1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for Objective-C expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Analysis/DomainSpecific/CocoaConventions.h" 21 #include "clang/Edit/Commit.h" 22 #include "clang/Edit/Rewriters.h" 23 #include "clang/Lex/Preprocessor.h" 24 #include "clang/Sema/Initialization.h" 25 #include "clang/Sema/Lookup.h" 26 #include "clang/Sema/Scope.h" 27 #include "clang/Sema/ScopeInfo.h" 28 #include "llvm/ADT/SmallString.h" 29 30 using namespace clang; 31 using namespace sema; 32 using llvm::makeArrayRef; 33 34 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, 35 Expr **strings, 36 unsigned NumStrings) { 37 StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings); 38 39 // Most ObjC strings are formed out of a single piece. However, we *can* 40 // have strings formed out of multiple @ strings with multiple pptokens in 41 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one 42 // StringLiteral for ObjCStringLiteral to hold onto. 43 StringLiteral *S = Strings[0]; 44 45 // If we have a multi-part string, merge it all together. 46 if (NumStrings != 1) { 47 // Concatenate objc strings. 48 SmallString<128> StrBuf; 49 SmallVector<SourceLocation, 8> StrLocs; 50 51 for (unsigned i = 0; i != NumStrings; ++i) { 52 S = Strings[i]; 53 54 // ObjC strings can't be wide or UTF. 55 if (!S->isAscii()) { 56 Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant) 57 << S->getSourceRange(); 58 return true; 59 } 60 61 // Append the string. 62 StrBuf += S->getString(); 63 64 // Get the locations of the string tokens. 65 StrLocs.append(S->tokloc_begin(), S->tokloc_end()); 66 } 67 68 // Create the aggregate string with the appropriate content and location 69 // information. 70 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 71 assert(CAT && "String literal not of constant array type!"); 72 QualType StrTy = Context.getConstantArrayType( 73 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), 74 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers()); 75 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii, 76 /*Pascal=*/false, StrTy, &StrLocs[0], 77 StrLocs.size()); 78 } 79 80 return BuildObjCStringLiteral(AtLocs[0], S); 81 } 82 83 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ 84 // Verify that this composite string is acceptable for ObjC strings. 85 if (CheckObjCString(S)) 86 return true; 87 88 // Initialize the constant string interface lazily. This assumes 89 // the NSString interface is seen in this translation unit. Note: We 90 // don't use NSConstantString, since the runtime team considers this 91 // interface private (even though it appears in the header files). 92 QualType Ty = Context.getObjCConstantStringInterface(); 93 if (!Ty.isNull()) { 94 Ty = Context.getObjCObjectPointerType(Ty); 95 } else if (getLangOpts().NoConstantCFStrings) { 96 IdentifierInfo *NSIdent=nullptr; 97 std::string StringClass(getLangOpts().ObjCConstantStringClass); 98 99 if (StringClass.empty()) 100 NSIdent = &Context.Idents.get("NSConstantString"); 101 else 102 NSIdent = &Context.Idents.get(StringClass); 103 104 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 105 LookupOrdinaryName); 106 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 107 Context.setObjCConstantStringInterface(StrIF); 108 Ty = Context.getObjCConstantStringInterface(); 109 Ty = Context.getObjCObjectPointerType(Ty); 110 } else { 111 // If there is no NSConstantString interface defined then treat this 112 // as error and recover from it. 113 Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent 114 << S->getSourceRange(); 115 Ty = Context.getObjCIdType(); 116 } 117 } else { 118 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 119 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 120 LookupOrdinaryName); 121 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 122 Context.setObjCConstantStringInterface(StrIF); 123 Ty = Context.getObjCConstantStringInterface(); 124 Ty = Context.getObjCObjectPointerType(Ty); 125 } else { 126 // If there is no NSString interface defined, implicitly declare 127 // a @class NSString; and use that instead. This is to make sure 128 // type of an NSString literal is represented correctly, instead of 129 // being an 'id' type. 130 Ty = Context.getObjCNSStringType(); 131 if (Ty.isNull()) { 132 ObjCInterfaceDecl *NSStringIDecl = 133 ObjCInterfaceDecl::Create (Context, 134 Context.getTranslationUnitDecl(), 135 SourceLocation(), NSIdent, 136 nullptr, SourceLocation()); 137 Ty = Context.getObjCInterfaceType(NSStringIDecl); 138 Context.setObjCNSStringType(Ty); 139 } 140 Ty = Context.getObjCObjectPointerType(Ty); 141 } 142 } 143 144 return new (Context) ObjCStringLiteral(S, Ty, AtLoc); 145 } 146 147 /// \brief Emits an error if the given method does not exist, or if the return 148 /// type is not an Objective-C object. 149 static bool validateBoxingMethod(Sema &S, SourceLocation Loc, 150 const ObjCInterfaceDecl *Class, 151 Selector Sel, const ObjCMethodDecl *Method) { 152 if (!Method) { 153 // FIXME: Is there a better way to avoid quotes than using getName()? 154 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName(); 155 return false; 156 } 157 158 // Make sure the return type is reasonable. 159 QualType ReturnType = Method->getReturnType(); 160 if (!ReturnType->isObjCObjectPointerType()) { 161 S.Diag(Loc, diag::err_objc_literal_method_sig) 162 << Sel; 163 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) 164 << ReturnType; 165 return false; 166 } 167 168 return true; 169 } 170 171 /// \brief Retrieve the NSNumber factory method that should be used to create 172 /// an Objective-C literal for the given type. 173 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, 174 QualType NumberType, 175 bool isLiteral = false, 176 SourceRange R = SourceRange()) { 177 Optional<NSAPI::NSNumberLiteralMethodKind> Kind = 178 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType); 179 180 if (!Kind) { 181 if (isLiteral) { 182 S.Diag(Loc, diag::err_invalid_nsnumber_type) 183 << NumberType << R; 184 } 185 return nullptr; 186 } 187 188 // If we already looked up this method, we're done. 189 if (S.NSNumberLiteralMethods[*Kind]) 190 return S.NSNumberLiteralMethods[*Kind]; 191 192 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, 193 /*Instance=*/false); 194 195 ASTContext &CX = S.Context; 196 197 // Look up the NSNumber class, if we haven't done so already. It's cached 198 // in the Sema instance. 199 if (!S.NSNumberDecl) { 200 IdentifierInfo *NSNumberId = 201 S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber); 202 NamedDecl *IF = S.LookupSingleName(S.TUScope, NSNumberId, 203 Loc, Sema::LookupOrdinaryName); 204 S.NSNumberDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 205 if (!S.NSNumberDecl) { 206 if (S.getLangOpts().DebuggerObjCLiteral) { 207 // Create a stub definition of NSNumber. 208 S.NSNumberDecl = ObjCInterfaceDecl::Create(CX, 209 CX.getTranslationUnitDecl(), 210 SourceLocation(), NSNumberId, 211 nullptr, SourceLocation()); 212 } else { 213 // Otherwise, require a declaration of NSNumber. 214 S.Diag(Loc, diag::err_undeclared_nsnumber); 215 return nullptr; 216 } 217 } else if (!S.NSNumberDecl->hasDefinition()) { 218 S.Diag(Loc, diag::err_undeclared_nsnumber); 219 return nullptr; 220 } 221 222 // generate the pointer to NSNumber type. 223 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl); 224 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject); 225 } 226 227 // Look for the appropriate method within NSNumber. 228 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel); 229 if (!Method && S.getLangOpts().DebuggerObjCLiteral) { 230 // create a stub definition this NSNumber factory method. 231 TypeSourceInfo *ReturnTInfo = nullptr; 232 Method = 233 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel, 234 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl, 235 /*isInstance=*/false, /*isVariadic=*/false, 236 /*isPropertyAccessor=*/false, 237 /*isImplicitlyDeclared=*/true, 238 /*isDefined=*/false, ObjCMethodDecl::Required, 239 /*HasRelatedResultType=*/false); 240 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, 241 SourceLocation(), SourceLocation(), 242 &CX.Idents.get("value"), 243 NumberType, /*TInfo=*/nullptr, 244 SC_None, nullptr); 245 Method->setMethodParams(S.Context, value, None); 246 } 247 248 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method)) 249 return nullptr; 250 251 // Note: if the parameter type is out-of-line, we'll catch it later in the 252 // implicit conversion. 253 254 S.NSNumberLiteralMethods[*Kind] = Method; 255 return Method; 256 } 257 258 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the 259 /// numeric literal expression. Type of the expression will be "NSNumber *". 260 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { 261 // Determine the type of the literal. 262 QualType NumberType = Number->getType(); 263 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { 264 // In C, character literals have type 'int'. That's not the type we want 265 // to use to determine the Objective-c literal kind. 266 switch (Char->getKind()) { 267 case CharacterLiteral::Ascii: 268 NumberType = Context.CharTy; 269 break; 270 271 case CharacterLiteral::Wide: 272 NumberType = Context.getWideCharType(); 273 break; 274 275 case CharacterLiteral::UTF16: 276 NumberType = Context.Char16Ty; 277 break; 278 279 case CharacterLiteral::UTF32: 280 NumberType = Context.Char32Ty; 281 break; 282 } 283 } 284 285 // Look for the appropriate method within NSNumber. 286 // Construct the literal. 287 SourceRange NR(Number->getSourceRange()); 288 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, 289 true, NR); 290 if (!Method) 291 return ExprError(); 292 293 // Convert the number to the type that the parameter expects. 294 ParmVarDecl *ParamDecl = Method->parameters()[0]; 295 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 296 ParamDecl); 297 ExprResult ConvertedNumber = PerformCopyInitialization(Entity, 298 SourceLocation(), 299 Number); 300 if (ConvertedNumber.isInvalid()) 301 return ExprError(); 302 Number = ConvertedNumber.get(); 303 304 // Use the effective source range of the literal, including the leading '@'. 305 return MaybeBindToTemporary( 306 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method, 307 SourceRange(AtLoc, NR.getEnd()))); 308 } 309 310 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 311 SourceLocation ValueLoc, 312 bool Value) { 313 ExprResult Inner; 314 if (getLangOpts().CPlusPlus) { 315 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); 316 } else { 317 // C doesn't actually have a way to represent literal values of type 318 // _Bool. So, we'll use 0/1 and implicit cast to _Bool. 319 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); 320 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 321 CK_IntegralToBoolean); 322 } 323 324 return BuildObjCNumericLiteral(AtLoc, Inner.get()); 325 } 326 327 /// \brief Check that the given expression is a valid element of an Objective-C 328 /// collection literal. 329 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 330 QualType T, 331 bool ArrayLiteral = false) { 332 // If the expression is type-dependent, there's nothing for us to do. 333 if (Element->isTypeDependent()) 334 return Element; 335 336 ExprResult Result = S.CheckPlaceholderExpr(Element); 337 if (Result.isInvalid()) 338 return ExprError(); 339 Element = Result.get(); 340 341 // In C++, check for an implicit conversion to an Objective-C object pointer 342 // type. 343 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { 344 InitializedEntity Entity 345 = InitializedEntity::InitializeParameter(S.Context, T, 346 /*Consumed=*/false); 347 InitializationKind Kind 348 = InitializationKind::CreateCopy(Element->getLocStart(), 349 SourceLocation()); 350 InitializationSequence Seq(S, Entity, Kind, Element); 351 if (!Seq.Failed()) 352 return Seq.Perform(S, Entity, Kind, Element); 353 } 354 355 Expr *OrigElement = Element; 356 357 // Perform lvalue-to-rvalue conversion. 358 Result = S.DefaultLvalueConversion(Element); 359 if (Result.isInvalid()) 360 return ExprError(); 361 Element = Result.get(); 362 363 // Make sure that we have an Objective-C pointer type or block. 364 if (!Element->getType()->isObjCObjectPointerType() && 365 !Element->getType()->isBlockPointerType()) { 366 bool Recovered = false; 367 368 // If this is potentially an Objective-C numeric literal, add the '@'. 369 if (isa<IntegerLiteral>(OrigElement) || 370 isa<CharacterLiteral>(OrigElement) || 371 isa<FloatingLiteral>(OrigElement) || 372 isa<ObjCBoolLiteralExpr>(OrigElement) || 373 isa<CXXBoolLiteralExpr>(OrigElement)) { 374 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { 375 int Which = isa<CharacterLiteral>(OrigElement) ? 1 376 : (isa<CXXBoolLiteralExpr>(OrigElement) || 377 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 378 : 3; 379 380 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 381 << Which << OrigElement->getSourceRange() 382 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 383 384 Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(), 385 OrigElement); 386 if (Result.isInvalid()) 387 return ExprError(); 388 389 Element = Result.get(); 390 Recovered = true; 391 } 392 } 393 // If this is potentially an Objective-C string literal, add the '@'. 394 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { 395 if (String->isAscii()) { 396 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 397 << 0 << OrigElement->getSourceRange() 398 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 399 400 Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String); 401 if (Result.isInvalid()) 402 return ExprError(); 403 404 Element = Result.get(); 405 Recovered = true; 406 } 407 } 408 409 if (!Recovered) { 410 S.Diag(Element->getLocStart(), diag::err_invalid_collection_element) 411 << Element->getType(); 412 return ExprError(); 413 } 414 } 415 if (ArrayLiteral) 416 if (ObjCStringLiteral *getString = 417 dyn_cast<ObjCStringLiteral>(OrigElement)) { 418 if (StringLiteral *SL = getString->getString()) { 419 unsigned numConcat = SL->getNumConcatenated(); 420 if (numConcat > 1) { 421 // Only warn if the concatenated string doesn't come from a macro. 422 bool hasMacro = false; 423 for (unsigned i = 0; i < numConcat ; ++i) 424 if (SL->getStrTokenLoc(i).isMacroID()) { 425 hasMacro = true; 426 break; 427 } 428 if (!hasMacro) 429 S.Diag(Element->getLocStart(), 430 diag::warn_concatenated_nsarray_literal) 431 << Element->getType(); 432 } 433 } 434 } 435 436 // Make sure that the element has the type that the container factory 437 // function expects. 438 return S.PerformCopyInitialization( 439 InitializedEntity::InitializeParameter(S.Context, T, 440 /*Consumed=*/false), 441 Element->getLocStart(), Element); 442 } 443 444 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { 445 if (ValueExpr->isTypeDependent()) { 446 ObjCBoxedExpr *BoxedExpr = 447 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR); 448 return BoxedExpr; 449 } 450 ObjCMethodDecl *BoxingMethod = nullptr; 451 QualType BoxedType; 452 // Convert the expression to an RValue, so we can check for pointer types... 453 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr); 454 if (RValue.isInvalid()) { 455 return ExprError(); 456 } 457 ValueExpr = RValue.get(); 458 QualType ValueType(ValueExpr->getType()); 459 if (const PointerType *PT = ValueType->getAs<PointerType>()) { 460 QualType PointeeType = PT->getPointeeType(); 461 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) { 462 463 if (!NSStringDecl) { 464 IdentifierInfo *NSStringId = 465 NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 466 NamedDecl *Decl = LookupSingleName(TUScope, NSStringId, 467 SR.getBegin(), LookupOrdinaryName); 468 NSStringDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Decl); 469 if (!NSStringDecl) { 470 if (getLangOpts().DebuggerObjCLiteral) { 471 // Support boxed expressions in the debugger w/o NSString declaration. 472 DeclContext *TU = Context.getTranslationUnitDecl(); 473 NSStringDecl = ObjCInterfaceDecl::Create(Context, TU, 474 SourceLocation(), 475 NSStringId, 476 nullptr, SourceLocation()); 477 } else { 478 Diag(SR.getBegin(), diag::err_undeclared_nsstring); 479 return ExprError(); 480 } 481 } else if (!NSStringDecl->hasDefinition()) { 482 Diag(SR.getBegin(), diag::err_undeclared_nsstring); 483 return ExprError(); 484 } 485 assert(NSStringDecl && "NSStringDecl should not be NULL"); 486 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl); 487 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject); 488 } 489 490 if (!StringWithUTF8StringMethod) { 491 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String"); 492 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II); 493 494 // Look for the appropriate method within NSString. 495 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String); 496 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 497 // Debugger needs to work even if NSString hasn't been defined. 498 TypeSourceInfo *ReturnTInfo = nullptr; 499 ObjCMethodDecl *M = ObjCMethodDecl::Create( 500 Context, SourceLocation(), SourceLocation(), stringWithUTF8String, 501 NSStringPointer, ReturnTInfo, NSStringDecl, 502 /*isInstance=*/false, /*isVariadic=*/false, 503 /*isPropertyAccessor=*/false, 504 /*isImplicitlyDeclared=*/true, 505 /*isDefined=*/false, ObjCMethodDecl::Required, 506 /*HasRelatedResultType=*/false); 507 QualType ConstCharType = Context.CharTy.withConst(); 508 ParmVarDecl *value = 509 ParmVarDecl::Create(Context, M, 510 SourceLocation(), SourceLocation(), 511 &Context.Idents.get("value"), 512 Context.getPointerType(ConstCharType), 513 /*TInfo=*/nullptr, 514 SC_None, nullptr); 515 M->setMethodParams(Context, value, None); 516 BoxingMethod = M; 517 } 518 519 if (!validateBoxingMethod(*this, SR.getBegin(), NSStringDecl, 520 stringWithUTF8String, BoxingMethod)) 521 return ExprError(); 522 523 StringWithUTF8StringMethod = BoxingMethod; 524 } 525 526 BoxingMethod = StringWithUTF8StringMethod; 527 BoxedType = NSStringPointer; 528 } 529 } else if (ValueType->isBuiltinType()) { 530 // The other types we support are numeric, char and BOOL/bool. We could also 531 // provide limited support for structure types, such as NSRange, NSRect, and 532 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h> 533 // for more details. 