1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for inline asm statements. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/RecordLayout.h" 16 #include "clang/AST/TypeLoc.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/Sema/Initialization.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/MC/MCParser/MCAsmParser.h" 26 using namespace clang; 27 using namespace sema; 28 29 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 30 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 31 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 32 /// provide a strong guidance to not use it. 33 /// 34 /// This method checks to see if the argument is an acceptable l-value and 35 /// returns false if it is a case we can handle. 36 static bool CheckAsmLValue(const Expr *E, Sema &S) { 37 // Type dependent expressions will be checked during instantiation. 38 if (E->isTypeDependent()) 39 return false; 40 41 if (E->isLValue()) 42 return false; // Cool, this is an lvalue. 43 44 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 45 // are supposed to allow. 46 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 47 if (E != E2 && E2->isLValue()) { 48 if (!S.getLangOpts().HeinousExtensions) 49 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) 50 << E->getSourceRange(); 51 else 52 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) 53 << E->getSourceRange(); 54 // Accept, even if we emitted an error diagnostic. 55 return false; 56 } 57 58 // None of the above, just randomly invalid non-lvalue. 59 return true; 60 } 61 62 /// isOperandMentioned - Return true if the specified operand # is mentioned 63 /// anywhere in the decomposed asm string. 64 static bool isOperandMentioned(unsigned OpNo, 65 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 66 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 67 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 68 if (!Piece.isOperand()) continue; 69 70 // If this is a reference to the input and if the input was the smaller 71 // one, then we have to reject this asm. 72 if (Piece.getOperandNo() == OpNo) 73 return true; 74 } 75 return false; 76 } 77 78 static bool CheckNakedParmReference(Expr *E, Sema &S) { 79 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 80 if (!Func) 81 return false; 82 if (!Func->hasAttr<NakedAttr>()) 83 return false; 84 85 SmallVector<Expr*, 4> WorkList; 86 WorkList.push_back(E); 87 while (WorkList.size()) { 88 Expr *E = WorkList.pop_back_val(); 89 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 90 if (isa<ParmVarDecl>(DRE->getDecl())) { 91 S.Diag(DRE->getLocStart(), diag::err_asm_naked_parm_ref); 92 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 93 return true; 94 } 95 } 96 for (Stmt *Child : E->children()) { 97 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 98 WorkList.push_back(E); 99 } 100 } 101 return false; 102 } 103 104 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 105 bool IsVolatile, unsigned NumOutputs, 106 unsigned NumInputs, IdentifierInfo **Names, 107 MultiExprArg constraints, MultiExprArg Exprs, 108 Expr *asmString, MultiExprArg clobbers, 109 SourceLocation RParenLoc) { 110 unsigned NumClobbers = clobbers.size(); 111 StringLiteral **Constraints = 112 reinterpret_cast<StringLiteral**>(constraints.data()); 113 StringLiteral *AsmString = cast<StringLiteral>(asmString); 114 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 115 116 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 117 118 // The parser verifies that there is a string literal here. 119 assert(AsmString->isAscii()); 120 121 for (unsigned i = 0; i != NumOutputs; i++) { 122 StringLiteral *Literal = Constraints[i]; 123 assert(Literal->isAscii()); 124 125 StringRef OutputName; 126 if (Names[i]) 127 OutputName = Names[i]->getName(); 128 129 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 130 if (!Context.getTargetInfo().validateOutputConstraint(Info)) 131 return StmtError(Diag(Literal->getLocStart(), 132 diag::err_asm_invalid_output_constraint) 133 << Info.getConstraintStr()); 134 135 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 136 if (ER.isInvalid()) 137 return StmtError(); 138 Exprs[i] = ER.get(); 139 140 // Check that the output exprs are valid lvalues. 