1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Sema/DeclSpec.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Sema/Scope.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateDeduction.h"
31 #include "llvm/ADT/SmallBitVector.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/StringExtras.h"
34 using namespace clang;
35 using namespace sema;
36
37 // Exported for use by Parser.
38 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)39 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
40 unsigned N) {
41 if (!N) return SourceRange();
42 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
43 }
44
45 /// \brief Determine whether the declaration found is acceptable as the name
46 /// of a template and, if so, return that template declaration. Otherwise,
47 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)48 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
49 NamedDecl *Orig,
50 bool AllowFunctionTemplates) {
51 NamedDecl *D = Orig->getUnderlyingDecl();
52
53 if (isa<TemplateDecl>(D)) {
54 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
55 return nullptr;
56
57 return Orig;
58 }
59
60 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
61 // C++ [temp.local]p1:
62 // Like normal (non-template) classes, class templates have an
63 // injected-class-name (Clause 9). The injected-class-name
64 // can be used with or without a template-argument-list. When
65 // it is used without a template-argument-list, it is
66 // equivalent to the injected-class-name followed by the
67 // template-parameters of the class template enclosed in
68 // <>. When it is used with a template-argument-list, it
69 // refers to the specified class template specialization,
70 // which could be the current specialization or another
71 // specialization.
72 if (Record->isInjectedClassName()) {
73 Record = cast<CXXRecordDecl>(Record->getDeclContext());
74 if (Record->getDescribedClassTemplate())
75 return Record->getDescribedClassTemplate();
76
77 if (ClassTemplateSpecializationDecl *Spec
78 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
79 return Spec->getSpecializedTemplate();
80 }
81
82 return nullptr;
83 }
84
85 return nullptr;
86 }
87
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)88 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
89 bool AllowFunctionTemplates) {
90 // The set of class templates we've already seen.
91 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
92 LookupResult::Filter filter = R.makeFilter();
93 while (filter.hasNext()) {
94 NamedDecl *Orig = filter.next();
95 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
96 AllowFunctionTemplates);
97 if (!Repl)
98 filter.erase();
99 else if (Repl != Orig) {
100
101 // C++ [temp.local]p3:
102 // A lookup that finds an injected-class-name (10.2) can result in an
103 // ambiguity in certain cases (for example, if it is found in more than
104 // one base class). If all of the injected-class-names that are found
105 // refer to specializations of the same class template, and if the name
106 // is used as a template-name, the reference refers to the class
107 // template itself and not a specialization thereof, and is not
108 // ambiguous.
109 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
110 if (!ClassTemplates.insert(ClassTmpl).second) {
111 filter.erase();
112 continue;
113 }
114
115 // FIXME: we promote access to public here as a workaround to
116 // the fact that LookupResult doesn't let us remember that we
117 // found this template through a particular injected class name,
118 // which means we end up doing nasty things to the invariants.
119 // Pretending that access is public is *much* safer.
120 filter.replace(Repl, AS_public);
121 }
122 }
123 filter.done();
124 }
125
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)126 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
127 bool AllowFunctionTemplates) {
128 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
129 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
130 return true;
131
132 return false;
133 }
134
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)135 TemplateNameKind Sema::isTemplateName(Scope *S,
136 CXXScopeSpec &SS,
137 bool hasTemplateKeyword,
138 UnqualifiedId &Name,
139 ParsedType ObjectTypePtr,
140 bool EnteringContext,
141 TemplateTy &TemplateResult,
142 bool &MemberOfUnknownSpecialization) {
143 assert(getLangOpts().CPlusPlus && "No template names in C!");
144
145 DeclarationName TName;
146 MemberOfUnknownSpecialization = false;
147
148 switch (Name.getKind()) {
149 case UnqualifiedId::IK_Identifier:
150 TName = DeclarationName(Name.Identifier);
151 break;
152
153 case UnqualifiedId::IK_OperatorFunctionId:
154 TName = Context.DeclarationNames.getCXXOperatorName(
155 Name.OperatorFunctionId.Operator);
156 break;
157
158 case UnqualifiedId::IK_LiteralOperatorId:
159 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
160 break;
161
162 default:
163 return TNK_Non_template;
164 }
165
166 QualType ObjectType = ObjectTypePtr.get();
167
168 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
169 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
170 MemberOfUnknownSpecialization);
171 if (R.empty()) return TNK_Non_template;
172 if (R.isAmbiguous()) {
173 // Suppress diagnostics; we'll redo this lookup later.
174 R.suppressDiagnostics();
175
176 // FIXME: we might have ambiguous templates, in which case we
177 // should at least parse them properly!
178 return TNK_Non_template;
179 }
180
181 TemplateName Template;
182 TemplateNameKind TemplateKind;
183
184 unsigned ResultCount = R.end() - R.begin();
185 if (ResultCount > 1) {
186 // We assume that we'll preserve the qualifier from a function
187 // template name in other ways.
188 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
189 TemplateKind = TNK_Function_template;
190
191 // We'll do this lookup again later.
192 R.suppressDiagnostics();
193 } else {
194 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
195
196 if (SS.isSet() && !SS.isInvalid()) {
197 NestedNameSpecifier *Qualifier = SS.getScopeRep();
198 Template = Context.getQualifiedTemplateName(Qualifier,
199 hasTemplateKeyword, TD);
200 } else {
201 Template = TemplateName(TD);
202 }
203
204 if (isa<FunctionTemplateDecl>(TD)) {
205 TemplateKind = TNK_Function_template;
206
207 // We'll do this lookup again later.
208 R.suppressDiagnostics();
209 } else {
210 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212 TemplateKind =
213 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214 }
215 }
216
217 TemplateResult = TemplateTy::make(Template);
218 return TemplateKind;
219 }
220
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)221 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222 SourceLocation IILoc,
223 Scope *S,
224 const CXXScopeSpec *SS,
225 TemplateTy &SuggestedTemplate,
226 TemplateNameKind &SuggestedKind) {
227 // We can't recover unless there's a dependent scope specifier preceding the
228 // template name.
229 // FIXME: Typo correction?
230 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231 computeDeclContext(*SS))
232 return false;
233
234 // The code is missing a 'template' keyword prior to the dependent template
235 // name.
236 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237 Diag(IILoc, diag::err_template_kw_missing)
238 << Qualifier << II.getName()
239 << FixItHint::CreateInsertion(IILoc, "template ");
240 SuggestedTemplate
241 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242 SuggestedKind = TNK_Dependent_template_name;
243 return true;
244 }
245
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)246 void Sema::LookupTemplateName(LookupResult &Found,
247 Scope *S, CXXScopeSpec &SS,
248 QualType ObjectType,
249 bool EnteringContext,
250 bool &MemberOfUnknownSpecialization) {
251 // Determine where to perform name lookup
252 MemberOfUnknownSpecialization = false;
253 DeclContext *LookupCtx = nullptr;
254 bool isDependent = false;
255 if (!ObjectType.isNull()) {
256 // This nested-name-specifier occurs in a member access expression, e.g.,
257 // x->B::f, and we are looking into the type of the object.
258 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259 LookupCtx = computeDeclContext(ObjectType);
260 isDependent = ObjectType->isDependentType();
261 assert((isDependent || !ObjectType->isIncompleteType() ||
262 ObjectType->castAs<TagType>()->isBeingDefined()) &&
263 "Caller should have completed object type");
264
265 // Template names cannot appear inside an Objective-C class or object type.
266 if (ObjectType->isObjCObjectOrInterfaceType()) {
267 Found.clear();
268 return;
269 }
270 } else if (SS.isSet()) {
271 // This nested-name-specifier occurs after another nested-name-specifier,
272 // so long into the context associated with the prior nested-name-specifier.
273 LookupCtx = computeDeclContext(SS, EnteringContext);
274 isDependent = isDependentScopeSpecifier(SS);
275
276 // The declaration context must be complete.
277 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278 return;
279 }
280
281 bool ObjectTypeSearchedInScope = false;
282 bool AllowFunctionTemplatesInLookup = true;
283 if (LookupCtx) {
284 // Perform "qualified" name lookup into the declaration context we
285 // computed, which is either the type of the base of a member access
286 // expression or the declaration context associated with a prior
287 // nested-name-specifier.
288 LookupQualifiedName(Found, LookupCtx);
289 if (!ObjectType.isNull() && Found.empty()) {
290 // C++ [basic.lookup.classref]p1:
291 // In a class member access expression (5.2.5), if the . or -> token is
292 // immediately followed by an identifier followed by a <, the
293 // identifier must be looked up to determine whether the < is the
294 // beginning of a template argument list (14.2) or a less-than operator.
295 // The identifier is first looked up in the class of the object
296 // expression. If the identifier is not found, it is then looked up in
297 // the context of the entire postfix-expression and shall name a class
298 // or function template.
299 if (S) LookupName(Found, S);
300 ObjectTypeSearchedInScope = true;
301 AllowFunctionTemplatesInLookup = false;
302 }
303 } else if (isDependent && (!S || ObjectType.isNull())) {
304 // We cannot look into a dependent object type or nested nme
305 // specifier.
306 MemberOfUnknownSpecialization = true;
307 return;
308 } else {
309 // Perform unqualified name lookup in the current scope.
310 LookupName(Found, S);
311
312 if (!ObjectType.isNull())
313 AllowFunctionTemplatesInLookup = false;
314 }
315
316 if (Found.empty() && !isDependent) {
317 // If we did not find any names, attempt to correct any typos.
318 DeclarationName Name = Found.getLookupName();
319 Found.clear();
320 // Simple filter callback that, for keywords, only accepts the C++ *_cast
321 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
322 FilterCCC->WantTypeSpecifiers = false;
323 FilterCCC->WantExpressionKeywords = false;
324 FilterCCC->WantRemainingKeywords = false;
325 FilterCCC->WantCXXNamedCasts = true;
326 if (TypoCorrection Corrected = CorrectTypo(
327 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
328 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
329 Found.setLookupName(Corrected.getCorrection());
330 if (Corrected.getCorrectionDecl())
331 Found.addDecl(Corrected.getCorrectionDecl());
332 FilterAcceptableTemplateNames(Found);
333 if (!Found.empty()) {
334 if (LookupCtx) {
335 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
336 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
337 Name.getAsString() == CorrectedStr;
338 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
339 << Name << LookupCtx << DroppedSpecifier
340 << SS.getRange());
341 } else {
342 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
343 }
344 }
345 } else {
346 Found.setLookupName(Name);
347 }
348 }
349
350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351 if (Found.empty()) {
352 if (isDependent)
353 MemberOfUnknownSpecialization = true;
354 return;
355 }
356
357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358 !getLangOpts().CPlusPlus11) {
359 // C++03 [basic.lookup.classref]p1:
360 // [...] If the lookup in the class of the object expression finds a
361 // template, the name is also looked up in the context of the entire
362 // postfix-expression and [...]
363 //
364 // Note: C++11 does not perform this second lookup.
365 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366 LookupOrdinaryName);
367 LookupName(FoundOuter, S);
368 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369
370 if (FoundOuter.empty()) {
371 // - if the name is not found, the name found in the class of the
372 // object expression is used, otherwise
373 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374 FoundOuter.isAmbiguous()) {
375 // - if the name is found in the context of the entire
376 // postfix-expression and does not name a class template, the name
377 // found in the class of the object expression is used, otherwise
378 FoundOuter.clear();
379 } else if (!Found.isSuppressingDiagnostics()) {
380 // - if the name found is a class template, it must refer to the same
381 // entity as the one found in the class of the object expression,
382 // otherwise the program is ill-formed.
383 if (!Found.isSingleResult() ||
384 Found.getFoundDecl()->getCanonicalDecl()
385 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386 Diag(Found.getNameLoc(),
387 diag::ext_nested_name_member_ref_lookup_ambiguous)
388 << Found.getLookupName()
389 << ObjectType;
390 Diag(Found.getRepresentativeDecl()->getLocation(),
391 diag::note_ambig_member_ref_object_type)
392 << ObjectType;
393 Diag(FoundOuter.getFoundDecl()->getLocation(),
394 diag::note_ambig_member_ref_scope);
395
396 // Recover by taking the template that we found in the object
397 // expression's type.
398 }
399 }
400 }
401 }
402
403 /// ActOnDependentIdExpression - Handle a dependent id-expression that
404 /// was just parsed. This is only possible with an explicit scope
405 /// specifier naming a dependent type.
406 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)407 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408 SourceLocation TemplateKWLoc,
409 const DeclarationNameInfo &NameInfo,
410 bool isAddressOfOperand,
411 const TemplateArgumentListInfo *TemplateArgs) {
412 DeclContext *DC = getFunctionLevelDeclContext();
413
414 if (!isAddressOfOperand &&
415 isa<CXXMethodDecl>(DC) &&
416 cast<CXXMethodDecl>(DC)->isInstance()) {
417 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418
419 // Since the 'this' expression is synthesized, we don't need to
420 // perform the double-lookup check.
421 NamedDecl *FirstQualifierInScope = nullptr;
422
423 return CXXDependentScopeMemberExpr::Create(
424 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
425 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
426 FirstQualifierInScope, NameInfo, TemplateArgs);
427 }
428
429 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
430 }
431
432 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)433 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
434 SourceLocation TemplateKWLoc,
435 const DeclarationNameInfo &NameInfo,
436 const TemplateArgumentListInfo *TemplateArgs) {
437 return DependentScopeDeclRefExpr::Create(
438 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
439 TemplateArgs);
440 }
441
442 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
443 /// that the template parameter 'PrevDecl' is being shadowed by a new
444 /// declaration at location Loc. Returns true to indicate that this is
445 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)446 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
447 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
448
449 // Microsoft Visual C++ permits template parameters to be shadowed.
450 if (getLangOpts().MicrosoftExt)
451 return;
452
453 // C++ [temp.local]p4:
454 // A template-parameter shall not be redeclared within its
455 // scope (including nested scopes).
456 Diag(Loc, diag::err_template_param_shadow)
457 << cast<NamedDecl>(PrevDecl)->getDeclName();
458 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
459 return;
460 }
461
462 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
463 /// the parameter D to reference the templated declaration and return a pointer
464 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)465 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
466 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
467 D = Temp->getTemplatedDecl();
468 return Temp;
469 }
470 return nullptr;
471 }
472
getTemplatePackExpansion(SourceLocation EllipsisLoc) const473 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
474 SourceLocation EllipsisLoc) const {
475 assert(Kind == Template &&
476 "Only template template arguments can be pack expansions here");
477 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
478 "Template template argument pack expansion without packs");
479 ParsedTemplateArgument Result(*this);
480 Result.EllipsisLoc = EllipsisLoc;
481 return Result;
482 }
483
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)484 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
485 const ParsedTemplateArgument &Arg) {
486
487 switch (Arg.getKind()) {
488 case ParsedTemplateArgument::Type: {
489 TypeSourceInfo *DI;
490 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
491 if (!DI)
492 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
493 return TemplateArgumentLoc(TemplateArgument(T), DI);
494 }
495
496 case ParsedTemplateArgument::NonType: {
497 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
498 return TemplateArgumentLoc(TemplateArgument(E), E);
499 }
500
501 case ParsedTemplateArgument::Template: {
502 TemplateName Template = Arg.getAsTemplate().get();
503 TemplateArgument TArg;
504 if (Arg.getEllipsisLoc().isValid())
505 TArg = TemplateArgument(Template, Optional<unsigned int>());
506 else
507 TArg = Template;
508 return TemplateArgumentLoc(TArg,
509 Arg.getScopeSpec().getWithLocInContext(
510 SemaRef.Context),
511 Arg.getLocation(),
512 Arg.getEllipsisLoc());
513 }
514 }
515
516 llvm_unreachable("Unhandled parsed template argument");
517 }
518
519 /// \brief Translates template arguments as provided by the parser
520 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)521 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
522 TemplateArgumentListInfo &TemplateArgs) {
523 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
524 TemplateArgs.addArgument(translateTemplateArgument(*this,
525 TemplateArgsIn[I]));
526 }
527
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)528 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
529 SourceLocation Loc,
530 IdentifierInfo *Name) {
531 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
532 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
533 if (PrevDecl && PrevDecl->isTemplateParameter())
534 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
535 }
536
537 /// ActOnTypeParameter - Called when a C++ template type parameter
538 /// (e.g., "typename T") has been parsed. Typename specifies whether
539 /// the keyword "typename" was used to declare the type parameter
540 /// (otherwise, "class" was used), and KeyLoc is the location of the
541 /// "class" or "typename" keyword. ParamName is the name of the
542 /// parameter (NULL indicates an unnamed template parameter) and
543 /// ParamNameLoc is the location of the parameter name (if any).
544 /// If the type parameter has a default argument, it will be added
545 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)546 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
547 SourceLocation EllipsisLoc,
548 SourceLocation KeyLoc,
549 IdentifierInfo *ParamName,
550 SourceLocation ParamNameLoc,
551 unsigned Depth, unsigned Position,
552 SourceLocation EqualLoc,
553 ParsedType DefaultArg) {
554 assert(S->isTemplateParamScope() &&
555 "Template type parameter not in template parameter scope!");
556 bool Invalid = false;
557
558 SourceLocation Loc = ParamNameLoc;
559 if (!ParamName)
560 Loc = KeyLoc;
561
562 bool IsParameterPack = EllipsisLoc.isValid();
563 TemplateTypeParmDecl *Param
564 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
565 KeyLoc, Loc, Depth, Position, ParamName,
566 Typename, IsParameterPack);
567 Param->setAccess(AS_public);
568 if (Invalid)
569 Param->setInvalidDecl();
570
571 if (ParamName) {
572 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
573
574 // Add the template parameter into the current scope.
575 S->AddDecl(Param);
576 IdResolver.AddDecl(Param);
577 }
578
579 // C++0x [temp.param]p9:
580 // A default template-argument may be specified for any kind of
581 // template-parameter that is not a template parameter pack.
582 if (DefaultArg && IsParameterPack) {
583 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
584 DefaultArg = ParsedType();
585 }
586
587 // Handle the default argument, if provided.
588 if (DefaultArg) {
589 TypeSourceInfo *DefaultTInfo;
590 GetTypeFromParser(DefaultArg, &DefaultTInfo);
591
592 assert(DefaultTInfo && "expected source information for type");
593
594 // Check for unexpanded parameter packs.
595 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
596 UPPC_DefaultArgument))
597 return Param;
598
599 // Check the template argument itself.
600 if (CheckTemplateArgument(Param, DefaultTInfo)) {
601 Param->setInvalidDecl();
602 return Param;
603 }
604
605 Param->setDefaultArgument(DefaultTInfo, false);
606 }
607
608 return Param;
609 }
610
611 /// \brief Check that the type of a non-type template parameter is
612 /// well-formed.
613 ///
614 /// \returns the (possibly-promoted) parameter type if valid;
615 /// otherwise, produces a diagnostic and returns a NULL type.
616 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)617 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
618 // We don't allow variably-modified types as the type of non-type template
619 // parameters.
620 if (T->isVariablyModifiedType()) {
621 Diag(Loc, diag::err_variably_modified_nontype_template_param)
622 << T;
623 return QualType();
624 }
625
626 // C++ [temp.param]p4:
627 //
628 // A non-type template-parameter shall have one of the following
629 // (optionally cv-qualified) types:
630 //
631 // -- integral or enumeration type,
632 if (T->isIntegralOrEnumerationType() ||
633 // -- pointer to object or pointer to function,
634 T->isPointerType() ||
635 // -- reference to object or reference to function,
636 T->isReferenceType() ||
637 // -- pointer to member,
638 T->isMemberPointerType() ||
639 // -- std::nullptr_t.
640 T->isNullPtrType() ||
641 // If T is a dependent type, we can't do the check now, so we
642 // assume that it is well-formed.
643 T->isDependentType()) {
644 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
645 // are ignored when determining its type.
646 return T.getUnqualifiedType();
647 }
648
649 // C++ [temp.param]p8:
650 //
651 // A non-type template-parameter of type "array of T" or
652 // "function returning T" is adjusted to be of type "pointer to
653 // T" or "pointer to function returning T", respectively.
654 else if (T->isArrayType() || T->isFunctionType())
655 return Context.getDecayedType(T);
656
657 Diag(Loc, diag::err_template_nontype_parm_bad_type)
658 << T;
659
660 return QualType();
661 }
662
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)663 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
664 unsigned Depth,
665 unsigned Position,
666 SourceLocation EqualLoc,
667 Expr *Default) {
668 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
669 QualType T = TInfo->getType();
670
671 assert(S->isTemplateParamScope() &&
672 "Non-type template parameter not in template parameter scope!");
673 bool Invalid = false;
674
675 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
676 if (T.isNull()) {
677 T = Context.IntTy; // Recover with an 'int' type.
678 Invalid = true;
679 }
680
681 IdentifierInfo *ParamName = D.getIdentifier();
682 bool IsParameterPack = D.hasEllipsis();
683 NonTypeTemplateParmDecl *Param
684 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
685 D.getLocStart(),
686 D.getIdentifierLoc(),
687 Depth, Position, ParamName, T,
688 IsParameterPack, TInfo);
689 Param->setAccess(AS_public);
690
691 if (Invalid)
692 Param->setInvalidDecl();
693
694 if (ParamName) {
695 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
696 ParamName);
697
698 // Add the template parameter into the current scope.
699 S->AddDecl(Param);
700 IdResolver.AddDecl(Param);
701 }
702
703 // C++0x [temp.param]p9:
704 // A default template-argument may be specified for any kind of
705 // template-parameter that is not a template parameter pack.
706 if (Default && IsParameterPack) {
707 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
708 Default = nullptr;
709 }
710
711 // Check the well-formedness of the default template argument, if provided.
712 if (Default) {
713 // Check for unexpanded parameter packs.
714 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
715 return Param;
716
717 TemplateArgument Converted;
718 ExprResult DefaultRes =
719 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
720 if (DefaultRes.isInvalid()) {
721 Param->setInvalidDecl();
722 return Param;
723 }
724 Default = DefaultRes.get();
725
726 Param->setDefaultArgument(Default, false);
727 }
728
729 return Param;
730 }
731
732 /// ActOnTemplateTemplateParameter - Called when a C++ template template
733 /// parameter (e.g. T in template <template \<typename> class T> class array)
734 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)735 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
736 SourceLocation TmpLoc,
737 TemplateParameterList *Params,
738 SourceLocation EllipsisLoc,
739 IdentifierInfo *Name,
740 SourceLocation NameLoc,
741 unsigned Depth,
742 unsigned Position,
743 SourceLocation EqualLoc,
744 ParsedTemplateArgument Default) {
745 assert(S->isTemplateParamScope() &&
746 "Template template parameter not in template parameter scope!");
747
748 // Construct the parameter object.
749 bool IsParameterPack = EllipsisLoc.isValid();
750 TemplateTemplateParmDecl *Param =
751 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
752 NameLoc.isInvalid()? TmpLoc : NameLoc,
753 Depth, Position, IsParameterPack,
754 Name, Params);
755 Param->setAccess(AS_public);
756
757 // If the template template parameter has a name, then link the identifier
758 // into the scope and lookup mechanisms.
759 if (Name) {
760 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
761
762 S->AddDecl(Param);
763 IdResolver.AddDecl(Param);
764 }
765
766 if (Params->size() == 0) {
767 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
768 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
769 Param->setInvalidDecl();
770 }
771
772 // C++0x [temp.param]p9:
773 // A default template-argument may be specified for any kind of
774 // template-parameter that is not a template parameter pack.
775 if (IsParameterPack && !Default.isInvalid()) {
776 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
777 Default = ParsedTemplateArgument();
778 }
779
780 if (!Default.isInvalid()) {
781 // Check only that we have a template template argument. We don't want to
782 // try to check well-formedness now, because our template template parameter
783 // might have dependent types in its template parameters, which we wouldn't
784 // be able to match now.
785 //
786 // If none of the template template parameter's template arguments mention
787 // other template parameters, we could actually perform more checking here.
788 // However, it isn't worth doing.
789 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
790 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
791 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
792 << DefaultArg.getSourceRange();
793 return Param;
794 }
795
796 // Check for unexpanded parameter packs.
797 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
798 DefaultArg.getArgument().getAsTemplate(),
799 UPPC_DefaultArgument))
800 return Param;
801
802 Param->setDefaultArgument(DefaultArg, false);
803 }
804
805 return Param;
806 }
807
808 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
809 /// contains the template parameters in Params/NumParams.
810 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)811 Sema::ActOnTemplateParameterList(unsigned Depth,
812 SourceLocation ExportLoc,
813 SourceLocation TemplateLoc,
814 SourceLocation LAngleLoc,
815 Decl **Params, unsigned NumParams,
816 SourceLocation RAngleLoc) {
817 if (ExportLoc.isValid())
818 Diag(ExportLoc, diag::warn_template_export_unsupported);
819
820 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
821 (NamedDecl**)Params, NumParams,
822 RAngleLoc);
823 }
824
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)825 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
826 if (SS.isSet())
827 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
828 }
829
830 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,SourceLocation FriendLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)831 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
832 SourceLocation KWLoc, CXXScopeSpec &SS,
833 IdentifierInfo *Name, SourceLocation NameLoc,
834 AttributeList *Attr,
835 TemplateParameterList *TemplateParams,
836 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
837 SourceLocation FriendLoc,
838 unsigned NumOuterTemplateParamLists,
839 TemplateParameterList** OuterTemplateParamLists) {
840 assert(TemplateParams && TemplateParams->size() > 0 &&
841 "No template parameters");
842 assert(TUK != TUK_Reference && "Can only declare or define class templates");
843 bool Invalid = false;
844
845 // Check that we can declare a template here.
846 if (CheckTemplateDeclScope(S, TemplateParams))
847 return true;
848
849 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
850 assert(Kind != TTK_Enum && "can't build template of enumerated type");
851
852 // There is no such thing as an unnamed class template.
853 if (!Name) {
854 Diag(KWLoc, diag::err_template_unnamed_class);
855 return true;
856 }
857
858 // Find any previous declaration with this name. For a friend with no
859 // scope explicitly specified, we only look for tag declarations (per
860 // C++11 [basic.lookup.elab]p2).
861 DeclContext *SemanticContext;
862 LookupResult Previous(*this, Name, NameLoc,
863 (SS.isEmpty() && TUK == TUK_Friend)
864 ? LookupTagName : LookupOrdinaryName,
865 ForRedeclaration);
866 if (SS.isNotEmpty() && !SS.isInvalid()) {
867 SemanticContext = computeDeclContext(SS, true);
868 if (!SemanticContext) {
869 // FIXME: Horrible, horrible hack! We can't currently represent this
870 // in the AST, and historically we have just ignored such friend
871 // class templates, so don't complain here.
872 Diag(NameLoc, TUK == TUK_Friend
873 ? diag::warn_template_qualified_friend_ignored
874 : diag::err_template_qualified_declarator_no_match)
875 << SS.getScopeRep() << SS.getRange();
876 return TUK != TUK_Friend;
877 }
878
879 if (RequireCompleteDeclContext(SS, SemanticContext))
880 return true;
881
882 // If we're adding a template to a dependent context, we may need to
883 // rebuilding some of the types used within the template parameter list,
884 // now that we know what the current instantiation is.
885 if (SemanticContext->isDependentContext()) {
886 ContextRAII SavedContext(*this, SemanticContext);
887 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
888 Invalid = true;
889 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
890 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
891
892 LookupQualifiedName(Previous, SemanticContext);
893 } else {
894 SemanticContext = CurContext;
895 LookupName(Previous, S);
896 }
897
898 if (Previous.isAmbiguous())
899 return true;
900
901 NamedDecl *PrevDecl = nullptr;
902 if (Previous.begin() != Previous.end())
903 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
904
905 // If there is a previous declaration with the same name, check
906 // whether this is a valid redeclaration.
907 ClassTemplateDecl *PrevClassTemplate
908 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
909
910 // We may have found the injected-class-name of a class template,
911 // class template partial specialization, or class template specialization.
912 // In these cases, grab the template that is being defined or specialized.
913 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
914 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
915 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
916 PrevClassTemplate
917 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
918 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
919 PrevClassTemplate
920 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
921 ->getSpecializedTemplate();
922 }
923 }
924
925 if (TUK == TUK_Friend) {
926 // C++ [namespace.memdef]p3:
927 // [...] When looking for a prior declaration of a class or a function
928 // declared as a friend, and when the name of the friend class or
929 // function is neither a qualified name nor a template-id, scopes outside
930 // the innermost enclosing namespace scope are not considered.
931 if (!SS.isSet()) {
932 DeclContext *OutermostContext = CurContext;
933 while (!OutermostContext->isFileContext())
934 OutermostContext = OutermostContext->getLookupParent();
935
936 if (PrevDecl &&
937 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
938 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
939 SemanticContext = PrevDecl->getDeclContext();
940 } else {
941 // Declarations in outer scopes don't matter. However, the outermost
942 // context we computed is the semantic context for our new
943 // declaration.
944 PrevDecl = PrevClassTemplate = nullptr;
945 SemanticContext = OutermostContext;
946
947 // Check that the chosen semantic context doesn't already contain a
948 // declaration of this name as a non-tag type.
949 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
950 ForRedeclaration);
951 DeclContext *LookupContext = SemanticContext;
952 while (LookupContext->isTransparentContext())
953 LookupContext = LookupContext->getLookupParent();
954 LookupQualifiedName(Previous, LookupContext);
955
956 if (Previous.isAmbiguous())
957 return true;
958
959 if (Previous.begin() != Previous.end())
960 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
961 }
962 }
963 } else if (PrevDecl &&
964 !isDeclInScope(PrevDecl, SemanticContext, S, SS.isValid()))
965 PrevDecl = PrevClassTemplate = nullptr;
966
967 if (PrevClassTemplate) {
968 // Ensure that the template parameter lists are compatible. Skip this check
969 // for a friend in a dependent context: the template parameter list itself
970 // could be dependent.
971 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
972 !TemplateParameterListsAreEqual(TemplateParams,
973 PrevClassTemplate->getTemplateParameters(),
974 /*Complain=*/true,
975 TPL_TemplateMatch))
976 return true;
977
978 // C++ [temp.class]p4:
979 // In a redeclaration, partial specialization, explicit
980 // specialization or explicit instantiation of a class template,
981 // the class-key shall agree in kind with the original class
982 // template declaration (7.1.5.3).
983 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
984 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
985 TUK == TUK_Definition, KWLoc, *Name)) {
986 Diag(KWLoc, diag::err_use_with_wrong_tag)
987 << Name
988 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
989 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
990 Kind = PrevRecordDecl->getTagKind();
991 }
992
993 // Check for redefinition of this class template.
994 if (TUK == TUK_Definition) {
995 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
996 Diag(NameLoc, diag::err_redefinition) << Name;
997 Diag(Def->getLocation(), diag::note_previous_definition);
998 // FIXME: Would it make sense to try to "forget" the previous
999 // definition, as part of error recovery?
1000 return true;
1001 }
1002 }
1003 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1004 // Maybe we will complain about the shadowed template parameter.
1005 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1006 // Just pretend that we didn't see the previous declaration.
1007 PrevDecl = nullptr;
1008 } else if (PrevDecl) {
1009 // C++ [temp]p5:
1010 // A class template shall not have the same name as any other
1011 // template, class, function, object, enumeration, enumerator,
1012 // namespace, or type in the same scope (3.3), except as specified
1013 // in (14.5.4).
1014 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1015 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1016 return true;
1017 }
1018
1019 // Check the template parameter list of this declaration, possibly
1020 // merging in the template parameter list from the previous class
1021 // template declaration. Skip this check for a friend in a dependent
1022 // context, because the template parameter list might be dependent.
1023 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1024 CheckTemplateParameterList(
1025 TemplateParams,
1026 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1027 : nullptr,
1028 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1029 SemanticContext->isDependentContext())
1030 ? TPC_ClassTemplateMember
1031 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1032 : TPC_ClassTemplate))
1033 Invalid = true;
1034
1035 if (SS.isSet()) {
1036 // If the name of the template was qualified, we must be defining the
1037 // template out-of-line.
1038 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1039 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1040 : diag::err_member_decl_does_not_match)
1041 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1042 Invalid = true;
1043 }
1044 }
1045
1046 CXXRecordDecl *NewClass =
1047 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1048 PrevClassTemplate?
1049 PrevClassTemplate->getTemplatedDecl() : nullptr,
1050 /*DelayTypeCreation=*/true);
1051 SetNestedNameSpecifier(NewClass, SS);
1052 if (NumOuterTemplateParamLists > 0)
1053 NewClass->setTemplateParameterListsInfo(Context,
1054 NumOuterTemplateParamLists,
1055 OuterTemplateParamLists);
1056
1057 // Add alignment attributes if necessary; these attributes are checked when
1058 // the ASTContext lays out the structure.
1059 if (TUK == TUK_Definition) {
1060 AddAlignmentAttributesForRecord(NewClass);
1061 AddMsStructLayoutForRecord(NewClass);
1062 }
1063
1064 ClassTemplateDecl *NewTemplate
1065 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1066 DeclarationName(Name), TemplateParams,
1067 NewClass, PrevClassTemplate);
1068 NewClass->setDescribedClassTemplate(NewTemplate);
1069
1070 if (ModulePrivateLoc.isValid())
1071 NewTemplate->setModulePrivate();
1072
1073 // Build the type for the class template declaration now.
1074 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1075 T = Context.getInjectedClassNameType(NewClass, T);
1076 assert(T->isDependentType() && "Class template type is not dependent?");
1077 (void)T;
1078
1079 // If we are providing an explicit specialization of a member that is a
1080 // class template, make a note of that.
1081 if (PrevClassTemplate &&
1082 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1083 PrevClassTemplate->setMemberSpecialization();
1084
1085 // Set the access specifier.
1086 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1087 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1088
1089 // Set the lexical context of these templates
1090 NewClass->setLexicalDeclContext(CurContext);
1091 NewTemplate->setLexicalDeclContext(CurContext);
1092
1093 if (TUK == TUK_Definition)
1094 NewClass->startDefinition();
1095
1096 if (Attr)
1097 ProcessDeclAttributeList(S, NewClass, Attr);
1098
1099 if (PrevClassTemplate)
1100 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1101
1102 AddPushedVisibilityAttribute(NewClass);
1103
1104 if (TUK != TUK_Friend) {
1105 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1106 Scope *Outer = S;
1107 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1108 Outer = Outer->getParent();
1109 PushOnScopeChains(NewTemplate, Outer);
1110 } else {
1111 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1112 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1113 NewClass->setAccess(PrevClassTemplate->getAccess());
1114 }
1115
1116 NewTemplate->setObjectOfFriendDecl();
1117
1118 // Friend templates are visible in fairly strange ways.
