1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for C++ declarations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/ASTConsumer.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/RecursiveASTVisitor.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/AST/TypeOrdering.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/LiteralSupport.h" 31 #include "clang/Lex/Preprocessor.h" 32 #include "clang/Sema/CXXFieldCollector.h" 33 #include "clang/Sema/DeclSpec.h" 34 #include "clang/Sema/Initialization.h" 35 #include "clang/Sema/Lookup.h" 36 #include "clang/Sema/ParsedTemplate.h" 37 #include "clang/Sema/Scope.h" 38 #include "clang/Sema/ScopeInfo.h" 39 #include "clang/Sema/Template.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/ADT/SmallString.h" 42 #include <map> 43 #include <set> 44 45 using namespace clang; 46 47 //===----------------------------------------------------------------------===// 48 // CheckDefaultArgumentVisitor 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 53 /// the default argument of a parameter to determine whether it 54 /// contains any ill-formed subexpressions. For example, this will 55 /// diagnose the use of local variables or parameters within the 56 /// default argument expression. 57 class CheckDefaultArgumentVisitor 58 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { 59 Expr *DefaultArg; 60 Sema *S; 61 62 public: 63 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) 64 : DefaultArg(defarg), S(s) {} 65 66 bool VisitExpr(Expr *Node); 67 bool VisitDeclRefExpr(DeclRefExpr *DRE); 68 bool VisitCXXThisExpr(CXXThisExpr *ThisE); 69 bool VisitLambdaExpr(LambdaExpr *Lambda); 70 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE); 71 }; 72 73 /// VisitExpr - Visit all of the children of this expression. 74 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { 75 bool IsInvalid = false; 76 for (Stmt::child_range I = Node->children(); I; ++I) 77 IsInvalid |= Visit(*I); 78 return IsInvalid; 79 } 80 81 /// VisitDeclRefExpr - Visit a reference to a declaration, to 82 /// determine whether this declaration can be used in the default 83 /// argument expression. 84 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { 85 NamedDecl *Decl = DRE->getDecl(); 86 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { 87 // C++ [dcl.fct.default]p9 88 // Default arguments are evaluated each time the function is 89 // called. The order of evaluation of function arguments is 90 // unspecified. Consequently, parameters of a function shall not 91 // be used in default argument expressions, even if they are not 92 // evaluated. Parameters of a function declared before a default 93 // argument expression are in scope and can hide namespace and 94 // class member names. 95 return S->Diag(DRE->getLocStart(), 96 diag::err_param_default_argument_references_param) 97 << Param->getDeclName() << DefaultArg->getSourceRange(); 98 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { 99 // C++ [dcl.fct.default]p7 100 // Local variables shall not be used in default argument 101 // expressions. 102 if (VDecl->isLocalVarDecl()) 103 return S->Diag(DRE->getLocStart(), 104 diag::err_param_default_argument_references_local) 105 << VDecl->getDeclName() << DefaultArg->getSourceRange(); 106 } 107 108 return false; 109 } 110 111 /// VisitCXXThisExpr - Visit a C++ "this" expression. 112 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { 113 // C++ [dcl.fct.default]p8: 114 // The keyword this shall not be used in a default argument of a 115 // member function. 116 return S->Diag(ThisE->getLocStart(), 117 diag::err_param_default_argument_references_this) 118 << ThisE->getSourceRange(); 119 } 120 121 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) { 122 bool Invalid = false; 123 for (PseudoObjectExpr::semantics_iterator 124 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) { 125 Expr *E = *i; 126 127 // Look through bindings. 128 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 129 E = OVE->getSourceExpr(); 130 assert(E && "pseudo-object binding without source expression?"); 131 } 132 133 Invalid |= Visit(E); 134 } 135 return Invalid; 136 } 137 138 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) { 139 // C++11 [expr.lambda.prim]p13: 140 // A lambda-expression appearing in a default argument shall not 141 // implicitly or explicitly capture any entity. 142 if (Lambda->capture_begin() == Lambda->capture_end()) 143 return false; 144 145 return S->Diag(Lambda->getLocStart(), 146 diag::err_lambda_capture_default_arg); 147 } 148 } 149 150 void 151 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 152 const CXXMethodDecl *Method) { 153 // If we have an MSAny spec already, don't bother. 154 if (!Method || ComputedEST == EST_MSAny) 155 return; 156 157 const FunctionProtoType *Proto 158 = Method->getType()->getAs<FunctionProtoType>(); 159 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 160 if (!Proto) 161 return; 162 163 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 164 165 // If this function can throw any exceptions, make a note of that. 166 if (EST == EST_MSAny || EST == EST_None) { 167 ClearExceptions(); 168 ComputedEST = EST; 169 return; 170 } 171 172 // FIXME: If the call to this decl is using any of its default arguments, we 173 // need to search them for potentially-throwing calls. 174 175 // If this function has a basic noexcept, it doesn't affect the outcome. 176 if (EST == EST_BasicNoexcept) 177 return; 178 179 // If we have a throw-all spec at this point, ignore the function. 180 if (ComputedEST == EST_None) 181 return; 182 183 // If we're still at noexcept(true) and there's a nothrow() callee, 184 // change to that specification. 185 if (EST == EST_DynamicNone) { 186 if (ComputedEST == EST_BasicNoexcept) 187 ComputedEST = EST_DynamicNone; 188 return; 189 } 190 191 // Check out noexcept specs. 192 if (EST == EST_ComputedNoexcept) { 193 FunctionProtoType::NoexceptResult NR = 194 Proto->getNoexceptSpec(Self->Context); 195 assert(NR != FunctionProtoType::NR_NoNoexcept && 196 "Must have noexcept result for EST_ComputedNoexcept."); 197 assert(NR != FunctionProtoType::NR_Dependent && 198 "Should not generate implicit declarations for dependent cases, " 199 "and don't know how to handle them anyway."); 200 201 // noexcept(false) -> no spec on the new function 202 if (NR == FunctionProtoType::NR_Throw) { 203 ClearExceptions(); 204 ComputedEST = EST_None; 205 } 206 // noexcept(true) won't change anything either. 207 return; 208 } 209 210 assert(EST == EST_Dynamic && "EST case not considered earlier."); 211 assert(ComputedEST != EST_None && 212 "Shouldn't collect exceptions when throw-all is guaranteed."); 213 ComputedEST = EST_Dynamic; 214 // Record the exceptions in this function's exception specification. 215 for (const auto &E : Proto->exceptions()) 216 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 217 Exceptions.push_back(E); 218 } 219 220 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) { 221 if (!E || ComputedEST == EST_MSAny) 222 return; 223 224 // FIXME: 225 // 226 // C++0x [except.spec]p14: 227 // [An] implicit exception-specification specifies the type-id T if and 228 // only if T is allowed by the exception-specification of a function directly 229 // invoked by f's implicit definition; f shall allow all exceptions if any 230 // function it directly invokes allows all exceptions, and f shall allow no 231 // exceptions if every function it directly invokes allows no exceptions. 232 // 233 // Note in particular that if an implicit exception-specification is generated 234 // for a function containing a throw-expression, that specification can still 235 // be noexcept(true). 236 // 237 // Note also that 'directly invoked' is not defined in the standard, and there 238 // is no indication that we should only consider potentially-evaluated calls. 239 // 240 // Ultimately we should implement the intent of the standard: the exception 241 // specification should be the set of exceptions which can be thrown by the 242 // implicit definition. For now, we assume that any non-nothrow expression can 243 // throw any exception. 244 245 if (Self->canThrow(E)) 246 ComputedEST = EST_None; 247 } 248 249 bool 250 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 251 SourceLocation EqualLoc) { 252 if (RequireCompleteType(Param->getLocation(), Param->getType(), 253 diag::err_typecheck_decl_incomplete_type)) { 254 Param->setInvalidDecl(); 255 return true; 256 } 257 258 // C++ [dcl.fct.default]p5 259 // A default argument expression is implicitly converted (clause 260 // 4) to the parameter type. The default argument expression has 261 // the same semantic constraints as the initializer expression in 262 // a declaration of a variable of the parameter type, using the 263 // copy-initialization semantics (8.5). 264 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 265 Param); 266 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 267 EqualLoc); 268 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 269 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 270 if (Result.isInvalid()) 271 return true; 272 Arg = Result.getAs<Expr>(); 273 274 CheckCompletedExpr(Arg, EqualLoc); 275 Arg = MaybeCreateExprWithCleanups(Arg); 276 277 // Okay: add the default argument to the parameter 278 Param->setDefaultArg(Arg); 279 280 // We have already instantiated this parameter; provide each of the 281 // instantiations with the uninstantiated default argument. 282 UnparsedDefaultArgInstantiationsMap::iterator InstPos 283 = UnparsedDefaultArgInstantiations.find(Param); 284 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 285 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 286 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 287 288 // We're done tracking this parameter's instantiations. 289 UnparsedDefaultArgInstantiations.erase(InstPos); 290 } 291 292 return false; 293 } 294 295 /// ActOnParamDefaultArgument - Check whether the default argument 296 /// provided for a function parameter is well-formed. If so, attach it 297 /// to the parameter declaration. 298 void 299 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 300 Expr *DefaultArg) { 301 if (!param || !DefaultArg) 302 return; 303 304 ParmVarDecl *Param = cast<ParmVarDecl>(param); 305 UnparsedDefaultArgLocs.erase(Param); 306 307 // Default arguments are only permitted in C++ 308 if (!getLangOpts().CPlusPlus) { 309 Diag(EqualLoc, diag::err_param_default_argument) 310 << DefaultArg->getSourceRange(); 311 Param->setInvalidDecl(); 312 return; 313 } 314 315 // Check for unexpanded parameter packs. 316 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { 317 Param->setInvalidDecl(); 318 return; 319 } 320 321 // Check that the default argument is well-formed 322 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); 323 if (DefaultArgChecker.Visit(DefaultArg)) { 324 Param->setInvalidDecl(); 325 return; 326 } 327 328 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 329 } 330 331 /// ActOnParamUnparsedDefaultArgument - We've seen a default 332 /// argument for a function parameter, but we can't parse it yet 333 /// because we're inside a class definition. Note that this default 334 /// argument will be parsed later. 335 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 336 SourceLocation EqualLoc, 337 SourceLocation ArgLoc) { 338 if (!param) 339 return; 340 341 ParmVarDecl *Param = cast<ParmVarDecl>(param); 342 Param->setUnparsedDefaultArg(); 343 UnparsedDefaultArgLocs[Param] = ArgLoc; 344 } 345 346 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of 347 /// the default argument for the parameter param failed. 348 void Sema::ActOnParamDefaultArgumentError(Decl *param, 349 SourceLocation EqualLoc) { 350 if (!param) 351 return; 352 353 ParmVarDecl *Param = cast<ParmVarDecl>(param); 354 Param->setInvalidDecl(); 355 UnparsedDefaultArgLocs.erase(Param); 356 Param->setDefaultArg(new(Context) 357 OpaqueValueExpr(EqualLoc, 358 Param->getType().getNonReferenceType(), 359 VK_RValue)); 360 } 361 362 /// CheckExtraCXXDefaultArguments - Check for any extra default 363 /// arguments in the declarator, which is not a function declaration 364 /// or definition and therefore is not permitted to have default 365 /// arguments. This routine should be invoked for every declarator 366 /// that is not a function declaration or definition. 367 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 368 // C++ [dcl.fct.default]p3 369 // A default argument expression shall be specified only in the 370 // parameter-declaration-clause of a function declaration or in a 371 // template-parameter (14.1). It shall not be specified for a 372 // parameter pack. If it is specified in a 373 // parameter-declaration-clause, it shall not occur within a 374 // declarator or abstract-declarator of a parameter-declaration. 375 bool MightBeFunction = D.isFunctionDeclarationContext(); 376 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 377 DeclaratorChunk &chunk = D.getTypeObject(i); 378 if (chunk.Kind == DeclaratorChunk::Function) { 379 if (MightBeFunction) { 380 // This is a function declaration. It can have default arguments, but 381 // keep looking in case its return type is a function type with default 382 // arguments. 383 MightBeFunction = false; 384 continue; 385 } 386 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 387 ++argIdx) { 388 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 389 if (Param->hasUnparsedDefaultArg()) { 390 CachedTokens *Toks = chunk.Fun.Params[argIdx].DefaultArgTokens; 391 SourceRange SR; 392 if (Toks->size() > 1) 393 SR = SourceRange((*Toks)[1].getLocation(), 394 Toks->back().getLocation()); 395 else 396 SR = UnparsedDefaultArgLocs[Param]; 397 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 398 << SR; 399 delete Toks; 400 chunk.Fun.Params[argIdx].DefaultArgTokens = nullptr; 401 } else if (Param->getDefaultArg()) { 402 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 403 << Param->getDefaultArg()->getSourceRange(); 404 Param->setDefaultArg(nullptr); 405 } 406 } 407 } else if (chunk.Kind != DeclaratorChunk::Paren) { 408 MightBeFunction = false; 409 } 410 } 411 } 412 413 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 414 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) { 415 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1); 416 if (!PVD->hasDefaultArg()) 417 return false; 418 if (!PVD->hasInheritedDefaultArg()) 419 return true; 420 } 421 return false; 422 } 423 424 /// MergeCXXFunctionDecl - Merge two declarations of the same C++ 425 /// function, once we already know that they have the same 426 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an 427 /// error, false otherwise. 428 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 429 Scope *S) { 430 bool Invalid = false; 431 432 // C++ [dcl.fct.default]p4: 433 // For non-template functions, default arguments can be added in 434 // later declarations of a function in the same 435 // scope. Declarations in different scopes have completely 436 // distinct sets of default arguments. That is, declarations in 437 // inner scopes do not acquire default arguments from 438 // declarations in outer scopes, and vice versa. In a given 439 // function declaration, all parameters subsequent to a 440 // parameter with a default argument shall have default 441 // arguments supplied in this or previous declarations. A 442 // default argument shall not be redefined by a later 443 // declaration (not even to the same value). 444 // 445 // C++ [dcl.fct.default]p6: 446 // Except for member functions of class templates, the default arguments 447 // in a member function definition that appears outside of the class 448 // definition are added to the set of default arguments provided by the 449 // member function declaration in the class definition. 450 for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { 451 ParmVarDecl *OldParam = Old->getParamDecl(p); 452 ParmVarDecl *NewParam = New->getParamDecl(p); 453 454 bool OldParamHasDfl = OldParam->hasDefaultArg(); 455 bool NewParamHasDfl = NewParam->hasDefaultArg(); 456 457 // The declaration context corresponding to the scope is the semantic 458 // parent, unless this is a local function declaration, in which case 459 // it is that surrounding function. 460 DeclContext *ScopeDC = New->isLocalExternDecl() 461 ? New->getLexicalDeclContext() 462 : New->getDeclContext(); 463 if (S && !isDeclInScope(Old, ScopeDC, S) && 464 !New->getDeclContext()->isRecord()) 465 // Ignore default parameters of old decl if they are not in 466 // the same scope and this is not an out-of-line definition of 467 // a member function. 468 OldParamHasDfl = false; 469 if (New->isLocalExternDecl() != Old->isLocalExternDecl()) 470 // If only one of these is a local function declaration, then they are 471 // declared in different scopes, even though isDeclInScope may think 472 // they're in the same scope. (If both are local, the scope check is 473 // sufficent, and if neither is local, then they are in the same scope.) 474 OldParamHasDfl = false; 475 476 if (OldParamHasDfl && NewParamHasDfl) { 477 478 unsigned DiagDefaultParamID = 479 diag::err_param_default_argument_redefinition; 480 481 // MSVC accepts that default parameters be redefined for member functions 482 // of template class. The new default parameter's value is ignored. 483 Invalid = true; 484 if (getLangOpts().MicrosoftExt) { 485 CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New); 486 if (MD && MD->getParent()->getDescribedClassTemplate()) { 487 // Merge the old default argument into the new parameter. 488 NewParam->setHasInheritedDefaultArg(); 489 if (OldParam->hasUninstantiatedDefaultArg()) 490 NewParam->setUninstantiatedDefaultArg( 491 OldParam->getUninstantiatedDefaultArg()); 492 else 493 NewParam->setDefaultArg(OldParam->getInit()); 494 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 495 Invalid = false; 496 } 497 } 498 499 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 500 // hint here. Alternatively, we could walk the type-source information 501 // for NewParam to find the last source location in the type... but it 502 // isn't worth the effort right now. This is the kind of test case that 503 // is hard to get right: 504 // int f(int); 505 // void g(int (*fp)(int) = f); 506 // void g(int (*fp)(int) = &f); 507 Diag(NewParam->getLocation(), DiagDefaultParamID) 508 << NewParam->getDefaultArgRange(); 509 510 // Look for the function declaration where the default argument was 511 // actually written, which may be a declaration prior to Old. 512 for (FunctionDecl *Older = Old->getPreviousDecl(); 513 Older; Older = Older->getPreviousDecl()) { 514 if (!Older->getParamDecl(p)->hasDefaultArg()) 515 break; 516 517 OldParam = Older->getParamDecl(p); 518 } 519 520 Diag(OldParam->getLocation(), diag::note_previous_definition) 521 << OldParam->getDefaultArgRange(); 522 } else if (OldParamHasDfl) { 523 // Merge the old default argument into the new parameter. 524 // It's important to use getInit() here; getDefaultArg() 525 // strips off any top-level ExprWithCleanups. 526 NewParam->setHasInheritedDefaultArg(); 527 if (OldParam->hasUninstantiatedDefaultArg()) 528 NewParam->setUninstantiatedDefaultArg( 529 OldParam->getUninstantiatedDefaultArg()); 530 else 531 NewParam->setDefaultArg(OldParam->getInit()); 532 } else if (NewParamHasDfl) { 533 if (New->getDescribedFunctionTemplate()) { 534 // Paragraph 4, quoted above, only applies to non-template functions. 535 Diag(NewParam->getLocation(), 536 diag::err_param_default_argument_template_redecl) 537 << NewParam->getDefaultArgRange(); 538 Diag(Old->getLocation(), diag::note_template_prev_declaration) 539 << false; 540 } else if (New->getTemplateSpecializationKind() 541 != TSK_ImplicitInstantiation && 542 New->getTemplateSpecializationKind() != TSK_Undeclared) { 543 // C++ [temp.expr.spec]p21: 544 // Default function arguments shall not be specified in a declaration 545 // or a definition for one of the following explicit specializations: 546 // - the explicit specialization of a function template; 547 // - the explicit specialization of a member function template; 548 // - the explicit specialization of a member function of a class 549 // template where the class template specialization to which the 550 // member function specialization belongs is implicitly 551 // instantiated. 552 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 553 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 554 << New->getDeclName() 555 << NewParam->getDefaultArgRange(); 556 } else if (New->getDeclContext()->isDependentContext()) { 557 // C++ [dcl.fct.default]p6 (DR217): 558 // Default arguments for a member function of a class template shall 559 // be specified on the initial declaration of the member function 560 // within the class template. 561 // 562 // Reading the tea leaves a bit in DR217 and its reference to DR205 563 // leads me to the conclusion that one cannot add default function 564 // arguments for an out-of-line definition of a member function of a 565 // dependent type. 566 int WhichKind = 2; 567 if (CXXRecordDecl *Record 568 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 569 if (Record->getDescribedClassTemplate()) 570 WhichKind = 0; 571 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 572 WhichKind = 1; 573 else 574 WhichKind = 2; 575 } 576 577 Diag(NewParam->getLocation(), 578 diag::err_param_default_argument_member_template_redecl) 579 << WhichKind 580 << NewParam->getDefaultArgRange(); 581 } 582 } 583 } 584 585 // DR1344: If a default argument is added outside a class definition and that 586 // default argument makes the function a special member function, the program 587 // is ill-formed. This can only happen for constructors. 588 if (isa<CXXConstructorDecl>(New) && 589 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 590 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 591 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 592 if (NewSM != OldSM) { 593 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 594 assert(NewParam->hasDefaultArg()); 595 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 596 << NewParam->getDefaultArgRange() << NewSM; 597 Diag(Old->getLocation(), diag::note_previous_declaration); 598 } 599 } 600 601 const FunctionDecl *Def; 602 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 603 // template has a constexpr specifier then all its declarations shall 604 // contain the constexpr specifier. 605 if (New->isConstexpr() != Old->isConstexpr()) { 606 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 607 << New << New->isConstexpr(); 608 Diag(Old->getLocation(), diag::note_previous_declaration); 609 Invalid = true; 610 } else if (!Old->isInlined() && New->isInlined() && Old->isDefined(Def)) { 611 // C++11 [dcl.fcn.spec]p4: 612 // If the definition of a function appears in a translation unit before its 613 // first declaration as inline, the program is ill-formed. 614 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 615 Diag(Def->getLocation(), diag::note_previous_definition); 616 Invalid = true; 617 } 618 619 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 620 // argument expression, that declaration shall be a definition and shall be 621 // the only declaration of the function or function template in the 622 // translation unit. 623 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 624 functionDeclHasDefaultArgument(Old)) { 625 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 626 Diag(Old->getLocation(), diag::note_previous_declaration); 627 Invalid = true; 628 } 629 630 if (CheckEquivalentExceptionSpec(Old, New)) 631 Invalid = true; 632 633 return Invalid; 634 } 635 636 /// \brief Merge the exception specifications of two variable declarations. 637 /// 638 /// This is called when there's a redeclaration of a VarDecl. The function 639 /// checks if the redeclaration might have an exception specification and 640 /// validates compatibility and merges the specs if necessary. 641 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 642 // Shortcut if exceptions are disabled. 643 if (!getLangOpts().CXXExceptions) 644 return; 645 646 assert(Context.hasSameType(New->getType(), Old->getType()) && 647 "Should only be called if types are otherwise the same."); 648 649 QualType NewType = New->getType(); 650 QualType OldType = Old->getType(); 651 652 // We're only interested in pointers and references to functions, as well 653 // as pointers to member functions. 654 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 655 NewType = R->getPointeeType(); 656 OldType = OldType->getAs<ReferenceType>()->getPointeeType(); 657 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 658 NewType = P->getPointeeType(); 659 OldType = OldType->getAs<PointerType>()->getPointeeType(); 660 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 661 NewType = M->getPointeeType(); 662 OldType = OldType->getAs<MemberPointerType>()->getPointeeType(); 663 } 664 665 if (!NewType->isFunctionProtoType()) 666 return; 667 668 // There's lots of special cases for functions. For function pointers, system 669 // libraries are hopefully not as broken so that we don't need these 670 // workarounds. 671 if (CheckEquivalentExceptionSpec( 672 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 673 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 674 New->setInvalidDecl(); 675 } 676 } 677 678 /// CheckCXXDefaultArguments - Verify that the default arguments for a 679 /// function declaration are well-formed according to C++ 680 /// [dcl.fct.default]. 681 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 682 unsigned NumParams = FD->getNumParams(); 683 unsigned p; 684 685 // Find first parameter with a default argument 686 for (p = 0; p < NumParams; ++p) { 687 ParmVarDecl *Param = FD->getParamDecl(p); 688 if (Param->hasDefaultArg()) 689 break; 690 } 691 692 // C++ [dcl.fct.default]p4: 693 // In a given function declaration, all parameters 694 // subsequent to a parameter with a default argument shall 695 // have default arguments supplied in this or previous 696 // declarations. A default argument shall not be redefined 697 // by a later declaration (not even to the same value). 698 unsigned LastMissingDefaultArg = 0; 699 for (; p < NumParams; ++p) { 700 ParmVarDecl *Param = FD->getParamDecl(p); 701 if (!Param->hasDefaultArg()) { 702 if (Param->isInvalidDecl()) 703 /* We already complained about this parameter. */; 704 else if (Param->getIdentifier()) 705 Diag(Param->getLocation(), 706 diag::err_param_default_argument_missing_name) 707 << Param->getIdentifier(); 708 else 709 Diag(Param->getLocation(), 710 diag::err_param_default_argument_missing); 711 712 LastMissingDefaultArg = p; 713 } 714 } 715 716 if (LastMissingDefaultArg > 0) { 717 // Some default arguments were missing. Clear out all of the 718 // default arguments up to (and including) the last missing 719 // default argument, so that we leave the function parameters 720 // in a semantically valid state. 721 for (p = 0; p <= LastMissingDefaultArg; ++p) { 722 ParmVarDecl *Param = FD->getParamDecl(p); 723 if (Param->hasDefaultArg()) { 724 Param->setDefaultArg(nullptr); 725 } 726 } 727 } 728 } 729 730 // CheckConstexprParameterTypes - Check whether a function's parameter types 731 // are all literal types. If so, return true. If not, produce a suitable 732 // diagnostic and return false. 733 static bool CheckConstexprParameterTypes(Sema &SemaRef, 734 const FunctionDecl *FD) { 735 unsigned ArgIndex = 0; 736 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>(); 737 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 738 e = FT->param_type_end(); 739 i != e; ++i, ++ArgIndex) { 740 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 741 SourceLocation ParamLoc = PD->getLocation(); 742 if (!(*i)->isDependentType() && 743 SemaRef.RequireLiteralType(ParamLoc, *i, 744 diag::err_constexpr_non_literal_param, 745 ArgIndex+1, PD->getSourceRange(), 746 isa<CXXConstructorDecl>(FD))) 747 return false; 748 } 749 return true; 750 } 751 752 /// \brief Get diagnostic %select index for tag kind for 753 /// record diagnostic message. 754 /// WARNING: Indexes apply to particular diagnostics only! 755 /// 756 /// \returns diagnostic %select index. 757 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 758 switch (Tag) { 759 case TTK_Struct: return 0; 760 case TTK_Interface: return 1; 761 case TTK_Class: return 2; 762 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 763 } 764 } 765 766 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies 767 // the requirements of a constexpr function definition or a constexpr 768 // constructor definition. If so, return true. If not, produce appropriate 769 // diagnostics and return false. 770 // 771 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 772 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) { 773 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 774 if (MD && MD->isInstance()) { 775 // C++11 [dcl.constexpr]p4: 776 // The definition of a constexpr constructor shall satisfy the following 777 // constraints: 778 // - the class shall not have any virtual base classes; 779 const CXXRecordDecl *RD = MD->getParent(); 780 if (RD->getNumVBases()) { 781 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 782 << isa<CXXConstructorDecl>(NewFD) 783 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 784 for (const auto &I : RD->vbases()) 785 Diag(I.getLocStart(), 786 diag::note_constexpr_virtual_base_here) << I.getSourceRange(); 787 return false; 788 } 789 } 790 791 if (!isa<CXXConstructorDecl>(NewFD)) { 792 // C++11 [dcl.constexpr]p3: 793 // The definition of a constexpr function shall satisfy the following 794 // constraints: 795 // - it shall not be virtual; 796 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 797 if (Method && Method->isVirtual()) { 798 Diag(NewFD->getLocation(), diag::err_constexpr_virtual); 799 800 // If it's not obvious why this function is virtual, find an overridden 801 // function which uses the 'virtual' keyword. 802 const CXXMethodDecl *WrittenVirtual = Method; 803 while (!WrittenVirtual->isVirtualAsWritten()) 804 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 805 if (WrittenVirtual != Method) 806 Diag(WrittenVirtual->getLocation(), 807 diag::note_overridden_virtual_function); 808 return false; 809 } 810 811 // - its return type shall be a literal type; 812 QualType RT = NewFD->getReturnType(); 813 if (!RT->isDependentType() && 814 RequireLiteralType(NewFD->getLocation(), RT, 815 diag::err_constexpr_non_literal_return)) 816 return false; 817 } 818 819 // - each of its parameter types shall be a literal type; 820 if (!CheckConstexprParameterTypes(*this, NewFD)) 821 return false; 822 823 return true; 824 } 825 826 /// Check the given declaration statement is legal within a constexpr function 827 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 828 /// 829 /// \return true if the body is OK (maybe only as an extension), false if we 830 /// have diagnosed a problem. 