534 535 // Check for a top-level character literal. 536 if (const CharacterLiteral *Char = 537 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) { 538 // In C, character literals have type 'int'. That's not the type we want 539 // to use to determine the Objective-c literal kind. 540 switch (Char->getKind()) { 541 case CharacterLiteral::Ascii: 542 ValueType = Context.CharTy; 543 break; 544 545 case CharacterLiteral::Wide: 546 ValueType = Context.getWideCharType(); 547 break; 548 549 case CharacterLiteral::UTF16: 550 ValueType = Context.Char16Ty; 551 break; 552 553 case CharacterLiteral::UTF32: 554 ValueType = Context.Char32Ty; 555 break; 556 } 557 } 558 CheckForIntOverflow(ValueExpr); 559 // FIXME: Do I need to do anything special with BoolTy expressions? 560 561 // Look for the appropriate method within NSNumber. 562 BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(), ValueType); 563 BoxedType = NSNumberPointer; 564 565 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) { 566 if (!ET->getDecl()->isComplete()) { 567 Diag(SR.getBegin(), diag::err_objc_incomplete_boxed_expression_type) 568 << ValueType << ValueExpr->getSourceRange(); 569 return ExprError(); 570 } 571 572 BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(), 573 ET->getDecl()->getIntegerType()); 574 BoxedType = NSNumberPointer; 575 } 576 577 if (!BoxingMethod) { 578 Diag(SR.getBegin(), diag::err_objc_illegal_boxed_expression_type) 579 << ValueType << ValueExpr->getSourceRange(); 580 return ExprError(); 581 } 582 583 // Convert the expression to the type that the parameter requires. 584 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0]; 585 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 586 ParamDecl); 587 ExprResult ConvertedValueExpr = PerformCopyInitialization(Entity, 588 SourceLocation(), 589 ValueExpr); 590 if (ConvertedValueExpr.isInvalid()) 591 return ExprError(); 592 ValueExpr = ConvertedValueExpr.get(); 593 594 ObjCBoxedExpr *BoxedExpr = 595 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType, 596 BoxingMethod, SR); 597 return MaybeBindToTemporary(BoxedExpr); 598 } 599 600 /// Build an ObjC subscript pseudo-object expression, given that 601 /// that's supported by the runtime. 602 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, 603 Expr *IndexExpr, 604 ObjCMethodDecl *getterMethod, 605 ObjCMethodDecl *setterMethod) { 606 assert(!LangOpts.isSubscriptPointerArithmetic()); 607 608 // We can't get dependent types here; our callers should have 609 // filtered them out. 610 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && 611 "base or index cannot have dependent type here"); 612 613 // Filter out placeholders in the index. In theory, overloads could 614 // be preserved here, although that might not actually work correctly. 615 ExprResult Result = CheckPlaceholderExpr(IndexExpr); 616 if (Result.isInvalid()) 617 return ExprError(); 618 IndexExpr = Result.get(); 619 620 // Perform lvalue-to-rvalue conversion on the base. 621 Result = DefaultLvalueConversion(BaseExpr); 622 if (Result.isInvalid()) 623 return ExprError(); 624 BaseExpr = Result.get(); 625 626 // Build the pseudo-object expression. 627 return ObjCSubscriptRefExpr::Create(Context, BaseExpr, IndexExpr, 628 Context.PseudoObjectTy, getterMethod, 629 setterMethod, RB); 630 } 631 632 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { 633 // Look up the NSArray class, if we haven't done so already. 634 if (!NSArrayDecl) { 635 NamedDecl *IF = LookupSingleName(TUScope, 636 NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray), 637 SR.getBegin(), 638 LookupOrdinaryName); 639 NSArrayDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 640 if (!NSArrayDecl && getLangOpts().DebuggerObjCLiteral) 641 NSArrayDecl = ObjCInterfaceDecl::Create (Context, 642 Context.getTranslationUnitDecl(), 643 SourceLocation(), 644 NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray), 645 nullptr, SourceLocation()); 646 647 if (!NSArrayDecl) { 648 Diag(SR.getBegin(), diag::err_undeclared_nsarray); 649 return ExprError(); 650 } 651 } 652 653 // Find the arrayWithObjects:count: method, if we haven't done so already. 654 QualType IdT = Context.getObjCIdType(); 655 if (!ArrayWithObjectsMethod) { 656 Selector 657 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); 658 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel); 659 if (!Method && getLangOpts().DebuggerObjCLiteral) { 660 TypeSourceInfo *ReturnTInfo = nullptr; 661 Method = ObjCMethodDecl::Create( 662 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo, 663 Context.getTranslationUnitDecl(), false /*Instance*/, 664 false /*isVariadic*/, 665 /*isPropertyAccessor=*/false, 666 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 667 ObjCMethodDecl::Required, false); 668 SmallVector<ParmVarDecl *, 2> Params; 669 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 670 SourceLocation(), 671 SourceLocation(), 672 &Context.Idents.get("objects"), 673 Context.getPointerType(IdT), 674 /*TInfo=*/nullptr, 675 SC_None, nullptr); 676 Params.push_back(objects); 677 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 678 SourceLocation(), 679 SourceLocation(), 680 &Context.Idents.get("cnt"), 681 Context.UnsignedLongTy, 682 /*TInfo=*/nullptr, SC_None, 683 nullptr); 684 Params.push_back(cnt); 685 Method->setMethodParams(Context, Params, None); 686 } 687 688 if (!validateBoxingMethod(*this, SR.getBegin(), NSArrayDecl, Sel, Method)) 689 return ExprError(); 690 691 // Dig out the type that all elements should be converted to. 692 QualType T = Method->parameters()[0]->getType(); 693 const PointerType *PtrT = T->getAs<PointerType>(); 694 if (!PtrT || 695 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { 696 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 697 << Sel; 698 Diag(Method->parameters()[0]->getLocation(), 699 diag::note_objc_literal_method_param) 700 << 0 << T 701 << Context.getPointerType(IdT.withConst()); 702 return ExprError(); 703 } 704 705 // Check that the 'count' parameter is integral. 706 if (!Method->parameters()[1]->getType()->isIntegerType()) { 707 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 708 << Sel; 709 Diag(Method->parameters()[1]->getLocation(), 710 diag::note_objc_literal_method_param) 711 << 1 712 << Method->parameters()[1]->getType() 713 << "integral"; 714 return ExprError(); 715 } 716 717 // We've found a good +arrayWithObjects:count: method. Save it! 718 ArrayWithObjectsMethod = Method; 719 } 720 721 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType(); 722 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType(); 723 724 // Check that each of the elements provided is valid in a collection literal, 725 // performing conversions as necessary. 726 Expr **ElementsBuffer = Elements.data(); 727 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 728 ExprResult Converted = CheckObjCCollectionLiteralElement(*this, 729 ElementsBuffer[I], 730 RequiredType, true); 731 if (Converted.isInvalid()) 732 return ExprError(); 733 734 ElementsBuffer[I] = Converted.get(); 735 } 736 737 QualType Ty 738 = Context.getObjCObjectPointerType( 739 Context.getObjCInterfaceType(NSArrayDecl)); 740 741 return MaybeBindToTemporary( 742 ObjCArrayLiteral::Create(Context, Elements, Ty, 743 ArrayWithObjectsMethod, SR)); 744 } 745 746 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 747 ObjCDictionaryElement *Elements, 748 unsigned NumElements) { 749 // Look up the NSDictionary class, if we haven't done so already. 750 if (!NSDictionaryDecl) { 751 NamedDecl *IF = LookupSingleName(TUScope, 752 NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary), 753 SR.getBegin(), LookupOrdinaryName); 754 NSDictionaryDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 755 if (!NSDictionaryDecl && getLangOpts().DebuggerObjCLiteral) 756 NSDictionaryDecl = ObjCInterfaceDecl::Create (Context, 757 Context.getTranslationUnitDecl(), 758 SourceLocation(), 759 NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary), 760 nullptr, SourceLocation()); 761 762 if (!NSDictionaryDecl) { 763 Diag(SR.getBegin(), diag::err_undeclared_nsdictionary); 764 return ExprError(); 765 } 766 } 767 768 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done 769 // so already. 770 QualType IdT = Context.getObjCIdType(); 771 if (!DictionaryWithObjectsMethod) { 772 Selector Sel = NSAPIObj->getNSDictionarySelector( 773 NSAPI::NSDict_dictionaryWithObjectsForKeysCount); 774 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel); 775 if (!Method && getLangOpts().DebuggerObjCLiteral) { 776 Method = ObjCMethodDecl::Create(Context, 777 SourceLocation(), SourceLocation(), Sel, 778 IdT, 779 nullptr /*TypeSourceInfo */, 780 Context.getTranslationUnitDecl(), 781 false /*Instance*/, false/*isVariadic*/, 782 /*isPropertyAccessor=*/false, 783 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 784 ObjCMethodDecl::Required, 785 false); 786 SmallVector<ParmVarDecl *, 3> Params; 787 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 788 SourceLocation(), 789 SourceLocation(), 790 &Context.Idents.get("objects"), 791 Context.getPointerType(IdT), 792 /*TInfo=*/nullptr, SC_None, 793 nullptr); 794 Params.push_back(objects); 795 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method, 796 SourceLocation(), 797 SourceLocation(), 798 &Context.Idents.get("keys"), 799 Context.getPointerType(IdT), 800 /*TInfo=*/nullptr, SC_None, 801 nullptr); 802 Params.push_back(keys); 803 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 804 SourceLocation(), 805 SourceLocation(), 806 &Context.Idents.get("cnt"), 807 Context.UnsignedLongTy, 808 /*TInfo=*/nullptr, SC_None, 809 nullptr); 810 Params.push_back(cnt); 811 Method->setMethodParams(Context, Params, None); 812 } 813 814 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel, 815 Method)) 816 return ExprError(); 817 818 // Dig out the type that all values should be converted to. 819 QualType ValueT = Method->parameters()[0]->getType(); 820 const PointerType *PtrValue = ValueT->getAs<PointerType>(); 821 if (!PtrValue || 822 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { 823 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 824 << Sel; 825 Diag(Method->parameters()[0]->getLocation(), 826 diag::note_objc_literal_method_param) 827 << 0 << ValueT 828 << Context.getPointerType(IdT.withConst()); 829 return ExprError(); 830 } 831 832 // Dig out the type that all keys should be converted to. 833 QualType KeyT = Method->parameters()[1]->getType(); 834 const PointerType *PtrKey = KeyT->getAs<PointerType>(); 835 if (!PtrKey || 836 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 837 IdT)) { 838 bool err = true; 839 if (PtrKey) { 840 if (QIDNSCopying.isNull()) { 841 // key argument of selector is id<NSCopying>? 842 if (ObjCProtocolDecl *NSCopyingPDecl = 843 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { 844 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; 845 QIDNSCopying = 846 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, 847 (ObjCProtocolDecl**) PQ,1); 848 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); 849 } 850 } 851 if (!QIDNSCopying.isNull()) 852 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 853 QIDNSCopying); 854 } 855 856 if (err) { 857 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 858 << Sel; 859 Diag(Method->parameters()[1]->getLocation(), 860 diag::note_objc_literal_method_param) 861 << 1 << KeyT 862 << Context.getPointerType(IdT.withConst()); 863 return ExprError(); 864 } 865 } 866 867 // Check that the 'count' parameter is integral. 868 QualType CountType = Method->parameters()[2]->getType(); 869 if (!CountType->isIntegerType()) { 870 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 871 << Sel; 872 Diag(Method->parameters()[2]->getLocation(), 873 diag::note_objc_literal_method_param) 874 << 2 << CountType 875 << "integral"; 876 return ExprError(); 877 } 878 879 // We've found a good +dictionaryWithObjects:keys:count: method; save it! 880 DictionaryWithObjectsMethod = Method; 881 } 882 883 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType(); 884 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType(); 885 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType(); 886 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType(); 887 888 // Check that each of the keys and values provided is valid in a collection 889 // literal, performing conversions as necessary. 890 bool HasPackExpansions = false; 891 for (unsigned I = 0, N = NumElements; I != N; ++I) { 892 // Check the key. 893 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Elements[I].Key, 894 KeyT); 895 if (Key.isInvalid()) 896 return ExprError(); 897 898 // Check the value. 899 ExprResult Value 900 = CheckObjCCollectionLiteralElement(*this, Elements[I].Value, ValueT); 901 if (Value.isInvalid()) 902 return ExprError(); 903 904 Elements[I].Key = Key.get(); 905 Elements[I].Value = Value.get(); 906 907 if (Elements[I].EllipsisLoc.isInvalid()) 908 continue; 909 910 if (!Elements[I].Key->containsUnexpandedParameterPack() && 911 !Elements[I].Value->containsUnexpandedParameterPack()) { 912 Diag(Elements[I].EllipsisLoc, 913 diag::err_pack_expansion_without_parameter_packs) 914 << SourceRange(Elements[I].Key->getLocStart(), 915 Elements[I].Value->getLocEnd()); 916 return ExprError(); 917 } 918 919 HasPackExpansions = true; 920 } 921 922 923 QualType Ty 924 = Context.getObjCObjectPointerType( 925 Context.getObjCInterfaceType(NSDictionaryDecl)); 926 return MaybeBindToTemporary(ObjCDictionaryLiteral::Create( 927 Context, makeArrayRef(Elements, NumElements), HasPackExpansions, Ty, 928 DictionaryWithObjectsMethod, SR)); 929 } 930 931 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, 932 TypeSourceInfo *EncodedTypeInfo, 933 SourceLocation RParenLoc) { 934 QualType EncodedType = EncodedTypeInfo->getType(); 935 QualType StrTy; 936 if (EncodedType->isDependentType()) 937 StrTy = Context.DependentTy; 938 else { 939 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. 940 !EncodedType->isVoidType()) // void is handled too. 941 if (RequireCompleteType(AtLoc, EncodedType, 942 diag::err_incomplete_type_objc_at_encode, 943 EncodedTypeInfo->getTypeLoc())) 944 return ExprError(); 945 946 std::string Str; 947 QualType NotEncodedT; 948 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT); 949 if (!NotEncodedT.isNull()) 950 Diag(AtLoc, diag::warn_incomplete_encoded_type) 951 << EncodedType << NotEncodedT; 952 953 // The type of @encode is the same as the type of the corresponding string, 954 // which is an array type. 955 StrTy = Context.CharTy; 956 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). 957 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) 958 StrTy.addConst(); 959 StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1), 960 ArrayType::Normal, 0); 961 } 962 963 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); 964 } 965 966 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, 967 SourceLocation EncodeLoc, 968 SourceLocation LParenLoc, 969 ParsedType ty, 970 SourceLocation RParenLoc) { 971 // FIXME: Preserve type source info ? 972 TypeSourceInfo *TInfo; 973 QualType EncodedType = GetTypeFromParser(ty, &TInfo); 974 if (!TInfo) 975 TInfo = Context.getTrivialTypeSourceInfo(EncodedType, 976 PP.getLocForEndOfToken(LParenLoc)); 977 978 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); 979 } 980 981 static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S, 982 SourceLocation AtLoc, 983 SourceLocation LParenLoc, 984 SourceLocation RParenLoc, 985 ObjCMethodDecl *Method, 986 ObjCMethodList &MethList) { 987 ObjCMethodList *M = &MethList; 988 bool Warned = false; 989 for (M = M->getNext(); M; M=M->getNext()) { 990 ObjCMethodDecl *MatchingMethodDecl = M->getMethod(); 991 if (MatchingMethodDecl == Method || 992 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) || 993 MatchingMethodDecl->getSelector() != Method->getSelector()) 994 continue; 995 if (!S.MatchTwoMethodDeclarations(Method, 996 MatchingMethodDecl, Sema::MMS_loose)) { 997 if (!Warned) { 998 Warned = true; 999 S.Diag(AtLoc, diag::warning_multiple_selectors) 1000 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(") 1001 << FixItHint::CreateInsertion(RParenLoc, ")"); 1002 S.Diag(Method->getLocation(), diag::note_method_declared_at) 1003 << Method->getDeclName(); 1004 } 1005 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at) 1006 << MatchingMethodDecl->getDeclName(); 1007 } 1008 } 1009 return Warned; 1010 } 1011 1012 static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc, 1013 ObjCMethodDecl *Method, 1014 SourceLocation LParenLoc, 1015 SourceLocation RParenLoc, 1016 bool WarnMultipleSelectors) { 1017 if (!WarnMultipleSelectors || 1018 S.Diags.isIgnored(diag::warning_multiple_selectors, SourceLocation())) 1019 return; 1020 bool Warned = false; 1021 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(), 1022 e = S.MethodPool.end(); b != e; b++) { 1023 // first, instance methods 1024 ObjCMethodList &InstMethList = b->second.first; 1025 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1026 Method, InstMethList)) 1027 Warned = true; 1028 1029 // second, class methods 1030 ObjCMethodList &ClsMethList = b->second.second; 1031 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1032 Method, ClsMethList) || Warned) 1033 return; 1034 } 1035 } 1036 1037 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, 1038 SourceLocation AtLoc, 1039 SourceLocation SelLoc, 1040 SourceLocation LParenLoc, 1041 SourceLocation RParenLoc, 1042 bool WarnMultipleSelectors) { 1043 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, 1044 SourceRange(LParenLoc, RParenLoc), false, false); 1045 if (!Method) 1046 Method = LookupFactoryMethodInGlobalPool(Sel, 1047 SourceRange(LParenLoc, RParenLoc)); 1048 if (!Method) { 1049 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) { 1050 Selector MatchedSel = OM->getSelector(); 1051 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1), 1052 RParenLoc.getLocWithOffset(-1)); 1053 Diag(SelLoc, diag::warn_undeclared_selector_with_typo) 1054 << Sel << MatchedSel 1055 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1056 1057 } else 1058 Diag(SelLoc, diag::warn_undeclared_selector) << Sel; 1059 } else 1060 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc, 1061 WarnMultipleSelectors); 1062 1063 if (Method && 1064 Method->getImplementationControl() != ObjCMethodDecl::Optional && 1065 !getSourceManager().isInSystemHeader(Method->getLocation())) { 1066 llvm::DenseMap<Selector, SourceLocation>::iterator Pos 1067 = ReferencedSelectors.find(Sel); 1068 if (Pos == ReferencedSelectors.end()) 1069 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc)); 1070 } 1071 1072 // In ARC, forbid the user from using @selector for 1073 // retain/release/autorelease/dealloc/retainCount. 