1119 if (!CurContext->isDependentContext()) {
1120 DeclContext *DC = SemanticContext->getRedeclContext();
1121 DC->makeDeclVisibleInContext(NewTemplate);
1122 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1123 PushOnScopeChains(NewTemplate, EnclosingScope,
1124 /* AddToContext = */ false);
1125 }
1126
1127 FriendDecl *Friend = FriendDecl::Create(
1128 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1129 Friend->setAccess(AS_public);
1130 CurContext->addDecl(Friend);
1131 }
1132
1133 if (Invalid) {
1134 NewTemplate->setInvalidDecl();
1135 NewClass->setInvalidDecl();
1136 }
1137
1138 ActOnDocumentableDecl(NewTemplate);
1139
1140 return NewTemplate;
1141 }
1142
1143 /// \brief Diagnose the presence of a default template argument on a
1144 /// template parameter, which is ill-formed in certain contexts.
1145 ///
1146 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1147 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1148 Sema::TemplateParamListContext TPC,
1149 SourceLocation ParamLoc,
1150 SourceRange DefArgRange) {
1151 switch (TPC) {
1152 case Sema::TPC_ClassTemplate:
1153 case Sema::TPC_VarTemplate:
1154 case Sema::TPC_TypeAliasTemplate:
1155 return false;
1156
1157 case Sema::TPC_FunctionTemplate:
1158 case Sema::TPC_FriendFunctionTemplateDefinition:
1159 // C++ [temp.param]p9:
1160 // A default template-argument shall not be specified in a
1161 // function template declaration or a function template
1162 // definition [...]
1163 // If a friend function template declaration specifies a default
1164 // template-argument, that declaration shall be a definition and shall be
1165 // the only declaration of the function template in the translation unit.
1166 // (C++98/03 doesn't have this wording; see DR226).
1167 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1168 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1169 : diag::ext_template_parameter_default_in_function_template)
1170 << DefArgRange;
1171 return false;
1172
1173 case Sema::TPC_ClassTemplateMember:
1174 // C++0x [temp.param]p9:
1175 // A default template-argument shall not be specified in the
1176 // template-parameter-lists of the definition of a member of a
1177 // class template that appears outside of the member's class.
1178 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1179 << DefArgRange;
1180 return true;
1181
1182 case Sema::TPC_FriendClassTemplate:
1183 case Sema::TPC_FriendFunctionTemplate:
1184 // C++ [temp.param]p9:
1185 // A default template-argument shall not be specified in a
1186 // friend template declaration.
1187 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1188 << DefArgRange;
1189 return true;
1190
1191 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1192 // for friend function templates if there is only a single
1193 // declaration (and it is a definition). Strange!
1194 }
1195
1196 llvm_unreachable("Invalid TemplateParamListContext!");
1197 }
1198
1199 /// \brief Check for unexpanded parameter packs within the template parameters
1200 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1201 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1202 TemplateTemplateParmDecl *TTP) {
1203 // A template template parameter which is a parameter pack is also a pack
1204 // expansion.
1205 if (TTP->isParameterPack())
1206 return false;
1207
1208 TemplateParameterList *Params = TTP->getTemplateParameters();
1209 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1210 NamedDecl *P = Params->getParam(I);
1211 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1212 if (!NTTP->isParameterPack() &&
1213 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1214 NTTP->getTypeSourceInfo(),
1215 Sema::UPPC_NonTypeTemplateParameterType))
1216 return true;
1217
1218 continue;
1219 }
1220
1221 if (TemplateTemplateParmDecl *InnerTTP
1222 = dyn_cast<TemplateTemplateParmDecl>(P))
1223 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1224 return true;
1225 }
1226
1227 return false;
1228 }
1229
1230 /// \brief Checks the validity of a template parameter list, possibly
1231 /// considering the template parameter list from a previous
1232 /// declaration.
1233 ///
1234 /// If an "old" template parameter list is provided, it must be
1235 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1236 /// template parameter list.
1237 ///
1238 /// \param NewParams Template parameter list for a new template
1239 /// declaration. This template parameter list will be updated with any
1240 /// default arguments that are carried through from the previous
1241 /// template parameter list.
1242 ///
1243 /// \param OldParams If provided, template parameter list from a
1244 /// previous declaration of the same template. Default template
1245 /// arguments will be merged from the old template parameter list to
1246 /// the new template parameter list.
1247 ///
1248 /// \param TPC Describes the context in which we are checking the given
1249 /// template parameter list.
1250 ///
1251 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1252 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1253 TemplateParameterList *OldParams,
1254 TemplateParamListContext TPC) {
1255 bool Invalid = false;
1256
1257 // C++ [temp.param]p10:
1258 // The set of default template-arguments available for use with a
1259 // template declaration or definition is obtained by merging the
1260 // default arguments from the definition (if in scope) and all
1261 // declarations in scope in the same way default function
1262 // arguments are (8.3.6).
1263 bool SawDefaultArgument = false;
1264 SourceLocation PreviousDefaultArgLoc;
1265
1266 // Dummy initialization to avoid warnings.
1267 TemplateParameterList::iterator OldParam = NewParams->end();
1268 if (OldParams)
1269 OldParam = OldParams->begin();
1270
1271 bool RemoveDefaultArguments = false;
1272 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1273 NewParamEnd = NewParams->end();
1274 NewParam != NewParamEnd; ++NewParam) {
1275 // Variables used to diagnose redundant default arguments
1276 bool RedundantDefaultArg = false;
1277 SourceLocation OldDefaultLoc;
1278 SourceLocation NewDefaultLoc;
1279
1280 // Variable used to diagnose missing default arguments
1281 bool MissingDefaultArg = false;
1282
1283 // Variable used to diagnose non-final parameter packs
1284 bool SawParameterPack = false;
1285
1286 if (TemplateTypeParmDecl *NewTypeParm
1287 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1288 // Check the presence of a default argument here.
1289 if (NewTypeParm->hasDefaultArgument() &&
1290 DiagnoseDefaultTemplateArgument(*this, TPC,
1291 NewTypeParm->getLocation(),
1292 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1293 .getSourceRange()))
1294 NewTypeParm->removeDefaultArgument();
1295
1296 // Merge default arguments for template type parameters.
1297 TemplateTypeParmDecl *OldTypeParm
1298 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1299
1300 if (NewTypeParm->isParameterPack()) {
1301 assert(!NewTypeParm->hasDefaultArgument() &&
1302 "Parameter packs can't have a default argument!");
1303 SawParameterPack = true;
1304 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1305 NewTypeParm->hasDefaultArgument()) {
1306 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1307 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1308 SawDefaultArgument = true;
1309 RedundantDefaultArg = true;
1310 PreviousDefaultArgLoc = NewDefaultLoc;
1311 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1312 // Merge the default argument from the old declaration to the
1313 // new declaration.
1314 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1315 true);
1316 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1317 } else if (NewTypeParm->hasDefaultArgument()) {
1318 SawDefaultArgument = true;
1319 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1320 } else if (SawDefaultArgument)
1321 MissingDefaultArg = true;
1322 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1323 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1324 // Check for unexpanded parameter packs.
1325 if (!NewNonTypeParm->isParameterPack() &&
1326 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1327 NewNonTypeParm->getTypeSourceInfo(),
1328 UPPC_NonTypeTemplateParameterType)) {
1329 Invalid = true;
1330 continue;
1331 }
1332
1333 // Check the presence of a default argument here.
1334 if (NewNonTypeParm->hasDefaultArgument() &&
1335 DiagnoseDefaultTemplateArgument(*this, TPC,
1336 NewNonTypeParm->getLocation(),
1337 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1338 NewNonTypeParm->removeDefaultArgument();
1339 }
1340
1341 // Merge default arguments for non-type template parameters
1342 NonTypeTemplateParmDecl *OldNonTypeParm
1343 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1344 if (NewNonTypeParm->isParameterPack()) {
1345 assert(!NewNonTypeParm->hasDefaultArgument() &&
1346 "Parameter packs can't have a default argument!");
1347 if (!NewNonTypeParm->isPackExpansion())
1348 SawParameterPack = true;
1349 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1350 NewNonTypeParm->hasDefaultArgument()) {
1351 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1352 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1353 SawDefaultArgument = true;
1354 RedundantDefaultArg = true;
1355 PreviousDefaultArgLoc = NewDefaultLoc;
1356 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1357 // Merge the default argument from the old declaration to the
1358 // new declaration.
1359 // FIXME: We need to create a new kind of "default argument"
1360 // expression that points to a previous non-type template
1361 // parameter.
1362 NewNonTypeParm->setDefaultArgument(
1363 OldNonTypeParm->getDefaultArgument(),
1364 /*Inherited=*/ true);
1365 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1366 } else if (NewNonTypeParm->hasDefaultArgument()) {
1367 SawDefaultArgument = true;
1368 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1369 } else if (SawDefaultArgument)
1370 MissingDefaultArg = true;
1371 } else {
1372 TemplateTemplateParmDecl *NewTemplateParm
1373 = cast<TemplateTemplateParmDecl>(*NewParam);
1374
1375 // Check for unexpanded parameter packs, recursively.
1376 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1377 Invalid = true;
1378 continue;
1379 }
1380
1381 // Check the presence of a default argument here.
1382 if (NewTemplateParm->hasDefaultArgument() &&
1383 DiagnoseDefaultTemplateArgument(*this, TPC,
1384 NewTemplateParm->getLocation(),
1385 NewTemplateParm->getDefaultArgument().getSourceRange()))
1386 NewTemplateParm->removeDefaultArgument();
1387
1388 // Merge default arguments for template template parameters
1389 TemplateTemplateParmDecl *OldTemplateParm
1390 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
1391 if (NewTemplateParm->isParameterPack()) {
1392 assert(!NewTemplateParm->hasDefaultArgument() &&
1393 "Parameter packs can't have a default argument!");
1394 if (!NewTemplateParm->isPackExpansion())
1395 SawParameterPack = true;
1396 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1397 NewTemplateParm->hasDefaultArgument()) {
1398 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1399 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1400 SawDefaultArgument = true;
1401 RedundantDefaultArg = true;
1402 PreviousDefaultArgLoc = NewDefaultLoc;
1403 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1404 // Merge the default argument from the old declaration to the
1405 // new declaration.
1406 // FIXME: We need to create a new kind of "default argument" expression
1407 // that points to a previous template template parameter.
1408 NewTemplateParm->setDefaultArgument(
1409 OldTemplateParm->getDefaultArgument(),
1410 /*Inherited=*/ true);
1411 PreviousDefaultArgLoc
1412 = OldTemplateParm->getDefaultArgument().getLocation();
1413 } else if (NewTemplateParm->hasDefaultArgument()) {
1414 SawDefaultArgument = true;
1415 PreviousDefaultArgLoc
1416 = NewTemplateParm->getDefaultArgument().getLocation();
1417 } else if (SawDefaultArgument)
1418 MissingDefaultArg = true;
1419 }
1420
1421 // C++11 [temp.param]p11:
1422 // If a template parameter of a primary class template or alias template
1423 // is a template parameter pack, it shall be the last template parameter.
1424 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1425 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1426 TPC == TPC_TypeAliasTemplate)) {
1427 Diag((*NewParam)->getLocation(),
1428 diag::err_template_param_pack_must_be_last_template_parameter);
1429 Invalid = true;
1430 }
1431
1432 if (RedundantDefaultArg) {
1433 // C++ [temp.param]p12:
1434 // A template-parameter shall not be given default arguments
1435 // by two different declarations in the same scope.
1436 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1437 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1438 Invalid = true;
1439 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1440 // C++ [temp.param]p11:
1441 // If a template-parameter of a class template has a default
1442 // template-argument, each subsequent template-parameter shall either
1443 // have a default template-argument supplied or be a template parameter
1444 // pack.
1445 Diag((*NewParam)->getLocation(),
1446 diag::err_template_param_default_arg_missing);
1447 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1448 Invalid = true;
1449 RemoveDefaultArguments = true;
1450 }
1451
1452 // If we have an old template parameter list that we're merging
1453 // in, move on to the next parameter.
1454 if (OldParams)
1455 ++OldParam;
1456 }
1457
1458 // We were missing some default arguments at the end of the list, so remove
1459 // all of the default arguments.
1460 if (RemoveDefaultArguments) {
1461 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1462 NewParamEnd = NewParams->end();
1463 NewParam != NewParamEnd; ++NewParam) {
1464 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1465 TTP->removeDefaultArgument();
1466 else if (NonTypeTemplateParmDecl *NTTP
1467 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1468 NTTP->removeDefaultArgument();
1469 else
1470 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1471 }
1472 }
1473
1474 return Invalid;
1475 }
1476
1477 namespace {
1478
1479 /// A class which looks for a use of a certain level of template
1480 /// parameter.
1481 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1482 typedef RecursiveASTVisitor<DependencyChecker> super;
1483
1484 unsigned Depth;
1485 bool Match;
1486 SourceLocation MatchLoc;
1487
DependencyChecker__anon572b50840111::DependencyChecker1488 DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
1489
DependencyChecker__anon572b50840111::DependencyChecker1490 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1491 NamedDecl *ND = Params->getParam(0);
1492 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1493 Depth = PD->getDepth();
1494 } else if (NonTypeTemplateParmDecl *PD =
1495 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1496 Depth = PD->getDepth();
1497 } else {
1498 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1499 }
1500 }
1501
Matches__anon572b50840111::DependencyChecker1502 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
1503 if (ParmDepth >= Depth) {
1504 Match = true;
1505 MatchLoc = Loc;
1506 return true;
1507 }
1508 return false;
1509 }
1510
VisitTemplateTypeParmTypeLoc__anon572b50840111::DependencyChecker1511 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
1512 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
1513 }
1514
VisitTemplateTypeParmType__anon572b50840111::DependencyChecker1515 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1516 return !Matches(T->getDepth());
1517 }
1518
TraverseTemplateName__anon572b50840111::DependencyChecker1519 bool TraverseTemplateName(TemplateName N) {
1520 if (TemplateTemplateParmDecl *PD =
1521 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1522 if (Matches(PD->getDepth()))
1523 return false;
1524 return super::TraverseTemplateName(N);
1525 }
1526
VisitDeclRefExpr__anon572b50840111::DependencyChecker1527 bool VisitDeclRefExpr(DeclRefExpr *E) {
1528 if (NonTypeTemplateParmDecl *PD =
1529 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
1530 if (Matches(PD->getDepth(), E->getExprLoc()))
1531 return false;
1532 return super::VisitDeclRefExpr(E);
1533 }
1534
VisitSubstTemplateTypeParmType__anon572b50840111::DependencyChecker1535 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1536 return TraverseType(T->getReplacementType());
1537 }
1538
1539 bool
VisitSubstTemplateTypeParmPackType__anon572b50840111::DependencyChecker1540 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
1541 return TraverseTemplateArgument(T->getArgumentPack());
1542 }
1543
TraverseInjectedClassNameType__anon572b50840111::DependencyChecker1544 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1545 return TraverseType(T->getInjectedSpecializationType());
1546 }
1547 };
1548 }
1549
1550 /// Determines whether a given type depends on the given parameter
1551 /// list.
1552 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1553 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1554 DependencyChecker Checker(Params);
1555 Checker.TraverseType(T);
1556 return Checker.Match;
1557 }
1558
1559 // Find the source range corresponding to the named type in the given
1560 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1561 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1562 QualType T,
1563 const CXXScopeSpec &SS) {
1564 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1565 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1566 if (const Type *CurType = NNS->getAsType()) {
1567 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1568 return NNSLoc.getTypeLoc().getSourceRange();
1569 } else
1570 break;
1571
1572 NNSLoc = NNSLoc.getPrefix();
1573 }
1574
1575 return SourceRange();
1576 }
1577
1578 /// \brief Match the given template parameter lists to the given scope
1579 /// specifier, returning the template parameter list that applies to the
1580 /// name.
1581 ///
1582 /// \param DeclStartLoc the start of the declaration that has a scope
1583 /// specifier or a template parameter list.
1584 ///
1585 /// \param DeclLoc The location of the declaration itself.
1586 ///
1587 /// \param SS the scope specifier that will be matched to the given template
1588 /// parameter lists. This scope specifier precedes a qualified name that is
1589 /// being declared.
1590 ///
1591 /// \param TemplateId The template-id following the scope specifier, if there
1592 /// is one. Used to check for a missing 'template<>'.
1593 ///
1594 /// \param ParamLists the template parameter lists, from the outermost to the
1595 /// innermost template parameter lists.
1596 ///
1597 /// \param IsFriend Whether to apply the slightly different rules for
1598 /// matching template parameters to scope specifiers in friend
1599 /// declarations.
1600 ///
1601 /// \param IsExplicitSpecialization will be set true if the entity being
1602 /// declared is an explicit specialization, false otherwise.
1603 ///
1604 /// \returns the template parameter list, if any, that corresponds to the
1605 /// name that is preceded by the scope specifier @p SS. This template
1606 /// parameter list may have template parameters (if we're declaring a
1607 /// template) or may have no template parameters (if we're declaring a
1608 /// template specialization), or may be NULL (if what we're declaring isn't
1609 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1610 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1611 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1612 TemplateIdAnnotation *TemplateId,
1613 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1614 bool &IsExplicitSpecialization, bool &Invalid) {
1615 IsExplicitSpecialization = false;
1616 Invalid = false;
1617
1618 // The sequence of nested types to which we will match up the template
1619 // parameter lists. We first build this list by starting with the type named
1620 // by the nested-name-specifier and walking out until we run out of types.
1621 SmallVector<QualType, 4> NestedTypes;
1622 QualType T;
1623 if (SS.getScopeRep()) {
1624 if (CXXRecordDecl *Record
1625 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1626 T = Context.getTypeDeclType(Record);
1627 else
1628 T = QualType(SS.getScopeRep()->getAsType(), 0);
1629 }
1630
1631 // If we found an explicit specialization that prevents us from needing
1632 // 'template<>' headers, this will be set to the location of that
1633 // explicit specialization.
1634 SourceLocation ExplicitSpecLoc;
1635
1636 while (!T.isNull()) {
1637 NestedTypes.push_back(T);
1638
1639 // Retrieve the parent of a record type.
1640 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1641 // If this type is an explicit specialization, we're done.
1642 if (ClassTemplateSpecializationDecl *Spec
1643 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1644 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1645 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1646 ExplicitSpecLoc = Spec->getLocation();
1647 break;
1648 }
1649 } else if (Record->getTemplateSpecializationKind()
1650 == TSK_ExplicitSpecialization) {
1651 ExplicitSpecLoc = Record->getLocation();
1652 break;
1653 }
1654
1655 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1656 T = Context.getTypeDeclType(Parent);
1657 else
1658 T = QualType();
1659 continue;
1660 }
1661
1662 if (const TemplateSpecializationType *TST
1663 = T->getAs<TemplateSpecializationType>()) {
1664 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1665 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1666 T = Context.getTypeDeclType(Parent);
1667 else
1668 T = QualType();
1669 continue;
1670 }
1671 }
1672
1673 // Look one step prior in a dependent template specialization type.
1674 if (const DependentTemplateSpecializationType *DependentTST
1675 = T->getAs<DependentTemplateSpecializationType>()) {
1676 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1677 T = QualType(NNS->getAsType(), 0);
1678 else
1679 T = QualType();
1680 continue;
1681 }
1682
1683 // Look one step prior in a dependent name type.
1684 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1685 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1686 T = QualType(NNS->getAsType(), 0);
1687 else
1688 T = QualType();
1689 continue;
1690 }
1691
1692 // Retrieve the parent of an enumeration type.
1693 if (const EnumType *EnumT = T->getAs<EnumType>()) {
1694 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1695 // check here.
1696 EnumDecl *Enum = EnumT->getDecl();
1697
1698 // Get to the parent type.
1699 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1700 T = Context.getTypeDeclType(Parent);
1701 else
1702 T = QualType();
1703 continue;
1704 }
1705
1706 T = QualType();
1707 }
1708 // Reverse the nested types list, since we want to traverse from the outermost
1709 // to the innermost while checking template-parameter-lists.
1710 std::reverse(NestedTypes.begin(), NestedTypes.end());
1711
1712 // C++0x [temp.expl.spec]p17:
1713 // A member or a member template may be nested within many
1714 // enclosing class templates. In an explicit specialization for
1715 // such a member, the member declaration shall be preceded by a
1716 // template<> for each enclosing class template that is
1717 // explicitly specialized.
1718 bool SawNonEmptyTemplateParameterList = false;
1719
1720 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
1721 if (SawNonEmptyTemplateParameterList) {
1722 Diag(DeclLoc, diag::err_specialize_member_of_template)
1723 << !Recovery << Range;
1724 Invalid = true;
1725 IsExplicitSpecialization = false;
1726 return true;
1727 }
1728
1729 return false;
1730 };
1731
1732 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
1733 // Check that we can have an explicit specialization here.
1734 if (CheckExplicitSpecialization(Range, true))
1735 return true;
1736
1737 // We don't have a template header, but we should.
1738 SourceLocation ExpectedTemplateLoc;
1739 if (!ParamLists.empty())
1740 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1741 else
1742 ExpectedTemplateLoc = DeclStartLoc;
1743
1744 Diag(DeclLoc, diag::err_template_spec_needs_header)
1745 << Range
1746 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1747 return false;
1748 };
1749
1750 unsigned ParamIdx = 0;
1751 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1752 ++TypeIdx) {
1753 T = NestedTypes[TypeIdx];
1754
1755 // Whether we expect a 'template<>' header.
1756 bool NeedEmptyTemplateHeader = false;
1757
1758 // Whether we expect a template header with parameters.
1759 bool NeedNonemptyTemplateHeader = false;
1760
1761 // For a dependent type, the set of template parameters that we
1762 // expect to see.
1763 TemplateParameterList *ExpectedTemplateParams = nullptr;
1764
1765 // C++0x [temp.expl.spec]p15:
1766 // A member or a member template may be nested within many enclosing
1767 // class templates. In an explicit specialization for such a member, the
1768 // member declaration shall be preceded by a template<> for each
1769 // enclosing class template that is explicitly specialized.
1770 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1771 if (ClassTemplatePartialSpecializationDecl *Partial
1772 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1773 ExpectedTemplateParams = Partial->getTemplateParameters();
1774 NeedNonemptyTemplateHeader = true;
1775 } else if (Record->isDependentType()) {
1776 if (Record->getDescribedClassTemplate()) {
1777 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1778 ->getTemplateParameters();
1779 NeedNonemptyTemplateHeader = true;
1780 }
1781 } else if (ClassTemplateSpecializationDecl *Spec
1782 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1783 // C++0x [temp.expl.spec]p4:
1784 // Members of an explicitly specialized class template are defined
1785 // in the same manner as members of normal classes, and not using
1786 // the template<> syntax.
1787 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1788 NeedEmptyTemplateHeader = true;
1789 else
1790 continue;
1791 } else if (Record->getTemplateSpecializationKind()) {
1792 if (Record->getTemplateSpecializationKind()
1793 != TSK_ExplicitSpecialization &&
1794 TypeIdx == NumTypes - 1)
1795 IsExplicitSpecialization = true;
1796
1797 continue;
1798 }
1799 } else if (const TemplateSpecializationType *TST
1800 = T->getAs<TemplateSpecializationType>()) {
1801 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1802 ExpectedTemplateParams = Template->getTemplateParameters();
1803 NeedNonemptyTemplateHeader = true;
1804 }
1805 } else if (T->getAs<DependentTemplateSpecializationType>()) {
1806 // FIXME: We actually could/should check the template arguments here
1807 // against the corresponding template parameter list.
1808 NeedNonemptyTemplateHeader = false;
1809 }
1810
1811 // C++ [temp.expl.spec]p16:
1812 // In an explicit specialization declaration for a member of a class
1813 // template or a member template that ap- pears in namespace scope, the
1814 // member template and some of its enclosing class templates may remain
1815 // unspecialized, except that the declaration shall not explicitly
1816 // specialize a class member template if its en- closing class templates
1817 // are not explicitly specialized as well.
1818 if (ParamIdx < ParamLists.size()) {
1819 if (ParamLists[ParamIdx]->size() == 0) {
1820 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1821 false))
1822 return nullptr;
1823 } else
1824 SawNonEmptyTemplateParameterList = true;
1825 }
1826
1827 if (NeedEmptyTemplateHeader) {
1828 // If we're on the last of the types, and we need a 'template<>' header
1829 // here, then it's an explicit specialization.
1830 if (TypeIdx == NumTypes - 1)
1831 IsExplicitSpecialization = true;
1832
1833 if (ParamIdx < ParamLists.size()) {
1834 if (ParamLists[ParamIdx]->size() > 0) {
1835 // The header has template parameters when it shouldn't. Complain.
1836 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1837 diag::err_template_param_list_matches_nontemplate)
1838 << T
1839 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1840 ParamLists[ParamIdx]->getRAngleLoc())
1841 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1842 Invalid = true;
1843 return nullptr;
1844 }
1845
1846 // Consume this template header.
1847 ++ParamIdx;
1848 continue;
1849 }
1850
1851 if (!IsFriend)
1852 if (DiagnoseMissingExplicitSpecialization(
1853 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
1854 return nullptr;
1855
1856 continue;
1857 }
1858
1859 if (NeedNonemptyTemplateHeader) {
1860 // In friend declarations we can have template-ids which don't
1861 // depend on the corresponding template parameter lists. But
1862 // assume that empty parameter lists are supposed to match this
1863 // template-id.
1864 if (IsFriend && T->isDependentType()) {
1865 if (ParamIdx < ParamLists.size() &&
1866 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1867 ExpectedTemplateParams = nullptr;
1868 else
1869 continue;
1870 }
1871
1872 if (ParamIdx < ParamLists.size()) {
1873 // Check the template parameter list, if we can.
1874 if (ExpectedTemplateParams &&
1875 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1876 ExpectedTemplateParams,
1877 true, TPL_TemplateMatch))
1878 Invalid = true;
1879
1880 if (!Invalid &&
1881 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
1882 TPC_ClassTemplateMember))
1883 Invalid = true;
1884
1885 ++ParamIdx;
1886 continue;
1887 }
1888
1889 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1890 << T
1891 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1892 Invalid = true;
1893 continue;
1894 }
1895 }
1896
1897 // If there were at least as many template-ids as there were template
1898 // parameter lists, then there are no template parameter lists remaining for
1899 // the declaration itself.
1900 if (ParamIdx >= ParamLists.size()) {
1901 if (TemplateId && !IsFriend) {
1902 // We don't have a template header for the declaration itself, but we
1903 // should.
1904 IsExplicitSpecialization = true;
1905 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
1906 TemplateId->RAngleLoc));
1907
1908 // Fabricate an empty template parameter list for the invented header.
1909 return TemplateParameterList::Create(Context, SourceLocation(),
1910 SourceLocation(), nullptr, 0,
1911 SourceLocation());
1912 }
1913
1914 return nullptr;
1915 }
1916
1917 // If there were too many template parameter lists, complain about that now.
1918 if (ParamIdx < ParamLists.size() - 1) {
1919 bool HasAnyExplicitSpecHeader = false;
1920 bool AllExplicitSpecHeaders = true;
1921 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1922 if (ParamLists[I]->size() == 0)
1923 HasAnyExplicitSpecHeader = true;
1924 else
1925 AllExplicitSpecHeaders = false;
1926 }
1927
1928 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1929 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1930 : diag::err_template_spec_extra_headers)
1931 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1932 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1933
1934 // If there was a specialization somewhere, such that 'template<>' is
1935 // not required, and there were any 'template<>' headers, note where the
1936 // specialization occurred.
1937 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1938 Diag(ExplicitSpecLoc,
1939 diag::note_explicit_template_spec_does_not_need_header)
1940 << NestedTypes.back();
1941
1942 // We have a template parameter list with no corresponding scope, which
1943 // means that the resulting template declaration can't be instantiated
1944 // properly (we'll end up with dependent nodes when we shouldn't).
1945 if (!AllExplicitSpecHeaders)
1946 Invalid = true;
1947 }
1948
1949 // C++ [temp.expl.spec]p16:
1950 // In an explicit specialization declaration for a member of a class
1951 // template or a member template that ap- pears in namespace scope, the
1952 // member template and some of its enclosing class templates may remain
1953 // unspecialized, except that the declaration shall not explicitly
1954 // specialize a class member template if its en- closing class templates
1955 // are not explicitly specialized as well.
1956 if (ParamLists.back()->size() == 0 &&
1957 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1958 false))
1959 return nullptr;
1960
1961 // Return the last template parameter list, which corresponds to the
1962 // entity being declared.
1963 return ParamLists.back();
1964 }
1965
NoteAllFoundTemplates(TemplateName Name)1966 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1967 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1968 Diag(Template->getLocation(), diag::note_template_declared_here)
1969 << (isa<FunctionTemplateDecl>(Template)
1970 ? 0
1971 : isa<ClassTemplateDecl>(Template)
1972 ? 1
1973 : isa<VarTemplateDecl>(Template)
1974 ? 2
1975 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1976 << Template->getDeclName();
1977 return;
1978 }
1979
1980 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1981 for (OverloadedTemplateStorage::iterator I = OST->begin(),
1982 IEnd = OST->end();
1983 I != IEnd; ++I)
1984 Diag((*I)->getLocation(), diag::note_template_declared_here)
1985 << 0 << (*I)->getDeclName();
1986
1987 return;
1988 }
1989 }
1990
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1991 QualType Sema::CheckTemplateIdType(TemplateName Name,
1992 SourceLocation TemplateLoc,
1993 TemplateArgumentListInfo &TemplateArgs) {
1994 DependentTemplateName *DTN
1995 = Name.getUnderlying().getAsDependentTemplateName();
1996 if (DTN && DTN->isIdentifier())
1997 // When building a template-id where the template-name is dependent,
1998 // assume the template is a type template. Either our assumption is
1999 // correct, or the code is ill-formed and will be diagnosed when the
2000 // dependent name is substituted.
2001 return Context.getDependentTemplateSpecializationType(ETK_None,
2002 DTN->getQualifier(),
2003 DTN->getIdentifier(),
2004 TemplateArgs);
2005
2006 TemplateDecl *Template = Name.getAsTemplateDecl();
2007 if (!Template || isa<FunctionTemplateDecl>(Template) ||
2008 isa<VarTemplateDecl>(Template)) {
2009 // We might have a substituted template template parameter pack. If so,
2010 // build a template specialization type for it.
2011 if (Name.getAsSubstTemplateTemplateParmPack())
2012 return Context.getTemplateSpecializationType(Name, TemplateArgs);
2013
2014 Diag(TemplateLoc, diag::err_template_id_not_a_type)
2015 << Name;
2016 NoteAllFoundTemplates(Name);
2017 return QualType();
2018 }
2019
2020 // Check that the template argument list is well-formed for this
2021 // template.
2022 SmallVector<TemplateArgument, 4> Converted;
2023 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2024 false, Converted))
2025 return QualType();
2026
2027 QualType CanonType;
2028
2029 bool InstantiationDependent = false;
2030 if (TypeAliasTemplateDecl *AliasTemplate =
2031 dyn_cast<TypeAliasTemplateDecl>(Template)) {
2032 // Find the canonical type for this type alias template specialization.
2033 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2034 if (Pattern->isInvalidDecl())
2035 return QualType();
2036
2037 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2038 Converted.data(), Converted.size());
2039
2040 // Only substitute for the innermost template argument list.
2041 MultiLevelTemplateArgumentList TemplateArgLists;
2042 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2043 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2044 for (unsigned I = 0; I < Depth; ++I)
2045 TemplateArgLists.addOuterTemplateArguments(None);
2046
2047 LocalInstantiationScope Scope(*this);
2048 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2049 if (Inst.isInvalid())
2050 return QualType();
2051
2052 CanonType = SubstType(Pattern->getUnderlyingType(),
2053 TemplateArgLists, AliasTemplate->getLocation(),
2054 AliasTemplate->getDeclName());
2055 if (CanonType.isNull())
2056 return QualType();
2057 } else if (Name.isDependent() ||
2058 TemplateSpecializationType::anyDependentTemplateArguments(
2059 TemplateArgs, InstantiationDependent)) {
2060 // This class template specialization is a dependent
2061 // type. Therefore, its canonical type is another class template
2062 // specialization type that contains all of the converted
2063 // arguments in canonical form. This ensures that, e.g., A<T> and
2064 // A<T, T> have identical types when A is declared as:
2065 //
2066 // template<typename T, typename U = T> struct A;
2067 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2068 CanonType = Context.getTemplateSpecializationType(CanonName,
2069 Converted.data(),
2070 Converted.size());
2071
2072 // FIXME: CanonType is not actually the canonical type, and unfortunately
2073 // it is a TemplateSpecializationType that we will never use again.
2074 // In the future, we need to teach getTemplateSpecializationType to only
2075 // build the canonical type and return that to us.
2076 CanonType = Context.getCanonicalType(CanonType);
2077
2078 // This might work out to be a current instantiation, in which
2079 // case the canonical type needs to be the InjectedClassNameType.
2080 //
2081 // TODO: in theory this could be a simple hashtable lookup; most
2082 // changes to CurContext don't change the set of current
2083 // instantiations.
2084 if (isa<ClassTemplateDecl>(Template)) {
2085 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2086 // If we get out to a namespace, we're done.
2087 if (Ctx->isFileContext()) break;
2088
2089 // If this isn't a record, keep looking.
2090 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2091 if (!Record) continue;
2092
2093 // Look for one of the two cases with InjectedClassNameTypes
2094 // and check whether it's the same template.
2095 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2096 !Record->getDescribedClassTemplate())
2097 continue;
2098
2099 // Fetch the injected class name type and check whether its
2100 // injected type is equal to the type we just built.
2101 QualType ICNT = Context.getTypeDeclType(Record);
2102 QualType Injected = cast<InjectedClassNameType>(ICNT)
2103 ->getInjectedSpecializationType();
2104
2105 if (CanonType != Injected->getCanonicalTypeInternal())
2106 continue;
2107
2108 // If so, the canonical type of this TST is the injected
2109 // class name type of the record we just found.
2110 assert(ICNT.isCanonical());
2111 CanonType = ICNT;
2112 break;
2113 }
2114 }
2115 } else if (ClassTemplateDecl *ClassTemplate
2116 = dyn_cast<ClassTemplateDecl>(Template)) {
2117 // Find the class template specialization declaration that
2118 // corresponds to these arguments.
