1 #include "llvm/Analysis/Passes.h" 2 #include "llvm/ExecutionEngine/ExecutionEngine.h" 3 #include "llvm/ExecutionEngine/MCJIT.h" 4 #include "llvm/ExecutionEngine/SectionMemoryManager.h" 5 #include "llvm/IR/DataLayout.h" 6 #include "llvm/IR/DerivedTypes.h" 7 #include "llvm/IR/IRBuilder.h" 8 #include "llvm/IR/LLVMContext.h" 9 #include "llvm/IR/Module.h" 10 #include "llvm/IR/Verifier.h" 11 #include "llvm/PassManager.h" 12 #include "llvm/Support/TargetSelect.h" 13 #include "llvm/Transforms/Scalar.h" 14 #include <cctype> 15 #include <cstdio> 16 #include <map> 17 #include <string> 18 #include <vector> 19 using namespace llvm; 20 21 //===----------------------------------------------------------------------===// 22 // Lexer 23 //===----------------------------------------------------------------------===// 24 25 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 26 // of these for known things. 27 enum Token { 28 tok_eof = -1, 29 30 // commands 31 tok_def = -2, 32 tok_extern = -3, 33 34 // primary 35 tok_identifier = -4, 36 tok_number = -5, 37 38 // control 39 tok_if = -6, 40 tok_then = -7, 41 tok_else = -8, 42 tok_for = -9, 43 tok_in = -10 44 }; 45 46 static std::string IdentifierStr; // Filled in if tok_identifier 47 static double NumVal; // Filled in if tok_number 48 49 /// gettok - Return the next token from standard input. 50 static int gettok() { 51 static int LastChar = ' '; 52 53 // Skip any whitespace. 54 while (isspace(LastChar)) 55 LastChar = getchar(); 56 57 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 58 IdentifierStr = LastChar; 59 while (isalnum((LastChar = getchar()))) 60 IdentifierStr += LastChar; 61 62 if (IdentifierStr == "def") 63 return tok_def; 64 if (IdentifierStr == "extern") 65 return tok_extern; 66 if (IdentifierStr == "if") 67 return tok_if; 68 if (IdentifierStr == "then") 69 return tok_then; 70 if (IdentifierStr == "else") 71 return tok_else; 72 if (IdentifierStr == "for") 73 return tok_for; 74 if (IdentifierStr == "in") 75 return tok_in; 76 return tok_identifier; 77 } 78 79 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 80 std::string NumStr; 81 do { 82 NumStr += LastChar; 83 LastChar = getchar(); 84 } while (isdigit(LastChar) || LastChar == '.'); 85 86 NumVal = strtod(NumStr.c_str(), 0); 87 return tok_number; 88 } 89 90 if (LastChar == '#') { 91 // Comment until end of line. 92 do 93 LastChar = getchar(); 94 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 95 96 if (LastChar != EOF) 97 return gettok(); 98 } 99 100 // Check for end of file. Don't eat the EOF. 101 if (LastChar == EOF) 102 return tok_eof; 103 104 // Otherwise, just return the character as its ascii value. 105 int ThisChar = LastChar; 106 LastChar = getchar(); 107 return ThisChar; 108 } 109 110 //===----------------------------------------------------------------------===// 111 // Abstract Syntax Tree (aka Parse Tree) 112 //===----------------------------------------------------------------------===// 113 namespace { 114 /// ExprAST - Base class for all expression nodes. 115 class ExprAST { 116 public: 117 virtual ~ExprAST() {} 118 virtual Value *Codegen() = 0; 119 }; 120 121 /// NumberExprAST - Expression class for numeric literals like "1.0". 122 class NumberExprAST : public ExprAST { 123 double Val; 124 125 public: 126 NumberExprAST(double val) : Val(val) {} 127 virtual Value *Codegen(); 128 }; 129 130 /// VariableExprAST - Expression class for referencing a variable, like "a". 131 class VariableExprAST : public ExprAST { 132 std::string Name; 133 134 public: 135 VariableExprAST(const std::string &name) : Name(name) {} 136 virtual Value *Codegen(); 137 }; 138 139 /// BinaryExprAST - Expression class for a binary operator. 