831 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 832 DeclStmt *DS, SourceLocation &Cxx1yLoc) { 833 // C++11 [dcl.constexpr]p3 and p4: 834 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 835 // contain only 836 for (const auto *DclIt : DS->decls()) { 837 switch (DclIt->getKind()) { 838 case Decl::StaticAssert: 839 case Decl::Using: 840 case Decl::UsingShadow: 841 case Decl::UsingDirective: 842 case Decl::UnresolvedUsingTypename: 843 case Decl::UnresolvedUsingValue: 844 // - static_assert-declarations 845 // - using-declarations, 846 // - using-directives, 847 continue; 848 849 case Decl::Typedef: 850 case Decl::TypeAlias: { 851 // - typedef declarations and alias-declarations that do not define 852 // classes or enumerations, 853 const auto *TN = cast<TypedefNameDecl>(DclIt); 854 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 855 // Don't allow variably-modified types in constexpr functions. 856 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 857 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 858 << TL.getSourceRange() << TL.getType() 859 << isa<CXXConstructorDecl>(Dcl); 860 return false; 861 } 862 continue; 863 } 864 865 case Decl::Enum: 866 case Decl::CXXRecord: 867 // C++1y allows types to be defined, not just declared. 868 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) 869 SemaRef.Diag(DS->getLocStart(), 870 SemaRef.getLangOpts().CPlusPlus14 871 ? diag::warn_cxx11_compat_constexpr_type_definition 872 : diag::ext_constexpr_type_definition) 873 << isa<CXXConstructorDecl>(Dcl); 874 continue; 875 876 case Decl::EnumConstant: 877 case Decl::IndirectField: 878 case Decl::ParmVar: 879 // These can only appear with other declarations which are banned in 880 // C++11 and permitted in C++1y, so ignore them. 881 continue; 882 883 case Decl::Var: { 884 // C++1y [dcl.constexpr]p3 allows anything except: 885 // a definition of a variable of non-literal type or of static or 886 // thread storage duration or for which no initialization is performed. 887 const auto *VD = cast<VarDecl>(DclIt); 888 if (VD->isThisDeclarationADefinition()) { 889 if (VD->isStaticLocal()) { 890 SemaRef.Diag(VD->getLocation(), 891 diag::err_constexpr_local_var_static) 892 << isa<CXXConstructorDecl>(Dcl) 893 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 894 return false; 895 } 896 if (!VD->getType()->isDependentType() && 897 SemaRef.RequireLiteralType( 898 VD->getLocation(), VD->getType(), 899 diag::err_constexpr_local_var_non_literal_type, 900 isa<CXXConstructorDecl>(Dcl))) 901 return false; 902 if (!VD->getType()->isDependentType() && 903 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 904 SemaRef.Diag(VD->getLocation(), 905 diag::err_constexpr_local_var_no_init) 906 << isa<CXXConstructorDecl>(Dcl); 907 return false; 908 } 909 } 910 SemaRef.Diag(VD->getLocation(), 911 SemaRef.getLangOpts().CPlusPlus14 912 ? diag::warn_cxx11_compat_constexpr_local_var 913 : diag::ext_constexpr_local_var) 914 << isa<CXXConstructorDecl>(Dcl); 915 continue; 916 } 917 918 case Decl::NamespaceAlias: 919 case Decl::Function: 920 // These are disallowed in C++11 and permitted in C++1y. Allow them 921 // everywhere as an extension. 922 if (!Cxx1yLoc.isValid()) 923 Cxx1yLoc = DS->getLocStart(); 924 continue; 925 926 default: 927 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt) 928 << isa<CXXConstructorDecl>(Dcl); 929 return false; 930 } 931 } 932 933 return true; 934 } 935 936 /// Check that the given field is initialized within a constexpr constructor. 937 /// 938 /// \param Dcl The constexpr constructor being checked. 939 /// \param Field The field being checked. This may be a member of an anonymous 940 /// struct or union nested within the class being checked. 941 /// \param Inits All declarations, including anonymous struct/union members and 942 /// indirect members, for which any initialization was provided. 943 /// \param Diagnosed Set to true if an error is produced. 944 static void CheckConstexprCtorInitializer(Sema &SemaRef, 945 const FunctionDecl *Dcl, 946 FieldDecl *Field, 947 llvm::SmallSet<Decl*, 16> &Inits, 948 bool &Diagnosed) { 949 if (Field->isInvalidDecl()) 950 return; 951 952 if (Field->isUnnamedBitfield()) 953 return; 954 955 // Anonymous unions with no variant members and empty anonymous structs do not 956 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 957 // indirect fields don't need initializing. 958 if (Field->isAnonymousStructOrUnion() && 959 (Field->getType()->isUnionType() 960 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 961 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 962 return; 963 964 if (!Inits.count(Field)) { 965 if (!Diagnosed) { 966 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init); 967 Diagnosed = true; 968 } 969 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init); 970 } else if (Field->isAnonymousStructOrUnion()) { 971 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 972 for (auto *I : RD->fields()) 973 // If an anonymous union contains an anonymous struct of which any member 974 // is initialized, all members must be initialized. 975 if (!RD->isUnion() || Inits.count(I)) 976 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed); 977 } 978 } 979 980 /// Check the provided statement is allowed in a constexpr function 981 /// definition. 982 static bool 983 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 984 SmallVectorImpl<SourceLocation> &ReturnStmts, 985 SourceLocation &Cxx1yLoc) { 986 // - its function-body shall be [...] a compound-statement that contains only 987 switch (S->getStmtClass()) { 988 case Stmt::NullStmtClass: 989 // - null statements, 990 return true; 991 992 case Stmt::DeclStmtClass: 993 // - static_assert-declarations 994 // - using-declarations, 995 // - using-directives, 996 // - typedef declarations and alias-declarations that do not define 997 // classes or enumerations, 998 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc)) 999 return false; 1000 return true; 1001 1002 case Stmt::ReturnStmtClass: 1003 // - and exactly one return statement; 1004 if (isa<CXXConstructorDecl>(Dcl)) { 1005 // C++1y allows return statements in constexpr constructors. 1006 if (!Cxx1yLoc.isValid()) 1007 Cxx1yLoc = S->getLocStart(); 1008 return true; 1009 } 1010 1011 ReturnStmts.push_back(S->getLocStart()); 1012 return true; 1013 1014 case Stmt::CompoundStmtClass: { 1015 // C++1y allows compound-statements. 1016 if (!Cxx1yLoc.isValid()) 1017 Cxx1yLoc = S->getLocStart(); 1018 1019 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 1020 for (auto *BodyIt : CompStmt->body()) { 1021 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 1022 Cxx1yLoc)) 1023 return false; 1024 } 1025 return true; 1026 } 1027 1028 case Stmt::AttributedStmtClass: 1029 if (!Cxx1yLoc.isValid()) 1030 Cxx1yLoc = S->getLocStart(); 1031 return true; 1032 1033 case Stmt::IfStmtClass: { 1034 // C++1y allows if-statements. 1035 if (!Cxx1yLoc.isValid()) 1036 Cxx1yLoc = S->getLocStart(); 1037 1038 IfStmt *If = cast<IfStmt>(S); 1039 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 1040 Cxx1yLoc)) 1041 return false; 1042 if (If->getElse() && 1043 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 1044 Cxx1yLoc)) 1045 return false; 1046 return true; 1047 } 1048 1049 case Stmt::WhileStmtClass: 1050 case Stmt::DoStmtClass: 1051 case Stmt::ForStmtClass: 1052 case Stmt::CXXForRangeStmtClass: 1053 case Stmt::ContinueStmtClass: 1054 // C++1y allows all of these. We don't allow them as extensions in C++11, 1055 // because they don't make sense without variable mutation. 1056 if (!SemaRef.getLangOpts().CPlusPlus14) 1057 break; 1058 if (!Cxx1yLoc.isValid()) 1059 Cxx1yLoc = S->getLocStart(); 1060 for (Stmt::child_range Children = S->children(); Children; ++Children) 1061 if (*Children && 1062 !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts, 1063 Cxx1yLoc)) 1064 return false; 1065 return true; 1066 1067 case Stmt::SwitchStmtClass: 1068 case Stmt::CaseStmtClass: 1069 case Stmt::DefaultStmtClass: 1070 case Stmt::BreakStmtClass: 1071 // C++1y allows switch-statements, and since they don't need variable 1072 // mutation, we can reasonably allow them in C++11 as an extension. 1073 if (!Cxx1yLoc.isValid()) 1074 Cxx1yLoc = S->getLocStart(); 1075 for (Stmt::child_range Children = S->children(); Children; ++Children) 1076 if (*Children && 1077 !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts, 1078 Cxx1yLoc)) 1079 return false; 1080 return true; 1081 1082 default: 1083 if (!isa<Expr>(S)) 1084 break; 1085 1086 // C++1y allows expression-statements. 1087 if (!Cxx1yLoc.isValid()) 1088 Cxx1yLoc = S->getLocStart(); 1089 return true; 1090 } 1091 1092 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt) 1093 << isa<CXXConstructorDecl>(Dcl); 1094 return false; 1095 } 1096 1097 /// Check the body for the given constexpr function declaration only contains 1098 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 1099 /// 1100 /// \return true if the body is OK, false if we have diagnosed a problem. 1101 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) { 1102 if (isa<CXXTryStmt>(Body)) { 1103 // C++11 [dcl.constexpr]p3: 1104 // The definition of a constexpr function shall satisfy the following 1105 // constraints: [...] 1106 // - its function-body shall be = delete, = default, or a 1107 // compound-statement 1108 // 1109 // C++11 [dcl.constexpr]p4: 1110 // In the definition of a constexpr constructor, [...] 1111 // - its function-body shall not be a function-try-block; 1112 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block) 1113 << isa<CXXConstructorDecl>(Dcl); 1114 return false; 1115 } 1116 1117 SmallVector<SourceLocation, 4> ReturnStmts; 1118 1119 // - its function-body shall be [...] a compound-statement that contains only 1120 // [... list of cases ...] 1121 CompoundStmt *CompBody = cast<CompoundStmt>(Body); 1122 SourceLocation Cxx1yLoc; 1123 for (auto *BodyIt : CompBody->body()) { 1124 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc)) 1125 return false; 1126 } 1127 1128 if (Cxx1yLoc.isValid()) 1129 Diag(Cxx1yLoc, 1130 getLangOpts().CPlusPlus14 1131 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 1132 : diag::ext_constexpr_body_invalid_stmt) 1133 << isa<CXXConstructorDecl>(Dcl); 1134 1135 if (const CXXConstructorDecl *Constructor 1136 = dyn_cast<CXXConstructorDecl>(Dcl)) { 1137 const CXXRecordDecl *RD = Constructor->getParent(); 1138 // DR1359: 1139 // - every non-variant non-static data member and base class sub-object 1140 // shall be initialized; 1141 // DR1460: 1142 // - if the class is a union having variant members, exactly one of them 1143 // shall be initialized; 1144 if (RD->isUnion()) { 1145 if (Constructor->getNumCtorInitializers() == 0 && 1146 RD->hasVariantMembers()) { 1147 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init); 1148 return false; 1149 } 1150 } else if (!Constructor->isDependentContext() && 1151 !Constructor->isDelegatingConstructor()) { 1152 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 1153 1154 // Skip detailed checking if we have enough initializers, and we would 1155 // allow at most one initializer per member. 1156 bool AnyAnonStructUnionMembers = false; 1157 unsigned Fields = 0; 1158 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 1159 E = RD->field_end(); I != E; ++I, ++Fields) { 1160 if (I->isAnonymousStructOrUnion()) { 1161 AnyAnonStructUnionMembers = true; 1162 break; 1163 } 1164 } 1165 // DR1460: 1166 // - if the class is a union-like class, but is not a union, for each of 1167 // its anonymous union members having variant members, exactly one of 1168 // them shall be initialized; 1169 if (AnyAnonStructUnionMembers || 1170 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 1171 // Check initialization of non-static data members. Base classes are 1172 // always initialized so do not need to be checked. Dependent bases 1173 // might not have initializers in the member initializer list. 1174 llvm::SmallSet<Decl*, 16> Inits; 1175 for (const auto *I: Constructor->inits()) { 1176 if (FieldDecl *FD = I->getMember()) 1177 Inits.insert(FD); 1178 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 1179 Inits.insert(ID->chain_begin(), ID->chain_end()); 1180 } 1181 1182 bool Diagnosed = false; 1183 for (auto *I : RD->fields()) 1184 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed); 1185 if (Diagnosed) 1186 return false; 1187 } 1188 } 1189 } else { 1190 if (ReturnStmts.empty()) { 1191 // C++1y doesn't require constexpr functions to contain a 'return' 1192 // statement. We still do, unless the return type might be void, because 1193 // otherwise if there's no return statement, the function cannot 1194 // be used in a core constant expression. 1195 bool OK = getLangOpts().CPlusPlus14 && 1196 (Dcl->getReturnType()->isVoidType() || 1197 Dcl->getReturnType()->isDependentType()); 1198 Diag(Dcl->getLocation(), 1199 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 1200 : diag::err_constexpr_body_no_return); 1201 return OK; 1202 } 1203 if (ReturnStmts.size() > 1) { 1204 Diag(ReturnStmts.back(), 1205 getLangOpts().CPlusPlus14 1206 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 1207 : diag::ext_constexpr_body_multiple_return); 1208 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 1209 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return); 1210 } 1211 } 1212 1213 // C++11 [dcl.constexpr]p5: 1214 // if no function argument values exist such that the function invocation 1215 // substitution would produce a constant expression, the program is 1216 // ill-formed; no diagnostic required. 1217 // C++11 [dcl.constexpr]p3: 1218 // - every constructor call and implicit conversion used in initializing the 1219 // return value shall be one of those allowed in a constant expression. 1220 // C++11 [dcl.constexpr]p4: 1221 // - every constructor involved in initializing non-static data members and 1222 // base class sub-objects shall be a constexpr constructor. 1223 SmallVector<PartialDiagnosticAt, 8> Diags; 1224 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) { 1225 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr) 1226 << isa<CXXConstructorDecl>(Dcl); 1227 for (size_t I = 0, N = Diags.size(); I != N; ++I) 1228 Diag(Diags[I].first, Diags[I].second); 1229 // Don't return false here: we allow this for compatibility in 1230 // system headers. 1231 } 1232 1233 return true; 1234 } 1235 1236 /// isCurrentClassName - Determine whether the identifier II is the 1237 /// name of the class type currently being defined. In the case of 1238 /// nested classes, this will only return true if II is the name of 1239 /// the innermost class. 1240 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, 1241 const CXXScopeSpec *SS) { 1242 assert(getLangOpts().CPlusPlus && "No class names in C!"); 1243 1244 CXXRecordDecl *CurDecl; 1245 if (SS && SS->isSet() && !SS->isInvalid()) { 1246 DeclContext *DC = computeDeclContext(*SS, true); 1247 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 1248 } else 1249 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 1250 1251 if (CurDecl && CurDecl->getIdentifier()) 1252 return &II == CurDecl->getIdentifier(); 1253 return false; 1254 } 1255 1256 /// \brief Determine whether the identifier II is a typo for the name of 1257 /// the class type currently being defined. If so, update it to the identifier 1258 /// that should have been used. 1259 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 1260 assert(getLangOpts().CPlusPlus && "No class names in C!"); 1261 1262 if (!getLangOpts().SpellChecking) 1263 return false; 1264 1265 CXXRecordDecl *CurDecl; 1266 if (SS && SS->isSet() && !SS->isInvalid()) { 1267 DeclContext *DC = computeDeclContext(*SS, true); 1268 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 1269 } else 1270 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 1271 1272 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 1273 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 1274 < II->getLength()) { 1275 II = CurDecl->getIdentifier(); 1276 return true; 1277 } 1278 1279 return false; 1280 } 1281 1282 /// \brief Determine whether the given class is a base class of the given 1283 /// class, including looking at dependent bases. 1284 static bool findCircularInheritance(const CXXRecordDecl *Class, 1285 const CXXRecordDecl *Current) { 1286 SmallVector<const CXXRecordDecl*, 8> Queue; 1287 1288 Class = Class->getCanonicalDecl(); 1289 while (true) { 1290 for (const auto &I : Current->bases()) { 1291 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 1292 if (!Base) 1293 continue; 1294 1295 Base = Base->getDefinition(); 1296 if (!Base) 1297 continue; 1298 1299 if (Base->getCanonicalDecl() == Class) 1300 return true; 1301 1302 Queue.push_back(Base); 1303 } 1304 1305 if (Queue.empty()) 1306 return false; 1307 1308 Current = Queue.pop_back_val(); 1309 } 1310 1311 return false; 1312 } 1313 1314 /// \brief Perform propagation of DLL attributes from a derived class to a 1315 /// templated base class for MS compatibility. 1316 static void propagateDLLAttrToBaseClassTemplate( 1317 Sema &S, CXXRecordDecl *Class, Attr *ClassAttr, 1318 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 1319 if (getDLLAttr( 1320 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 1321 // If the base class template has a DLL attribute, don't try to change it. 1322 return; 1323 } 1324 1325 if (BaseTemplateSpec->getSpecializationKind() == TSK_Undeclared) { 1326 // If the base class is not already specialized, we can do the propagation. 1327 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(S.getASTContext())); 1328 NewAttr->setInherited(true); 1329 BaseTemplateSpec->addAttr(NewAttr); 1330 return; 1331 } 1332 1333 bool DifferentAttribute = false; 1334 if (Attr *SpecializationAttr = getDLLAttr(BaseTemplateSpec)) { 1335 if (!SpecializationAttr->isInherited()) { 1336 // The template has previously been specialized or instantiated with an 1337 // explicit attribute. We should not try to change it. 1338 return; 1339 } 1340 if (SpecializationAttr->getKind() == ClassAttr->getKind()) { 1341 // The specialization already has the right attribute. 1342 return; 1343 } 1344 DifferentAttribute = true; 1345 } 1346 1347 // The template was previously instantiated or explicitly specialized without 1348 // a dll attribute, or the template was previously instantiated with a 1349 // different inherited attribute. It's too late for us to change the 1350 // attribute, so warn that this is unsupported. 1351 S.Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 1352 << BaseTemplateSpec->isExplicitSpecialization() << DifferentAttribute; 1353 S.Diag(ClassAttr->getLocation(), diag::note_attribute); 1354 if (BaseTemplateSpec->isExplicitSpecialization()) { 1355 S.Diag(BaseTemplateSpec->getLocation(), 1356 diag::note_template_class_explicit_specialization_was_here) 1357 << BaseTemplateSpec; 1358 } else { 1359 S.Diag(BaseTemplateSpec->getPointOfInstantiation(), 1360 diag::note_template_class_instantiation_was_here) 1361 << BaseTemplateSpec; 1362 } 1363 } 1364 1365 /// \brief Check the validity of a C++ base class specifier. 1366 /// 1367 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 1368 /// and returns NULL otherwise. 1369 CXXBaseSpecifier * 1370 Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 1371 SourceRange SpecifierRange, 1372 bool Virtual, AccessSpecifier Access, 1373 TypeSourceInfo *TInfo, 1374 SourceLocation EllipsisLoc) { 1375 QualType BaseType = TInfo->getType(); 1376 1377 // C++ [class.union]p1: 1378 // A union shall not have base classes. 1379 if (Class->isUnion()) { 1380 Diag(Class->getLocation(), diag::err_base_clause_on_union) 1381 << SpecifierRange; 1382 return nullptr; 1383 } 1384 1385 if (EllipsisLoc.isValid() && 1386 !TInfo->getType()->containsUnexpandedParameterPack()) { 1387 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1388 << TInfo->getTypeLoc().getSourceRange(); 1389 EllipsisLoc = SourceLocation(); 1390 } 1391 1392 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 1393 1394 if (BaseType->isDependentType()) { 1395 // Make sure that we don't have circular inheritance among our dependent 1396 // bases. For non-dependent bases, the check for completeness below handles 1397 // this. 1398 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 1399 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 1400 ((BaseDecl = BaseDecl->getDefinition()) && 1401 findCircularInheritance(Class, BaseDecl))) { 1402 Diag(BaseLoc, diag::err_circular_inheritance) 1403 << BaseType << Context.getTypeDeclType(Class); 1404 1405 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 1406 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 1407 << BaseType; 1408 1409 return nullptr; 1410 } 1411 } 1412 1413 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 1414 Class->getTagKind() == TTK_Class, 1415 Access, TInfo, EllipsisLoc); 1416 } 1417 1418 // Base specifiers must be record types. 1419 if (!BaseType->isRecordType()) { 1420 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 1421 return nullptr; 1422 } 1423 1424 // C++ [class.union]p1: 1425 // A union shall not be used as a base class. 1426 if (BaseType->isUnionType()) { 1427 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 1428 return nullptr; 1429 } 1430 1431 // For the MS ABI, propagate DLL attributes to base class templates. 1432 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1433 if (Attr *ClassAttr = getDLLAttr(Class)) { 1434 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 1435 BaseType->getAsCXXRecordDecl())) { 1436 propagateDLLAttrToBaseClassTemplate(*this, Class, ClassAttr, 1437 BaseTemplate, BaseLoc); 1438 } 1439 } 1440 } 1441 1442 // C++ [class.derived]p2: 1443 // The class-name in a base-specifier shall not be an incompletely 1444 // defined class. 1445 if (RequireCompleteType(BaseLoc, BaseType, 1446 diag::err_incomplete_base_class, SpecifierRange)) { 1447 Class->setInvalidDecl(); 1448 return nullptr; 1449 } 1450 1451 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 1452 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl(); 1453 assert(BaseDecl && "Record type has no declaration"); 1454 BaseDecl = BaseDecl->getDefinition(); 1455 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 1456 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 1457 assert(CXXBaseDecl && "Base type is not a C++ type"); 1458 1459 // A class which contains a flexible array member is not suitable for use as a 1460 // base class: 1461 // - If the layout determines that a base comes before another base, 1462 // the flexible array member would index into the subsequent base. 1463 // - If the layout determines that base comes before the derived class, 1464 // the flexible array member would index into the derived class. 1465 if (CXXBaseDecl->hasFlexibleArrayMember()) { 1466 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 1467 << CXXBaseDecl->getDeclName(); 1468 return nullptr; 1469 } 1470 1471 // C++ [class]p3: 1472 // If a class is marked final and it appears as a base-type-specifier in 1473 // base-clause, the program is ill-formed. 1474 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 1475 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 1476 << CXXBaseDecl->getDeclName() 1477 << FA->isSpelledAsSealed(); 1478 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 1479 << CXXBaseDecl->getDeclName() << FA->getRange(); 1480 return nullptr; 1481 } 1482 1483 if (BaseDecl->isInvalidDecl()) 1484 Class->setInvalidDecl(); 1485 1486 // Create the base specifier. 1487 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 1488 Class->getTagKind() == TTK_Class, 1489 Access, TInfo, EllipsisLoc); 1490 } 1491 1492 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 1493 /// one entry in the base class list of a class specifier, for 1494 /// example: 1495 /// class foo : public bar, virtual private baz { 1496 /// 'public bar' and 'virtual private baz' are each base-specifiers. 1497 BaseResult 1498 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 1499 ParsedAttributes &Attributes, 1500 bool Virtual, AccessSpecifier Access, 1501 ParsedType basetype, SourceLocation BaseLoc, 1502 SourceLocation EllipsisLoc) { 1503 if (!classdecl) 1504 return true; 1505 1506 AdjustDeclIfTemplate(classdecl); 1507 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 1508 if (!Class) 1509 return true; 1510 1511 // We haven't yet attached the base specifiers. 1512 Class->setIsParsingBaseSpecifiers(); 1513 1514 // We do not support any C++11 attributes on base-specifiers yet. 1515 // Diagnose any attributes we see. 1516 if (!Attributes.empty()) { 1517 for (AttributeList *Attr = Attributes.getList(); Attr; 1518 Attr = Attr->getNext()) { 1519 if (Attr->isInvalid() || 1520 Attr->getKind() == AttributeList::IgnoredAttribute) 1521 continue; 1522 Diag(Attr->getLoc(), 1523 Attr->getKind() == AttributeList::UnknownAttribute 1524 ? diag::warn_unknown_attribute_ignored 1525 : diag::err_base_specifier_attribute) 1526 << Attr->getName(); 1527 } 1528 } 1529 1530 TypeSourceInfo *TInfo = nullptr; 1531 GetTypeFromParser(basetype, &TInfo); 1532 1533 if (EllipsisLoc.isInvalid() && 1534 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 1535 UPPC_BaseType)) 1536 return true; 1537 1538 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 1539 Virtual, Access, TInfo, 1540 EllipsisLoc)) 1541 return BaseSpec; 1542 else 1543 Class->setInvalidDecl(); 1544 1545 return true; 1546 } 1547 1548 /// \brief Performs the actual work of attaching the given base class 1549 /// specifiers to a C++ class. 1550 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, 1551 unsigned NumBases) { 1552 if (NumBases == 0) 1553 return false; 1554 1555 // Used to keep track of which base types we have already seen, so 1556 // that we can properly diagnose redundant direct base types. Note 1557 // that the key is always the unqualified canonical type of the base 1558 // class. 1559 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 1560 1561 // Copy non-redundant base specifiers into permanent storage. 1562 unsigned NumGoodBases = 0; 1563 bool Invalid = false; 1564 for (unsigned idx = 0; idx < NumBases; ++idx) { 1565 QualType NewBaseType 1566 = Context.getCanonicalType(Bases[idx]->getType()); 1567 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 1568 1569 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 1570 if (KnownBase) { 1571 // C++ [class.mi]p3: 1572 // A class shall not be specified as a direct base class of a 1573 // derived class more than once. 1574 Diag(Bases[idx]->getLocStart(), 1575 diag::err_duplicate_base_class) 1576 << KnownBase->getType() 1577 << Bases[idx]->getSourceRange(); 1578 1579 // Delete the duplicate base class specifier; we're going to 1580 // overwrite its pointer later. 1581 Context.Deallocate(Bases[idx]); 1582 1583 Invalid = true; 1584 } else { 1585 // Okay, add this new base class. 1586 KnownBase = Bases[idx]; 1587 Bases[NumGoodBases++] = Bases[idx]; 1588 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 1589 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 1590 if (Class->isInterface() && 1591 (!RD->isInterface() || 1592 KnownBase->getAccessSpecifier() != AS_public)) { 1593 // The Microsoft extension __interface does not permit bases that 1594 // are not themselves public interfaces. 1595 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface) 1596 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName() 1597 << RD->getSourceRange(); 1598 Invalid = true; 1599 } 1600 if (RD->hasAttr<WeakAttr>()) 1601 Class->addAttr(WeakAttr::CreateImplicit(Context)); 1602 } 1603 } 1604 } 1605 1606 // Attach the remaining base class specifiers to the derived class. 1607 Class->setBases(Bases, NumGoodBases); 1608 1609 // Delete the remaining (good) base class specifiers, since their 1610 // data has been copied into the CXXRecordDecl. 1611 for (unsigned idx = 0; idx < NumGoodBases; ++idx) 1612 Context.Deallocate(Bases[idx]); 1613 1614 return Invalid; 1615 } 1616 1617 /// ActOnBaseSpecifiers - Attach the given base specifiers to the 1618 /// class, after checking whether there are any duplicate base 1619 /// classes. 1620 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases, 1621 unsigned NumBases) { 1622 if (!ClassDecl || !Bases || !NumBases) 1623 return; 1624 1625 AdjustDeclIfTemplate(ClassDecl); 1626 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases); 1627 } 1628 1629 /// \brief Determine whether the type \p Derived is a C++ class that is 1630 /// derived from the type \p Base. 1631 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { 1632 if (!getLangOpts().CPlusPlus) 1633 return false; 1634 1635 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 1636 if (!DerivedRD) 1637 return false; 1638 1639 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 1640 if (!BaseRD) 1641 return false; 1642 1643 // If either the base or the derived type is invalid, don't try to 1644 // check whether one is derived from the other. 1645 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 1646 return false; 1647 1648 // FIXME: instantiate DerivedRD if necessary. We need a PoI for this. 1649 return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD); 1650 } 1651 1652 /// \brief Determine whether the type \p Derived is a C++ class that is 1653 /// derived from the type \p Base. 1654 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { 1655 if (!getLangOpts().CPlusPlus) 1656 return false; 1657 1658 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 1659 if (!DerivedRD) 1660 return false; 1661 1662 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 1663 if (!BaseRD) 1664 return false; 1665 1666 return DerivedRD->isDerivedFrom(BaseRD, Paths); 1667 } 1668 1669 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 1670 CXXCastPath &BasePathArray) { 1671 assert(BasePathArray.empty() && "Base path array must be empty!"); 1672 assert(Paths.isRecordingPaths() && "Must record paths!"); 1673 1674 const CXXBasePath &Path = Paths.front(); 1675 1676 // We first go backward and check if we have a virtual base. 1677 // FIXME: It would be better if CXXBasePath had the base specifier for 1678 // the nearest virtual base. 1679 unsigned Start = 0; 1680 for (unsigned I = Path.size(); I != 0; --I) { 1681 if (Path[I - 1].Base->isVirtual()) { 1682 Start = I - 1; 1683 break; 1684 } 1685 } 1686 1687 // Now add all bases. 1688 for (unsigned I = Start, E = Path.size(); I != E; ++I) 1689 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 1690 } 1691 1692 /// \brief Determine whether the given base path includes a virtual 1693 /// base class. 