2119 void *InsertPos = nullptr;
2120 ClassTemplateSpecializationDecl *Decl
2121 = ClassTemplate->findSpecialization(Converted, InsertPos);
2122 if (!Decl) {
2123 // This is the first time we have referenced this class template
2124 // specialization. Create the canonical declaration and add it to
2125 // the set of specializations.
2126 Decl = ClassTemplateSpecializationDecl::Create(Context,
2127 ClassTemplate->getTemplatedDecl()->getTagKind(),
2128 ClassTemplate->getDeclContext(),
2129 ClassTemplate->getTemplatedDecl()->getLocStart(),
2130 ClassTemplate->getLocation(),
2131 ClassTemplate,
2132 Converted.data(),
2133 Converted.size(), nullptr);
2134 ClassTemplate->AddSpecialization(Decl, InsertPos);
2135 if (ClassTemplate->isOutOfLine())
2136 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2137 }
2138
2139 // Diagnose uses of this specialization.
2140 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2141
2142 CanonType = Context.getTypeDeclType(Decl);
2143 assert(isa<RecordType>(CanonType) &&
2144 "type of non-dependent specialization is not a RecordType");
2145 }
2146
2147 // Build the fully-sugared type for this class template
2148 // specialization, which refers back to the class template
2149 // specialization we created or found.
2150 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2151 }
2152
2153 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2154 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2155 TemplateTy TemplateD, SourceLocation TemplateLoc,
2156 SourceLocation LAngleLoc,
2157 ASTTemplateArgsPtr TemplateArgsIn,
2158 SourceLocation RAngleLoc,
2159 bool IsCtorOrDtorName) {
2160 if (SS.isInvalid())
2161 return true;
2162
2163 TemplateName Template = TemplateD.get();
2164
2165 // Translate the parser's template argument list in our AST format.
2166 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2167 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2168
2169 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2170 QualType T
2171 = Context.getDependentTemplateSpecializationType(ETK_None,
2172 DTN->getQualifier(),
2173 DTN->getIdentifier(),
2174 TemplateArgs);
2175 // Build type-source information.
2176 TypeLocBuilder TLB;
2177 DependentTemplateSpecializationTypeLoc SpecTL
2178 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2179 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2180 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2181 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2182 SpecTL.setTemplateNameLoc(TemplateLoc);
2183 SpecTL.setLAngleLoc(LAngleLoc);
2184 SpecTL.setRAngleLoc(RAngleLoc);
2185 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2186 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2187 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2188 }
2189
2190 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2191
2192 if (Result.isNull())
2193 return true;
2194
2195 // Build type-source information.
2196 TypeLocBuilder TLB;
2197 TemplateSpecializationTypeLoc SpecTL
2198 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2199 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2200 SpecTL.setTemplateNameLoc(TemplateLoc);
2201 SpecTL.setLAngleLoc(LAngleLoc);
2202 SpecTL.setRAngleLoc(RAngleLoc);
2203 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2204 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2205
2206 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2207 // constructor or destructor name (in such a case, the scope specifier
2208 // will be attached to the enclosing Decl or Expr node).
2209 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2210 // Create an elaborated-type-specifier containing the nested-name-specifier.
2211 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2212 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2213 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2214 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2215 }
2216
2217 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2218 }
2219
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2220 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2221 TypeSpecifierType TagSpec,
2222 SourceLocation TagLoc,
2223 CXXScopeSpec &SS,
2224 SourceLocation TemplateKWLoc,
2225 TemplateTy TemplateD,
2226 SourceLocation TemplateLoc,
2227 SourceLocation LAngleLoc,
2228 ASTTemplateArgsPtr TemplateArgsIn,
2229 SourceLocation RAngleLoc) {
2230 TemplateName Template = TemplateD.get();
2231
2232 // Translate the parser's template argument list in our AST format.
2233 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2234 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2235
2236 // Determine the tag kind
2237 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2238 ElaboratedTypeKeyword Keyword
2239 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2240
2241 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2242 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2243 DTN->getQualifier(),
2244 DTN->getIdentifier(),
2245 TemplateArgs);
2246
2247 // Build type-source information.
2248 TypeLocBuilder TLB;
2249 DependentTemplateSpecializationTypeLoc SpecTL
2250 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2251 SpecTL.setElaboratedKeywordLoc(TagLoc);
2252 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2253 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2254 SpecTL.setTemplateNameLoc(TemplateLoc);
2255 SpecTL.setLAngleLoc(LAngleLoc);
2256 SpecTL.setRAngleLoc(RAngleLoc);
2257 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2258 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2259 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2260 }
2261
2262 if (TypeAliasTemplateDecl *TAT =
2263 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2264 // C++0x [dcl.type.elab]p2:
2265 // If the identifier resolves to a typedef-name or the simple-template-id
2266 // resolves to an alias template specialization, the
2267 // elaborated-type-specifier is ill-formed.
2268 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2269 Diag(TAT->getLocation(), diag::note_declared_at);
2270 }
2271
2272 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2273 if (Result.isNull())
2274 return TypeResult(true);
2275
2276 // Check the tag kind
2277 if (const RecordType *RT = Result->getAs<RecordType>()) {
2278 RecordDecl *D = RT->getDecl();
2279
2280 IdentifierInfo *Id = D->getIdentifier();
2281 assert(Id && "templated class must have an identifier");
2282
2283 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2284 TagLoc, *Id)) {
2285 Diag(TagLoc, diag::err_use_with_wrong_tag)
2286 << Result
2287 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2288 Diag(D->getLocation(), diag::note_previous_use);
2289 }
2290 }
2291
2292 // Provide source-location information for the template specialization.
2293 TypeLocBuilder TLB;
2294 TemplateSpecializationTypeLoc SpecTL
2295 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2296 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2297 SpecTL.setTemplateNameLoc(TemplateLoc);
2298 SpecTL.setLAngleLoc(LAngleLoc);
2299 SpecTL.setRAngleLoc(RAngleLoc);
2300 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2301 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2302
2303 // Construct an elaborated type containing the nested-name-specifier (if any)
2304 // and tag keyword.
2305 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2306 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2307 ElabTL.setElaboratedKeywordLoc(TagLoc);
2308 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2309 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2310 }
2311
2312 static bool CheckTemplatePartialSpecializationArgs(
2313 Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
2314 unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
2315
2316 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2317 NamedDecl *PrevDecl,
2318 SourceLocation Loc,
2319 bool IsPartialSpecialization);
2320
2321 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2322
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)2323 static bool isTemplateArgumentTemplateParameter(
2324 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2325 switch (Arg.getKind()) {
2326 case TemplateArgument::Null:
2327 case TemplateArgument::NullPtr:
2328 case TemplateArgument::Integral:
2329 case TemplateArgument::Declaration:
2330 case TemplateArgument::Pack:
2331 case TemplateArgument::TemplateExpansion:
2332 return false;
2333
2334 case TemplateArgument::Type: {
2335 QualType Type = Arg.getAsType();
2336 const TemplateTypeParmType *TPT =
2337 Arg.getAsType()->getAs<TemplateTypeParmType>();
2338 return TPT && !Type.hasQualifiers() &&
2339 TPT->getDepth() == Depth && TPT->getIndex() == Index;
2340 }
2341
2342 case TemplateArgument::Expression: {
2343 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2344 if (!DRE || !DRE->getDecl())
2345 return false;
2346 const NonTypeTemplateParmDecl *NTTP =
2347 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2348 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2349 }
2350
2351 case TemplateArgument::Template:
2352 const TemplateTemplateParmDecl *TTP =
2353 dyn_cast_or_null<TemplateTemplateParmDecl>(
2354 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2355 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2356 }
2357 llvm_unreachable("unexpected kind of template argument");
2358 }
2359
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)2360 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2361 ArrayRef<TemplateArgument> Args) {
2362 if (Params->size() != Args.size())
2363 return false;
2364
2365 unsigned Depth = Params->getDepth();
2366
2367 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2368 TemplateArgument Arg = Args[I];
2369
2370 // If the parameter is a pack expansion, the argument must be a pack
2371 // whose only element is a pack expansion.
2372 if (Params->getParam(I)->isParameterPack()) {
2373 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2374 !Arg.pack_begin()->isPackExpansion())
2375 return false;
2376 Arg = Arg.pack_begin()->getPackExpansionPattern();
2377 }
2378
2379 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2380 return false;
2381 }
2382
2383 return true;
2384 }
2385
2386 /// Convert the parser's template argument list representation into our form.
2387 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)2388 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
2389 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
2390 TemplateId.RAngleLoc);
2391 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
2392 TemplateId.NumArgs);
2393 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2394 return TemplateArgs;
2395 }
2396
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,StorageClass SC,bool IsPartialSpecialization)2397 DeclResult Sema::ActOnVarTemplateSpecialization(
2398 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
2399 TemplateParameterList *TemplateParams, StorageClass SC,
2400 bool IsPartialSpecialization) {
2401 // D must be variable template id.
2402 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2403 "Variable template specialization is declared with a template it.");
2404
2405 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2406 TemplateArgumentListInfo TemplateArgs =
2407 makeTemplateArgumentListInfo(*this, *TemplateId);
2408 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2409 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2410 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2411
2412 TemplateName Name = TemplateId->Template.get();
2413
2414 // The template-id must name a variable template.
2415 VarTemplateDecl *VarTemplate =
2416 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
2417 if (!VarTemplate) {
2418 NamedDecl *FnTemplate;
2419 if (auto *OTS = Name.getAsOverloadedTemplate())
2420 FnTemplate = *OTS->begin();
2421 else
2422 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
2423 if (FnTemplate)
2424 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
2425 << FnTemplate->getDeclName();
2426 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
2427 << IsPartialSpecialization;
2428 }
2429
2430 // Check for unexpanded parameter packs in any of the template arguments.
2431 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2432 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2433 UPPC_PartialSpecialization))
2434 return true;
2435
2436 // Check that the template argument list is well-formed for this
2437 // template.
2438 SmallVector<TemplateArgument, 4> Converted;
2439 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2440 false, Converted))
2441 return true;
2442
2443 // Check that the type of this variable template specialization
2444 // matches the expected type.
2445 TypeSourceInfo *ExpectedDI;
2446 {
2447 // Do substitution on the type of the declaration
2448 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2449 Converted.data(), Converted.size());
2450 InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2451 if (Inst.isInvalid())
2452 return true;
2453 VarDecl *Templated = VarTemplate->getTemplatedDecl();
2454 ExpectedDI =
2455 SubstType(Templated->getTypeSourceInfo(),
2456 MultiLevelTemplateArgumentList(TemplateArgList),
2457 Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2458 }
2459 if (!ExpectedDI)
2460 return true;
2461
2462 // Find the variable template (partial) specialization declaration that
2463 // corresponds to these arguments.
2464 if (IsPartialSpecialization) {
2465 if (CheckTemplatePartialSpecializationArgs(
2466 *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
2467 TemplateArgs.size(), Converted))
2468 return true;
2469
2470 bool InstantiationDependent;
2471 if (!Name.isDependent() &&
2472 !TemplateSpecializationType::anyDependentTemplateArguments(
2473 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2474 InstantiationDependent)) {
2475 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2476 << VarTemplate->getDeclName();
2477 IsPartialSpecialization = false;
2478 }
2479
2480 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2481 Converted)) {
2482 // C++ [temp.class.spec]p9b3:
2483 //
2484 // -- The argument list of the specialization shall not be identical
2485 // to the implicit argument list of the primary template.
2486 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2487 << /*variable template*/ 1
2488 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2489 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2490 // FIXME: Recover from this by treating the declaration as a redeclaration
2491 // of the primary template.
2492 return true;
2493 }
2494 }
2495
2496 void *InsertPos = nullptr;
2497 VarTemplateSpecializationDecl *PrevDecl = nullptr;
2498
2499 if (IsPartialSpecialization)
2500 // FIXME: Template parameter list matters too
2501 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
2502 else
2503 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
2504
2505 VarTemplateSpecializationDecl *Specialization = nullptr;
2506
2507 // Check whether we can declare a variable template specialization in
2508 // the current scope.
2509 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2510 TemplateNameLoc,
2511 IsPartialSpecialization))
2512 return true;
2513
2514 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2515 // Since the only prior variable template specialization with these
2516 // arguments was referenced but not declared, reuse that
2517 // declaration node as our own, updating its source location and
2518 // the list of outer template parameters to reflect our new declaration.
2519 Specialization = PrevDecl;
2520 Specialization->setLocation(TemplateNameLoc);
2521 PrevDecl = nullptr;
2522 } else if (IsPartialSpecialization) {
2523 // Create a new class template partial specialization declaration node.
2524 VarTemplatePartialSpecializationDecl *PrevPartial =
2525 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2526 VarTemplatePartialSpecializationDecl *Partial =
2527 VarTemplatePartialSpecializationDecl::Create(
2528 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2529 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2530 Converted.data(), Converted.size(), TemplateArgs);
2531
2532 if (!PrevPartial)
2533 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2534 Specialization = Partial;
2535
2536 // If we are providing an explicit specialization of a member variable
2537 // template specialization, make a note of that.
2538 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2539 PrevPartial->setMemberSpecialization();
2540
2541 // Check that all of the template parameters of the variable template
2542 // partial specialization are deducible from the template
2543 // arguments. If not, this variable template partial specialization
2544 // will never be used.
2545 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2546 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2547 TemplateParams->getDepth(), DeducibleParams);
2548
2549 if (!DeducibleParams.all()) {
2550 unsigned NumNonDeducible =
2551 DeducibleParams.size() - DeducibleParams.count();
2552 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2553 << /*variable template*/ 1 << (NumNonDeducible > 1)
2554 << SourceRange(TemplateNameLoc, RAngleLoc);
2555 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2556 if (!DeducibleParams[I]) {
2557 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2558 if (Param->getDeclName())
2559 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2560 << Param->getDeclName();
2561 else
2562 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2563 << "(anonymous)";
2564 }
2565 }
2566 }
2567 } else {
2568 // Create a new class template specialization declaration node for
2569 // this explicit specialization or friend declaration.
2570 Specialization = VarTemplateSpecializationDecl::Create(
2571 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2572 VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2573 Specialization->setTemplateArgsInfo(TemplateArgs);
2574
2575 if (!PrevDecl)
2576 VarTemplate->AddSpecialization(Specialization, InsertPos);
2577 }
2578
2579 // C++ [temp.expl.spec]p6:
2580 // If a template, a member template or the member of a class template is
2581 // explicitly specialized then that specialization shall be declared
2582 // before the first use of that specialization that would cause an implicit
2583 // instantiation to take place, in every translation unit in which such a
2584 // use occurs; no diagnostic is required.
2585 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2586 bool Okay = false;
2587 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2588 // Is there any previous explicit specialization declaration?
2589 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2590 Okay = true;
2591 break;
2592 }
2593 }
2594
2595 if (!Okay) {
2596 SourceRange Range(TemplateNameLoc, RAngleLoc);
2597 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2598 << Name << Range;
2599
2600 Diag(PrevDecl->getPointOfInstantiation(),
2601 diag::note_instantiation_required_here)
2602 << (PrevDecl->getTemplateSpecializationKind() !=
2603 TSK_ImplicitInstantiation);
2604 return true;
2605 }
2606 }
2607
2608 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2609 Specialization->setLexicalDeclContext(CurContext);
2610
2611 // Add the specialization into its lexical context, so that it can
2612 // be seen when iterating through the list of declarations in that
2613 // context. However, specializations are not found by name lookup.
2614 CurContext->addDecl(Specialization);
2615
2616 // Note that this is an explicit specialization.
2617 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2618
2619 if (PrevDecl) {
2620 // Check that this isn't a redefinition of this specialization,
2621 // merging with previous declarations.
2622 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2623 ForRedeclaration);
2624 PrevSpec.addDecl(PrevDecl);
2625 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2626 } else if (Specialization->isStaticDataMember() &&
2627 Specialization->isOutOfLine()) {
2628 Specialization->setAccess(VarTemplate->getAccess());
2629 }
2630
2631 // Link instantiations of static data members back to the template from
2632 // which they were instantiated.
2633 if (Specialization->isStaticDataMember())
2634 Specialization->setInstantiationOfStaticDataMember(
2635 VarTemplate->getTemplatedDecl(),
2636 Specialization->getSpecializationKind());
2637
2638 return Specialization;
2639 }
2640
2641 namespace {
2642 /// \brief A partial specialization whose template arguments have matched
2643 /// a given template-id.
2644 struct PartialSpecMatchResult {
2645 VarTemplatePartialSpecializationDecl *Partial;
2646 TemplateArgumentList *Args;
2647 };
2648 }
2649
2650 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)2651 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2652 SourceLocation TemplateNameLoc,
2653 const TemplateArgumentListInfo &TemplateArgs) {
2654 assert(Template && "A variable template id without template?");
2655
2656 // Check that the template argument list is well-formed for this template.
2657 SmallVector<TemplateArgument, 4> Converted;
2658 if (CheckTemplateArgumentList(
2659 Template, TemplateNameLoc,
2660 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2661 Converted))
2662 return true;
2663
2664 // Find the variable template specialization declaration that
2665 // corresponds to these arguments.
2666 void *InsertPos = nullptr;
2667 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2668 Converted, InsertPos))
2669 // If we already have a variable template specialization, return it.
2670 return Spec;
2671
2672 // This is the first time we have referenced this variable template
2673 // specialization. Create the canonical declaration and add it to
2674 // the set of specializations, based on the closest partial specialization
2675 // that it represents. That is,
2676 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2677 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2678 Converted.data(), Converted.size());
2679 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2680 bool AmbiguousPartialSpec = false;
2681 typedef PartialSpecMatchResult MatchResult;
2682 SmallVector<MatchResult, 4> Matched;
2683 SourceLocation PointOfInstantiation = TemplateNameLoc;
2684 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2685
2686 // 1. Attempt to find the closest partial specialization that this
2687 // specializes, if any.
2688 // If any of the template arguments is dependent, then this is probably
2689 // a placeholder for an incomplete declarative context; which must be
2690 // complete by instantiation time. Thus, do not search through the partial
2691 // specializations yet.
2692 // TODO: Unify with InstantiateClassTemplateSpecialization()?
2693 // Perhaps better after unification of DeduceTemplateArguments() and
2694 // getMoreSpecializedPartialSpecialization().
2695 bool InstantiationDependent = false;
2696 if (!TemplateSpecializationType::anyDependentTemplateArguments(
2697 TemplateArgs, InstantiationDependent)) {
2698
2699 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2700 Template->getPartialSpecializations(PartialSpecs);
2701
2702 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2703 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2704 TemplateDeductionInfo Info(FailedCandidates.getLocation());
2705
2706 if (TemplateDeductionResult Result =
2707 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2708 // Store the failed-deduction information for use in diagnostics, later.
2709 // TODO: Actually use the failed-deduction info?
2710 FailedCandidates.addCandidate()
2711 .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2712 (void)Result;
2713 } else {
2714 Matched.push_back(PartialSpecMatchResult());
2715 Matched.back().Partial = Partial;
2716 Matched.back().Args = Info.take();
2717 }
2718 }
2719
2720 if (Matched.size() >= 1) {
2721 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2722 if (Matched.size() == 1) {
2723 // -- If exactly one matching specialization is found, the
2724 // instantiation is generated from that specialization.
2725 // We don't need to do anything for this.
2726 } else {
2727 // -- If more than one matching specialization is found, the
2728 // partial order rules (14.5.4.2) are used to determine
2729 // whether one of the specializations is more specialized
2730 // than the others. If none of the specializations is more
2731 // specialized than all of the other matching
2732 // specializations, then the use of the variable template is
2733 // ambiguous and the program is ill-formed.
2734 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2735 PEnd = Matched.end();
2736 P != PEnd; ++P) {
2737 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2738 PointOfInstantiation) ==
2739 P->Partial)
2740 Best = P;
2741 }
2742
2743 // Determine if the best partial specialization is more specialized than
2744 // the others.
2745 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2746 PEnd = Matched.end();
2747 P != PEnd; ++P) {
2748 if (P != Best && getMoreSpecializedPartialSpecialization(
2749 P->Partial, Best->Partial,
2750 PointOfInstantiation) != Best->Partial) {
2751 AmbiguousPartialSpec = true;
2752 break;
2753 }
2754 }
2755 }
2756
2757 // Instantiate using the best variable template partial specialization.
2758 InstantiationPattern = Best->Partial;
2759 InstantiationArgs = Best->Args;
2760 } else {
2761 // -- If no match is found, the instantiation is generated
2762 // from the primary template.
2763 // InstantiationPattern = Template->getTemplatedDecl();
2764 }
2765 }
2766
2767 // 2. Create the canonical declaration.
2768 // Note that we do not instantiate the variable just yet, since
2769 // instantiation is handled in DoMarkVarDeclReferenced().
2770 // FIXME: LateAttrs et al.?
2771 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2772 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2773 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2774 if (!Decl)
2775 return true;
2776
2777 if (AmbiguousPartialSpec) {
2778 // Partial ordering did not produce a clear winner. Complain.
2779 Decl->setInvalidDecl();
2780 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2781 << Decl;
2782
2783 // Print the matching partial specializations.
2784 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2785 PEnd = Matched.end();
2786 P != PEnd; ++P)
2787 Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2788 << getTemplateArgumentBindingsText(
2789 P->Partial->getTemplateParameters(), *P->Args);
2790 return true;
2791 }
2792
2793 if (VarTemplatePartialSpecializationDecl *D =
2794 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2795 Decl->setInstantiationOf(D, InstantiationArgs);
2796
2797 assert(Decl && "No variable template specialization?");
2798 return Decl;
2799 }
2800
2801 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)2802 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2803 const DeclarationNameInfo &NameInfo,
2804 VarTemplateDecl *Template, SourceLocation TemplateLoc,
2805 const TemplateArgumentListInfo *TemplateArgs) {
2806
2807 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2808 *TemplateArgs);
2809 if (Decl.isInvalid())
2810 return ExprError();
2811
2812 VarDecl *Var = cast<VarDecl>(Decl.get());
2813 if (!Var->getTemplateSpecializationKind())
2814 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2815 NameInfo.getLoc());
2816
2817 // Build an ordinary singleton decl ref.
2818 return BuildDeclarationNameExpr(SS, NameInfo, Var,
2819 /*FoundD=*/nullptr, TemplateArgs);
2820 }
2821
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2822 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2823 SourceLocation TemplateKWLoc,
2824 LookupResult &R,
2825 bool RequiresADL,
2826 const TemplateArgumentListInfo *TemplateArgs) {
2827 // FIXME: Can we do any checking at this point? I guess we could check the
2828 // template arguments that we have against the template name, if the template
2829 // name refers to a single template. That's not a terribly common case,
2830 // though.
2831 // foo<int> could identify a single function unambiguously
2832 // This approach does NOT work, since f<int>(1);
2833 // gets resolved prior to resorting to overload resolution
2834 // i.e., template<class T> void f(double);
2835 // vs template<class T, class U> void f(U);
2836
2837 // These should be filtered out by our callers.
2838 assert(!R.empty() && "empty lookup results when building templateid");
2839 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2840
2841 // In C++1y, check variable template ids.
2842 bool InstantiationDependent;
2843 if (R.getAsSingle<VarTemplateDecl>() &&
2844 !TemplateSpecializationType::anyDependentTemplateArguments(
2845 *TemplateArgs, InstantiationDependent)) {
2846 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
2847 R.getAsSingle<VarTemplateDecl>(),
2848 TemplateKWLoc, TemplateArgs);
2849 }
2850
2851 // We don't want lookup warnings at this point.
2852 R.suppressDiagnostics();
2853
2854 UnresolvedLookupExpr *ULE
2855 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2856 SS.getWithLocInContext(Context),
2857 TemplateKWLoc,
2858 R.getLookupNameInfo(),
2859 RequiresADL, TemplateArgs,
2860 R.begin(), R.end());
2861
2862 return ULE;
2863 }
2864
2865 // We actually only call this from template instantiation.
2866 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2867 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2868 SourceLocation TemplateKWLoc,
2869 const DeclarationNameInfo &NameInfo,
2870 const TemplateArgumentListInfo *TemplateArgs) {
2871
2872 assert(TemplateArgs || TemplateKWLoc.isValid());
2873 DeclContext *DC;
2874 if (!(DC = computeDeclContext(SS, false)) ||
2875 DC->isDependentContext() ||
2876 RequireCompleteDeclContext(SS, DC))
2877 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2878
2879 bool MemberOfUnknownSpecialization;
2880 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2881 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
2882 MemberOfUnknownSpecialization);
2883
2884 if (R.isAmbiguous())
2885 return ExprError();
2886
2887 if (R.empty()) {
2888 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2889 << NameInfo.getName() << SS.getRange();
2890 return ExprError();
2891 }
2892
2893 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2894 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2895 << SS.getScopeRep()
2896 << NameInfo.getName().getAsString() << SS.getRange();
2897 Diag(Temp->getLocation(), diag::note_referenced_class_template);
2898 return ExprError();
2899 }
2900
2901 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2902 }
2903
2904 /// \brief Form a dependent template name.
2905 ///
2906 /// This action forms a dependent template name given the template
2907 /// name and its (presumably dependent) scope specifier. For
2908 /// example, given "MetaFun::template apply", the scope specifier \p
2909 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2910 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2911 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2912 CXXScopeSpec &SS,
2913 SourceLocation TemplateKWLoc,
2914 UnqualifiedId &Name,
2915 ParsedType ObjectType,
2916 bool EnteringContext,
2917 TemplateTy &Result) {
2918 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2919 Diag(TemplateKWLoc,
2920 getLangOpts().CPlusPlus11 ?
2921 diag::warn_cxx98_compat_template_outside_of_template :
2922 diag::ext_template_outside_of_template)
2923 << FixItHint::CreateRemoval(TemplateKWLoc);
2924
2925 DeclContext *LookupCtx = nullptr;
2926 if (SS.isSet())
2927 LookupCtx = computeDeclContext(SS, EnteringContext);
2928 if (!LookupCtx && ObjectType)
2929 LookupCtx = computeDeclContext(ObjectType.get());
2930 if (LookupCtx) {
2931 // C++0x [temp.names]p5:
2932 // If a name prefixed by the keyword template is not the name of
2933 // a template, the program is ill-formed. [Note: the keyword
2934 // template may not be applied to non-template members of class
2935 // templates. -end note ] [ Note: as is the case with the
2936 // typename prefix, the template prefix is allowed in cases
2937 // where it is not strictly necessary; i.e., when the
2938 // nested-name-specifier or the expression on the left of the ->
2939 // or . is not dependent on a template-parameter, or the use
2940 // does not appear in the scope of a template. -end note]
2941 //
2942 // Note: C++03 was more strict here, because it banned the use of
2943 // the "template" keyword prior to a template-name that was not a
2944 // dependent name. C++ DR468 relaxed this requirement (the
2945 // "template" keyword is now permitted). We follow the C++0x
2946 // rules, even in C++03 mode with a warning, retroactively applying the DR.
2947 bool MemberOfUnknownSpecialization;
2948 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2949 ObjectType, EnteringContext, Result,
2950 MemberOfUnknownSpecialization);
2951 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2952 isa<CXXRecordDecl>(LookupCtx) &&
2953 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2954 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2955 // This is a dependent template. Handle it below.
2956 } else if (TNK == TNK_Non_template) {
2957 Diag(Name.getLocStart(),
2958 diag::err_template_kw_refers_to_non_template)
2959 << GetNameFromUnqualifiedId(Name).getName()
2960 << Name.getSourceRange()
2961 << TemplateKWLoc;
2962 return TNK_Non_template;
2963 } else {
2964 // We found something; return it.
2965 return TNK;
2966 }
2967 }
2968
2969 NestedNameSpecifier *Qualifier = SS.getScopeRep();
2970
2971 switch (Name.getKind()) {
2972 case UnqualifiedId::IK_Identifier:
2973 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2974 Name.Identifier));
2975 return TNK_Dependent_template_name;
2976
2977 case UnqualifiedId::IK_OperatorFunctionId:
2978 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2979 Name.OperatorFunctionId.Operator));
2980 return TNK_Function_template;
2981
2982 case UnqualifiedId::IK_LiteralOperatorId:
2983 llvm_unreachable("literal operator id cannot have a dependent scope");
2984
2985 default:
2986 break;
2987 }
2988
2989 Diag(Name.getLocStart(),
2990 diag::err_template_kw_refers_to_non_template)
2991 << GetNameFromUnqualifiedId(Name).getName()
2992 << Name.getSourceRange()
2993 << TemplateKWLoc;
2994 return TNK_Non_template;
2995 }
2996
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)2997 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2998 TemplateArgumentLoc &AL,
2999 SmallVectorImpl<TemplateArgument> &Converted) {
3000 const TemplateArgument &Arg = AL.getArgument();
3001 QualType ArgType;
3002 TypeSourceInfo *TSI = nullptr;
3003
3004 // Check template type parameter.
3005 switch(Arg.getKind()) {
3006 case TemplateArgument::Type:
3007 // C++ [temp.arg.type]p1:
3008 // A template-argument for a template-parameter which is a
3009 // type shall be a type-id.
3010 ArgType = Arg.getAsType();
3011 TSI = AL.getTypeSourceInfo();
3012 break;
3013 case TemplateArgument::Template: {
3014 // We have a template type parameter but the template argument
3015 // is a template without any arguments.
3016 SourceRange SR = AL.getSourceRange();
3017 TemplateName Name = Arg.getAsTemplate();
3018 Diag(SR.getBegin(), diag::err_template_missing_args)
3019 << Name << SR;
3020 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3021 Diag(Decl->getLocation(), diag::note_template_decl_here);
3022
3023 return true;
3024 }
3025 case TemplateArgument::Expression: {
3026 // We have a template type parameter but the template argument is an
3027 // expression; see if maybe it is missing the "typename" keyword.
3028 CXXScopeSpec SS;
3029 DeclarationNameInfo NameInfo;
3030
3031 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3032 SS.Adopt(ArgExpr->getQualifierLoc());
3033 NameInfo = ArgExpr->getNameInfo();
3034 } else if (DependentScopeDeclRefExpr *ArgExpr =
3035 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3036 SS.Adopt(ArgExpr->getQualifierLoc());
3037 NameInfo = ArgExpr->getNameInfo();
3038 } else if (CXXDependentScopeMemberExpr *ArgExpr =
3039 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3040 if (ArgExpr->isImplicitAccess()) {
3041 SS.Adopt(ArgExpr->getQualifierLoc());
3042 NameInfo = ArgExpr->getMemberNameInfo();
3043 }
3044 }
3045
3046 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3047 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3048 LookupParsedName(Result, CurScope, &SS);
3049
3050 if (Result.getAsSingle<TypeDecl>() ||
3051 Result.getResultKind() ==
3052 LookupResult::NotFoundInCurrentInstantiation) {
3053 // Suggest that the user add 'typename' before the NNS.
3054 SourceLocation Loc = AL.getSourceRange().getBegin();
3055 Diag(Loc, getLangOpts().MSVCCompat
3056 ? diag::ext_ms_template_type_arg_missing_typename
3057 : diag::err_template_arg_must_be_type_suggest)
3058 << FixItHint::CreateInsertion(Loc, "typename ");
3059 Diag(Param->getLocation(), diag::note_template_param_here);
3060
3061 // Recover by synthesizing a type using the location information that we
3062 // already have.
3063 ArgType =
3064 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3065 TypeLocBuilder TLB;
3066 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3067 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3068 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3069 TL.setNameLoc(NameInfo.getLoc());
3070 TSI = TLB.getTypeSourceInfo(Context, ArgType);
3071
3072 // Overwrite our input TemplateArgumentLoc so that we can recover
3073 // properly.
3074 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3075 TemplateArgumentLocInfo(TSI));
3076
3077 break;
3078 }
3079 }
3080 // fallthrough
3081 }
3082 default: {
3083 // We have a template type parameter but the template argument
3084 // is not a type.
3085 SourceRange SR = AL.getSourceRange();
3086 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3087 Diag(Param->getLocation(), diag::note_template_param_here);
3088
3089 return true;
3090 }
3091 }
3092
3093 if (CheckTemplateArgument(Param, TSI))
3094 return true;
3095
3096 // Add the converted template type argument.
3097 ArgType = Context.getCanonicalType(ArgType);
3098
3099 // Objective-C ARC:
3100 // If an explicitly-specified template argument type is a lifetime type
3101 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3102 if (getLangOpts().ObjCAutoRefCount &&
3103 ArgType->isObjCLifetimeType() &&
3104 !ArgType.getObjCLifetime()) {
3105 Qualifiers Qs;
3106 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3107 ArgType = Context.getQualifiedType(ArgType, Qs);
3108 }
3109
3110 Converted.push_back(TemplateArgument(ArgType));
3111 return false;
3112 }
3113
3114 /// \brief Substitute template arguments into the default template argument for
3115 /// the given template type parameter.
3116 ///
3117 /// \param SemaRef the semantic analysis object for which we are performing
3118 /// the substitution.
3119 ///
3120 /// \param Template the template that we are synthesizing template arguments
3121 /// for.
3122 ///
3123 /// \param TemplateLoc the location of the template name that started the
3124 /// template-id we are checking.
3125 ///
3126 /// \param RAngleLoc the location of the right angle bracket ('>') that
3127 /// terminates the template-id.
3128 ///
3129 /// \param Param the template template parameter whose default we are
3130 /// substituting into.
3131 ///
3132 /// \param Converted the list of template arguments provided for template
3133 /// parameters that precede \p Param in the template parameter list.
3134 /// \returns the substituted template argument, or NULL if an error occurred.
3135 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3136 SubstDefaultTemplateArgument(Sema &SemaRef,
3137 TemplateDecl *Template,
3138 SourceLocation TemplateLoc,
3139 SourceLocation RAngleLoc,
3140 TemplateTypeParmDecl *Param,
3141 SmallVectorImpl<TemplateArgument> &Converted) {
3142 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3143
3144 // If the argument type is dependent, instantiate it now based
3145 // on the previously-computed template arguments.
3146 if (ArgType->getType()->isDependentType()) {
3147 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3148 Template, Converted,
3149 SourceRange(TemplateLoc, RAngleLoc));
3150 if (Inst.isInvalid())
3151 return nullptr;
3152
3153 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3154 Converted.data(), Converted.size());
3155
3156 // Only substitute for the innermost template argument list.