140 class BinaryExprAST : public ExprAST { 141 char Op; 142 ExprAST *LHS, *RHS; 143 144 public: 145 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 146 : Op(op), LHS(lhs), RHS(rhs) {} 147 virtual Value *Codegen(); 148 }; 149 150 /// CallExprAST - Expression class for function calls. 151 class CallExprAST : public ExprAST { 152 std::string Callee; 153 std::vector<ExprAST *> Args; 154 155 public: 156 CallExprAST(const std::string &callee, std::vector<ExprAST *> &args) 157 : Callee(callee), Args(args) {} 158 virtual Value *Codegen(); 159 }; 160 161 /// IfExprAST - Expression class for if/then/else. 162 class IfExprAST : public ExprAST { 163 ExprAST *Cond, *Then, *Else; 164 165 public: 166 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 167 : Cond(cond), Then(then), Else(_else) {} 168 virtual Value *Codegen(); 169 }; 170 171 /// ForExprAST - Expression class for for/in. 172 class ForExprAST : public ExprAST { 173 std::string VarName; 174 ExprAST *Start, *End, *Step, *Body; 175 176 public: 177 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 178 ExprAST *step, ExprAST *body) 179 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 180 virtual Value *Codegen(); 181 }; 182 183 /// PrototypeAST - This class represents the "prototype" for a function, 184 /// which captures its name, and its argument names (thus implicitly the number 185 /// of arguments the function takes). 186 class PrototypeAST { 187 std::string Name; 188 std::vector<std::string> Args; 189 190 public: 191 PrototypeAST(const std::string &name, const std::vector<std::string> &args) 192 : Name(name), Args(args) {} 193 194 Function *Codegen(); 195 }; 196 197 /// FunctionAST - This class represents a function definition itself. 198 class FunctionAST { 199 PrototypeAST *Proto; 200 ExprAST *Body; 201 202 public: 203 FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {} 204 205 Function *Codegen(); 206 }; 207 } // end anonymous namespace 208 209 //===----------------------------------------------------------------------===// 210 // Parser 211 //===----------------------------------------------------------------------===// 212 213 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 214 /// token the parser is looking at. getNextToken reads another token from the 215 /// lexer and updates CurTok with its results. 216 static int CurTok; 217 static int getNextToken() { return CurTok = gettok(); } 218 219 /// BinopPrecedence - This holds the precedence for each binary operator that is 220 /// defined. 221 static std::map<char, int> BinopPrecedence; 222 223 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 224 static int GetTokPrecedence() { 225 if (!isascii(CurTok)) 226 return -1; 227 228 // Make sure it's a declared binop. 229 int TokPrec = BinopPrecedence[CurTok]; 230 if (TokPrec <= 0) 231 return -1; 232 return TokPrec; 233 } 234 235 /// Error* - These are little helper functions for error handling. 236 ExprAST *Error(const char *Str) { 237 fprintf(stderr, "Error: %s\n", Str); 238 return 0; 239 } 240 PrototypeAST *ErrorP(const char *Str) { 241 Error(Str); 242 return 0; 243 } 244 FunctionAST *ErrorF(const char *Str) { 245 Error(Str); 246 return 0; 247 } 248 249 static ExprAST *ParseExpression(); 250 251 /// identifierexpr 252 /// ::= identifier 253 /// ::= identifier '(' expression* ')' 254 static ExprAST *ParseIdentifierExpr() { 255 std::string IdName = IdentifierStr; 256 257 getNextToken(); // eat identifier. 258 259 if (CurTok != '(') // Simple variable ref. 260 return new VariableExprAST(IdName); 261 262 // Call. 263 getNextToken(); // eat ( 264 std::vector<ExprAST *> Args; 265 if (CurTok != ')') { 266 while (1) { 267 ExprAST *Arg = ParseExpression(); 268 if (!Arg) 269 return 0; 270 Args.push_back(Arg); 271 272 if (CurTok == ')') 273 break; 274 275 if (CurTok != ',') 276 return Error("Expected ')' or ',' in argument list"); 277 getNextToken(); 278 } 279 } 280 281 // Eat the ')'. 