1074 if (getLangOpts().ObjCAutoRefCount) { 1075 switch (Sel.getMethodFamily()) { 1076 case OMF_retain: 1077 case OMF_release: 1078 case OMF_autorelease: 1079 case OMF_retainCount: 1080 case OMF_dealloc: 1081 Diag(AtLoc, diag::err_arc_illegal_selector) << 1082 Sel << SourceRange(LParenLoc, RParenLoc); 1083 break; 1084 1085 case OMF_None: 1086 case OMF_alloc: 1087 case OMF_copy: 1088 case OMF_finalize: 1089 case OMF_init: 1090 case OMF_mutableCopy: 1091 case OMF_new: 1092 case OMF_self: 1093 case OMF_initialize: 1094 case OMF_performSelector: 1095 break; 1096 } 1097 } 1098 QualType Ty = Context.getObjCSelType(); 1099 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); 1100 } 1101 1102 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, 1103 SourceLocation AtLoc, 1104 SourceLocation ProtoLoc, 1105 SourceLocation LParenLoc, 1106 SourceLocation ProtoIdLoc, 1107 SourceLocation RParenLoc) { 1108 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc); 1109 if (!PDecl) { 1110 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; 1111 return true; 1112 } 1113 if (PDecl->hasDefinition()) 1114 PDecl = PDecl->getDefinition(); 1115 1116 QualType Ty = Context.getObjCProtoType(); 1117 if (Ty.isNull()) 1118 return true; 1119 Ty = Context.getObjCObjectPointerType(Ty); 1120 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc); 1121 } 1122 1123 /// Try to capture an implicit reference to 'self'. 1124 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { 1125 DeclContext *DC = getFunctionLevelDeclContext(); 1126 1127 // If we're not in an ObjC method, error out. Note that, unlike the 1128 // C++ case, we don't require an instance method --- class methods 1129 // still have a 'self', and we really do still need to capture it! 1130 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); 1131 if (!method) 1132 return nullptr; 1133 1134 tryCaptureVariable(method->getSelfDecl(), Loc); 1135 1136 return method; 1137 } 1138 1139 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { 1140 if (T == Context.getObjCInstanceType()) 1141 return Context.getObjCIdType(); 1142 1143 return T; 1144 } 1145 1146 QualType Sema::getMessageSendResultType(QualType ReceiverType, 1147 ObjCMethodDecl *Method, 1148 bool isClassMessage, bool isSuperMessage) { 1149 assert(Method && "Must have a method"); 1150 if (!Method->hasRelatedResultType()) 1151 return Method->getSendResultType(); 1152 1153 // If a method has a related return type: 1154 // - if the method found is an instance method, but the message send 1155 // was a class message send, T is the declared return type of the method 1156 // found 1157 if (Method->isInstanceMethod() && isClassMessage) 1158 return stripObjCInstanceType(Context, Method->getSendResultType()); 1159 1160 // - if the receiver is super, T is a pointer to the class of the 1161 // enclosing method definition 1162 if (isSuperMessage) { 1163 if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) 1164 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) 1165 return Context.getObjCObjectPointerType( 1166 Context.getObjCInterfaceType(Class)); 1167 } 1168 1169 // - if the receiver is the name of a class U, T is a pointer to U 1170 if (ReceiverType->getAs<ObjCInterfaceType>() || 1171 ReceiverType->isObjCQualifiedInterfaceType()) 1172 return Context.getObjCObjectPointerType(ReceiverType); 1173 // - if the receiver is of type Class or qualified Class type, 1174 // T is the declared return type of the method. 1175 if (ReceiverType->isObjCClassType() || 1176 ReceiverType->isObjCQualifiedClassType()) 1177 return stripObjCInstanceType(Context, Method->getSendResultType()); 1178 1179 // - if the receiver is id, qualified id, Class, or qualified Class, T 1180 // is the receiver type, otherwise 1181 // - T is the type of the receiver expression. 1182 return ReceiverType; 1183 } 1184 1185 /// Look for an ObjC method whose result type exactly matches the given type. 1186 static const ObjCMethodDecl * 1187 findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD, 1188 QualType instancetype) { 1189 if (MD->getReturnType() == instancetype) 1190 return MD; 1191 1192 // For these purposes, a method in an @implementation overrides a 1193 // declaration in the @interface. 1194 if (const ObjCImplDecl *impl = 1195 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) { 1196 const ObjCContainerDecl *iface; 1197 if (const ObjCCategoryImplDecl *catImpl = 1198 dyn_cast<ObjCCategoryImplDecl>(impl)) { 1199 iface = catImpl->getCategoryDecl(); 1200 } else { 1201 iface = impl->getClassInterface(); 1202 } 1203 1204 const ObjCMethodDecl *ifaceMD = 1205 iface->getMethod(MD->getSelector(), MD->isInstanceMethod()); 1206 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype); 1207 } 1208 1209 SmallVector<const ObjCMethodDecl *, 4> overrides; 1210 MD->getOverriddenMethods(overrides); 1211 for (unsigned i = 0, e = overrides.size(); i != e; ++i) { 1212 if (const ObjCMethodDecl *result = 1213 findExplicitInstancetypeDeclarer(overrides[i], instancetype)) 1214 return result; 1215 } 1216 1217 return nullptr; 1218 } 1219 1220 void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) { 1221 // Only complain if we're in an ObjC method and the required return 1222 // type doesn't match the method's declared return type. 1223 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext); 1224 if (!MD || !MD->hasRelatedResultType() || 1225 Context.hasSameUnqualifiedType(destType, MD->getReturnType())) 1226 return; 1227 1228 // Look for a method overridden by this method which explicitly uses 1229 // 'instancetype'. 1230 if (const ObjCMethodDecl *overridden = 1231 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) { 1232 SourceRange range = overridden->getReturnTypeSourceRange(); 1233 SourceLocation loc = range.getBegin(); 1234 if (loc.isInvalid()) 1235 loc = overridden->getLocation(); 1236 Diag(loc, diag::note_related_result_type_explicit) 1237 << /*current method*/ 1 << range; 1238 return; 1239 } 1240 1241 // Otherwise, if we have an interesting method family, note that. 1242 // This should always trigger if the above didn't. 1243 if (ObjCMethodFamily family = MD->getMethodFamily()) 1244 Diag(MD->getLocation(), diag::note_related_result_type_family) 1245 << /*current method*/ 1 1246 << family; 1247 } 1248 1249 void Sema::EmitRelatedResultTypeNote(const Expr *E) { 1250 E = E->IgnoreParenImpCasts(); 1251 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); 1252 if (!MsgSend) 1253 return; 1254 1255 const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); 1256 if (!Method) 1257 return; 1258 1259 if (!Method->hasRelatedResultType()) 1260 return; 1261 1262 if (Context.hasSameUnqualifiedType( 1263 Method->getReturnType().getNonReferenceType(), MsgSend->getType())) 1264 return; 1265 1266 if (!Context.hasSameUnqualifiedType(Method->getReturnType(), 1267 Context.getObjCInstanceType())) 1268 return; 1269 1270 Diag(Method->getLocation(), diag::note_related_result_type_inferred) 1271 << Method->isInstanceMethod() << Method->getSelector() 1272 << MsgSend->getType(); 1273 } 1274 1275 bool Sema::CheckMessageArgumentTypes(QualType ReceiverType, 1276 MultiExprArg Args, 1277 Selector Sel, 1278 ArrayRef<SourceLocation> SelectorLocs, 1279 ObjCMethodDecl *Method, 1280 bool isClassMessage, bool isSuperMessage, 1281 SourceLocation lbrac, SourceLocation rbrac, 1282 SourceRange RecRange, 1283 QualType &ReturnType, ExprValueKind &VK) { 1284 SourceLocation SelLoc; 1285 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 1286 SelLoc = SelectorLocs.front(); 1287 else 1288 SelLoc = lbrac; 1289 1290 if (!Method) { 1291 // Apply default argument promotion as for (C99 6.5.2.2p6). 1292 for (unsigned i = 0, e = Args.size(); i != e; i++) { 1293 if (Args[i]->isTypeDependent()) 1294 continue; 1295 1296 ExprResult result; 1297 if (getLangOpts().DebuggerSupport) { 1298 QualType paramTy; // ignored 1299 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy); 1300 } else { 1301 result = DefaultArgumentPromotion(Args[i]); 1302 } 1303 if (result.isInvalid()) 1304 return true; 1305 Args[i] = result.get(); 1306 } 1307 1308 unsigned DiagID; 1309 if (getLangOpts().ObjCAutoRefCount) 1310 DiagID = diag::err_arc_method_not_found; 1311 else 1312 DiagID = isClassMessage ? diag::warn_class_method_not_found 1313 : diag::warn_inst_method_not_found; 1314 if (!getLangOpts().DebuggerSupport) { 1315 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType); 1316 if (OMD && !OMD->isInvalidDecl()) { 1317 if (getLangOpts().ObjCAutoRefCount) 1318 DiagID = diag::error_method_not_found_with_typo; 1319 else 1320 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo 1321 : diag::warn_instance_method_not_found_with_typo; 1322 Selector MatchedSel = OMD->getSelector(); 1323 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back()); 1324 if (MatchedSel.isUnarySelector()) 1325 Diag(SelLoc, DiagID) 1326 << Sel<< isClassMessage << MatchedSel 1327 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1328 else 1329 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel; 1330 } 1331 else 1332 Diag(SelLoc, DiagID) 1333 << Sel << isClassMessage << SourceRange(SelectorLocs.front(), 1334 SelectorLocs.back()); 1335 // Find the class to which we are sending this message. 1336 if (ReceiverType->isObjCObjectPointerType()) { 1337 if (ObjCInterfaceDecl *ThisClass = 1338 ReceiverType->getAs<ObjCObjectPointerType>()->getInterfaceDecl()) { 1339 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared); 1340 if (!RecRange.isInvalid()) 1341 if (ThisClass->lookupClassMethod(Sel)) 1342 Diag(RecRange.getBegin(),diag::note_receiver_expr_here) 1343 << FixItHint::CreateReplacement(RecRange, 1344 ThisClass->getNameAsString()); 1345 } 1346 } 1347 } 1348 1349 // In debuggers, we want to use __unknown_anytype for these 1350 // results so that clients can cast them. 1351 if (getLangOpts().DebuggerSupport) { 1352 ReturnType = Context.UnknownAnyTy; 1353 } else { 1354 ReturnType = Context.getObjCIdType(); 1355 } 1356 VK = VK_RValue; 1357 return false; 1358 } 1359 1360 ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage, 1361 isSuperMessage); 1362 VK = Expr::getValueKindForType(Method->getReturnType()); 1363 1364 unsigned NumNamedArgs = Sel.getNumArgs(); 1365 // Method might have more arguments than selector indicates. This is due 1366 // to addition of c-style arguments in method. 1367 if (Method->param_size() > Sel.getNumArgs()) 1368 NumNamedArgs = Method->param_size(); 1369 // FIXME. This need be cleaned up. 1370 if (Args.size() < NumNamedArgs) { 1371 Diag(SelLoc, diag::err_typecheck_call_too_few_args) 1372 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size()); 1373 return false; 1374 } 1375 1376 bool IsError = false; 1377 for (unsigned i = 0; i < NumNamedArgs; i++) { 1378 // We can't do any type-checking on a type-dependent argument. 1379 if (Args[i]->isTypeDependent()) 1380 continue; 1381 1382 Expr *argExpr = Args[i]; 1383 1384 ParmVarDecl *param = Method->parameters()[i]; 1385 assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); 1386 1387 // Strip the unbridged-cast placeholder expression off unless it's 1388 // a consumed argument. 1389 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 1390 !param->hasAttr<CFConsumedAttr>()) 1391 argExpr = stripARCUnbridgedCast(argExpr); 1392 1393 // If the parameter is __unknown_anytype, infer its type 1394 // from the argument. 1395 if (param->getType() == Context.UnknownAnyTy) { 1396 QualType paramType; 1397 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType); 1398 if (argE.isInvalid()) { 1399 IsError = true; 1400 } else { 1401 Args[i] = argE.get(); 1402 1403 // Update the parameter type in-place. 1404 param->setType(paramType); 1405 } 1406 continue; 1407 } 1408 1409 if (RequireCompleteType(argExpr->getSourceRange().getBegin(), 1410 param->getType(), 1411 diag::err_call_incomplete_argument, argExpr)) 1412 return true; 1413 1414 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 1415 param); 1416 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr); 1417 if (ArgE.isInvalid()) 1418 IsError = true; 1419 else 1420 Args[i] = ArgE.getAs<Expr>(); 1421 } 1422 1423 // Promote additional arguments to variadic methods. 1424 if (Method->isVariadic()) { 1425 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 1426 if (Args[i]->isTypeDependent()) 1427 continue; 1428 1429 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 1430 nullptr); 1431 IsError |= Arg.isInvalid(); 1432 Args[i] = Arg.get(); 1433 } 1434 } else { 1435 // Check for extra arguments to non-variadic methods. 1436 if (Args.size() != NumNamedArgs) { 1437 Diag(Args[NumNamedArgs]->getLocStart(), 1438 diag::err_typecheck_call_too_many_args) 1439 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size()) 1440 << Method->getSourceRange() 1441 << SourceRange(Args[NumNamedArgs]->getLocStart(), 1442 Args.back()->getLocEnd()); 1443 } 1444 } 1445 1446 DiagnoseSentinelCalls(Method, SelLoc, Args); 1447 1448 // Do additional checkings on method. 1449 IsError |= CheckObjCMethodCall( 1450 Method, SelLoc, makeArrayRef(Args.data(), Args.size())); 1451 1452 return IsError; 1453 } 1454 1455 bool Sema::isSelfExpr(Expr *RExpr) { 1456 // 'self' is objc 'self' in an objc method only. 1457 ObjCMethodDecl *Method = 1458 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); 1459 return isSelfExpr(RExpr, Method); 1460 } 1461 1462 bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) { 1463 if (!method) return false; 1464 1465 receiver = receiver->IgnoreParenLValueCasts(); 1466 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) 1467 if (DRE->getDecl() == method->getSelfDecl()) 1468 return true; 1469 return false; 1470 } 1471 1472 /// LookupMethodInType - Look up a method in an ObjCObjectType. 1473 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, 1474 bool isInstance) { 1475 const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); 1476 if (ObjCInterfaceDecl *iface = objType->getInterface()) { 1477 // Look it up in the main interface (and categories, etc.) 1478 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) 1479 return method; 1480 1481 // Okay, look for "private" methods declared in any 1482 // @implementations we've seen. 1483 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance)) 1484 return method; 1485 } 1486 1487 // Check qualifiers. 1488 for (const auto *I : objType->quals()) 1489 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance)) 1490 return method; 1491 1492 return nullptr; 1493 } 1494 1495 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 1496 /// list of a qualified objective pointer type. 1497 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, 1498 const ObjCObjectPointerType *OPT, 1499 bool Instance) 1500 { 1501 ObjCMethodDecl *MD = nullptr; 1502 for (const auto *PROTO : OPT->quals()) { 1503 if ((MD = PROTO->lookupMethod(Sel, Instance))) { 1504 return MD; 1505 } 1506 } 1507 return nullptr; 1508 } 1509 1510 static void DiagnoseARCUseOfWeakReceiver(Sema &S, Expr *Receiver) { 1511 if (!Receiver) 1512 return; 1513 1514 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Receiver)) 1515 Receiver = OVE->getSourceExpr(); 1516 1517 Expr *RExpr = Receiver->IgnoreParenImpCasts(); 1518 SourceLocation Loc = RExpr->getLocStart(); 1519 QualType T = RExpr->getType(); 1520 const ObjCPropertyDecl *PDecl = nullptr; 1521 const ObjCMethodDecl *GDecl = nullptr; 1522 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(RExpr)) { 1523 RExpr = POE->getSyntacticForm(); 1524 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(RExpr)) { 1525 if (PRE->isImplicitProperty()) { 1526 GDecl = PRE->getImplicitPropertyGetter(); 1527 if (GDecl) { 1528 T = GDecl->getReturnType(); 1529 } 1530 } 1531 else { 1532 PDecl = PRE->getExplicitProperty(); 1533 if (PDecl) { 1534 T = PDecl->getType(); 1535 } 1536 } 1537 } 1538 } 1539 else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(RExpr)) { 1540 // See if receiver is a method which envokes a synthesized getter 1541 // backing a 'weak' property. 1542 ObjCMethodDecl *Method = ME->getMethodDecl(); 1543 if (Method && Method->getSelector().getNumArgs() == 0) { 1544 PDecl = Method->findPropertyDecl(); 1545 if (PDecl) 1546 T = PDecl->getType(); 1547 } 1548 } 1549 1550 if (T.getObjCLifetime() != Qualifiers::OCL_Weak) { 1551 if (!PDecl) 1552 return; 1553 if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)) 1554 return; 1555 } 1556 1557 S.Diag(Loc, diag::warn_receiver_is_weak) 1558 << ((!PDecl && !GDecl) ? 0 : (PDecl ? 1 : 2)); 1559 1560 if (PDecl) 1561 S.Diag(PDecl->getLocation(), diag::note_property_declare); 1562 else if (GDecl) 1563 S.Diag(GDecl->getLocation(), diag::note_method_declared_at) << GDecl; 1564 1565 S.Diag(Loc, diag::note_arc_assign_to_strong); 1566 } 1567 1568 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an 1569 /// objective C interface. This is a property reference expression. 