3157 MultiLevelTemplateArgumentList TemplateArgLists;
3158 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3159 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3160 TemplateArgLists.addOuterTemplateArguments(None);
3161
3162 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3163 ArgType =
3164 SemaRef.SubstType(ArgType, TemplateArgLists,
3165 Param->getDefaultArgumentLoc(), Param->getDeclName());
3166 }
3167
3168 return ArgType;
3169 }
3170
3171 /// \brief Substitute template arguments into the default template argument for
3172 /// the given non-type template parameter.
3173 ///
3174 /// \param SemaRef the semantic analysis object for which we are performing
3175 /// the substitution.
3176 ///
3177 /// \param Template the template that we are synthesizing template arguments
3178 /// for.
3179 ///
3180 /// \param TemplateLoc the location of the template name that started the
3181 /// template-id we are checking.
3182 ///
3183 /// \param RAngleLoc the location of the right angle bracket ('>') that
3184 /// terminates the template-id.
3185 ///
3186 /// \param Param the non-type template parameter whose default we are
3187 /// substituting into.
3188 ///
3189 /// \param Converted the list of template arguments provided for template
3190 /// parameters that precede \p Param in the template parameter list.
3191 ///
3192 /// \returns the substituted template argument, or NULL if an error occurred.
3193 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3194 SubstDefaultTemplateArgument(Sema &SemaRef,
3195 TemplateDecl *Template,
3196 SourceLocation TemplateLoc,
3197 SourceLocation RAngleLoc,
3198 NonTypeTemplateParmDecl *Param,
3199 SmallVectorImpl<TemplateArgument> &Converted) {
3200 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3201 Template, Converted,
3202 SourceRange(TemplateLoc, RAngleLoc));
3203 if (Inst.isInvalid())
3204 return ExprError();
3205
3206 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3207 Converted.data(), Converted.size());
3208
3209 // Only substitute for the innermost template argument list.
3210 MultiLevelTemplateArgumentList TemplateArgLists;
3211 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3212 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3213 TemplateArgLists.addOuterTemplateArguments(None);
3214
3215 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3216 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3217 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3218 }
3219
3220 /// \brief Substitute template arguments into the default template argument for
3221 /// the given template template parameter.
3222 ///
3223 /// \param SemaRef the semantic analysis object for which we are performing
3224 /// the substitution.
3225 ///
3226 /// \param Template the template that we are synthesizing template arguments
3227 /// for.
3228 ///
3229 /// \param TemplateLoc the location of the template name that started the
3230 /// template-id we are checking.
3231 ///
3232 /// \param RAngleLoc the location of the right angle bracket ('>') that
3233 /// terminates the template-id.
3234 ///
3235 /// \param Param the template template parameter whose default we are
3236 /// substituting into.
3237 ///
3238 /// \param Converted the list of template arguments provided for template
3239 /// parameters that precede \p Param in the template parameter list.
3240 ///
3241 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3242 /// source-location information) that precedes the template name.
3243 ///
3244 /// \returns the substituted template argument, or NULL if an error occurred.
3245 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)3246 SubstDefaultTemplateArgument(Sema &SemaRef,
3247 TemplateDecl *Template,
3248 SourceLocation TemplateLoc,
3249 SourceLocation RAngleLoc,
3250 TemplateTemplateParmDecl *Param,
3251 SmallVectorImpl<TemplateArgument> &Converted,
3252 NestedNameSpecifierLoc &QualifierLoc) {
3253 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3254 SourceRange(TemplateLoc, RAngleLoc));
3255 if (Inst.isInvalid())
3256 return TemplateName();
3257
3258 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3259 Converted.data(), Converted.size());
3260
3261 // Only substitute for the innermost template argument list.
3262 MultiLevelTemplateArgumentList TemplateArgLists;
3263 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3264 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3265 TemplateArgLists.addOuterTemplateArguments(None);
3266
3267 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3268 // Substitute into the nested-name-specifier first,
3269 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3270 if (QualifierLoc) {
3271 QualifierLoc =
3272 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3273 if (!QualifierLoc)
3274 return TemplateName();
3275 }
3276
3277 return SemaRef.SubstTemplateName(
3278 QualifierLoc,
3279 Param->getDefaultArgument().getArgument().getAsTemplate(),
3280 Param->getDefaultArgument().getTemplateNameLoc(),
3281 TemplateArgLists);
3282 }
3283
3284 /// \brief If the given template parameter has a default template
3285 /// argument, substitute into that default template argument and
3286 /// return the corresponding template argument.
3287 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)3288 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3289 SourceLocation TemplateLoc,
3290 SourceLocation RAngleLoc,
3291 Decl *Param,
3292 SmallVectorImpl<TemplateArgument>
3293 &Converted,
3294 bool &HasDefaultArg) {
3295 HasDefaultArg = false;
3296
3297 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3298 if (!TypeParm->hasDefaultArgument())
3299 return TemplateArgumentLoc();
3300
3301 HasDefaultArg = true;
3302 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3303 TemplateLoc,
3304 RAngleLoc,
3305 TypeParm,
3306 Converted);
3307 if (DI)
3308 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3309
3310 return TemplateArgumentLoc();
3311 }
3312
3313 if (NonTypeTemplateParmDecl *NonTypeParm
3314 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3315 if (!NonTypeParm->hasDefaultArgument())
3316 return TemplateArgumentLoc();
3317
3318 HasDefaultArg = true;
3319 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3320 TemplateLoc,
3321 RAngleLoc,
3322 NonTypeParm,
3323 Converted);
3324 if (Arg.isInvalid())
3325 return TemplateArgumentLoc();
3326
3327 Expr *ArgE = Arg.getAs<Expr>();
3328 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3329 }
3330
3331 TemplateTemplateParmDecl *TempTempParm
3332 = cast<TemplateTemplateParmDecl>(Param);
3333 if (!TempTempParm->hasDefaultArgument())
3334 return TemplateArgumentLoc();
3335
3336 HasDefaultArg = true;
3337 NestedNameSpecifierLoc QualifierLoc;
3338 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3339 TemplateLoc,
3340 RAngleLoc,
3341 TempTempParm,
3342 Converted,
3343 QualifierLoc);
3344 if (TName.isNull())
3345 return TemplateArgumentLoc();
3346
3347 return TemplateArgumentLoc(TemplateArgument(TName),
3348 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3349 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3350 }
3351
3352 /// \brief Check that the given template argument corresponds to the given
3353 /// template parameter.
3354 ///
3355 /// \param Param The template parameter against which the argument will be
3356 /// checked.
3357 ///
3358 /// \param Arg The template argument, which may be updated due to conversions.
3359 ///
3360 /// \param Template The template in which the template argument resides.
3361 ///
3362 /// \param TemplateLoc The location of the template name for the template
3363 /// whose argument list we're matching.
3364 ///
3365 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3366 /// the template argument list.
3367 ///
3368 /// \param ArgumentPackIndex The index into the argument pack where this
3369 /// argument will be placed. Only valid if the parameter is a parameter pack.
3370 ///
3371 /// \param Converted The checked, converted argument will be added to the
3372 /// end of this small vector.
3373 ///
3374 /// \param CTAK Describes how we arrived at this particular template argument:
3375 /// explicitly written, deduced, etc.
3376 ///
3377 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)3378 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3379 TemplateArgumentLoc &Arg,
3380 NamedDecl *Template,
3381 SourceLocation TemplateLoc,
3382 SourceLocation RAngleLoc,
3383 unsigned ArgumentPackIndex,
3384 SmallVectorImpl<TemplateArgument> &Converted,
3385 CheckTemplateArgumentKind CTAK) {
3386 // Check template type parameters.
3387 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3388 return CheckTemplateTypeArgument(TTP, Arg, Converted);
3389
3390 // Check non-type template parameters.
3391 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3392 // Do substitution on the type of the non-type template parameter
3393 // with the template arguments we've seen thus far. But if the
3394 // template has a dependent context then we cannot substitute yet.
3395 QualType NTTPType = NTTP->getType();
3396 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3397 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3398
3399 if (NTTPType->isDependentType() &&
3400 !isa<TemplateTemplateParmDecl>(Template) &&
3401 !Template->getDeclContext()->isDependentContext()) {
3402 // Do substitution on the type of the non-type template parameter.
3403 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3404 NTTP, Converted,
3405 SourceRange(TemplateLoc, RAngleLoc));
3406 if (Inst.isInvalid())
3407 return true;
3408
3409 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3410 Converted.data(), Converted.size());
3411 NTTPType = SubstType(NTTPType,
3412 MultiLevelTemplateArgumentList(TemplateArgs),
3413 NTTP->getLocation(),
3414 NTTP->getDeclName());
3415 // If that worked, check the non-type template parameter type
3416 // for validity.
3417 if (!NTTPType.isNull())
3418 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3419 NTTP->getLocation());
3420 if (NTTPType.isNull())
3421 return true;
3422 }
3423
3424 switch (Arg.getArgument().getKind()) {
3425 case TemplateArgument::Null:
3426 llvm_unreachable("Should never see a NULL template argument here");
3427
3428 case TemplateArgument::Expression: {
3429 TemplateArgument Result;
3430 ExprResult Res =
3431 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3432 Result, CTAK);
3433 if (Res.isInvalid())
3434 return true;
3435
3436 // If the resulting expression is new, then use it in place of the
3437 // old expression in the template argument.
3438 if (Res.get() != Arg.getArgument().getAsExpr()) {
3439 TemplateArgument TA(Res.get());
3440 Arg = TemplateArgumentLoc(TA, Res.get());
3441 }
3442
3443 Converted.push_back(Result);
3444 break;
3445 }
3446
3447 case TemplateArgument::Declaration:
3448 case TemplateArgument::Integral:
3449 case TemplateArgument::NullPtr:
3450 // We've already checked this template argument, so just copy
3451 // it to the list of converted arguments.
3452 Converted.push_back(Arg.getArgument());
3453 break;
3454
3455 case TemplateArgument::Template:
3456 case TemplateArgument::TemplateExpansion:
3457 // We were given a template template argument. It may not be ill-formed;
3458 // see below.
3459 if (DependentTemplateName *DTN
3460 = Arg.getArgument().getAsTemplateOrTemplatePattern()
3461 .getAsDependentTemplateName()) {
3462 // We have a template argument such as \c T::template X, which we
3463 // parsed as a template template argument. However, since we now
3464 // know that we need a non-type template argument, convert this
3465 // template name into an expression.
3466
3467 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3468 Arg.getTemplateNameLoc());
3469
3470 CXXScopeSpec SS;
3471 SS.Adopt(Arg.getTemplateQualifierLoc());
3472 // FIXME: the template-template arg was a DependentTemplateName,
3473 // so it was provided with a template keyword. However, its source
3474 // location is not stored in the template argument structure.
3475 SourceLocation TemplateKWLoc;
3476 ExprResult E = DependentScopeDeclRefExpr::Create(
3477 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
3478 nullptr);
3479
3480 // If we parsed the template argument as a pack expansion, create a
3481 // pack expansion expression.
3482 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3483 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
3484 if (E.isInvalid())
3485 return true;
3486 }
3487
3488 TemplateArgument Result;
3489 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
3490 if (E.isInvalid())
3491 return true;
3492
3493 Converted.push_back(Result);
3494 break;
3495 }
3496
3497 // We have a template argument that actually does refer to a class
3498 // template, alias template, or template template parameter, and
3499 // therefore cannot be a non-type template argument.
3500 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3501 << Arg.getSourceRange();
3502
3503 Diag(Param->getLocation(), diag::note_template_param_here);
3504 return true;
3505
3506 case TemplateArgument::Type: {
3507 // We have a non-type template parameter but the template
3508 // argument is a type.
3509
3510 // C++ [temp.arg]p2:
3511 // In a template-argument, an ambiguity between a type-id and
3512 // an expression is resolved to a type-id, regardless of the
3513 // form of the corresponding template-parameter.
3514 //
3515 // We warn specifically about this case, since it can be rather
3516 // confusing for users.
3517 QualType T = Arg.getArgument().getAsType();
3518 SourceRange SR = Arg.getSourceRange();
3519 if (T->isFunctionType())
3520 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3521 else
3522 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3523 Diag(Param->getLocation(), diag::note_template_param_here);
3524 return true;
3525 }
3526
3527 case TemplateArgument::Pack:
3528 llvm_unreachable("Caller must expand template argument packs");
3529 }
3530
3531 return false;
3532 }
3533
3534
3535 // Check template template parameters.
3536 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3537
3538 // Substitute into the template parameter list of the template
3539 // template parameter, since previously-supplied template arguments
3540 // may appear within the template template parameter.
3541 {
3542 // Set up a template instantiation context.
3543 LocalInstantiationScope Scope(*this);
3544 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3545 TempParm, Converted,
3546 SourceRange(TemplateLoc, RAngleLoc));
3547 if (Inst.isInvalid())
3548 return true;
3549
3550 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3551 Converted.data(), Converted.size());
3552 TempParm = cast_or_null<TemplateTemplateParmDecl>(
3553 SubstDecl(TempParm, CurContext,
3554 MultiLevelTemplateArgumentList(TemplateArgs)));
3555 if (!TempParm)
3556 return true;
3557 }
3558
3559 switch (Arg.getArgument().getKind()) {
3560 case TemplateArgument::Null:
3561 llvm_unreachable("Should never see a NULL template argument here");
3562
3563 case TemplateArgument::Template:
3564 case TemplateArgument::TemplateExpansion:
3565 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3566 return true;
3567
3568 Converted.push_back(Arg.getArgument());
3569 break;
3570
3571 case TemplateArgument::Expression:
3572 case TemplateArgument::Type:
3573 // We have a template template parameter but the template
3574 // argument does not refer to a template.
3575 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3576 << getLangOpts().CPlusPlus11;
3577 return true;
3578
3579 case TemplateArgument::Declaration:
3580 llvm_unreachable("Declaration argument with template template parameter");
3581 case TemplateArgument::Integral:
3582 llvm_unreachable("Integral argument with template template parameter");
3583 case TemplateArgument::NullPtr:
3584 llvm_unreachable("Null pointer argument with template template parameter");
3585
3586 case TemplateArgument::Pack:
3587 llvm_unreachable("Caller must expand template argument packs");
3588 }
3589
3590 return false;
3591 }
3592
3593 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3594 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3595 SourceLocation TemplateLoc,
3596 TemplateArgumentListInfo &TemplateArgs) {
3597 TemplateParameterList *Params = Template->getTemplateParameters();
3598 unsigned NumParams = Params->size();
3599 unsigned NumArgs = TemplateArgs.size();
3600
3601 SourceRange Range;
3602 if (NumArgs > NumParams)
3603 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3604 TemplateArgs.getRAngleLoc());
3605 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3606 << (NumArgs > NumParams)
3607 << (isa<ClassTemplateDecl>(Template)? 0 :
3608 isa<FunctionTemplateDecl>(Template)? 1 :
3609 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3610 << Template << Range;
3611 S.Diag(Template->getLocation(), diag::note_template_decl_here)
3612 << Params->getSourceRange();
3613 return true;
3614 }
3615
3616 /// \brief Check whether the template parameter is a pack expansion, and if so,
3617 /// determine the number of parameters produced by that expansion. For instance:
3618 ///
3619 /// \code
3620 /// template<typename ...Ts> struct A {
3621 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3622 /// };
3623 /// \endcode
3624 ///
3625 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3626 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3627 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3628 if (NonTypeTemplateParmDecl *NTTP
3629 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3630 if (NTTP->isExpandedParameterPack())
3631 return NTTP->getNumExpansionTypes();
3632 }
3633
3634 if (TemplateTemplateParmDecl *TTP
3635 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3636 if (TTP->isExpandedParameterPack())
3637 return TTP->getNumExpansionTemplateParameters();
3638 }
3639
3640 return None;
3641 }
3642
3643 /// \brief Check that the given template argument list is well-formed
3644 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted)3645 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3646 SourceLocation TemplateLoc,
3647 TemplateArgumentListInfo &TemplateArgs,
3648 bool PartialTemplateArgs,
3649 SmallVectorImpl<TemplateArgument> &Converted) {
3650 // Make a copy of the template arguments for processing. Only make the
3651 // changes at the end when successful in matching the arguments to the
3652 // template.
3653 TemplateArgumentListInfo NewArgs = TemplateArgs;
3654
3655 TemplateParameterList *Params = Template->getTemplateParameters();
3656
3657 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
3658
3659 // C++ [temp.arg]p1:
3660 // [...] The type and form of each template-argument specified in
3661 // a template-id shall match the type and form specified for the
3662 // corresponding parameter declared by the template in its
3663 // template-parameter-list.
3664 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3665 SmallVector<TemplateArgument, 2> ArgumentPack;
3666 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
3667 LocalInstantiationScope InstScope(*this, true);
3668 for (TemplateParameterList::iterator Param = Params->begin(),
3669 ParamEnd = Params->end();
3670 Param != ParamEnd; /* increment in loop */) {
3671 // If we have an expanded parameter pack, make sure we don't have too
3672 // many arguments.
3673 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3674 if (*Expansions == ArgumentPack.size()) {
3675 // We're done with this parameter pack. Pack up its arguments and add
3676 // them to the list.
3677 Converted.push_back(
3678 TemplateArgument::CreatePackCopy(Context,
3679 ArgumentPack.data(),
3680 ArgumentPack.size()));
3681 ArgumentPack.clear();
3682
3683 // This argument is assigned to the next parameter.
3684 ++Param;
3685 continue;
3686 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3687 // Not enough arguments for this parameter pack.
3688 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3689 << false
3690 << (isa<ClassTemplateDecl>(Template)? 0 :
3691 isa<FunctionTemplateDecl>(Template)? 1 :
3692 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3693 << Template;
3694 Diag(Template->getLocation(), diag::note_template_decl_here)
3695 << Params->getSourceRange();
3696 return true;
3697 }
3698 }
3699
3700 if (ArgIdx < NumArgs) {
3701 // Check the template argument we were given.
3702 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
3703 TemplateLoc, RAngleLoc,
3704 ArgumentPack.size(), Converted))
3705 return true;
3706
3707 bool PackExpansionIntoNonPack =
3708 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
3709 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
3710 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
3711 // Core issue 1430: we have a pack expansion as an argument to an
3712 // alias template, and it's not part of a parameter pack. This
3713 // can't be canonicalized, so reject it now.
3714 Diag(NewArgs[ArgIdx].getLocation(),
3715 diag::err_alias_template_expansion_into_fixed_list)
3716 << NewArgs[ArgIdx].getSourceRange();
3717 Diag((*Param)->getLocation(), diag::note_template_param_here);
3718 return true;
3719 }
3720
3721 // We're now done with this argument.
3722 ++ArgIdx;
3723
3724 if ((*Param)->isTemplateParameterPack()) {
3725 // The template parameter was a template parameter pack, so take the
3726 // deduced argument and place it on the argument pack. Note that we
3727 // stay on the same template parameter so that we can deduce more
3728 // arguments.
3729 ArgumentPack.push_back(Converted.pop_back_val());
3730 } else {
3731 // Move to the next template parameter.
3732 ++Param;
3733 }
3734
3735 // If we just saw a pack expansion into a non-pack, then directly convert
3736 // the remaining arguments, because we don't know what parameters they'll
3737 // match up with.
3738 if (PackExpansionIntoNonPack) {
3739 if (!ArgumentPack.empty()) {
3740 // If we were part way through filling in an expanded parameter pack,
3741 // fall back to just producing individual arguments.
3742 Converted.insert(Converted.end(),
3743 ArgumentPack.begin(), ArgumentPack.end());
3744 ArgumentPack.clear();
3745 }
3746
3747 while (ArgIdx < NumArgs) {
3748 Converted.push_back(NewArgs[ArgIdx].getArgument());
3749 ++ArgIdx;
3750 }
3751
3752 return false;
3753 }
3754
3755 continue;
3756 }
3757
3758 // If we're checking a partial template argument list, we're done.
3759 if (PartialTemplateArgs) {
3760 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3761 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3762 ArgumentPack.data(),
3763 ArgumentPack.size()));
3764
3765 return false;
3766 }
3767
3768 // If we have a template parameter pack with no more corresponding
3769 // arguments, just break out now and we'll fill in the argument pack below.
3770 if ((*Param)->isTemplateParameterPack()) {
3771 assert(!getExpandedPackSize(*Param) &&
3772 "Should have dealt with this already");
3773
3774 // A non-expanded parameter pack before the end of the parameter list
3775 // only occurs for an ill-formed template parameter list, unless we've
3776 // got a partial argument list for a function template, so just bail out.
3777 if (Param + 1 != ParamEnd)
3778 return true;
3779
3780 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3781 ArgumentPack.data(),
3782 ArgumentPack.size()));
3783 ArgumentPack.clear();
3784
3785 ++Param;
3786 continue;
3787 }
3788
3789 // Check whether we have a default argument.
3790 TemplateArgumentLoc Arg;
3791
3792 // Retrieve the default template argument from the template
3793 // parameter. For each kind of template parameter, we substitute the
3794 // template arguments provided thus far and any "outer" template arguments
3795 // (when the template parameter was part of a nested template) into
3796 // the default argument.
3797 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3798 if (!TTP->hasDefaultArgument())
3799 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3800
3801 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3802 Template,
3803 TemplateLoc,
3804 RAngleLoc,
3805 TTP,
3806 Converted);
3807 if (!ArgType)
3808 return true;
3809
3810 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3811 ArgType);
3812 } else if (NonTypeTemplateParmDecl *NTTP
3813 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3814 if (!NTTP->hasDefaultArgument())
3815 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3816
3817 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3818 TemplateLoc,
3819 RAngleLoc,
3820 NTTP,
3821 Converted);
3822 if (E.isInvalid())
3823 return true;
3824
3825 Expr *Ex = E.getAs<Expr>();
3826 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3827 } else {
3828 TemplateTemplateParmDecl *TempParm
3829 = cast<TemplateTemplateParmDecl>(*Param);
3830
3831 if (!TempParm->hasDefaultArgument())
3832 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3833
3834 NestedNameSpecifierLoc QualifierLoc;
3835 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3836 TemplateLoc,
3837 RAngleLoc,
3838 TempParm,
3839 Converted,
3840 QualifierLoc);
3841 if (Name.isNull())
3842 return true;
3843
3844 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3845 TempParm->getDefaultArgument().getTemplateNameLoc());
3846 }
3847
3848 // Introduce an instantiation record that describes where we are using
3849 // the default template argument.
3850 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3851 SourceRange(TemplateLoc, RAngleLoc));
3852 if (Inst.isInvalid())
3853 return true;
3854
3855 // Check the default template argument.
3856 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3857 RAngleLoc, 0, Converted))
3858 return true;
3859
3860 // Core issue 150 (assumed resolution): if this is a template template
3861 // parameter, keep track of the default template arguments from the
3862 // template definition.
3863 if (isTemplateTemplateParameter)
3864 NewArgs.addArgument(Arg);
3865
3866 // Move to the next template parameter and argument.
3867 ++Param;
3868 ++ArgIdx;
3869 }
3870
3871 // If we're performing a partial argument substitution, allow any trailing
3872 // pack expansions; they might be empty. This can happen even if
3873 // PartialTemplateArgs is false (the list of arguments is complete but
3874 // still dependent).
3875 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
3876 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
3877 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
3878 Converted.push_back(NewArgs[ArgIdx++].getArgument());
3879 }
3880
3881 // If we have any leftover arguments, then there were too many arguments.
3882 // Complain and fail.
3883 if (ArgIdx < NumArgs)
3884 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3885
3886 // No problems found with the new argument list, propagate changes back
3887 // to caller.
3888 TemplateArgs = NewArgs;
3889
3890 return false;
3891 }
3892
3893 namespace {
3894 class UnnamedLocalNoLinkageFinder
3895 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3896 {
3897 Sema &S;
3898 SourceRange SR;
3899
3900 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3901
3902 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3903 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3904
Visit(QualType T)3905 bool Visit(QualType T) {
3906 return inherited::Visit(T.getTypePtr());
3907 }
3908
3909 #define TYPE(Class, Parent) \
3910 bool Visit##Class##Type(const Class##Type *);
3911 #define ABSTRACT_TYPE(Class, Parent) \
3912 bool Visit##Class##Type(const Class##Type *) { return false; }
3913 #define NON_CANONICAL_TYPE(Class, Parent) \
3914 bool Visit##Class##Type(const Class##Type *) { return false; }
3915 #include "clang/AST/TypeNodes.def"
3916
3917 bool VisitTagDecl(const TagDecl *Tag);
3918 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3919 };
3920 }
3921
VisitBuiltinType(const BuiltinType *)3922 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3923 return false;
3924 }
3925
VisitComplexType(const ComplexType * T)3926 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3927 return Visit(T->getElementType());
3928 }
3929
VisitPointerType(const PointerType * T)3930 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3931 return Visit(T->getPointeeType());
3932 }
3933
VisitBlockPointerType(const BlockPointerType * T)3934 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3935 const BlockPointerType* T) {
3936 return Visit(T->getPointeeType());
3937 }
3938
VisitLValueReferenceType(const LValueReferenceType * T)3939 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3940 const LValueReferenceType* T) {
3941 return Visit(T->getPointeeType());
3942 }
3943
VisitRValueReferenceType(const RValueReferenceType * T)3944 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3945 const RValueReferenceType* T) {
3946 return Visit(T->getPointeeType());
3947 }
3948
VisitMemberPointerType(const MemberPointerType * T)3949 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3950 const MemberPointerType* T) {
3951 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3952 }
3953
VisitConstantArrayType(const ConstantArrayType * T)3954 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3955 const ConstantArrayType* T) {
3956 return Visit(T->getElementType());
3957 }
3958
VisitIncompleteArrayType(const IncompleteArrayType * T)3959 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3960 const IncompleteArrayType* T) {
3961 return Visit(T->getElementType());
3962 }
3963
VisitVariableArrayType(const VariableArrayType * T)3964 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3965 const VariableArrayType* T) {
3966 return Visit(T->getElementType());
3967 }
3968
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3969 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3970 const DependentSizedArrayType* T) {
3971 return Visit(T->getElementType());
3972 }
3973
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3974 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3975 const DependentSizedExtVectorType* T) {
3976 return Visit(T->getElementType());
3977 }
3978
VisitVectorType(const VectorType * T)3979 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3980 return Visit(T->getElementType());
3981 }
3982
VisitExtVectorType(const ExtVectorType * T)3983 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3984 return Visit(T->getElementType());
3985 }
3986
VisitFunctionProtoType(const FunctionProtoType * T)3987 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3988 const FunctionProtoType* T) {
3989 for (const auto &A : T->param_types()) {
3990 if (Visit(A))
3991 return true;
3992 }
3993
3994 return Visit(T->getReturnType());
3995 }
3996
VisitFunctionNoProtoType(const FunctionNoProtoType * T)3997 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3998 const FunctionNoProtoType* T) {
3999 return Visit(T->getReturnType());
4000 }
4001
VisitUnresolvedUsingType(const UnresolvedUsingType *)4002 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4003 const UnresolvedUsingType*) {
4004 return false;
4005 }
4006
VisitTypeOfExprType(const TypeOfExprType *)4007 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4008 return false;
4009 }
4010
VisitTypeOfType(const TypeOfType * T)4011 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4012 return Visit(T->getUnderlyingType());
4013 }
4014
VisitDecltypeType(const DecltypeType *)4015 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4016 return false;
4017 }
4018
VisitUnaryTransformType(const UnaryTransformType *)4019 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4020 const UnaryTransformType*) {
4021 return false;
4022 }
4023
VisitAutoType(const AutoType * T)4024 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4025 return Visit(T->getDeducedType());
4026 }
4027
VisitRecordType(const RecordType * T)4028 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4029 return VisitTagDecl(T->getDecl());
4030 }
4031
VisitEnumType(const EnumType * T)4032 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4033 return VisitTagDecl(T->getDecl());
4034 }
4035
VisitTemplateTypeParmType(const TemplateTypeParmType *)4036 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4037 const TemplateTypeParmType*) {
4038 return false;
4039 }
4040
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)4041 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4042 const SubstTemplateTypeParmPackType *) {
4043 return false;
4044 }
4045
VisitTemplateSpecializationType(const TemplateSpecializationType *)4046 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4047 const TemplateSpecializationType*) {
4048 return false;
4049 }
4050
VisitInjectedClassNameType(const InjectedClassNameType * T)4051 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4052 const InjectedClassNameType* T) {
4053 return VisitTagDecl(T->getDecl());
4054 }
4055
VisitDependentNameType(const DependentNameType * T)4056 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4057 const DependentNameType* T) {
4058 return VisitNestedNameSpecifier(T->getQualifier());
4059 }
4060
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)4061 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4062 const DependentTemplateSpecializationType* T) {
4063 return VisitNestedNameSpecifier(T->getQualifier());
4064 }
4065
VisitPackExpansionType(const PackExpansionType * T)4066 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
4067 const PackExpansionType* T) {
4068 return Visit(T->getPattern());
4069 }
4070
VisitObjCObjectType(const ObjCObjectType *)4071 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
4072 return false;
4073 }
4074
VisitObjCInterfaceType(const ObjCInterfaceType *)4075 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
4076 const ObjCInterfaceType *) {
4077 return false;
4078 }
4079
VisitObjCObjectPointerType(const ObjCObjectPointerType *)4080 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
4081 const ObjCObjectPointerType *) {
4082 return false;
4083 }
4084
VisitAtomicType(const AtomicType * T)4085 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
4086 return Visit(T->getValueType());
4087 }
4088
VisitTagDecl(const TagDecl * Tag)4089 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
4090 if (Tag->getDeclContext()->isFunctionOrMethod()) {
4091 S.Diag(SR.getBegin(),
4092 S.getLangOpts().CPlusPlus11 ?
4093 diag::warn_cxx98_compat_template_arg_local_type :
4094 diag::ext_template_arg_local_type)
4095 << S.Context.getTypeDeclType(Tag) << SR;
4096 return true;
4097 }
4098
4099 if (!Tag->hasNameForLinkage()) {
4100 S.Diag(SR.getBegin(),
4101 S.getLangOpts().CPlusPlus11 ?
4102 diag::warn_cxx98_compat_template_arg_unnamed_type :
4103 diag::ext_template_arg_unnamed_type) << SR;
4104 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4105 return true;
4106 }
4107
4108 return false;
4109 }
4110
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)4111 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4112 NestedNameSpecifier *NNS) {
4113 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4114 return true;
4115
4116 switch (NNS->getKind()) {
4117 case NestedNameSpecifier::Identifier:
4118 case NestedNameSpecifier::Namespace:
4119 case NestedNameSpecifier::NamespaceAlias:
4120 case NestedNameSpecifier::Global:
4121 case NestedNameSpecifier::Super:
4122 return false;
4123
4124 case NestedNameSpecifier::TypeSpec:
4125 case NestedNameSpecifier::TypeSpecWithTemplate:
4126 return Visit(QualType(NNS->getAsType(), 0));
4127 }
4128 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4129 }
4130
4131
4132 /// \brief Check a template argument against its corresponding
4133 /// template type parameter.
4134 ///
4135 /// This routine implements the semantics of C++ [temp.arg.type]. It
4136 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)4137 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4138 TypeSourceInfo *ArgInfo) {
4139 assert(ArgInfo && "invalid TypeSourceInfo");
4140 QualType Arg = ArgInfo->getType();
4141 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4142
4143 if (Arg->isVariablyModifiedType()) {
4144 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4145 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4146 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4147 }
4148
4149 // C++03 [temp.arg.type]p2:
4150 // A local type, a type with no linkage, an unnamed type or a type
4151 // compounded from any of these types shall not be used as a
4152 // template-argument for a template type-parameter.
4153 //
4154 // C++11 allows these, and even in C++03 we allow them as an extension with
4155 // a warning.
4156 bool NeedsCheck;
4157 if (LangOpts.CPlusPlus11)
4158 NeedsCheck =
4159 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
4160 SR.getBegin()) ||
4161 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
4162 SR.getBegin());
4163 else
4164 NeedsCheck = Arg->hasUnnamedOrLocalType();
4165
4166 if (NeedsCheck) {
4167 UnnamedLocalNoLinkageFinder Finder(*this, SR);
4168 (void)Finder.Visit(Context.getCanonicalType(Arg));
4169 }
4170
4171 return false;
4172 }
4173
4174 enum NullPointerValueKind {
4175 NPV_NotNullPointer,
4176 NPV_NullPointer,
4177 NPV_Error
4178 };
4179
4180 /// \brief Determine whether the given template argument is a null pointer
4181 /// value of the appropriate type.
4182 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)4183 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4184 QualType ParamType, Expr *Arg) {
4185 if (Arg->isValueDependent() || Arg->isTypeDependent())
4186 return NPV_NotNullPointer;
4187
4188 if (!S.getLangOpts().CPlusPlus11)
4189 return NPV_NotNullPointer;
4190
4191 // Determine whether we have a constant expression.
4192 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4193 if (ArgRV.isInvalid())
4194 return NPV_Error;
4195 Arg = ArgRV.get();
4196
4197 Expr::EvalResult EvalResult;
4198 SmallVector<PartialDiagnosticAt, 8> Notes;
4199 EvalResult.Diag = &Notes;
4200 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4201 EvalResult.HasSideEffects) {
4202 SourceLocation DiagLoc = Arg->getExprLoc();
4203
4204 // If our only note is the usual "invalid subexpression" note, just point
4205 // the caret at its location rather than producing an essentially
4206 // redundant note.
4207 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4208 diag::note_invalid_subexpr_in_const_expr) {
4209 DiagLoc = Notes[0].first;
4210 Notes.clear();
4211 }
4212
4213 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4214 << Arg->getType() << Arg->getSourceRange();
4215 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4216 S.Diag(Notes[I].first, Notes[I].second);
4217
4218 S.Diag(Param->getLocation(), diag::note_template_param_here);
4219 return NPV_Error;
4220 }
4221
4222 // C++11 [temp.arg.nontype]p1:
4223 // - an address constant expression of type std::nullptr_t
4224 if (Arg->getType()->isNullPtrType())
4225 return NPV_NullPointer;
4226
4227 // - a constant expression that evaluates to a null pointer value (4.10); or
4228 // - a constant expression that evaluates to a null member pointer value
4229 // (4.11); or
4230 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4231 (EvalResult.Val.isMemberPointer() &&
4232 !EvalResult.Val.getMemberPointerDecl())) {
4233 // If our expression has an appropriate type, we've succeeded.
4234 bool ObjCLifetimeConversion;
4235 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4236 S.IsQualificationConversion(Arg->getType(), ParamType, false,
4237 ObjCLifetimeConversion))
4238 return NPV_NullPointer;
4239
4240 // The types didn't match, but we know we got a null pointer; complain,
4241 // then recover as if the types were correct.