141 Expr *OutputExpr = Exprs[i]; 142 143 // Referring to parameters is not allowed in naked functions. 144 if (CheckNakedParmReference(OutputExpr, *this)) 145 return StmtError(); 146 147 OutputConstraintInfos.push_back(Info); 148 149 // If this is dependent, just continue. 150 if (OutputExpr->isTypeDependent()) 151 continue; 152 153 Expr::isModifiableLvalueResult IsLV = 154 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 155 switch (IsLV) { 156 case Expr::MLV_Valid: 157 // Cool, this is an lvalue. 158 break; 159 case Expr::MLV_ArrayType: 160 // This is OK too. 161 break; 162 case Expr::MLV_LValueCast: { 163 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 164 if (!getLangOpts().HeinousExtensions) { 165 Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue) 166 << OutputExpr->getSourceRange(); 167 } else { 168 Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue) 169 << OutputExpr->getSourceRange(); 170 } 171 // Accept, even if we emitted an error diagnostic. 172 break; 173 } 174 case Expr::MLV_IncompleteType: 175 case Expr::MLV_IncompleteVoidType: 176 if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(), 177 diag::err_dereference_incomplete_type)) 178 return StmtError(); 179 default: 180 return StmtError(Diag(OutputExpr->getLocStart(), 181 diag::err_asm_invalid_lvalue_in_output) 182 << OutputExpr->getSourceRange()); 183 } 184 185 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 186 if (!Context.getTargetInfo().validateOutputSize(Literal->getString(), 187 Size)) 188 return StmtError(Diag(OutputExpr->getLocStart(), 189 diag::err_asm_invalid_output_size) 190 << Info.getConstraintStr()); 191 } 192 193 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 194 195 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 196 StringLiteral *Literal = Constraints[i]; 197 assert(Literal->isAscii()); 198 199 StringRef InputName; 200 if (Names[i]) 201 InputName = Names[i]->getName(); 202 203 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 204 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(), 205 NumOutputs, Info)) { 206 return StmtError(Diag(Literal->getLocStart(), 207 diag::err_asm_invalid_input_constraint) 208 << Info.getConstraintStr()); 209 } 210 211 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 212 if (ER.isInvalid()) 213 return StmtError(); 214 Exprs[i] = ER.get(); 215 216 Expr *InputExpr = Exprs[i]; 217 218 // Referring to parameters is not allowed in naked functions. 219 if (CheckNakedParmReference(InputExpr, *this)) 220 return StmtError(); 221 222 // Only allow void types for memory constraints. 223 if (Info.allowsMemory() && !Info.allowsRegister()) { 224 if (CheckAsmLValue(InputExpr, *this)) 225 return StmtError(Diag(InputExpr->getLocStart(), 226 diag::err_asm_invalid_lvalue_in_input) 227 << Info.getConstraintStr() 228 << InputExpr->getSourceRange()); 229 } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 230 llvm::APSInt Result; 231 if (!InputExpr->EvaluateAsInt(Result, Context)) 232 return StmtError( 233 Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected) 234 << Info.getConstraintStr() << InputExpr->getSourceRange()); 235 if (Result.slt(Info.getImmConstantMin()) || 236 Result.sgt(Info.getImmConstantMax())) 237 return StmtError(Diag(InputExpr->getLocStart(), 238 diag::err_invalid_asm_value_for_constraint) 239 << Result.toString(10) << Info.getConstraintStr() 240 << InputExpr->getSourceRange()); 241 242 } else { 243 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 244 if (Result.isInvalid()) 245 return StmtError(); 246 247 Exprs[i] = Result.get(); 248 } 249 250 if (Info.allowsRegister()) { 251 if (InputExpr->getType()->isVoidType()) { 252 return StmtError(Diag(InputExpr->getLocStart(), 253 diag::err_asm_invalid_type_in_input) 254 << InputExpr->getType() << Info.getConstraintStr() 255 << InputExpr->getSourceRange()); 256 } 257 } 258 259 InputConstraintInfos.push_back(Info); 260 261 const Type *Ty = Exprs[i]->getType().getTypePtr(); 262 if (Ty->isDependentType()) 263 continue; 264 265 if (!Ty->isVoidType() || !Info.allowsMemory()) 266 if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(), 267 diag::err_dereference_incomplete_type)) 268 return StmtError(); 269 270 unsigned Size = Context.getTypeSize(Ty); 271 if (!Context.getTargetInfo().validateInputSize(Literal->getString(), 272 Size)) 273 return StmtError(Diag(InputExpr->getLocStart(), 274 diag::err_asm_invalid_input_size) 275 << Info.getConstraintStr()); 276 } 277 278 // Check that the clobbers are valid. 