1570 ExprResult Sema:: 1571 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, 1572 Expr *BaseExpr, SourceLocation OpLoc, 1573 DeclarationName MemberName, 1574 SourceLocation MemberLoc, 1575 SourceLocation SuperLoc, QualType SuperType, 1576 bool Super) { 1577 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); 1578 ObjCInterfaceDecl *IFace = IFaceT->getDecl(); 1579 1580 if (!MemberName.isIdentifier()) { 1581 Diag(MemberLoc, diag::err_invalid_property_name) 1582 << MemberName << QualType(OPT, 0); 1583 return ExprError(); 1584 } 1585 1586 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1587 1588 SourceRange BaseRange = Super? SourceRange(SuperLoc) 1589 : BaseExpr->getSourceRange(); 1590 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 1591 diag::err_property_not_found_forward_class, 1592 MemberName, BaseRange)) 1593 return ExprError(); 1594 1595 // Search for a declared property first. 1596 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) { 1597 // Check whether we can reference this property. 1598 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1599 return ExprError(); 1600 if (Super) 1601 return new (Context) 1602 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1603 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 1604 else 1605 return new (Context) 1606 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1607 OK_ObjCProperty, MemberLoc, BaseExpr); 1608 } 1609 // Check protocols on qualified interfaces. 1610 for (const auto *I : OPT->quals()) 1611 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) { 1612 // Check whether we can reference this property. 1613 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1614 return ExprError(); 1615 1616 if (Super) 1617 return new (Context) ObjCPropertyRefExpr( 1618 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, 1619 SuperLoc, SuperType); 1620 else 1621 return new (Context) 1622 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1623 OK_ObjCProperty, MemberLoc, BaseExpr); 1624 } 1625 // If that failed, look for an "implicit" property by seeing if the nullary 1626 // selector is implemented. 1627 1628 // FIXME: The logic for looking up nullary and unary selectors should be 1629 // shared with the code in ActOnInstanceMessage. 1630 1631 Selector Sel = PP.getSelectorTable().getNullarySelector(Member); 1632 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); 1633 1634 // May be founf in property's qualified list. 1635 if (!Getter) 1636 Getter = LookupMethodInQualifiedType(Sel, OPT, true); 1637 1638 // If this reference is in an @implementation, check for 'private' methods. 1639 if (!Getter) 1640 Getter = IFace->lookupPrivateMethod(Sel); 1641 1642 if (Getter) { 1643 // Check if we can reference this property. 1644 if (DiagnoseUseOfDecl(Getter, MemberLoc)) 1645 return ExprError(); 1646 } 1647 // If we found a getter then this may be a valid dot-reference, we 1648 // will look for the matching setter, in case it is needed. 1649 Selector SetterSel = 1650 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 1651 PP.getSelectorTable(), Member); 1652 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); 1653 1654 // May be founf in property's qualified list. 1655 if (!Setter) 1656 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); 1657 1658 if (!Setter) { 1659 // If this reference is in an @implementation, also check for 'private' 1660 // methods. 1661 Setter = IFace->lookupPrivateMethod(SetterSel); 1662 } 1663 1664 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) 1665 return ExprError(); 1666 1667 // Special warning if member name used in a property-dot for a setter accessor 1668 // does not use a property with same name; e.g. obj.X = ... for a property with 1669 // name 'x'. 1670 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() 1671 && !IFace->FindPropertyDeclaration(Member)) { 1672 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) { 1673 // Do not warn if user is using property-dot syntax to make call to 1674 // user named setter. 1675 if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter)) 1676 Diag(MemberLoc, 1677 diag::warn_property_access_suggest) 1678 << MemberName << QualType(OPT, 0) << PDecl->getName() 1679 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName()); 1680 } 1681 } 1682 1683 if (Getter || Setter) { 1684 if (Super) 1685 return new (Context) 1686 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 1687 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 1688 else 1689 return new (Context) 1690 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 1691 OK_ObjCProperty, MemberLoc, BaseExpr); 1692 1693 } 1694 1695 // Attempt to correct for typos in property names. 1696 if (TypoCorrection Corrected = 1697 CorrectTypo(DeclarationNameInfo(MemberName, MemberLoc), 1698 LookupOrdinaryName, nullptr, nullptr, 1699 llvm::make_unique<DeclFilterCCC<ObjCPropertyDecl>>(), 1700 CTK_ErrorRecovery, IFace, false, OPT)) { 1701 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest) 1702 << MemberName << QualType(OPT, 0)); 1703 DeclarationName TypoResult = Corrected.getCorrection(); 1704 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, 1705 TypoResult, MemberLoc, 1706 SuperLoc, SuperType, Super); 1707 } 1708 ObjCInterfaceDecl *ClassDeclared; 1709 if (ObjCIvarDecl *Ivar = 1710 IFace->lookupInstanceVariable(Member, ClassDeclared)) { 1711 QualType T = Ivar->getType(); 1712 if (const ObjCObjectPointerType * OBJPT = 1713 T->getAsObjCInterfacePointerType()) { 1714 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 1715 diag::err_property_not_as_forward_class, 1716 MemberName, BaseExpr)) 1717 return ExprError(); 1718 } 1719 Diag(MemberLoc, 1720 diag::err_ivar_access_using_property_syntax_suggest) 1721 << MemberName << QualType(OPT, 0) << Ivar->getDeclName() 1722 << FixItHint::CreateReplacement(OpLoc, "->"); 1723 return ExprError(); 1724 } 1725 1726 Diag(MemberLoc, diag::err_property_not_found) 1727 << MemberName << QualType(OPT, 0); 1728 if (Setter) 1729 Diag(Setter->getLocation(), diag::note_getter_unavailable) 1730 << MemberName << BaseExpr->getSourceRange(); 1731 return ExprError(); 1732 } 1733 1734 1735 1736 ExprResult Sema:: 1737 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, 1738 IdentifierInfo &propertyName, 1739 SourceLocation receiverNameLoc, 1740 SourceLocation propertyNameLoc) { 1741 1742 IdentifierInfo *receiverNamePtr = &receiverName; 1743 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, 1744 receiverNameLoc); 1745 1746 bool IsSuper = false; 1747 if (!IFace) { 1748 // If the "receiver" is 'super' in a method, handle it as an expression-like 1749 // property reference. 1750 if (receiverNamePtr->isStr("super")) { 1751 IsSuper = true; 1752 1753 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { 1754 if (CurMethod->isInstanceMethod()) { 1755 ObjCInterfaceDecl *Super = 1756 CurMethod->getClassInterface()->getSuperClass(); 1757 if (!Super) { 1758 // The current class does not have a superclass. 1759 Diag(receiverNameLoc, diag::error_root_class_cannot_use_super) 1760 << CurMethod->getClassInterface()->getIdentifier(); 1761 return ExprError(); 1762 } 1763 QualType T = Context.getObjCInterfaceType(Super); 1764 T = Context.getObjCObjectPointerType(T); 1765 1766 return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(), 1767 /*BaseExpr*/nullptr, 1768 SourceLocation()/*OpLoc*/, 1769 &propertyName, 1770 propertyNameLoc, 1771 receiverNameLoc, T, true); 1772 } 1773 1774 // Otherwise, if this is a class method, try dispatching to our 1775 // superclass. 1776 IFace = CurMethod->getClassInterface()->getSuperClass(); 1777 } 1778 } 1779 1780 if (!IFace) { 1781 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier 1782 << tok::l_paren; 1783 return ExprError(); 1784 } 1785 } 1786 1787 // Search for a declared property first. 1788 Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName); 1789 ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel); 1790 1791 // If this reference is in an @implementation, check for 'private' methods. 1792 if (!Getter) 1793 Getter = IFace->lookupPrivateClassMethod(Sel); 1794 1795 if (Getter) { 1796 // FIXME: refactor/share with ActOnMemberReference(). 1797 // Check if we can reference this property. 1798 if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) 1799 return ExprError(); 1800 } 1801 1802 // Look for the matching setter, in case it is needed. 1803 Selector SetterSel = 1804 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 1805 PP.getSelectorTable(), 1806 &propertyName); 1807 1808 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 1809 if (!Setter) { 1810 // If this reference is in an @implementation, also check for 'private' 1811 // methods. 1812 Setter = IFace->lookupPrivateClassMethod(SetterSel); 1813 } 1814 // Look through local category implementations associated with the class. 1815 if (!Setter) 1816 Setter = IFace->getCategoryClassMethod(SetterSel); 1817 1818 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) 1819 return ExprError(); 1820 1821 if (Getter || Setter) { 1822 if (IsSuper) 1823 return new (Context) 1824 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 1825 OK_ObjCProperty, propertyNameLoc, receiverNameLoc, 1826 Context.getObjCInterfaceType(IFace)); 1827 1828 return new (Context) ObjCPropertyRefExpr( 1829 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, 1830 propertyNameLoc, receiverNameLoc, IFace); 1831 } 1832 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) 1833 << &propertyName << Context.getObjCInterfaceType(IFace)); 1834 } 1835 1836 namespace { 1837 1838 class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback { 1839 public: 1840 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { 1841 // Determine whether "super" is acceptable in the current context. 1842 if (Method && Method->getClassInterface()) 1843 WantObjCSuper = Method->getClassInterface()->getSuperClass(); 1844 } 1845 1846 bool ValidateCandidate(const TypoCorrection &candidate) override { 1847 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || 1848 candidate.isKeyword("super"); 1849 } 1850 }; 1851 1852 } 1853 1854 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, 1855 IdentifierInfo *Name, 1856 SourceLocation NameLoc, 1857 bool IsSuper, 1858 bool HasTrailingDot, 1859 ParsedType &ReceiverType) { 1860 ReceiverType = ParsedType(); 1861 1862 // If the identifier is "super" and there is no trailing dot, we're 1863 // messaging super. If the identifier is "super" and there is a 1864 // trailing dot, it's an instance message. 1865 if (IsSuper && S->isInObjcMethodScope()) 1866 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; 1867 1868 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 1869 LookupName(Result, S); 1870 1871 switch (Result.getResultKind()) { 1872 case LookupResult::NotFound: 1873 // Normal name lookup didn't find anything. If we're in an 1874 // Objective-C method, look for ivars. If we find one, we're done! 1875 // FIXME: This is a hack. Ivar lookup should be part of normal 1876 // lookup. 1877 if (ObjCMethodDecl *Method = getCurMethodDecl()) { 1878 if (!Method->getClassInterface()) { 1879 // Fall back: let the parser try to parse it as an instance message. 1880 return ObjCInstanceMessage; 1881 } 1882 1883 ObjCInterfaceDecl *ClassDeclared; 1884 if (Method->getClassInterface()->lookupInstanceVariable(Name, 1885 ClassDeclared)) 1886 return ObjCInstanceMessage; 1887 } 1888 1889 // Break out; we'll perform typo correction below. 1890 break; 1891 1892 case LookupResult::NotFoundInCurrentInstantiation: 1893 case LookupResult::FoundOverloaded: 1894 case LookupResult::FoundUnresolvedValue: 1895 case LookupResult::Ambiguous: 1896 Result.suppressDiagnostics(); 1897 return ObjCInstanceMessage; 1898 1899 case LookupResult::Found: { 1900 // If the identifier is a class or not, and there is a trailing dot, 1901 // it's an instance message. 1902 if (HasTrailingDot) 1903 return ObjCInstanceMessage; 1904 // We found something. If it's a type, then we have a class 1905 // message. Otherwise, it's an instance message. 1906 NamedDecl *ND = Result.getFoundDecl(); 1907 QualType T; 1908 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) 1909 T = Context.getObjCInterfaceType(Class); 1910 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) { 1911 T = Context.getTypeDeclType(Type); 1912 DiagnoseUseOfDecl(Type, NameLoc); 1913 } 1914 else 1915 return ObjCInstanceMessage; 1916 1917 // We have a class message, and T is the type we're 1918 // messaging. Build source-location information for it. 1919 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 1920 ReceiverType = CreateParsedType(T, TSInfo); 1921 return ObjCClassMessage; 1922 } 1923 } 1924 1925 if (TypoCorrection Corrected = CorrectTypo( 1926 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, 1927 llvm::make_unique<ObjCInterfaceOrSuperCCC>(getCurMethodDecl()), 1928 CTK_ErrorRecovery, nullptr, false, nullptr, false)) { 1929 if (Corrected.isKeyword()) { 1930 // If we've found the keyword "super" (the only keyword that would be 1931 // returned by CorrectTypo), this is a send to super. 1932 diagnoseTypo(Corrected, 1933 PDiag(diag::err_unknown_receiver_suggest) << Name); 1934 return ObjCSuperMessage; 1935 } else if (ObjCInterfaceDecl *Class = 1936 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1937 // If we found a declaration, correct when it refers to an Objective-C 1938 // class. 1939 diagnoseTypo(Corrected, 1940 PDiag(diag::err_unknown_receiver_suggest) << Name); 1941 QualType T = Context.getObjCInterfaceType(Class); 1942 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 1943 ReceiverType = CreateParsedType(T, TSInfo); 1944 return ObjCClassMessage; 1945 } 1946 } 1947 1948 // Fall back: let the parser try to parse it as an instance message. 1949 return ObjCInstanceMessage; 1950 } 1951 1952 ExprResult Sema::ActOnSuperMessage(Scope *S, 1953 SourceLocation SuperLoc, 1954 Selector Sel, 1955 SourceLocation LBracLoc, 1956 ArrayRef<SourceLocation> SelectorLocs, 1957 SourceLocation RBracLoc, 1958 MultiExprArg Args) { 1959 // Determine whether we are inside a method or not. 1960 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); 1961 if (!Method) { 1962 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); 1963 return ExprError(); 1964 } 1965 1966 ObjCInterfaceDecl *Class = Method->getClassInterface(); 1967 if (!Class) { 1968 Diag(SuperLoc, diag::error_no_super_class_message) 1969 << Method->getDeclName(); 1970 return ExprError(); 1971 } 1972 1973 ObjCInterfaceDecl *Super = Class->getSuperClass(); 1974 if (!Super) { 1975 // The current class does not have a superclass. 1976 Diag(SuperLoc, diag::error_root_class_cannot_use_super) 1977 << Class->getIdentifier(); 1978 return ExprError(); 1979 } 1980 1981 // We are in a method whose class has a superclass, so 'super' 1982 // is acting as a keyword. 1983 if (Method->getSelector() == Sel) 1984 getCurFunction()->ObjCShouldCallSuper = false; 1985 1986 if (Method->isInstanceMethod()) { 1987 // Since we are in an instance method, this is an instance 1988 // message to the superclass instance. 1989 QualType SuperTy = Context.getObjCInterfaceType(Super); 1990 SuperTy = Context.getObjCObjectPointerType(SuperTy); 1991 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc, 1992 Sel, /*Method=*/nullptr, 1993 LBracLoc, SelectorLocs, RBracLoc, Args); 1994 } 1995 1996 // Since we are in a class method, this is a class message to 1997 // the superclass. 1998 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr, 1999 Context.getObjCInterfaceType(Super), 2000 SuperLoc, Sel, /*Method=*/nullptr, 2001 LBracLoc, SelectorLocs, RBracLoc, Args); 2002 } 2003 2004 2005 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, 2006 bool isSuperReceiver, 2007 SourceLocation Loc, 2008 Selector Sel, 2009 ObjCMethodDecl *Method, 2010 MultiExprArg Args) { 2011 TypeSourceInfo *receiverTypeInfo = nullptr; 2012 if (!ReceiverType.isNull()) 2013 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); 2014 2015 return BuildClassMessage(receiverTypeInfo, ReceiverType, 2016 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), 2017 Sel, Method, Loc, Loc, Loc, Args, 2018 /*isImplicit=*/true); 2019 2020 } 2021 2022 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, 2023 unsigned DiagID, 2024 bool (*refactor)(const ObjCMessageExpr *, 2025 const NSAPI &, edit::Commit &)) { 2026 SourceLocation MsgLoc = Msg->getExprLoc(); 2027 if (S.Diags.isIgnored(DiagID, MsgLoc)) 2028 return; 2029 2030 SourceManager &SM = S.SourceMgr; 2031 edit::Commit ECommit(SM, S.LangOpts); 2032 if (refactor(Msg,*S.NSAPIObj, ECommit)) { 2033 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID) 2034 << Msg->getSelector() << Msg->getSourceRange(); 2035 // FIXME: Don't emit diagnostic at all if fixits are non-commitable. 2036 if (!ECommit.isCommitable()) 2037 return; 2038 for (edit::Commit::edit_iterator 2039 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { 2040 const edit::Commit::Edit &Edit = *I; 2041 switch (Edit.Kind) { 2042 case edit::Commit::Act_Insert: 2043 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, 2044 Edit.Text, 2045 Edit.BeforePrev)); 2046 break; 2047 case edit::Commit::Act_InsertFromRange: 2048 Builder.AddFixItHint( 2049 FixItHint::CreateInsertionFromRange(Edit.OrigLoc, 2050 Edit.getInsertFromRange(SM), 2051 Edit.BeforePrev)); 2052 break; 2053 case edit::Commit::Act_Remove: 2054 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); 2055 break; 2056 } 2057 } 2058 } 2059 } 2060 2061 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { 2062 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, 2063 edit::rewriteObjCRedundantCallWithLiteral); 2064 } 2065 2066 /// \brief Diagnose use of %s directive in an NSString which is being passed 2067 /// as formatting string to formatting method. 