4242 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4243 << Arg->getType() << ParamType << Arg->getSourceRange();
4244 S.Diag(Param->getLocation(), diag::note_template_param_here);
4245 return NPV_NullPointer;
4246 }
4247
4248 // If we don't have a null pointer value, but we do have a NULL pointer
4249 // constant, suggest a cast to the appropriate type.
4250 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4251 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4252 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4253 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4254 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
4255 ")");
4256 S.Diag(Param->getLocation(), diag::note_template_param_here);
4257 return NPV_NullPointer;
4258 }
4259
4260 // FIXME: If we ever want to support general, address-constant expressions
4261 // as non-type template arguments, we should return the ExprResult here to
4262 // be interpreted by the caller.
4263 return NPV_NotNullPointer;
4264 }
4265
4266 /// \brief Checks whether the given template argument is compatible with its
4267 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)4268 static bool CheckTemplateArgumentIsCompatibleWithParameter(
4269 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4270 Expr *Arg, QualType ArgType) {
4271 bool ObjCLifetimeConversion;
4272 if (ParamType->isPointerType() &&
4273 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4274 S.IsQualificationConversion(ArgType, ParamType, false,
4275 ObjCLifetimeConversion)) {
4276 // For pointer-to-object types, qualification conversions are
4277 // permitted.
4278 } else {
4279 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4280 if (!ParamRef->getPointeeType()->isFunctionType()) {
4281 // C++ [temp.arg.nontype]p5b3:
4282 // For a non-type template-parameter of type reference to
4283 // object, no conversions apply. The type referred to by the
4284 // reference may be more cv-qualified than the (otherwise
4285 // identical) type of the template- argument. The
4286 // template-parameter is bound directly to the
4287 // template-argument, which shall be an lvalue.
4288
4289 // FIXME: Other qualifiers?
4290 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4291 unsigned ArgQuals = ArgType.getCVRQualifiers();
4292
4293 if ((ParamQuals | ArgQuals) != ParamQuals) {
4294 S.Diag(Arg->getLocStart(),
4295 diag::err_template_arg_ref_bind_ignores_quals)
4296 << ParamType << Arg->getType() << Arg->getSourceRange();
4297 S.Diag(Param->getLocation(), diag::note_template_param_here);
4298 return true;
4299 }
4300 }
4301 }
4302
4303 // At this point, the template argument refers to an object or
4304 // function with external linkage. We now need to check whether the
4305 // argument and parameter types are compatible.
4306 if (!S.Context.hasSameUnqualifiedType(ArgType,
4307 ParamType.getNonReferenceType())) {
4308 // We can't perform this conversion or binding.
4309 if (ParamType->isReferenceType())
4310 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4311 << ParamType << ArgIn->getType() << Arg->getSourceRange();
4312 else
4313 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4314 << ArgIn->getType() << ParamType << Arg->getSourceRange();
4315 S.Diag(Param->getLocation(), diag::note_template_param_here);
4316 return true;
4317 }
4318 }
4319
4320 return false;
4321 }
4322
4323 /// \brief Checks whether the given template argument is the address
4324 /// of an object or function according to C++ [temp.arg.nontype]p1.
4325 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)4326 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4327 NonTypeTemplateParmDecl *Param,
4328 QualType ParamType,
4329 Expr *ArgIn,
4330 TemplateArgument &Converted) {
4331 bool Invalid = false;
4332 Expr *Arg = ArgIn;
4333 QualType ArgType = Arg->getType();
4334
4335 bool AddressTaken = false;
4336 SourceLocation AddrOpLoc;
4337 if (S.getLangOpts().MicrosoftExt) {
4338 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4339 // dereference and address-of operators.
4340 Arg = Arg->IgnoreParenCasts();
4341
4342 bool ExtWarnMSTemplateArg = false;
4343 UnaryOperatorKind FirstOpKind;
4344 SourceLocation FirstOpLoc;
4345 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4346 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4347 if (UnOpKind == UO_Deref)
4348 ExtWarnMSTemplateArg = true;
4349 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4350 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4351 if (!AddrOpLoc.isValid()) {
4352 FirstOpKind = UnOpKind;
4353 FirstOpLoc = UnOp->getOperatorLoc();
4354 }
4355 } else
4356 break;
4357 }
4358 if (FirstOpLoc.isValid()) {
4359 if (ExtWarnMSTemplateArg)
4360 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4361 << ArgIn->getSourceRange();
4362
4363 if (FirstOpKind == UO_AddrOf)
4364 AddressTaken = true;
4365 else if (Arg->getType()->isPointerType()) {
4366 // We cannot let pointers get dereferenced here, that is obviously not a
4367 // constant expression.
4368 assert(FirstOpKind == UO_Deref);
4369 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4370 << Arg->getSourceRange();
4371 }
4372 }
4373 } else {
4374 // See through any implicit casts we added to fix the type.
4375 Arg = Arg->IgnoreImpCasts();
4376
4377 // C++ [temp.arg.nontype]p1:
4378 //
4379 // A template-argument for a non-type, non-template
4380 // template-parameter shall be one of: [...]
4381 //
4382 // -- the address of an object or function with external
4383 // linkage, including function templates and function
4384 // template-ids but excluding non-static class members,
4385 // expressed as & id-expression where the & is optional if
4386 // the name refers to a function or array, or if the
4387 // corresponding template-parameter is a reference; or
4388
4389 // In C++98/03 mode, give an extension warning on any extra parentheses.
4390 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4391 bool ExtraParens = false;
4392 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4393 if (!Invalid && !ExtraParens) {
4394 S.Diag(Arg->getLocStart(),
4395 S.getLangOpts().CPlusPlus11
4396 ? diag::warn_cxx98_compat_template_arg_extra_parens
4397 : diag::ext_template_arg_extra_parens)
4398 << Arg->getSourceRange();
4399 ExtraParens = true;
4400 }
4401
4402 Arg = Parens->getSubExpr();
4403 }
4404
4405 while (SubstNonTypeTemplateParmExpr *subst =
4406 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4407 Arg = subst->getReplacement()->IgnoreImpCasts();
4408
4409 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4410 if (UnOp->getOpcode() == UO_AddrOf) {
4411 Arg = UnOp->getSubExpr();
4412 AddressTaken = true;
4413 AddrOpLoc = UnOp->getOperatorLoc();
4414 }
4415 }
4416
4417 while (SubstNonTypeTemplateParmExpr *subst =
4418 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4419 Arg = subst->getReplacement()->IgnoreImpCasts();
4420 }
4421
4422 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4423 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
4424
4425 // If our parameter has pointer type, check for a null template value.
4426 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4427 NullPointerValueKind NPV;
4428 // dllimport'd entities aren't constant but are available inside of template
4429 // arguments.
4430 if (Entity && Entity->hasAttr<DLLImportAttr>())
4431 NPV = NPV_NotNullPointer;
4432 else
4433 NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
4434 switch (NPV) {
4435 case NPV_NullPointer:
4436 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4437 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4438 /*isNullPtr=*/true);
4439 return false;
4440
4441 case NPV_Error:
4442 return true;
4443
4444 case NPV_NotNullPointer:
4445 break;
4446 }
4447 }
4448
4449 // Stop checking the precise nature of the argument if it is value dependent,
4450 // it should be checked when instantiated.
4451 if (Arg->isValueDependent()) {
4452 Converted = TemplateArgument(ArgIn);
4453 return false;
4454 }
4455
4456 if (isa<CXXUuidofExpr>(Arg)) {
4457 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4458 ArgIn, Arg, ArgType))
4459 return true;
4460
4461 Converted = TemplateArgument(ArgIn);
4462 return false;
4463 }
4464
4465 if (!DRE) {
4466 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4467 << Arg->getSourceRange();
4468 S.Diag(Param->getLocation(), diag::note_template_param_here);
4469 return true;
4470 }
4471
4472 // Cannot refer to non-static data members
4473 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4474 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4475 << Entity << Arg->getSourceRange();
4476 S.Diag(Param->getLocation(), diag::note_template_param_here);
4477 return true;
4478 }
4479
4480 // Cannot refer to non-static member functions
4481 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4482 if (!Method->isStatic()) {
4483 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4484 << Method << Arg->getSourceRange();
4485 S.Diag(Param->getLocation(), diag::note_template_param_here);
4486 return true;
4487 }
4488 }
4489
4490 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4491 VarDecl *Var = dyn_cast<VarDecl>(Entity);
4492
4493 // A non-type template argument must refer to an object or function.
4494 if (!Func && !Var) {
4495 // We found something, but we don't know specifically what it is.
4496 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4497 << Arg->getSourceRange();
4498 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4499 return true;
4500 }
4501
4502 // Address / reference template args must have external linkage in C++98.
4503 if (Entity->getFormalLinkage() == InternalLinkage) {
4504 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4505 diag::warn_cxx98_compat_template_arg_object_internal :
4506 diag::ext_template_arg_object_internal)
4507 << !Func << Entity << Arg->getSourceRange();
4508 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4509 << !Func;
4510 } else if (!Entity->hasLinkage()) {
4511 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4512 << !Func << Entity << Arg->getSourceRange();
4513 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4514 << !Func;
4515 return true;
4516 }
4517
4518 if (Func) {
4519 // If the template parameter has pointer type, the function decays.
4520 if (ParamType->isPointerType() && !AddressTaken)
4521 ArgType = S.Context.getPointerType(Func->getType());
4522 else if (AddressTaken && ParamType->isReferenceType()) {
4523 // If we originally had an address-of operator, but the
4524 // parameter has reference type, complain and (if things look
4525 // like they will work) drop the address-of operator.
4526 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4527 ParamType.getNonReferenceType())) {
4528 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4529 << ParamType;
4530 S.Diag(Param->getLocation(), diag::note_template_param_here);
4531 return true;
4532 }
4533
4534 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4535 << ParamType
4536 << FixItHint::CreateRemoval(AddrOpLoc);
4537 S.Diag(Param->getLocation(), diag::note_template_param_here);
4538
4539 ArgType = Func->getType();
4540 }
4541 } else {
4542 // A value of reference type is not an object.
4543 if (Var->getType()->isReferenceType()) {
4544 S.Diag(Arg->getLocStart(),
4545 diag::err_template_arg_reference_var)
4546 << Var->getType() << Arg->getSourceRange();
4547 S.Diag(Param->getLocation(), diag::note_template_param_here);
4548 return true;
4549 }
4550
4551 // A template argument must have static storage duration.
4552 if (Var->getTLSKind()) {
4553 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4554 << Arg->getSourceRange();
4555 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4556 return true;
4557 }
4558
4559 // If the template parameter has pointer type, we must have taken
4560 // the address of this object.
4561 if (ParamType->isReferenceType()) {
4562 if (AddressTaken) {
4563 // If we originally had an address-of operator, but the
4564 // parameter has reference type, complain and (if things look
4565 // like they will work) drop the address-of operator.
4566 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4567 ParamType.getNonReferenceType())) {
4568 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4569 << ParamType;
4570 S.Diag(Param->getLocation(), diag::note_template_param_here);
4571 return true;
4572 }
4573
4574 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4575 << ParamType
4576 << FixItHint::CreateRemoval(AddrOpLoc);
4577 S.Diag(Param->getLocation(), diag::note_template_param_here);
4578
4579 ArgType = Var->getType();
4580 }
4581 } else if (!AddressTaken && ParamType->isPointerType()) {
4582 if (Var->getType()->isArrayType()) {
4583 // Array-to-pointer decay.
4584 ArgType = S.Context.getArrayDecayedType(Var->getType());
4585 } else {
4586 // If the template parameter has pointer type but the address of
4587 // this object was not taken, complain and (possibly) recover by
4588 // taking the address of the entity.
4589 ArgType = S.Context.getPointerType(Var->getType());
4590 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4591 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4592 << ParamType;
4593 S.Diag(Param->getLocation(), diag::note_template_param_here);
4594 return true;
4595 }
4596
4597 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4598 << ParamType
4599 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4600
4601 S.Diag(Param->getLocation(), diag::note_template_param_here);
4602 }
4603 }
4604 }
4605
4606 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4607 Arg, ArgType))
4608 return true;
4609
4610 // Create the template argument.
4611 Converted =
4612 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
4613 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4614 return false;
4615 }
4616
4617 /// \brief Checks whether the given template argument is a pointer to
4618 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)4619 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4620 NonTypeTemplateParmDecl *Param,
4621 QualType ParamType,
4622 Expr *&ResultArg,
4623 TemplateArgument &Converted) {
4624 bool Invalid = false;
4625
4626 // Check for a null pointer value.
4627 Expr *Arg = ResultArg;
4628 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4629 case NPV_Error:
4630 return true;
4631 case NPV_NullPointer:
4632 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4633 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4634 /*isNullPtr*/true);
4635 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft())
4636 S.RequireCompleteType(Arg->getExprLoc(), ParamType, 0);
4637 return false;
4638 case NPV_NotNullPointer:
4639 break;
4640 }
4641
4642 bool ObjCLifetimeConversion;
4643 if (S.IsQualificationConversion(Arg->getType(),
4644 ParamType.getNonReferenceType(),
4645 false, ObjCLifetimeConversion)) {
4646 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4647 Arg->getValueKind()).get();
4648 ResultArg = Arg;
4649 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4650 ParamType.getNonReferenceType())) {
4651 // We can't perform this conversion.
4652 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4653 << Arg->getType() << ParamType << Arg->getSourceRange();
4654 S.Diag(Param->getLocation(), diag::note_template_param_here);
4655 return true;
4656 }
4657
4658 // See through any implicit casts we added to fix the type.
4659 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4660 Arg = Cast->getSubExpr();
4661
4662 // C++ [temp.arg.nontype]p1:
4663 //
4664 // A template-argument for a non-type, non-template
4665 // template-parameter shall be one of: [...]
4666 //
4667 // -- a pointer to member expressed as described in 5.3.1.
4668 DeclRefExpr *DRE = nullptr;
4669
4670 // In C++98/03 mode, give an extension warning on any extra parentheses.
4671 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4672 bool ExtraParens = false;
4673 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4674 if (!Invalid && !ExtraParens) {
4675 S.Diag(Arg->getLocStart(),
4676 S.getLangOpts().CPlusPlus11 ?
4677 diag::warn_cxx98_compat_template_arg_extra_parens :
4678 diag::ext_template_arg_extra_parens)
4679 << Arg->getSourceRange();
4680 ExtraParens = true;
4681 }
4682
4683 Arg = Parens->getSubExpr();
4684 }
4685
4686 while (SubstNonTypeTemplateParmExpr *subst =
4687 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4688 Arg = subst->getReplacement()->IgnoreImpCasts();
4689
4690 // A pointer-to-member constant written &Class::member.
4691 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4692 if (UnOp->getOpcode() == UO_AddrOf) {
4693 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4694 if (DRE && !DRE->getQualifier())
4695 DRE = nullptr;
4696 }
4697 }
4698 // A constant of pointer-to-member type.
4699 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4700 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4701 if (VD->getType()->isMemberPointerType()) {
4702 if (isa<NonTypeTemplateParmDecl>(VD)) {
4703 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4704 Converted = TemplateArgument(Arg);
4705 } else {
4706 VD = cast<ValueDecl>(VD->getCanonicalDecl());
4707 Converted = TemplateArgument(VD, ParamType);
4708 }
4709 return Invalid;
4710 }
4711 }
4712 }
4713
4714 DRE = nullptr;
4715 }
4716
4717 if (!DRE)
4718 return S.Diag(Arg->getLocStart(),
4719 diag::err_template_arg_not_pointer_to_member_form)
4720 << Arg->getSourceRange();
4721
4722 if (isa<FieldDecl>(DRE->getDecl()) ||
4723 isa<IndirectFieldDecl>(DRE->getDecl()) ||
4724 isa<CXXMethodDecl>(DRE->getDecl())) {
4725 assert((isa<FieldDecl>(DRE->getDecl()) ||
4726 isa<IndirectFieldDecl>(DRE->getDecl()) ||
4727 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4728 "Only non-static member pointers can make it here");
4729
4730 // Okay: this is the address of a non-static member, and therefore
4731 // a member pointer constant.
4732 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4733 Converted = TemplateArgument(Arg);
4734 } else {
4735 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4736 Converted = TemplateArgument(D, ParamType);
4737 }
4738 return Invalid;
4739 }
4740
4741 // We found something else, but we don't know specifically what it is.
4742 S.Diag(Arg->getLocStart(),
4743 diag::err_template_arg_not_pointer_to_member_form)
4744 << Arg->getSourceRange();
4745 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4746 return true;
4747 }
4748
4749 /// \brief Check a template argument against its corresponding
4750 /// non-type template parameter.
4751 ///
4752 /// This routine implements the semantics of C++ [temp.arg.nontype].
4753 /// If an error occurred, it returns ExprError(); otherwise, it
4754 /// returns the converted template argument. \p ParamType is the
4755 /// type of the non-type template parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4756 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4757 QualType ParamType, Expr *Arg,
4758 TemplateArgument &Converted,
4759 CheckTemplateArgumentKind CTAK) {
4760 SourceLocation StartLoc = Arg->getLocStart();
4761
4762 // If either the parameter has a dependent type or the argument is
4763 // type-dependent, there's nothing we can check now.
4764 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
4765 // FIXME: Produce a cloned, canonical expression?
4766 Converted = TemplateArgument(Arg);
4767 return Arg;
4768 }
4769
4770 // We should have already dropped all cv-qualifiers by now.
4771 assert(!ParamType.hasQualifiers() &&
4772 "non-type template parameter type cannot be qualified");
4773
4774 if (CTAK == CTAK_Deduced &&
4775 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4776 // C++ [temp.deduct.type]p17:
4777 // If, in the declaration of a function template with a non-type
4778 // template-parameter, the non-type template-parameter is used
4779 // in an expression in the function parameter-list and, if the
4780 // corresponding template-argument is deduced, the
4781 // template-argument type shall match the type of the
4782 // template-parameter exactly, except that a template-argument
4783 // deduced from an array bound may be of any integral type.
4784 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4785 << Arg->getType().getUnqualifiedType()
4786 << ParamType.getUnqualifiedType();
4787 Diag(Param->getLocation(), diag::note_template_param_here);
4788 return ExprError();
4789 }
4790
4791 if (getLangOpts().CPlusPlus1z) {
4792 // FIXME: We can do some limited checking for a value-dependent but not
4793 // type-dependent argument.
4794 if (Arg->isValueDependent()) {
4795 Converted = TemplateArgument(Arg);
4796 return Arg;
4797 }
4798
4799 // C++1z [temp.arg.nontype]p1:
4800 // A template-argument for a non-type template parameter shall be
4801 // a converted constant expression of the type of the template-parameter.
4802 APValue Value;
4803 ExprResult ArgResult = CheckConvertedConstantExpression(
4804 Arg, ParamType, Value, CCEK_TemplateArg);
4805 if (ArgResult.isInvalid())
4806 return ExprError();
4807
4808 QualType CanonParamType = Context.getCanonicalType(ParamType);
4809
4810 // Convert the APValue to a TemplateArgument.
4811 switch (Value.getKind()) {
4812 case APValue::Uninitialized:
4813 assert(ParamType->isNullPtrType());
4814 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
4815 break;
4816 case APValue::Int:
4817 assert(ParamType->isIntegralOrEnumerationType());
4818 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
4819 break;
4820 case APValue::MemberPointer: {
4821 assert(ParamType->isMemberPointerType());
4822
4823 // FIXME: We need TemplateArgument representation and mangling for these.
4824 if (!Value.getMemberPointerPath().empty()) {
4825 Diag(Arg->getLocStart(),
4826 diag::err_template_arg_member_ptr_base_derived_not_supported)
4827 << Value.getMemberPointerDecl() << ParamType
4828 << Arg->getSourceRange();
4829 return ExprError();
4830 }
4831
4832 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
4833 Converted = VD ? TemplateArgument(VD, CanonParamType)
4834 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
4835 break;
4836 }
4837 case APValue::LValue: {
4838 // For a non-type template-parameter of pointer or reference type,
4839 // the value of the constant expression shall not refer to
4840 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
4841 ParamType->isNullPtrType());
4842 // -- a temporary object
4843 // -- a string literal
4844 // -- the result of a typeid expression, or
4845 // -- a predefind __func__ variable
4846 if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
4847 if (isa<CXXUuidofExpr>(E)) {
4848 Converted = TemplateArgument(const_cast<Expr*>(E));
4849 break;
4850 }
4851 Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4852 << Arg->getSourceRange();
4853 return ExprError();
4854 }
4855 auto *VD = const_cast<ValueDecl *>(
4856 Value.getLValueBase().dyn_cast<const ValueDecl *>());
4857 // -- a subobject
4858 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
4859 VD && VD->getType()->isArrayType() &&
4860 Value.getLValuePath()[0].ArrayIndex == 0 &&
4861 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
4862 // Per defect report (no number yet):
4863 // ... other than a pointer to the first element of a complete array
4864 // object.
4865 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
4866 Value.isLValueOnePastTheEnd()) {
4867 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
4868 << Value.getAsString(Context, ParamType);
4869 return ExprError();
4870 }
4871 assert((VD || !ParamType->isReferenceType()) &&
4872 "null reference should not be a constant expression");
4873 assert((!VD || !ParamType->isNullPtrType()) &&
4874 "non-null value of type nullptr_t?");
4875 Converted = VD ? TemplateArgument(VD, CanonParamType)
4876 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
4877 break;
4878 }
4879 case APValue::AddrLabelDiff:
4880 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
4881 case APValue::Float:
4882 case APValue::ComplexInt:
4883 case APValue::ComplexFloat:
4884 case APValue::Vector:
4885 case APValue::Array:
4886 case APValue::Struct:
4887 case APValue::Union:
4888 llvm_unreachable("invalid kind for template argument");
4889 }
4890
4891 return ArgResult.get();
4892 }
4893
4894 // C++ [temp.arg.nontype]p5:
4895 // The following conversions are performed on each expression used
4896 // as a non-type template-argument. If a non-type
4897 // template-argument cannot be converted to the type of the
4898 // corresponding template-parameter then the program is
4899 // ill-formed.
4900 if (ParamType->isIntegralOrEnumerationType()) {
4901 // C++11:
4902 // -- for a non-type template-parameter of integral or
4903 // enumeration type, conversions permitted in a converted
4904 // constant expression are applied.
4905 //
4906 // C++98:
4907 // -- for a non-type template-parameter of integral or
4908 // enumeration type, integral promotions (4.5) and integral
4909 // conversions (4.7) are applied.
4910
4911 if (getLangOpts().CPlusPlus11) {
4912 // We can't check arbitrary value-dependent arguments.
4913 // FIXME: If there's no viable conversion to the template parameter type,
4914 // we should be able to diagnose that prior to instantiation.
4915 if (Arg->isValueDependent()) {
4916 Converted = TemplateArgument(Arg);
4917 return Arg;
4918 }
4919
4920 // C++ [temp.arg.nontype]p1:
4921 // A template-argument for a non-type, non-template template-parameter
4922 // shall be one of:
4923 //
4924 // -- for a non-type template-parameter of integral or enumeration
4925 // type, a converted constant expression of the type of the
4926 // template-parameter; or
4927 llvm::APSInt Value;
4928 ExprResult ArgResult =
4929 CheckConvertedConstantExpression(Arg, ParamType, Value,
4930 CCEK_TemplateArg);
4931 if (ArgResult.isInvalid())
4932 return ExprError();
4933
4934 // Widen the argument value to sizeof(parameter type). This is almost
4935 // always a no-op, except when the parameter type is bool. In
4936 // that case, this may extend the argument from 1 bit to 8 bits.
4937 QualType IntegerType = ParamType;
4938 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4939 IntegerType = Enum->getDecl()->getIntegerType();
4940 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4941
4942 Converted = TemplateArgument(Context, Value,
4943 Context.getCanonicalType(ParamType));
4944 return ArgResult;
4945 }
4946
4947 ExprResult ArgResult = DefaultLvalueConversion(Arg);
4948 if (ArgResult.isInvalid())
4949 return ExprError();
4950 Arg = ArgResult.get();
4951
4952 QualType ArgType = Arg->getType();
4953
4954 // C++ [temp.arg.nontype]p1:
4955 // A template-argument for a non-type, non-template
4956 // template-parameter shall be one of:
4957 //
4958 // -- an integral constant-expression of integral or enumeration
4959 // type; or
4960 // -- the name of a non-type template-parameter; or
4961 SourceLocation NonConstantLoc;
4962 llvm::APSInt Value;
4963 if (!ArgType->isIntegralOrEnumerationType()) {
4964 Diag(Arg->getLocStart(),
4965 diag::err_template_arg_not_integral_or_enumeral)
4966 << ArgType << Arg->getSourceRange();
4967 Diag(Param->getLocation(), diag::note_template_param_here);
4968 return ExprError();
4969 } else if (!Arg->isValueDependent()) {
4970 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4971 QualType T;
4972
4973 public:
4974 TmplArgICEDiagnoser(QualType T) : T(T) { }
4975
4976 void diagnoseNotICE(Sema &S, SourceLocation Loc,
4977 SourceRange SR) override {
4978 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4979 }
4980 } Diagnoser(ArgType);
4981
4982 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4983 false).get();
4984 if (!Arg)
4985 return ExprError();
4986 }
4987
4988 // From here on out, all we care about is the unqualified form
4989 // of the argument type.
4990 ArgType = ArgType.getUnqualifiedType();
4991
4992 // Try to convert the argument to the parameter's type.
4993 if (Context.hasSameType(ParamType, ArgType)) {
4994 // Okay: no conversion necessary
4995 } else if (ParamType->isBooleanType()) {
4996 // This is an integral-to-boolean conversion.
4997 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
4998 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4999 !ParamType->isEnumeralType()) {
5000 // This is an integral promotion or conversion.
5001 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
5002 } else {
5003 // We can't perform this conversion.
5004 Diag(Arg->getLocStart(),
5005 diag::err_template_arg_not_convertible)
5006 << Arg->getType() << ParamType << Arg->getSourceRange();
5007 Diag(Param->getLocation(), diag::note_template_param_here);
5008 return ExprError();
5009 }
5010
5011 // Add the value of this argument to the list of converted
5012 // arguments. We use the bitwidth and signedness of the template
5013 // parameter.
5014 if (Arg->isValueDependent()) {
5015 // The argument is value-dependent. Create a new
5016 // TemplateArgument with the converted expression.
5017 Converted = TemplateArgument(Arg);
5018 return Arg;
5019 }
5020
5021 QualType IntegerType = Context.getCanonicalType(ParamType);
5022 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5023 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
5024
5025 if (ParamType->isBooleanType()) {
5026 // Value must be zero or one.
5027 Value = Value != 0;
5028 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5029 if (Value.getBitWidth() != AllowedBits)
5030 Value = Value.extOrTrunc(AllowedBits);
5031 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5032 } else {
5033 llvm::APSInt OldValue = Value;
5034
5035 // Coerce the template argument's value to the value it will have
5036 // based on the template parameter's type.
5037 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5038 if (Value.getBitWidth() != AllowedBits)
5039 Value = Value.extOrTrunc(AllowedBits);
5040 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5041
5042 // Complain if an unsigned parameter received a negative value.
5043 if (IntegerType->isUnsignedIntegerOrEnumerationType()
5044 && (OldValue.isSigned() && OldValue.isNegative())) {
5045 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
5046 << OldValue.toString(10) << Value.toString(10) << Param->getType()
5047 << Arg->getSourceRange();
5048 Diag(Param->getLocation(), diag::note_template_param_here);
5049 }
5050
5051 // Complain if we overflowed the template parameter's type.
5052 unsigned RequiredBits;
5053 if (IntegerType->isUnsignedIntegerOrEnumerationType())
5054 RequiredBits = OldValue.getActiveBits();
5055 else if (OldValue.isUnsigned())
5056 RequiredBits = OldValue.getActiveBits() + 1;
5057 else
5058 RequiredBits = OldValue.getMinSignedBits();
5059 if (RequiredBits > AllowedBits) {
5060 Diag(Arg->getLocStart(),
5061 diag::warn_template_arg_too_large)
5062 << OldValue.toString(10) << Value.toString(10) << Param->getType()
5063 << Arg->getSourceRange();
5064 Diag(Param->getLocation(), diag::note_template_param_here);
5065 }
5066 }
5067
5068 Converted = TemplateArgument(Context, Value,
5069 ParamType->isEnumeralType()
5070 ? Context.getCanonicalType(ParamType)
5071 : IntegerType);
5072 return Arg;
5073 }
5074
5075 QualType ArgType = Arg->getType();
5076 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
5077
5078 // Handle pointer-to-function, reference-to-function, and
5079 // pointer-to-member-function all in (roughly) the same way.
5080 if (// -- For a non-type template-parameter of type pointer to
5081 // function, only the function-to-pointer conversion (4.3) is
5082 // applied. If the template-argument represents a set of
5083 // overloaded functions (or a pointer to such), the matching
5084 // function is selected from the set (13.4).
5085 (ParamType->isPointerType() &&
5086 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
5087 // -- For a non-type template-parameter of type reference to
5088 // function, no conversions apply. If the template-argument
5089 // represents a set of overloaded functions, the matching
5090 // function is selected from the set (13.4).
5091 (ParamType->isReferenceType() &&
5092 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
5093 // -- For a non-type template-parameter of type pointer to
5094 // member function, no conversions apply. If the
5095 // template-argument represents a set of overloaded member
5096 // functions, the matching member function is selected from
5097 // the set (13.4).
5098 (ParamType->isMemberPointerType() &&
5099 ParamType->getAs<MemberPointerType>()->getPointeeType()
5100 ->isFunctionType())) {
5101
5102 if (Arg->getType() == Context.OverloadTy) {
5103 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
5104 true,
5105 FoundResult)) {
5106 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5107 return ExprError();
5108
5109 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5110 ArgType = Arg->getType();
5111 } else
5112 return ExprError();
5113 }
5114
5115 if (!ParamType->isMemberPointerType()) {
5116 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5117 ParamType,
5118 Arg, Converted))
5119 return ExprError();
5120 return Arg;
5121 }
5122
5123 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5124 Converted))
5125 return ExprError();
5126 return Arg;
5127 }
5128
5129 if (ParamType->isPointerType()) {
5130 // -- for a non-type template-parameter of type pointer to
5131 // object, qualification conversions (4.4) and the
5132 // array-to-pointer conversion (4.2) are applied.
5133 // C++0x also allows a value of std::nullptr_t.
5134 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
5135 "Only object pointers allowed here");
5136
5137 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5138 ParamType,
5139 Arg, Converted))
5140 return ExprError();
5141 return Arg;
5142 }
5143
5144 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
5145 // -- For a non-type template-parameter of type reference to
5146 // object, no conversions apply. The type referred to by the
5147 // reference may be more cv-qualified than the (otherwise
5148 // identical) type of the template-argument. The
5149 // template-parameter is bound directly to the
5150 // template-argument, which must be an lvalue.
5151 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
5152 "Only object references allowed here");
5153
5154 if (Arg->getType() == Context.OverloadTy) {
5155 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
5156 ParamRefType->getPointeeType(),
5157 true,
5158 FoundResult)) {
5159 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5160 return ExprError();
5161
5162 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5163 ArgType = Arg->getType();
5164 } else
5165 return ExprError();
5166 }
5167
5168 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5169 ParamType,
5170 Arg, Converted))
5171 return ExprError();
5172 return Arg;
5173 }
5174
5175 // Deal with parameters of type std::nullptr_t.
5176 if (ParamType->isNullPtrType()) {
5177 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5178 Converted = TemplateArgument(Arg);
5179 return Arg;
5180 }
5181
5182 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
5183 case NPV_NotNullPointer:
5184 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
5185 << Arg->getType() << ParamType;
5186 Diag(Param->getLocation(), diag::note_template_param_here);
5187 return ExprError();
5188
5189 case NPV_Error:
5190 return ExprError();
5191
5192 case NPV_NullPointer:
5193 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5194 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
5195 /*isNullPtr*/true);
5196 return Arg;
5197 }
5198 }
5199
5200 // -- For a non-type template-parameter of type pointer to data
5201 // member, qualification conversions (4.4) are applied.
5202 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
5203
5204 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5205 Converted))
5206 return ExprError();
5207 return Arg;
5208 }
5209
5210 /// \brief Check a template argument against its corresponding
5211 /// template template parameter.
5212 ///
5213 /// This routine implements the semantics of C++ [temp.arg.template].
5214 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)5215 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5216 TemplateArgumentLoc &Arg,
5217 unsigned ArgumentPackIndex) {
5218 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5219 TemplateDecl *Template = Name.getAsTemplateDecl();
5220 if (!Template) {
5221 // Any dependent template name is fine.
5222 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5223 return false;
5224 }
5225
5226 // C++0x [temp.arg.template]p1:
5227 // A template-argument for a template template-parameter shall be
5228 // the name of a class template or an alias template, expressed as an
5229 // id-expression. When the template-argument names a class template, only
5230 // primary class templates are considered when matching the
5231 // template template argument with the corresponding parameter;
5232 // partial specializations are not considered even if their
5233 // parameter lists match that of the template template parameter.
5234 //
5235 // Note that we also allow template template parameters here, which
5236 // will happen when we are dealing with, e.g., class template
5237 // partial specializations.
5238 if (!isa<ClassTemplateDecl>(Template) &&
5239 !isa<TemplateTemplateParmDecl>(Template) &&
5240 !isa<TypeAliasTemplateDecl>(Template)) {
5241 assert(isa<FunctionTemplateDecl>(Template) &&
5242 "Only function templates are possible here");
5243 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
5244 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5245 << Template;
5246 }
5247
5248 TemplateParameterList *Params = Param->getTemplateParameters();
5249 if (Param->isExpandedParameterPack())
5250 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5251
5252 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5253 Params,
5254 true,
5255 TPL_TemplateTemplateArgumentMatch,
5256 Arg.getLocation());
5257 }
5258
5259 /// \brief Given a non-type template argument that refers to a
5260 /// declaration and the type of its corresponding non-type template
5261 /// parameter, produce an expression that properly refers to that
5262 /// declaration.
5263 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)5264 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5265 QualType ParamType,
5266 SourceLocation Loc) {
5267 // C++ [temp.param]p8:
5268 //
5269 // A non-type template-parameter of type "array of T" or
5270 // "function returning T" is adjusted to be of type "pointer to
5271 // T" or "pointer to function returning T", respectively.