282 getNextToken(); 283 284 return new CallExprAST(IdName, Args); 285 } 286 287 /// numberexpr ::= number 288 static ExprAST *ParseNumberExpr() { 289 ExprAST *Result = new NumberExprAST(NumVal); 290 getNextToken(); // consume the number 291 return Result; 292 } 293 294 /// parenexpr ::= '(' expression ')' 295 static ExprAST *ParseParenExpr() { 296 getNextToken(); // eat (. 297 ExprAST *V = ParseExpression(); 298 if (!V) 299 return 0; 300 301 if (CurTok != ')') 302 return Error("expected ')'"); 303 getNextToken(); // eat ). 304 return V; 305 } 306 307 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 308 static ExprAST *ParseIfExpr() { 309 getNextToken(); // eat the if. 310 311 // condition. 312 ExprAST *Cond = ParseExpression(); 313 if (!Cond) 314 return 0; 315 316 if (CurTok != tok_then) 317 return Error("expected then"); 318 getNextToken(); // eat the then 319 320 ExprAST *Then = ParseExpression(); 321 if (Then == 0) 322 return 0; 323 324 if (CurTok != tok_else) 325 return Error("expected else"); 326 327 getNextToken(); 328 329 ExprAST *Else = ParseExpression(); 330 if (!Else) 331 return 0; 332 333 return new IfExprAST(Cond, Then, Else); 334 } 335 336 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 337 static ExprAST *ParseForExpr() { 338 getNextToken(); // eat the for. 339 340 if (CurTok != tok_identifier) 341 return Error("expected identifier after for"); 342 343 std::string IdName = IdentifierStr; 344 getNextToken(); // eat identifier. 345 346 if (CurTok != '=') 347 return Error("expected '=' after for"); 348 getNextToken(); // eat '='. 349 350 ExprAST *Start = ParseExpression(); 351 if (Start == 0) 352 return 0; 353 if (CurTok != ',') 354 return Error("expected ',' after for start value"); 355 getNextToken(); 356 357 ExprAST *End = ParseExpression(); 358 if (End == 0) 359 return 0; 360 361 // The step value is optional. 362 ExprAST *Step = 0; 363 if (CurTok == ',') { 364 getNextToken(); 365 Step = ParseExpression(); 366 if (Step == 0) 367 return 0; 368 } 369 370 if (CurTok != tok_in) 371 return Error("expected 'in' after for"); 372 getNextToken(); // eat 'in'. 373 374 ExprAST *Body = ParseExpression(); 375 if (Body == 0) 376 return 0; 377 378 return new ForExprAST(IdName, Start, End, Step, Body); 379 } 380 381 /// primary 382 /// ::= identifierexpr 383 /// ::= numberexpr 384 /// ::= parenexpr 385 /// ::= ifexpr 386 /// ::= forexpr 387 static ExprAST *ParsePrimary() { 388 switch (CurTok) { 389 default: 390 return Error("unknown token when expecting an expression"); 391 case tok_identifier: 392 return ParseIdentifierExpr(); 393 case tok_number: 394 return ParseNumberExpr(); 395 case '(': 396 return ParseParenExpr(); 397 case tok_if: 398 return ParseIfExpr(); 399 case tok_for: 400 return ParseForExpr(); 401 } 402 } 403 404 /// binoprhs 405 /// ::= ('+' primary)* 406 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 407 // If this is a binop, find its precedence. 408 while (1) { 409 int TokPrec = GetTokPrecedence(); 410 411 // If this is a binop that binds at least as tightly as the current binop, 412 // consume it, otherwise we are done. 413 if (TokPrec < ExprPrec) 414 return LHS; 415 416 // Okay, we know this is a binop. 417 int BinOp = CurTok; 418 getNextToken(); // eat binop 419 420 // Parse the primary expression after the binary operator. 