279 for (unsigned i = 0; i != NumClobbers; i++) { 280 StringLiteral *Literal = Clobbers[i]; 281 assert(Literal->isAscii()); 282 283 StringRef Clobber = Literal->getString(); 284 285 if (!Context.getTargetInfo().isValidClobber(Clobber)) 286 return StmtError(Diag(Literal->getLocStart(), 287 diag::err_asm_unknown_register_name) << Clobber); 288 } 289 290 GCCAsmStmt *NS = 291 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 292 NumInputs, Names, Constraints, Exprs.data(), 293 AsmString, NumClobbers, Clobbers, RParenLoc); 294 // Validate the asm string, ensuring it makes sense given the operands we 295 // have. 296 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 297 unsigned DiagOffs; 298 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 299 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 300 << AsmString->getSourceRange(); 301 return StmtError(); 302 } 303 304 // Validate constraints and modifiers. 305 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 306 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 307 if (!Piece.isOperand()) continue; 308 309 // Look for the correct constraint index. 310 unsigned Idx = 0; 311 unsigned ConstraintIdx = 0; 312 for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) { 313 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 314 if (Idx == Piece.getOperandNo()) 315 break; 316 ++Idx; 317 318 if (Info.isReadWrite()) { 319 if (Idx == Piece.getOperandNo()) 320 break; 321 ++Idx; 322 } 323 } 324 325 for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) { 326 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 327 if (Idx == Piece.getOperandNo()) 328 break; 329 ++Idx; 330 331 if (Info.isReadWrite()) { 332 if (Idx == Piece.getOperandNo()) 333 break; 334 ++Idx; 335 } 336 } 337 338 // Now that we have the right indexes go ahead and check. 339 StringLiteral *Literal = Constraints[ConstraintIdx]; 340 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 341 if (Ty->isDependentType() || Ty->isIncompleteType()) 342 continue; 343 344 unsigned Size = Context.getTypeSize(Ty); 345 std::string SuggestedModifier; 346 if (!Context.getTargetInfo().validateConstraintModifier( 347 Literal->getString(), Piece.getModifier(), Size, 348 SuggestedModifier)) { 349 Diag(Exprs[ConstraintIdx]->getLocStart(), 350 diag::warn_asm_mismatched_size_modifier); 351 352 if (!SuggestedModifier.empty()) { 353 auto B = Diag(Piece.getRange().getBegin(), 354 diag::note_asm_missing_constraint_modifier) 355 << SuggestedModifier; 356 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 357 B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(), 358 SuggestedModifier)); 359 } 360 } 361 } 362 363 // Validate tied input operands for type mismatches. 364 unsigned NumAlternatives = ~0U; 365 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 366 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 367 StringRef ConstraintStr = Info.getConstraintStr(); 368 unsigned AltCount = ConstraintStr.count(',') + 1; 369 if (NumAlternatives == ~0U) 370 NumAlternatives = AltCount; 371 else if (NumAlternatives != AltCount) 372 return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(), 373 diag::err_asm_unexpected_constraint_alternatives) 374 << NumAlternatives << AltCount); 375 } 376 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 377 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 378 StringRef ConstraintStr = Info.getConstraintStr(); 379 unsigned AltCount = ConstraintStr.count(',') + 1; 380 if (NumAlternatives == ~0U) 381 NumAlternatives = AltCount; 382 else if (NumAlternatives != AltCount) 383 return StmtError(Diag(NS->getInputExpr(i)->getLocStart(), 384 diag::err_asm_unexpected_constraint_alternatives) 385 << NumAlternatives << AltCount); 386 387 // If this is a tied constraint, verify that the output and input have 388 // either exactly the same type, or that they are int/ptr operands with the 389 // same size (int/long, int*/long, are ok etc). 