1694 bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) { 1695 for (CXXCastPath::const_iterator B = BasePath.begin(), 1696 BEnd = BasePath.end(); 1697 B != BEnd; ++B) 1698 if ((*B)->isVirtual()) 1699 return true; 1700 1701 return false; 1702 } 1703 1704 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 1705 /// conversion (where Derived and Base are class types) is 1706 /// well-formed, meaning that the conversion is unambiguous (and 1707 /// that all of the base classes are accessible). Returns true 1708 /// and emits a diagnostic if the code is ill-formed, returns false 1709 /// otherwise. Loc is the location where this routine should point to 1710 /// if there is an error, and Range is the source range to highlight 1711 /// if there is an error. 1712 bool 1713 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 1714 unsigned InaccessibleBaseID, 1715 unsigned AmbigiousBaseConvID, 1716 SourceLocation Loc, SourceRange Range, 1717 DeclarationName Name, 1718 CXXCastPath *BasePath) { 1719 // First, determine whether the path from Derived to Base is 1720 // ambiguous. This is slightly more expensive than checking whether 1721 // the Derived to Base conversion exists, because here we need to 1722 // explore multiple paths to determine if there is an ambiguity. 1723 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1724 /*DetectVirtual=*/false); 1725 bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); 1726 assert(DerivationOkay && 1727 "Can only be used with a derived-to-base conversion"); 1728 (void)DerivationOkay; 1729 1730 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { 1731 if (InaccessibleBaseID) { 1732 // Check that the base class can be accessed. 1733 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(), 1734 InaccessibleBaseID)) { 1735 case AR_inaccessible: 1736 return true; 1737 case AR_accessible: 1738 case AR_dependent: 1739 case AR_delayed: 1740 break; 1741 } 1742 } 1743 1744 // Build a base path if necessary. 1745 if (BasePath) 1746 BuildBasePathArray(Paths, *BasePath); 1747 return false; 1748 } 1749 1750 if (AmbigiousBaseConvID) { 1751 // We know that the derived-to-base conversion is ambiguous, and 1752 // we're going to produce a diagnostic. Perform the derived-to-base 1753 // search just one more time to compute all of the possible paths so 1754 // that we can print them out. This is more expensive than any of 1755 // the previous derived-to-base checks we've done, but at this point 1756 // performance isn't as much of an issue. 1757 Paths.clear(); 1758 Paths.setRecordingPaths(true); 1759 bool StillOkay = IsDerivedFrom(Derived, Base, Paths); 1760 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 1761 (void)StillOkay; 1762 1763 // Build up a textual representation of the ambiguous paths, e.g., 1764 // D -> B -> A, that will be used to illustrate the ambiguous 1765 // conversions in the diagnostic. We only print one of the paths 1766 // to each base class subobject. 1767 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1768 1769 Diag(Loc, AmbigiousBaseConvID) 1770 << Derived << Base << PathDisplayStr << Range << Name; 1771 } 1772 return true; 1773 } 1774 1775 bool 1776 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 1777 SourceLocation Loc, SourceRange Range, 1778 CXXCastPath *BasePath, 1779 bool IgnoreAccess) { 1780 return CheckDerivedToBaseConversion(Derived, Base, 1781 IgnoreAccess ? 0 1782 : diag::err_upcast_to_inaccessible_base, 1783 diag::err_ambiguous_derived_to_base_conv, 1784 Loc, Range, DeclarationName(), 1785 BasePath); 1786 } 1787 1788 1789 /// @brief Builds a string representing ambiguous paths from a 1790 /// specific derived class to different subobjects of the same base 1791 /// class. 1792 /// 1793 /// This function builds a string that can be used in error messages 1794 /// to show the different paths that one can take through the 1795 /// inheritance hierarchy to go from the derived class to different 1796 /// subobjects of a base class. The result looks something like this: 1797 /// @code 1798 /// struct D -> struct B -> struct A 1799 /// struct D -> struct C -> struct A 1800 /// @endcode 1801 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 1802 std::string PathDisplayStr; 1803 std::set<unsigned> DisplayedPaths; 1804 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 1805 Path != Paths.end(); ++Path) { 1806 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 1807 // We haven't displayed a path to this particular base 1808 // class subobject yet. 1809 PathDisplayStr += "\n "; 1810 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 1811 for (CXXBasePath::const_iterator Element = Path->begin(); 1812 Element != Path->end(); ++Element) 1813 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 1814 } 1815 } 1816 1817 return PathDisplayStr; 1818 } 1819 1820 //===----------------------------------------------------------------------===// 1821 // C++ class member Handling 1822 //===----------------------------------------------------------------------===// 1823 1824 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 1825 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, 1826 SourceLocation ASLoc, 1827 SourceLocation ColonLoc, 1828 AttributeList *Attrs) { 1829 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 1830 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 1831 ASLoc, ColonLoc); 1832 CurContext->addHiddenDecl(ASDecl); 1833 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 1834 } 1835 1836 /// CheckOverrideControl - Check C++11 override control semantics. 1837 void Sema::CheckOverrideControl(NamedDecl *D) { 1838 if (D->isInvalidDecl()) 1839 return; 1840 1841 // We only care about "override" and "final" declarations. 1842 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 1843 return; 1844 1845 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 1846 1847 // We can't check dependent instance methods. 1848 if (MD && MD->isInstance() && 1849 (MD->getParent()->hasAnyDependentBases() || 1850 MD->getType()->isDependentType())) 1851 return; 1852 1853 if (MD && !MD->isVirtual()) { 1854 // If we have a non-virtual method, check if if hides a virtual method. 1855 // (In that case, it's most likely the method has the wrong type.) 1856 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 1857 FindHiddenVirtualMethods(MD, OverloadedMethods); 1858 1859 if (!OverloadedMethods.empty()) { 1860 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 1861 Diag(OA->getLocation(), 1862 diag::override_keyword_hides_virtual_member_function) 1863 << "override" << (OverloadedMethods.size() > 1); 1864 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 1865 Diag(FA->getLocation(), 1866 diag::override_keyword_hides_virtual_member_function) 1867 << (FA->isSpelledAsSealed() ? "sealed" : "final") 1868 << (OverloadedMethods.size() > 1); 1869 } 1870 NoteHiddenVirtualMethods(MD, OverloadedMethods); 1871 MD->setInvalidDecl(); 1872 return; 1873 } 1874 // Fall through into the general case diagnostic. 1875 // FIXME: We might want to attempt typo correction here. 1876 } 1877 1878 if (!MD || !MD->isVirtual()) { 1879 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 1880 Diag(OA->getLocation(), 1881 diag::override_keyword_only_allowed_on_virtual_member_functions) 1882 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 1883 D->dropAttr<OverrideAttr>(); 1884 } 1885 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 1886 Diag(FA->getLocation(), 1887 diag::override_keyword_only_allowed_on_virtual_member_functions) 1888 << (FA->isSpelledAsSealed() ? "sealed" : "final") 1889 << FixItHint::CreateRemoval(FA->getLocation()); 1890 D->dropAttr<FinalAttr>(); 1891 } 1892 return; 1893 } 1894 1895 // C++11 [class.virtual]p5: 1896 // If a function is marked with the virt-specifier override and 1897 // does not override a member function of a base class, the program is 1898 // ill-formed. 1899 bool HasOverriddenMethods = 1900 MD->begin_overridden_methods() != MD->end_overridden_methods(); 1901 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 1902 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 1903 << MD->getDeclName(); 1904 } 1905 1906 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) { 1907 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 1908 return; 1909 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 1910 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>() || 1911 isa<CXXDestructorDecl>(MD)) 1912 return; 1913 1914 SourceLocation Loc = MD->getLocation(); 1915 SourceLocation SpellingLoc = Loc; 1916 if (getSourceManager().isMacroArgExpansion(Loc)) 1917 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first; 1918 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 1919 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 1920 return; 1921 1922 if (MD->size_overridden_methods() > 0) { 1923 Diag(MD->getLocation(), diag::warn_function_marked_not_override_overriding) 1924 << MD->getDeclName(); 1925 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 1926 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 1927 } 1928 } 1929 1930 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 1931 /// function overrides a virtual member function marked 'final', according to 1932 /// C++11 [class.virtual]p4. 1933 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 1934 const CXXMethodDecl *Old) { 1935 FinalAttr *FA = Old->getAttr<FinalAttr>(); 1936 if (!FA) 1937 return false; 1938 1939 Diag(New->getLocation(), diag::err_final_function_overridden) 1940 << New->getDeclName() 1941 << FA->isSpelledAsSealed(); 1942 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 1943 return true; 1944 } 1945 1946 static bool InitializationHasSideEffects(const FieldDecl &FD) { 1947 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 1948 // FIXME: Destruction of ObjC lifetime types has side-effects. 1949 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 1950 return !RD->isCompleteDefinition() || 1951 !RD->hasTrivialDefaultConstructor() || 1952 !RD->hasTrivialDestructor(); 1953 return false; 1954 } 1955 1956 static AttributeList *getMSPropertyAttr(AttributeList *list) { 1957 for (AttributeList *it = list; it != nullptr; it = it->getNext()) 1958 if (it->isDeclspecPropertyAttribute()) 1959 return it; 1960 return nullptr; 1961 } 1962 1963 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 1964 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 1965 /// bitfield width if there is one, 'InitExpr' specifies the initializer if 1966 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is 1967 /// present (but parsing it has been deferred). 1968 NamedDecl * 1969 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 1970 MultiTemplateParamsArg TemplateParameterLists, 1971 Expr *BW, const VirtSpecifiers &VS, 1972 InClassInitStyle InitStyle) { 1973 const DeclSpec &DS = D.getDeclSpec(); 1974 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 1975 DeclarationName Name = NameInfo.getName(); 1976 SourceLocation Loc = NameInfo.getLoc(); 1977 1978 // For anonymous bitfields, the location should point to the type. 1979 if (Loc.isInvalid()) 1980 Loc = D.getLocStart(); 1981 1982 Expr *BitWidth = static_cast<Expr*>(BW); 1983 1984 assert(isa<CXXRecordDecl>(CurContext)); 1985 assert(!DS.isFriendSpecified()); 1986 1987 bool isFunc = D.isDeclarationOfFunction(); 1988 1989 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 1990 // The Microsoft extension __interface only permits public member functions 1991 // and prohibits constructors, destructors, operators, non-public member 1992 // functions, static methods and data members. 1993 unsigned InvalidDecl; 1994 bool ShowDeclName = true; 1995 if (!isFunc) 1996 InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1; 1997 else if (AS != AS_public) 1998 InvalidDecl = 2; 1999 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 2000 InvalidDecl = 3; 2001 else switch (Name.getNameKind()) { 2002 case DeclarationName::CXXConstructorName: 2003 InvalidDecl = 4; 2004 ShowDeclName = false; 2005 break; 2006 2007 case DeclarationName::CXXDestructorName: 2008 InvalidDecl = 5; 2009 ShowDeclName = false; 2010 break; 2011 2012 case DeclarationName::CXXOperatorName: 2013 case DeclarationName::CXXConversionFunctionName: 2014 InvalidDecl = 6; 2015 break; 2016 2017 default: 2018 InvalidDecl = 0; 2019 break; 2020 } 2021 2022 if (InvalidDecl) { 2023 if (ShowDeclName) 2024 Diag(Loc, diag::err_invalid_member_in_interface) 2025 << (InvalidDecl-1) << Name; 2026 else 2027 Diag(Loc, diag::err_invalid_member_in_interface) 2028 << (InvalidDecl-1) << ""; 2029 return nullptr; 2030 } 2031 } 2032 2033 // C++ 9.2p6: A member shall not be declared to have automatic storage 2034 // duration (auto, register) or with the extern storage-class-specifier. 2035 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 2036 // data members and cannot be applied to names declared const or static, 2037 // and cannot be applied to reference members. 2038 switch (DS.getStorageClassSpec()) { 2039 case DeclSpec::SCS_unspecified: 2040 case DeclSpec::SCS_typedef: 2041 case DeclSpec::SCS_static: 2042 break; 2043 case DeclSpec::SCS_mutable: 2044 if (isFunc) { 2045 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 2046 2047 // FIXME: It would be nicer if the keyword was ignored only for this 2048 // declarator. Otherwise we could get follow-up errors. 2049 D.getMutableDeclSpec().ClearStorageClassSpecs(); 2050 } 2051 break; 2052 default: 2053 Diag(DS.getStorageClassSpecLoc(), 2054 diag::err_storageclass_invalid_for_member); 2055 D.getMutableDeclSpec().ClearStorageClassSpecs(); 2056 break; 2057 } 2058 2059 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 2060 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 2061 !isFunc); 2062 2063 if (DS.isConstexprSpecified() && isInstField) { 2064 SemaDiagnosticBuilder B = 2065 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 2066 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 2067 if (InitStyle == ICIS_NoInit) { 2068 B << 0 << 0; 2069 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 2070 B << FixItHint::CreateRemoval(ConstexprLoc); 2071 else { 2072 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 2073 D.getMutableDeclSpec().ClearConstexprSpec(); 2074 const char *PrevSpec; 2075 unsigned DiagID; 2076 bool Failed = D.getMutableDeclSpec().SetTypeQual( 2077 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 2078 (void)Failed; 2079 assert(!Failed && "Making a constexpr member const shouldn't fail"); 2080 } 2081 } else { 2082 B << 1; 2083 const char *PrevSpec; 2084 unsigned DiagID; 2085 if (D.getMutableDeclSpec().SetStorageClassSpec( 2086 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 2087 Context.getPrintingPolicy())) { 2088 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 2089 "This is the only DeclSpec that should fail to be applied"); 2090 B << 1; 2091 } else { 2092 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 2093 isInstField = false; 2094 } 2095 } 2096 } 2097 2098 NamedDecl *Member; 2099 if (isInstField) { 2100 CXXScopeSpec &SS = D.getCXXScopeSpec(); 2101 2102 // Data members must have identifiers for names. 2103 if (!Name.isIdentifier()) { 2104 Diag(Loc, diag::err_bad_variable_name) 2105 << Name; 2106 return nullptr; 2107 } 2108 2109 IdentifierInfo *II = Name.getAsIdentifierInfo(); 2110 2111 // Member field could not be with "template" keyword. 2112 // So TemplateParameterLists should be empty in this case. 2113 if (TemplateParameterLists.size()) { 2114 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 2115 if (TemplateParams->size()) { 2116 // There is no such thing as a member field template. 2117 Diag(D.getIdentifierLoc(), diag::err_template_member) 2118 << II 2119 << SourceRange(TemplateParams->getTemplateLoc(), 2120 TemplateParams->getRAngleLoc()); 2121 } else { 2122 // There is an extraneous 'template<>' for this member. 2123 Diag(TemplateParams->getTemplateLoc(), 2124 diag::err_template_member_noparams) 2125 << II 2126 << SourceRange(TemplateParams->getTemplateLoc(), 2127 TemplateParams->getRAngleLoc()); 2128 } 2129 return nullptr; 2130 } 2131 2132 if (SS.isSet() && !SS.isInvalid()) { 2133 // The user provided a superfluous scope specifier inside a class 2134 // definition: 2135 // 2136 // class X { 2137 // int X::member; 2138 // }; 2139 if (DeclContext *DC = computeDeclContext(SS, false)) 2140 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc()); 2141 else 2142 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 2143 << Name << SS.getRange(); 2144 2145 SS.clear(); 2146 } 2147 2148 AttributeList *MSPropertyAttr = 2149 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList()); 2150 if (MSPropertyAttr) { 2151 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 2152 BitWidth, InitStyle, AS, MSPropertyAttr); 2153 if (!Member) 2154 return nullptr; 2155 isInstField = false; 2156 } else { 2157 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 2158 BitWidth, InitStyle, AS); 2159 assert(Member && "HandleField never returns null"); 2160 } 2161 } else { 2162 assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static); 2163 2164 Member = HandleDeclarator(S, D, TemplateParameterLists); 2165 if (!Member) 2166 return nullptr; 2167 2168 // Non-instance-fields can't have a bitfield. 2169 if (BitWidth) { 2170 if (Member->isInvalidDecl()) { 2171 // don't emit another diagnostic. 2172 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 2173 // C++ 9.6p3: A bit-field shall not be a static member. 2174 // "static member 'A' cannot be a bit-field" 2175 Diag(Loc, diag::err_static_not_bitfield) 2176 << Name << BitWidth->getSourceRange(); 2177 } else if (isa<TypedefDecl>(Member)) { 2178 // "typedef member 'x' cannot be a bit-field" 2179 Diag(Loc, diag::err_typedef_not_bitfield) 2180 << Name << BitWidth->getSourceRange(); 2181 } else { 2182 // A function typedef ("typedef int f(); f a;"). 2183 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 2184 Diag(Loc, diag::err_not_integral_type_bitfield) 2185 << Name << cast<ValueDecl>(Member)->getType() 2186 << BitWidth->getSourceRange(); 2187 } 2188 2189 BitWidth = nullptr; 2190 Member->setInvalidDecl(); 2191 } 2192 2193 Member->setAccess(AS); 2194 2195 // If we have declared a member function template or static data member 2196 // template, set the access of the templated declaration as well. 2197 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 2198 FunTmpl->getTemplatedDecl()->setAccess(AS); 2199 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 2200 VarTmpl->getTemplatedDecl()->setAccess(AS); 2201 } 2202 2203 if (VS.isOverrideSpecified()) 2204 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0)); 2205 if (VS.isFinalSpecified()) 2206 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context, 2207 VS.isFinalSpelledSealed())); 2208 2209 if (VS.getLastLocation().isValid()) { 2210 // Update the end location of a method that has a virt-specifiers. 2211 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 2212 MD->setRangeEnd(VS.getLastLocation()); 2213 } 2214 2215 CheckOverrideControl(Member); 2216 2217 assert((Name || isInstField) && "No identifier for non-field ?"); 2218 2219 if (isInstField) { 2220 FieldDecl *FD = cast<FieldDecl>(Member); 2221 FieldCollector->Add(FD); 2222 2223 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 2224 // Remember all explicit private FieldDecls that have a name, no side 2225 // effects and are not part of a dependent type declaration. 2226 if (!FD->isImplicit() && FD->getDeclName() && 2227 FD->getAccess() == AS_private && 2228 !FD->hasAttr<UnusedAttr>() && 2229 !FD->getParent()->isDependentContext() && 2230 !InitializationHasSideEffects(*FD)) 2231 UnusedPrivateFields.insert(FD); 2232 } 2233 } 2234 2235 return Member; 2236 } 2237 2238 namespace { 2239 class UninitializedFieldVisitor 2240 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 2241 Sema &S; 2242 // List of Decls to generate a warning on. Also remove Decls that become 2243 // initialized. 2244 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 2245 // List of base classes of the record. Classes are removed after their 2246 // initializers. 2247 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 2248 // Vector of decls to be removed from the Decl set prior to visiting the 2249 // nodes. These Decls may have been initialized in the prior initializer. 2250 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 2251 // If non-null, add a note to the warning pointing back to the constructor. 2252 const CXXConstructorDecl *Constructor; 2253 // Variables to hold state when processing an initializer list. When 2254 // InitList is true, special case initialization of FieldDecls matching 2255 // InitListFieldDecl. 2256 bool InitList; 2257 FieldDecl *InitListFieldDecl; 2258 llvm::SmallVector<unsigned, 4> InitFieldIndex; 2259 2260 public: 2261 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 2262 UninitializedFieldVisitor(Sema &S, 2263 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 2264 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 2265 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 2266 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 2267 2268 // Returns true if the use of ME is not an uninitialized use. 2269 bool IsInitListMemberExprInitialized(MemberExpr *ME, 2270 bool CheckReferenceOnly) { 2271 llvm::SmallVector<FieldDecl*, 4> Fields; 2272 bool ReferenceField = false; 2273 while (ME) { 2274 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 2275 if (!FD) 2276 return false; 2277 Fields.push_back(FD); 2278 if (FD->getType()->isReferenceType()) 2279 ReferenceField = true; 2280 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 2281 } 2282 2283 // Binding a reference to an unintialized field is not an 2284 // uninitialized use. 2285 if (CheckReferenceOnly && !ReferenceField) 2286 return true; 2287 2288 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 2289 // Discard the first field since it is the field decl that is being 2290 // initialized. 2291 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { 2292 UsedFieldIndex.push_back((*I)->getFieldIndex()); 2293 } 2294 2295 for (auto UsedIter = UsedFieldIndex.begin(), 2296 UsedEnd = UsedFieldIndex.end(), 2297 OrigIter = InitFieldIndex.begin(), 2298 OrigEnd = InitFieldIndex.end(); 2299 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 2300 if (*UsedIter < *OrigIter) 2301 return true; 2302 if (*UsedIter > *OrigIter) 2303 break; 2304 } 2305 2306 return false; 2307 } 2308 2309 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 2310 bool AddressOf) { 2311 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 2312 return; 2313 2314 // FieldME is the inner-most MemberExpr that is not an anonymous struct 2315 // or union. 2316 MemberExpr *FieldME = ME; 2317 2318 bool AllPODFields = FieldME->getType().isPODType(S.Context); 2319 2320 Expr *Base = ME; 2321 while (MemberExpr *SubME = 2322 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 2323 2324 if (isa<VarDecl>(SubME->getMemberDecl())) 2325 return; 2326 2327 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 2328 if (!FD->isAnonymousStructOrUnion()) 2329 FieldME = SubME; 2330 2331 if (!FieldME->getType().isPODType(S.Context)) 2332 AllPODFields = false; 2333 2334 Base = SubME->getBase(); 2335 } 2336 2337 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) 2338 return; 2339 2340 if (AddressOf && AllPODFields) 2341 return; 2342 2343 ValueDecl* FoundVD = FieldME->getMemberDecl(); 2344 2345 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 2346 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 2347 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 2348 } 2349 2350 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 2351 QualType T = BaseCast->getType(); 2352 if (T->isPointerType() && 2353 BaseClasses.count(T->getPointeeType())) { 2354 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 2355 << T->getPointeeType() << FoundVD; 2356 } 2357 } 2358 } 2359 2360 if (!Decls.count(FoundVD)) 2361 return; 2362 2363 const bool IsReference = FoundVD->getType()->isReferenceType(); 2364 2365 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 2366 // Special checking for initializer lists. 2367 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 2368 return; 2369 } 2370 } else { 2371 // Prevent double warnings on use of unbounded references. 2372 if (CheckReferenceOnly && !IsReference) 2373 return; 2374 } 2375 2376 unsigned diag = IsReference 2377 ? diag::warn_reference_field_is_uninit 2378 : diag::warn_field_is_uninit; 2379 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 2380 if (Constructor) 2381 S.Diag(Constructor->getLocation(), 2382 diag::note_uninit_in_this_constructor) 2383 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 2384 2385 } 2386 2387 void HandleValue(Expr *E, bool AddressOf) { 2388 E = E->IgnoreParens(); 2389 2390 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 2391 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 2392 AddressOf /*AddressOf*/); 2393 return; 2394 } 2395 2396 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 2397 Visit(CO->getCond()); 2398 HandleValue(CO->getTrueExpr(), AddressOf); 2399 HandleValue(CO->getFalseExpr(), AddressOf); 2400 return; 2401 } 2402 2403 if (BinaryConditionalOperator *BCO = 2404 dyn_cast<BinaryConditionalOperator>(E)) { 2405 Visit(BCO->getCond()); 2406 HandleValue(BCO->getFalseExpr(), AddressOf); 2407 return; 2408 } 2409 2410 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 2411 HandleValue(OVE->getSourceExpr(), AddressOf); 2412 return; 2413 } 2414 2415 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 2416 switch (BO->getOpcode()) { 2417 default: 2418 break; 2419 case(BO_PtrMemD): 2420 case(BO_PtrMemI): 2421 HandleValue(BO->getLHS(), AddressOf); 2422 Visit(BO->getRHS()); 2423 return; 2424 case(BO_Comma): 2425 Visit(BO->getLHS()); 2426 HandleValue(BO->getRHS(), AddressOf); 2427 return; 2428 } 2429 } 2430 2431 Visit(E); 2432 } 2433 2434 void CheckInitListExpr(InitListExpr *ILE) { 2435 InitFieldIndex.push_back(0); 2436 for (auto Child : ILE->children()) { 2437 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 2438 CheckInitListExpr(SubList); 2439 } else { 2440 Visit(Child); 2441 } 2442 ++InitFieldIndex.back(); 2443 } 2444 InitFieldIndex.pop_back(); 2445 } 2446 2447 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 2448 FieldDecl *Field, const Type *BaseClass) { 2449 // Remove Decls that may have been initialized in the previous 2450 // initializer. 2451 for (ValueDecl* VD : DeclsToRemove) 2452 Decls.erase(VD); 2453 DeclsToRemove.clear(); 2454 2455 Constructor = FieldConstructor; 2456 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 2457 2458 if (ILE && Field) { 2459 InitList = true; 2460 InitListFieldDecl = Field; 2461 InitFieldIndex.clear(); 2462 CheckInitListExpr(ILE); 2463 } else { 2464 InitList = false; 2465 Visit(E); 2466 } 2467 2468 if (Field) 2469 Decls.erase(Field); 2470 if (BaseClass) 2471 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 2472 } 2473 2474 void VisitMemberExpr(MemberExpr *ME) { 2475 // All uses of unbounded reference fields will warn. 2476 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 2477 } 2478 2479 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 2480 if (E->getCastKind() == CK_LValueToRValue) { 2481 HandleValue(E->getSubExpr(), false /*AddressOf*/); 2482 return; 2483 } 2484 2485 Inherited::VisitImplicitCastExpr(E); 2486 } 2487 2488 void VisitCXXConstructExpr(CXXConstructExpr *E) { 2489 if (E->getConstructor()->isCopyConstructor()) { 2490 Expr *ArgExpr = E->getArg(0); 2491 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 2492 if (ILE->getNumInits() == 1) 2493 ArgExpr = ILE->getInit(0); 2494 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 2495 if (ICE->getCastKind() == CK_NoOp) 2496 ArgExpr = ICE->getSubExpr(); 2497 HandleValue(ArgExpr, false /*AddressOf*/); 2498 return; 2499 } 2500 Inherited::VisitCXXConstructExpr(E); 2501 } 2502 2503 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2504 Expr *Callee = E->getCallee(); 2505 if (isa<MemberExpr>(Callee)) { 2506 HandleValue(Callee, false /*AddressOf*/); 2507 for (auto Arg : E->arguments()) 2508 Visit(Arg); 2509 return; 2510 } 2511 2512 Inherited::VisitCXXMemberCallExpr(E); 2513 } 2514 2515 void VisitCallExpr(CallExpr *E) { 2516 // Treat std::move as a use. 2517 if (E->getNumArgs() == 1) { 2518 if (FunctionDecl *FD = E->getDirectCallee()) { 2519 if (FD->isInStdNamespace() && FD->getIdentifier() && 2520 FD->getIdentifier()->isStr("move")) { 2521 HandleValue(E->getArg(0), false /*AddressOf*/); 2522 return; 2523 } 2524 } 2525 } 2526 2527 Inherited::VisitCallExpr(E); 2528 } 2529 2530 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 2531 Expr *Callee = E->getCallee(); 2532 2533 if (isa<UnresolvedLookupExpr>(Callee)) 2534 return Inherited::VisitCXXOperatorCallExpr(E); 2535 2536 Visit(Callee); 2537 for (auto Arg : E->arguments()) 2538 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 2539 } 2540 2541 void VisitBinaryOperator(BinaryOperator *E) { 2542 // If a field assignment is detected, remove the field from the 2543 // uninitiailized field set. 2544 if (E->getOpcode() == BO_Assign) 2545 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 2546 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 2547 if (!FD->getType()->isReferenceType()) 2548 DeclsToRemove.push_back(FD); 2549 2550 if (E->isCompoundAssignmentOp()) { 2551 HandleValue(E->getLHS(), false /*AddressOf*/); 2552 Visit(E->getRHS()); 2553 return; 2554 } 2555 2556 Inherited::VisitBinaryOperator(E); 2557 } 2558 2559 void VisitUnaryOperator(UnaryOperator *E) { 2560 if (E->isIncrementDecrementOp()) { 2561 HandleValue(E->getSubExpr(), false /*AddressOf*/); 2562 return; 2563 } 2564 if (E->getOpcode() == UO_AddrOf) { 2565 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 2566 HandleValue(ME->getBase(), true /*AddressOf*/); 2567 return; 2568 } 2569 } 2570 2571 Inherited::VisitUnaryOperator(E); 2572 } 2573 }; 2574 2575 // Diagnose value-uses of fields to initialize themselves, e.g. 2576 // foo(foo) 2577 // where foo is not also a parameter to the constructor. 2578 // Also diagnose across field uninitialized use such as 2579 // x(y), y(x) 2580 // TODO: implement -Wuninitialized and fold this into that framework. 2581 static void DiagnoseUninitializedFields( 2582 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 2583 2584 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 2585 Constructor->getLocation())) { 2586 return; 2587 } 2588 2589 if (Constructor->isInvalidDecl()) 2590 return; 2591 2592 const CXXRecordDecl *RD = Constructor->getParent(); 2593 2594 if (RD->getDescribedClassTemplate()) 2595 return; 2596 2597 // Holds fields that are uninitialized. 