2068 static void 2069 DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S, 2070 ObjCMethodDecl *Method, 2071 Selector Sel, 2072 Expr **Args, unsigned NumArgs) { 2073 unsigned Idx = 0; 2074 bool Format = false; 2075 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily(); 2076 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) { 2077 Idx = 0; 2078 Format = true; 2079 } 2080 else if (Method) { 2081 for (const auto *I : Method->specific_attrs<FormatAttr>()) { 2082 if (S.GetFormatNSStringIdx(I, Idx)) { 2083 Format = true; 2084 break; 2085 } 2086 } 2087 } 2088 if (!Format || NumArgs <= Idx) 2089 return; 2090 2091 Expr *FormatExpr = Args[Idx]; 2092 if (ObjCStringLiteral *OSL = 2093 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) { 2094 StringLiteral *FormatString = OSL->getString(); 2095 if (S.FormatStringHasSArg(FormatString)) { 2096 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 2097 << "%s" << 0 << 0; 2098 if (Method) 2099 S.Diag(Method->getLocation(), diag::note_method_declared_at) 2100 << Method->getDeclName(); 2101 } 2102 } 2103 } 2104 2105 /// \brief Build an Objective-C class message expression. 2106 /// 2107 /// This routine takes care of both normal class messages and 2108 /// class messages to the superclass. 2109 /// 2110 /// \param ReceiverTypeInfo Type source information that describes the 2111 /// receiver of this message. This may be NULL, in which case we are 2112 /// sending to the superclass and \p SuperLoc must be a valid source 2113 /// location. 2114 2115 /// \param ReceiverType The type of the object receiving the 2116 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same 2117 /// type as that refers to. For a superclass send, this is the type of 2118 /// the superclass. 2119 /// 2120 /// \param SuperLoc The location of the "super" keyword in a 2121 /// superclass message. 2122 /// 2123 /// \param Sel The selector to which the message is being sent. 2124 /// 2125 /// \param Method The method that this class message is invoking, if 2126 /// already known. 2127 /// 2128 /// \param LBracLoc The location of the opening square bracket ']'. 2129 /// 2130 /// \param RBracLoc The location of the closing square bracket ']'. 2131 /// 2132 /// \param ArgsIn The message arguments. 2133 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, 2134 QualType ReceiverType, 2135 SourceLocation SuperLoc, 2136 Selector Sel, 2137 ObjCMethodDecl *Method, 2138 SourceLocation LBracLoc, 2139 ArrayRef<SourceLocation> SelectorLocs, 2140 SourceLocation RBracLoc, 2141 MultiExprArg ArgsIn, 2142 bool isImplicit) { 2143 SourceLocation Loc = SuperLoc.isValid()? SuperLoc 2144 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); 2145 if (LBracLoc.isInvalid()) { 2146 Diag(Loc, diag::err_missing_open_square_message_send) 2147 << FixItHint::CreateInsertion(Loc, "["); 2148 LBracLoc = Loc; 2149 } 2150 SourceLocation SelLoc; 2151 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2152 SelLoc = SelectorLocs.front(); 2153 else 2154 SelLoc = Loc; 2155 2156 if (ReceiverType->isDependentType()) { 2157 // If the receiver type is dependent, we can't type-check anything 2158 // at this point. Build a dependent expression. 2159 unsigned NumArgs = ArgsIn.size(); 2160 Expr **Args = ArgsIn.data(); 2161 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2162 return ObjCMessageExpr::Create( 2163 Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel, 2164 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc, 2165 isImplicit); 2166 } 2167 2168 // Find the class to which we are sending this message. 2169 ObjCInterfaceDecl *Class = nullptr; 2170 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); 2171 if (!ClassType || !(Class = ClassType->getInterface())) { 2172 Diag(Loc, diag::err_invalid_receiver_class_message) 2173 << ReceiverType; 2174 return ExprError(); 2175 } 2176 assert(Class && "We don't know which class we're messaging?"); 2177 // objc++ diagnoses during typename annotation. 2178 if (!getLangOpts().CPlusPlus) 2179 (void)DiagnoseUseOfDecl(Class, SelLoc); 2180 // Find the method we are messaging. 2181 if (!Method) { 2182 SourceRange TypeRange 2183 = SuperLoc.isValid()? SourceRange(SuperLoc) 2184 : ReceiverTypeInfo->getTypeLoc().getSourceRange(); 2185 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 2186 (getLangOpts().ObjCAutoRefCount 2187 ? diag::err_arc_receiver_forward_class 2188 : diag::warn_receiver_forward_class), 2189 TypeRange)) { 2190 // A forward class used in messaging is treated as a 'Class' 2191 Method = LookupFactoryMethodInGlobalPool(Sel, 2192 SourceRange(LBracLoc, RBracLoc)); 2193 if (Method && !getLangOpts().ObjCAutoRefCount) 2194 Diag(Method->getLocation(), diag::note_method_sent_forward_class) 2195 << Method->getDeclName(); 2196 } 2197 if (!Method) 2198 Method = Class->lookupClassMethod(Sel); 2199 2200 // If we have an implementation in scope, check "private" methods. 2201 if (!Method) 2202 Method = Class->lookupPrivateClassMethod(Sel); 2203 2204 if (Method && DiagnoseUseOfDecl(Method, SelLoc)) 2205 return ExprError(); 2206 } 2207 2208 // Check the argument types and determine the result type. 2209 QualType ReturnType; 2210 ExprValueKind VK = VK_RValue; 2211 2212 unsigned NumArgs = ArgsIn.size(); 2213 Expr **Args = ArgsIn.data(); 2214 if (CheckMessageArgumentTypes(ReceiverType, MultiExprArg(Args, NumArgs), 2215 Sel, SelectorLocs, 2216 Method, true, 2217 SuperLoc.isValid(), LBracLoc, RBracLoc, 2218 SourceRange(), 2219 ReturnType, VK)) 2220 return ExprError(); 2221 2222 if (Method && !Method->getReturnType()->isVoidType() && 2223 RequireCompleteType(LBracLoc, Method->getReturnType(), 2224 diag::err_illegal_message_expr_incomplete_type)) 2225 return ExprError(); 2226 2227 // Warn about explicit call of +initialize on its own class. But not on 'super'. 2228 if (Method && Method->getMethodFamily() == OMF_initialize) { 2229 if (!SuperLoc.isValid()) { 2230 const ObjCInterfaceDecl *ID = 2231 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()); 2232 if (ID == Class) { 2233 Diag(Loc, diag::warn_direct_initialize_call); 2234 Diag(Method->getLocation(), diag::note_method_declared_at) 2235 << Method->getDeclName(); 2236 } 2237 } 2238 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2239 // [super initialize] is allowed only within an +initialize implementation 2240 if (CurMeth->getMethodFamily() != OMF_initialize) { 2241 Diag(Loc, diag::warn_direct_super_initialize_call); 2242 Diag(Method->getLocation(), diag::note_method_declared_at) 2243 << Method->getDeclName(); 2244 Diag(CurMeth->getLocation(), diag::note_method_declared_at) 2245 << CurMeth->getDeclName(); 2246 } 2247 } 2248 } 2249 2250 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2251 2252 // Construct the appropriate ObjCMessageExpr. 2253 ObjCMessageExpr *Result; 2254 if (SuperLoc.isValid()) 2255 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2256 SuperLoc, /*IsInstanceSuper=*/false, 2257 ReceiverType, Sel, SelectorLocs, 2258 Method, makeArrayRef(Args, NumArgs), 2259 RBracLoc, isImplicit); 2260 else { 2261 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2262 ReceiverTypeInfo, Sel, SelectorLocs, 2263 Method, makeArrayRef(Args, NumArgs), 2264 RBracLoc, isImplicit); 2265 if (!isImplicit) 2266 checkCocoaAPI(*this, Result); 2267 } 2268 return MaybeBindToTemporary(Result); 2269 } 2270 2271 // ActOnClassMessage - used for both unary and keyword messages. 2272 // ArgExprs is optional - if it is present, the number of expressions 2273 // is obtained from Sel.getNumArgs(). 2274 ExprResult Sema::ActOnClassMessage(Scope *S, 2275 ParsedType Receiver, 2276 Selector Sel, 2277 SourceLocation LBracLoc, 2278 ArrayRef<SourceLocation> SelectorLocs, 2279 SourceLocation RBracLoc, 2280 MultiExprArg Args) { 2281 TypeSourceInfo *ReceiverTypeInfo; 2282 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); 2283 if (ReceiverType.isNull()) 2284 return ExprError(); 2285 2286 2287 if (!ReceiverTypeInfo) 2288 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); 2289 2290 return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 2291 /*SuperLoc=*/SourceLocation(), Sel, 2292 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc, 2293 Args); 2294 } 2295 2296 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, 2297 QualType ReceiverType, 2298 SourceLocation Loc, 2299 Selector Sel, 2300 ObjCMethodDecl *Method, 2301 MultiExprArg Args) { 2302 return BuildInstanceMessage(Receiver, ReceiverType, 2303 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), 2304 Sel, Method, Loc, Loc, Loc, Args, 2305 /*isImplicit=*/true); 2306 } 2307 2308 /// \brief Build an Objective-C instance message expression. 2309 /// 2310 /// This routine takes care of both normal instance messages and 2311 /// instance messages to the superclass instance. 2312 /// 2313 /// \param Receiver The expression that computes the object that will 2314 /// receive this message. This may be empty, in which case we are 2315 /// sending to the superclass instance and \p SuperLoc must be a valid 2316 /// source location. 2317 /// 2318 /// \param ReceiverType The (static) type of the object receiving the 2319 /// message. When a \p Receiver expression is provided, this is the 2320 /// same type as that expression. For a superclass instance send, this 2321 /// is a pointer to the type of the superclass. 2322 /// 2323 /// \param SuperLoc The location of the "super" keyword in a 2324 /// superclass instance message. 2325 /// 2326 /// \param Sel The selector to which the message is being sent. 2327 /// 2328 /// \param Method The method that this instance message is invoking, if 2329 /// already known. 2330 /// 2331 /// \param LBracLoc The location of the opening square bracket ']'. 2332 /// 2333 /// \param RBracLoc The location of the closing square bracket ']'. 2334 /// 2335 /// \param ArgsIn The message arguments. 2336 ExprResult Sema::BuildInstanceMessage(Expr *Receiver, 2337 QualType ReceiverType, 2338 SourceLocation SuperLoc, 2339 Selector Sel, 2340 ObjCMethodDecl *Method, 2341 SourceLocation LBracLoc, 2342 ArrayRef<SourceLocation> SelectorLocs, 2343 SourceLocation RBracLoc, 2344 MultiExprArg ArgsIn, 2345 bool isImplicit) { 2346 // The location of the receiver. 2347 SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart(); 2348 SourceRange RecRange = 2349 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange(); 2350 SourceLocation SelLoc; 2351 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2352 SelLoc = SelectorLocs.front(); 2353 else 2354 SelLoc = Loc; 2355 2356 if (LBracLoc.isInvalid()) { 2357 Diag(Loc, diag::err_missing_open_square_message_send) 2358 << FixItHint::CreateInsertion(Loc, "["); 2359 LBracLoc = Loc; 2360 } 2361 2362 // If we have a receiver expression, perform appropriate promotions 2363 // and determine receiver type. 2364 if (Receiver) { 2365 if (Receiver->hasPlaceholderType()) { 2366 ExprResult Result; 2367 if (Receiver->getType() == Context.UnknownAnyTy) 2368 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); 2369 else 2370 Result = CheckPlaceholderExpr(Receiver); 2371 if (Result.isInvalid()) return ExprError(); 2372 Receiver = Result.get(); 2373 } 2374 2375 if (Receiver->isTypeDependent()) { 2376 // If the receiver is type-dependent, we can't type-check anything 2377 // at this point. Build a dependent expression. 2378 unsigned NumArgs = ArgsIn.size(); 2379 Expr **Args = ArgsIn.data(); 2380 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2381 return ObjCMessageExpr::Create( 2382 Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel, 2383 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), 2384 RBracLoc, isImplicit); 2385 } 2386 2387 // If necessary, apply function/array conversion to the receiver. 2388 // C99 6.7.5.3p[7,8]. 2389 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); 2390 if (Result.isInvalid()) 2391 return ExprError(); 2392 Receiver = Result.get(); 2393 ReceiverType = Receiver->getType(); 2394 2395 // If the receiver is an ObjC pointer, a block pointer, or an 2396 // __attribute__((NSObject)) pointer, we don't need to do any 2397 // special conversion in order to look up a receiver. 2398 if (ReceiverType->isObjCRetainableType()) { 2399 // do nothing 2400 } else if (!getLangOpts().ObjCAutoRefCount && 2401 !Context.getObjCIdType().isNull() && 2402 (ReceiverType->isPointerType() || 2403 ReceiverType->isIntegerType())) { 2404 // Implicitly convert integers and pointers to 'id' but emit a warning. 2405 // But not in ARC. 2406 Diag(Loc, diag::warn_bad_receiver_type) 2407 << ReceiverType 2408 << Receiver->getSourceRange(); 2409 if (ReceiverType->isPointerType()) { 2410 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2411 CK_CPointerToObjCPointerCast).get(); 2412 } else { 2413 // TODO: specialized warning on null receivers? 2414 bool IsNull = Receiver->isNullPointerConstant(Context, 2415 Expr::NPC_ValueDependentIsNull); 2416 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer; 2417 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2418 Kind).get(); 2419 } 2420 ReceiverType = Receiver->getType(); 2421 } else if (getLangOpts().CPlusPlus) { 2422 // The receiver must be a complete type. 2423 if (RequireCompleteType(Loc, Receiver->getType(), 2424 diag::err_incomplete_receiver_type)) 2425 return ExprError(); 2426 2427 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver); 2428 if (result.isUsable()) { 2429 Receiver = result.get(); 2430 ReceiverType = Receiver->getType(); 2431 } 2432 } 2433 } 2434 2435 // There's a somewhat weird interaction here where we assume that we 2436 // won't actually have a method unless we also don't need to do some 2437 // of the more detailed type-checking on the receiver. 2438 2439 if (!Method) { 2440 // Handle messages to id. 2441 bool receiverIsId = ReceiverType->isObjCIdType(); 2442 if (receiverIsId || ReceiverType->isBlockPointerType() || 2443 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { 2444 Method = LookupInstanceMethodInGlobalPool(Sel, 2445 SourceRange(LBracLoc, RBracLoc), 2446 receiverIsId); 2447 if (!Method) 2448 Method = LookupFactoryMethodInGlobalPool(Sel, 2449 SourceRange(LBracLoc,RBracLoc), 2450 receiverIsId); 2451 if (Method) { 2452 if (ObjCMethodDecl *BestMethod = 2453 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod())) 2454 Method = BestMethod; 2455 if (!AreMultipleMethodsInGlobalPool(Sel, Method->isInstanceMethod())) 2456 DiagnoseUseOfDecl(Method, SelLoc); 2457 } 2458 } else if (ReceiverType->isObjCClassType() || 2459 ReceiverType->isObjCQualifiedClassType()) { 2460 // Handle messages to Class. 2461 // We allow sending a message to a qualified Class ("Class<foo>"), which 2462 // is ok as long as one of the protocols implements the selector (if not, 2463 // warn). 2464 if (const ObjCObjectPointerType *QClassTy 2465 = ReceiverType->getAsObjCQualifiedClassType()) { 2466 // Search protocols for class methods. 2467 Method = LookupMethodInQualifiedType(Sel, QClassTy, false); 2468 if (!Method) { 2469 Method = LookupMethodInQualifiedType(Sel, QClassTy, true); 2470 // warn if instance method found for a Class message. 2471 if (Method) { 2472 Diag(SelLoc, diag::warn_instance_method_on_class_found) 2473 << Method->getSelector() << Sel; 2474 Diag(Method->getLocation(), diag::note_method_declared_at) 2475 << Method->getDeclName(); 2476 } 2477 } 2478 } else { 2479 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2480 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { 2481 // First check the public methods in the class interface. 2482 Method = ClassDecl->lookupClassMethod(Sel); 2483 2484 if (!Method) 2485 Method = ClassDecl->lookupPrivateClassMethod(Sel); 2486 } 2487 if (Method && DiagnoseUseOfDecl(Method, SelLoc)) 2488 return ExprError(); 2489 } 2490 if (!Method) { 2491 // If not messaging 'self', look for any factory method named 'Sel'. 2492 if (!Receiver || !isSelfExpr(Receiver)) { 2493 Method = LookupFactoryMethodInGlobalPool(Sel, 2494 SourceRange(LBracLoc, RBracLoc), 2495 true); 2496 if (!Method) { 2497 // If no class (factory) method was found, check if an _instance_ 2498 // method of the same name exists in the root class only. 2499 Method = LookupInstanceMethodInGlobalPool(Sel, 2500 SourceRange(LBracLoc, RBracLoc), 2501 true); 2502 if (Method) 2503 if (const ObjCInterfaceDecl *ID = 2504 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { 2505 if (ID->getSuperClass()) 2506 Diag(SelLoc, diag::warn_root_inst_method_not_found) 2507 << Sel << SourceRange(LBracLoc, RBracLoc); 2508 } 2509 } 2510 if (Method) 2511 if (ObjCMethodDecl *BestMethod = 2512 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod())) 2513 Method = BestMethod; 2514 } 2515 } 2516 } 2517 } else { 2518 ObjCInterfaceDecl *ClassDecl = nullptr; 2519 2520 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as 2521 // long as one of the protocols implements the selector (if not, warn). 2522 // And as long as message is not deprecated/unavailable (warn if it is). 2523 if (const ObjCObjectPointerType *QIdTy 2524 = ReceiverType->getAsObjCQualifiedIdType()) { 2525 // Search protocols for instance methods. 2526 Method = LookupMethodInQualifiedType(Sel, QIdTy, true); 2527 if (!Method) 2528 Method = LookupMethodInQualifiedType(Sel, QIdTy, false); 2529 if (Method && DiagnoseUseOfDecl(Method, SelLoc)) 2530 return ExprError(); 2531 } else if (const ObjCObjectPointerType *OCIType 2532 = ReceiverType->getAsObjCInterfacePointerType()) { 2533 // We allow sending a message to a pointer to an interface (an object). 2534 ClassDecl = OCIType->getInterfaceDecl(); 2535 2536 // Try to complete the type. Under ARC, this is a hard error from which 2537 // we don't try to recover. 2538 const ObjCInterfaceDecl *forwardClass = nullptr; 2539 if (RequireCompleteType(Loc, OCIType->getPointeeType(), 2540 getLangOpts().ObjCAutoRefCount 2541 ? diag::err_arc_receiver_forward_instance 2542 : diag::warn_receiver_forward_instance, 2543 Receiver? Receiver->getSourceRange() 2544 : SourceRange(SuperLoc))) { 2545 if (getLangOpts().ObjCAutoRefCount) 2546 return ExprError(); 2547 2548 forwardClass = OCIType->getInterfaceDecl(); 2549 Diag(Receiver ? Receiver->getLocStart() 2550 : SuperLoc, diag::note_receiver_is_id); 2551 Method = nullptr; 2552 } else { 2553 Method = ClassDecl->lookupInstanceMethod(Sel); 2554 } 2555 2556 if (!Method) 2557 // Search protocol qualifiers. 