5272 if (ParamType->isArrayType())
5273 ParamType = Context.getArrayDecayedType(ParamType);
5274 else if (ParamType->isFunctionType())
5275 ParamType = Context.getPointerType(ParamType);
5276
5277 // For a NULL non-type template argument, return nullptr casted to the
5278 // parameter's type.
5279 if (Arg.getKind() == TemplateArgument::NullPtr) {
5280 return ImpCastExprToType(
5281 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5282 ParamType,
5283 ParamType->getAs<MemberPointerType>()
5284 ? CK_NullToMemberPointer
5285 : CK_NullToPointer);
5286 }
5287 assert(Arg.getKind() == TemplateArgument::Declaration &&
5288 "Only declaration template arguments permitted here");
5289
5290 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5291
5292 if (VD->getDeclContext()->isRecord() &&
5293 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5294 isa<IndirectFieldDecl>(VD))) {
5295 // If the value is a class member, we might have a pointer-to-member.
5296 // Determine whether the non-type template template parameter is of
5297 // pointer-to-member type. If so, we need to build an appropriate
5298 // expression for a pointer-to-member, since a "normal" DeclRefExpr
5299 // would refer to the member itself.
5300 if (ParamType->isMemberPointerType()) {
5301 QualType ClassType
5302 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5303 NestedNameSpecifier *Qualifier
5304 = NestedNameSpecifier::Create(Context, nullptr, false,
5305 ClassType.getTypePtr());
5306 CXXScopeSpec SS;
5307 SS.MakeTrivial(Context, Qualifier, Loc);
5308
5309 // The actual value-ness of this is unimportant, but for
5310 // internal consistency's sake, references to instance methods
5311 // are r-values.
5312 ExprValueKind VK = VK_LValue;
5313 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5314 VK = VK_RValue;
5315
5316 ExprResult RefExpr = BuildDeclRefExpr(VD,
5317 VD->getType().getNonReferenceType(),
5318 VK,
5319 Loc,
5320 &SS);
5321 if (RefExpr.isInvalid())
5322 return ExprError();
5323
5324 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5325
5326 // We might need to perform a trailing qualification conversion, since
5327 // the element type on the parameter could be more qualified than the
5328 // element type in the expression we constructed.
5329 bool ObjCLifetimeConversion;
5330 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5331 ParamType.getUnqualifiedType(), false,
5332 ObjCLifetimeConversion))
5333 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
5334
5335 assert(!RefExpr.isInvalid() &&
5336 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5337 ParamType.getUnqualifiedType()));
5338 return RefExpr;
5339 }
5340 }
5341
5342 QualType T = VD->getType().getNonReferenceType();
5343
5344 if (ParamType->isPointerType()) {
5345 // When the non-type template parameter is a pointer, take the
5346 // address of the declaration.
5347 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5348 if (RefExpr.isInvalid())
5349 return ExprError();
5350
5351 if (T->isFunctionType() || T->isArrayType()) {
5352 // Decay functions and arrays.
5353 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
5354 if (RefExpr.isInvalid())
5355 return ExprError();
5356
5357 return RefExpr;
5358 }
5359
5360 // Take the address of everything else
5361 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5362 }
5363
5364 ExprValueKind VK = VK_RValue;
5365
5366 // If the non-type template parameter has reference type, qualify the
5367 // resulting declaration reference with the extra qualifiers on the
5368 // type that the reference refers to.
5369 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5370 VK = VK_LValue;
5371 T = Context.getQualifiedType(T,
5372 TargetRef->getPointeeType().getQualifiers());
5373 } else if (isa<FunctionDecl>(VD)) {
5374 // References to functions are always lvalues.
5375 VK = VK_LValue;
5376 }
5377
5378 return BuildDeclRefExpr(VD, T, VK, Loc);
5379 }
5380
5381 /// \brief Construct a new expression that refers to the given
5382 /// integral template argument with the given source-location
5383 /// information.
5384 ///
5385 /// This routine takes care of the mapping from an integral template
5386 /// argument (which may have any integral type) to the appropriate
5387 /// literal value.
5388 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)5389 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5390 SourceLocation Loc) {
5391 assert(Arg.getKind() == TemplateArgument::Integral &&
5392 "Operation is only valid for integral template arguments");
5393 QualType OrigT = Arg.getIntegralType();
5394
5395 // If this is an enum type that we're instantiating, we need to use an integer
5396 // type the same size as the enumerator. We don't want to build an
5397 // IntegerLiteral with enum type. The integer type of an enum type can be of
5398 // any integral type with C++11 enum classes, make sure we create the right
5399 // type of literal for it.
5400 QualType T = OrigT;
5401 if (const EnumType *ET = OrigT->getAs<EnumType>())
5402 T = ET->getDecl()->getIntegerType();
5403
5404 Expr *E;
5405 if (T->isAnyCharacterType()) {
5406 CharacterLiteral::CharacterKind Kind;
5407 if (T->isWideCharType())
5408 Kind = CharacterLiteral::Wide;
5409 else if (T->isChar16Type())
5410 Kind = CharacterLiteral::UTF16;
5411 else if (T->isChar32Type())
5412 Kind = CharacterLiteral::UTF32;
5413 else
5414 Kind = CharacterLiteral::Ascii;
5415
5416 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5417 Kind, T, Loc);
5418 } else if (T->isBooleanType()) {
5419 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5420 T, Loc);
5421 } else if (T->isNullPtrType()) {
5422 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5423 } else {
5424 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5425 }
5426
5427 if (OrigT->isEnumeralType()) {
5428 // FIXME: This is a hack. We need a better way to handle substituted
5429 // non-type template parameters.
5430 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
5431 nullptr,
5432 Context.getTrivialTypeSourceInfo(OrigT, Loc),
5433 Loc, Loc);
5434 }
5435
5436 return E;
5437 }
5438
5439 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5440 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5441 bool Complain,
5442 Sema::TemplateParameterListEqualKind Kind,
5443 SourceLocation TemplateArgLoc) {
5444 // Check the actual kind (type, non-type, template).
5445 if (Old->getKind() != New->getKind()) {
5446 if (Complain) {
5447 unsigned NextDiag = diag::err_template_param_different_kind;
5448 if (TemplateArgLoc.isValid()) {
5449 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5450 NextDiag = diag::note_template_param_different_kind;
5451 }
5452 S.Diag(New->getLocation(), NextDiag)
5453 << (Kind != Sema::TPL_TemplateMatch);
5454 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5455 << (Kind != Sema::TPL_TemplateMatch);
5456 }
5457
5458 return false;
5459 }
5460
5461 // Check that both are parameter packs are neither are parameter packs.
5462 // However, if we are matching a template template argument to a
5463 // template template parameter, the template template parameter can have
5464 // a parameter pack where the template template argument does not.
5465 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5466 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5467 Old->isTemplateParameterPack())) {
5468 if (Complain) {
5469 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5470 if (TemplateArgLoc.isValid()) {
5471 S.Diag(TemplateArgLoc,
5472 diag::err_template_arg_template_params_mismatch);
5473 NextDiag = diag::note_template_parameter_pack_non_pack;
5474 }
5475
5476 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5477 : isa<NonTypeTemplateParmDecl>(New)? 1
5478 : 2;
5479 S.Diag(New->getLocation(), NextDiag)
5480 << ParamKind << New->isParameterPack();
5481 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5482 << ParamKind << Old->isParameterPack();
5483 }
5484
5485 return false;
5486 }
5487
5488 // For non-type template parameters, check the type of the parameter.
5489 if (NonTypeTemplateParmDecl *OldNTTP
5490 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5491 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5492
5493 // If we are matching a template template argument to a template
5494 // template parameter and one of the non-type template parameter types
5495 // is dependent, then we must wait until template instantiation time
5496 // to actually compare the arguments.
5497 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5498 (OldNTTP->getType()->isDependentType() ||
5499 NewNTTP->getType()->isDependentType()))
5500 return true;
5501
5502 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5503 if (Complain) {
5504 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5505 if (TemplateArgLoc.isValid()) {
5506 S.Diag(TemplateArgLoc,
5507 diag::err_template_arg_template_params_mismatch);
5508 NextDiag = diag::note_template_nontype_parm_different_type;
5509 }
5510 S.Diag(NewNTTP->getLocation(), NextDiag)
5511 << NewNTTP->getType()
5512 << (Kind != Sema::TPL_TemplateMatch);
5513 S.Diag(OldNTTP->getLocation(),
5514 diag::note_template_nontype_parm_prev_declaration)
5515 << OldNTTP->getType();
5516 }
5517
5518 return false;
5519 }
5520
5521 return true;
5522 }
5523
5524 // For template template parameters, check the template parameter types.
5525 // The template parameter lists of template template
5526 // parameters must agree.
5527 if (TemplateTemplateParmDecl *OldTTP
5528 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5529 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5530 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5531 OldTTP->getTemplateParameters(),
5532 Complain,
5533 (Kind == Sema::TPL_TemplateMatch
5534 ? Sema::TPL_TemplateTemplateParmMatch
5535 : Kind),
5536 TemplateArgLoc);
5537 }
5538
5539 return true;
5540 }
5541
5542 /// \brief Diagnose a known arity mismatch when comparing template argument
5543 /// lists.
5544 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5545 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5546 TemplateParameterList *New,
5547 TemplateParameterList *Old,
5548 Sema::TemplateParameterListEqualKind Kind,
5549 SourceLocation TemplateArgLoc) {
5550 unsigned NextDiag = diag::err_template_param_list_different_arity;
5551 if (TemplateArgLoc.isValid()) {
5552 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5553 NextDiag = diag::note_template_param_list_different_arity;
5554 }
5555 S.Diag(New->getTemplateLoc(), NextDiag)
5556 << (New->size() > Old->size())
5557 << (Kind != Sema::TPL_TemplateMatch)
5558 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5559 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5560 << (Kind != Sema::TPL_TemplateMatch)
5561 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5562 }
5563
5564 /// \brief Determine whether the given template parameter lists are
5565 /// equivalent.
5566 ///
5567 /// \param New The new template parameter list, typically written in the
5568 /// source code as part of a new template declaration.
5569 ///
5570 /// \param Old The old template parameter list, typically found via
5571 /// name lookup of the template declared with this template parameter
5572 /// list.
5573 ///
5574 /// \param Complain If true, this routine will produce a diagnostic if
5575 /// the template parameter lists are not equivalent.
5576 ///
5577 /// \param Kind describes how we are to match the template parameter lists.
5578 ///
5579 /// \param TemplateArgLoc If this source location is valid, then we
5580 /// are actually checking the template parameter list of a template
5581 /// argument (New) against the template parameter list of its
5582 /// corresponding template template parameter (Old). We produce
5583 /// slightly different diagnostics in this scenario.
5584 ///
5585 /// \returns True if the template parameter lists are equal, false
5586 /// otherwise.
5587 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5588 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5589 TemplateParameterList *Old,
5590 bool Complain,
5591 TemplateParameterListEqualKind Kind,
5592 SourceLocation TemplateArgLoc) {
5593 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5594 if (Complain)
5595 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5596 TemplateArgLoc);
5597
5598 return false;
5599 }
5600
5601 // C++0x [temp.arg.template]p3:
5602 // A template-argument matches a template template-parameter (call it P)
5603 // when each of the template parameters in the template-parameter-list of
5604 // the template-argument's corresponding class template or alias template
5605 // (call it A) matches the corresponding template parameter in the
5606 // template-parameter-list of P. [...]
5607 TemplateParameterList::iterator NewParm = New->begin();
5608 TemplateParameterList::iterator NewParmEnd = New->end();
5609 for (TemplateParameterList::iterator OldParm = Old->begin(),
5610 OldParmEnd = Old->end();
5611 OldParm != OldParmEnd; ++OldParm) {
5612 if (Kind != TPL_TemplateTemplateArgumentMatch ||
5613 !(*OldParm)->isTemplateParameterPack()) {
5614 if (NewParm == NewParmEnd) {
5615 if (Complain)
5616 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5617 TemplateArgLoc);
5618
5619 return false;
5620 }
5621
5622 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5623 Kind, TemplateArgLoc))
5624 return false;
5625
5626 ++NewParm;
5627 continue;
5628 }
5629
5630 // C++0x [temp.arg.template]p3:
5631 // [...] When P's template- parameter-list contains a template parameter
5632 // pack (14.5.3), the template parameter pack will match zero or more
5633 // template parameters or template parameter packs in the
5634 // template-parameter-list of A with the same type and form as the
5635 // template parameter pack in P (ignoring whether those template
5636 // parameters are template parameter packs).
5637 for (; NewParm != NewParmEnd; ++NewParm) {
5638 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5639 Kind, TemplateArgLoc))
5640 return false;
5641 }
5642 }
5643
5644 // Make sure we exhausted all of the arguments.
5645 if (NewParm != NewParmEnd) {
5646 if (Complain)
5647 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5648 TemplateArgLoc);
5649
5650 return false;
5651 }
5652
5653 return true;
5654 }
5655
5656 /// \brief Check whether a template can be declared within this scope.
5657 ///
5658 /// If the template declaration is valid in this scope, returns
5659 /// false. Otherwise, issues a diagnostic and returns true.
5660 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)5661 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5662 if (!S)
5663 return false;
5664
5665 // Find the nearest enclosing declaration scope.
5666 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5667 (S->getFlags() & Scope::TemplateParamScope) != 0)
5668 S = S->getParent();
5669
5670 // C++ [temp]p4:
5671 // A template [...] shall not have C linkage.
5672 DeclContext *Ctx = S->getEntity();
5673 if (Ctx && Ctx->isExternCContext())
5674 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5675 << TemplateParams->getSourceRange();
5676
5677 while (Ctx && isa<LinkageSpecDecl>(Ctx))
5678 Ctx = Ctx->getParent();
5679
5680 // C++ [temp]p2:
5681 // A template-declaration can appear only as a namespace scope or
5682 // class scope declaration.
5683 if (Ctx) {
5684 if (Ctx->isFileContext())
5685 return false;
5686 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5687 // C++ [temp.mem]p2:
5688 // A local class shall not have member templates.
5689 if (RD->isLocalClass())
5690 return Diag(TemplateParams->getTemplateLoc(),
5691 diag::err_template_inside_local_class)
5692 << TemplateParams->getSourceRange();
5693 else
5694 return false;
5695 }
5696 }
5697
5698 return Diag(TemplateParams->getTemplateLoc(),
5699 diag::err_template_outside_namespace_or_class_scope)
5700 << TemplateParams->getSourceRange();
5701 }
5702
5703 /// \brief Determine what kind of template specialization the given declaration
5704 /// is.
getTemplateSpecializationKind(Decl * D)5705 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5706 if (!D)
5707 return TSK_Undeclared;
5708
5709 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5710 return Record->getTemplateSpecializationKind();
5711 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5712 return Function->getTemplateSpecializationKind();
5713 if (VarDecl *Var = dyn_cast<VarDecl>(D))
5714 return Var->getTemplateSpecializationKind();
5715
5716 return TSK_Undeclared;
5717 }
5718
5719 /// \brief Check whether a specialization is well-formed in the current
5720 /// context.
5721 ///
5722 /// This routine determines whether a template specialization can be declared
5723 /// in the current context (C++ [temp.expl.spec]p2).
5724 ///
5725 /// \param S the semantic analysis object for which this check is being
5726 /// performed.
5727 ///
5728 /// \param Specialized the entity being specialized or instantiated, which
5729 /// may be a kind of template (class template, function template, etc.) or
5730 /// a member of a class template (member function, static data member,
5731 /// member class).
5732 ///
5733 /// \param PrevDecl the previous declaration of this entity, if any.
5734 ///
5735 /// \param Loc the location of the explicit specialization or instantiation of
5736 /// this entity.
5737 ///
5738 /// \param IsPartialSpecialization whether this is a partial specialization of
5739 /// a class template.
5740 ///
5741 /// \returns true if there was an error that we cannot recover from, false
5742 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)5743 static bool CheckTemplateSpecializationScope(Sema &S,
5744 NamedDecl *Specialized,
5745 NamedDecl *PrevDecl,
5746 SourceLocation Loc,
5747 bool IsPartialSpecialization) {
5748 // Keep these "kind" numbers in sync with the %select statements in the
5749 // various diagnostics emitted by this routine.
5750 int EntityKind = 0;
5751 if (isa<ClassTemplateDecl>(Specialized))
5752 EntityKind = IsPartialSpecialization? 1 : 0;
5753 else if (isa<VarTemplateDecl>(Specialized))
5754 EntityKind = IsPartialSpecialization ? 3 : 2;
5755 else if (isa<FunctionTemplateDecl>(Specialized))
5756 EntityKind = 4;
5757 else if (isa<CXXMethodDecl>(Specialized))
5758 EntityKind = 5;
5759 else if (isa<VarDecl>(Specialized))
5760 EntityKind = 6;
5761 else if (isa<RecordDecl>(Specialized))
5762 EntityKind = 7;
5763 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5764 EntityKind = 8;
5765 else {
5766 S.Diag(Loc, diag::err_template_spec_unknown_kind)
5767 << S.getLangOpts().CPlusPlus11;
5768 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5769 return true;
5770 }
5771
5772 // C++ [temp.expl.spec]p2:
5773 // An explicit specialization shall be declared in the namespace
5774 // of which the template is a member, or, for member templates, in
5775 // the namespace of which the enclosing class or enclosing class
5776 // template is a member. An explicit specialization of a member
5777 // function, member class or static data member of a class
5778 // template shall be declared in the namespace of which the class
5779 // template is a member. Such a declaration may also be a
5780 // definition. If the declaration is not a definition, the
5781 // specialization may be defined later in the name- space in which
5782 // the explicit specialization was declared, or in a namespace
5783 // that encloses the one in which the explicit specialization was
5784 // declared.
5785 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5786 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5787 << Specialized;
5788 return true;
5789 }
5790
5791 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5792 if (S.getLangOpts().MicrosoftExt) {
5793 // Do not warn for class scope explicit specialization during
5794 // instantiation, warning was already emitted during pattern
5795 // semantic analysis.
5796 if (!S.ActiveTemplateInstantiations.size())
5797 S.Diag(Loc, diag::ext_function_specialization_in_class)
5798 << Specialized;
5799 } else {
5800 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5801 << Specialized;
5802 return true;
5803 }
5804 }
5805
5806 if (S.CurContext->isRecord() &&
5807 !S.CurContext->Equals(Specialized->getDeclContext())) {
5808 // Make sure that we're specializing in the right record context.
5809 // Otherwise, things can go horribly wrong.
5810 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5811 << Specialized;
5812 return true;
5813 }
5814
5815 // C++ [temp.class.spec]p6:
5816 // A class template partial specialization may be declared or redeclared
5817 // in any namespace scope in which its definition may be defined (14.5.1
5818 // and 14.5.2).
5819 DeclContext *SpecializedContext
5820 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5821 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5822
5823 // Make sure that this redeclaration (or definition) occurs in an enclosing
5824 // namespace.
5825 // Note that HandleDeclarator() performs this check for explicit
5826 // specializations of function templates, static data members, and member
5827 // functions, so we skip the check here for those kinds of entities.
5828 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5829 // Should we refactor that check, so that it occurs later?
5830 if (!DC->Encloses(SpecializedContext) &&
5831 !(isa<FunctionTemplateDecl>(Specialized) ||
5832 isa<FunctionDecl>(Specialized) ||
5833 isa<VarTemplateDecl>(Specialized) ||
5834 isa<VarDecl>(Specialized))) {
5835 if (isa<TranslationUnitDecl>(SpecializedContext))
5836 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5837 << EntityKind << Specialized;
5838 else if (isa<NamespaceDecl>(SpecializedContext))
5839 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5840 << EntityKind << Specialized
5841 << cast<NamedDecl>(SpecializedContext);
5842 else
5843 llvm_unreachable("unexpected namespace context for specialization");
5844
5845 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5846 } else if ((!PrevDecl ||
5847 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5848 getTemplateSpecializationKind(PrevDecl) ==
5849 TSK_ImplicitInstantiation)) {
5850 // C++ [temp.exp.spec]p2:
5851 // An explicit specialization shall be declared in the namespace of which
5852 // the template is a member, or, for member templates, in the namespace
5853 // of which the enclosing class or enclosing class template is a member.
5854 // An explicit specialization of a member function, member class or
5855 // static data member of a class template shall be declared in the
5856 // namespace of which the class template is a member.
5857 //
5858 // C++11 [temp.expl.spec]p2:
5859 // An explicit specialization shall be declared in a namespace enclosing
5860 // the specialized template.
5861 // C++11 [temp.explicit]p3:
5862 // An explicit instantiation shall appear in an enclosing namespace of its
5863 // template.
5864 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5865 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5866 if (isa<TranslationUnitDecl>(SpecializedContext)) {
5867 assert(!IsCPlusPlus11Extension &&
5868 "DC encloses TU but isn't in enclosing namespace set");
5869 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5870 << EntityKind << Specialized;
5871 } else if (isa<NamespaceDecl>(SpecializedContext)) {
5872 int Diag;
5873 if (!IsCPlusPlus11Extension)
5874 Diag = diag::err_template_spec_decl_out_of_scope;
5875 else if (!S.getLangOpts().CPlusPlus11)
5876 Diag = diag::ext_template_spec_decl_out_of_scope;
5877 else
5878 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5879 S.Diag(Loc, Diag)
5880 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5881 }
5882
5883 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5884 }
5885 }
5886
5887 return false;
5888 }
5889
findTemplateParameter(unsigned Depth,Expr * E)5890 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
5891 if (!E->isInstantiationDependent())
5892 return SourceLocation();
5893 DependencyChecker Checker(Depth);
5894 Checker.TraverseStmt(E);
5895 if (Checker.Match && Checker.MatchLoc.isInvalid())
5896 return E->getSourceRange();
5897 return Checker.MatchLoc;
5898 }
5899
findTemplateParameter(unsigned Depth,TypeLoc TL)5900 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
5901 if (!TL.getType()->isDependentType())
5902 return SourceLocation();
5903 DependencyChecker Checker(Depth);
5904 Checker.TraverseTypeLoc(TL);
5905 if (Checker.Match && Checker.MatchLoc.isInvalid())
5906 return TL.getSourceRange();
5907 return Checker.MatchLoc;
5908 }
5909
5910 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5911 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)5912 static bool CheckNonTypeTemplatePartialSpecializationArgs(
5913 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
5914 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
5915 for (unsigned I = 0; I != NumArgs; ++I) {
5916 if (Args[I].getKind() == TemplateArgument::Pack) {
5917 if (CheckNonTypeTemplatePartialSpecializationArgs(
5918 S, TemplateNameLoc, Param, Args[I].pack_begin(),
5919 Args[I].pack_size(), IsDefaultArgument))
5920 return true;
5921
5922 continue;
5923 }
5924
5925 if (Args[I].getKind() != TemplateArgument::Expression)
5926 continue;
5927
5928 Expr *ArgExpr = Args[I].getAsExpr();
5929
5930 // We can have a pack expansion of any of the bullets below.
5931 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5932 ArgExpr = Expansion->getPattern();
5933
5934 // Strip off any implicit casts we added as part of type checking.
5935 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5936 ArgExpr = ICE->getSubExpr();
5937
5938 // C++ [temp.class.spec]p8:
5939 // A non-type argument is non-specialized if it is the name of a
5940 // non-type parameter. All other non-type arguments are
5941 // specialized.
5942 //
5943 // Below, we check the two conditions that only apply to
5944 // specialized non-type arguments, so skip any non-specialized
5945 // arguments.
5946 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5947 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5948 continue;
5949
5950 // C++ [temp.class.spec]p9:
5951 // Within the argument list of a class template partial
5952 // specialization, the following restrictions apply:
5953 // -- A partially specialized non-type argument expression
5954 // shall not involve a template parameter of the partial
5955 // specialization except when the argument expression is a
5956 // simple identifier.
5957 SourceRange ParamUseRange =
5958 findTemplateParameter(Param->getDepth(), ArgExpr);
5959 if (ParamUseRange.isValid()) {
5960 if (IsDefaultArgument) {
5961 S.Diag(TemplateNameLoc,
5962 diag::err_dependent_non_type_arg_in_partial_spec);
5963 S.Diag(ParamUseRange.getBegin(),
5964 diag::note_dependent_non_type_default_arg_in_partial_spec)
5965 << ParamUseRange;
5966 } else {
5967 S.Diag(ParamUseRange.getBegin(),
5968 diag::err_dependent_non_type_arg_in_partial_spec)
5969 << ParamUseRange;
5970 }
5971 return true;
5972 }
5973
5974 // -- The type of a template parameter corresponding to a
5975 // specialized non-type argument shall not be dependent on a
5976 // parameter of the specialization.
5977 //
5978 // FIXME: We need to delay this check until instantiation in some cases:
5979 //
5980 // template<template<typename> class X> struct A {
5981 // template<typename T, X<T> N> struct B;
5982 // template<typename T> struct B<T, 0>;
5983 // };
5984 // template<typename> using X = int;
5985 // A<X>::B<int, 0> b;
5986 ParamUseRange = findTemplateParameter(
5987 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
5988 if (ParamUseRange.isValid()) {
5989 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
5990 diag::err_dependent_typed_non_type_arg_in_partial_spec)
5991 << Param->getType() << ParamUseRange;
5992 S.Diag(Param->getLocation(), diag::note_template_param_here)
5993 << (IsDefaultArgument ? ParamUseRange : SourceRange());
5994 return true;
5995 }
5996 }
5997
5998 return false;
5999 }
6000
6001 /// \brief Check the non-type template arguments of a class template
6002 /// partial specialization according to C++ [temp.class.spec]p9.
6003 ///
6004 /// \param TemplateNameLoc the location of the template name.
6005 /// \param TemplateParams the template parameters of the primary class
6006 /// template.
6007 /// \param NumExplicit the number of explicitly-specified template arguments.
6008 /// \param TemplateArgs the template arguments of the class template
6009 /// partial specialization.
6010 ///
6011 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,TemplateParameterList * TemplateParams,unsigned NumExplicit,SmallVectorImpl<TemplateArgument> & TemplateArgs)6012 static bool CheckTemplatePartialSpecializationArgs(
6013 Sema &S, SourceLocation TemplateNameLoc,
6014 TemplateParameterList *TemplateParams, unsigned NumExplicit,
6015 SmallVectorImpl<TemplateArgument> &TemplateArgs) {
6016 const TemplateArgument *ArgList = TemplateArgs.data();
6017
6018 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6019 NonTypeTemplateParmDecl *Param
6020 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
6021 if (!Param)
6022 continue;
6023
6024 if (CheckNonTypeTemplatePartialSpecializationArgs(
6025 S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
6026 return true;
6027 }
6028
6029 return false;
6030 }
6031
6032 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,TemplateIdAnnotation & TemplateId,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)6033 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
6034 TagUseKind TUK,
6035 SourceLocation KWLoc,
6036 SourceLocation ModulePrivateLoc,
6037 TemplateIdAnnotation &TemplateId,
6038 AttributeList *Attr,
6039 MultiTemplateParamsArg TemplateParameterLists) {
6040 assert(TUK != TUK_Reference && "References are not specializations");
6041
6042 CXXScopeSpec &SS = TemplateId.SS;
6043
6044 // NOTE: KWLoc is the location of the tag keyword. This will instead
6045 // store the location of the outermost template keyword in the declaration.
6046 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
6047 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
6048 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
6049 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
6050 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
6051
6052 // Find the class template we're specializing
6053 TemplateName Name = TemplateId.Template.get();
6054 ClassTemplateDecl *ClassTemplate
6055 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
6056
6057 if (!ClassTemplate) {
6058 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
6059 << (Name.getAsTemplateDecl() &&
6060 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
6061 return true;
6062 }
6063
6064 bool isExplicitSpecialization = false;
6065 bool isPartialSpecialization = false;
6066
6067 // Check the validity of the template headers that introduce this
6068 // template.
6069 // FIXME: We probably shouldn't complain about these headers for
6070 // friend declarations.
6071 bool Invalid = false;
6072 TemplateParameterList *TemplateParams =
6073 MatchTemplateParametersToScopeSpecifier(
6074 KWLoc, TemplateNameLoc, SS, &TemplateId,
6075 TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
6076 Invalid);
6077 if (Invalid)
6078 return true;
6079
6080 if (TemplateParams && TemplateParams->size() > 0) {
6081 isPartialSpecialization = true;
6082
6083 if (TUK == TUK_Friend) {
6084 Diag(KWLoc, diag::err_partial_specialization_friend)
6085 << SourceRange(LAngleLoc, RAngleLoc);
6086 return true;
6087 }
6088
6089 // C++ [temp.class.spec]p10:
6090 // The template parameter list of a specialization shall not
6091 // contain default template argument values.
6092 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6093 Decl *Param = TemplateParams->getParam(I);
6094 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
6095 if (TTP->hasDefaultArgument()) {
6096 Diag(TTP->getDefaultArgumentLoc(),
6097 diag::err_default_arg_in_partial_spec);
6098 TTP->removeDefaultArgument();
6099 }
6100 } else if (NonTypeTemplateParmDecl *NTTP
6101 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
6102 if (Expr *DefArg = NTTP->getDefaultArgument()) {
6103 Diag(NTTP->getDefaultArgumentLoc(),
6104 diag::err_default_arg_in_partial_spec)
6105 << DefArg->getSourceRange();
6106 NTTP->removeDefaultArgument();
6107 }
6108 } else {
6109 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
6110 if (TTP->hasDefaultArgument()) {
6111 Diag(TTP->getDefaultArgument().getLocation(),
6112 diag::err_default_arg_in_partial_spec)
6113 << TTP->getDefaultArgument().getSourceRange();
6114 TTP->removeDefaultArgument();
6115 }
6116 }
6117 }
6118 } else if (TemplateParams) {
6119 if (TUK == TUK_Friend)
6120 Diag(KWLoc, diag::err_template_spec_friend)
6121 << FixItHint::CreateRemoval(
6122 SourceRange(TemplateParams->getTemplateLoc(),
6123 TemplateParams->getRAngleLoc()))
6124 << SourceRange(LAngleLoc, RAngleLoc);
6125 else
6126 isExplicitSpecialization = true;
6127 } else {
6128 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
6129 }
6130
6131 // Check that the specialization uses the same tag kind as the
6132 // original template.
6133 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6134 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
6135 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6136 Kind, TUK == TUK_Definition, KWLoc,
6137 *ClassTemplate->getIdentifier())) {
6138 Diag(KWLoc, diag::err_use_with_wrong_tag)
6139 << ClassTemplate
6140 << FixItHint::CreateReplacement(KWLoc,
6141 ClassTemplate->getTemplatedDecl()->getKindName());
6142 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6143 diag::note_previous_use);
6144 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6145 }
6146
6147 // Translate the parser's template argument list in our AST format.
6148 TemplateArgumentListInfo TemplateArgs =
6149 makeTemplateArgumentListInfo(*this, TemplateId);
6150
6151 // Check for unexpanded parameter packs in any of the template arguments.
6152 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6153 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
6154 UPPC_PartialSpecialization))
6155 return true;
6156
6157 // Check that the template argument list is well-formed for this
6158 // template.
6159 SmallVector<TemplateArgument, 4> Converted;
6160 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6161 TemplateArgs, false, Converted))
6162 return true;
6163
6164 // Find the class template (partial) specialization declaration that
6165 // corresponds to these arguments.
6166 if (isPartialSpecialization) {
6167 if (CheckTemplatePartialSpecializationArgs(
6168 *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
6169 TemplateArgs.size(), Converted))
6170 return true;
6171
6172 bool InstantiationDependent;
6173 if (!Name.isDependent() &&
6174 !TemplateSpecializationType::anyDependentTemplateArguments(
6175 TemplateArgs.getArgumentArray(),
6176 TemplateArgs.size(),
6177 InstantiationDependent)) {
6178 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
6179 << ClassTemplate->getDeclName();
6180 isPartialSpecialization = false;
6181 }
6182 }
6183
6184 void *InsertPos = nullptr;
6185 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
6186
6187 if (isPartialSpecialization)
6188 // FIXME: Template parameter list matters, too
6189 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
6190 else
6191 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
6192
6193 ClassTemplateSpecializationDecl *Specialization = nullptr;
6194
6195 // Check whether we can declare a class template specialization in
6196 // the current scope.
6197 if (TUK != TUK_Friend &&
6198 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
6199 TemplateNameLoc,
6200 isPartialSpecialization))
6201 return true;
6202
6203 // The canonical type
6204 QualType CanonType;
6205 if (isPartialSpecialization) {
6206 // Build the canonical type that describes the converted template
6207 // arguments of the class template partial specialization.
6208 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6209 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
6210 Converted.data(),
6211 Converted.size());
6212
6213 if (Context.hasSameType(CanonType,
6214 ClassTemplate->getInjectedClassNameSpecialization())) {
6215 // C++ [temp.class.spec]p9b3:
6216 //
6217 // -- The argument list of the specialization shall not be identical
6218 // to the implicit argument list of the primary template.
6219 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
6220 << /*class template*/0 << (TUK == TUK_Definition)
6221 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
6222 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
6223 ClassTemplate->getIdentifier(),
6224 TemplateNameLoc,
6225 Attr,
6226 TemplateParams,
6227 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
6228 /*FriendLoc*/SourceLocation(),
6229 TemplateParameterLists.size() - 1,
6230 TemplateParameterLists.data());
6231 }
6232
6233 // Create a new class template partial specialization declaration node.
6234 ClassTemplatePartialSpecializationDecl *PrevPartial
6235 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
6236 ClassTemplatePartialSpecializationDecl *Partial
6237 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
6238 ClassTemplate->getDeclContext(),
6239 KWLoc, TemplateNameLoc,
6240 TemplateParams,
6241 ClassTemplate,
6242 Converted.data(),
6243 Converted.size(),
6244 TemplateArgs,
6245 CanonType,
6246 PrevPartial);
6247 SetNestedNameSpecifier(Partial, SS);
6248 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6249 Partial->setTemplateParameterListsInfo(Context,
6250 TemplateParameterLists.size() - 1,
6251 TemplateParameterLists.data());
6252 }
6253
6254 if (!PrevPartial)
6255 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6256 Specialization = Partial;
6257
6258 // If we are providing an explicit specialization of a member class
6259 // template specialization, make a note of that.
6260 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6261 PrevPartial->setMemberSpecialization();
6262
6263 // Check that all of the template parameters of the class template
6264 // partial specialization are deducible from the template
6265 // arguments. If not, this class template partial specialization
6266 // will never be used.