2598 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 2599 2600 // At the beginning, all fields are uninitialized. 2601 for (auto *I : RD->decls()) { 2602 if (auto *FD = dyn_cast<FieldDecl>(I)) { 2603 UninitializedFields.insert(FD); 2604 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 2605 UninitializedFields.insert(IFD->getAnonField()); 2606 } 2607 } 2608 2609 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 2610 for (auto I : RD->bases()) 2611 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 2612 2613 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 2614 return; 2615 2616 UninitializedFieldVisitor UninitializedChecker(SemaRef, 2617 UninitializedFields, 2618 UninitializedBaseClasses); 2619 2620 for (const auto *FieldInit : Constructor->inits()) { 2621 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 2622 break; 2623 2624 Expr *InitExpr = FieldInit->getInit(); 2625 if (!InitExpr) 2626 continue; 2627 2628 if (CXXDefaultInitExpr *Default = 2629 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 2630 InitExpr = Default->getExpr(); 2631 if (!InitExpr) 2632 continue; 2633 // In class initializers will point to the constructor. 2634 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 2635 FieldInit->getAnyMember(), 2636 FieldInit->getBaseClass()); 2637 } else { 2638 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 2639 FieldInit->getAnyMember(), 2640 FieldInit->getBaseClass()); 2641 } 2642 } 2643 } 2644 } // namespace 2645 2646 /// \brief Enter a new C++ default initializer scope. After calling this, the 2647 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 2648 /// parsing or instantiating the initializer failed. 2649 void Sema::ActOnStartCXXInClassMemberInitializer() { 2650 // Create a synthetic function scope to represent the call to the constructor 2651 // that notionally surrounds a use of this initializer. 2652 PushFunctionScope(); 2653 } 2654 2655 /// \brief This is invoked after parsing an in-class initializer for a 2656 /// non-static C++ class member, and after instantiating an in-class initializer 2657 /// in a class template. Such actions are deferred until the class is complete. 2658 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 2659 SourceLocation InitLoc, 2660 Expr *InitExpr) { 2661 // Pop the notional constructor scope we created earlier. 2662 PopFunctionScopeInfo(nullptr, D); 2663 2664 FieldDecl *FD = dyn_cast<FieldDecl>(D); 2665 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && 2666 "must set init style when field is created"); 2667 2668 if (!InitExpr) { 2669 D->setInvalidDecl(); 2670 if (FD) 2671 FD->removeInClassInitializer(); 2672 return; 2673 } 2674 2675 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 2676 FD->setInvalidDecl(); 2677 FD->removeInClassInitializer(); 2678 return; 2679 } 2680 2681 ExprResult Init = InitExpr; 2682 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { 2683 InitializedEntity Entity = InitializedEntity::InitializeMember(FD); 2684 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit 2685 ? InitializationKind::CreateDirectList(InitExpr->getLocStart()) 2686 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc); 2687 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 2688 Init = Seq.Perform(*this, Entity, Kind, InitExpr); 2689 if (Init.isInvalid()) { 2690 FD->setInvalidDecl(); 2691 return; 2692 } 2693 } 2694 2695 // C++11 [class.base.init]p7: 2696 // The initialization of each base and member constitutes a 2697 // full-expression. 2698 Init = ActOnFinishFullExpr(Init.get(), InitLoc); 2699 if (Init.isInvalid()) { 2700 FD->setInvalidDecl(); 2701 return; 2702 } 2703 2704 InitExpr = Init.get(); 2705 2706 FD->setInClassInitializer(InitExpr); 2707 } 2708 2709 /// \brief Find the direct and/or virtual base specifiers that 2710 /// correspond to the given base type, for use in base initialization 2711 /// within a constructor. 2712 static bool FindBaseInitializer(Sema &SemaRef, 2713 CXXRecordDecl *ClassDecl, 2714 QualType BaseType, 2715 const CXXBaseSpecifier *&DirectBaseSpec, 2716 const CXXBaseSpecifier *&VirtualBaseSpec) { 2717 // First, check for a direct base class. 2718 DirectBaseSpec = nullptr; 2719 for (const auto &Base : ClassDecl->bases()) { 2720 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 2721 // We found a direct base of this type. That's what we're 2722 // initializing. 2723 DirectBaseSpec = &Base; 2724 break; 2725 } 2726 } 2727 2728 // Check for a virtual base class. 2729 // FIXME: We might be able to short-circuit this if we know in advance that 2730 // there are no virtual bases. 2731 VirtualBaseSpec = nullptr; 2732 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 2733 // We haven't found a base yet; search the class hierarchy for a 2734 // virtual base class. 2735 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2736 /*DetectVirtual=*/false); 2737 if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), 2738 BaseType, Paths)) { 2739 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 2740 Path != Paths.end(); ++Path) { 2741 if (Path->back().Base->isVirtual()) { 2742 VirtualBaseSpec = Path->back().Base; 2743 break; 2744 } 2745 } 2746 } 2747 } 2748 2749 return DirectBaseSpec || VirtualBaseSpec; 2750 } 2751 2752 /// \brief Handle a C++ member initializer using braced-init-list syntax. 2753 MemInitResult 2754 Sema::ActOnMemInitializer(Decl *ConstructorD, 2755 Scope *S, 2756 CXXScopeSpec &SS, 2757 IdentifierInfo *MemberOrBase, 2758 ParsedType TemplateTypeTy, 2759 const DeclSpec &DS, 2760 SourceLocation IdLoc, 2761 Expr *InitList, 2762 SourceLocation EllipsisLoc) { 2763 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 2764 DS, IdLoc, InitList, 2765 EllipsisLoc); 2766 } 2767 2768 /// \brief Handle a C++ member initializer using parentheses syntax. 2769 MemInitResult 2770 Sema::ActOnMemInitializer(Decl *ConstructorD, 2771 Scope *S, 2772 CXXScopeSpec &SS, 2773 IdentifierInfo *MemberOrBase, 2774 ParsedType TemplateTypeTy, 2775 const DeclSpec &DS, 2776 SourceLocation IdLoc, 2777 SourceLocation LParenLoc, 2778 ArrayRef<Expr *> Args, 2779 SourceLocation RParenLoc, 2780 SourceLocation EllipsisLoc) { 2781 Expr *List = new (Context) ParenListExpr(Context, LParenLoc, 2782 Args, RParenLoc); 2783 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 2784 DS, IdLoc, List, EllipsisLoc); 2785 } 2786 2787 namespace { 2788 2789 // Callback to only accept typo corrections that can be a valid C++ member 2790 // intializer: either a non-static field member or a base class. 2791 class MemInitializerValidatorCCC : public CorrectionCandidateCallback { 2792 public: 2793 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 2794 : ClassDecl(ClassDecl) {} 2795 2796 bool ValidateCandidate(const TypoCorrection &candidate) override { 2797 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 2798 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 2799 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 2800 return isa<TypeDecl>(ND); 2801 } 2802 return false; 2803 } 2804 2805 private: 2806 CXXRecordDecl *ClassDecl; 2807 }; 2808 2809 } 2810 2811 /// \brief Handle a C++ member initializer. 2812 MemInitResult 2813 Sema::BuildMemInitializer(Decl *ConstructorD, 2814 Scope *S, 2815 CXXScopeSpec &SS, 2816 IdentifierInfo *MemberOrBase, 2817 ParsedType TemplateTypeTy, 2818 const DeclSpec &DS, 2819 SourceLocation IdLoc, 2820 Expr *Init, 2821 SourceLocation EllipsisLoc) { 2822 ExprResult Res = CorrectDelayedTyposInExpr(Init); 2823 if (!Res.isUsable()) 2824 return true; 2825 Init = Res.get(); 2826 2827 if (!ConstructorD) 2828 return true; 2829 2830 AdjustDeclIfTemplate(ConstructorD); 2831 2832 CXXConstructorDecl *Constructor 2833 = dyn_cast<CXXConstructorDecl>(ConstructorD); 2834 if (!Constructor) { 2835 // The user wrote a constructor initializer on a function that is 2836 // not a C++ constructor. Ignore the error for now, because we may 2837 // have more member initializers coming; we'll diagnose it just 2838 // once in ActOnMemInitializers. 2839 return true; 2840 } 2841 2842 CXXRecordDecl *ClassDecl = Constructor->getParent(); 2843 2844 // C++ [class.base.init]p2: 2845 // Names in a mem-initializer-id are looked up in the scope of the 2846 // constructor's class and, if not found in that scope, are looked 2847 // up in the scope containing the constructor's definition. 2848 // [Note: if the constructor's class contains a member with the 2849 // same name as a direct or virtual base class of the class, a 2850 // mem-initializer-id naming the member or base class and composed 2851 // of a single identifier refers to the class member. A 2852 // mem-initializer-id for the hidden base class may be specified 2853 // using a qualified name. ] 2854 if (!SS.getScopeRep() && !TemplateTypeTy) { 2855 // Look for a member, first. 2856 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase); 2857 if (!Result.empty()) { 2858 ValueDecl *Member; 2859 if ((Member = dyn_cast<FieldDecl>(Result.front())) || 2860 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) { 2861 if (EllipsisLoc.isValid()) 2862 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 2863 << MemberOrBase 2864 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 2865 2866 return BuildMemberInitializer(Member, Init, IdLoc); 2867 } 2868 } 2869 } 2870 // It didn't name a member, so see if it names a class. 2871 QualType BaseType; 2872 TypeSourceInfo *TInfo = nullptr; 2873 2874 if (TemplateTypeTy) { 2875 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 2876 } else if (DS.getTypeSpecType() == TST_decltype) { 2877 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 2878 } else { 2879 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 2880 LookupParsedName(R, S, &SS); 2881 2882 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 2883 if (!TyD) { 2884 if (R.isAmbiguous()) return true; 2885 2886 // We don't want access-control diagnostics here. 2887 R.suppressDiagnostics(); 2888 2889 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 2890 bool NotUnknownSpecialization = false; 2891 DeclContext *DC = computeDeclContext(SS, false); 2892 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 2893 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 2894 2895 if (!NotUnknownSpecialization) { 2896 // When the scope specifier can refer to a member of an unknown 2897 // specialization, we take it as a type name. 2898 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 2899 SS.getWithLocInContext(Context), 2900 *MemberOrBase, IdLoc); 2901 if (BaseType.isNull()) 2902 return true; 2903 2904 R.clear(); 2905 R.setLookupName(MemberOrBase); 2906 } 2907 } 2908 2909 // If no results were found, try to correct typos. 2910 TypoCorrection Corr; 2911 if (R.empty() && BaseType.isNull() && 2912 (Corr = CorrectTypo( 2913 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 2914 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl), 2915 CTK_ErrorRecovery, ClassDecl))) { 2916 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 2917 // We have found a non-static data member with a similar 2918 // name to what was typed; complain and initialize that 2919 // member. 2920 diagnoseTypo(Corr, 2921 PDiag(diag::err_mem_init_not_member_or_class_suggest) 2922 << MemberOrBase << true); 2923 return BuildMemberInitializer(Member, Init, IdLoc); 2924 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 2925 const CXXBaseSpecifier *DirectBaseSpec; 2926 const CXXBaseSpecifier *VirtualBaseSpec; 2927 if (FindBaseInitializer(*this, ClassDecl, 2928 Context.getTypeDeclType(Type), 2929 DirectBaseSpec, VirtualBaseSpec)) { 2930 // We have found a direct or virtual base class with a 2931 // similar name to what was typed; complain and initialize 2932 // that base class. 2933 diagnoseTypo(Corr, 2934 PDiag(diag::err_mem_init_not_member_or_class_suggest) 2935 << MemberOrBase << false, 2936 PDiag() /*Suppress note, we provide our own.*/); 2937 2938 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 2939 : VirtualBaseSpec; 2940 Diag(BaseSpec->getLocStart(), 2941 diag::note_base_class_specified_here) 2942 << BaseSpec->getType() 2943 << BaseSpec->getSourceRange(); 2944 2945 TyD = Type; 2946 } 2947 } 2948 } 2949 2950 if (!TyD && BaseType.isNull()) { 2951 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 2952 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 2953 return true; 2954 } 2955 } 2956 2957 if (BaseType.isNull()) { 2958 BaseType = Context.getTypeDeclType(TyD); 2959 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 2960 if (SS.isSet()) 2961 // FIXME: preserve source range information 2962 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), 2963 BaseType); 2964 } 2965 } 2966 2967 if (!TInfo) 2968 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 2969 2970 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 2971 } 2972 2973 /// Checks a member initializer expression for cases where reference (or 2974 /// pointer) members are bound to by-value parameters (or their addresses). 2975 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member, 2976 Expr *Init, 2977 SourceLocation IdLoc) { 2978 QualType MemberTy = Member->getType(); 2979 2980 // We only handle pointers and references currently. 2981 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers? 2982 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType()) 2983 return; 2984 2985 const bool IsPointer = MemberTy->isPointerType(); 2986 if (IsPointer) { 2987 if (const UnaryOperator *Op 2988 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) { 2989 // The only case we're worried about with pointers requires taking the 2990 // address. 2991 if (Op->getOpcode() != UO_AddrOf) 2992 return; 2993 2994 Init = Op->getSubExpr(); 2995 } else { 2996 // We only handle address-of expression initializers for pointers. 2997 return; 2998 } 2999 } 3000 3001 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) { 3002 // We only warn when referring to a non-reference parameter declaration. 3003 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl()); 3004 if (!Parameter || Parameter->getType()->isReferenceType()) 3005 return; 3006 3007 S.Diag(Init->getExprLoc(), 3008 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 3009 : diag::warn_bind_ref_member_to_parameter) 3010 << Member << Parameter << Init->getSourceRange(); 3011 } else { 3012 // Other initializers are fine. 3013 return; 3014 } 3015 3016 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here) 3017 << (unsigned)IsPointer; 3018 } 3019 3020 MemInitResult 3021 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 3022 SourceLocation IdLoc) { 3023 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 3024 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 3025 assert((DirectMember || IndirectMember) && 3026 "Member must be a FieldDecl or IndirectFieldDecl"); 3027 3028 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 3029 return true; 3030 3031 if (Member->isInvalidDecl()) 3032 return true; 3033 3034 MultiExprArg Args; 3035 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 3036 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 3037 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 3038 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 3039 } else { 3040 // Template instantiation doesn't reconstruct ParenListExprs for us. 3041 Args = Init; 3042 } 3043 3044 SourceRange InitRange = Init->getSourceRange(); 3045 3046 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 3047 // Can't check initialization for a member of dependent type or when 3048 // any of the arguments are type-dependent expressions. 3049 DiscardCleanupsInEvaluationContext(); 3050 } else { 3051 bool InitList = false; 3052 if (isa<InitListExpr>(Init)) { 3053 InitList = true; 3054 Args = Init; 3055 } 3056 3057 // Initialize the member. 3058 InitializedEntity MemberEntity = 3059 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 3060 : InitializedEntity::InitializeMember(IndirectMember, 3061 nullptr); 3062 InitializationKind Kind = 3063 InitList ? InitializationKind::CreateDirectList(IdLoc) 3064 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 3065 InitRange.getEnd()); 3066 3067 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 3068 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 3069 nullptr); 3070 if (MemberInit.isInvalid()) 3071 return true; 3072 3073 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc); 3074 3075 // C++11 [class.base.init]p7: 3076 // The initialization of each base and member constitutes a 3077 // full-expression. 3078 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin()); 3079 if (MemberInit.isInvalid()) 3080 return true; 3081 3082 Init = MemberInit.get(); 3083 } 3084 3085 if (DirectMember) { 3086 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 3087 InitRange.getBegin(), Init, 3088 InitRange.getEnd()); 3089 } else { 3090 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 3091 InitRange.getBegin(), Init, 3092 InitRange.getEnd()); 3093 } 3094 } 3095 3096 MemInitResult 3097 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 3098 CXXRecordDecl *ClassDecl) { 3099 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); 3100 if (!LangOpts.CPlusPlus11) 3101 return Diag(NameLoc, diag::err_delegating_ctor) 3102 << TInfo->getTypeLoc().getLocalSourceRange(); 3103 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 3104 3105 bool InitList = true; 3106 MultiExprArg Args = Init; 3107 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 3108 InitList = false; 3109 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 3110 } 3111 3112 SourceRange InitRange = Init->getSourceRange(); 3113 // Initialize the object. 3114 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 3115 QualType(ClassDecl->getTypeForDecl(), 0)); 3116 InitializationKind Kind = 3117 InitList ? InitializationKind::CreateDirectList(NameLoc) 3118 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 3119 InitRange.getEnd()); 3120 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 3121 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 3122 Args, nullptr); 3123 if (DelegationInit.isInvalid()) 3124 return true; 3125 3126 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && 3127 "Delegating constructor with no target?"); 3128 3129 // C++11 [class.base.init]p7: 3130 // The initialization of each base and member constitutes a 3131 // full-expression. 3132 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(), 3133 InitRange.getBegin()); 3134 if (DelegationInit.isInvalid()) 3135 return true; 3136 3137 // If we are in a dependent context, template instantiation will 3138 // perform this type-checking again. Just save the arguments that we 3139 // received in a ParenListExpr. 3140 // FIXME: This isn't quite ideal, since our ASTs don't capture all 3141 // of the information that we have about the base 3142 // initializer. However, deconstructing the ASTs is a dicey process, 3143 // and this approach is far more likely to get the corner cases right. 3144 if (CurContext->isDependentContext()) 3145 DelegationInit = Init; 3146 3147 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 3148 DelegationInit.getAs<Expr>(), 3149 InitRange.getEnd()); 3150 } 3151 3152 MemInitResult 3153 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 3154 Expr *Init, CXXRecordDecl *ClassDecl, 3155 SourceLocation EllipsisLoc) { 3156 SourceLocation BaseLoc 3157 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); 3158 3159 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 3160 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 3161 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 3162 3163 // C++ [class.base.init]p2: 3164 // [...] Unless the mem-initializer-id names a nonstatic data 3165 // member of the constructor's class or a direct or virtual base 3166 // of that class, the mem-initializer is ill-formed. A 3167 // mem-initializer-list can initialize a base class using any 3168 // name that denotes that base class type. 3169 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); 3170 3171 SourceRange InitRange = Init->getSourceRange(); 3172 if (EllipsisLoc.isValid()) { 3173 // This is a pack expansion. 3174 if (!BaseType->containsUnexpandedParameterPack()) { 3175 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 3176 << SourceRange(BaseLoc, InitRange.getEnd()); 3177 3178 EllipsisLoc = SourceLocation(); 3179 } 3180 } else { 3181 // Check for any unexpanded parameter packs. 3182 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 3183 return true; 3184 3185 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 3186 return true; 3187 } 3188 3189 // Check for direct and virtual base classes. 3190 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 3191 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 3192 if (!Dependent) { 3193 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 3194 BaseType)) 3195 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 3196 3197 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 3198 VirtualBaseSpec); 3199 3200 // C++ [base.class.init]p2: 3201 // Unless the mem-initializer-id names a nonstatic data member of the 3202 // constructor's class or a direct or virtual base of that class, the 3203 // mem-initializer is ill-formed. 3204 if (!DirectBaseSpec && !VirtualBaseSpec) { 3205 // If the class has any dependent bases, then it's possible that 3206 // one of those types will resolve to the same type as 3207 // BaseType. Therefore, just treat this as a dependent base 3208 // class initialization. FIXME: Should we try to check the 3209 // initialization anyway? It seems odd. 3210 if (ClassDecl->hasAnyDependentBases()) 3211 Dependent = true; 3212 else 3213 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 3214 << BaseType << Context.getTypeDeclType(ClassDecl) 3215 << BaseTInfo->getTypeLoc().getLocalSourceRange(); 3216 } 3217 } 3218 3219 if (Dependent) { 3220 DiscardCleanupsInEvaluationContext(); 3221 3222 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 3223 /*IsVirtual=*/false, 3224 InitRange.getBegin(), Init, 3225 InitRange.getEnd(), EllipsisLoc); 3226 } 3227 3228 // C++ [base.class.init]p2: 3229 // If a mem-initializer-id is ambiguous because it designates both 3230 // a direct non-virtual base class and an inherited virtual base 3231 // class, the mem-initializer is ill-formed. 3232 if (DirectBaseSpec && VirtualBaseSpec) 3233 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 3234 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 3235 3236 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 3237 if (!BaseSpec) 3238 BaseSpec = VirtualBaseSpec; 3239 3240 // Initialize the base. 3241 bool InitList = true; 3242 MultiExprArg Args = Init; 3243 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 3244 InitList = false; 3245 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 3246 } 3247 3248 InitializedEntity BaseEntity = 3249 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 3250 InitializationKind Kind = 3251 InitList ? InitializationKind::CreateDirectList(BaseLoc) 3252 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 3253 InitRange.getEnd()); 3254 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 3255 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 3256 if (BaseInit.isInvalid()) 3257 return true; 3258 3259 // C++11 [class.base.init]p7: 3260 // The initialization of each base and member constitutes a 3261 // full-expression. 3262 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin()); 3263 if (BaseInit.isInvalid()) 3264 return true; 3265 3266 // If we are in a dependent context, template instantiation will 3267 // perform this type-checking again. Just save the arguments that we 3268 // received in a ParenListExpr. 3269 // FIXME: This isn't quite ideal, since our ASTs don't capture all 3270 // of the information that we have about the base 3271 // initializer. However, deconstructing the ASTs is a dicey process, 3272 // and this approach is far more likely to get the corner cases right. 3273 if (CurContext->isDependentContext()) 3274 BaseInit = Init; 3275 3276 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 3277 BaseSpec->isVirtual(), 3278 InitRange.getBegin(), 3279 BaseInit.getAs<Expr>(), 3280 InitRange.getEnd(), EllipsisLoc); 3281 } 3282 3283 // Create a static_cast\<T&&>(expr). 3284 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { 3285 if (T.isNull()) T = E->getType(); 3286 QualType TargetType = SemaRef.BuildReferenceType( 3287 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); 3288 SourceLocation ExprLoc = E->getLocStart(); 3289 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 3290 TargetType, ExprLoc); 3291 3292 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 3293 SourceRange(ExprLoc, ExprLoc), 3294 E->getSourceRange()).get(); 3295 } 3296 3297 /// ImplicitInitializerKind - How an implicit base or member initializer should 3298 /// initialize its base or member. 3299 enum ImplicitInitializerKind { 3300 IIK_Default, 3301 IIK_Copy, 3302 IIK_Move, 3303 IIK_Inherit 3304 }; 3305 3306 static bool 3307 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 3308 ImplicitInitializerKind ImplicitInitKind, 3309 CXXBaseSpecifier *BaseSpec, 3310 bool IsInheritedVirtualBase, 3311 CXXCtorInitializer *&CXXBaseInit) { 3312 InitializedEntity InitEntity 3313 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 3314 IsInheritedVirtualBase); 3315 3316 ExprResult BaseInit; 3317 3318 switch (ImplicitInitKind) { 3319 case IIK_Inherit: { 3320 const CXXRecordDecl *Inherited = 3321 Constructor->getInheritedConstructor()->getParent(); 3322 const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 3323 if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) { 3324 // C++11 [class.inhctor]p8: 3325 // Each expression in the expression-list is of the form 3326 // static_cast<T&&>(p), where p is the name of the corresponding 3327 // constructor parameter and T is the declared type of p. 3328 SmallVector<Expr*, 16> Args; 3329 for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) { 3330 ParmVarDecl *PD = Constructor->getParamDecl(I); 3331 ExprResult ArgExpr = 3332 SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(), 3333 VK_LValue, SourceLocation()); 3334 if (ArgExpr.isInvalid()) 3335 return true; 3336 Args.push_back(CastForMoving(SemaRef, ArgExpr.get(), PD->getType())); 3337 } 3338 3339 InitializationKind InitKind = InitializationKind::CreateDirect( 3340 Constructor->getLocation(), SourceLocation(), SourceLocation()); 3341 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args); 3342 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args); 3343 break; 3344 } 3345 } 3346 // Fall through. 3347 case IIK_Default: { 3348 InitializationKind InitKind 3349 = InitializationKind::CreateDefault(Constructor->getLocation()); 3350 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 3351 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 3352 break; 3353 } 3354 3355 case IIK_Move: 3356 case IIK_Copy: { 3357 bool Moving = ImplicitInitKind == IIK_Move; 3358 ParmVarDecl *Param = Constructor->getParamDecl(0); 3359 QualType ParamType = Param->getType().getNonReferenceType(); 3360 3361 Expr *CopyCtorArg = 3362 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 3363 SourceLocation(), Param, false, 3364 Constructor->getLocation(), ParamType, 3365 VK_LValue, nullptr); 3366 3367 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 3368 3369 // Cast to the base class to avoid ambiguities. 3370 QualType ArgTy = 3371 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 3372 ParamType.getQualifiers()); 3373 3374 if (Moving) { 3375 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 3376 } 3377 3378 CXXCastPath BasePath; 3379 BasePath.push_back(BaseSpec); 3380 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 3381 CK_UncheckedDerivedToBase, 3382 Moving ? VK_XValue : VK_LValue, 3383 &BasePath).get(); 3384 3385 InitializationKind InitKind 3386 = InitializationKind::CreateDirect(Constructor->getLocation(), 3387 SourceLocation(), SourceLocation()); 3388 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 3389 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 3390 break; 3391 } 3392 } 3393 3394 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 3395 if (BaseInit.isInvalid()) 3396 return true; 3397 3398 CXXBaseInit = 3399 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 3400 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 3401 SourceLocation()), 3402 BaseSpec->isVirtual(), 3403 SourceLocation(), 3404 BaseInit.getAs<Expr>(), 3405 SourceLocation(), 3406 SourceLocation()); 3407 3408 return false; 3409 } 3410 3411 static bool RefersToRValueRef(Expr *MemRef) { 3412 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 3413 return Referenced->getType()->isRValueReferenceType(); 3414 } 3415 3416 static bool 3417 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 3418 ImplicitInitializerKind ImplicitInitKind, 3419 FieldDecl *Field, IndirectFieldDecl *Indirect, 3420 CXXCtorInitializer *&CXXMemberInit) { 3421 if (Field->isInvalidDecl()) 3422 return true; 3423 3424 SourceLocation Loc = Constructor->getLocation(); 3425 3426 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 3427 bool Moving = ImplicitInitKind == IIK_Move; 3428 ParmVarDecl *Param = Constructor->getParamDecl(0); 3429 QualType ParamType = Param->getType().getNonReferenceType(); 3430 3431 // Suppress copying zero-width bitfields. 3432 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0) 3433 return false; 3434 3435 Expr *MemberExprBase = 3436 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 3437 SourceLocation(), Param, false, 3438 Loc, ParamType, VK_LValue, nullptr); 3439 3440 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 3441 3442 if (Moving) { 3443 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 3444 } 3445 3446 // Build a reference to this field within the parameter. 3447 CXXScopeSpec SS; 3448 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 3449 Sema::LookupMemberName); 3450 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 3451 : cast<ValueDecl>(Field), AS_public); 3452 MemberLookup.resolveKind(); 3453 ExprResult CtorArg 3454 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 3455 ParamType, Loc, 3456 /*IsArrow=*/false, 3457 SS, 3458 /*TemplateKWLoc=*/SourceLocation(), 3459 /*FirstQualifierInScope=*/nullptr, 3460 MemberLookup, 3461 /*TemplateArgs=*/nullptr); 3462 if (CtorArg.isInvalid()) 3463 return true; 3464 3465 // C++11 [class.copy]p15: 3466 // - if a member m has rvalue reference type T&&, it is direct-initialized 3467 // with static_cast<T&&>(x.m); 3468 if (RefersToRValueRef(CtorArg.get())) { 3469 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 3470 } 3471 3472 // When the field we are copying is an array, create index variables for 3473 // each dimension of the array. We use these index variables to subscript 3474 // the source array, and other clients (e.g., CodeGen) will perform the 3475 // necessary iteration with these index variables. 