2558 Method = LookupMethodInQualifiedType(Sel, OCIType, true); 2559 2560 if (!Method) { 2561 // If we have implementations in scope, check "private" methods. 2562 Method = ClassDecl->lookupPrivateMethod(Sel); 2563 2564 if (!Method && getLangOpts().ObjCAutoRefCount) { 2565 Diag(SelLoc, diag::err_arc_may_not_respond) 2566 << OCIType->getPointeeType() << Sel << RecRange 2567 << SourceRange(SelectorLocs.front(), SelectorLocs.back()); 2568 return ExprError(); 2569 } 2570 2571 if (!Method && (!Receiver || !isSelfExpr(Receiver))) { 2572 // If we still haven't found a method, look in the global pool. This 2573 // behavior isn't very desirable, however we need it for GCC 2574 // compatibility. FIXME: should we deviate?? 2575 if (OCIType->qual_empty()) { 2576 Method = LookupInstanceMethodInGlobalPool(Sel, 2577 SourceRange(LBracLoc, RBracLoc)); 2578 if (Method && !forwardClass) 2579 Diag(SelLoc, diag::warn_maynot_respond) 2580 << OCIType->getInterfaceDecl()->getIdentifier() 2581 << Sel << RecRange; 2582 } 2583 } 2584 } 2585 if (Method && DiagnoseUseOfDecl(Method, SelLoc, forwardClass)) 2586 return ExprError(); 2587 } else { 2588 // Reject other random receiver types (e.g. structs). 2589 Diag(Loc, diag::err_bad_receiver_type) 2590 << ReceiverType << Receiver->getSourceRange(); 2591 return ExprError(); 2592 } 2593 } 2594 } 2595 2596 FunctionScopeInfo *DIFunctionScopeInfo = 2597 (Method && Method->getMethodFamily() == OMF_init) 2598 ? getEnclosingFunction() : nullptr; 2599 2600 if (DIFunctionScopeInfo && 2601 DIFunctionScopeInfo->ObjCIsDesignatedInit && 2602 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2603 bool isDesignatedInitChain = false; 2604 if (SuperLoc.isValid()) { 2605 if (const ObjCObjectPointerType * 2606 OCIType = ReceiverType->getAsObjCInterfacePointerType()) { 2607 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) { 2608 // Either we know this is a designated initializer or we 2609 // conservatively assume it because we don't know for sure. 2610 if (!ID->declaresOrInheritsDesignatedInitializers() || 2611 ID->isDesignatedInitializer(Sel)) { 2612 isDesignatedInitChain = true; 2613 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false; 2614 } 2615 } 2616 } 2617 } 2618 if (!isDesignatedInitChain) { 2619 const ObjCMethodDecl *InitMethod = nullptr; 2620 bool isDesignated = 2621 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod); 2622 assert(isDesignated && InitMethod); 2623 (void)isDesignated; 2624 Diag(SelLoc, SuperLoc.isValid() ? 2625 diag::warn_objc_designated_init_non_designated_init_call : 2626 diag::warn_objc_designated_init_non_super_designated_init_call); 2627 Diag(InitMethod->getLocation(), 2628 diag::note_objc_designated_init_marked_here); 2629 } 2630 } 2631 2632 if (DIFunctionScopeInfo && 2633 DIFunctionScopeInfo->ObjCIsSecondaryInit && 2634 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2635 if (SuperLoc.isValid()) { 2636 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call); 2637 } else { 2638 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false; 2639 } 2640 } 2641 2642 // Check the message arguments. 2643 unsigned NumArgs = ArgsIn.size(); 2644 Expr **Args = ArgsIn.data(); 2645 QualType ReturnType; 2646 ExprValueKind VK = VK_RValue; 2647 bool ClassMessage = (ReceiverType->isObjCClassType() || 2648 ReceiverType->isObjCQualifiedClassType()); 2649 if (CheckMessageArgumentTypes(ReceiverType, MultiExprArg(Args, NumArgs), 2650 Sel, SelectorLocs, Method, 2651 ClassMessage, SuperLoc.isValid(), 2652 LBracLoc, RBracLoc, RecRange, ReturnType, VK)) 2653 return ExprError(); 2654 2655 if (Method && !Method->getReturnType()->isVoidType() && 2656 RequireCompleteType(LBracLoc, Method->getReturnType(), 2657 diag::err_illegal_message_expr_incomplete_type)) 2658 return ExprError(); 2659 2660 // In ARC, forbid the user from sending messages to 2661 // retain/release/autorelease/dealloc/retainCount explicitly. 2662 if (getLangOpts().ObjCAutoRefCount) { 2663 ObjCMethodFamily family = 2664 (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); 2665 switch (family) { 2666 case OMF_init: 2667 if (Method) 2668 checkInitMethod(Method, ReceiverType); 2669 2670 case OMF_None: 2671 case OMF_alloc: 2672 case OMF_copy: 2673 case OMF_finalize: 2674 case OMF_mutableCopy: 2675 case OMF_new: 2676 case OMF_self: 2677 case OMF_initialize: 2678 break; 2679 2680 case OMF_dealloc: 2681 case OMF_retain: 2682 case OMF_release: 2683 case OMF_autorelease: 2684 case OMF_retainCount: 2685 Diag(SelLoc, diag::err_arc_illegal_explicit_message) 2686 << Sel << RecRange; 2687 break; 2688 2689 case OMF_performSelector: 2690 if (Method && NumArgs >= 1) { 2691 if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) { 2692 Selector ArgSel = SelExp->getSelector(); 2693 ObjCMethodDecl *SelMethod = 2694 LookupInstanceMethodInGlobalPool(ArgSel, 2695 SelExp->getSourceRange()); 2696 if (!SelMethod) 2697 SelMethod = 2698 LookupFactoryMethodInGlobalPool(ArgSel, 2699 SelExp->getSourceRange()); 2700 if (SelMethod) { 2701 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); 2702 switch (SelFamily) { 2703 case OMF_alloc: 2704 case OMF_copy: 2705 case OMF_mutableCopy: 2706 case OMF_new: 2707 case OMF_self: 2708 case OMF_init: 2709 // Issue error, unless ns_returns_not_retained. 2710 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { 2711 // selector names a +1 method 2712 Diag(SelLoc, 2713 diag::err_arc_perform_selector_retains); 2714 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2715 << SelMethod->getDeclName(); 2716 } 2717 break; 2718 default: 2719 // +0 call. OK. unless ns_returns_retained. 2720 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { 2721 // selector names a +1 method 2722 Diag(SelLoc, 2723 diag::err_arc_perform_selector_retains); 2724 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2725 << SelMethod->getDeclName(); 2726 } 2727 break; 2728 } 2729 } 2730 } else { 2731 // error (may leak). 2732 Diag(SelLoc, diag::warn_arc_perform_selector_leaks); 2733 Diag(Args[0]->getExprLoc(), diag::note_used_here); 2734 } 2735 } 2736 break; 2737 } 2738 } 2739 2740 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2741 2742 // Construct the appropriate ObjCMessageExpr instance. 2743 ObjCMessageExpr *Result; 2744 if (SuperLoc.isValid()) 2745 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2746 SuperLoc, /*IsInstanceSuper=*/true, 2747 ReceiverType, Sel, SelectorLocs, Method, 2748 makeArrayRef(Args, NumArgs), RBracLoc, 2749 isImplicit); 2750 else { 2751 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2752 Receiver, Sel, SelectorLocs, Method, 2753 makeArrayRef(Args, NumArgs), RBracLoc, 2754 isImplicit); 2755 if (!isImplicit) 2756 checkCocoaAPI(*this, Result); 2757 } 2758 2759 if (getLangOpts().ObjCAutoRefCount) { 2760 // Do not warn about IBOutlet weak property receivers being set to null 2761 // as this cannot asynchronously happen. 2762 bool WarnWeakReceiver = true; 2763 if (isImplicit && Method) 2764 if (const ObjCPropertyDecl *PropertyDecl = Method->findPropertyDecl()) 2765 WarnWeakReceiver = !PropertyDecl->hasAttr<IBOutletAttr>(); 2766 if (WarnWeakReceiver) 2767 DiagnoseARCUseOfWeakReceiver(*this, Receiver); 2768 2769 // In ARC, annotate delegate init calls. 2770 if (Result->getMethodFamily() == OMF_init && 2771 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2772 // Only consider init calls *directly* in init implementations, 2773 // not within blocks. 2774 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); 2775 if (method && method->getMethodFamily() == OMF_init) { 2776 // The implicit assignment to self means we also don't want to 2777 // consume the result. 2778 Result->setDelegateInitCall(true); 2779 return Result; 2780 } 2781 } 2782 2783 // In ARC, check for message sends which are likely to introduce 2784 // retain cycles. 2785 checkRetainCycles(Result); 2786 2787 if (!isImplicit && Method) { 2788 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) { 2789 bool IsWeak = 2790 Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak; 2791 if (!IsWeak && Sel.isUnarySelector()) 2792 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak; 2793 if (IsWeak && 2794 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc)) 2795 getCurFunction()->recordUseOfWeak(Result, Prop); 2796 } 2797 } 2798 } 2799 2800 return MaybeBindToTemporary(Result); 2801 } 2802 2803 static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) { 2804 if (ObjCSelectorExpr *OSE = 2805 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) { 2806 Selector Sel = OSE->getSelector(); 2807 SourceLocation Loc = OSE->getAtLoc(); 2808 llvm::DenseMap<Selector, SourceLocation>::iterator Pos 2809 = S.ReferencedSelectors.find(Sel); 2810 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc) 2811 S.ReferencedSelectors.erase(Pos); 2812 } 2813 } 2814 2815 // ActOnInstanceMessage - used for both unary and keyword messages. 2816 // ArgExprs is optional - if it is present, the number of expressions 2817 // is obtained from Sel.getNumArgs(). 2818 ExprResult Sema::ActOnInstanceMessage(Scope *S, 2819 Expr *Receiver, 2820 Selector Sel, 2821 SourceLocation LBracLoc, 2822 ArrayRef<SourceLocation> SelectorLocs, 2823 SourceLocation RBracLoc, 2824 MultiExprArg Args) { 2825 if (!Receiver) 2826 return ExprError(); 2827 2828 // A ParenListExpr can show up while doing error recovery with invalid code. 2829 if (isa<ParenListExpr>(Receiver)) { 2830 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver); 2831 if (Result.isInvalid()) return ExprError(); 2832 Receiver = Result.get(); 2833 } 2834 2835 if (RespondsToSelectorSel.isNull()) { 2836 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector"); 2837 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId); 2838 } 2839 if (Sel == RespondsToSelectorSel) 2840 RemoveSelectorFromWarningCache(*this, Args[0]); 2841 2842 return BuildInstanceMessage(Receiver, Receiver->getType(), 2843 /*SuperLoc=*/SourceLocation(), Sel, 2844 /*Method=*/nullptr, LBracLoc, SelectorLocs, 2845 RBracLoc, Args); 2846 } 2847 2848 enum ARCConversionTypeClass { 2849 /// int, void, struct A 2850 ACTC_none, 2851 2852 /// id, void (^)() 2853 ACTC_retainable, 2854 2855 /// id*, id***, void (^*)(), 2856 ACTC_indirectRetainable, 2857 2858 /// void* might be a normal C type, or it might a CF type. 2859 ACTC_voidPtr, 2860 2861 /// struct A* 2862 ACTC_coreFoundation 2863 }; 2864 static bool isAnyRetainable(ARCConversionTypeClass ACTC) { 2865 return (ACTC == ACTC_retainable || 2866 ACTC == ACTC_coreFoundation || 2867 ACTC == ACTC_voidPtr); 2868 } 2869 static bool isAnyCLike(ARCConversionTypeClass ACTC) { 2870 return ACTC == ACTC_none || 2871 ACTC == ACTC_voidPtr || 2872 ACTC == ACTC_coreFoundation; 2873 } 2874 2875 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { 2876 bool isIndirect = false; 2877 2878 // Ignore an outermost reference type. 2879 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2880 type = ref->getPointeeType(); 2881 isIndirect = true; 2882 } 2883 2884 // Drill through pointers and arrays recursively. 2885 while (true) { 2886 if (const PointerType *ptr = type->getAs<PointerType>()) { 2887 type = ptr->getPointeeType(); 2888 2889 // The first level of pointer may be the innermost pointer on a CF type. 2890 if (!isIndirect) { 2891 if (type->isVoidType()) return ACTC_voidPtr; 2892 if (type->isRecordType()) return ACTC_coreFoundation; 2893 } 2894 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { 2895 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); 2896 } else { 2897 break; 2898 } 2899 isIndirect = true; 2900 } 2901 2902 if (isIndirect) { 2903 if (type->isObjCARCBridgableType()) 2904 return ACTC_indirectRetainable; 2905 return ACTC_none; 2906 } 2907 2908 if (type->isObjCARCBridgableType()) 2909 return ACTC_retainable; 2910 2911 return ACTC_none; 2912 } 2913 2914 namespace { 2915 /// A result from the cast checker. 2916 enum ACCResult { 2917 /// Cannot be casted. 2918 ACC_invalid, 2919 2920 /// Can be safely retained or not retained. 2921 ACC_bottom, 2922 2923 /// Can be casted at +0. 2924 ACC_plusZero, 2925 2926 /// Can be casted at +1. 2927 ACC_plusOne 2928 }; 2929 ACCResult merge(ACCResult left, ACCResult right) { 2930 if (left == right) return left; 2931 if (left == ACC_bottom) return right; 2932 if (right == ACC_bottom) return left; 2933 return ACC_invalid; 2934 } 2935 2936 /// A checker which white-lists certain expressions whose conversion 2937 /// to or from retainable type would otherwise be forbidden in ARC. 2938 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { 2939 typedef StmtVisitor<ARCCastChecker, ACCResult> super; 2940 2941 ASTContext &Context; 2942 ARCConversionTypeClass SourceClass; 2943 ARCConversionTypeClass TargetClass; 2944 bool Diagnose; 2945 2946 static bool isCFType(QualType type) { 2947 // Someday this can use ns_bridged. For now, it has to do this. 2948 return type->isCARCBridgableType(); 2949 } 2950 2951 public: 2952 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, 2953 ARCConversionTypeClass target, bool diagnose) 2954 : Context(Context), SourceClass(source), TargetClass(target), 2955 Diagnose(diagnose) {} 2956 2957 using super::Visit; 2958 ACCResult Visit(Expr *e) { 2959 return super::Visit(e->IgnoreParens()); 2960 } 2961 2962 ACCResult VisitStmt(Stmt *s) { 2963 return ACC_invalid; 2964 } 2965 2966 /// Null pointer constants can be casted however you please. 2967 ACCResult VisitExpr(Expr *e) { 2968 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 2969 return ACC_bottom; 2970 return ACC_invalid; 2971 } 2972 2973 /// Objective-C string literals can be safely casted. 2974 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { 2975 // If we're casting to any retainable type, go ahead. Global 2976 // strings are immune to retains, so this is bottom. 2977 if (isAnyRetainable(TargetClass)) return ACC_bottom; 2978 2979 return ACC_invalid; 2980 } 2981 2982 /// Look through certain implicit and explicit casts. 2983 ACCResult VisitCastExpr(CastExpr *e) { 2984 switch (e->getCastKind()) { 2985 case CK_NullToPointer: 2986 return ACC_bottom; 2987 2988 case CK_NoOp: 2989 case CK_LValueToRValue: 2990 case CK_BitCast: 2991 case CK_CPointerToObjCPointerCast: 2992 case CK_BlockPointerToObjCPointerCast: 2993 case CK_AnyPointerToBlockPointerCast: 2994 return Visit(e->getSubExpr()); 2995 2996 default: 2997 return ACC_invalid; 2998 } 2999 } 3000 3001 /// Look through unary extension. 3002 ACCResult VisitUnaryExtension(UnaryOperator *e) { 3003 return Visit(e->getSubExpr()); 3004 } 3005 3006 /// Ignore the LHS of a comma operator. 3007 ACCResult VisitBinComma(BinaryOperator *e) { 3008 return Visit(e->getRHS()); 3009 } 3010 3011 /// Conditional operators are okay if both sides are okay. 3012 ACCResult VisitConditionalOperator(ConditionalOperator *e) { 3013 ACCResult left = Visit(e->getTrueExpr()); 3014 if (left == ACC_invalid) return ACC_invalid; 3015 return merge(left, Visit(e->getFalseExpr())); 3016 } 3017 3018 /// Look through pseudo-objects. 3019 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { 3020 // If we're getting here, we should always have a result. 3021 return Visit(e->getResultExpr()); 3022 } 3023 3024 /// Statement expressions are okay if their result expression is okay. 3025 ACCResult VisitStmtExpr(StmtExpr *e) { 3026 return Visit(e->getSubStmt()->body_back()); 3027 } 3028 3029 /// Some declaration references are okay. 3030 ACCResult VisitDeclRefExpr(DeclRefExpr *e) { 3031 // References to global constants from system headers are okay. 3032 // These are things like 'kCFStringTransformToLatin'. They are 3033 // can also be assumed to be immune to retains. 3034 VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); 3035 if (isAnyRetainable(TargetClass) && 3036 isAnyRetainable(SourceClass) && 3037 var && 3038 var->getStorageClass() == SC_Extern && 3039 var->getType().isConstQualified() && 3040 Context.getSourceManager().isInSystemHeader(var->getLocation())) { 3041 return ACC_bottom; 3042 } 3043 3044 // Nothing else. 3045 return ACC_invalid; 3046 } 3047 3048 /// Some calls are okay. 3049 ACCResult VisitCallExpr(CallExpr *e) { 3050 if (FunctionDecl *fn = e->getDirectCallee()) 3051 if (ACCResult result = checkCallToFunction(fn)) 3052 return result; 3053 3054 return super::VisitCallExpr(e); 3055 } 3056 3057 ACCResult checkCallToFunction(FunctionDecl *fn) { 3058 // Require a CF*Ref return type. 3059 if (!isCFType(fn->getReturnType())) 3060 return ACC_invalid; 3061 3062 if (!isAnyRetainable(TargetClass)) 3063 return ACC_invalid; 3064 3065 // Honor an explicit 'not retained' attribute. 3066 if (fn->hasAttr<CFReturnsNotRetainedAttr>()) 3067 return ACC_plusZero; 3068 3069 // Honor an explicit 'retained' attribute, except that for 3070 // now we're not going to permit implicit handling of +1 results, 3071 // because it's a bit frightening. 3072 if (fn->hasAttr<CFReturnsRetainedAttr>()) 3073 return Diagnose ? ACC_plusOne 3074 : ACC_invalid; // ACC_plusOne if we start accepting this 3075 3076 // Recognize this specific builtin function, which is used by CFSTR. 3077 unsigned builtinID = fn->getBuiltinID(); 3078 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) 3079 return ACC_bottom; 3080 3081 // Otherwise, don't do anything implicit with an unaudited function. 3082 if (!fn->hasAttr<CFAuditedTransferAttr>()) 3083 return ACC_invalid; 3084 3085 // Otherwise, it's +0 unless it follows the create convention. 