421 ExprAST *RHS = ParsePrimary(); 422 if (!RHS) 423 return 0; 424 425 // If BinOp binds less tightly with RHS than the operator after RHS, let 426 // the pending operator take RHS as its LHS. 427 int NextPrec = GetTokPrecedence(); 428 if (TokPrec < NextPrec) { 429 RHS = ParseBinOpRHS(TokPrec + 1, RHS); 430 if (RHS == 0) 431 return 0; 432 } 433 434 // Merge LHS/RHS. 435 LHS = new BinaryExprAST(BinOp, LHS, RHS); 436 } 437 } 438 439 /// expression 440 /// ::= primary binoprhs 441 /// 442 static ExprAST *ParseExpression() { 443 ExprAST *LHS = ParsePrimary(); 444 if (!LHS) 445 return 0; 446 447 return ParseBinOpRHS(0, LHS); 448 } 449 450 /// prototype 451 /// ::= id '(' id* ')' 452 static PrototypeAST *ParsePrototype() { 453 if (CurTok != tok_identifier) 454 return ErrorP("Expected function name in prototype"); 455 456 std::string FnName = IdentifierStr; 457 getNextToken(); 458 459 if (CurTok != '(') 460 return ErrorP("Expected '(' in prototype"); 461 462 std::vector<std::string> ArgNames; 463 while (getNextToken() == tok_identifier) 464 ArgNames.push_back(IdentifierStr); 465 if (CurTok != ')') 466 return ErrorP("Expected ')' in prototype"); 467 468 // success. 469 getNextToken(); // eat ')'. 470 471 return new PrototypeAST(FnName, ArgNames); 472 } 473 474 /// definition ::= 'def' prototype expression 475 static FunctionAST *ParseDefinition() { 476 getNextToken(); // eat def. 477 PrototypeAST *Proto = ParsePrototype(); 478 if (Proto == 0) 479 return 0; 480 481 if (ExprAST *E = ParseExpression()) 482 return new FunctionAST(Proto, E); 483 return 0; 484 } 485 486 /// toplevelexpr ::= expression 487 static FunctionAST *ParseTopLevelExpr() { 488 if (ExprAST *E = ParseExpression()) { 489 // Make an anonymous proto. 490 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 491 return new FunctionAST(Proto, E); 492 } 493 return 0; 494 } 495 496 /// external ::= 'extern' prototype 497 static PrototypeAST *ParseExtern() { 498 getNextToken(); // eat extern. 499 return ParsePrototype(); 500 } 501 502 //===----------------------------------------------------------------------===// 503 // Code Generation 504 //===----------------------------------------------------------------------===// 505 506 static Module *TheModule; 507 static IRBuilder<> Builder(getGlobalContext()); 508 static std::map<std::string, Value *> NamedValues; 509 static FunctionPassManager *TheFPM; 510 511 Value *ErrorV(const char *Str) { 512 Error(Str); 513 return 0; 514 } 515 516 Value *NumberExprAST::Codegen() { 517 return ConstantFP::get(getGlobalContext(), APFloat(Val)); 518 } 519 520 Value *VariableExprAST::Codegen() { 521 // Look this variable up in the function. 522 Value *V = NamedValues[Name]; 523 return V ? V : ErrorV("Unknown variable name"); 524 } 525 526 Value *BinaryExprAST::Codegen() { 527 Value *L = LHS->Codegen(); 528 Value *R = RHS->Codegen(); 529 if (L == 0 || R == 0) 530 return 0; 531 532 switch (Op) { 533 case '+': 534 return Builder.CreateFAdd(L, R, "addtmp"); 535 case '-': 536 return Builder.CreateFSub(L, R, "subtmp"); 537 case '*': 538 return Builder.CreateFMul(L, R, "multmp"); 539 case '<': 540 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 541 // Convert bool 0/1 to double 0.0 or 1.0 542 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 543 "booltmp"); 544 default: 545 return ErrorV("invalid binary operator"); 546 } 547 } 548 549 Value *CallExprAST::Codegen() { 550 // Look up the name in the global module table. 551 Function *CalleeF = TheModule->getFunction(Callee); 552 if (CalleeF == 0) 553 return ErrorV("Unknown function referenced"); 554 555 // If argument mismatch error. 556 if (CalleeF->arg_size() != Args.size()) 557 return ErrorV("Incorrect # arguments passed"); 558 559 std::vector<Value *> ArgsV; 560 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 561 ArgsV.push_back(Args[i]->Codegen()); 562 if (ArgsV.back() == 0) 563 return 0; 564 } 565 566 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 567 } 568 569 Value *IfExprAST::Codegen() { 570 Value *CondV = Cond->Codegen(); 571 if (CondV == 0) 572 return 0; 573 574 // Convert condition to a bool by comparing equal to 0.0. 