3476 SmallVector<VarDecl *, 4> IndexVariables; 3477 QualType BaseType = Field->getType(); 3478 QualType SizeType = SemaRef.Context.getSizeType(); 3479 bool InitializingArray = false; 3480 while (const ConstantArrayType *Array 3481 = SemaRef.Context.getAsConstantArrayType(BaseType)) { 3482 InitializingArray = true; 3483 // Create the iteration variable for this array index. 3484 IdentifierInfo *IterationVarName = nullptr; 3485 { 3486 SmallString<8> Str; 3487 llvm::raw_svector_ostream OS(Str); 3488 OS << "__i" << IndexVariables.size(); 3489 IterationVarName = &SemaRef.Context.Idents.get(OS.str()); 3490 } 3491 VarDecl *IterationVar 3492 = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc, 3493 IterationVarName, SizeType, 3494 SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc), 3495 SC_None); 3496 IndexVariables.push_back(IterationVar); 3497 3498 // Create a reference to the iteration variable. 3499 ExprResult IterationVarRef 3500 = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc); 3501 assert(!IterationVarRef.isInvalid() && 3502 "Reference to invented variable cannot fail!"); 3503 IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.get()); 3504 assert(!IterationVarRef.isInvalid() && 3505 "Conversion of invented variable cannot fail!"); 3506 3507 // Subscript the array with this iteration variable. 3508 CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.get(), Loc, 3509 IterationVarRef.get(), 3510 Loc); 3511 if (CtorArg.isInvalid()) 3512 return true; 3513 3514 BaseType = Array->getElementType(); 3515 } 3516 3517 // The array subscript expression is an lvalue, which is wrong for moving. 3518 if (Moving && InitializingArray) 3519 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 3520 3521 // Construct the entity that we will be initializing. For an array, this 3522 // will be first element in the array, which may require several levels 3523 // of array-subscript entities. 3524 SmallVector<InitializedEntity, 4> Entities; 3525 Entities.reserve(1 + IndexVariables.size()); 3526 if (Indirect) 3527 Entities.push_back(InitializedEntity::InitializeMember(Indirect)); 3528 else 3529 Entities.push_back(InitializedEntity::InitializeMember(Field)); 3530 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I) 3531 Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context, 3532 0, 3533 Entities.back())); 3534 3535 // Direct-initialize to use the copy constructor. 3536 InitializationKind InitKind = 3537 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 3538 3539 Expr *CtorArgE = CtorArg.getAs<Expr>(); 3540 InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE); 3541 3542 ExprResult MemberInit 3543 = InitSeq.Perform(SemaRef, Entities.back(), InitKind, 3544 MultiExprArg(&CtorArgE, 1)); 3545 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 3546 if (MemberInit.isInvalid()) 3547 return true; 3548 3549 if (Indirect) { 3550 assert(IndexVariables.size() == 0 && 3551 "Indirect field improperly initialized"); 3552 CXXMemberInit 3553 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect, 3554 Loc, Loc, 3555 MemberInit.getAs<Expr>(), 3556 Loc); 3557 } else 3558 CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, 3559 Loc, MemberInit.getAs<Expr>(), 3560 Loc, 3561 IndexVariables.data(), 3562 IndexVariables.size()); 3563 return false; 3564 } 3565 3566 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 3567 "Unhandled implicit init kind!"); 3568 3569 QualType FieldBaseElementType = 3570 SemaRef.Context.getBaseElementType(Field->getType()); 3571 3572 if (FieldBaseElementType->isRecordType()) { 3573 InitializedEntity InitEntity 3574 = Indirect? InitializedEntity::InitializeMember(Indirect) 3575 : InitializedEntity::InitializeMember(Field); 3576 InitializationKind InitKind = 3577 InitializationKind::CreateDefault(Loc); 3578 3579 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 3580 ExprResult MemberInit = 3581 InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 3582 3583 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 3584 if (MemberInit.isInvalid()) 3585 return true; 3586 3587 if (Indirect) 3588 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 3589 Indirect, Loc, 3590 Loc, 3591 MemberInit.get(), 3592 Loc); 3593 else 3594 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 3595 Field, Loc, Loc, 3596 MemberInit.get(), 3597 Loc); 3598 return false; 3599 } 3600 3601 if (!Field->getParent()->isUnion()) { 3602 if (FieldBaseElementType->isReferenceType()) { 3603 SemaRef.Diag(Constructor->getLocation(), 3604 diag::err_uninitialized_member_in_ctor) 3605 << (int)Constructor->isImplicit() 3606 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 3607 << 0 << Field->getDeclName(); 3608 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 3609 return true; 3610 } 3611 3612 if (FieldBaseElementType.isConstQualified()) { 3613 SemaRef.Diag(Constructor->getLocation(), 3614 diag::err_uninitialized_member_in_ctor) 3615 << (int)Constructor->isImplicit() 3616 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 3617 << 1 << Field->getDeclName(); 3618 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 3619 return true; 3620 } 3621 } 3622 3623 if (SemaRef.getLangOpts().ObjCAutoRefCount && 3624 FieldBaseElementType->isObjCRetainableType() && 3625 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None && 3626 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 3627 // ARC: 3628 // Default-initialize Objective-C pointers to NULL. 3629 CXXMemberInit 3630 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 3631 Loc, Loc, 3632 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 3633 Loc); 3634 return false; 3635 } 3636 3637 // Nothing to initialize. 3638 CXXMemberInit = nullptr; 3639 return false; 3640 } 3641 3642 namespace { 3643 struct BaseAndFieldInfo { 3644 Sema &S; 3645 CXXConstructorDecl *Ctor; 3646 bool AnyErrorsInInits; 3647 ImplicitInitializerKind IIK; 3648 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 3649 SmallVector<CXXCtorInitializer*, 8> AllToInit; 3650 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 3651 3652 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 3653 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 3654 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 3655 if (Generated && Ctor->isCopyConstructor()) 3656 IIK = IIK_Copy; 3657 else if (Generated && Ctor->isMoveConstructor()) 3658 IIK = IIK_Move; 3659 else if (Ctor->getInheritedConstructor()) 3660 IIK = IIK_Inherit; 3661 else 3662 IIK = IIK_Default; 3663 } 3664 3665 bool isImplicitCopyOrMove() const { 3666 switch (IIK) { 3667 case IIK_Copy: 3668 case IIK_Move: 3669 return true; 3670 3671 case IIK_Default: 3672 case IIK_Inherit: 3673 return false; 3674 } 3675 3676 llvm_unreachable("Invalid ImplicitInitializerKind!"); 3677 } 3678 3679 bool addFieldInitializer(CXXCtorInitializer *Init) { 3680 AllToInit.push_back(Init); 3681 3682 // Check whether this initializer makes the field "used". 3683 if (Init->getInit()->HasSideEffects(S.Context)) 3684 S.UnusedPrivateFields.remove(Init->getAnyMember()); 3685 3686 return false; 3687 } 3688 3689 bool isInactiveUnionMember(FieldDecl *Field) { 3690 RecordDecl *Record = Field->getParent(); 3691 if (!Record->isUnion()) 3692 return false; 3693 3694 if (FieldDecl *Active = 3695 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 3696 return Active != Field->getCanonicalDecl(); 3697 3698 // In an implicit copy or move constructor, ignore any in-class initializer. 3699 if (isImplicitCopyOrMove()) 3700 return true; 3701 3702 // If there's no explicit initialization, the field is active only if it 3703 // has an in-class initializer... 3704 if (Field->hasInClassInitializer()) 3705 return false; 3706 // ... or it's an anonymous struct or union whose class has an in-class 3707 // initializer. 3708 if (!Field->isAnonymousStructOrUnion()) 3709 return true; 3710 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 3711 return !FieldRD->hasInClassInitializer(); 3712 } 3713 3714 /// \brief Determine whether the given field is, or is within, a union member 3715 /// that is inactive (because there was an initializer given for a different 3716 /// member of the union, or because the union was not initialized at all). 3717 bool isWithinInactiveUnionMember(FieldDecl *Field, 3718 IndirectFieldDecl *Indirect) { 3719 if (!Indirect) 3720 return isInactiveUnionMember(Field); 3721 3722 for (auto *C : Indirect->chain()) { 3723 FieldDecl *Field = dyn_cast<FieldDecl>(C); 3724 if (Field && isInactiveUnionMember(Field)) 3725 return true; 3726 } 3727 return false; 3728 } 3729 }; 3730 } 3731 3732 /// \brief Determine whether the given type is an incomplete or zero-lenfgth 3733 /// array type. 3734 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 3735 if (T->isIncompleteArrayType()) 3736 return true; 3737 3738 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 3739 if (!ArrayT->getSize()) 3740 return true; 3741 3742 T = ArrayT->getElementType(); 3743 } 3744 3745 return false; 3746 } 3747 3748 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 3749 FieldDecl *Field, 3750 IndirectFieldDecl *Indirect = nullptr) { 3751 if (Field->isInvalidDecl()) 3752 return false; 3753 3754 // Overwhelmingly common case: we have a direct initializer for this field. 3755 if (CXXCtorInitializer *Init = 3756 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 3757 return Info.addFieldInitializer(Init); 3758 3759 // C++11 [class.base.init]p8: 3760 // if the entity is a non-static data member that has a 3761 // brace-or-equal-initializer and either 3762 // -- the constructor's class is a union and no other variant member of that 3763 // union is designated by a mem-initializer-id or 3764 // -- the constructor's class is not a union, and, if the entity is a member 3765 // of an anonymous union, no other member of that union is designated by 3766 // a mem-initializer-id, 3767 // the entity is initialized as specified in [dcl.init]. 3768 // 3769 // We also apply the same rules to handle anonymous structs within anonymous 3770 // unions. 3771 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 3772 return false; 3773 3774 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 3775 ExprResult DIE = 3776 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 3777 if (DIE.isInvalid()) 3778 return true; 3779 CXXCtorInitializer *Init; 3780 if (Indirect) 3781 Init = new (SemaRef.Context) 3782 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 3783 SourceLocation(), DIE.get(), SourceLocation()); 3784 else 3785 Init = new (SemaRef.Context) 3786 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 3787 SourceLocation(), DIE.get(), SourceLocation()); 3788 return Info.addFieldInitializer(Init); 3789 } 3790 3791 // Don't initialize incomplete or zero-length arrays. 3792 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 3793 return false; 3794 3795 // Don't try to build an implicit initializer if there were semantic 3796 // errors in any of the initializers (and therefore we might be 3797 // missing some that the user actually wrote). 3798 if (Info.AnyErrorsInInits) 3799 return false; 3800 3801 CXXCtorInitializer *Init = nullptr; 3802 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 3803 Indirect, Init)) 3804 return true; 3805 3806 if (!Init) 3807 return false; 3808 3809 return Info.addFieldInitializer(Init); 3810 } 3811 3812 bool 3813 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 3814 CXXCtorInitializer *Initializer) { 3815 assert(Initializer->isDelegatingInitializer()); 3816 Constructor->setNumCtorInitializers(1); 3817 CXXCtorInitializer **initializer = 3818 new (Context) CXXCtorInitializer*[1]; 3819 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 3820 Constructor->setCtorInitializers(initializer); 3821 3822 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 3823 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 3824 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 3825 } 3826 3827 DelegatingCtorDecls.push_back(Constructor); 3828 3829 DiagnoseUninitializedFields(*this, Constructor); 3830 3831 return false; 3832 } 3833 3834 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 3835 ArrayRef<CXXCtorInitializer *> Initializers) { 3836 if (Constructor->isDependentContext()) { 3837 // Just store the initializers as written, they will be checked during 3838 // instantiation. 3839 if (!Initializers.empty()) { 3840 Constructor->setNumCtorInitializers(Initializers.size()); 3841 CXXCtorInitializer **baseOrMemberInitializers = 3842 new (Context) CXXCtorInitializer*[Initializers.size()]; 3843 memcpy(baseOrMemberInitializers, Initializers.data(), 3844 Initializers.size() * sizeof(CXXCtorInitializer*)); 3845 Constructor->setCtorInitializers(baseOrMemberInitializers); 3846 } 3847 3848 // Let template instantiation know whether we had errors. 3849 if (AnyErrors) 3850 Constructor->setInvalidDecl(); 3851 3852 return false; 3853 } 3854 3855 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 3856 3857 // We need to build the initializer AST according to order of construction 3858 // and not what user specified in the Initializers list. 3859 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 3860 if (!ClassDecl) 3861 return true; 3862 3863 bool HadError = false; 3864 3865 for (unsigned i = 0; i < Initializers.size(); i++) { 3866 CXXCtorInitializer *Member = Initializers[i]; 3867 3868 if (Member->isBaseInitializer()) 3869 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 3870 else { 3871 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 3872 3873 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 3874 for (auto *C : F->chain()) { 3875 FieldDecl *FD = dyn_cast<FieldDecl>(C); 3876 if (FD && FD->getParent()->isUnion()) 3877 Info.ActiveUnionMember.insert(std::make_pair( 3878 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 3879 } 3880 } else if (FieldDecl *FD = Member->getMember()) { 3881 if (FD->getParent()->isUnion()) 3882 Info.ActiveUnionMember.insert(std::make_pair( 3883 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 3884 } 3885 } 3886 } 3887 3888 // Keep track of the direct virtual bases. 3889 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 3890 for (auto &I : ClassDecl->bases()) { 3891 if (I.isVirtual()) 3892 DirectVBases.insert(&I); 3893 } 3894 3895 // Push virtual bases before others. 3896 for (auto &VBase : ClassDecl->vbases()) { 3897 if (CXXCtorInitializer *Value 3898 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 3899 // [class.base.init]p7, per DR257: 3900 // A mem-initializer where the mem-initializer-id names a virtual base 3901 // class is ignored during execution of a constructor of any class that 3902 // is not the most derived class. 3903 if (ClassDecl->isAbstract()) { 3904 // FIXME: Provide a fixit to remove the base specifier. This requires 3905 // tracking the location of the associated comma for a base specifier. 3906 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 3907 << VBase.getType() << ClassDecl; 3908 DiagnoseAbstractType(ClassDecl); 3909 } 3910 3911 Info.AllToInit.push_back(Value); 3912 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 3913 // [class.base.init]p8, per DR257: 3914 // If a given [...] base class is not named by a mem-initializer-id 3915 // [...] and the entity is not a virtual base class of an abstract 3916 // class, then [...] the entity is default-initialized. 3917 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 3918 CXXCtorInitializer *CXXBaseInit; 3919 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 3920 &VBase, IsInheritedVirtualBase, 3921 CXXBaseInit)) { 3922 HadError = true; 3923 continue; 3924 } 3925 3926 Info.AllToInit.push_back(CXXBaseInit); 3927 } 3928 } 3929 3930 // Non-virtual bases. 3931 for (auto &Base : ClassDecl->bases()) { 3932 // Virtuals are in the virtual base list and already constructed. 3933 if (Base.isVirtual()) 3934 continue; 3935 3936 if (CXXCtorInitializer *Value 3937 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 3938 Info.AllToInit.push_back(Value); 3939 } else if (!AnyErrors) { 3940 CXXCtorInitializer *CXXBaseInit; 3941 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 3942 &Base, /*IsInheritedVirtualBase=*/false, 3943 CXXBaseInit)) { 3944 HadError = true; 3945 continue; 3946 } 3947 3948 Info.AllToInit.push_back(CXXBaseInit); 3949 } 3950 } 3951 3952 // Fields. 3953 for (auto *Mem : ClassDecl->decls()) { 3954 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 3955 // C++ [class.bit]p2: 3956 // A declaration for a bit-field that omits the identifier declares an 3957 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 3958 // initialized. 3959 if (F->isUnnamedBitfield()) 3960 continue; 3961 3962 // If we're not generating the implicit copy/move constructor, then we'll 3963 // handle anonymous struct/union fields based on their individual 3964 // indirect fields. 3965 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 3966 continue; 3967 3968 if (CollectFieldInitializer(*this, Info, F)) 3969 HadError = true; 3970 continue; 3971 } 3972 3973 // Beyond this point, we only consider default initialization. 3974 if (Info.isImplicitCopyOrMove()) 3975 continue; 3976 3977 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 3978 if (F->getType()->isIncompleteArrayType()) { 3979 assert(ClassDecl->hasFlexibleArrayMember() && 3980 "Incomplete array type is not valid"); 3981 continue; 3982 } 3983 3984 // Initialize each field of an anonymous struct individually. 3985 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 3986 HadError = true; 3987 3988 continue; 3989 } 3990 } 3991 3992 unsigned NumInitializers = Info.AllToInit.size(); 3993 if (NumInitializers > 0) { 3994 Constructor->setNumCtorInitializers(NumInitializers); 3995 CXXCtorInitializer **baseOrMemberInitializers = 3996 new (Context) CXXCtorInitializer*[NumInitializers]; 3997 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 3998 NumInitializers * sizeof(CXXCtorInitializer*)); 3999 Constructor->setCtorInitializers(baseOrMemberInitializers); 4000 4001 // Constructors implicitly reference the base and member 4002 // destructors. 4003 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 4004 Constructor->getParent()); 4005 } 4006 4007 return HadError; 4008 } 4009 4010 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 4011 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 4012 const RecordDecl *RD = RT->getDecl(); 4013 if (RD->isAnonymousStructOrUnion()) { 4014 for (auto *Field : RD->fields()) 4015 PopulateKeysForFields(Field, IdealInits); 4016 return; 4017 } 4018 } 4019 IdealInits.push_back(Field->getCanonicalDecl()); 4020 } 4021 4022 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 4023 return Context.getCanonicalType(BaseType).getTypePtr(); 4024 } 4025 4026 static const void *GetKeyForMember(ASTContext &Context, 4027 CXXCtorInitializer *Member) { 4028 if (!Member->isAnyMemberInitializer()) 4029 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 4030 4031 return Member->getAnyMember()->getCanonicalDecl(); 4032 } 4033 4034 static void DiagnoseBaseOrMemInitializerOrder( 4035 Sema &SemaRef, const CXXConstructorDecl *Constructor, 4036 ArrayRef<CXXCtorInitializer *> Inits) { 4037 if (Constructor->getDeclContext()->isDependentContext()) 4038 return; 4039 4040 // Don't check initializers order unless the warning is enabled at the 4041 // location of at least one initializer. 4042 bool ShouldCheckOrder = false; 4043 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 4044 CXXCtorInitializer *Init = Inits[InitIndex]; 4045 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 4046 Init->getSourceLocation())) { 4047 ShouldCheckOrder = true; 4048 break; 4049 } 4050 } 4051 if (!ShouldCheckOrder) 4052 return; 4053 4054 // Build the list of bases and members in the order that they'll 4055 // actually be initialized. The explicit initializers should be in 4056 // this same order but may be missing things. 4057 SmallVector<const void*, 32> IdealInitKeys; 4058 4059 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 4060 4061 // 1. Virtual bases. 4062 for (const auto &VBase : ClassDecl->vbases()) 4063 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 4064 4065 // 2. Non-virtual bases. 4066 for (const auto &Base : ClassDecl->bases()) { 4067 if (Base.isVirtual()) 4068 continue; 4069 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 4070 } 4071 4072 // 3. Direct fields. 4073 for (auto *Field : ClassDecl->fields()) { 4074 if (Field->isUnnamedBitfield()) 4075 continue; 4076 4077 PopulateKeysForFields(Field, IdealInitKeys); 4078 } 4079 4080 unsigned NumIdealInits = IdealInitKeys.size(); 4081 unsigned IdealIndex = 0; 4082 4083 CXXCtorInitializer *PrevInit = nullptr; 4084 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 4085 CXXCtorInitializer *Init = Inits[InitIndex]; 4086 const void *InitKey = GetKeyForMember(SemaRef.Context, Init); 4087 4088 // Scan forward to try to find this initializer in the idealized 4089 // initializers list. 4090 for (; IdealIndex != NumIdealInits; ++IdealIndex) 4091 if (InitKey == IdealInitKeys[IdealIndex]) 4092 break; 4093 4094 // If we didn't find this initializer, it must be because we 4095 // scanned past it on a previous iteration. That can only 4096 // happen if we're out of order; emit a warning. 4097 if (IdealIndex == NumIdealInits && PrevInit) { 4098 Sema::SemaDiagnosticBuilder D = 4099 SemaRef.Diag(PrevInit->getSourceLocation(), 4100 diag::warn_initializer_out_of_order); 4101 4102 if (PrevInit->isAnyMemberInitializer()) 4103 D << 0 << PrevInit->getAnyMember()->getDeclName(); 4104 else 4105 D << 1 << PrevInit->getTypeSourceInfo()->getType(); 4106 4107 if (Init->isAnyMemberInitializer()) 4108 D << 0 << Init->getAnyMember()->getDeclName(); 4109 else 4110 D << 1 << Init->getTypeSourceInfo()->getType(); 4111 4112 // Move back to the initializer's location in the ideal list. 4113 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 4114 if (InitKey == IdealInitKeys[IdealIndex]) 4115 break; 4116 4117 assert(IdealIndex != NumIdealInits && 4118 "initializer not found in initializer list"); 4119 } 4120 4121 PrevInit = Init; 4122 } 4123 } 4124 4125 namespace { 4126 bool CheckRedundantInit(Sema &S, 4127 CXXCtorInitializer *Init, 4128 CXXCtorInitializer *&PrevInit) { 4129 if (!PrevInit) { 4130 PrevInit = Init; 4131 return false; 4132 } 4133 4134 if (FieldDecl *Field = Init->getAnyMember()) 4135 S.Diag(Init->getSourceLocation(), 4136 diag::err_multiple_mem_initialization) 4137 << Field->getDeclName() 4138 << Init->getSourceRange(); 4139 else { 4140 const Type *BaseClass = Init->getBaseClass(); 4141 assert(BaseClass && "neither field nor base"); 4142 S.Diag(Init->getSourceLocation(), 4143 diag::err_multiple_base_initialization) 4144 << QualType(BaseClass, 0) 4145 << Init->getSourceRange(); 4146 } 4147 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 4148 << 0 << PrevInit->getSourceRange(); 4149 4150 return true; 4151 } 4152 4153 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 4154 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 4155 4156 bool CheckRedundantUnionInit(Sema &S, 4157 CXXCtorInitializer *Init, 4158 RedundantUnionMap &Unions) { 4159 FieldDecl *Field = Init->getAnyMember(); 4160 RecordDecl *Parent = Field->getParent(); 4161 NamedDecl *Child = Field; 4162 4163 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 4164 if (Parent->isUnion()) { 4165 UnionEntry &En = Unions[Parent]; 4166 if (En.first && En.first != Child) { 4167 S.Diag(Init->getSourceLocation(), 4168 diag::err_multiple_mem_union_initialization) 4169 << Field->getDeclName() 4170 << Init->getSourceRange(); 4171 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 4172 << 0 << En.second->getSourceRange(); 4173 return true; 4174 } 4175 if (!En.first) { 4176 En.first = Child; 4177 En.second = Init; 4178 } 4179 if (!Parent->isAnonymousStructOrUnion()) 4180 return false; 4181 } 4182 4183 Child = Parent; 4184 Parent = cast<RecordDecl>(Parent->getDeclContext()); 4185 } 4186 4187 return false; 4188 } 4189 } 4190 4191 /// ActOnMemInitializers - Handle the member initializers for a constructor. 4192 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 4193 SourceLocation ColonLoc, 4194 ArrayRef<CXXCtorInitializer*> MemInits, 4195 bool AnyErrors) { 4196 if (!ConstructorDecl) 4197 return; 4198 4199 AdjustDeclIfTemplate(ConstructorDecl); 4200 4201 CXXConstructorDecl *Constructor 4202 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 4203 4204 if (!Constructor) { 4205 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 4206 return; 4207 } 4208 4209 // Mapping for the duplicate initializers check. 4210 // For member initializers, this is keyed with a FieldDecl*. 4211 // For base initializers, this is keyed with a Type*. 4212 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 4213 4214 // Mapping for the inconsistent anonymous-union initializers check. 4215 RedundantUnionMap MemberUnions; 4216 4217 bool HadError = false; 4218 for (unsigned i = 0; i < MemInits.size(); i++) { 4219 CXXCtorInitializer *Init = MemInits[i]; 4220 4221 // Set the source order index. 4222 Init->setSourceOrder(i); 4223 4224 if (Init->isAnyMemberInitializer()) { 4225 const void *Key = GetKeyForMember(Context, Init); 4226 if (CheckRedundantInit(*this, Init, Members[Key]) || 4227 CheckRedundantUnionInit(*this, Init, MemberUnions)) 4228 HadError = true; 4229 } else if (Init->isBaseInitializer()) { 4230 const void *Key = GetKeyForMember(Context, Init); 4231 if (CheckRedundantInit(*this, Init, Members[Key])) 4232 HadError = true; 4233 } else { 4234 assert(Init->isDelegatingInitializer()); 4235 // This must be the only initializer 4236 if (MemInits.size() != 1) { 4237 Diag(Init->getSourceLocation(), 4238 diag::err_delegating_initializer_alone) 4239 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 4240 // We will treat this as being the only initializer. 4241 } 4242 SetDelegatingInitializer(Constructor, MemInits[i]); 4243 // Return immediately as the initializer is set. 4244 return; 4245 } 4246 } 4247 4248 if (HadError) 4249 return; 4250 4251 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 4252 4253 SetCtorInitializers(Constructor, AnyErrors, MemInits); 4254 4255 DiagnoseUninitializedFields(*this, Constructor); 4256 } 4257 4258 void 4259 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 4260 CXXRecordDecl *ClassDecl) { 4261 // Ignore dependent contexts. Also ignore unions, since their members never 4262 // have destructors implicitly called. 4263 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 4264 return; 4265 4266 // FIXME: all the access-control diagnostics are positioned on the 4267 // field/base declaration. That's probably good; that said, the 4268 // user might reasonably want to know why the destructor is being 4269 // emitted, and we currently don't say. 4270 4271 // Non-static data members. 4272 for (auto *Field : ClassDecl->fields()) { 4273 if (Field->isInvalidDecl()) 4274 continue; 4275 4276 // Don't destroy incomplete or zero-length arrays. 4277 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 4278 continue; 4279 4280 QualType FieldType = Context.getBaseElementType(Field->getType()); 4281 4282 const RecordType* RT = FieldType->getAs<RecordType>(); 4283 if (!RT) 4284 continue; 4285 4286 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 4287 if (FieldClassDecl->isInvalidDecl()) 4288 continue; 4289 if (FieldClassDecl->hasIrrelevantDestructor()) 4290 continue; 4291 // The destructor for an implicit anonymous union member is never invoked. 4292 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 4293 continue; 4294 4295 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 4296 assert(Dtor && "No dtor found for FieldClassDecl!"); 4297 CheckDestructorAccess(Field->getLocation(), Dtor, 4298 PDiag(diag::err_access_dtor_field) 4299 << Field->getDeclName() 4300 << FieldType); 4301 4302 MarkFunctionReferenced(Location, Dtor); 4303 DiagnoseUseOfDecl(Dtor, Location); 4304 } 4305 4306 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 4307 4308 // Bases. 4309 for (const auto &Base : ClassDecl->bases()) { 4310 // Bases are always records in a well-formed non-dependent class. 4311 const RecordType *RT = Base.getType()->getAs<RecordType>(); 4312 4313 // Remember direct virtual bases. 4314 if (Base.isVirtual()) 4315 DirectVirtualBases.insert(RT); 4316 4317 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 4318 // If our base class is invalid, we probably can't get its dtor anyway. 4319 if (BaseClassDecl->isInvalidDecl()) 4320 continue; 4321 if (BaseClassDecl->hasIrrelevantDestructor()) 4322 continue; 4323 4324 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 4325 assert(Dtor && "No dtor found for BaseClassDecl!"); 4326 4327 // FIXME: caret should be on the start of the class name 4328 CheckDestructorAccess(Base.getLocStart(), Dtor, 4329 PDiag(diag::err_access_dtor_base) 4330 << Base.getType() 4331 << Base.getSourceRange(), 4332 Context.getTypeDeclType(ClassDecl)); 4333 4334 MarkFunctionReferenced(Location, Dtor); 4335 DiagnoseUseOfDecl(Dtor, Location); 4336 } 4337 4338 // Virtual bases. 4339 for (const auto &VBase : ClassDecl->vbases()) { 4340 // Bases are always records in a well-formed non-dependent class. 4341 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 4342 4343 // Ignore direct virtual bases. 4344 if (DirectVirtualBases.count(RT)) 4345 continue; 4346 4347 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 4348 // If our base class is invalid, we probably can't get its dtor anyway. 