3086 if (ento::coreFoundation::followsCreateRule(fn)) 3087 return Diagnose ? ACC_plusOne 3088 : ACC_invalid; // ACC_plusOne if we start accepting this 3089 3090 return ACC_plusZero; 3091 } 3092 3093 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { 3094 return checkCallToMethod(e->getMethodDecl()); 3095 } 3096 3097 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { 3098 ObjCMethodDecl *method; 3099 if (e->isExplicitProperty()) 3100 method = e->getExplicitProperty()->getGetterMethodDecl(); 3101 else 3102 method = e->getImplicitPropertyGetter(); 3103 return checkCallToMethod(method); 3104 } 3105 3106 ACCResult checkCallToMethod(ObjCMethodDecl *method) { 3107 if (!method) return ACC_invalid; 3108 3109 // Check for message sends to functions returning CF types. We 3110 // just obey the Cocoa conventions with these, even though the 3111 // return type is CF. 3112 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType())) 3113 return ACC_invalid; 3114 3115 // If the method is explicitly marked not-retained, it's +0. 3116 if (method->hasAttr<CFReturnsNotRetainedAttr>()) 3117 return ACC_plusZero; 3118 3119 // If the method is explicitly marked as returning retained, or its 3120 // selector follows a +1 Cocoa convention, treat it as +1. 3121 if (method->hasAttr<CFReturnsRetainedAttr>()) 3122 return ACC_plusOne; 3123 3124 switch (method->getSelector().getMethodFamily()) { 3125 case OMF_alloc: 3126 case OMF_copy: 3127 case OMF_mutableCopy: 3128 case OMF_new: 3129 return ACC_plusOne; 3130 3131 default: 3132 // Otherwise, treat it as +0. 3133 return ACC_plusZero; 3134 } 3135 } 3136 }; 3137 } 3138 3139 bool Sema::isKnownName(StringRef name) { 3140 if (name.empty()) 3141 return false; 3142 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(), 3143 Sema::LookupOrdinaryName); 3144 return LookupName(R, TUScope, false); 3145 } 3146 3147 static void addFixitForObjCARCConversion(Sema &S, 3148 DiagnosticBuilder &DiagB, 3149 Sema::CheckedConversionKind CCK, 3150 SourceLocation afterLParen, 3151 QualType castType, 3152 Expr *castExpr, 3153 Expr *realCast, 3154 const char *bridgeKeyword, 3155 const char *CFBridgeName) { 3156 // We handle C-style and implicit casts here. 3157 switch (CCK) { 3158 case Sema::CCK_ImplicitConversion: 3159 case Sema::CCK_CStyleCast: 3160 case Sema::CCK_OtherCast: 3161 break; 3162 case Sema::CCK_FunctionalCast: 3163 return; 3164 } 3165 3166 if (CFBridgeName) { 3167 if (CCK == Sema::CCK_OtherCast) { 3168 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3169 SourceRange range(NCE->getOperatorLoc(), 3170 NCE->getAngleBrackets().getEnd()); 3171 SmallString<32> BridgeCall; 3172 3173 SourceManager &SM = S.getSourceManager(); 3174 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3175 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3176 BridgeCall += ' '; 3177 3178 BridgeCall += CFBridgeName; 3179 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall)); 3180 } 3181 return; 3182 } 3183 Expr *castedE = castExpr; 3184 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) 3185 castedE = CCE->getSubExpr(); 3186 castedE = castedE->IgnoreImpCasts(); 3187 SourceRange range = castedE->getSourceRange(); 3188 3189 SmallString<32> BridgeCall; 3190 3191 SourceManager &SM = S.getSourceManager(); 3192 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3193 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3194 BridgeCall += ' '; 3195 3196 BridgeCall += CFBridgeName; 3197 3198 if (isa<ParenExpr>(castedE)) { 3199 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3200 BridgeCall)); 3201 } else { 3202 BridgeCall += '('; 3203 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3204 BridgeCall)); 3205 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3206 S.PP.getLocForEndOfToken(range.getEnd()), 3207 ")")); 3208 } 3209 return; 3210 } 3211 3212 if (CCK == Sema::CCK_CStyleCast) { 3213 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); 3214 } else if (CCK == Sema::CCK_OtherCast) { 3215 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3216 std::string castCode = "("; 3217 castCode += bridgeKeyword; 3218 castCode += castType.getAsString(); 3219 castCode += ")"; 3220 SourceRange Range(NCE->getOperatorLoc(), 3221 NCE->getAngleBrackets().getEnd()); 3222 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode)); 3223 } 3224 } else { 3225 std::string castCode = "("; 3226 castCode += bridgeKeyword; 3227 castCode += castType.getAsString(); 3228 castCode += ")"; 3229 Expr *castedE = castExpr->IgnoreImpCasts(); 3230 SourceRange range = castedE->getSourceRange(); 3231 if (isa<ParenExpr>(castedE)) { 3232 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3233 castCode)); 3234 } else { 3235 castCode += "("; 3236 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3237 castCode)); 3238 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3239 S.PP.getLocForEndOfToken(range.getEnd()), 3240 ")")); 3241 } 3242 } 3243 } 3244 3245 template <typename T> 3246 static inline T *getObjCBridgeAttr(const TypedefType *TD) { 3247 TypedefNameDecl *TDNDecl = TD->getDecl(); 3248 QualType QT = TDNDecl->getUnderlyingType(); 3249 if (QT->isPointerType()) { 3250 QT = QT->getPointeeType(); 3251 if (const RecordType *RT = QT->getAs<RecordType>()) 3252 if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl()) 3253 return RD->getAttr<T>(); 3254 } 3255 return nullptr; 3256 } 3257 3258 static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T, 3259 TypedefNameDecl *&TDNDecl) { 3260 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3261 TDNDecl = TD->getDecl(); 3262 if (ObjCBridgeRelatedAttr *ObjCBAttr = 3263 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD)) 3264 return ObjCBAttr; 3265 T = TDNDecl->getUnderlyingType(); 3266 } 3267 return nullptr; 3268 } 3269 3270 static void 3271 diagnoseObjCARCConversion(Sema &S, SourceRange castRange, 3272 QualType castType, ARCConversionTypeClass castACTC, 3273 Expr *castExpr, Expr *realCast, 3274 ARCConversionTypeClass exprACTC, 3275 Sema::CheckedConversionKind CCK) { 3276 SourceLocation loc = 3277 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); 3278 3279 if (S.makeUnavailableInSystemHeader(loc, 3280 "converts between Objective-C and C pointers in -fobjc-arc")) 3281 return; 3282 3283 QualType castExprType = castExpr->getType(); 3284 TypedefNameDecl *TDNDecl = nullptr; 3285 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable && 3286 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) || 3287 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable && 3288 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl))) 3289 return; 3290 3291 unsigned srcKind = 0; 3292 switch (exprACTC) { 3293 case ACTC_none: 3294 case ACTC_coreFoundation: 3295 case ACTC_voidPtr: 3296 srcKind = (castExprType->isPointerType() ? 1 : 0); 3297 break; 3298 case ACTC_retainable: 3299 srcKind = (castExprType->isBlockPointerType() ? 2 : 3); 3300 break; 3301 case ACTC_indirectRetainable: 3302 srcKind = 4; 3303 break; 3304 } 3305 3306 // Check whether this could be fixed with a bridge cast. 3307 SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin()); 3308 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; 3309 3310 // Bridge from an ARC type to a CF type. 3311 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { 3312 3313 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3314 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 3315 << 2 // of C pointer type 3316 << castExprType 3317 << unsigned(castType->isBlockPointerType()) // to ObjC|block type 3318 << castType 3319 << castRange 3320 << castExpr->getSourceRange(); 3321 bool br = S.isKnownName("CFBridgingRelease"); 3322 ACCResult CreateRule = 3323 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3324 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3325 if (CreateRule != ACC_plusOne) 3326 { 3327 DiagnosticBuilder DiagB = 3328 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3329 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3330 3331 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3332 castType, castExpr, realCast, "__bridge ", 3333 nullptr); 3334 } 3335 if (CreateRule != ACC_plusZero) 3336 { 3337 DiagnosticBuilder DiagB = 3338 (CCK == Sema::CCK_OtherCast && !br) ? 3339 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) << castExprType : 3340 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3341 diag::note_arc_bridge_transfer) 3342 << castExprType << br; 3343 3344 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3345 castType, castExpr, realCast, "__bridge_transfer ", 3346 br ? "CFBridgingRelease" : nullptr); 3347 } 3348 3349 return; 3350 } 3351 3352 // Bridge from a CF type to an ARC type. 3353 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { 3354 bool br = S.isKnownName("CFBridgingRetain"); 3355 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3356 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 3357 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type 3358 << castExprType 3359 << 2 // to C pointer type 3360 << castType 3361 << castRange 3362 << castExpr->getSourceRange(); 3363 ACCResult CreateRule = 3364 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3365 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3366 if (CreateRule != ACC_plusOne) 3367 { 3368 DiagnosticBuilder DiagB = 3369 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3370 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3371 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3372 castType, castExpr, realCast, "__bridge ", 3373 nullptr); 3374 } 3375 if (CreateRule != ACC_plusZero) 3376 { 3377 DiagnosticBuilder DiagB = 3378 (CCK == Sema::CCK_OtherCast && !br) ? 3379 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) << castType : 3380 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3381 diag::note_arc_bridge_retained) 3382 << castType << br; 3383 3384 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3385 castType, castExpr, realCast, "__bridge_retained ", 3386 br ? "CFBridgingRetain" : nullptr); 3387 } 3388 3389 return; 3390 } 3391 3392 S.Diag(loc, diag::err_arc_mismatched_cast) 3393 << (CCK != Sema::CCK_ImplicitConversion) 3394 << srcKind << castExprType << castType 3395 << castRange << castExpr->getSourceRange(); 3396 } 3397 3398 template <typename TB> 3399 static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr, 3400 bool &HadTheAttribute, bool warn) { 3401 QualType T = castExpr->getType(); 3402 HadTheAttribute = false; 3403 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3404 TypedefNameDecl *TDNDecl = TD->getDecl(); 3405 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 3406 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 3407 HadTheAttribute = true; 3408 if (Parm->isStr("id")) 3409 return true; 3410 3411 NamedDecl *Target = nullptr; 3412 // Check for an existing type with this name. 3413 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 3414 Sema::LookupOrdinaryName); 3415 if (S.LookupName(R, S.TUScope)) { 3416 Target = R.getFoundDecl(); 3417 if (Target && isa<ObjCInterfaceDecl>(Target)) { 3418 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target); 3419 if (const ObjCObjectPointerType *InterfacePointerType = 3420 castType->getAsObjCInterfacePointerType()) { 3421 ObjCInterfaceDecl *CastClass 3422 = InterfacePointerType->getObjectType()->getInterface(); 3423 if ((CastClass == ExprClass) || 3424 (CastClass && ExprClass->isSuperClassOf(CastClass))) 3425 return true; 3426 if (warn) 3427 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge) 3428 << T << Target->getName() << castType->getPointeeType(); 3429 return false; 3430 } else if (castType->isObjCIdType() || 3431 (S.Context.ObjCObjectAdoptsQTypeProtocols( 3432 castType, ExprClass))) 3433 // ok to cast to 'id'. 3434 // casting to id<p-list> is ok if bridge type adopts all of 3435 // p-list protocols. 3436 return true; 3437 else { 3438 if (warn) { 3439 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge) 3440 << T << Target->getName() << castType; 3441 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3442 S.Diag(Target->getLocStart(), diag::note_declared_at); 3443 } 3444 return false; 3445 } 3446 } 3447 } 3448 S.Diag(castExpr->getLocStart(), diag::err_objc_cf_bridged_not_interface) 3449 << castExpr->getType() << Parm; 3450 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3451 if (Target) 3452 S.Diag(Target->getLocStart(), diag::note_declared_at); 3453 return true; 3454 } 3455 return false; 3456 } 3457 T = TDNDecl->getUnderlyingType(); 3458 } 3459 return true; 3460 } 3461 3462 template <typename TB> 3463 static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr, 3464 bool &HadTheAttribute, bool warn) { 3465 QualType T = castType; 3466 HadTheAttribute = false; 3467 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3468 TypedefNameDecl *TDNDecl = TD->getDecl(); 3469 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 3470 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 3471 HadTheAttribute = true; 3472 NamedDecl *Target = nullptr; 3473 // Check for an existing type with this name. 3474 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 3475 Sema::LookupOrdinaryName); 3476 if (S.LookupName(R, S.TUScope)) { 3477 Target = R.getFoundDecl(); 3478 if (Target && isa<ObjCInterfaceDecl>(Target)) { 3479 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target); 3480 if (const ObjCObjectPointerType *InterfacePointerType = 3481 castExpr->getType()->getAsObjCInterfacePointerType()) { 3482 ObjCInterfaceDecl *ExprClass 3483 = InterfacePointerType->getObjectType()->getInterface(); 3484 if ((CastClass == ExprClass) || 3485 (ExprClass && CastClass->isSuperClassOf(ExprClass))) 3486 return true; 3487 if (warn) { 3488 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge_to_cf) 3489 << castExpr->getType()->getPointeeType() << T; 3490 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3491 } 3492 return false; 3493 } else if (castExpr->getType()->isObjCIdType() || 3494 (S.Context.QIdProtocolsAdoptObjCObjectProtocols( 3495 castExpr->getType(), CastClass))) 3496 // ok to cast an 'id' expression to a CFtype. 3497 // ok to cast an 'id<plist>' expression to CFtype provided plist 3498 // adopts all of CFtype's ObjetiveC's class plist. 3499 return true; 3500 else { 3501 if (warn) { 3502 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge_to_cf) 3503 << castExpr->getType() << castType; 3504 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3505 S.Diag(Target->getLocStart(), diag::note_declared_at); 3506 } 3507 return false; 3508 } 3509 } 3510 } 3511 S.Diag(castExpr->getLocStart(), diag::err_objc_ns_bridged_invalid_cfobject) 3512 << castExpr->getType() << castType; 3513 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3514 if (Target) 3515 S.Diag(Target->getLocStart(), diag::note_declared_at); 3516 return true; 3517 } 3518 return false; 3519 } 3520 T = TDNDecl->getUnderlyingType(); 3521 } 3522 return true; 3523 } 3524 3525 void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) { 3526 if (!getLangOpts().ObjC1) 3527 return; 3528 // warn in presence of __bridge casting to or from a toll free bridge cast. 3529 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType()); 3530 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 3531 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) { 3532 bool HasObjCBridgeAttr; 3533 bool ObjCBridgeAttrWillNotWarn = 3534 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3535 false); 3536 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 3537 return; 3538 bool HasObjCBridgeMutableAttr; 3539 bool ObjCBridgeMutableAttrWillNotWarn = 3540 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3541 HasObjCBridgeMutableAttr, false); 3542 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 3543 return; 3544 3545 if (HasObjCBridgeAttr) 3546 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3547 true); 3548 else if (HasObjCBridgeMutableAttr) 3549 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3550 HasObjCBridgeMutableAttr, true); 3551 } 3552 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) { 3553 bool HasObjCBridgeAttr; 3554 bool ObjCBridgeAttrWillNotWarn = 3555 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3556 false); 3557 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 3558 return; 3559 bool HasObjCBridgeMutableAttr; 3560 bool ObjCBridgeMutableAttrWillNotWarn = 3561 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3562 HasObjCBridgeMutableAttr, false); 3563 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 3564 return; 3565 3566 if (HasObjCBridgeAttr) 3567 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3568 true); 3569 else if (HasObjCBridgeMutableAttr) 3570 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3571 HasObjCBridgeMutableAttr, true); 3572 } 3573 } 3574 3575 void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) { 3576 QualType SrcType = castExpr->getType(); 3577 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) { 3578 if (PRE->isExplicitProperty()) { 3579 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty()) 3580 SrcType = PDecl->getType(); 3581 } 3582 else if (PRE->isImplicitProperty()) { 3583 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter()) 3584 SrcType = Getter->getReturnType(); 3585 3586 } 3587 } 3588 3589 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType); 3590 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType); 3591 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation) 3592 return; 3593 CheckObjCBridgeRelatedConversions(castExpr->getLocStart(), 3594 castType, SrcType, castExpr); 3595 return; 3596 } 3597 3598 bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, 3599 CastKind &Kind) { 3600 if (!getLangOpts().ObjC1) 3601 return false; 3602 ARCConversionTypeClass exprACTC = 3603 classifyTypeForARCConversion(castExpr->getType()); 3604 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 3605 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) || 3606 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) { 3607 CheckTollFreeBridgeCast(castType, castExpr); 3608 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast 3609 : CK_CPointerToObjCPointerCast; 3610 return true; 3611 } 3612 return false; 3613 } 3614 3615 bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc, 