575 CondV = Builder.CreateFCmpONE( 576 CondV, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "ifcond"); 577 578 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 579 580 // Create blocks for the then and else cases. Insert the 'then' block at the 581 // end of the function. 582 BasicBlock *ThenBB = 583 BasicBlock::Create(getGlobalContext(), "then", TheFunction); 584 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); 585 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); 586 587 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 588 589 // Emit then value. 590 Builder.SetInsertPoint(ThenBB); 591 592 Value *ThenV = Then->Codegen(); 593 if (ThenV == 0) 594 return 0; 595 596 Builder.CreateBr(MergeBB); 597 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 598 ThenBB = Builder.GetInsertBlock(); 599 600 // Emit else block. 601 TheFunction->getBasicBlockList().push_back(ElseBB); 602 Builder.SetInsertPoint(ElseBB); 603 604 Value *ElseV = Else->Codegen(); 605 if (ElseV == 0) 606 return 0; 607 608 Builder.CreateBr(MergeBB); 609 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 610 ElseBB = Builder.GetInsertBlock(); 611 612 // Emit merge block. 613 TheFunction->getBasicBlockList().push_back(MergeBB); 614 Builder.SetInsertPoint(MergeBB); 615 PHINode *PN = 616 Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, "iftmp"); 617 618 PN->addIncoming(ThenV, ThenBB); 619 PN->addIncoming(ElseV, ElseBB); 620 return PN; 621 } 622 623 Value *ForExprAST::Codegen() { 624 // Output this as: 625 // ... 626 // start = startexpr 627 // goto loop 628 // loop: 629 // variable = phi [start, loopheader], [nextvariable, loopend] 630 // ... 631 // bodyexpr 632 // ... 633 // loopend: 634 // step = stepexpr 635 // nextvariable = variable + step 636 // endcond = endexpr 637 // br endcond, loop, endloop 638 // outloop: 639 640 // Emit the start code first, without 'variable' in scope. 641 Value *StartVal = Start->Codegen(); 642 if (StartVal == 0) 643 return 0; 644 645 // Make the new basic block for the loop header, inserting after current 646 // block. 647 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 648 BasicBlock *PreheaderBB = Builder.GetInsertBlock(); 649 BasicBlock *LoopBB = 650 BasicBlock::Create(getGlobalContext(), "loop", TheFunction); 651 652 // Insert an explicit fall through from the current block to the LoopBB. 653 Builder.CreateBr(LoopBB); 654 655 // Start insertion in LoopBB. 656 Builder.SetInsertPoint(LoopBB); 657 658 // Start the PHI node with an entry for Start. 659 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 660 2, VarName.c_str()); 661 Variable->addIncoming(StartVal, PreheaderBB); 662 663 // Within the loop, the variable is defined equal to the PHI node. If it 664 // shadows an existing variable, we have to restore it, so save it now. 665 Value *OldVal = NamedValues[VarName]; 666 NamedValues[VarName] = Variable; 667 668 // Emit the body of the loop. This, like any other expr, can change the 669 // current BB. Note that we ignore the value computed by the body, but don't 670 // allow an error. 671 if (Body->Codegen() == 0) 672 return 0; 673 674 // Emit the step value. 675 Value *StepVal; 676 if (Step) { 677 StepVal = Step->Codegen(); 678 if (StepVal == 0) 679 return 0; 680 } else { 681 // If not specified, use 1.0. 682 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); 683 } 684 685 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); 686 687 // Compute the end condition. 688 Value *EndCond = End->Codegen(); 689 if (EndCond == 0) 690 return EndCond; 691 692 // Convert condition to a bool by comparing equal to 0.0. 