4349 if (BaseClassDecl->isInvalidDecl()) 4350 continue; 4351 if (BaseClassDecl->hasIrrelevantDestructor()) 4352 continue; 4353 4354 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 4355 assert(Dtor && "No dtor found for BaseClassDecl!"); 4356 if (CheckDestructorAccess( 4357 ClassDecl->getLocation(), Dtor, 4358 PDiag(diag::err_access_dtor_vbase) 4359 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 4360 Context.getTypeDeclType(ClassDecl)) == 4361 AR_accessible) { 4362 CheckDerivedToBaseConversion( 4363 Context.getTypeDeclType(ClassDecl), VBase.getType(), 4364 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 4365 SourceRange(), DeclarationName(), nullptr); 4366 } 4367 4368 MarkFunctionReferenced(Location, Dtor); 4369 DiagnoseUseOfDecl(Dtor, Location); 4370 } 4371 } 4372 4373 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 4374 if (!CDtorDecl) 4375 return; 4376 4377 if (CXXConstructorDecl *Constructor 4378 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 4379 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 4380 DiagnoseUninitializedFields(*this, Constructor); 4381 } 4382 } 4383 4384 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 4385 unsigned DiagID, AbstractDiagSelID SelID) { 4386 class NonAbstractTypeDiagnoser : public TypeDiagnoser { 4387 unsigned DiagID; 4388 AbstractDiagSelID SelID; 4389 4390 public: 4391 NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID) 4392 : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { } 4393 4394 void diagnose(Sema &S, SourceLocation Loc, QualType T) override { 4395 if (Suppressed) return; 4396 if (SelID == -1) 4397 S.Diag(Loc, DiagID) << T; 4398 else 4399 S.Diag(Loc, DiagID) << SelID << T; 4400 } 4401 } Diagnoser(DiagID, SelID); 4402 4403 return RequireNonAbstractType(Loc, T, Diagnoser); 4404 } 4405 4406 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 4407 TypeDiagnoser &Diagnoser) { 4408 if (!getLangOpts().CPlusPlus) 4409 return false; 4410 4411 if (const ArrayType *AT = Context.getAsArrayType(T)) 4412 return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser); 4413 4414 if (const PointerType *PT = T->getAs<PointerType>()) { 4415 // Find the innermost pointer type. 4416 while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>()) 4417 PT = T; 4418 4419 if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) 4420 return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser); 4421 } 4422 4423 const RecordType *RT = T->getAs<RecordType>(); 4424 if (!RT) 4425 return false; 4426 4427 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4428 4429 // We can't answer whether something is abstract until it has a 4430 // definition. If it's currently being defined, we'll walk back 4431 // over all the declarations when we have a full definition. 4432 const CXXRecordDecl *Def = RD->getDefinition(); 4433 if (!Def || Def->isBeingDefined()) 4434 return false; 4435 4436 if (!RD->isAbstract()) 4437 return false; 4438 4439 Diagnoser.diagnose(*this, Loc, T); 4440 DiagnoseAbstractType(RD); 4441 4442 return true; 4443 } 4444 4445 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 4446 // Check if we've already emitted the list of pure virtual functions 4447 // for this class. 4448 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 4449 return; 4450 4451 // If the diagnostic is suppressed, don't emit the notes. We're only 4452 // going to emit them once, so try to attach them to a diagnostic we're 4453 // actually going to show. 4454 if (Diags.isLastDiagnosticIgnored()) 4455 return; 4456 4457 CXXFinalOverriderMap FinalOverriders; 4458 RD->getFinalOverriders(FinalOverriders); 4459 4460 // Keep a set of seen pure methods so we won't diagnose the same method 4461 // more than once. 4462 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 4463 4464 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 4465 MEnd = FinalOverriders.end(); 4466 M != MEnd; 4467 ++M) { 4468 for (OverridingMethods::iterator SO = M->second.begin(), 4469 SOEnd = M->second.end(); 4470 SO != SOEnd; ++SO) { 4471 // C++ [class.abstract]p4: 4472 // A class is abstract if it contains or inherits at least one 4473 // pure virtual function for which the final overrider is pure 4474 // virtual. 4475 4476 // 4477 if (SO->second.size() != 1) 4478 continue; 4479 4480 if (!SO->second.front().Method->isPure()) 4481 continue; 4482 4483 if (!SeenPureMethods.insert(SO->second.front().Method).second) 4484 continue; 4485 4486 Diag(SO->second.front().Method->getLocation(), 4487 diag::note_pure_virtual_function) 4488 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 4489 } 4490 } 4491 4492 if (!PureVirtualClassDiagSet) 4493 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 4494 PureVirtualClassDiagSet->insert(RD); 4495 } 4496 4497 namespace { 4498 struct AbstractUsageInfo { 4499 Sema &S; 4500 CXXRecordDecl *Record; 4501 CanQualType AbstractType; 4502 bool Invalid; 4503 4504 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 4505 : S(S), Record(Record), 4506 AbstractType(S.Context.getCanonicalType( 4507 S.Context.getTypeDeclType(Record))), 4508 Invalid(false) {} 4509 4510 void DiagnoseAbstractType() { 4511 if (Invalid) return; 4512 S.DiagnoseAbstractType(Record); 4513 Invalid = true; 4514 } 4515 4516 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 4517 }; 4518 4519 struct CheckAbstractUsage { 4520 AbstractUsageInfo &Info; 4521 const NamedDecl *Ctx; 4522 4523 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 4524 : Info(Info), Ctx(Ctx) {} 4525 4526 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 4527 switch (TL.getTypeLocClass()) { 4528 #define ABSTRACT_TYPELOC(CLASS, PARENT) 4529 #define TYPELOC(CLASS, PARENT) \ 4530 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 4531 #include "clang/AST/TypeLocNodes.def" 4532 } 4533 } 4534 4535 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 4536 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 4537 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 4538 if (!TL.getParam(I)) 4539 continue; 4540 4541 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 4542 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 4543 } 4544 } 4545 4546 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 4547 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 4548 } 4549 4550 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 4551 // Visit the type parameters from a permissive context. 4552 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 4553 TemplateArgumentLoc TAL = TL.getArgLoc(I); 4554 if (TAL.getArgument().getKind() == TemplateArgument::Type) 4555 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 4556 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 4557 // TODO: other template argument types? 4558 } 4559 } 4560 4561 // Visit pointee types from a permissive context. 4562 #define CheckPolymorphic(Type) \ 4563 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 4564 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 4565 } 4566 CheckPolymorphic(PointerTypeLoc) 4567 CheckPolymorphic(ReferenceTypeLoc) 4568 CheckPolymorphic(MemberPointerTypeLoc) 4569 CheckPolymorphic(BlockPointerTypeLoc) 4570 CheckPolymorphic(AtomicTypeLoc) 4571 4572 /// Handle all the types we haven't given a more specific 4573 /// implementation for above. 4574 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 4575 // Every other kind of type that we haven't called out already 4576 // that has an inner type is either (1) sugar or (2) contains that 4577 // inner type in some way as a subobject. 4578 if (TypeLoc Next = TL.getNextTypeLoc()) 4579 return Visit(Next, Sel); 4580 4581 // If there's no inner type and we're in a permissive context, 4582 // don't diagnose. 4583 if (Sel == Sema::AbstractNone) return; 4584 4585 // Check whether the type matches the abstract type. 4586 QualType T = TL.getType(); 4587 if (T->isArrayType()) { 4588 Sel = Sema::AbstractArrayType; 4589 T = Info.S.Context.getBaseElementType(T); 4590 } 4591 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 4592 if (CT != Info.AbstractType) return; 4593 4594 // It matched; do some magic. 4595 if (Sel == Sema::AbstractArrayType) { 4596 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 4597 << T << TL.getSourceRange(); 4598 } else { 4599 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 4600 << Sel << T << TL.getSourceRange(); 4601 } 4602 Info.DiagnoseAbstractType(); 4603 } 4604 }; 4605 4606 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 4607 Sema::AbstractDiagSelID Sel) { 4608 CheckAbstractUsage(*this, D).Visit(TL, Sel); 4609 } 4610 4611 } 4612 4613 /// Check for invalid uses of an abstract type in a method declaration. 4614 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 4615 CXXMethodDecl *MD) { 4616 // No need to do the check on definitions, which require that 4617 // the return/param types be complete. 4618 if (MD->doesThisDeclarationHaveABody()) 4619 return; 4620 4621 // For safety's sake, just ignore it if we don't have type source 4622 // information. This should never happen for non-implicit methods, 4623 // but... 4624 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 4625 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); 4626 } 4627 4628 /// Check for invalid uses of an abstract type within a class definition. 4629 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 4630 CXXRecordDecl *RD) { 4631 for (auto *D : RD->decls()) { 4632 if (D->isImplicit()) continue; 4633 4634 // Methods and method templates. 4635 if (isa<CXXMethodDecl>(D)) { 4636 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); 4637 } else if (isa<FunctionTemplateDecl>(D)) { 4638 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); 4639 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); 4640 4641 // Fields and static variables. 4642 } else if (isa<FieldDecl>(D)) { 4643 FieldDecl *FD = cast<FieldDecl>(D); 4644 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 4645 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 4646 } else if (isa<VarDecl>(D)) { 4647 VarDecl *VD = cast<VarDecl>(D); 4648 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 4649 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); 4650 4651 // Nested classes and class templates. 4652 } else if (isa<CXXRecordDecl>(D)) { 4653 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); 4654 } else if (isa<ClassTemplateDecl>(D)) { 4655 CheckAbstractClassUsage(Info, 4656 cast<ClassTemplateDecl>(D)->getTemplatedDecl()); 4657 } 4658 } 4659 } 4660 4661 /// \brief Check class-level dllimport/dllexport attribute. 4662 static void checkDLLAttribute(Sema &S, CXXRecordDecl *Class) { 4663 Attr *ClassAttr = getDLLAttr(Class); 4664 4665 // MSVC inherits DLL attributes to partial class template specializations. 4666 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) { 4667 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 4668 if (Attr *TemplateAttr = 4669 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 4670 auto *A = cast<InheritableAttr>(TemplateAttr->clone(S.getASTContext())); 4671 A->setInherited(true); 4672 ClassAttr = A; 4673 } 4674 } 4675 } 4676 4677 if (!ClassAttr) 4678 return; 4679 4680 if (!Class->isExternallyVisible()) { 4681 S.Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 4682 << Class << ClassAttr; 4683 return; 4684 } 4685 4686 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() && 4687 !ClassAttr->isInherited()) { 4688 // Diagnose dll attributes on members of class with dll attribute. 4689 for (Decl *Member : Class->decls()) { 4690 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 4691 continue; 4692 InheritableAttr *MemberAttr = getDLLAttr(Member); 4693 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 4694 continue; 4695 4696 S.Diag(MemberAttr->getLocation(), 4697 diag::err_attribute_dll_member_of_dll_class) 4698 << MemberAttr << ClassAttr; 4699 S.Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 4700 Member->setInvalidDecl(); 4701 } 4702 } 4703 4704 if (Class->getDescribedClassTemplate()) 4705 // Don't inherit dll attribute until the template is instantiated. 4706 return; 4707 4708 // The class is either imported or exported. 4709 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 4710 const bool ClassImported = !ClassExported; 4711 4712 // Force declaration of implicit members so they can inherit the attribute. 4713 S.ForceDeclarationOfImplicitMembers(Class); 4714 4715 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 4716 // seem to be true in practice? 4717 4718 TemplateSpecializationKind TSK = 4719 Class->getTemplateSpecializationKind(); 4720 4721 for (Decl *Member : Class->decls()) { 4722 VarDecl *VD = dyn_cast<VarDecl>(Member); 4723 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 4724 4725 // Only methods and static fields inherit the attributes. 4726 if (!VD && !MD) 4727 continue; 4728 4729 if (MD) { 4730 // Don't process deleted methods. 4731 if (MD->isDeleted()) 4732 continue; 4733 4734 if (MD->isMoveAssignmentOperator() && ClassImported && MD->isInlined()) { 4735 // Current MSVC versions don't export the move assignment operators, so 4736 // don't attempt to import them if we have a definition. 4737 continue; 4738 } 4739 4740 if (MD->isInlined() && ClassImported && 4741 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4742 // MinGW does not import inline functions. 4743 continue; 4744 } 4745 } 4746 4747 if (!getDLLAttr(Member)) { 4748 auto *NewAttr = 4749 cast<InheritableAttr>(ClassAttr->clone(S.getASTContext())); 4750 NewAttr->setInherited(true); 4751 Member->addAttr(NewAttr); 4752 } 4753 4754 if (MD && ClassExported) { 4755 if (MD->isUserProvided()) { 4756 // Instantiate non-default class member functions ... 4757 4758 // .. except for certain kinds of template specializations. 4759 if (TSK == TSK_ExplicitInstantiationDeclaration) 4760 continue; 4761 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 4762 continue; 4763 4764 S.MarkFunctionReferenced(Class->getLocation(), MD); 4765 4766 // The function will be passed to the consumer when its definition is 4767 // encountered. 4768 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() || 4769 MD->isCopyAssignmentOperator() || 4770 MD->isMoveAssignmentOperator()) { 4771 // Synthesize and instantiate non-trivial implicit methods, explicitly 4772 // defaulted methods, and the copy and move assignment operators. The 4773 // latter are exported even if they are trivial, because the address of 4774 // an operator can be taken and should compare equal accross libraries. 4775 S.MarkFunctionReferenced(Class->getLocation(), MD); 4776 4777 // There is no later point when we will see the definition of this 4778 // function, so pass it to the consumer now. 4779 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 4780 } 4781 } 4782 } 4783 } 4784 4785 /// \brief Perform semantic checks on a class definition that has been 4786 /// completing, introducing implicitly-declared members, checking for 4787 /// abstract types, etc. 4788 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { 4789 if (!Record) 4790 return; 4791 4792 if (Record->isAbstract() && !Record->isInvalidDecl()) { 4793 AbstractUsageInfo Info(*this, Record); 4794 CheckAbstractClassUsage(Info, Record); 4795 } 4796 4797 // If this is not an aggregate type and has no user-declared constructor, 4798 // complain about any non-static data members of reference or const scalar 4799 // type, since they will never get initializers. 4800 if (!Record->isInvalidDecl() && !Record->isDependentType() && 4801 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 4802 !Record->isLambda()) { 4803 bool Complained = false; 4804 for (const auto *F : Record->fields()) { 4805 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 4806 continue; 4807 4808 if (F->getType()->isReferenceType() || 4809 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 4810 if (!Complained) { 4811 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 4812 << Record->getTagKind() << Record; 4813 Complained = true; 4814 } 4815 4816 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 4817 << F->getType()->isReferenceType() 4818 << F->getDeclName(); 4819 } 4820 } 4821 } 4822 4823 if (Record->isDynamicClass() && !Record->isDependentType()) 4824 DynamicClasses.push_back(Record); 4825 4826 if (Record->getIdentifier()) { 4827 // C++ [class.mem]p13: 4828 // If T is the name of a class, then each of the following shall have a 4829 // name different from T: 4830 // - every member of every anonymous union that is a member of class T. 4831 // 4832 // C++ [class.mem]p14: 4833 // In addition, if class T has a user-declared constructor (12.1), every 4834 // non-static data member of class T shall have a name different from T. 4835 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 4836 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 4837 ++I) { 4838 NamedDecl *D = *I; 4839 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) || 4840 isa<IndirectFieldDecl>(D)) { 4841 Diag(D->getLocation(), diag::err_member_name_of_class) 4842 << D->getDeclName(); 4843 break; 4844 } 4845 } 4846 } 4847 4848 // Warn if the class has virtual methods but non-virtual public destructor. 4849 if (Record->isPolymorphic() && !Record->isDependentType()) { 4850 CXXDestructorDecl *dtor = Record->getDestructor(); 4851 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 4852 !Record->hasAttr<FinalAttr>()) 4853 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 4854 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 4855 } 4856 4857 if (Record->isAbstract()) { 4858 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 4859 Diag(Record->getLocation(), diag::warn_abstract_final_class) 4860 << FA->isSpelledAsSealed(); 4861 DiagnoseAbstractType(Record); 4862 } 4863 } 4864 4865 bool HasMethodWithOverrideControl = false, 4866 HasOverridingMethodWithoutOverrideControl = false; 4867 if (!Record->isDependentType()) { 4868 for (auto *M : Record->methods()) { 4869 // See if a method overloads virtual methods in a base 4870 // class without overriding any. 4871 if (!M->isStatic()) 4872 DiagnoseHiddenVirtualMethods(M); 4873 if (M->hasAttr<OverrideAttr>()) 4874 HasMethodWithOverrideControl = true; 4875 else if (M->size_overridden_methods() > 0) 4876 HasOverridingMethodWithoutOverrideControl = true; 4877 // Check whether the explicitly-defaulted special members are valid. 4878 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted()) 4879 CheckExplicitlyDefaultedSpecialMember(M); 4880 4881 // For an explicitly defaulted or deleted special member, we defer 4882 // determining triviality until the class is complete. That time is now! 4883 if (!M->isImplicit() && !M->isUserProvided()) { 4884 CXXSpecialMember CSM = getSpecialMember(M); 4885 if (CSM != CXXInvalid) { 4886 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 4887 4888 // Inform the class that we've finished declaring this member. 4889 Record->finishedDefaultedOrDeletedMember(M); 4890 } 4891 } 4892 } 4893 } 4894 4895 if (HasMethodWithOverrideControl && 4896 HasOverridingMethodWithoutOverrideControl) { 4897 // At least one method has the 'override' control declared. 4898 // Diagnose all other overridden methods which do not have 'override' specified on them. 4899 for (auto *M : Record->methods()) 4900 DiagnoseAbsenceOfOverrideControl(M); 4901 } 4902 4903 // ms_struct is a request to use the same ABI rules as MSVC. Check 4904 // whether this class uses any C++ features that are implemented 4905 // completely differently in MSVC, and if so, emit a diagnostic. 4906 // That diagnostic defaults to an error, but we allow projects to 4907 // map it down to a warning (or ignore it). It's a fairly common 4908 // practice among users of the ms_struct pragma to mass-annotate 4909 // headers, sweeping up a bunch of types that the project doesn't 4910 // really rely on MSVC-compatible layout for. We must therefore 4911 // support "ms_struct except for C++ stuff" as a secondary ABI. 4912 if (Record->isMsStruct(Context) && 4913 (Record->isPolymorphic() || Record->getNumBases())) { 4914 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 4915 } 4916 4917 // Declare inheriting constructors. We do this eagerly here because: 4918 // - The standard requires an eager diagnostic for conflicting inheriting 4919 // constructors from different classes. 4920 // - The lazy declaration of the other implicit constructors is so as to not 4921 // waste space and performance on classes that are not meant to be 4922 // instantiated (e.g. meta-functions). This doesn't apply to classes that 4923 // have inheriting constructors. 4924 DeclareInheritingConstructors(Record); 4925 4926 checkDLLAttribute(*this, Record); 4927 } 4928 4929 /// Look up the special member function that would be called by a special 4930 /// member function for a subobject of class type. 4931 /// 4932 /// \param Class The class type of the subobject. 4933 /// \param CSM The kind of special member function. 4934 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 4935 /// \param ConstRHS True if this is a copy operation with a const object 4936 /// on its RHS, that is, if the argument to the outer special member 4937 /// function is 'const' and this is not a field marked 'mutable'. 4938 static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember( 4939 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 4940 unsigned FieldQuals, bool ConstRHS) { 4941 unsigned LHSQuals = 0; 4942 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 4943 LHSQuals = FieldQuals; 4944 4945 unsigned RHSQuals = FieldQuals; 4946 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 4947 RHSQuals = 0; 4948 else if (ConstRHS) 4949 RHSQuals |= Qualifiers::Const; 4950 4951 return S.LookupSpecialMember(Class, CSM, 4952 RHSQuals & Qualifiers::Const, 4953 RHSQuals & Qualifiers::Volatile, 4954 false, 4955 LHSQuals & Qualifiers::Const, 4956 LHSQuals & Qualifiers::Volatile); 4957 } 4958 4959 /// Is the special member function which would be selected to perform the 4960 /// specified operation on the specified class type a constexpr constructor? 4961 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 4962 Sema::CXXSpecialMember CSM, 4963 unsigned Quals, bool ConstRHS) { 4964 Sema::SpecialMemberOverloadResult *SMOR = 4965 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 4966 if (!SMOR || !SMOR->getMethod()) 4967 // A constructor we wouldn't select can't be "involved in initializing" 4968 // anything. 4969 return true; 4970 return SMOR->getMethod()->isConstexpr(); 4971 } 4972 4973 /// Determine whether the specified special member function would be constexpr 4974 /// if it were implicitly defined. 4975 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 4976 Sema::CXXSpecialMember CSM, 4977 bool ConstArg) { 4978 if (!S.getLangOpts().CPlusPlus11) 4979 return false; 4980 4981 // C++11 [dcl.constexpr]p4: 4982 // In the definition of a constexpr constructor [...] 4983 bool Ctor = true; 4984 switch (CSM) { 4985 case Sema::CXXDefaultConstructor: 4986 // Since default constructor lookup is essentially trivial (and cannot 4987 // involve, for instance, template instantiation), we compute whether a 4988 // defaulted default constructor is constexpr directly within CXXRecordDecl. 4989 // 4990 // This is important for performance; we need to know whether the default 4991 // constructor is constexpr to determine whether the type is a literal type. 4992 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 4993 4994 case Sema::CXXCopyConstructor: 4995 case Sema::CXXMoveConstructor: 4996 // For copy or move constructors, we need to perform overload resolution. 4997 break; 4998 4999 case Sema::CXXCopyAssignment: 5000 case Sema::CXXMoveAssignment: 5001 if (!S.getLangOpts().CPlusPlus14) 5002 return false; 5003 // In C++1y, we need to perform overload resolution. 5004 Ctor = false; 5005 break; 5006 5007 case Sema::CXXDestructor: 5008 case Sema::CXXInvalid: 5009 return false; 5010 } 5011 5012 // -- if the class is a non-empty union, or for each non-empty anonymous 5013 // union member of a non-union class, exactly one non-static data member 5014 // shall be initialized; [DR1359] 5015 // 5016 // If we squint, this is guaranteed, since exactly one non-static data member 5017 // will be initialized (if the constructor isn't deleted), we just don't know 5018 // which one. 5019 if (Ctor && ClassDecl->isUnion()) 5020 return true; 5021 5022 // -- the class shall not have any virtual base classes; 5023 if (Ctor && ClassDecl->getNumVBases()) 5024 return false; 5025 5026 // C++1y [class.copy]p26: 5027 // -- [the class] is a literal type, and 5028 if (!Ctor && !ClassDecl->isLiteral()) 5029 return false; 5030 5031 // -- every constructor involved in initializing [...] base class 5032 // sub-objects shall be a constexpr constructor; 5033 // -- the assignment operator selected to copy/move each direct base 5034 // class is a constexpr function, and 5035 for (const auto &B : ClassDecl->bases()) { 5036 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 5037 if (!BaseType) continue; 5038 5039 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 5040 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg)) 5041 return false; 5042 } 5043 5044 // -- every constructor involved in initializing non-static data members 5045 // [...] shall be a constexpr constructor; 5046 // -- every non-static data member and base class sub-object shall be 5047 // initialized 5048 // -- for each non-static data member of X that is of class type (or array 5049 // thereof), the assignment operator selected to copy/move that member is 5050 // a constexpr function 5051 for (const auto *F : ClassDecl->fields()) { 5052 if (F->isInvalidDecl()) 5053 continue; 5054 QualType BaseType = S.Context.getBaseElementType(F->getType()); 5055 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 5056 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 5057 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 5058 BaseType.getCVRQualifiers(), 5059 ConstArg && !F->isMutable())) 5060 return false; 5061 } 5062 } 5063 5064 // All OK, it's constexpr! 5065 return true; 5066 } 5067 5068 static Sema::ImplicitExceptionSpecification 5069 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) { 5070 switch (S.getSpecialMember(MD)) { 5071 case Sema::CXXDefaultConstructor: 5072 return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD); 5073 case Sema::CXXCopyConstructor: 5074 return S.ComputeDefaultedCopyCtorExceptionSpec(MD); 5075 case Sema::CXXCopyAssignment: 5076 return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD); 5077 case Sema::CXXMoveConstructor: 5078 return S.ComputeDefaultedMoveCtorExceptionSpec(MD); 5079 case Sema::CXXMoveAssignment: 5080 return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD); 5081 case Sema::CXXDestructor: 5082 return S.ComputeDefaultedDtorExceptionSpec(MD); 5083 case Sema::CXXInvalid: 5084 break; 5085 } 5086 assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() && 5087 "only special members have implicit exception specs"); 5088 return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD)); 5089 } 5090 5091 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 5092 CXXMethodDecl *MD) { 5093 FunctionProtoType::ExtProtoInfo EPI; 5094 5095 // Build an exception specification pointing back at this member. 5096 EPI.ExceptionSpec.Type = EST_Unevaluated; 5097 EPI.ExceptionSpec.SourceDecl = MD; 5098 5099 // Set the calling convention to the default for C++ instance methods. 5100 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 5101 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 5102 /*IsCXXMethod=*/true)); 5103 return EPI; 5104 } 5105 5106 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) { 5107 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 5108 if (FPT->getExceptionSpecType() != EST_Unevaluated) 5109 return; 5110 5111 // Evaluate the exception specification. 5112 auto ESI = computeImplicitExceptionSpec(*this, Loc, MD).getExceptionSpec(); 5113 5114 // Update the type of the special member to use it. 5115 UpdateExceptionSpec(MD, ESI); 5116 5117 // A user-provided destructor can be defined outside the class. When that 5118 // happens, be sure to update the exception specification on both 5119 // declarations. 5120 const FunctionProtoType *CanonicalFPT = 5121 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>(); 5122 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated) 5123 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI); 5124 } 5125 5126 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) { 5127 CXXRecordDecl *RD = MD->getParent(); 5128 CXXSpecialMember CSM = getSpecialMember(MD); 5129 5130 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid && 5131 "not an explicitly-defaulted special member"); 5132 5133 // Whether this was the first-declared instance of the constructor. 5134 // This affects whether we implicitly add an exception spec and constexpr. 5135 bool First = MD == MD->getCanonicalDecl(); 5136 5137 bool HadError = false; 5138 5139 // C++11 [dcl.fct.def.default]p1: 5140 // A function that is explicitly defaulted shall 5141 // -- be a special member function (checked elsewhere), 5142 // -- have the same type (except for ref-qualifiers, and except that a 5143 // copy operation can take a non-const reference) as an implicit 5144 // declaration, and 5145 // -- not have default arguments. 5146 unsigned ExpectedParams = 1; 5147 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 5148 ExpectedParams = 0; 5149 if (MD->getNumParams() != ExpectedParams) { 5150 // This also checks for default arguments: a copy or move constructor with a 5151 // default argument is classified as a default constructor, and assignment 5152 // operations and destructors can't have default arguments. 5153 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 5154 << CSM << MD->getSourceRange(); 5155 HadError = true; 5156 } else if (MD->isVariadic()) { 5157 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 5158 << CSM << MD->getSourceRange(); 5159 HadError = true; 5160 } 5161 5162 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); 5163 5164 bool CanHaveConstParam = false; 5165 if (CSM == CXXCopyConstructor) 5166 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 5167 else if (CSM == CXXCopyAssignment) 5168 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 5169 5170 QualType ReturnType = Context.VoidTy; 5171 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 5172 // Check for return type matching. 5173 ReturnType = Type->getReturnType(); 5174 QualType ExpectedReturnType = 5175 Context.getLValueReferenceType(Context.getTypeDeclType(RD)); 5176 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 5177 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 5178 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 5179 HadError = true; 5180 } 5181 5182 // A defaulted special member cannot have cv-qualifiers. 5183 if (Type->getTypeQuals()) { 5184 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 5185 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 5186 HadError = true; 5187 } 5188 } 5189 5190 // Check for parameter type matching. 5191 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 5192 bool HasConstParam = false; 5193 if (ExpectedParams && ArgType->isReferenceType()) { 5194 // Argument must be reference to possibly-const T. 5195 QualType ReferentType = ArgType->getPointeeType(); 5196 HasConstParam = ReferentType.isConstQualified(); 5197 5198 if (ReferentType.isVolatileQualified()) { 5199 Diag(MD->getLocation(), 5200 diag::err_defaulted_special_member_volatile_param) << CSM; 5201 HadError = true; 5202 } 5203 5204 if (HasConstParam && !CanHaveConstParam) { 5205 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 5206 Diag(MD->getLocation(), 5207 diag::err_defaulted_special_member_copy_const_param) 5208 << (CSM == CXXCopyAssignment); 5209 // FIXME: Explain why this special member can't be const. 