SUnit*, unsigned, 104 const TargetRegisterClass*, 105 const TargetRegisterClass*, 106 SmallVectorImpl<SUnit*>&); 107 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&); 108 void ListScheduleBottomUp(); 109 110 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies. 111 bool forceUnitLatencies() const override { return true; } 112 }; 113 } // end anonymous namespace 114 115 116 /// Schedule - Schedule the DAG using list scheduling. 117 void ScheduleDAGFast::Schedule() { 118 DEBUG(dbgs() << "********** List Scheduling **********\n"); 119 120 NumLiveRegs = 0; 121 LiveRegDefs.resize(TRI->getNumRegs(), nullptr); 122 LiveRegCycles.resize(TRI->getNumRegs(), 0); 123 124 // Build the scheduling graph. 125 BuildSchedGraph(nullptr); 126 127 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 128 SUnits[su].dumpAll(this)); 129 130 // Execute the actual scheduling loop. 131 ListScheduleBottomUp(); 132 } 133 134 //===----------------------------------------------------------------------===// 135 // Bottom-Up Scheduling 136 //===----------------------------------------------------------------------===// 137 138 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to 139 /// the AvailableQueue if the count reaches zero. Also update its cycle bound. 140 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) { 141 SUnit *PredSU = PredEdge->getSUnit(); 142 143 #ifndef NDEBUG 144 if (PredSU->NumSuccsLeft == 0) { 145 dbgs() << "*** Scheduling failed! ***\n"; 146 PredSU->dump(this); 147 dbgs() << " has been released too many times!\n"; 148 llvm_unreachable(nullptr); 149 } 150 #endif 151 --PredSU->NumSuccsLeft; 152 153 // If all the node's successors are scheduled, this node is ready 154 // to be scheduled. Ignore the special EntrySU node. 155 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { 156 PredSU->isAvailable = true; 157 AvailableQueue.push(PredSU); 158 } 159 } 160 161 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) { 162 // Bottom up: release predecessors 163 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 164 I != E; ++I) { 165 ReleasePred(SU, &*I); 166 if (I->isAssignedRegDep()) { 167 // This is a physical register dependency and it's impossible or 168 // expensive to copy the register. Make sure nothing that can 169 // clobber the register is scheduled between the predecessor and 170 // this node. 171 if (!LiveRegDefs[I->getReg()]) { 172 ++NumLiveRegs; 173 LiveRegDefs[I->getReg()] = I->getSUnit(); 174 LiveRegCycles[I->getReg()] = CurCycle; 175 } 176 } 177 } 178 } 179 180 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending 181 /// count of its predecessors. If a predecessor pending count is zero, add it to 182 /// the Available queue. 183 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { 184 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 185 DEBUG(SU->dump(this)); 186 187 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!"); 188 SU->setHeightToAtLeast(CurCycle); 189 Sequence.push_back(SU); 190 191 ReleasePredecessors(SU, CurCycle); 192 193 // Release all the implicit physical register defs that are live. 194 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 195 I != E; ++I) { 196 if (I->isAssignedRegDep()) { 197 if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) { 198 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!"); 199 assert(LiveRegDefs[I->getReg()] == SU && 200 "Physical register dependency violated?"); 201 --NumLiveRegs; 202 LiveRegDefs[I->getReg()] = nullptr; 203 LiveRegCycles[I->getReg()] = 0; 204 } 205 } 206 } 207 208 SU->isScheduled = true; 209 } 210 211 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled 212 /// successors to the newly created node. 213 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) { 214 if (SU->getNode()->getGluedNode()) 215 return nullptr; 216 217 SDNode *N = SU->getNode(); 218 if (!N) 219 return nullptr; 220 221 SUnit *NewSU; 222 bool TryUnfold = false; 223 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 224 MVT VT = N->getSimpleValueType(i); 225 if (VT == MVT::Glue) 226 return nullptr; 227 else if (VT == MVT::Other) 228 TryUnfold = true; 229 } 230 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 231 const SDValue &Op = N->getOperand(i); 232 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); 233 if (VT == MVT::Glue) 234 return nullptr; 235 } 236 237 if (TryUnfold) { 238 SmallVector<SDNode*, 2> NewNodes; 239 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes)) 240 return nullptr; 241 242 DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n"); 