3616 QualType DestType, QualType SrcType, 3617 ObjCInterfaceDecl *&RelatedClass, 3618 ObjCMethodDecl *&ClassMethod, 3619 ObjCMethodDecl *&InstanceMethod, 3620 TypedefNameDecl *&TDNDecl, 3621 bool CfToNs) { 3622 QualType T = CfToNs ? SrcType : DestType; 3623 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl); 3624 if (!ObjCBAttr) 3625 return false; 3626 3627 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass(); 3628 IdentifierInfo *CMId = ObjCBAttr->getClassMethod(); 3629 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod(); 3630 if (!RCId) 3631 return false; 3632 NamedDecl *Target = nullptr; 3633 // Check for an existing type with this name. 3634 LookupResult R(*this, DeclarationName(RCId), SourceLocation(), 3635 Sema::LookupOrdinaryName); 3636 if (!LookupName(R, TUScope)) { 3637 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId 3638 << SrcType << DestType; 3639 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3640 return false; 3641 } 3642 Target = R.getFoundDecl(); 3643 if (Target && isa<ObjCInterfaceDecl>(Target)) 3644 RelatedClass = cast<ObjCInterfaceDecl>(Target); 3645 else { 3646 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId 3647 << SrcType << DestType; 3648 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3649 if (Target) 3650 Diag(Target->getLocStart(), diag::note_declared_at); 3651 return false; 3652 } 3653 3654 // Check for an existing class method with the given selector name. 3655 if (CfToNs && CMId) { 3656 Selector Sel = Context.Selectors.getUnarySelector(CMId); 3657 ClassMethod = RelatedClass->lookupMethod(Sel, false); 3658 if (!ClassMethod) { 3659 Diag(Loc, diag::err_objc_bridged_related_known_method) 3660 << SrcType << DestType << Sel << false; 3661 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3662 return false; 3663 } 3664 } 3665 3666 // Check for an existing instance method with the given selector name. 3667 if (!CfToNs && IMId) { 3668 Selector Sel = Context.Selectors.getNullarySelector(IMId); 3669 InstanceMethod = RelatedClass->lookupMethod(Sel, true); 3670 if (!InstanceMethod) { 3671 Diag(Loc, diag::err_objc_bridged_related_known_method) 3672 << SrcType << DestType << Sel << true; 3673 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3674 return false; 3675 } 3676 } 3677 return true; 3678 } 3679 3680 bool 3681 Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc, 3682 QualType DestType, QualType SrcType, 3683 Expr *&SrcExpr) { 3684 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType); 3685 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType); 3686 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable); 3687 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation); 3688 if (!CfToNs && !NsToCf) 3689 return false; 3690 3691 ObjCInterfaceDecl *RelatedClass; 3692 ObjCMethodDecl *ClassMethod = nullptr; 3693 ObjCMethodDecl *InstanceMethod = nullptr; 3694 TypedefNameDecl *TDNDecl = nullptr; 3695 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass, 3696 ClassMethod, InstanceMethod, TDNDecl, CfToNs)) 3697 return false; 3698 3699 if (CfToNs) { 3700 // Implicit conversion from CF to ObjC object is needed. 3701 if (ClassMethod) { 3702 std::string ExpressionString = "["; 3703 ExpressionString += RelatedClass->getNameAsString(); 3704 ExpressionString += " "; 3705 ExpressionString += ClassMethod->getSelector().getAsString(); 3706 SourceLocation SrcExprEndLoc = PP.getLocForEndOfToken(SrcExpr->getLocEnd()); 3707 // Provide a fixit: [RelatedClass ClassMethod SrcExpr] 3708 Diag(Loc, diag::err_objc_bridged_related_known_method) 3709 << SrcType << DestType << ClassMethod->getSelector() << false 3710 << FixItHint::CreateInsertion(SrcExpr->getLocStart(), ExpressionString) 3711 << FixItHint::CreateInsertion(SrcExprEndLoc, "]"); 3712 Diag(RelatedClass->getLocStart(), diag::note_declared_at); 3713 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3714 3715 QualType receiverType = 3716 Context.getObjCInterfaceType(RelatedClass); 3717 // Argument. 3718 Expr *args[] = { SrcExpr }; 3719 ExprResult msg = BuildClassMessageImplicit(receiverType, false, 3720 ClassMethod->getLocation(), 3721 ClassMethod->getSelector(), ClassMethod, 3722 MultiExprArg(args, 1)); 3723 SrcExpr = msg.get(); 3724 return true; 3725 } 3726 } 3727 else { 3728 // Implicit conversion from ObjC type to CF object is needed. 3729 if (InstanceMethod) { 3730 std::string ExpressionString; 3731 SourceLocation SrcExprEndLoc = PP.getLocForEndOfToken(SrcExpr->getLocEnd()); 3732 if (InstanceMethod->isPropertyAccessor()) 3733 if (const ObjCPropertyDecl *PDecl = InstanceMethod->findPropertyDecl()) { 3734 // fixit: ObjectExpr.propertyname when it is aproperty accessor. 3735 ExpressionString = "."; 3736 ExpressionString += PDecl->getNameAsString(); 3737 Diag(Loc, diag::err_objc_bridged_related_known_method) 3738 << SrcType << DestType << InstanceMethod->getSelector() << true 3739 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 3740 } 3741 if (ExpressionString.empty()) { 3742 // Provide a fixit: [ObjectExpr InstanceMethod] 3743 ExpressionString = " "; 3744 ExpressionString += InstanceMethod->getSelector().getAsString(); 3745 ExpressionString += "]"; 3746 3747 Diag(Loc, diag::err_objc_bridged_related_known_method) 3748 << SrcType << DestType << InstanceMethod->getSelector() << true 3749 << FixItHint::CreateInsertion(SrcExpr->getLocStart(), "[") 3750 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 3751 } 3752 Diag(RelatedClass->getLocStart(), diag::note_declared_at); 3753 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3754 3755 ExprResult msg = 3756 BuildInstanceMessageImplicit(SrcExpr, SrcType, 3757 InstanceMethod->getLocation(), 3758 InstanceMethod->getSelector(), 3759 InstanceMethod, None); 3760 SrcExpr = msg.get(); 3761 return true; 3762 } 3763 } 3764 return false; 3765 } 3766 3767 Sema::ARCConversionResult 3768 Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType, 3769 Expr *&castExpr, CheckedConversionKind CCK, 3770 bool DiagnoseCFAudited, 3771 BinaryOperatorKind Opc) { 3772 QualType castExprType = castExpr->getType(); 3773 3774 // For the purposes of the classification, we assume reference types 3775 // will bind to temporaries. 3776 QualType effCastType = castType; 3777 if (const ReferenceType *ref = castType->getAs<ReferenceType>()) 3778 effCastType = ref->getPointeeType(); 3779 3780 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); 3781 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); 3782 if (exprACTC == castACTC) { 3783 // check for viablity and report error if casting an rvalue to a 3784 // life-time qualifier. 3785 if ((castACTC == ACTC_retainable) && 3786 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && 3787 (castType != castExprType)) { 3788 const Type *DT = castType.getTypePtr(); 3789 QualType QDT = castType; 3790 // We desugar some types but not others. We ignore those 3791 // that cannot happen in a cast; i.e. auto, and those which 3792 // should not be de-sugared; i.e typedef. 3793 if (const ParenType *PT = dyn_cast<ParenType>(DT)) 3794 QDT = PT->desugar(); 3795 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) 3796 QDT = TP->desugar(); 3797 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) 3798 QDT = AT->desugar(); 3799 if (QDT != castType && 3800 QDT.getObjCLifetime() != Qualifiers::OCL_None) { 3801 SourceLocation loc = 3802 (castRange.isValid() ? castRange.getBegin() 3803 : castExpr->getExprLoc()); 3804 Diag(loc, diag::err_arc_nolifetime_behavior); 3805 } 3806 } 3807 return ACR_okay; 3808 } 3809 3810 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; 3811 3812 // Allow all of these types to be cast to integer types (but not 3813 // vice-versa). 3814 if (castACTC == ACTC_none && castType->isIntegralType(Context)) 3815 return ACR_okay; 3816 3817 // Allow casts between pointers to lifetime types (e.g., __strong id*) 3818 // and pointers to void (e.g., cv void *). Casting from void* to lifetime* 3819 // must be explicit. 3820 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) 3821 return ACR_okay; 3822 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && 3823 CCK != CCK_ImplicitConversion) 3824 return ACR_okay; 3825 3826 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) { 3827 // For invalid casts, fall through. 3828 case ACC_invalid: 3829 break; 3830 3831 // Do nothing for both bottom and +0. 3832 case ACC_bottom: 3833 case ACC_plusZero: 3834 return ACR_okay; 3835 3836 // If the result is +1, consume it here. 3837 case ACC_plusOne: 3838 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), 3839 CK_ARCConsumeObject, castExpr, 3840 nullptr, VK_RValue); 3841 ExprNeedsCleanups = true; 3842 return ACR_okay; 3843 } 3844 3845 // If this is a non-implicit cast from id or block type to a 3846 // CoreFoundation type, delay complaining in case the cast is used 3847 // in an acceptable context. 3848 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && 3849 CCK != CCK_ImplicitConversion) 3850 return ACR_unbridged; 3851 3852 // Do not issue bridge cast" diagnostic when implicit casting a cstring 3853 // to 'NSString *'. Let caller issue a normal mismatched diagnostic with 3854 // suitable fix-it. 3855 if (castACTC == ACTC_retainable && exprACTC == ACTC_none && 3856 ConversionToObjCStringLiteralCheck(castType, castExpr)) 3857 return ACR_okay; 3858 3859 // Do not issue "bridge cast" diagnostic when implicit casting 3860 // a retainable object to a CF type parameter belonging to an audited 3861 // CF API function. Let caller issue a normal type mismatched diagnostic 3862 // instead. 3863 if (!DiagnoseCFAudited || exprACTC != ACTC_retainable || 3864 castACTC != ACTC_coreFoundation) 3865 if (!(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable && 3866 (Opc == BO_NE || Opc == BO_EQ))) 3867 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 3868 castExpr, castExpr, exprACTC, CCK); 3869 return ACR_okay; 3870 } 3871 3872 /// Given that we saw an expression with the ARCUnbridgedCastTy 3873 /// placeholder type, complain bitterly. 3874 void Sema::diagnoseARCUnbridgedCast(Expr *e) { 3875 // We expect the spurious ImplicitCastExpr to already have been stripped. 3876 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 3877 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); 3878 3879 SourceRange castRange; 3880 QualType castType; 3881 CheckedConversionKind CCK; 3882 3883 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { 3884 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); 3885 castType = cast->getTypeAsWritten(); 3886 CCK = CCK_CStyleCast; 3887 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { 3888 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); 3889 castType = cast->getTypeAsWritten(); 3890 CCK = CCK_OtherCast; 3891 } else { 3892 castType = cast->getType(); 3893 CCK = CCK_ImplicitConversion; 3894 } 3895 3896 ARCConversionTypeClass castACTC = 3897 classifyTypeForARCConversion(castType.getNonReferenceType()); 3898 3899 Expr *castExpr = realCast->getSubExpr(); 3900 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); 3901 3902 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 3903 castExpr, realCast, ACTC_retainable, CCK); 3904 } 3905 3906 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast 3907 /// type, remove the placeholder cast. 3908 Expr *Sema::stripARCUnbridgedCast(Expr *e) { 3909 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 3910 3911 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { 3912 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); 3913 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); 3914 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { 3915 assert(uo->getOpcode() == UO_Extension); 3916 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); 3917 return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(), 3918 sub->getValueKind(), sub->getObjectKind(), 3919 uo->getOperatorLoc()); 3920 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { 3921 assert(!gse->isResultDependent()); 3922 3923 unsigned n = gse->getNumAssocs(); 3924 SmallVector<Expr*, 4> subExprs(n); 3925 SmallVector<TypeSourceInfo*, 4> subTypes(n); 3926 for (unsigned i = 0; i != n; ++i) { 3927 subTypes[i] = gse->getAssocTypeSourceInfo(i); 3928 Expr *sub = gse->getAssocExpr(i); 3929 if (i == gse->getResultIndex()) 3930 sub = stripARCUnbridgedCast(sub); 3931 subExprs[i] = sub; 3932 } 3933 3934 return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(), 3935 gse->getControllingExpr(), 3936 subTypes, subExprs, 3937 gse->getDefaultLoc(), 3938 gse->getRParenLoc(), 3939 gse->containsUnexpandedParameterPack(), 3940 gse->getResultIndex()); 3941 } else { 3942 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); 3943 return cast<ImplicitCastExpr>(e)->getSubExpr(); 3944 } 3945 } 3946 3947 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, 3948 QualType exprType) { 3949 QualType canCastType = 3950 Context.getCanonicalType(castType).getUnqualifiedType(); 3951 QualType canExprType = 3952 Context.getCanonicalType(exprType).getUnqualifiedType(); 3953 if (isa<ObjCObjectPointerType>(canCastType) && 3954 castType.getObjCLifetime() == Qualifiers::OCL_Weak && 3955 canExprType->isObjCObjectPointerType()) { 3956 if (const ObjCObjectPointerType *ObjT = 3957 canExprType->getAs<ObjCObjectPointerType>()) 3958 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl()) 3959 return !ObjI->isArcWeakrefUnavailable(); 3960 } 3961 return true; 3962 } 3963 3964 /// Look for an ObjCReclaimReturnedObject cast and destroy it. 3965 static Expr *maybeUndoReclaimObject(Expr *e) { 3966 // For now, we just undo operands that are *immediately* reclaim 3967 // expressions, which prevents the vast majority of potential 3968 // problems here. To catch them all, we'd need to rebuild arbitrary 3969 // value-propagating subexpressions --- we can't reliably rebuild 3970 // in-place because of expression sharing. 3971 if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3972 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) 3973 return ice->getSubExpr(); 3974 3975 return e; 3976 } 3977 3978 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, 3979 ObjCBridgeCastKind Kind, 3980 SourceLocation BridgeKeywordLoc, 3981 TypeSourceInfo *TSInfo, 3982 Expr *SubExpr) { 3983 ExprResult SubResult = UsualUnaryConversions(SubExpr); 3984 if (SubResult.isInvalid()) return ExprError(); 3985 SubExpr = SubResult.get(); 3986 3987 QualType T = TSInfo->getType(); 3988 QualType FromType = SubExpr->getType(); 3989 3990 CastKind CK; 3991 3992 bool MustConsume = false; 3993 if (T->isDependentType() || SubExpr->isTypeDependent()) { 3994 // Okay: we'll build a dependent expression type. 3995 CK = CK_Dependent; 3996 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { 3997 // Casting CF -> id 3998 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast 3999 : CK_CPointerToObjCPointerCast); 4000 switch (Kind) { 4001 case OBC_Bridge: 4002 break; 4003 4004 case OBC_BridgeRetained: { 4005 bool br = isKnownName("CFBridgingRelease"); 4006 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4007 << 2 4008 << FromType 4009 << (T->isBlockPointerType()? 1 : 0) 4010 << T 4011 << SubExpr->getSourceRange() 4012 << Kind; 4013 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4014 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); 4015 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) 4016 << FromType << br 4017 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4018 br ? "CFBridgingRelease " 4019 : "__bridge_transfer "); 4020 4021 Kind = OBC_Bridge; 4022 break; 4023 } 4024 4025 case OBC_BridgeTransfer: 4026 // We must consume the Objective-C object produced by the cast. 4027 MustConsume = true; 4028 break; 4029 } 4030 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { 4031 // Okay: id -> CF 4032 CK = CK_BitCast; 4033 switch (Kind) { 4034 case OBC_Bridge: 4035 // Reclaiming a value that's going to be __bridge-casted to CF 4036 // is very dangerous, so we don't do it. 4037 SubExpr = maybeUndoReclaimObject(SubExpr); 4038 break; 4039 4040 case OBC_BridgeRetained: 4041 // Produce the object before casting it. 4042 SubExpr = ImplicitCastExpr::Create(Context, FromType, 4043 CK_ARCProduceObject, 4044 SubExpr, nullptr, VK_RValue); 4045 break; 4046 4047 case OBC_BridgeTransfer: { 4048 bool br = isKnownName("CFBridgingRetain"); 4049 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4050 << (FromType->isBlockPointerType()? 1 : 0) 4051 << FromType 4052 << 2 4053 << T 4054 << SubExpr->getSourceRange() 4055 << Kind; 4056 4057 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4058 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); 4059 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) 4060 << T << br 4061 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4062 br ? "CFBridgingRetain " : "__bridge_retained"); 4063 4064 Kind = OBC_Bridge; 4065 break; 4066 } 4067 } 4068 } else { 4069 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) 4070 << FromType << T << Kind 4071 << SubExpr->getSourceRange() 4072 << TSInfo->getTypeLoc().getSourceRange(); 4073 return ExprError(); 4074 } 4075 4076 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, 4077 BridgeKeywordLoc, 4078 TSInfo, SubExpr); 4079 4080 if (MustConsume) { 4081 ExprNeedsCleanups = true; 4082 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 4083 nullptr, VK_RValue); 4084 } 4085 4086 return Result; 4087 } 4088 4089 ExprResult Sema::ActOnObjCBridgedCast(Scope *S, 4090 SourceLocation LParenLoc, 4091 ObjCBridgeCastKind Kind, 4092 SourceLocation BridgeKeywordLoc, 4093 ParsedType Type, 4094 SourceLocation RParenLoc, 4095 Expr *SubExpr) { 4096 TypeSourceInfo *TSInfo = nullptr; 4097 QualType T = GetTypeFromParser(Type, &TSInfo); 4098 if (Kind == OBC_Bridge) 4099 CheckTollFreeBridgeCast(T, SubExpr); 4100 if (!TSInfo) 4101 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); 4102 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 4103 SubExpr); 4104 } 4105