390 if (!Info.hasTiedOperand()) continue; 391 392 unsigned TiedTo = Info.getTiedOperand(); 393 unsigned InputOpNo = i+NumOutputs; 394 Expr *OutputExpr = Exprs[TiedTo]; 395 Expr *InputExpr = Exprs[InputOpNo]; 396 397 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 398 continue; 399 400 QualType InTy = InputExpr->getType(); 401 QualType OutTy = OutputExpr->getType(); 402 if (Context.hasSameType(InTy, OutTy)) 403 continue; // All types can be tied to themselves. 404 405 // Decide if the input and output are in the same domain (integer/ptr or 406 // floating point. 407 enum AsmDomain { 408 AD_Int, AD_FP, AD_Other 409 } InputDomain, OutputDomain; 410 411 if (InTy->isIntegerType() || InTy->isPointerType()) 412 InputDomain = AD_Int; 413 else if (InTy->isRealFloatingType()) 414 InputDomain = AD_FP; 415 else 416 InputDomain = AD_Other; 417 418 if (OutTy->isIntegerType() || OutTy->isPointerType()) 419 OutputDomain = AD_Int; 420 else if (OutTy->isRealFloatingType()) 421 OutputDomain = AD_FP; 422 else 423 OutputDomain = AD_Other; 424 425 // They are ok if they are the same size and in the same domain. This 426 // allows tying things like: 427 // void* to int* 428 // void* to int if they are the same size. 429 // double to long double if they are the same size. 430 // 431 uint64_t OutSize = Context.getTypeSize(OutTy); 432 uint64_t InSize = Context.getTypeSize(InTy); 433 if (OutSize == InSize && InputDomain == OutputDomain && 434 InputDomain != AD_Other) 435 continue; 436 437 // If the smaller input/output operand is not mentioned in the asm string, 438 // then we can promote the smaller one to a larger input and the asm string 439 // won't notice. 440 bool SmallerValueMentioned = false; 441 442 // If this is a reference to the input and if the input was the smaller 443 // one, then we have to reject this asm. 444 if (isOperandMentioned(InputOpNo, Pieces)) { 445 // This is a use in the asm string of the smaller operand. Since we 446 // codegen this by promoting to a wider value, the asm will get printed 447 // "wrong". 448 SmallerValueMentioned |= InSize < OutSize; 449 } 450 if (isOperandMentioned(TiedTo, Pieces)) { 451 // If this is a reference to the output, and if the output is the larger 452 // value, then it's ok because we'll promote the input to the larger type. 453 SmallerValueMentioned |= OutSize < InSize; 454 } 455 456 // If the smaller value wasn't mentioned in the asm string, and if the 457 // output was a register, just extend the shorter one to the size of the 458 // larger one. 459 if (!SmallerValueMentioned && InputDomain != AD_Other && 460 OutputConstraintInfos[TiedTo].allowsRegister()) 461 continue; 462 463 // Either both of the operands were mentioned or the smaller one was 464 // mentioned. One more special case that we'll allow: if the tied input is 465 // integer, unmentioned, and is a constant, then we'll allow truncating it 466 // down to the size of the destination. 467 if (InputDomain == AD_Int && OutputDomain == AD_Int && 468 !isOperandMentioned(InputOpNo, Pieces) && 469 InputExpr->isEvaluatable(Context)) { 470 CastKind castKind = 471 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 472 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 473 Exprs[InputOpNo] = InputExpr; 474 NS->setInputExpr(i, InputExpr); 475 continue; 476 } 477 478 Diag(InputExpr->getLocStart(), 479 diag::err_asm_tying_incompatible_types) 480 << InTy << OutTy << OutputExpr->getSourceRange() 481 << InputExpr->getSourceRange(); 482 return StmtError(); 483 } 484 485 return NS; 486 } 487 488 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 489 SourceLocation TemplateKWLoc, 490 UnqualifiedId &Id, 491 llvm::InlineAsmIdentifierInfo &Info, 492 bool IsUnevaluatedContext) { 493 Info.clear(); 494 495 if (IsUnevaluatedContext) 496 PushExpressionEvaluationContext(UnevaluatedAbstract, 497 ReuseLambdaContextDecl); 498 499 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 500 /*trailing lparen*/ false, 501 /*is & operand*/ false, 502 /*CorrectionCandidateCallback=*/nullptr, 503 /*IsInlineAsmIdentifier=*/ true); 504 505 if (IsUnevaluatedContext) 506 PopExpressionEvaluationContext(); 507 508 if (!Result.isUsable()) return Result; 509 510 Result = CheckPlaceholderExpr(Result.get()); 511 if (!Result.isUsable()) return Result; 512 513 // Referring to parameters is not allowed in naked functions. 