243 assert(NewNodes.size() == 2 && "Expected a load folding node!"); 244 245 N = NewNodes[1]; 246 SDNode *LoadNode = NewNodes[0]; 247 unsigned NumVals = N->getNumValues(); 248 unsigned OldNumVals = SU->getNode()->getNumValues(); 249 for (unsigned i = 0; i != NumVals; ++i) 250 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i)); 251 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1), 252 SDValue(LoadNode, 1)); 253 254 SUnit *NewSU = newSUnit(N); 255 assert(N->getNodeId() == -1 && "Node already inserted!"); 256 N->setNodeId(NewSU->NodeNum); 257 258 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 259 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 260 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 261 NewSU->isTwoAddress = true; 262 break; 263 } 264 } 265 if (MCID.isCommutable()) 266 NewSU->isCommutable = true; 267 268 // LoadNode may already exist. This can happen when there is another 269 // load from the same location and producing the same type of value 270 // but it has different alignment or volatileness. 271 bool isNewLoad = true; 272 SUnit *LoadSU; 273 if (LoadNode->getNodeId() != -1) { 274 LoadSU = &SUnits[LoadNode->getNodeId()]; 275 isNewLoad = false; 276 } else { 277 LoadSU = newSUnit(LoadNode); 278 LoadNode->setNodeId(LoadSU->NodeNum); 279 } 280 281 SDep ChainPred; 282 SmallVector<SDep, 4> ChainSuccs; 283 SmallVector<SDep, 4> LoadPreds; 284 SmallVector<SDep, 4> NodePreds; 285 SmallVector<SDep, 4> NodeSuccs; 286 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 287 I != E; ++I) { 288 if (I->isCtrl()) 289 ChainPred = *I; 290 else if (I->getSUnit()->getNode() && 291 I->getSUnit()->getNode()->isOperandOf(LoadNode)) 292 LoadPreds.push_back(*I); 293 else 294 NodePreds.push_back(*I); 295 } 296 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 297 I != E; ++I) { 298 if (I->isCtrl()) 299 ChainSuccs.push_back(*I); 300 else 301 NodeSuccs.push_back(*I); 302 } 303 304 if (ChainPred.getSUnit()) { 305 RemovePred(SU, ChainPred); 306 if (isNewLoad) 307 AddPred(LoadSU, ChainPred); 308 } 309 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) { 310 const SDep &Pred = LoadPreds[i]; 311 RemovePred(SU, Pred); 312 if (isNewLoad) { 313 AddPred(LoadSU, Pred); 314 } 315 } 316 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) { 317 const SDep &Pred = NodePreds[i]; 318 RemovePred(SU, Pred); 319 AddPred(NewSU, Pred); 320 } 321 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) { 322 SDep D = NodeSuccs[i]; 323 SUnit *SuccDep = D.getSUnit(); 324 D.setSUnit(SU); 325 RemovePred(SuccDep, D); 326 D.setSUnit(NewSU); 327 AddPred(SuccDep, D); 328 } 329 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) { 330 SDep D = ChainSuccs[i]; 331 SUnit *SuccDep = D.getSUnit(); 332 D.setSUnit(SU); 333 RemovePred(SuccDep, D); 334 if (isNewLoad) { 335 D.setSUnit(LoadSU); 336 AddPred(SuccDep, D); 337 } 338 } 339 if (isNewLoad) { 340 SDep D(LoadSU, SDep::Barrier); 341 D.setLatency(LoadSU->Latency); 342 AddPred(NewSU, D); 343 } 344 345 ++NumUnfolds; 346 347 if (NewSU->NumSuccsLeft == 0) { 348 NewSU->isAvailable = true; 349 return NewSU; 350 } 351 SU = NewSU; 352 } 353 354 DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n"); 355 NewSU = Clone(SU); 356 357 // New SUnit has the exact same predecessors. 358 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 359 I != E; ++I) 360 if (!I->isArtificial()) 361 AddPred(NewSU, *I); 362 363 // Only copy scheduled successors. Cut them from old node's successor 364 // list and move them over. 365 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; 366 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 367 I != E; ++I) { 368 if (I->isArtificial()) 369 continue; 370 SUnit *SuccSU = I->getSUnit(); 371 if (SuccSU->isScheduled) { 372 SDep D = *I; 373 D.setSUnit(NewSU); 374 AddPred(SuccSU, D); 375 D.setSUnit(SU); 376 DelDeps.push_back(std::make_pair(SuccSU, D)); 377 } 378 } 379 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) 380 RemovePred(DelDeps[i].first, DelDeps[i].second); 381 382 ++NumDups; 383 return NewSU; 384 } 385 386 /// InsertCopiesAndMoveSuccs - Insert register copies and move all 387 /// scheduled successors of the given SUnit to the last copy. 388 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, 389 const TargetRegisterClass *DestRC, 390 const TargetRegisterClass *SrcRC, 391 SmallVectorImpl<SUnit*> &Copies) { 392 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr)); 393 CopyFromSU->CopySrcRC = SrcRC; 394 CopyFromSU->CopyDstRC = DestRC; 395 396 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr)); 397 CopyToSU->CopySrcRC = DestRC; 398 CopyToSU->CopyDstRC = SrcRC; 399 400 // Only copy scheduled successors. Cut them from old node's successor 401 // list and move them over. 402 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; 403 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 404 I != E; ++I) { 405 if (I->isArtificial()) 406 continue; 407 SUnit *SuccSU = I->getSUnit(); 408 if (SuccSU->isScheduled) { 409 SDep D = *I; 410 D.setSUnit(CopyToSU); 411 AddPred(SuccSU, D); 412 DelDeps.push_back(std::make_pair(SuccSU, *I)); 413 } 414 } 415 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) { 416 RemovePred(DelDeps[i].first, DelDeps[i].second); 417 } 418 SDep FromDep(SU, SDep::Data, Reg); 419 FromDep.setLatency(SU->Latency); 420 AddPred(CopyFromSU, FromDep); 421 SDep ToDep(CopyFromSU, SDep::Data, 0); 422 ToDep.setLatency(CopyFromSU->Latency); 423 AddPred(CopyToSU, ToDep); 424 425 Copies.push_back(CopyFromSU); 426 Copies.push_back(CopyToSU); 427 428 ++NumPRCopies; 429 } 430 431 /// getPhysicalRegisterVT - Returns the ValueType of the physical register 432 /// definition of the specified node. 433 /// FIXME: Move to SelectionDAG? 434 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, 435 const TargetInstrInfo *TII) { 436 unsigned NumRes; 437 if (N->getOpcode() == ISD::CopyFromReg) { 438 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type. 439 NumRes = 1; 440 } else { 441 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 442 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!"); 443 NumRes = MCID.getNumDefs(); 444 for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) { 445 if (Reg == *ImpDef) 446 break; 447 ++NumRes; 448 } 449 } 450 return N->getSimpleValueType(NumRes); 451 } 452 453 /// CheckForLiveRegDef - Return true and update live register vector if the 454 /// specified register def of the specified SUnit clobbers any "live" registers. 455 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg, 456 std::vector<SUnit*> &LiveRegDefs, 457 SmallSet<unsigned, 4> &RegAdded, 458 SmallVectorImpl<unsigned> &LRegs, 459 const TargetRegisterInfo *TRI) { 460 bool Added = false; 461 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 462 if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) { 463 if (RegAdded.insert(*AI).second) { 464 LRegs.push_back(*AI); 465 Added = true; 466 } 467 } 468 } 469 return Added; 470 } 471 472 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay 473 /// scheduling of the given node to satisfy live physical register dependencies. 474 /// If the specific node is the last one that's available to schedule, do 475 /// whatever is necessary (i.e. backtracking or cloning) to make it possible. 476 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU, 477 SmallVectorImpl<unsigned> &LRegs){ 478 if (NumLiveRegs == 0) 479 return false; 480 481 SmallSet<unsigned, 4> RegAdded; 482 // If this node would clobber any "live" register, then it's not ready. 483 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 484 I != E; ++I) { 485 if (I->isAssignedRegDep()) { 486 CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs, 487 RegAdded, LRegs, TRI); 488 } 489 } 490 491 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) { 492 if (Node->getOpcode() == ISD::INLINEASM) { 493 // Inline asm can clobber physical defs. 494 unsigned NumOps = Node->getNumOperands(); 495 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 496 --NumOps; // Ignore the glue operand. 497 498 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 499 unsigned Flags = 500 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 501 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 502 503 ++i; // Skip the ID value. 504 if (InlineAsm::isRegDefKind(Flags) || 505 InlineAsm::isRegDefEarlyClobberKind(Flags) || 506 InlineAsm::isClobberKind(Flags)) { 507 // Check for def of register or earlyclobber register. 508 for (; NumVals; --NumVals, ++i) { 509 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 510 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 511 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI); 512 } 513 } else 514 i += NumVals; 515 } 516 continue; 517 } 518 if (!Node->isMachineOpcode()) 519 continue; 520 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode()); 521 if (!MCID.ImplicitDefs) 522 continue; 523 for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) { 524 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI); 525 } 526 } 527 return !LRegs.empty(); 528 } 529 530 531 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up 532 /// schedulers. 