5210 } else { 5211 Diag(MD->getLocation(), 5212 diag::err_defaulted_special_member_move_const_param) 5213 << (CSM == CXXMoveAssignment); 5214 } 5215 HadError = true; 5216 } 5217 } else if (ExpectedParams) { 5218 // A copy assignment operator can take its argument by value, but a 5219 // defaulted one cannot. 5220 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument"); 5221 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 5222 HadError = true; 5223 } 5224 5225 // C++11 [dcl.fct.def.default]p2: 5226 // An explicitly-defaulted function may be declared constexpr only if it 5227 // would have been implicitly declared as constexpr, 5228 // Do not apply this rule to members of class templates, since core issue 1358 5229 // makes such functions always instantiate to constexpr functions. For 5230 // functions which cannot be constexpr (for non-constructors in C++11 and for 5231 // destructors in C++1y), this is checked elsewhere. 5232 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 5233 HasConstParam); 5234 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 5235 : isa<CXXConstructorDecl>(MD)) && 5236 MD->isConstexpr() && !Constexpr && 5237 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 5238 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM; 5239 // FIXME: Explain why the special member can't be constexpr. 5240 HadError = true; 5241 } 5242 5243 // and may have an explicit exception-specification only if it is compatible 5244 // with the exception-specification on the implicit declaration. 5245 if (Type->hasExceptionSpec()) { 5246 // Delay the check if this is the first declaration of the special member, 5247 // since we may not have parsed some necessary in-class initializers yet. 5248 if (First) { 5249 // If the exception specification needs to be instantiated, do so now, 5250 // before we clobber it with an EST_Unevaluated specification below. 5251 if (Type->getExceptionSpecType() == EST_Uninstantiated) { 5252 InstantiateExceptionSpec(MD->getLocStart(), MD); 5253 Type = MD->getType()->getAs<FunctionProtoType>(); 5254 } 5255 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type)); 5256 } else 5257 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type); 5258 } 5259 5260 // If a function is explicitly defaulted on its first declaration, 5261 if (First) { 5262 // -- it is implicitly considered to be constexpr if the implicit 5263 // definition would be, 5264 MD->setConstexpr(Constexpr); 5265 5266 // -- it is implicitly considered to have the same exception-specification 5267 // as if it had been implicitly declared, 5268 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 5269 EPI.ExceptionSpec.Type = EST_Unevaluated; 5270 EPI.ExceptionSpec.SourceDecl = MD; 5271 MD->setType(Context.getFunctionType(ReturnType, 5272 llvm::makeArrayRef(&ArgType, 5273 ExpectedParams), 5274 EPI)); 5275 } 5276 5277 if (ShouldDeleteSpecialMember(MD, CSM)) { 5278 if (First) { 5279 SetDeclDeleted(MD, MD->getLocation()); 5280 } else { 5281 // C++11 [dcl.fct.def.default]p4: 5282 // [For a] user-provided explicitly-defaulted function [...] if such a 5283 // function is implicitly defined as deleted, the program is ill-formed. 5284 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 5285 ShouldDeleteSpecialMember(MD, CSM, /*Diagnose*/true); 5286 HadError = true; 5287 } 5288 } 5289 5290 if (HadError) 5291 MD->setInvalidDecl(); 5292 } 5293 5294 /// Check whether the exception specification provided for an 5295 /// explicitly-defaulted special member matches the exception specification 5296 /// that would have been generated for an implicit special member, per 5297 /// C++11 [dcl.fct.def.default]p2. 5298 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec( 5299 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) { 5300 // If the exception specification was explicitly specified but hadn't been 5301 // parsed when the method was defaulted, grab it now. 5302 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed) 5303 SpecifiedType = 5304 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 5305 5306 // Compute the implicit exception specification. 5307 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false, 5308 /*IsCXXMethod=*/true); 5309 FunctionProtoType::ExtProtoInfo EPI(CC); 5310 EPI.ExceptionSpec = computeImplicitExceptionSpec(*this, MD->getLocation(), MD) 5311 .getExceptionSpec(); 5312 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>( 5313 Context.getFunctionType(Context.VoidTy, None, EPI)); 5314 5315 // Ensure that it matches. 5316 CheckEquivalentExceptionSpec( 5317 PDiag(diag::err_incorrect_defaulted_exception_spec) 5318 << getSpecialMember(MD), PDiag(), 5319 ImplicitType, SourceLocation(), 5320 SpecifiedType, MD->getLocation()); 5321 } 5322 5323 void Sema::CheckDelayedMemberExceptionSpecs() { 5324 decltype(DelayedExceptionSpecChecks) Checks; 5325 decltype(DelayedDefaultedMemberExceptionSpecs) Specs; 5326 5327 std::swap(Checks, DelayedExceptionSpecChecks); 5328 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs); 5329 5330 // Perform any deferred checking of exception specifications for virtual 5331 // destructors. 5332 for (auto &Check : Checks) 5333 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 5334 5335 // Check that any explicitly-defaulted methods have exception specifications 5336 // compatible with their implicit exception specifications. 5337 for (auto &Spec : Specs) 5338 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second); 5339 } 5340 5341 namespace { 5342 struct SpecialMemberDeletionInfo { 5343 Sema &S; 5344 CXXMethodDecl *MD; 5345 Sema::CXXSpecialMember CSM; 5346 bool Diagnose; 5347 5348 // Properties of the special member, computed for convenience. 5349 bool IsConstructor, IsAssignment, IsMove, ConstArg; 5350 SourceLocation Loc; 5351 5352 bool AllFieldsAreConst; 5353 5354 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 5355 Sema::CXXSpecialMember CSM, bool Diagnose) 5356 : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose), 5357 IsConstructor(false), IsAssignment(false), IsMove(false), 5358 ConstArg(false), Loc(MD->getLocation()), 5359 AllFieldsAreConst(true) { 5360 switch (CSM) { 5361 case Sema::CXXDefaultConstructor: 5362 case Sema::CXXCopyConstructor: 5363 IsConstructor = true; 5364 break; 5365 case Sema::CXXMoveConstructor: 5366 IsConstructor = true; 5367 IsMove = true; 5368 break; 5369 case Sema::CXXCopyAssignment: 5370 IsAssignment = true; 5371 break; 5372 case Sema::CXXMoveAssignment: 5373 IsAssignment = true; 5374 IsMove = true; 5375 break; 5376 case Sema::CXXDestructor: 5377 break; 5378 case Sema::CXXInvalid: 5379 llvm_unreachable("invalid special member kind"); 5380 } 5381 5382 if (MD->getNumParams()) { 5383 if (const ReferenceType *RT = 5384 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 5385 ConstArg = RT->getPointeeType().isConstQualified(); 5386 } 5387 } 5388 5389 bool inUnion() const { return MD->getParent()->isUnion(); } 5390 5391 /// Look up the corresponding special member in the given class. 5392 Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class, 5393 unsigned Quals, bool IsMutable) { 5394 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 5395 ConstArg && !IsMutable); 5396 } 5397 5398 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 5399 5400 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 5401 bool shouldDeleteForField(FieldDecl *FD); 5402 bool shouldDeleteForAllConstMembers(); 5403 5404 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 5405 unsigned Quals); 5406 bool shouldDeleteForSubobjectCall(Subobject Subobj, 5407 Sema::SpecialMemberOverloadResult *SMOR, 5408 bool IsDtorCallInCtor); 5409 5410 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 5411 }; 5412 } 5413 5414 /// Is the given special member inaccessible when used on the given 5415 /// sub-object. 5416 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 5417 CXXMethodDecl *target) { 5418 /// If we're operating on a base class, the object type is the 5419 /// type of this special member. 5420 QualType objectTy; 5421 AccessSpecifier access = target->getAccess(); 5422 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 5423 objectTy = S.Context.getTypeDeclType(MD->getParent()); 5424 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 5425 5426 // If we're operating on a field, the object type is the type of the field. 5427 } else { 5428 objectTy = S.Context.getTypeDeclType(target->getParent()); 5429 } 5430 5431 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy); 5432 } 5433 5434 /// Check whether we should delete a special member due to the implicit 5435 /// definition containing a call to a special member of a subobject. 5436 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 5437 Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR, 5438 bool IsDtorCallInCtor) { 5439 CXXMethodDecl *Decl = SMOR->getMethod(); 5440 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 5441 5442 int DiagKind = -1; 5443 5444 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 5445 DiagKind = !Decl ? 0 : 1; 5446 else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 5447 DiagKind = 2; 5448 else if (!isAccessible(Subobj, Decl)) 5449 DiagKind = 3; 5450 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 5451 !Decl->isTrivial()) { 5452 // A member of a union must have a trivial corresponding special member. 5453 // As a weird special case, a destructor call from a union's constructor 5454 // must be accessible and non-deleted, but need not be trivial. Such a 5455 // destructor is never actually called, but is semantically checked as 5456 // if it were. 5457 DiagKind = 4; 5458 } 5459 5460 if (DiagKind == -1) 5461 return false; 5462 5463 if (Diagnose) { 5464 if (Field) { 5465 S.Diag(Field->getLocation(), 5466 diag::note_deleted_special_member_class_subobject) 5467 << CSM << MD->getParent() << /*IsField*/true 5468 << Field << DiagKind << IsDtorCallInCtor; 5469 } else { 5470 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 5471 S.Diag(Base->getLocStart(), 5472 diag::note_deleted_special_member_class_subobject) 5473 << CSM << MD->getParent() << /*IsField*/false 5474 << Base->getType() << DiagKind << IsDtorCallInCtor; 5475 } 5476 5477 if (DiagKind == 1) 5478 S.NoteDeletedFunction(Decl); 5479 // FIXME: Explain inaccessibility if DiagKind == 3. 5480 } 5481 5482 return true; 5483 } 5484 5485 /// Check whether we should delete a special member function due to having a 5486 /// direct or virtual base class or non-static data member of class type M. 5487 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 5488 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 5489 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 5490 bool IsMutable = Field && Field->isMutable(); 5491 5492 // C++11 [class.ctor]p5: 5493 // -- any direct or virtual base class, or non-static data member with no 5494 // brace-or-equal-initializer, has class type M (or array thereof) and 5495 // either M has no default constructor or overload resolution as applied 5496 // to M's default constructor results in an ambiguity or in a function 5497 // that is deleted or inaccessible 5498 // C++11 [class.copy]p11, C++11 [class.copy]p23: 5499 // -- a direct or virtual base class B that cannot be copied/moved because 5500 // overload resolution, as applied to B's corresponding special member, 5501 // results in an ambiguity or a function that is deleted or inaccessible 5502 // from the defaulted special member 5503 // C++11 [class.dtor]p5: 5504 // -- any direct or virtual base class [...] has a type with a destructor 5505 // that is deleted or inaccessible 5506 if (!(CSM == Sema::CXXDefaultConstructor && 5507 Field && Field->hasInClassInitializer()) && 5508 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 5509 false)) 5510 return true; 5511 5512 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 5513 // -- any direct or virtual base class or non-static data member has a 5514 // type with a destructor that is deleted or inaccessible 5515 if (IsConstructor) { 5516 Sema::SpecialMemberOverloadResult *SMOR = 5517 S.LookupSpecialMember(Class, Sema::CXXDestructor, 5518 false, false, false, false, false); 5519 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 5520 return true; 5521 } 5522 5523 return false; 5524 } 5525 5526 /// Check whether we should delete a special member function due to the class 5527 /// having a particular direct or virtual base class. 5528 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 5529 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 5530 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 5531 } 5532 5533 /// Check whether we should delete a special member function due to the class 5534 /// having a particular non-static data member. 5535 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 5536 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 5537 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 5538 5539 if (CSM == Sema::CXXDefaultConstructor) { 5540 // For a default constructor, all references must be initialized in-class 5541 // and, if a union, it must have a non-const member. 5542 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 5543 if (Diagnose) 5544 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 5545 << MD->getParent() << FD << FieldType << /*Reference*/0; 5546 return true; 5547 } 5548 // C++11 [class.ctor]p5: any non-variant non-static data member of 5549 // const-qualified type (or array thereof) with no 5550 // brace-or-equal-initializer does not have a user-provided default 5551 // constructor. 5552 if (!inUnion() && FieldType.isConstQualified() && 5553 !FD->hasInClassInitializer() && 5554 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) { 5555 if (Diagnose) 5556 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 5557 << MD->getParent() << FD << FD->getType() << /*Const*/1; 5558 return true; 5559 } 5560 5561 if (inUnion() && !FieldType.isConstQualified()) 5562 AllFieldsAreConst = false; 5563 } else if (CSM == Sema::CXXCopyConstructor) { 5564 // For a copy constructor, data members must not be of rvalue reference 5565 // type. 5566 if (FieldType->isRValueReferenceType()) { 5567 if (Diagnose) 5568 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 5569 << MD->getParent() << FD << FieldType; 5570 return true; 5571 } 5572 } else if (IsAssignment) { 5573 // For an assignment operator, data members must not be of reference type. 5574 if (FieldType->isReferenceType()) { 5575 if (Diagnose) 5576 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 5577 << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0; 5578 return true; 5579 } 5580 if (!FieldRecord && FieldType.isConstQualified()) { 5581 // C++11 [class.copy]p23: 5582 // -- a non-static data member of const non-class type (or array thereof) 5583 if (Diagnose) 5584 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 5585 << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1; 5586 return true; 5587 } 5588 } 5589 5590 if (FieldRecord) { 5591 // Some additional restrictions exist on the variant members. 5592 if (!inUnion() && FieldRecord->isUnion() && 5593 FieldRecord->isAnonymousStructOrUnion()) { 5594 bool AllVariantFieldsAreConst = true; 5595 5596 // FIXME: Handle anonymous unions declared within anonymous unions. 5597 for (auto *UI : FieldRecord->fields()) { 5598 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 5599 5600 if (!UnionFieldType.isConstQualified()) 5601 AllVariantFieldsAreConst = false; 5602 5603 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 5604 if (UnionFieldRecord && 5605 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 5606 UnionFieldType.getCVRQualifiers())) 5607 return true; 5608 } 5609 5610 // At least one member in each anonymous union must be non-const 5611 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 5612 !FieldRecord->field_empty()) { 5613 if (Diagnose) 5614 S.Diag(FieldRecord->getLocation(), 5615 diag::note_deleted_default_ctor_all_const) 5616 << MD->getParent() << /*anonymous union*/1; 5617 return true; 5618 } 5619 5620 // Don't check the implicit member of the anonymous union type. 5621 // This is technically non-conformant, but sanity demands it. 5622 return false; 5623 } 5624 5625 if (shouldDeleteForClassSubobject(FieldRecord, FD, 5626 FieldType.getCVRQualifiers())) 5627 return true; 5628 } 5629 5630 return false; 5631 } 5632 5633 /// C++11 [class.ctor] p5: 5634 /// A defaulted default constructor for a class X is defined as deleted if 5635 /// X is a union and all of its variant members are of const-qualified type. 5636 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 5637 // This is a silly definition, because it gives an empty union a deleted 5638 // default constructor. Don't do that. 5639 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst && 5640 !MD->getParent()->field_empty()) { 5641 if (Diagnose) 5642 S.Diag(MD->getParent()->getLocation(), 5643 diag::note_deleted_default_ctor_all_const) 5644 << MD->getParent() << /*not anonymous union*/0; 5645 return true; 5646 } 5647 return false; 5648 } 5649 5650 /// Determine whether a defaulted special member function should be defined as 5651 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 5652 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 5653 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 5654 bool Diagnose) { 5655 if (MD->isInvalidDecl()) 5656 return false; 5657 CXXRecordDecl *RD = MD->getParent(); 5658 assert(!RD->isDependentType() && "do deletion after instantiation"); 5659 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 5660 return false; 5661 5662 // C++11 [expr.lambda.prim]p19: 5663 // The closure type associated with a lambda-expression has a 5664 // deleted (8.4.3) default constructor and a deleted copy 5665 // assignment operator. 5666 if (RD->isLambda() && 5667 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 5668 if (Diagnose) 5669 Diag(RD->getLocation(), diag::note_lambda_decl); 5670 return true; 5671 } 5672 5673 // For an anonymous struct or union, the copy and assignment special members 5674 // will never be used, so skip the check. For an anonymous union declared at 5675 // namespace scope, the constructor and destructor are used. 5676 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 5677 RD->isAnonymousStructOrUnion()) 5678 return false; 5679 5680 // C++11 [class.copy]p7, p18: 5681 // If the class definition declares a move constructor or move assignment 5682 // operator, an implicitly declared copy constructor or copy assignment 5683 // operator is defined as deleted. 5684 if (MD->isImplicit() && 5685 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 5686 CXXMethodDecl *UserDeclaredMove = nullptr; 5687 5688 // In Microsoft mode, a user-declared move only causes the deletion of the 5689 // corresponding copy operation, not both copy operations. 5690 if (RD->hasUserDeclaredMoveConstructor() && 5691 (!getLangOpts().MSVCCompat || CSM == CXXCopyConstructor)) { 5692 if (!Diagnose) return true; 5693 5694 // Find any user-declared move constructor. 5695 for (auto *I : RD->ctors()) { 5696 if (I->isMoveConstructor()) { 5697 UserDeclaredMove = I; 5698 break; 5699 } 5700 } 5701 assert(UserDeclaredMove); 5702 } else if (RD->hasUserDeclaredMoveAssignment() && 5703 (!getLangOpts().MSVCCompat || CSM == CXXCopyAssignment)) { 5704 if (!Diagnose) return true; 5705 5706 // Find any user-declared move assignment operator. 5707 for (auto *I : RD->methods()) { 5708 if (I->isMoveAssignmentOperator()) { 5709 UserDeclaredMove = I; 5710 break; 5711 } 5712 } 5713 assert(UserDeclaredMove); 5714 } 5715 5716 if (UserDeclaredMove) { 5717 Diag(UserDeclaredMove->getLocation(), 5718 diag::note_deleted_copy_user_declared_move) 5719 << (CSM == CXXCopyAssignment) << RD 5720 << UserDeclaredMove->isMoveAssignmentOperator(); 5721 return true; 5722 } 5723 } 5724 5725 // Do access control from the special member function 5726 ContextRAII MethodContext(*this, MD); 5727 5728 // C++11 [class.dtor]p5: 5729 // -- for a virtual destructor, lookup of the non-array deallocation function 5730 // results in an ambiguity or in a function that is deleted or inaccessible 5731 if (CSM == CXXDestructor && MD->isVirtual()) { 5732 FunctionDecl *OperatorDelete = nullptr; 5733 DeclarationName Name = 5734 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 5735 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 5736 OperatorDelete, false)) { 5737 if (Diagnose) 5738 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 5739 return true; 5740 } 5741 } 5742 5743 SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose); 5744 5745 for (auto &BI : RD->bases()) 5746 if (!BI.isVirtual() && 5747 SMI.shouldDeleteForBase(&BI)) 5748 return true; 5749 5750 // Per DR1611, do not consider virtual bases of constructors of abstract 5751 // classes, since we are not going to construct them. 5752 if (!RD->isAbstract() || !SMI.IsConstructor) { 5753 for (auto &BI : RD->vbases()) 5754 if (SMI.shouldDeleteForBase(&BI)) 5755 return true; 5756 } 5757 5758 for (auto *FI : RD->fields()) 5759 if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() && 5760 SMI.shouldDeleteForField(FI)) 5761 return true; 5762 5763 if (SMI.shouldDeleteForAllConstMembers()) 5764 return true; 5765 5766 if (getLangOpts().CUDA) { 5767 // We should delete the special member in CUDA mode if target inference 5768 // failed. 5769 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg, 5770 Diagnose); 5771 } 5772 5773 return false; 5774 } 5775 5776 /// Perform lookup for a special member of the specified kind, and determine 5777 /// whether it is trivial. If the triviality can be determined without the 5778 /// lookup, skip it. This is intended for use when determining whether a 5779 /// special member of a containing object is trivial, and thus does not ever 5780 /// perform overload resolution for default constructors. 5781 /// 5782 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 5783 /// member that was most likely to be intended to be trivial, if any. 5784 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 5785 Sema::CXXSpecialMember CSM, unsigned Quals, 5786 bool ConstRHS, CXXMethodDecl **Selected) { 5787 if (Selected) 5788 *Selected = nullptr; 5789 5790 switch (CSM) { 5791 case Sema::CXXInvalid: 5792 llvm_unreachable("not a special member"); 5793 5794 case Sema::CXXDefaultConstructor: 5795 // C++11 [class.ctor]p5: 5796 // A default constructor is trivial if: 5797 // - all the [direct subobjects] have trivial default constructors 5798 // 5799 // Note, no overload resolution is performed in this case. 5800 if (RD->hasTrivialDefaultConstructor()) 5801 return true; 5802 5803 if (Selected) { 5804 // If there's a default constructor which could have been trivial, dig it 5805 // out. Otherwise, if there's any user-provided default constructor, point 5806 // to that as an example of why there's not a trivial one. 5807 CXXConstructorDecl *DefCtor = nullptr; 5808 if (RD->needsImplicitDefaultConstructor()) 5809 S.DeclareImplicitDefaultConstructor(RD); 5810 for (auto *CI : RD->ctors()) { 5811 if (!CI->isDefaultConstructor()) 5812 continue; 5813 DefCtor = CI; 5814 if (!DefCtor->isUserProvided()) 5815 break; 5816 } 5817 5818 *Selected = DefCtor; 5819 } 5820 5821 return false; 5822 5823 case Sema::CXXDestructor: 5824 // C++11 [class.dtor]p5: 5825 // A destructor is trivial if: 5826 // - all the direct [subobjects] have trivial destructors 5827 if (RD->hasTrivialDestructor()) 5828 return true; 5829 5830 if (Selected) { 5831 if (RD->needsImplicitDestructor()) 5832 S.DeclareImplicitDestructor(RD); 5833 *Selected = RD->getDestructor(); 5834 } 5835 5836 return false; 5837 5838 case Sema::CXXCopyConstructor: 5839 // C++11 [class.copy]p12: 5840 // A copy constructor is trivial if: 5841 // - the constructor selected to copy each direct [subobject] is trivial 5842 if (RD->hasTrivialCopyConstructor()) { 5843 if (Quals == Qualifiers::Const) 5844 // We must either select the trivial copy constructor or reach an 5845 // ambiguity; no need to actually perform overload resolution. 5846 return true; 5847 } else if (!Selected) { 5848 return false; 5849 } 5850 // In C++98, we are not supposed to perform overload resolution here, but we 5851 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 5852 // cases like B as having a non-trivial copy constructor: 5853 // struct A { template<typename T> A(T&); }; 5854 // struct B { mutable A a; }; 5855 goto NeedOverloadResolution; 5856 5857 case Sema::CXXCopyAssignment: 5858 // C++11 [class.copy]p25: 5859 // A copy assignment operator is trivial if: 5860 // - the assignment operator selected to copy each direct [subobject] is 5861 // trivial 5862 if (RD->hasTrivialCopyAssignment()) { 5863 if (Quals == Qualifiers::Const) 5864 return true; 5865 } else if (!Selected) { 5866 return false; 5867 } 5868 // In C++98, we are not supposed to perform overload resolution here, but we 5869 // treat that as a language defect. 5870 goto NeedOverloadResolution; 5871 5872 case Sema::CXXMoveConstructor: 5873 case Sema::CXXMoveAssignment: 5874 NeedOverloadResolution: 5875 Sema::SpecialMemberOverloadResult *SMOR = 5876 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 5877 5878 // The standard doesn't describe how to behave if the lookup is ambiguous. 5879 // We treat it as not making the member non-trivial, just like the standard 5880 // mandates for the default constructor. This should rarely matter, because 5881 // the member will also be deleted. 5882 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 5883 return true; 5884 5885 if (!SMOR->getMethod()) { 5886 assert(SMOR->getKind() == 5887 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 5888 return false; 5889 } 5890 5891 // We deliberately don't check if we found a deleted special member. We're 5892 // not supposed to! 5893 if (Selected) 5894 *Selected = SMOR->getMethod(); 5895 return SMOR->getMethod()->isTrivial(); 5896 } 5897 5898 llvm_unreachable("unknown special method kind"); 5899 } 5900 5901 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 5902 for (auto *CI : RD->ctors()) 5903 if (!CI->isImplicit()) 5904 return CI; 5905 5906 // Look for constructor templates. 5907 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 5908 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 5909 if (CXXConstructorDecl *CD = 5910 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 5911 return CD; 5912 } 5913 5914 return nullptr; 5915 } 5916 5917 /// The kind of subobject we are checking for triviality. The values of this 5918 /// enumeration are used in diagnostics. 5919 enum TrivialSubobjectKind { 5920 /// The subobject is a base class. 5921 TSK_BaseClass, 5922 /// The subobject is a non-static data member. 5923 TSK_Field, 5924 /// The object is actually the complete object. 5925 TSK_CompleteObject 5926 }; 5927 5928 /// Check whether the special member selected for a given type would be trivial. 5929 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 5930 QualType SubType, bool ConstRHS, 5931 Sema::CXXSpecialMember CSM, 5932 TrivialSubobjectKind Kind, 5933 bool Diagnose) { 5934 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 5935 if (!SubRD) 5936 return true; 5937 5938 CXXMethodDecl *Selected; 5939 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 5940 ConstRHS, Diagnose ? &Selected : nullptr)) 5941 return true; 5942 5943 if (Diagnose) { 5944 if (ConstRHS) 5945 SubType.addConst(); 5946 5947 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 5948 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 5949 << Kind << SubType.getUnqualifiedType(); 5950 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 5951 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 5952 } else if (!Selected) 5953 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 5954 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 5955 else if (Selected->isUserProvided()) { 5956 if (Kind == TSK_CompleteObject) 5957 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 5958 << Kind << SubType.getUnqualifiedType() << CSM; 5959 else { 5960 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 5961 << Kind << SubType.getUnqualifiedType() << CSM; 5962 S.Diag(Selected->getLocation(), diag::note_declared_at); 5963 } 5964 } else { 5965 if (Kind != TSK_CompleteObject) 5966 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 5967 << Kind << SubType.getUnqualifiedType() << CSM; 5968 5969 // Explain why the defaulted or deleted special member isn't trivial. 5970 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose); 5971 } 5972 } 5973 5974 return false; 5975 } 5976 5977 /// Check whether the members of a class type allow a special member to be 5978 /// trivial. 5979 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 5980 Sema::CXXSpecialMember CSM, 5981 bool ConstArg, bool Diagnose) { 5982 for (const auto *FI : RD->fields()) { 5983 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 5984 continue; 5985 5986 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 5987 5988 // Pretend anonymous struct or union members are members of this class. 5989 if (FI->isAnonymousStructOrUnion()) { 5990 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 5991 CSM, ConstArg, Diagnose)) 5992 return false; 5993 continue; 5994 } 5995 5996 // C++11 [class.ctor]p5: 5997 // A default constructor is trivial if [...] 5998 // -- no non-static data member of its class has a 5999 // brace-or-equal-initializer 6000 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 6001 if (Diagnose) 6002 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI; 6003 return false; 6004 } 6005 6006 // Objective C ARC 4.3.5: 6007 // [...] nontrivally ownership-qualified types are [...] not trivially 6008 // default constructible, copy constructible, move constructible, copy 6009 // assignable, move assignable, or destructible [...] 6010 if (S.getLangOpts().ObjCAutoRefCount && 6011 FieldType.hasNonTrivialObjCLifetime()) { 6012 if (Diagnose) 6013 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 6014 << RD << FieldType.getObjCLifetime(); 6015 return false; 6016 } 6017 6018 bool ConstRHS = ConstArg && !FI->isMutable(); 6019 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 6020 CSM, TSK_Field, Diagnose)) 6021 return false; 6022 } 6023 6024 return true; 6025 } 6026 6027 /// Diagnose why the specified class does not have a trivial special member of 6028 /// the given kind. 6029 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 6030 QualType Ty = Context.getRecordType(RD); 6031 6032 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 6033 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 6034 TSK_CompleteObject, /*Diagnose*/true); 6035 } 6036 6037 /// Determine whether a defaulted or deleted special member function is trivial, 6038 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 6039 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 6040 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 6041 bool Diagnose) { 6042 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough"); 6043 6044 CXXRecordDecl *RD = MD->getParent(); 6045 6046 bool ConstArg = false; 6047 6048 // C++11 [class.copy]p12, p25: [DR1593] 6049 // A [special member] is trivial if [...] its parameter-type-list is 6050 // equivalent to the parameter-type-list of an implicit declaration [...] 