693 EndCond = Builder.CreateFCmpONE( 694 EndCond, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "loopcond"); 695 696 // Create the "after loop" block and insert it. 697 BasicBlock *LoopEndBB = Builder.GetInsertBlock(); 698 BasicBlock *AfterBB = 699 BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); 700 701 // Insert the conditional branch into the end of LoopEndBB. 702 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 703 704 // Any new code will be inserted in AfterBB. 705 Builder.SetInsertPoint(AfterBB); 706 707 // Add a new entry to the PHI node for the backedge. 708 Variable->addIncoming(NextVar, LoopEndBB); 709 710 // Restore the unshadowed variable. 711 if (OldVal) 712 NamedValues[VarName] = OldVal; 713 else 714 NamedValues.erase(VarName); 715 716 // for expr always returns 0.0. 717 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); 718 } 719 720 Function *PrototypeAST::Codegen() { 721 // Make the function type: double(double,double) etc. 722 std::vector<Type *> Doubles(Args.size(), 723 Type::getDoubleTy(getGlobalContext())); 724 FunctionType *FT = 725 FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false); 726 727 Function *F = 728 Function::Create(FT, Function::ExternalLinkage, Name, TheModule); 729 730 // If F conflicted, there was already something named 'Name'. If it has a 731 // body, don't allow redefinition or reextern. 732 if (F->getName() != Name) { 733 // Delete the one we just made and get the existing one. 734 F->eraseFromParent(); 735 F = TheModule->getFunction(Name); 736 737 // If F already has a body, reject this. 738 if (!F->empty()) { 739 ErrorF("redefinition of function"); 740 return 0; 741 } 742 743 // If F took a different number of args, reject. 744 if (F->arg_size() != Args.size()) { 745 ErrorF("redefinition of function with different # args"); 746 return 0; 747 } 748 } 749 750 // Set names for all arguments. 751 unsigned Idx = 0; 752 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 753 ++AI, ++Idx) { 754 AI->setName(Args[Idx]); 755 756 // Add arguments to variable symbol table. 757 NamedValues[Args[Idx]] = AI; 758 } 759 760 return F; 761 } 762 763 Function *FunctionAST::Codegen() { 764 NamedValues.clear(); 765 766 Function *TheFunction = Proto->Codegen(); 767 if (TheFunction == 0) 768 return 0; 769 770 // Create a new basic block to start insertion into. 771 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 772 Builder.SetInsertPoint(BB); 773 774 if (Value *RetVal = Body->Codegen()) { 775 // Finish off the function. 776 Builder.CreateRet(RetVal); 777 778 // Validate the generated code, checking for consistency. 779 verifyFunction(*TheFunction); 780 781 // Optimize the function. 782 TheFPM->run(*TheFunction); 783 784 return TheFunction; 785 } 786 787 // Error reading body, remove function. 788 TheFunction->eraseFromParent(); 789 return 0; 790 } 791 792 //===----------------------------------------------------------------------===// 793 // Top-Level parsing and JIT Driver 794 //===----------------------------------------------------------------------===// 795 796 static ExecutionEngine *TheExecutionEngine; 797 798 static void HandleDefinition() { 799 if (FunctionAST *F = ParseDefinition()) { 800 if (Function *LF = F->Codegen()) { 801 fprintf(stderr, "Read function definition:"); 802 LF->dump(); 803 } 804 } else { 805 // Skip token for error recovery. 806 getNextToken(); 807 } 808 } 809 810 static void HandleExtern() { 811 if (PrototypeAST *P = ParseExtern()) { 812 if (Function *F = P->Codegen()) { 813 fprintf(stderr, "Read extern: "); 814 F->dump(); 815 } 816 } else { 817 // Skip token for error recovery. 