533 void ScheduleDAGFast::ListScheduleBottomUp() { 534 unsigned CurCycle = 0; 535 536 // Release any predecessors of the special Exit node. 537 ReleasePredecessors(&ExitSU, CurCycle); 538 539 // Add root to Available queue. 540 if (!SUnits.empty()) { 541 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; 542 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!"); 543 RootSU->isAvailable = true; 544 AvailableQueue.push(RootSU); 545 } 546 547 // While Available queue is not empty, grab the node with the highest 548 // priority. If it is not ready put it back. Schedule the node. 549 SmallVector<SUnit*, 4> NotReady; 550 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap; 551 Sequence.reserve(SUnits.size()); 552 while (!AvailableQueue.empty()) { 553 bool Delayed = false; 554 LRegsMap.clear(); 555 SUnit *CurSU = AvailableQueue.pop(); 556 while (CurSU) { 557 SmallVector<unsigned, 4> LRegs; 558 if (!DelayForLiveRegsBottomUp(CurSU, LRegs)) 559 break; 560 Delayed = true; 561 LRegsMap.insert(std::make_pair(CurSU, LRegs)); 562 563 CurSU->isPending = true; // This SU is not in AvailableQueue right now. 564 NotReady.push_back(CurSU); 565 CurSU = AvailableQueue.pop(); 566 } 567 568 // All candidates are delayed due to live physical reg dependencies. 569 // Try code duplication or inserting cross class copies 570 // to resolve it. 571 if (Delayed && !CurSU) { 572 if (!CurSU) { 573 // Try duplicating the nodes that produces these 574 // "expensive to copy" values to break the dependency. In case even 575 // that doesn't work, insert cross class copies. 576 SUnit *TrySU = NotReady[0]; 577 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU]; 578 assert(LRegs.size() == 1 && "Can't handle this yet!"); 579 unsigned Reg = LRegs[0]; 580 SUnit *LRDef = LiveRegDefs[Reg]; 581 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII); 582 const TargetRegisterClass *RC = 583 TRI->getMinimalPhysRegClass(Reg, VT); 584 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); 585 586 // If cross copy register class is the same as RC, then it must be 587 // possible copy the value directly. Do not try duplicate the def. 588 // If cross copy register class is not the same as RC, then it's 589 // possible to copy the value but it require cross register class copies 590 // and it is expensive. 591 // If cross copy register class is null, then it's not possible to copy 592 // the value at all. 593 SUnit *NewDef = nullptr; 594 if (DestRC != RC) { 595 NewDef = CopyAndMoveSuccessors(LRDef); 596 if (!DestRC && !NewDef) 597 report_fatal_error("Can't handle live physical " 598 "register dependency!"); 599 } 600 if (!NewDef) { 601 // Issue copies, these can be expensive cross register class copies. 602 SmallVector<SUnit*, 2> Copies; 603 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies); 604 DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum 605 << " to SU #" << Copies.front()->NodeNum << "\n"); 606 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial)); 607 NewDef = Copies.back(); 608 } 609 610 DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum 611 << " to SU #" << TrySU->NodeNum << "\n"); 612 LiveRegDefs[Reg] = NewDef; 613 AddPred(NewDef, SDep(TrySU, SDep::Artificial)); 614 TrySU->isAvailable = false; 615 CurSU = NewDef; 616 } 617 618 if (!CurSU) { 619 llvm_unreachable("Unable to resolve live physical register dependencies!"); 620 } 621 } 622 623 // Add the nodes that aren't ready back onto the available list. 624 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { 625 NotReady[i]->isPending = false; 626 // May no longer be available due to backtracking. 627 if (NotReady[i]->isAvailable) 628 AvailableQueue.push(NotReady[i]); 629 } 630 NotReady.clear(); 631 632 if (CurSU) 633 ScheduleNodeBottomUp(CurSU, CurCycle); 634 ++CurCycle; 635 } 636 637 // Reverse the order since it is bottom up. 638 std::reverse(Sequence.begin(), Sequence.end()); 639 640 #ifndef NDEBUG 641 VerifyScheduledSequence(/*isBottomUp=*/true); 642 #endif 643 } 644 645 646 namespace { 647 //===----------------------------------------------------------------------===// 648 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the 649 // DAG in topological order. 650 // IMPORTANT: this may not work for targets with phyreg dependency. 