514 if (CheckNakedParmReference(Result.get(), *this)) 515 return ExprError(); 516 517 QualType T = Result.get()->getType(); 518 519 // For now, reject dependent types. 520 if (T->isDependentType()) { 521 Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T; 522 return ExprError(); 523 } 524 525 // Any sort of function type is fine. 526 if (T->isFunctionType()) { 527 return Result; 528 } 529 530 // Otherwise, it needs to be a complete type. 531 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 532 return ExprError(); 533 } 534 535 // Compute the type size (and array length if applicable?). 536 Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity(); 537 if (T->isArrayType()) { 538 const ArrayType *ATy = Context.getAsArrayType(T); 539 Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 540 Info.Length = Info.Size / Info.Type; 541 } 542 543 // We can work with the expression as long as it's not an r-value. 544 if (!Result.get()->isRValue()) 545 Info.IsVarDecl = true; 546 547 return Result; 548 } 549 550 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 551 unsigned &Offset, SourceLocation AsmLoc) { 552 Offset = 0; 553 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 554 LookupOrdinaryName); 555 556 if (!LookupName(BaseResult, getCurScope())) 557 return true; 558 559 if (!BaseResult.isSingleResult()) 560 return true; 561 562 const RecordType *RT = nullptr; 563 NamedDecl *FoundDecl = BaseResult.getFoundDecl(); 564 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 565 RT = VD->getType()->getAs<RecordType>(); 566 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 567 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 568 RT = TD->getUnderlyingType()->getAs<RecordType>(); 569 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 570 RT = TD->getTypeForDecl()->getAs<RecordType>(); 571 if (!RT) 572 return true; 573 574 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0)) 575 return true; 576 577 LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(), 578 LookupMemberName); 579 580 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 581 return true; 582 583 // FIXME: Handle IndirectFieldDecl? 584 FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 585 if (!FD) 586 return true; 587 588 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 589 unsigned i = FD->getFieldIndex(); 590 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 591 Offset = (unsigned)Result.getQuantity(); 592 593 return false; 594 } 595 596 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 597 ArrayRef<Token> AsmToks, 598 StringRef AsmString, 599 unsigned NumOutputs, unsigned NumInputs, 600 ArrayRef<StringRef> Constraints, 601 ArrayRef<StringRef> Clobbers, 602 ArrayRef<Expr*> Exprs, 603 SourceLocation EndLoc) { 604 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 605 getCurFunction()->setHasBranchProtectedScope(); 606 MSAsmStmt *NS = 607 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 608 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 609 Constraints, Exprs, AsmString, 610 Clobbers, EndLoc); 611 return NS; 612 } 613 614 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 615 SourceLocation Location, 616 bool AlwaysCreate) { 617 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 618 Location); 619 620 if (Label->isMSAsmLabel()) { 621 // If we have previously created this label implicitly, mark it as used. 622 Label->markUsed(Context); 623 } else { 624 // Otherwise, insert it, but only resolve it if we have seen the label itself. 625 std::string InternalName; 626 llvm::raw_string_ostream OS(InternalName); 627 // Create an internal name for the label. The name should not be a valid mangled 628 // name, and should be unique. We use a dot to make the name an invalid mangled 629 // name. 630 OS << "__MSASMLABEL_." << MSAsmLabelNameCounter++ << "__" << ExternalLabelName; 631 Label->setMSAsmLabel(OS.str()); 632 } 633 if (AlwaysCreate) { 634 // The label might have been created implicitly from a previously encountered 635 // goto statement. So, for both newly created and looked up labels, we mark 636 // them as resolved. 637 Label->setMSAsmLabelResolved(); 638 } 639 // Adjust their location for being able to generate accurate diagnostics. 640 Label->setLocation(Location); 641 642 return Label; 643 } 644