6267 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6268 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6269 TemplateParams->getDepth(),
6270 DeducibleParams);
6271
6272 if (!DeducibleParams.all()) {
6273 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6274 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6275 << /*class template*/0 << (NumNonDeducible > 1)
6276 << SourceRange(TemplateNameLoc, RAngleLoc);
6277 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6278 if (!DeducibleParams[I]) {
6279 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6280 if (Param->getDeclName())
6281 Diag(Param->getLocation(),
6282 diag::note_partial_spec_unused_parameter)
6283 << Param->getDeclName();
6284 else
6285 Diag(Param->getLocation(),
6286 diag::note_partial_spec_unused_parameter)
6287 << "(anonymous)";
6288 }
6289 }
6290 }
6291 } else {
6292 // Create a new class template specialization declaration node for
6293 // this explicit specialization or friend declaration.
6294 Specialization
6295 = ClassTemplateSpecializationDecl::Create(Context, Kind,
6296 ClassTemplate->getDeclContext(),
6297 KWLoc, TemplateNameLoc,
6298 ClassTemplate,
6299 Converted.data(),
6300 Converted.size(),
6301 PrevDecl);
6302 SetNestedNameSpecifier(Specialization, SS);
6303 if (TemplateParameterLists.size() > 0) {
6304 Specialization->setTemplateParameterListsInfo(Context,
6305 TemplateParameterLists.size(),
6306 TemplateParameterLists.data());
6307 }
6308
6309 if (!PrevDecl)
6310 ClassTemplate->AddSpecialization(Specialization, InsertPos);
6311
6312 CanonType = Context.getTypeDeclType(Specialization);
6313 }
6314
6315 // C++ [temp.expl.spec]p6:
6316 // If a template, a member template or the member of a class template is
6317 // explicitly specialized then that specialization shall be declared
6318 // before the first use of that specialization that would cause an implicit
6319 // instantiation to take place, in every translation unit in which such a
6320 // use occurs; no diagnostic is required.
6321 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6322 bool Okay = false;
6323 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6324 // Is there any previous explicit specialization declaration?
6325 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6326 Okay = true;
6327 break;
6328 }
6329 }
6330
6331 if (!Okay) {
6332 SourceRange Range(TemplateNameLoc, RAngleLoc);
6333 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6334 << Context.getTypeDeclType(Specialization) << Range;
6335
6336 Diag(PrevDecl->getPointOfInstantiation(),
6337 diag::note_instantiation_required_here)
6338 << (PrevDecl->getTemplateSpecializationKind()
6339 != TSK_ImplicitInstantiation);
6340 return true;
6341 }
6342 }
6343
6344 // If this is not a friend, note that this is an explicit specialization.
6345 if (TUK != TUK_Friend)
6346 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6347
6348 // Check that this isn't a redefinition of this specialization.
6349 if (TUK == TUK_Definition) {
6350 if (RecordDecl *Def = Specialization->getDefinition()) {
6351 SourceRange Range(TemplateNameLoc, RAngleLoc);
6352 Diag(TemplateNameLoc, diag::err_redefinition)
6353 << Context.getTypeDeclType(Specialization) << Range;
6354 Diag(Def->getLocation(), diag::note_previous_definition);
6355 Specialization->setInvalidDecl();
6356 return true;
6357 }
6358 }
6359
6360 if (Attr)
6361 ProcessDeclAttributeList(S, Specialization, Attr);
6362
6363 // Add alignment attributes if necessary; these attributes are checked when
6364 // the ASTContext lays out the structure.
6365 if (TUK == TUK_Definition) {
6366 AddAlignmentAttributesForRecord(Specialization);
6367 AddMsStructLayoutForRecord(Specialization);
6368 }
6369
6370 if (ModulePrivateLoc.isValid())
6371 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6372 << (isPartialSpecialization? 1 : 0)
6373 << FixItHint::CreateRemoval(ModulePrivateLoc);
6374
6375 // Build the fully-sugared type for this class template
6376 // specialization as the user wrote in the specialization
6377 // itself. This means that we'll pretty-print the type retrieved
6378 // from the specialization's declaration the way that the user
6379 // actually wrote the specialization, rather than formatting the
6380 // name based on the "canonical" representation used to store the
6381 // template arguments in the specialization.
6382 TypeSourceInfo *WrittenTy
6383 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6384 TemplateArgs, CanonType);
6385 if (TUK != TUK_Friend) {
6386 Specialization->setTypeAsWritten(WrittenTy);
6387 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6388 }
6389
6390 // C++ [temp.expl.spec]p9:
6391 // A template explicit specialization is in the scope of the
6392 // namespace in which the template was defined.
6393 //
6394 // We actually implement this paragraph where we set the semantic
6395 // context (in the creation of the ClassTemplateSpecializationDecl),
6396 // but we also maintain the lexical context where the actual
6397 // definition occurs.
6398 Specialization->setLexicalDeclContext(CurContext);
6399
6400 // We may be starting the definition of this specialization.
6401 if (TUK == TUK_Definition)
6402 Specialization->startDefinition();
6403
6404 if (TUK == TUK_Friend) {
6405 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6406 TemplateNameLoc,
6407 WrittenTy,
6408 /*FIXME:*/KWLoc);
6409 Friend->setAccess(AS_public);
6410 CurContext->addDecl(Friend);
6411 } else {
6412 // Add the specialization into its lexical context, so that it can
6413 // be seen when iterating through the list of declarations in that
6414 // context. However, specializations are not found by name lookup.
6415 CurContext->addDecl(Specialization);
6416 }
6417 return Specialization;
6418 }
6419
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6420 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6421 MultiTemplateParamsArg TemplateParameterLists,
6422 Declarator &D) {
6423 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6424 ActOnDocumentableDecl(NewDecl);
6425 return NewDecl;
6426 }
6427
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6428 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6429 MultiTemplateParamsArg TemplateParameterLists,
6430 Declarator &D) {
6431 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
6432 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6433
6434 if (FTI.hasPrototype) {
6435 // FIXME: Diagnose arguments without names in C.
6436 }
6437
6438 Scope *ParentScope = FnBodyScope->getParent();
6439
6440 D.setFunctionDefinitionKind(FDK_Definition);
6441 Decl *DP = HandleDeclarator(ParentScope, D,
6442 TemplateParameterLists);
6443 return ActOnStartOfFunctionDef(FnBodyScope, DP);
6444 }
6445
6446 /// \brief Strips various properties off an implicit instantiation
6447 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)6448 static void StripImplicitInstantiation(NamedDecl *D) {
6449 D->dropAttr<DLLImportAttr>();
6450 D->dropAttr<DLLExportAttr>();
6451
6452 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
6453 FD->setInlineSpecified(false);
6454 }
6455
6456 /// \brief Compute the diagnostic location for an explicit instantiation
6457 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)6458 static SourceLocation DiagLocForExplicitInstantiation(
6459 NamedDecl* D, SourceLocation PointOfInstantiation) {
6460 // Explicit instantiations following a specialization have no effect and
6461 // hence no PointOfInstantiation. In that case, walk decl backwards
6462 // until a valid name loc is found.
6463 SourceLocation PrevDiagLoc = PointOfInstantiation;
6464 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6465 Prev = Prev->getPreviousDecl()) {
6466 PrevDiagLoc = Prev->getLocation();
6467 }
6468 assert(PrevDiagLoc.isValid() &&
6469 "Explicit instantiation without point of instantiation?");
6470 return PrevDiagLoc;
6471 }
6472
6473 /// \brief Diagnose cases where we have an explicit template specialization
6474 /// before/after an explicit template instantiation, producing diagnostics
6475 /// for those cases where they are required and determining whether the
6476 /// new specialization/instantiation will have any effect.
6477 ///
6478 /// \param NewLoc the location of the new explicit specialization or
6479 /// instantiation.
6480 ///
6481 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6482 ///
6483 /// \param PrevDecl the previous declaration of the entity.
6484 ///
6485 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6486 ///
6487 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6488 /// declaration was instantiated (either implicitly or explicitly).
6489 ///
6490 /// \param HasNoEffect will be set to true to indicate that the new
6491 /// specialization or instantiation has no effect and should be ignored.
6492 ///
6493 /// \returns true if there was an error that should prevent the introduction of
6494 /// the new declaration into the AST, false otherwise.
6495 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)6496 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6497 TemplateSpecializationKind NewTSK,
6498 NamedDecl *PrevDecl,
6499 TemplateSpecializationKind PrevTSK,
6500 SourceLocation PrevPointOfInstantiation,
6501 bool &HasNoEffect) {
6502 HasNoEffect = false;
6503
6504 switch (NewTSK) {
6505 case TSK_Undeclared:
6506 case TSK_ImplicitInstantiation:
6507 assert(
6508 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
6509 "previous declaration must be implicit!");
6510 return false;
6511
6512 case TSK_ExplicitSpecialization:
6513 switch (PrevTSK) {
6514 case TSK_Undeclared:
6515 case TSK_ExplicitSpecialization:
6516 // Okay, we're just specializing something that is either already
6517 // explicitly specialized or has merely been mentioned without any
6518 // instantiation.
6519 return false;
6520
6521 case TSK_ImplicitInstantiation:
6522 if (PrevPointOfInstantiation.isInvalid()) {
6523 // The declaration itself has not actually been instantiated, so it is
6524 // still okay to specialize it.
6525 StripImplicitInstantiation(PrevDecl);
6526 return false;
6527 }
6528 // Fall through
6529
6530 case TSK_ExplicitInstantiationDeclaration:
6531 case TSK_ExplicitInstantiationDefinition:
6532 assert((PrevTSK == TSK_ImplicitInstantiation ||
6533 PrevPointOfInstantiation.isValid()) &&
6534 "Explicit instantiation without point of instantiation?");
6535
6536 // C++ [temp.expl.spec]p6:
6537 // If a template, a member template or the member of a class template
6538 // is explicitly specialized then that specialization shall be declared
6539 // before the first use of that specialization that would cause an
6540 // implicit instantiation to take place, in every translation unit in
6541 // which such a use occurs; no diagnostic is required.
6542 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6543 // Is there any previous explicit specialization declaration?
6544 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6545 return false;
6546 }
6547
6548 Diag(NewLoc, diag::err_specialization_after_instantiation)
6549 << PrevDecl;
6550 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6551 << (PrevTSK != TSK_ImplicitInstantiation);
6552
6553 return true;
6554 }
6555
6556 case TSK_ExplicitInstantiationDeclaration:
6557 switch (PrevTSK) {
6558 case TSK_ExplicitInstantiationDeclaration:
6559 // This explicit instantiation declaration is redundant (that's okay).
6560 HasNoEffect = true;
6561 return false;
6562
6563 case TSK_Undeclared:
6564 case TSK_ImplicitInstantiation:
6565 // We're explicitly instantiating something that may have already been
6566 // implicitly instantiated; that's fine.
6567 return false;
6568
6569 case TSK_ExplicitSpecialization:
6570 // C++0x [temp.explicit]p4:
6571 // For a given set of template parameters, if an explicit instantiation
6572 // of a template appears after a declaration of an explicit
6573 // specialization for that template, the explicit instantiation has no
6574 // effect.
6575 HasNoEffect = true;
6576 return false;
6577
6578 case TSK_ExplicitInstantiationDefinition:
6579 // C++0x [temp.explicit]p10:
6580 // If an entity is the subject of both an explicit instantiation
6581 // declaration and an explicit instantiation definition in the same
6582 // translation unit, the definition shall follow the declaration.
6583 Diag(NewLoc,
6584 diag::err_explicit_instantiation_declaration_after_definition);
6585
6586 // Explicit instantiations following a specialization have no effect and
6587 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6588 // until a valid name loc is found.
6589 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6590 diag::note_explicit_instantiation_definition_here);
6591 HasNoEffect = true;
6592 return false;
6593 }
6594
6595 case TSK_ExplicitInstantiationDefinition:
6596 switch (PrevTSK) {
6597 case TSK_Undeclared:
6598 case TSK_ImplicitInstantiation:
6599 // We're explicitly instantiating something that may have already been
6600 // implicitly instantiated; that's fine.
6601 return false;
6602
6603 case TSK_ExplicitSpecialization:
6604 // C++ DR 259, C++0x [temp.explicit]p4:
6605 // For a given set of template parameters, if an explicit
6606 // instantiation of a template appears after a declaration of
6607 // an explicit specialization for that template, the explicit
6608 // instantiation has no effect.
6609 //
6610 // In C++98/03 mode, we only give an extension warning here, because it
6611 // is not harmful to try to explicitly instantiate something that
6612 // has been explicitly specialized.
6613 Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6614 diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6615 diag::ext_explicit_instantiation_after_specialization)
6616 << PrevDecl;
6617 Diag(PrevDecl->getLocation(),
6618 diag::note_previous_template_specialization);
6619 HasNoEffect = true;
6620 return false;
6621
6622 case TSK_ExplicitInstantiationDeclaration:
6623 // We're explicity instantiating a definition for something for which we
6624 // were previously asked to suppress instantiations. That's fine.
6625
6626 // C++0x [temp.explicit]p4:
6627 // For a given set of template parameters, if an explicit instantiation
6628 // of a template appears after a declaration of an explicit
6629 // specialization for that template, the explicit instantiation has no
6630 // effect.
6631 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6632 // Is there any previous explicit specialization declaration?
6633 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6634 HasNoEffect = true;
6635 break;
6636 }
6637 }
6638
6639 return false;
6640
6641 case TSK_ExplicitInstantiationDefinition:
6642 // C++0x [temp.spec]p5:
6643 // For a given template and a given set of template-arguments,
6644 // - an explicit instantiation definition shall appear at most once
6645 // in a program,
6646
6647 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
6648 Diag(NewLoc, (getLangOpts().MSVCCompat)
6649 ? diag::ext_explicit_instantiation_duplicate
6650 : diag::err_explicit_instantiation_duplicate)
6651 << PrevDecl;
6652 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6653 diag::note_previous_explicit_instantiation);
6654 HasNoEffect = true;
6655 return false;
6656 }
6657 }
6658
6659 llvm_unreachable("Missing specialization/instantiation case?");
6660 }
6661
6662 /// \brief Perform semantic analysis for the given dependent function
6663 /// template specialization.
6664 ///
6665 /// The only possible way to get a dependent function template specialization
6666 /// is with a friend declaration, like so:
6667 ///
6668 /// \code
6669 /// template \<class T> void foo(T);
6670 /// template \<class T> class A {
6671 /// friend void foo<>(T);
6672 /// };
6673 /// \endcode
6674 ///
6675 /// There really isn't any useful analysis we can do here, so we
6676 /// just store the information.
6677 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)6678 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6679 const TemplateArgumentListInfo &ExplicitTemplateArgs,
6680 LookupResult &Previous) {
6681 // Remove anything from Previous that isn't a function template in
6682 // the correct context.
6683 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6684 LookupResult::Filter F = Previous.makeFilter();
6685 while (F.hasNext()) {
6686 NamedDecl *D = F.next()->getUnderlyingDecl();
6687 if (!isa<FunctionTemplateDecl>(D) ||
6688 !FDLookupContext->InEnclosingNamespaceSetOf(
6689 D->getDeclContext()->getRedeclContext()))
6690 F.erase();
6691 }
6692 F.done();
6693
6694 // Should this be diagnosed here?
6695 if (Previous.empty()) return true;
6696
6697 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6698 ExplicitTemplateArgs);
6699 return false;
6700 }
6701
6702 /// \brief Perform semantic analysis for the given function template
6703 /// specialization.
6704 ///
6705 /// This routine performs all of the semantic analysis required for an
6706 /// explicit function template specialization. On successful completion,
6707 /// the function declaration \p FD will become a function template
6708 /// specialization.
6709 ///
6710 /// \param FD the function declaration, which will be updated to become a
6711 /// function template specialization.
6712 ///
6713 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6714 /// if any. Note that this may be valid info even when 0 arguments are
6715 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6716 /// as it anyway contains info on the angle brackets locations.
6717 ///
6718 /// \param Previous the set of declarations that may be specialized by
6719 /// this function specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)6720 bool Sema::CheckFunctionTemplateSpecialization(
6721 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6722 LookupResult &Previous) {
6723 // The set of function template specializations that could match this
6724 // explicit function template specialization.
6725 UnresolvedSet<8> Candidates;
6726 TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6727
6728 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6729 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6730 I != E; ++I) {
6731 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6732 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6733 // Only consider templates found within the same semantic lookup scope as
6734 // FD.
6735 if (!FDLookupContext->InEnclosingNamespaceSetOf(
6736 Ovl->getDeclContext()->getRedeclContext()))
6737 continue;
6738
6739 // When matching a constexpr member function template specialization
6740 // against the primary template, we don't yet know whether the
6741 // specialization has an implicit 'const' (because we don't know whether
6742 // it will be a static member function until we know which template it
6743 // specializes), so adjust it now assuming it specializes this template.
6744 QualType FT = FD->getType();
6745 if (FD->isConstexpr()) {
6746 CXXMethodDecl *OldMD =
6747 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6748 if (OldMD && OldMD->isConst()) {
6749 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6750 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6751 EPI.TypeQuals |= Qualifiers::Const;
6752 FT = Context.getFunctionType(FPT->getReturnType(),
6753 FPT->getParamTypes(), EPI);
6754 }
6755 }
6756
6757 // C++ [temp.expl.spec]p11:
6758 // A trailing template-argument can be left unspecified in the
6759 // template-id naming an explicit function template specialization
6760 // provided it can be deduced from the function argument type.
6761 // Perform template argument deduction to determine whether we may be
6762 // specializing this template.
6763 // FIXME: It is somewhat wasteful to build
6764 TemplateDeductionInfo Info(FailedCandidates.getLocation());
6765 FunctionDecl *Specialization = nullptr;
6766 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
6767 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
6768 ExplicitTemplateArgs, FT, Specialization, Info)) {
6769 // Template argument deduction failed; record why it failed, so
6770 // that we can provide nifty diagnostics.
6771 FailedCandidates.addCandidate()
6772 .set(FunTmpl->getTemplatedDecl(),
6773 MakeDeductionFailureInfo(Context, TDK, Info));
6774 (void)TDK;
6775 continue;
6776 }
6777
6778 // Record this candidate.
6779 Candidates.addDecl(Specialization, I.getAccess());
6780 }
6781 }
6782
6783 // Find the most specialized function template.
6784 UnresolvedSetIterator Result = getMostSpecialized(
6785 Candidates.begin(), Candidates.end(), FailedCandidates,
6786 FD->getLocation(),
6787 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6788 PDiag(diag::err_function_template_spec_ambiguous)
6789 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
6790 PDiag(diag::note_function_template_spec_matched));
6791
6792 if (Result == Candidates.end())
6793 return true;
6794
6795 // Ignore access information; it doesn't figure into redeclaration checking.
6796 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6797
6798 FunctionTemplateSpecializationInfo *SpecInfo
6799 = Specialization->getTemplateSpecializationInfo();
6800 assert(SpecInfo && "Function template specialization info missing?");
6801
6802 // Note: do not overwrite location info if previous template
6803 // specialization kind was explicit.
6804 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6805 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6806 Specialization->setLocation(FD->getLocation());
6807 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6808 // function can differ from the template declaration with respect to
6809 // the constexpr specifier.
6810 Specialization->setConstexpr(FD->isConstexpr());
6811 }
6812
6813 // FIXME: Check if the prior specialization has a point of instantiation.
6814 // If so, we have run afoul of .
6815
6816 // If this is a friend declaration, then we're not really declaring
6817 // an explicit specialization.
6818 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6819
6820 // Check the scope of this explicit specialization.
6821 if (!isFriend &&
6822 CheckTemplateSpecializationScope(*this,
6823 Specialization->getPrimaryTemplate(),
6824 Specialization, FD->getLocation(),
6825 false))
6826 return true;
6827
6828 // C++ [temp.expl.spec]p6:
6829 // If a template, a member template or the member of a class template is
6830 // explicitly specialized then that specialization shall be declared
6831 // before the first use of that specialization that would cause an implicit
6832 // instantiation to take place, in every translation unit in which such a
6833 // use occurs; no diagnostic is required.
6834 bool HasNoEffect = false;
6835 if (!isFriend &&
6836 CheckSpecializationInstantiationRedecl(FD->getLocation(),
6837 TSK_ExplicitSpecialization,
6838 Specialization,
6839 SpecInfo->getTemplateSpecializationKind(),
6840 SpecInfo->getPointOfInstantiation(),
6841 HasNoEffect))
6842 return true;
6843
6844 // Mark the prior declaration as an explicit specialization, so that later
6845 // clients know that this is an explicit specialization.
6846 if (!isFriend) {
6847 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6848 MarkUnusedFileScopedDecl(Specialization);
6849 }
6850
6851 // Turn the given function declaration into a function template
6852 // specialization, with the template arguments from the previous
6853 // specialization.
6854 // Take copies of (semantic and syntactic) template argument lists.
6855 const TemplateArgumentList* TemplArgs = new (Context)
6856 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6857 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6858 TemplArgs, /*InsertPos=*/nullptr,
6859 SpecInfo->getTemplateSpecializationKind(),
6860 ExplicitTemplateArgs);
6861
6862 // The "previous declaration" for this function template specialization is
6863 // the prior function template specialization.
6864 Previous.clear();
6865 Previous.addDecl(Specialization);
6866 return false;
6867 }
6868
6869 /// \brief Perform semantic analysis for the given non-template member
6870 /// specialization.
6871 ///
6872 /// This routine performs all of the semantic analysis required for an
6873 /// explicit member function specialization. On successful completion,
6874 /// the function declaration \p FD will become a member function
6875 /// specialization.
6876 ///
6877 /// \param Member the member declaration, which will be updated to become a
6878 /// specialization.
6879 ///
6880 /// \param Previous the set of declarations, one of which may be specialized
6881 /// by this function specialization; the set will be modified to contain the
6882 /// redeclared member.
6883 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)6884 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6885 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6886
6887 // Try to find the member we are instantiating.
6888 NamedDecl *Instantiation = nullptr;
6889 NamedDecl *InstantiatedFrom = nullptr;
6890 MemberSpecializationInfo *MSInfo = nullptr;
6891
6892 if (Previous.empty()) {
6893 // Nowhere to look anyway.
6894 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6895 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6896 I != E; ++I) {
6897 NamedDecl *D = (*I)->getUnderlyingDecl();
6898 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6899 QualType Adjusted = Function->getType();
6900 if (!hasExplicitCallingConv(Adjusted))
6901 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
6902 if (Context.hasSameType(Adjusted, Method->getType())) {
6903 Instantiation = Method;
6904 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6905 MSInfo = Method->getMemberSpecializationInfo();
6906 break;
6907 }
6908 }
6909 }
6910 } else if (isa<VarDecl>(Member)) {
6911 VarDecl *PrevVar;
6912 if (Previous.isSingleResult() &&
6913 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6914 if (PrevVar->isStaticDataMember()) {
6915 Instantiation = PrevVar;
6916 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6917 MSInfo = PrevVar->getMemberSpecializationInfo();
6918 }
6919 } else if (isa<RecordDecl>(Member)) {
6920 CXXRecordDecl *PrevRecord;
6921 if (Previous.isSingleResult() &&
6922 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6923 Instantiation = PrevRecord;
6924 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6925 MSInfo = PrevRecord->getMemberSpecializationInfo();
6926 }
6927 } else if (isa<EnumDecl>(Member)) {
6928 EnumDecl *PrevEnum;
6929 if (Previous.isSingleResult() &&
6930 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6931 Instantiation = PrevEnum;
6932 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6933 MSInfo = PrevEnum->getMemberSpecializationInfo();
6934 }
6935 }
6936
6937 if (!Instantiation) {
6938 // There is no previous declaration that matches. Since member
6939 // specializations are always out-of-line, the caller will complain about
6940 // this mismatch later.
6941 return false;
6942 }
6943
6944 // If this is a friend, just bail out here before we start turning
6945 // things into explicit specializations.
6946 if (Member->getFriendObjectKind() != Decl::FOK_None) {
6947 // Preserve instantiation information.
6948 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6949 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6950 cast<CXXMethodDecl>(InstantiatedFrom),
6951 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6952 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6953 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6954 cast<CXXRecordDecl>(InstantiatedFrom),
6955 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6956 }
6957
6958 Previous.clear();
6959 Previous.addDecl(Instantiation);
6960 return false;
6961 }
6962
6963 // Make sure that this is a specialization of a member.
6964 if (!InstantiatedFrom) {
6965 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6966 << Member;
6967 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6968 return true;
6969 }
6970
6971 // C++ [temp.expl.spec]p6:
6972 // If a template, a member template or the member of a class template is
6973 // explicitly specialized then that specialization shall be declared
6974 // before the first use of that specialization that would cause an implicit
6975 // instantiation to take place, in every translation unit in which such a
6976 // use occurs; no diagnostic is required.
6977 assert(MSInfo && "Member specialization info missing?");
6978
6979 bool HasNoEffect = false;
6980 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6981 TSK_ExplicitSpecialization,
6982 Instantiation,
6983 MSInfo->getTemplateSpecializationKind(),
6984 MSInfo->getPointOfInstantiation(),
6985 HasNoEffect))
6986 return true;
6987
6988 // Check the scope of this explicit specialization.
6989 if (CheckTemplateSpecializationScope(*this,
6990 InstantiatedFrom,
6991 Instantiation, Member->getLocation(),
6992 false))
6993 return true;
6994
6995 // Note that this is an explicit instantiation of a member.
6996 // the original declaration to note that it is an explicit specialization
6997 // (if it was previously an implicit instantiation). This latter step
6998 // makes bookkeeping easier.
6999 if (isa<FunctionDecl>(Member)) {
7000 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
7001 if (InstantiationFunction->getTemplateSpecializationKind() ==
7002 TSK_ImplicitInstantiation) {
7003 InstantiationFunction->setTemplateSpecializationKind(
7004 TSK_ExplicitSpecialization);
7005 InstantiationFunction->setLocation(Member->getLocation());
7006 }
7007
7008 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
7009 cast<CXXMethodDecl>(InstantiatedFrom),
7010 TSK_ExplicitSpecialization);
7011 MarkUnusedFileScopedDecl(InstantiationFunction);
7012 } else if (isa<VarDecl>(Member)) {
7013 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
7014 if (InstantiationVar->getTemplateSpecializationKind() ==
7015 TSK_ImplicitInstantiation) {
7016 InstantiationVar->setTemplateSpecializationKind(
7017 TSK_ExplicitSpecialization);
7018 InstantiationVar->setLocation(Member->getLocation());
7019 }
7020
7021 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
7022 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7023 MarkUnusedFileScopedDecl(InstantiationVar);
7024 } else if (isa<CXXRecordDecl>(Member)) {
7025 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
7026 if (InstantiationClass->getTemplateSpecializationKind() ==
7027 TSK_ImplicitInstantiation) {
7028 InstantiationClass->setTemplateSpecializationKind(
7029 TSK_ExplicitSpecialization);
7030 InstantiationClass->setLocation(Member->getLocation());
7031 }
7032
7033 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7034 cast<CXXRecordDecl>(InstantiatedFrom),
7035 TSK_ExplicitSpecialization);
7036 } else {
7037 assert(isa<EnumDecl>(Member) && "Only member enums remain");
7038 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
7039 if (InstantiationEnum->getTemplateSpecializationKind() ==
7040 TSK_ImplicitInstantiation) {
7041 InstantiationEnum->setTemplateSpecializationKind(
7042 TSK_ExplicitSpecialization);
7043 InstantiationEnum->setLocation(Member->getLocation());
7044 }
7045
7046 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
7047 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7048 }
7049
7050 // Save the caller the trouble of having to figure out which declaration
7051 // this specialization matches.
7052 Previous.clear();
7053 Previous.addDecl(Instantiation);
7054 return false;
7055 }
7056
7057 /// \brief Check the scope of an explicit instantiation.
7058 ///
7059 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)7060 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
7061 SourceLocation InstLoc,
7062 bool WasQualifiedName) {
7063 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
7064 DeclContext *CurContext = S.CurContext->getRedeclContext();
7065
7066 if (CurContext->isRecord()) {
7067 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
7068 << D;
7069 return true;
7070 }
7071
7072 // C++11 [temp.explicit]p3:
7073 // An explicit instantiation shall appear in an enclosing namespace of its
7074 // template. If the name declared in the explicit instantiation is an
7075 // unqualified name, the explicit instantiation shall appear in the
7076 // namespace where its template is declared or, if that namespace is inline
7077 // (7.3.1), any namespace from its enclosing namespace set.
7078 //
7079 // This is DR275, which we do not retroactively apply to C++98/03.
7080 if (WasQualifiedName) {
7081 if (CurContext->Encloses(OrigContext))
7082 return false;
7083 } else {
7084 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
7085 return false;
7086 }
7087
7088 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
7089 if (WasQualifiedName)
7090 S.Diag(InstLoc,
7091 S.getLangOpts().CPlusPlus11?
7092 diag::err_explicit_instantiation_out_of_scope :
7093 diag::warn_explicit_instantiation_out_of_scope_0x)
7094 << D << NS;
7095 else
7096 S.Diag(InstLoc,
7097 S.getLangOpts().CPlusPlus11?
7098 diag::err_explicit_instantiation_unqualified_wrong_namespace :
7099 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
7100 << D << NS;
7101 } else
7102 S.Diag(InstLoc,
7103 S.getLangOpts().CPlusPlus11?
7104 diag::err_explicit_instantiation_must_be_global :
7105 diag::warn_explicit_instantiation_must_be_global_0x)
7106 << D;
7107 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
7108 return false;
7109 }
7110
7111 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)7112 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
7113 if (!SS.isSet())
7114 return false;
7115
7116 // C++11 [temp.explicit]p3:
7117 // If the explicit instantiation is for a member function, a member class
7118 // or a static data member of a class template specialization, the name of
7119 // the class template specialization in the qualified-id for the member
7120 // name shall be a simple-template-id.
7121 //
7122 // C++98 has the same restriction, just worded differently.
7123 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
7124 NNS = NNS->getPrefix())
7125 if (const Type *T = NNS->getAsType())
7126 if (isa<TemplateSpecializationType>(T))
7127 return true;
7128
7129 return false;
7130 }
7131
7132 // Explicit instantiation of a class template specialization
7133 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)7134 Sema::ActOnExplicitInstantiation(Scope *S,
7135 SourceLocation ExternLoc,
7136 SourceLocation TemplateLoc,
7137 unsigned TagSpec,
7138 SourceLocation KWLoc,
7139 const CXXScopeSpec &SS,
7140 TemplateTy TemplateD,
7141 SourceLocation TemplateNameLoc,
7142 SourceLocation LAngleLoc,
7143 ASTTemplateArgsPtr TemplateArgsIn,
7144 SourceLocation RAngleLoc,
7145 AttributeList *Attr) {
7146 // Find the class template we're specializing
7147 TemplateName Name = TemplateD.get();
7148 TemplateDecl *TD = Name.getAsTemplateDecl();
7149 // Check that the specialization uses the same tag kind as the
7150 // original template.
7151 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7152 assert(Kind != TTK_Enum &&
7153 "Invalid enum tag in class template explicit instantiation!");
7154
7155 if (isa<TypeAliasTemplateDecl>(TD)) {
7156 Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
7157 Diag(TD->getTemplatedDecl()->getLocation(),
7158 diag::note_previous_use);
7159 return true;
7160 }
7161
7162 ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
7163
7164 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7165 Kind, /*isDefinition*/false, KWLoc,
7166 *ClassTemplate->getIdentifier())) {
7167 Diag(KWLoc, diag::err_use_with_wrong_tag)
7168 << ClassTemplate
7169 << FixItHint::CreateReplacement(KWLoc,
7170 ClassTemplate->getTemplatedDecl()->getKindName());
7171 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7172 diag::note_previous_use);
7173 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7174 }
7175
7176 // C++0x [temp.explicit]p2:
7177 // There are two forms of explicit instantiation: an explicit instantiation
7178 // definition and an explicit instantiation declaration. An explicit
7179 // instantiation declaration begins with the extern keyword. [...]
7180 TemplateSpecializationKind TSK
7181 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7182 : TSK_ExplicitInstantiationDeclaration;
7183
7184 // Translate the parser's template argument list in our AST format.
7185 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7186 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7187
7188 // Check that the template argument list is well-formed for this
7189 // template.
7190 SmallVector<TemplateArgument, 4> Converted;
7191 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7192 TemplateArgs, false, Converted))
7193 return true;
7194
7195 // Find the class template specialization declaration that
7196 // corresponds to these arguments.
7197 void *InsertPos = nullptr;
7198 ClassTemplateSpecializationDecl *PrevDecl
7199 = ClassTemplate->findSpecialization(Converted, InsertPos);
7200
7201 TemplateSpecializationKind PrevDecl_TSK
7202 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
7203
7204 // C++0x [temp.explicit]p2:
7205 // [...] An explicit instantiation shall appear in an enclosing
7206 // namespace of its template. [...]
7207 //
7208 // This is C++ DR 275.
7209 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
7210 SS.isSet()))
7211 return true;
7212
7213 ClassTemplateSpecializationDecl *Specialization = nullptr;
7214
7215 bool HasNoEffect = false;
7216 if (PrevDecl) {
7217 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
7218 PrevDecl, PrevDecl_TSK,
7219 PrevDecl->getPointOfInstantiation(),
7220 HasNoEffect))
7221 return PrevDecl;
7222
7223 // Even though HasNoEffect == true means that this explicit instantiation
7224 // has no effect on semantics, we go on to put its syntax in the AST.
7225
7226 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
7227 PrevDecl_TSK == TSK_Undeclared) {
7228 // Since the only prior class template specialization with these
7229 // arguments was referenced but not declared, reuse that
7230 // declaration node as our own, updating the source location
7231 // for the template name to reflect our new declaration.
7232 // (Other source locations will be updated later.)
7233 Specialization = PrevDecl;
7234 Specialization->setLocation(TemplateNameLoc);
7235 PrevDecl = nullptr;
7236 }
7237 }
7238
7239 if (!Specialization) {
7240 // Create a new class template specialization declaration node for
7241 // this explicit specialization.
7242 Specialization
7243 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7244 ClassTemplate->getDeclContext(),
7245 KWLoc, TemplateNameLoc,
7246 ClassTemplate,
7247 Converted.data(),
7248 Converted.size(),
7249 PrevDecl);
7250 SetNestedNameSpecifier(Specialization, SS);
7251
7252 if (!HasNoEffect && !PrevDecl) {
7253 // Insert the new specialization.