651 // 652 class ScheduleDAGLinearize : public ScheduleDAGSDNodes { 653 public: 654 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {} 655 656 void Schedule() override; 657 658 MachineBasicBlock * 659 EmitSchedule(MachineBasicBlock::iterator &InsertPos) override; 660 661 private: 662 std::vector<SDNode*> Sequence; 663 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user 664 665 void ScheduleNode(SDNode *N); 666 }; 667 } // end anonymous namespace 668 669 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) { 670 if (N->getNodeId() != 0) 671 llvm_unreachable(nullptr); 672 673 if (!N->isMachineOpcode() && 674 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N))) 675 // These nodes do not need to be translated into MIs. 676 return; 677 678 DEBUG(dbgs() << "\n*** Scheduling: "); 679 DEBUG(N->dump(DAG)); 680 Sequence.push_back(N); 681 682 unsigned NumOps = N->getNumOperands(); 683 if (unsigned NumLeft = NumOps) { 684 SDNode *GluedOpN = nullptr; 685 do { 686 const SDValue &Op = N->getOperand(NumLeft-1); 687 SDNode *OpN = Op.getNode(); 688 689 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) { 690 // Schedule glue operand right above N. 691 GluedOpN = OpN; 692 assert(OpN->getNodeId() != 0 && "Glue operand not ready?"); 693 OpN->setNodeId(0); 694 ScheduleNode(OpN); 695 continue; 696 } 697 698 if (OpN == GluedOpN) 699 // Glue operand is already scheduled. 700 continue; 701 702 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN); 703 if (DI != GluedMap.end() && DI->second != N) 704 // Users of glues are counted against the glued users. 705 OpN = DI->second; 706 707 unsigned Degree = OpN->getNodeId(); 708 assert(Degree > 0 && "Predecessor over-released!"); 709 OpN->setNodeId(--Degree); 710 if (Degree == 0) 711 ScheduleNode(OpN); 712 } while (--NumLeft); 713 } 714 } 715 716 /// findGluedUser - Find the representative use of a glue value by walking 717 /// the use chain. 718 static SDNode *findGluedUser(SDNode *N) { 719 while (SDNode *Glued = N->getGluedUser()) 720 N = Glued; 721 return N; 722 } 723 724 void ScheduleDAGLinearize::Schedule() { 725 DEBUG(dbgs() << "********** DAG Linearization **********\n"); 726 727 SmallVector<SDNode*, 8> Glues; 728 unsigned DAGSize = 0; 729 for (SelectionDAG::allnodes_iterator I = DAG->allnodes_begin(), 730 E = DAG->allnodes_end(); I != E; ++I) { 731 SDNode *N = I; 732 733 // Use node id to record degree. 734 unsigned Degree = N->use_size(); 735 N->setNodeId(Degree); 736 unsigned NumVals = N->getNumValues(); 737 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue && 738 N->hasAnyUseOfValue(NumVals-1)) { 739 SDNode *User = findGluedUser(N); 740 if (User) { 741 Glues.push_back(N); 742 GluedMap.insert(std::make_pair(N, User)); 743 } 744 } 745 746 if (N->isMachineOpcode() || 747 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N))) 748 ++DAGSize; 749 } 750 751 for (unsigned i = 0, e = Glues.size(); i != e; ++i) { 752 SDNode *Glue = Glues[i]; 753 SDNode *GUser = GluedMap[Glue]; 754 unsigned Degree = Glue->getNodeId(); 755 unsigned UDegree = GUser->getNodeId(); 756 757 // Glue user must be scheduled together with the glue operand. So other 758 // users of the glue operand must be treated as its users. 759 SDNode *ImmGUser = Glue->getGluedUser(); 760 for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end(); 761 ui != ue; ++ui) 762 if (*ui == ImmGUser) 763 --Degree; 764 GUser->setNodeId(UDegree + Degree); 765 Glue->setNodeId(1); 766 } 767 768 Sequence.reserve(DAGSize); 769 ScheduleNode(DAG->getRoot().getNode()); 770 } 771 772 MachineBasicBlock* 773 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 774 InstrEmitter Emitter(BB, InsertPos); 775 DenseMap<SDValue, unsigned> VRBaseMap; 776 777 DEBUG({ 778 dbgs() << "\n*** Final schedule ***\n"; 779 }); 780 781 // FIXME: Handle dbg_values. 782 unsigned NumNodes = Sequence.size(); 783 for (unsigned i = 0; i != NumNodes; ++i) { 784 SDNode *N = Sequence[NumNodes-i-1]; 785 DEBUG(N->dump(DAG)); 786 Emitter.EmitNode(N, false, false, VRBaseMap); 787 } 788 789 DEBUG(dbgs() << '\n'); 790 791 InsertPos = Emitter.getInsertPos(); 792 return Emitter.getBlock(); 793 } 794 795 //===----------------------------------------------------------------------===// 796 // Public Constructor Functions 797 //===----------------------------------------------------------------------===// 798 799 llvm::ScheduleDAGSDNodes * 800 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { 801 return new ScheduleDAGFast(*IS->MF); 802 } 803 804 llvm::ScheduleDAGSDNodes * 805 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) { 806 return new ScheduleDAGLinearize(*IS->MF); 807 } 808