818 getNextToken(); 819 } 820 } 821 822 static void HandleTopLevelExpression() { 823 // Evaluate a top-level expression into an anonymous function. 824 if (FunctionAST *F = ParseTopLevelExpr()) { 825 if (Function *LF = F->Codegen()) { 826 TheExecutionEngine->finalizeObject(); 827 // JIT the function, returning a function pointer. 828 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 829 830 // Cast it to the right type (takes no arguments, returns a double) so we 831 // can call it as a native function. 832 double (*FP)() = (double (*)())(intptr_t)FPtr; 833 fprintf(stderr, "Evaluated to %f\n", FP()); 834 } 835 } else { 836 // Skip token for error recovery. 837 getNextToken(); 838 } 839 } 840 841 /// top ::= definition | external | expression | ';' 842 static void MainLoop() { 843 while (1) { 844 fprintf(stderr, "ready> "); 845 switch (CurTok) { 846 case tok_eof: 847 return; 848 case ';': 849 getNextToken(); 850 break; // ignore top-level semicolons. 851 case tok_def: 852 HandleDefinition(); 853 break; 854 case tok_extern: 855 HandleExtern(); 856 break; 857 default: 858 HandleTopLevelExpression(); 859 break; 860 } 861 } 862 } 863 864 //===----------------------------------------------------------------------===// 865 // "Library" functions that can be "extern'd" from user code. 866 //===----------------------------------------------------------------------===// 867 868 /// putchard - putchar that takes a double and returns 0. 869 extern "C" double putchard(double X) { 870 putchar((char)X); 871 return 0; 872 } 873 874 //===----------------------------------------------------------------------===// 875 // Main driver code. 876 //===----------------------------------------------------------------------===// 877 878 int main() { 879 InitializeNativeTarget(); 880 InitializeNativeTargetAsmPrinter(); 881 InitializeNativeTargetAsmParser(); 882 LLVMContext &Context = getGlobalContext(); 883 884 // Install standard binary operators. 885 // 1 is lowest precedence. 886 BinopPrecedence['<'] = 10; 887 BinopPrecedence['+'] = 20; 888 BinopPrecedence['-'] = 20; 889 BinopPrecedence['*'] = 40; // highest. 890 891 // Prime the first token. 892 fprintf(stderr, "ready> "); 893 getNextToken(); 894 895 // Make the module, which holds all the code. 896 std::unique_ptr<Module> Owner = make_unique<Module>("my cool jit", Context); 897 TheModule = Owner.get(); 898 899 // Create the JIT. This takes ownership of the module. 900 std::string ErrStr; 901 TheExecutionEngine = 902 EngineBuilder(std::move(Owner)) 903 .setErrorStr(&ErrStr) 904 .setMCJITMemoryManager(llvm::make_unique<SectionMemoryManager>()) 905 .create(); 906 if (!TheExecutionEngine) { 907 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 908 exit(1); 909 } 910 911 FunctionPassManager OurFPM(TheModule); 912 913 // Set up the optimizer pipeline. Start with registering info about how the 914 // target lays out data structures. 915 TheModule->setDataLayout(TheExecutionEngine->getDataLayout()); 916 OurFPM.add(new DataLayoutPass()); 917 // Provide basic AliasAnalysis support for GVN. 918 OurFPM.add(createBasicAliasAnalysisPass()); 919 // Do simple "peephole" optimizations and bit-twiddling optzns. 920 OurFPM.add(createInstructionCombiningPass()); 921 // Reassociate expressions. 922 OurFPM.add(createReassociatePass()); 923 // Eliminate Common SubExpressions. 924 OurFPM.add(createGVNPass()); 925 // Simplify the control flow graph (deleting unreachable blocks, etc). 926 OurFPM.add(createCFGSimplificationPass()); 927 928 OurFPM.doInitialization(); 929 930 // Set the global so the code gen can use this. 931 TheFPM = &OurFPM; 932 933 // Run the main "interpreter loop" now. 934 MainLoop(); 935 936 TheFPM = 0; 937 938 // Print out all of the generated code. 939 TheModule->dump(); 940 941 return 0; 942 } 943