7254 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7255 }
7256 }
7257
7258 // Build the fully-sugared type for this explicit instantiation as
7259 // the user wrote in the explicit instantiation itself. This means
7260 // that we'll pretty-print the type retrieved from the
7261 // specialization's declaration the way that the user actually wrote
7262 // the explicit instantiation, rather than formatting the name based
7263 // on the "canonical" representation used to store the template
7264 // arguments in the specialization.
7265 TypeSourceInfo *WrittenTy
7266 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7267 TemplateArgs,
7268 Context.getTypeDeclType(Specialization));
7269 Specialization->setTypeAsWritten(WrittenTy);
7270
7271 // Set source locations for keywords.
7272 Specialization->setExternLoc(ExternLoc);
7273 Specialization->setTemplateKeywordLoc(TemplateLoc);
7274 Specialization->setRBraceLoc(SourceLocation());
7275
7276 if (Attr)
7277 ProcessDeclAttributeList(S, Specialization, Attr);
7278
7279 // Add the explicit instantiation into its lexical context. However,
7280 // since explicit instantiations are never found by name lookup, we
7281 // just put it into the declaration context directly.
7282 Specialization->setLexicalDeclContext(CurContext);
7283 CurContext->addDecl(Specialization);
7284
7285 // Syntax is now OK, so return if it has no other effect on semantics.
7286 if (HasNoEffect) {
7287 // Set the template specialization kind.
7288 Specialization->setTemplateSpecializationKind(TSK);
7289 return Specialization;
7290 }
7291
7292 // C++ [temp.explicit]p3:
7293 // A definition of a class template or class member template
7294 // shall be in scope at the point of the explicit instantiation of
7295 // the class template or class member template.
7296 //
7297 // This check comes when we actually try to perform the
7298 // instantiation.
7299 ClassTemplateSpecializationDecl *Def
7300 = cast_or_null<ClassTemplateSpecializationDecl>(
7301 Specialization->getDefinition());
7302 if (!Def)
7303 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7304 else if (TSK == TSK_ExplicitInstantiationDefinition) {
7305 MarkVTableUsed(TemplateNameLoc, Specialization, true);
7306 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7307 }
7308
7309 // Instantiate the members of this class template specialization.
7310 Def = cast_or_null<ClassTemplateSpecializationDecl>(
7311 Specialization->getDefinition());
7312 if (Def) {
7313 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7314
7315 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7316 // TSK_ExplicitInstantiationDefinition
7317 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7318 TSK == TSK_ExplicitInstantiationDefinition)
7319 // FIXME: Need to notify the ASTMutationListener that we did this.
7320 Def->setTemplateSpecializationKind(TSK);
7321
7322 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7323 }
7324
7325 // Set the template specialization kind.
7326 Specialization->setTemplateSpecializationKind(TSK);
7327 return Specialization;
7328 }
7329
7330 // Explicit instantiation of a member class of a class template.
7331 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)7332 Sema::ActOnExplicitInstantiation(Scope *S,
7333 SourceLocation ExternLoc,
7334 SourceLocation TemplateLoc,
7335 unsigned TagSpec,
7336 SourceLocation KWLoc,
7337 CXXScopeSpec &SS,
7338 IdentifierInfo *Name,
7339 SourceLocation NameLoc,
7340 AttributeList *Attr) {
7341
7342 bool Owned = false;
7343 bool IsDependent = false;
7344 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7345 KWLoc, SS, Name, NameLoc, Attr, AS_none,
7346 /*ModulePrivateLoc=*/SourceLocation(),
7347 MultiTemplateParamsArg(), Owned, IsDependent,
7348 SourceLocation(), false, TypeResult(),
7349 /*IsTypeSpecifier*/false);
7350 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7351
7352 if (!TagD)
7353 return true;
7354
7355 TagDecl *Tag = cast<TagDecl>(TagD);
7356 assert(!Tag->isEnum() && "shouldn't see enumerations here");
7357
7358 if (Tag->isInvalidDecl())
7359 return true;
7360
7361 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7362 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7363 if (!Pattern) {
7364 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7365 << Context.getTypeDeclType(Record);
7366 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7367 return true;
7368 }
7369
7370 // C++0x [temp.explicit]p2:
7371 // If the explicit instantiation is for a class or member class, the
7372 // elaborated-type-specifier in the declaration shall include a
7373 // simple-template-id.
7374 //
7375 // C++98 has the same restriction, just worded differently.
7376 if (!ScopeSpecifierHasTemplateId(SS))
7377 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7378 << Record << SS.getRange();
7379
7380 // C++0x [temp.explicit]p2:
7381 // There are two forms of explicit instantiation: an explicit instantiation
7382 // definition and an explicit instantiation declaration. An explicit
7383 // instantiation declaration begins with the extern keyword. [...]
7384 TemplateSpecializationKind TSK
7385 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7386 : TSK_ExplicitInstantiationDeclaration;
7387
7388 // C++0x [temp.explicit]p2:
7389 // [...] An explicit instantiation shall appear in an enclosing
7390 // namespace of its template. [...]
7391 //
7392 // This is C++ DR 275.
7393 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7394
7395 // Verify that it is okay to explicitly instantiate here.
7396 CXXRecordDecl *PrevDecl
7397 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7398 if (!PrevDecl && Record->getDefinition())
7399 PrevDecl = Record;
7400 if (PrevDecl) {
7401 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7402 bool HasNoEffect = false;
7403 assert(MSInfo && "No member specialization information?");
7404 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7405 PrevDecl,
7406 MSInfo->getTemplateSpecializationKind(),
7407 MSInfo->getPointOfInstantiation(),
7408 HasNoEffect))
7409 return true;
7410 if (HasNoEffect)
7411 return TagD;
7412 }
7413
7414 CXXRecordDecl *RecordDef
7415 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7416 if (!RecordDef) {
7417 // C++ [temp.explicit]p3:
7418 // A definition of a member class of a class template shall be in scope
7419 // at the point of an explicit instantiation of the member class.
7420 CXXRecordDecl *Def
7421 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7422 if (!Def) {
7423 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7424 << 0 << Record->getDeclName() << Record->getDeclContext();
7425 Diag(Pattern->getLocation(), diag::note_forward_declaration)
7426 << Pattern;
7427 return true;
7428 } else {
7429 if (InstantiateClass(NameLoc, Record, Def,
7430 getTemplateInstantiationArgs(Record),
7431 TSK))
7432 return true;
7433
7434 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7435 if (!RecordDef)
7436 return true;
7437 }
7438 }
7439
7440 // Instantiate all of the members of the class.
7441 InstantiateClassMembers(NameLoc, RecordDef,
7442 getTemplateInstantiationArgs(Record), TSK);
7443
7444 if (TSK == TSK_ExplicitInstantiationDefinition)
7445 MarkVTableUsed(NameLoc, RecordDef, true);
7446
7447 // FIXME: We don't have any representation for explicit instantiations of
7448 // member classes. Such a representation is not needed for compilation, but it
7449 // should be available for clients that want to see all of the declarations in
7450 // the source code.
7451 return TagD;
7452 }
7453
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)7454 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7455 SourceLocation ExternLoc,
7456 SourceLocation TemplateLoc,
7457 Declarator &D) {
7458 // Explicit instantiations always require a name.
7459 // TODO: check if/when DNInfo should replace Name.
7460 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7461 DeclarationName Name = NameInfo.getName();
7462 if (!Name) {
7463 if (!D.isInvalidType())
7464 Diag(D.getDeclSpec().getLocStart(),
7465 diag::err_explicit_instantiation_requires_name)
7466 << D.getDeclSpec().getSourceRange()
7467 << D.getSourceRange();
7468
7469 return true;
7470 }
7471
7472 // The scope passed in may not be a decl scope. Zip up the scope tree until
7473 // we find one that is.
7474 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7475 (S->getFlags() & Scope::TemplateParamScope) != 0)
7476 S = S->getParent();
7477
7478 // Determine the type of the declaration.
7479 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7480 QualType R = T->getType();
7481 if (R.isNull())
7482 return true;
7483
7484 // C++ [dcl.stc]p1:
7485 // A storage-class-specifier shall not be specified in [...] an explicit
7486 // instantiation (14.7.2) directive.
7487 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7488 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7489 << Name;
7490 return true;
7491 } else if (D.getDeclSpec().getStorageClassSpec()
7492 != DeclSpec::SCS_unspecified) {
7493 // Complain about then remove the storage class specifier.
7494 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7495 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7496
7497 D.getMutableDeclSpec().ClearStorageClassSpecs();
7498 }
7499
7500 // C++0x [temp.explicit]p1:
7501 // [...] An explicit instantiation of a function template shall not use the
7502 // inline or constexpr specifiers.
7503 // Presumably, this also applies to member functions of class templates as
7504 // well.
7505 if (D.getDeclSpec().isInlineSpecified())
7506 Diag(D.getDeclSpec().getInlineSpecLoc(),
7507 getLangOpts().CPlusPlus11 ?
7508 diag::err_explicit_instantiation_inline :
7509 diag::warn_explicit_instantiation_inline_0x)
7510 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7511 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7512 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7513 // not already specified.
7514 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7515 diag::err_explicit_instantiation_constexpr);
7516
7517 // C++0x [temp.explicit]p2:
7518 // There are two forms of explicit instantiation: an explicit instantiation
7519 // definition and an explicit instantiation declaration. An explicit
7520 // instantiation declaration begins with the extern keyword. [...]
7521 TemplateSpecializationKind TSK
7522 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7523 : TSK_ExplicitInstantiationDeclaration;
7524
7525 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7526 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7527
7528 if (!R->isFunctionType()) {
7529 // C++ [temp.explicit]p1:
7530 // A [...] static data member of a class template can be explicitly
7531 // instantiated from the member definition associated with its class
7532 // template.
7533 // C++1y [temp.explicit]p1:
7534 // A [...] variable [...] template specialization can be explicitly
7535 // instantiated from its template.
7536 if (Previous.isAmbiguous())
7537 return true;
7538
7539 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7540 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7541
7542 if (!PrevTemplate) {
7543 if (!Prev || !Prev->isStaticDataMember()) {
7544 // We expect to see a data data member here.
7545 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7546 << Name;
7547 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7548 P != PEnd; ++P)
7549 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7550 return true;
7551 }
7552
7553 if (!Prev->getInstantiatedFromStaticDataMember()) {
7554 // FIXME: Check for explicit specialization?
7555 Diag(D.getIdentifierLoc(),
7556 diag::err_explicit_instantiation_data_member_not_instantiated)
7557 << Prev;
7558 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7559 // FIXME: Can we provide a note showing where this was declared?
7560 return true;
7561 }
7562 } else {
7563 // Explicitly instantiate a variable template.
7564
7565 // C++1y [dcl.spec.auto]p6:
7566 // ... A program that uses auto or decltype(auto) in a context not
7567 // explicitly allowed in this section is ill-formed.
7568 //
7569 // This includes auto-typed variable template instantiations.
7570 if (R->isUndeducedType()) {
7571 Diag(T->getTypeLoc().getLocStart(),
7572 diag::err_auto_not_allowed_var_inst);
7573 return true;
7574 }
7575
7576 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7577 // C++1y [temp.explicit]p3:
7578 // If the explicit instantiation is for a variable, the unqualified-id
7579 // in the declaration shall be a template-id.
7580 Diag(D.getIdentifierLoc(),
7581 diag::err_explicit_instantiation_without_template_id)
7582 << PrevTemplate;
7583 Diag(PrevTemplate->getLocation(),
7584 diag::note_explicit_instantiation_here);
7585 return true;
7586 }
7587
7588 // Translate the parser's template argument list into our AST format.
7589 TemplateArgumentListInfo TemplateArgs =
7590 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7591
7592 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7593 D.getIdentifierLoc(), TemplateArgs);
7594 if (Res.isInvalid())
7595 return true;
7596
7597 // Ignore access control bits, we don't need them for redeclaration
7598 // checking.
7599 Prev = cast<VarDecl>(Res.get());
7600 }
7601
7602 // C++0x [temp.explicit]p2:
7603 // If the explicit instantiation is for a member function, a member class
7604 // or a static data member of a class template specialization, the name of
7605 // the class template specialization in the qualified-id for the member
7606 // name shall be a simple-template-id.
7607 //
7608 // C++98 has the same restriction, just worded differently.
7609 //
7610 // This does not apply to variable template specializations, where the
7611 // template-id is in the unqualified-id instead.
7612 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7613 Diag(D.getIdentifierLoc(),
7614 diag::ext_explicit_instantiation_without_qualified_id)
7615 << Prev << D.getCXXScopeSpec().getRange();
7616
7617 // Check the scope of this explicit instantiation.
7618 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7619
7620 // Verify that it is okay to explicitly instantiate here.
7621 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7622 SourceLocation POI = Prev->getPointOfInstantiation();
7623 bool HasNoEffect = false;
7624 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7625 PrevTSK, POI, HasNoEffect))
7626 return true;
7627
7628 if (!HasNoEffect) {
7629 // Instantiate static data member or variable template.
7630
7631 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7632 if (PrevTemplate) {
7633 // Merge attributes.
7634 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7635 ProcessDeclAttributeList(S, Prev, Attr);
7636 }
7637 if (TSK == TSK_ExplicitInstantiationDefinition)
7638 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7639 }
7640
7641 // Check the new variable specialization against the parsed input.
7642 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7643 Diag(T->getTypeLoc().getLocStart(),
7644 diag::err_invalid_var_template_spec_type)
7645 << 0 << PrevTemplate << R << Prev->getType();
7646 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7647 << 2 << PrevTemplate->getDeclName();
7648 return true;
7649 }
7650
7651 // FIXME: Create an ExplicitInstantiation node?
7652 return (Decl*) nullptr;
7653 }
7654
7655 // If the declarator is a template-id, translate the parser's template
7656 // argument list into our AST format.
7657 bool HasExplicitTemplateArgs = false;
7658 TemplateArgumentListInfo TemplateArgs;
7659 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7660 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7661 HasExplicitTemplateArgs = true;
7662 }
7663
7664 // C++ [temp.explicit]p1:
7665 // A [...] function [...] can be explicitly instantiated from its template.
7666 // A member function [...] of a class template can be explicitly
7667 // instantiated from the member definition associated with its class
7668 // template.
7669 UnresolvedSet<8> Matches;
7670 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7671 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7672 P != PEnd; ++P) {
7673 NamedDecl *Prev = *P;
7674 if (!HasExplicitTemplateArgs) {
7675 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7676 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
7677 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
7678 Matches.clear();
7679
7680 Matches.addDecl(Method, P.getAccess());
7681 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7682 break;
7683 }
7684 }
7685 }
7686
7687 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7688 if (!FunTmpl)
7689 continue;
7690
7691 TemplateDeductionInfo Info(FailedCandidates.getLocation());
7692 FunctionDecl *Specialization = nullptr;
7693 if (TemplateDeductionResult TDK
7694 = DeduceTemplateArguments(FunTmpl,
7695 (HasExplicitTemplateArgs ? &TemplateArgs
7696 : nullptr),
7697 R, Specialization, Info)) {
7698 // Keep track of almost-matches.
7699 FailedCandidates.addCandidate()
7700 .set(FunTmpl->getTemplatedDecl(),
7701 MakeDeductionFailureInfo(Context, TDK, Info));
7702 (void)TDK;
7703 continue;
7704 }
7705
7706 Matches.addDecl(Specialization, P.getAccess());
7707 }
7708
7709 // Find the most specialized function template specialization.
7710 UnresolvedSetIterator Result = getMostSpecialized(
7711 Matches.begin(), Matches.end(), FailedCandidates,
7712 D.getIdentifierLoc(),
7713 PDiag(diag::err_explicit_instantiation_not_known) << Name,
7714 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7715 PDiag(diag::note_explicit_instantiation_candidate));
7716
7717 if (Result == Matches.end())
7718 return true;
7719
7720 // Ignore access control bits, we don't need them for redeclaration checking.
7721 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7722
7723 // C++11 [except.spec]p4
7724 // In an explicit instantiation an exception-specification may be specified,
7725 // but is not required.
7726 // If an exception-specification is specified in an explicit instantiation
7727 // directive, it shall be compatible with the exception-specifications of
7728 // other declarations of that function.
7729 if (auto *FPT = R->getAs<FunctionProtoType>())
7730 if (FPT->hasExceptionSpec()) {
7731 unsigned DiagID =
7732 diag::err_mismatched_exception_spec_explicit_instantiation;
7733 if (getLangOpts().MicrosoftExt)
7734 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
7735 bool Result = CheckEquivalentExceptionSpec(
7736 PDiag(DiagID) << Specialization->getType(),
7737 PDiag(diag::note_explicit_instantiation_here),
7738 Specialization->getType()->getAs<FunctionProtoType>(),
7739 Specialization->getLocation(), FPT, D.getLocStart());
7740 // In Microsoft mode, mismatching exception specifications just cause a
7741 // warning.
7742 if (!getLangOpts().MicrosoftExt && Result)
7743 return true;
7744 }
7745
7746 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7747 Diag(D.getIdentifierLoc(),
7748 diag::err_explicit_instantiation_member_function_not_instantiated)
7749 << Specialization
7750 << (Specialization->getTemplateSpecializationKind() ==
7751 TSK_ExplicitSpecialization);
7752 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7753 return true;
7754 }
7755
7756 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7757 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7758 PrevDecl = Specialization;
7759
7760 if (PrevDecl) {
7761 bool HasNoEffect = false;
7762 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7763 PrevDecl,
7764 PrevDecl->getTemplateSpecializationKind(),
7765 PrevDecl->getPointOfInstantiation(),
7766 HasNoEffect))
7767 return true;
7768
7769 // FIXME: We may still want to build some representation of this
7770 // explicit specialization.
7771 if (HasNoEffect)
7772 return (Decl*) nullptr;
7773 }
7774
7775 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7776 AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7777 if (Attr)
7778 ProcessDeclAttributeList(S, Specialization, Attr);
7779
7780 if (Specialization->isDefined()) {
7781 // Let the ASTConsumer know that this function has been explicitly
7782 // instantiated now, and its linkage might have changed.
7783 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
7784 } else if (TSK == TSK_ExplicitInstantiationDefinition)
7785 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7786
7787 // C++0x [temp.explicit]p2:
7788 // If the explicit instantiation is for a member function, a member class
7789 // or a static data member of a class template specialization, the name of
7790 // the class template specialization in the qualified-id for the member
7791 // name shall be a simple-template-id.
7792 //
7793 // C++98 has the same restriction, just worded differently.
7794 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7795 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7796 D.getCXXScopeSpec().isSet() &&
7797 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7798 Diag(D.getIdentifierLoc(),
7799 diag::ext_explicit_instantiation_without_qualified_id)
7800 << Specialization << D.getCXXScopeSpec().getRange();
7801
7802 CheckExplicitInstantiationScope(*this,
7803 FunTmpl? (NamedDecl *)FunTmpl
7804 : Specialization->getInstantiatedFromMemberFunction(),
7805 D.getIdentifierLoc(),
7806 D.getCXXScopeSpec().isSet());
7807
7808 // FIXME: Create some kind of ExplicitInstantiationDecl here.
7809 return (Decl*) nullptr;
7810 }
7811
7812 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)7813 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7814 const CXXScopeSpec &SS, IdentifierInfo *Name,
7815 SourceLocation TagLoc, SourceLocation NameLoc) {
7816 // This has to hold, because SS is expected to be defined.
7817 assert(Name && "Expected a name in a dependent tag");
7818
7819 NestedNameSpecifier *NNS = SS.getScopeRep();
7820 if (!NNS)
7821 return true;
7822
7823 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7824
7825 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7826 Diag(NameLoc, diag::err_dependent_tag_decl)
7827 << (TUK == TUK_Definition) << Kind << SS.getRange();
7828 return true;
7829 }
7830
7831 // Create the resulting type.
7832 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7833 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7834
7835 // Create type-source location information for this type.
7836 TypeLocBuilder TLB;
7837 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7838 TL.setElaboratedKeywordLoc(TagLoc);
7839 TL.setQualifierLoc(SS.getWithLocInContext(Context));
7840 TL.setNameLoc(NameLoc);
7841 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7842 }
7843
7844 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)7845 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7846 const CXXScopeSpec &SS, const IdentifierInfo &II,
7847 SourceLocation IdLoc) {
7848 if (SS.isInvalid())
7849 return true;
7850
7851 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7852 Diag(TypenameLoc,
7853 getLangOpts().CPlusPlus11 ?
7854 diag::warn_cxx98_compat_typename_outside_of_template :
7855 diag::ext_typename_outside_of_template)
7856 << FixItHint::CreateRemoval(TypenameLoc);
7857
7858 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7859 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7860 TypenameLoc, QualifierLoc, II, IdLoc);
7861 if (T.isNull())
7862 return true;
7863
7864 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7865 if (isa<DependentNameType>(T)) {
7866 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7867 TL.setElaboratedKeywordLoc(TypenameLoc);
7868 TL.setQualifierLoc(QualifierLoc);
7869 TL.setNameLoc(IdLoc);
7870 } else {
7871 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7872 TL.setElaboratedKeywordLoc(TypenameLoc);
7873 TL.setQualifierLoc(QualifierLoc);
7874 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7875 }
7876
7877 return CreateParsedType(T, TSI);
7878 }
7879
7880 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)7881 Sema::ActOnTypenameType(Scope *S,
7882 SourceLocation TypenameLoc,
7883 const CXXScopeSpec &SS,
7884 SourceLocation TemplateKWLoc,
7885 TemplateTy TemplateIn,
7886 SourceLocation TemplateNameLoc,
7887 SourceLocation LAngleLoc,
7888 ASTTemplateArgsPtr TemplateArgsIn,
7889 SourceLocation RAngleLoc) {
7890 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7891 Diag(TypenameLoc,
7892 getLangOpts().CPlusPlus11 ?
7893 diag::warn_cxx98_compat_typename_outside_of_template :
7894 diag::ext_typename_outside_of_template)
7895 << FixItHint::CreateRemoval(TypenameLoc);
7896
7897 // Translate the parser's template argument list in our AST format.
7898 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7899 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7900
7901 TemplateName Template = TemplateIn.get();
7902 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7903 // Construct a dependent template specialization type.
7904 assert(DTN && "dependent template has non-dependent name?");
7905 assert(DTN->getQualifier() == SS.getScopeRep());
7906 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7907 DTN->getQualifier(),
7908 DTN->getIdentifier(),
7909 TemplateArgs);
7910
7911 // Create source-location information for this type.
7912 TypeLocBuilder Builder;
7913 DependentTemplateSpecializationTypeLoc SpecTL
7914 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7915 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7916 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7917 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7918 SpecTL.setTemplateNameLoc(TemplateNameLoc);
7919 SpecTL.setLAngleLoc(LAngleLoc);
7920 SpecTL.setRAngleLoc(RAngleLoc);
7921 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7922 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7923 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7924 }
7925
7926 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7927 if (T.isNull())
7928 return true;
7929
7930 // Provide source-location information for the template specialization type.
7931 TypeLocBuilder Builder;
7932 TemplateSpecializationTypeLoc SpecTL
7933 = Builder.push<TemplateSpecializationTypeLoc>(T);
7934 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7935 SpecTL.setTemplateNameLoc(TemplateNameLoc);
7936 SpecTL.setLAngleLoc(LAngleLoc);
7937 SpecTL.setRAngleLoc(RAngleLoc);
7938 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7939 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7940
7941 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7942 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7943 TL.setElaboratedKeywordLoc(TypenameLoc);
7944 TL.setQualifierLoc(SS.getWithLocInContext(Context));
7945
7946 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7947 return CreateParsedType(T, TSI);
7948 }
7949
7950
7951 /// Determine whether this failed name lookup should be treated as being
7952 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)7953 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7954 SourceRange &CondRange) {
7955 // We must be looking for a ::type...
7956 if (!II.isStr("type"))
7957 return false;
7958
7959 // ... within an explicitly-written template specialization...
7960 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7961 return false;
7962 TypeLoc EnableIfTy = NNS.getTypeLoc();
7963 TemplateSpecializationTypeLoc EnableIfTSTLoc =
7964 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7965 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7966 return false;
7967 const TemplateSpecializationType *EnableIfTST =
7968 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7969
7970 // ... which names a complete class template declaration...
7971 const TemplateDecl *EnableIfDecl =
7972 EnableIfTST->getTemplateName().getAsTemplateDecl();
7973 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7974 return false;
7975
7976 // ... called "enable_if".
7977 const IdentifierInfo *EnableIfII =
7978 EnableIfDecl->getDeclName().getAsIdentifierInfo();
7979 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7980 return false;
7981
7982 // Assume the first template argument is the condition.
7983 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7984 return true;
7985 }
7986
7987 /// \brief Build the type that describes a C++ typename specifier,
7988 /// e.g., "typename T::type".
7989 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)7990 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7991 SourceLocation KeywordLoc,
7992 NestedNameSpecifierLoc QualifierLoc,
7993 const IdentifierInfo &II,
7994 SourceLocation IILoc) {
7995 CXXScopeSpec SS;
7996 SS.Adopt(QualifierLoc);
7997
7998 DeclContext *Ctx = computeDeclContext(SS);
7999 if (!Ctx) {
8000 // If the nested-name-specifier is dependent and couldn't be
8001 // resolved to a type, build a typename type.
8002 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
8003 return Context.getDependentNameType(Keyword,
8004 QualifierLoc.getNestedNameSpecifier(),
8005 &II);
8006 }
8007
8008 // If the nested-name-specifier refers to the current instantiation,
8009 // the "typename" keyword itself is superfluous. In C++03, the
8010 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
8011 // allows such extraneous "typename" keywords, and we retroactively
8012 // apply this DR to C++03 code with only a warning. In any case we continue.
8013
8014 if (RequireCompleteDeclContext(SS, Ctx))
8015 return QualType();
8016
8017 DeclarationName Name(&II);
8018 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
8019 LookupQualifiedName(Result, Ctx, SS);
8020 unsigned DiagID = 0;
8021 Decl *Referenced = nullptr;
8022 switch (Result.getResultKind()) {
8023 case LookupResult::NotFound: {
8024 // If we're looking up 'type' within a template named 'enable_if', produce
8025 // a more specific diagnostic.
8026 SourceRange CondRange;
8027 if (isEnableIf(QualifierLoc, II, CondRange)) {
8028 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
8029 << Ctx << CondRange;
8030 return QualType();
8031 }
8032
8033 DiagID = diag::err_typename_nested_not_found;
8034 break;
8035 }
8036
8037 case LookupResult::FoundUnresolvedValue: {
8038 // We found a using declaration that is a value. Most likely, the using
8039 // declaration itself is meant to have the 'typename' keyword.
8040 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8041 IILoc);
8042 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
8043 << Name << Ctx << FullRange;
8044 if (UnresolvedUsingValueDecl *Using
8045 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
8046 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
8047 Diag(Loc, diag::note_using_value_decl_missing_typename)
8048 << FixItHint::CreateInsertion(Loc, "typename ");
8049 }
8050 }
8051 // Fall through to create a dependent typename type, from which we can recover
8052 // better.
8053
8054 case LookupResult::NotFoundInCurrentInstantiation:
8055 // Okay, it's a member of an unknown instantiation.
8056 return Context.getDependentNameType(Keyword,
8057 QualifierLoc.getNestedNameSpecifier(),
8058 &II);
8059
8060 case LookupResult::Found:
8061 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
8062 // We found a type. Build an ElaboratedType, since the
8063 // typename-specifier was just sugar.
8064 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
8065 return Context.getElaboratedType(ETK_Typename,
8066 QualifierLoc.getNestedNameSpecifier(),
8067 Context.getTypeDeclType(Type));
8068 }
8069
8070 DiagID = diag::err_typename_nested_not_type;
8071 Referenced = Result.getFoundDecl();
8072 break;
8073
8074 case LookupResult::FoundOverloaded:
8075 DiagID = diag::err_typename_nested_not_type;
8076 Referenced = *Result.begin();
8077 break;
8078
8079 case LookupResult::Ambiguous:
8080 return QualType();
8081 }
8082
8083 // If we get here, it's because name lookup did not find a
8084 // type. Emit an appropriate diagnostic and return an error.
8085 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8086 IILoc);
8087 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
8088 if (Referenced)
8089 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
8090 << Name;
8091 return QualType();
8092 }
8093
8094 namespace {
8095 // See Sema::RebuildTypeInCurrentInstantiation
8096 class CurrentInstantiationRebuilder
8097 : public TreeTransform<CurrentInstantiationRebuilder> {
8098 SourceLocation Loc;
8099 DeclarationName Entity;
8100
8101 public:
8102 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
8103
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)8104 CurrentInstantiationRebuilder(Sema &SemaRef,
8105 SourceLocation Loc,
8106 DeclarationName Entity)
8107 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
8108 Loc(Loc), Entity(Entity) { }
8109
8110 /// \brief Determine whether the given type \p T has already been
8111 /// transformed.
8112 ///
8113 /// For the purposes of type reconstruction, a type has already been
8114 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)8115 bool AlreadyTransformed(QualType T) {
8116 return T.isNull() || !T->isDependentType();
8117 }
8118
8119 /// \brief Returns the location of the entity whose type is being
8120 /// rebuilt.
getBaseLocation()8121 SourceLocation getBaseLocation() { return Loc; }
8122
8123 /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()8124 DeclarationName getBaseEntity() { return Entity; }
8125
8126 /// \brief Sets the "base" location and entity when that
8127 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)8128 void setBase(SourceLocation Loc, DeclarationName Entity) {
8129 this->Loc = Loc;
8130 this->Entity = Entity;
8131 }
8132
TransformLambdaExpr(LambdaExpr * E)8133 ExprResult TransformLambdaExpr(LambdaExpr *E) {
8134 // Lambdas never need to be transformed.
8135 return E;
8136 }
8137 };
8138 }
8139
8140 /// \brief Rebuilds a type within the context of the current instantiation.
8141 ///
8142 /// The type \p T is part of the type of an out-of-line member definition of
8143 /// a class template (or class template partial specialization) that was parsed
8144 /// and constructed before we entered the scope of the class template (or
8145 /// partial specialization thereof). This routine will rebuild that type now
8146 /// that we have entered the declarator's scope, which may produce different
8147 /// canonical types, e.g.,
8148 ///
8149 /// \code
8150 /// template<typename T>
8151 /// struct X {
8152 /// typedef T* pointer;
8153 /// pointer data();
8154 /// };
8155 ///
8156 /// template<typename T>
8157 /// typename X<T>::pointer X<T>::data() { ... }
8158 /// \endcode
8159 ///
8160 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
8161 /// since we do not know that we can look into X<T> when we parsed the type.
8162 /// This function will rebuild the type, performing the lookup of "pointer"
8163 /// in X<T> and returning an ElaboratedType whose canonical type is the same
8164 /// as the canonical type of T*, allowing the return types of the out-of-line
8165 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)8166 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
8167 SourceLocation Loc,
8168 DeclarationName Name) {
8169 if (!T || !T->getType()->isDependentType())
8170 return T;
8171
8172 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
8173 return Rebuilder.TransformType(T);
8174 }
8175
RebuildExprInCurrentInstantiation(Expr * E)8176 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
8177 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
8178 DeclarationName());
8179 return Rebuilder.TransformExpr(E);
8180 }
8181
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)8182 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
8183 if (SS.isInvalid())
8184 return true;
8185
8186 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8187 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
8188 DeclarationName());
8189 NestedNameSpecifierLoc Rebuilt
8190 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
8191 if (!Rebuilt)
8192 return true;
8193
8194 SS.Adopt(Rebuilt);
8195 return false;
8196 }
8197
8198 /// \brief Rebuild the template parameters now that we know we're in a current
8199 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)8200 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
8201 TemplateParameterList *Params) {
8202 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8203 Decl *Param = Params->getParam(I);
8204
8205 // There is nothing to rebuild in a type parameter.
8206 if (isa<TemplateTypeParmDecl>(Param))
8207 continue;
8208
8209 // Rebuild the template parameter list of a template template parameter.
8210 if (TemplateTemplateParmDecl *TTP
8211 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
8212 if (RebuildTemplateParamsInCurrentInstantiation(
8213 TTP->getTemplateParameters()))
8214 return true;
8215
8216 continue;
8217 }
8218
8219 // Rebuild the type of a non-type template parameter.
8220 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
8221 TypeSourceInfo *NewTSI
8222 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
8223 NTTP->getLocation(),
8224 NTTP->getDeclName());
8225 if (!NewTSI)
8226 return true;
8227
8228 if (NewTSI != NTTP->getTypeSourceInfo()) {
8229 NTTP->setTypeSourceInfo(NewTSI);
8230 NTTP->setType(NewTSI->getType());
8231 }
8232 }
8233
8234 return false;
8235 }
8236
8237 /// \brief Produces a formatted string that describes the binding of
8238 /// template parameters to template arguments.
8239 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)8240 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8241 const TemplateArgumentList &Args) {
8242 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
8243 }
8244
8245 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)8246 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8247 const TemplateArgument *Args,
8248 unsigned NumArgs) {
8249 SmallString<128> Str;
8250 llvm::raw_svector_ostream Out(Str);
8251
8252 if (!Params || Params->size() == 0 || NumArgs == 0)
8253 return std::string();
8254
8255 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8256 if (I >= NumArgs)
8257 break;
8258
8259 if (I == 0)
8260 Out << "[with ";
8261 else
8262 Out << ", ";
8263
8264 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8265 Out << Id->getName();
8266 } else {
8267 Out << '$' << I;
8268 }
8269
8270 Out << " = ";
8271 Args[I].print(getPrintingPolicy(), Out);
8272 }
8273
8274 Out << ']';
8275 return Out.str();
8276 }
8277
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)8278 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8279 CachedTokens &Toks) {
8280 if (!FD)
8281 return;
8282
8283 LateParsedTemplate *LPT = new LateParsedTemplate;
8284
8285 // Take tokens to avoid allocations
8286 LPT->Toks.swap(Toks);
8287 LPT->D = FnD;
8288 LateParsedTemplateMap[FD] = LPT;
8289
8290 FD->setLateTemplateParsed(true);
8291 }
8292
UnmarkAsLateParsedTemplate(FunctionDecl * FD)8293 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8294 if (!FD)
8295 return;
8296 FD->setLateTemplateParsed(false);
8297 }
8298
IsInsideALocalClassWithinATemplateFunction()8299 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8300 DeclContext *DC = CurContext;
8301
8302 while (DC) {
8303 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8304 const FunctionDecl *FD = RD->isLocalClass();
8305 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8306 } else if (DC->isTranslationUnit() || DC->isNamespace())
8307 return false;
8308
8309 DC = DC->getParent();
8310 }
8311 return false;
8312 }
8313