6051 switch (CSM) { 6052 case CXXDefaultConstructor: 6053 case CXXDestructor: 6054 // Trivial default constructors and destructors cannot have parameters. 6055 break; 6056 6057 case CXXCopyConstructor: 6058 case CXXCopyAssignment: { 6059 // Trivial copy operations always have const, non-volatile parameter types. 6060 ConstArg = true; 6061 const ParmVarDecl *Param0 = MD->getParamDecl(0); 6062 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 6063 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) { 6064 if (Diagnose) 6065 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 6066 << Param0->getSourceRange() << Param0->getType() 6067 << Context.getLValueReferenceType( 6068 Context.getRecordType(RD).withConst()); 6069 return false; 6070 } 6071 break; 6072 } 6073 6074 case CXXMoveConstructor: 6075 case CXXMoveAssignment: { 6076 // Trivial move operations always have non-cv-qualified parameters. 6077 const ParmVarDecl *Param0 = MD->getParamDecl(0); 6078 const RValueReferenceType *RT = 6079 Param0->getType()->getAs<RValueReferenceType>(); 6080 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 6081 if (Diagnose) 6082 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 6083 << Param0->getSourceRange() << Param0->getType() 6084 << Context.getRValueReferenceType(Context.getRecordType(RD)); 6085 return false; 6086 } 6087 break; 6088 } 6089 6090 case CXXInvalid: 6091 llvm_unreachable("not a special member"); 6092 } 6093 6094 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 6095 if (Diagnose) 6096 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 6097 diag::note_nontrivial_default_arg) 6098 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 6099 return false; 6100 } 6101 if (MD->isVariadic()) { 6102 if (Diagnose) 6103 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 6104 return false; 6105 } 6106 6107 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 6108 // A copy/move [constructor or assignment operator] is trivial if 6109 // -- the [member] selected to copy/move each direct base class subobject 6110 // is trivial 6111 // 6112 // C++11 [class.copy]p12, C++11 [class.copy]p25: 6113 // A [default constructor or destructor] is trivial if 6114 // -- all the direct base classes have trivial [default constructors or 6115 // destructors] 6116 for (const auto &BI : RD->bases()) 6117 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(), 6118 ConstArg, CSM, TSK_BaseClass, Diagnose)) 6119 return false; 6120 6121 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 6122 // A copy/move [constructor or assignment operator] for a class X is 6123 // trivial if 6124 // -- for each non-static data member of X that is of class type (or array 6125 // thereof), the constructor selected to copy/move that member is 6126 // trivial 6127 // 6128 // C++11 [class.copy]p12, C++11 [class.copy]p25: 6129 // A [default constructor or destructor] is trivial if 6130 // -- for all of the non-static data members of its class that are of class 6131 // type (or array thereof), each such class has a trivial [default 6132 // constructor or destructor] 6133 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose)) 6134 return false; 6135 6136 // C++11 [class.dtor]p5: 6137 // A destructor is trivial if [...] 6138 // -- the destructor is not virtual 6139 if (CSM == CXXDestructor && MD->isVirtual()) { 6140 if (Diagnose) 6141 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 6142 return false; 6143 } 6144 6145 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 6146 // A [special member] for class X is trivial if [...] 6147 // -- class X has no virtual functions and no virtual base classes 6148 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 6149 if (!Diagnose) 6150 return false; 6151 6152 if (RD->getNumVBases()) { 6153 // Check for virtual bases. We already know that the corresponding 6154 // member in all bases is trivial, so vbases must all be direct. 6155 CXXBaseSpecifier &BS = *RD->vbases_begin(); 6156 assert(BS.isVirtual()); 6157 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1; 6158 return false; 6159 } 6160 6161 // Must have a virtual method. 6162 for (const auto *MI : RD->methods()) { 6163 if (MI->isVirtual()) { 6164 SourceLocation MLoc = MI->getLocStart(); 6165 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 6166 return false; 6167 } 6168 } 6169 6170 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 6171 } 6172 6173 // Looks like it's trivial! 6174 return true; 6175 } 6176 6177 /// \brief Data used with FindHiddenVirtualMethod 6178 namespace { 6179 struct FindHiddenVirtualMethodData { 6180 Sema *S; 6181 CXXMethodDecl *Method; 6182 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 6183 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 6184 }; 6185 } 6186 6187 /// \brief Check whether any most overriden method from MD in Methods 6188 static bool CheckMostOverridenMethods(const CXXMethodDecl *MD, 6189 const llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 6190 if (MD->size_overridden_methods() == 0) 6191 return Methods.count(MD->getCanonicalDecl()); 6192 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), 6193 E = MD->end_overridden_methods(); 6194 I != E; ++I) 6195 if (CheckMostOverridenMethods(*I, Methods)) 6196 return true; 6197 return false; 6198 } 6199 6200 /// \brief Member lookup function that determines whether a given C++ 6201 /// method overloads virtual methods in a base class without overriding any, 6202 /// to be used with CXXRecordDecl::lookupInBases(). 6203 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier, 6204 CXXBasePath &Path, 6205 void *UserData) { 6206 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); 6207 6208 FindHiddenVirtualMethodData &Data 6209 = *static_cast<FindHiddenVirtualMethodData*>(UserData); 6210 6211 DeclarationName Name = Data.Method->getDeclName(); 6212 assert(Name.getNameKind() == DeclarationName::Identifier); 6213 6214 bool foundSameNameMethod = false; 6215 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 6216 for (Path.Decls = BaseRecord->lookup(Name); 6217 !Path.Decls.empty(); 6218 Path.Decls = Path.Decls.slice(1)) { 6219 NamedDecl *D = Path.Decls.front(); 6220 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 6221 MD = MD->getCanonicalDecl(); 6222 foundSameNameMethod = true; 6223 // Interested only in hidden virtual methods. 6224 if (!MD->isVirtual()) 6225 continue; 6226 // If the method we are checking overrides a method from its base 6227 // don't warn about the other overloaded methods. Clang deviates from GCC 6228 // by only diagnosing overloads of inherited virtual functions that do not 6229 // override any other virtual functions in the base. GCC's 6230 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 6231 // function from a base class. These cases may be better served by a 6232 // warning (not specific to virtual functions) on call sites when the call 6233 // would select a different function from the base class, were it visible. 6234 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 6235 if (!Data.S->IsOverload(Data.Method, MD, false)) 6236 return true; 6237 // Collect the overload only if its hidden. 6238 if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods)) 6239 overloadedMethods.push_back(MD); 6240 } 6241 } 6242 6243 if (foundSameNameMethod) 6244 Data.OverloadedMethods.append(overloadedMethods.begin(), 6245 overloadedMethods.end()); 6246 return foundSameNameMethod; 6247 } 6248 6249 /// \brief Add the most overriden methods from MD to Methods 6250 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 6251 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 6252 if (MD->size_overridden_methods() == 0) 6253 Methods.insert(MD->getCanonicalDecl()); 6254 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), 6255 E = MD->end_overridden_methods(); 6256 I != E; ++I) 6257 AddMostOverridenMethods(*I, Methods); 6258 } 6259 6260 /// \brief Check if a method overloads virtual methods in a base class without 6261 /// overriding any. 6262 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 6263 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 6264 if (!MD->getDeclName().isIdentifier()) 6265 return; 6266 6267 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 6268 /*bool RecordPaths=*/false, 6269 /*bool DetectVirtual=*/false); 6270 FindHiddenVirtualMethodData Data; 6271 Data.Method = MD; 6272 Data.S = this; 6273 6274 // Keep the base methods that were overriden or introduced in the subclass 6275 // by 'using' in a set. A base method not in this set is hidden. 6276 CXXRecordDecl *DC = MD->getParent(); 6277 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 6278 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 6279 NamedDecl *ND = *I; 6280 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 6281 ND = shad->getTargetDecl(); 6282 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 6283 AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods); 6284 } 6285 6286 if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths)) 6287 OverloadedMethods = Data.OverloadedMethods; 6288 } 6289 6290 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 6291 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 6292 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 6293 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 6294 PartialDiagnostic PD = PDiag( 6295 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 6296 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 6297 Diag(overloadedMD->getLocation(), PD); 6298 } 6299 } 6300 6301 /// \brief Diagnose methods which overload virtual methods in a base class 6302 /// without overriding any. 6303 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 6304 if (MD->isInvalidDecl()) 6305 return; 6306 6307 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 6308 return; 6309 6310 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 6311 FindHiddenVirtualMethods(MD, OverloadedMethods); 6312 if (!OverloadedMethods.empty()) { 6313 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 6314 << MD << (OverloadedMethods.size() > 1); 6315 6316 NoteHiddenVirtualMethods(MD, OverloadedMethods); 6317 } 6318 } 6319 6320 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, 6321 Decl *TagDecl, 6322 SourceLocation LBrac, 6323 SourceLocation RBrac, 6324 AttributeList *AttrList) { 6325 if (!TagDecl) 6326 return; 6327 6328 AdjustDeclIfTemplate(TagDecl); 6329 6330 for (const AttributeList* l = AttrList; l; l = l->getNext()) { 6331 if (l->getKind() != AttributeList::AT_Visibility) 6332 continue; 6333 l->setInvalid(); 6334 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) << 6335 l->getName(); 6336 } 6337 6338 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( 6339 // strict aliasing violation! 6340 reinterpret_cast<Decl**>(FieldCollector->getCurFields()), 6341 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); 6342 6343 CheckCompletedCXXClass( 6344 dyn_cast_or_null<CXXRecordDecl>(TagDecl)); 6345 } 6346 6347 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 6348 /// special functions, such as the default constructor, copy 6349 /// constructor, or destructor, to the given C++ class (C++ 6350 /// [special]p1). This routine can only be executed just before the 6351 /// definition of the class is complete. 6352 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 6353 if (!ClassDecl->hasUserDeclaredConstructor()) 6354 ++ASTContext::NumImplicitDefaultConstructors; 6355 6356 if (!ClassDecl->hasUserDeclaredCopyConstructor()) { 6357 ++ASTContext::NumImplicitCopyConstructors; 6358 6359 // If the properties or semantics of the copy constructor couldn't be 6360 // determined while the class was being declared, force a declaration 6361 // of it now. 6362 if (ClassDecl->needsOverloadResolutionForCopyConstructor()) 6363 DeclareImplicitCopyConstructor(ClassDecl); 6364 } 6365 6366 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) { 6367 ++ASTContext::NumImplicitMoveConstructors; 6368 6369 if (ClassDecl->needsOverloadResolutionForMoveConstructor()) 6370 DeclareImplicitMoveConstructor(ClassDecl); 6371 } 6372 6373 if (!ClassDecl->hasUserDeclaredCopyAssignment()) { 6374 ++ASTContext::NumImplicitCopyAssignmentOperators; 6375 6376 // If we have a dynamic class, then the copy assignment operator may be 6377 // virtual, so we have to declare it immediately. This ensures that, e.g., 6378 // it shows up in the right place in the vtable and that we diagnose 6379 // problems with the implicit exception specification. 6380 if (ClassDecl->isDynamicClass() || 6381 ClassDecl->needsOverloadResolutionForCopyAssignment()) 6382 DeclareImplicitCopyAssignment(ClassDecl); 6383 } 6384 6385 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 6386 ++ASTContext::NumImplicitMoveAssignmentOperators; 6387 6388 // Likewise for the move assignment operator. 6389 if (ClassDecl->isDynamicClass() || 6390 ClassDecl->needsOverloadResolutionForMoveAssignment()) 6391 DeclareImplicitMoveAssignment(ClassDecl); 6392 } 6393 6394 if (!ClassDecl->hasUserDeclaredDestructor()) { 6395 ++ASTContext::NumImplicitDestructors; 6396 6397 // If we have a dynamic class, then the destructor may be virtual, so we 6398 // have to declare the destructor immediately. This ensures that, e.g., it 6399 // shows up in the right place in the vtable and that we diagnose problems 6400 // with the implicit exception specification. 6401 if (ClassDecl->isDynamicClass() || 6402 ClassDecl->needsOverloadResolutionForDestructor()) 6403 DeclareImplicitDestructor(ClassDecl); 6404 } 6405 } 6406 6407 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) { 6408 if (!D) 6409 return 0; 6410 6411 // The order of template parameters is not important here. All names 6412 // get added to the same scope. 6413 SmallVector<TemplateParameterList *, 4> ParameterLists; 6414 6415 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 6416 D = TD->getTemplatedDecl(); 6417 6418 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 6419 ParameterLists.push_back(PSD->getTemplateParameters()); 6420 6421 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 6422 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 6423 ParameterLists.push_back(DD->getTemplateParameterList(i)); 6424 6425 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6426 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 6427 ParameterLists.push_back(FTD->getTemplateParameters()); 6428 } 6429 } 6430 6431 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 6432 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 6433 ParameterLists.push_back(TD->getTemplateParameterList(i)); 6434 6435 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 6436 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 6437 ParameterLists.push_back(CTD->getTemplateParameters()); 6438 } 6439 } 6440 6441 unsigned Count = 0; 6442 for (TemplateParameterList *Params : ParameterLists) { 6443 if (Params->size() > 0) 6444 // Ignore explicit specializations; they don't contribute to the template 6445 // depth. 6446 ++Count; 6447 for (NamedDecl *Param : *Params) { 6448 if (Param->getDeclName()) { 6449 S->AddDecl(Param); 6450 IdResolver.AddDecl(Param); 6451 } 6452 } 6453 } 6454 6455 return Count; 6456 } 6457 6458 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 6459 if (!RecordD) return; 6460 AdjustDeclIfTemplate(RecordD); 6461 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 6462 PushDeclContext(S, Record); 6463 } 6464 6465 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 6466 if (!RecordD) return; 6467 PopDeclContext(); 6468 } 6469 6470 /// This is used to implement the constant expression evaluation part of the 6471 /// attribute enable_if extension. There is nothing in standard C++ which would 6472 /// require reentering parameters. 6473 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 6474 if (!Param) 6475 return; 6476 6477 S->AddDecl(Param); 6478 if (Param->getDeclName()) 6479 IdResolver.AddDecl(Param); 6480 } 6481 6482 /// ActOnStartDelayedCXXMethodDeclaration - We have completed 6483 /// parsing a top-level (non-nested) C++ class, and we are now 6484 /// parsing those parts of the given Method declaration that could 6485 /// not be parsed earlier (C++ [class.mem]p2), such as default 6486 /// arguments. This action should enter the scope of the given 6487 /// Method declaration as if we had just parsed the qualified method 6488 /// name. However, it should not bring the parameters into scope; 6489 /// that will be performed by ActOnDelayedCXXMethodParameter. 6490 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 6491 } 6492 6493 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 6494 /// C++ method declaration. We're (re-)introducing the given 6495 /// function parameter into scope for use in parsing later parts of 6496 /// the method declaration. For example, we could see an 6497 /// ActOnParamDefaultArgument event for this parameter. 6498 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 6499 if (!ParamD) 6500 return; 6501 6502 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 6503 6504 // If this parameter has an unparsed default argument, clear it out 6505 // to make way for the parsed default argument. 6506 if (Param->hasUnparsedDefaultArg()) 6507 Param->setDefaultArg(nullptr); 6508 6509 S->AddDecl(Param); 6510 if (Param->getDeclName()) 6511 IdResolver.AddDecl(Param); 6512 } 6513 6514 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished 6515 /// processing the delayed method declaration for Method. The method 6516 /// declaration is now considered finished. There may be a separate 6517 /// ActOnStartOfFunctionDef action later (not necessarily 6518 /// immediately!) for this method, if it was also defined inside the 6519 /// class body. 6520 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 6521 if (!MethodD) 6522 return; 6523 6524 AdjustDeclIfTemplate(MethodD); 6525 6526 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 6527 6528 // Now that we have our default arguments, check the constructor 6529 // again. It could produce additional diagnostics or affect whether 6530 // the class has implicitly-declared destructors, among other 6531 // things. 6532 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 6533 CheckConstructor(Constructor); 6534 6535 // Check the default arguments, which we may have added. 6536 if (!Method->isInvalidDecl()) 6537 CheckCXXDefaultArguments(Method); 6538 } 6539 6540 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check 6541 /// the well-formedness of the constructor declarator @p D with type @p 6542 /// R. If there are any errors in the declarator, this routine will 6543 /// emit diagnostics and set the invalid bit to true. In any case, the type 6544 /// will be updated to reflect a well-formed type for the constructor and 6545 /// returned. 6546 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 6547 StorageClass &SC) { 6548 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 6549 6550 // C++ [class.ctor]p3: 6551 // A constructor shall not be virtual (10.3) or static (9.4). A 6552 // constructor can be invoked for a const, volatile or const 6553 // volatile object. A constructor shall not be declared const, 6554 // volatile, or const volatile (9.3.2). 6555 if (isVirtual) { 6556 if (!D.isInvalidType()) 6557 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 6558 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 6559 << SourceRange(D.getIdentifierLoc()); 6560 D.setInvalidType(); 6561 } 6562 if (SC == SC_Static) { 6563 if (!D.isInvalidType()) 6564 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 6565 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 6566 << SourceRange(D.getIdentifierLoc()); 6567 D.setInvalidType(); 6568 SC = SC_None; 6569 } 6570 6571 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 6572 diagnoseIgnoredQualifiers( 6573 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 6574 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 6575 D.getDeclSpec().getRestrictSpecLoc(), 6576 D.getDeclSpec().getAtomicSpecLoc()); 6577 D.setInvalidType(); 6578 } 6579 6580 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 6581 if (FTI.TypeQuals != 0) { 6582 if (FTI.TypeQuals & Qualifiers::Const) 6583 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) 6584 << "const" << SourceRange(D.getIdentifierLoc()); 6585 if (FTI.TypeQuals & Qualifiers::Volatile) 6586 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) 6587 << "volatile" << SourceRange(D.getIdentifierLoc()); 6588 if (FTI.TypeQuals & Qualifiers::Restrict) 6589 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) 6590 << "restrict" << SourceRange(D.getIdentifierLoc()); 6591 D.setInvalidType(); 6592 } 6593 6594 // C++0x [class.ctor]p4: 6595 // A constructor shall not be declared with a ref-qualifier. 6596 if (FTI.hasRefQualifier()) { 6597 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 6598 << FTI.RefQualifierIsLValueRef 6599 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 6600 D.setInvalidType(); 6601 } 6602 6603 // Rebuild the function type "R" without any type qualifiers (in 6604 // case any of the errors above fired) and with "void" as the 6605 // return type, since constructors don't have return types. 6606 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); 6607 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 6608 return R; 6609 6610 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 6611 EPI.TypeQuals = 0; 6612 EPI.RefQualifier = RQ_None; 6613 6614 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 6615 } 6616 6617 /// CheckConstructor - Checks a fully-formed constructor for 6618 /// well-formedness, issuing any diagnostics required. Returns true if 6619 /// the constructor declarator is invalid. 6620 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 6621 CXXRecordDecl *ClassDecl 6622 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 6623 if (!ClassDecl) 6624 return Constructor->setInvalidDecl(); 6625 6626 // C++ [class.copy]p3: 6627 // A declaration of a constructor for a class X is ill-formed if 6628 // its first parameter is of type (optionally cv-qualified) X and 6629 // either there are no other parameters or else all other 6630 // parameters have default arguments. 6631 if (!Constructor->isInvalidDecl() && 6632 ((Constructor->getNumParams() == 1) || 6633 (Constructor->getNumParams() > 1 && 6634 Constructor->getParamDecl(1)->hasDefaultArg())) && 6635 Constructor->getTemplateSpecializationKind() 6636 != TSK_ImplicitInstantiation) { 6637 QualType ParamType = Constructor->getParamDecl(0)->getType(); 6638 QualType ClassTy = Context.getTagDeclType(ClassDecl); 6639 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 6640 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 6641 const char *ConstRef 6642 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 6643 : " const &"; 6644 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 6645 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 6646 6647 // FIXME: Rather that making the constructor invalid, we should endeavor 6648 // to fix the type. 6649 Constructor->setInvalidDecl(); 6650 } 6651 } 6652 } 6653 6654 /// CheckDestructor - Checks a fully-formed destructor definition for 6655 /// well-formedness, issuing any diagnostics required. Returns true 6656 /// on error. 6657 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 6658 CXXRecordDecl *RD = Destructor->getParent(); 6659 6660 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 6661 SourceLocation Loc; 6662 6663 if (!Destructor->isImplicit()) 6664 Loc = Destructor->getLocation(); 6665 else 6666 Loc = RD->getLocation(); 6667 6668 // If we have a virtual destructor, look up the deallocation function 6669 FunctionDecl *OperatorDelete = nullptr; 6670 DeclarationName Name = 6671 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 6672 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 6673 return true; 6674 // If there's no class-specific operator delete, look up the global 6675 // non-array delete. 6676 if (!OperatorDelete) 6677 OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name); 6678 6679 MarkFunctionReferenced(Loc, OperatorDelete); 6680 6681 Destructor->setOperatorDelete(OperatorDelete); 6682 } 6683 6684 return false; 6685 } 6686 6687 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check 6688 /// the well-formednes of the destructor declarator @p D with type @p 6689 /// R. If there are any errors in the declarator, this routine will 6690 /// emit diagnostics and set the declarator to invalid. Even if this happens, 6691 /// will be updated to reflect a well-formed type for the destructor and 6692 /// returned. 6693 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 6694 StorageClass& SC) { 6695 // C++ [class.dtor]p1: 6696 // [...] A typedef-name that names a class is a class-name 6697 // (7.1.3); however, a typedef-name that names a class shall not 6698 // be used as the identifier in the declarator for a destructor 6699 // declaration. 6700 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 6701 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 6702 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) 6703 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 6704 else if (const TemplateSpecializationType *TST = 6705 DeclaratorType->getAs<TemplateSpecializationType>()) 6706 if (TST->isTypeAlias()) 6707 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) 6708 << DeclaratorType << 1; 6709 6710 // C++ [class.dtor]p2: 6711 // A destructor is used to destroy objects of its class type. A 6712 // destructor takes no parameters, and no return type can be 6713 // specified for it (not even void). The address of a destructor 6714 // shall not be taken. A destructor shall not be static. A 6715 // destructor can be invoked for a const, volatile or const 6716 // volatile object. A destructor shall not be declared const, 6717 // volatile or const volatile (9.3.2). 6718 if (SC == SC_Static) { 6719 if (!D.isInvalidType()) 6720 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 6721 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 6722 << SourceRange(D.getIdentifierLoc()) 6723 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6724 6725 SC = SC_None; 6726 } 6727 if (!D.isInvalidType()) { 6728 // Destructors don't have return types, but the parser will 6729 // happily parse something like: 6730 // 6731 // class X { 6732 // float ~X(); 6733 // }; 6734 // 6735 // The return type will be eliminated later. 6736 if (D.getDeclSpec().hasTypeSpecifier()) 6737 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 6738 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 6739 << SourceRange(D.getIdentifierLoc()); 6740 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 6741 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 6742 SourceLocation(), 6743 D.getDeclSpec().getConstSpecLoc(), 6744 D.getDeclSpec().getVolatileSpecLoc(), 6745 D.getDeclSpec().getRestrictSpecLoc(), 6746 D.getDeclSpec().getAtomicSpecLoc()); 6747 D.setInvalidType(); 6748 } 6749 } 6750 6751 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 6752 if (FTI.TypeQuals != 0 && !D.isInvalidType()) { 6753 if (FTI.TypeQuals & Qualifiers::Const) 6754 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) 6755 << "const" << SourceRange(D.getIdentifierLoc()); 6756 if (FTI.TypeQuals & Qualifiers::Volatile) 6757 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) 6758 << "volatile" << SourceRange(D.getIdentifierLoc()); 6759 if (FTI.TypeQuals & Qualifiers::Restrict) 6760 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) 6761 << "restrict" << SourceRange(D.getIdentifierLoc()); 6762 D.setInvalidType(); 6763 } 6764 6765 // C++0x [class.dtor]p2: 6766 // A destructor shall not be declared with a ref-qualifier. 6767 if (FTI.hasRefQualifier()) { 6768 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 6769 << FTI.RefQualifierIsLValueRef 6770 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 6771 D.setInvalidType(); 6772 } 6773 6774 // Make sure we don't have any parameters. 6775 if (FTIHasNonVoidParameters(FTI)) { 6776 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 6777 6778 // Delete the parameters. 6779 FTI.freeParams(); 6780 D.setInvalidType(); 6781 } 6782 6783 // Make sure the destructor isn't variadic. 6784 if (FTI.isVariadic) { 6785 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 6786 D.setInvalidType(); 6787 } 6788 6789 // Rebuild the function type "R" without any type qualifiers or 6790 // parameters (in case any of the errors above fired) and with 6791 // "void" as the return type, since destructors don't have return 6792 // types. 6793 if (!D.isInvalidType()) 6794 return R; 6795 6796 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); 6797 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 6798 EPI.Variadic = false; 6799 EPI.TypeQuals = 0; 6800 EPI.RefQualifier = RQ_None; 6801 return Context.getFunctionType(Context.VoidTy, None, EPI); 6802 } 6803 6804 static void extendLeft(SourceRange &R, const SourceRange &Before) { 6805 if (Before.isInvalid()) 6806 return; 6807 R.setBegin(Before.getBegin()); 6808 if (R.getEnd().isInvalid()) 6809 R.setEnd(Before.getEnd()); 6810 } 6811 6812 static void extendRight(SourceRange &R, const SourceRange &After) { 6813 if (After.isInvalid()) 6814 return; 6815 if (R.getBegin().isInvalid()) 6816 R.setBegin(After.getBegin()); 6817 R.setEnd(After.getEnd()); 6818 } 6819 6820 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the 6821 /// well-formednes of the conversion function declarator @p D with 6822 /// type @p R. If there are any errors in the declarator, this routine 6823 /// will emit diagnostics and return true. Otherwise, it will return 6824 /// false. Either way, the type @p R will be updated to reflect a 6825 /// well-formed type for the conversion operator. 6826 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 6827 StorageClass& SC) { 6828 // C++ [class.conv.fct]p1: 6829 // Neither parameter types nor return type can be specified. The 6830 // type of a conversion function (8.3.5) is "function taking no 6831 // parameter returning conversion-type-id." 6832 if (SC == SC_Static) { 6833 if (!D.isInvalidType()) 6834 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 6835 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 6836 << D.getName().getSourceRange(); 6837 D.setInvalidType(); 6838 SC = SC_None; 6839 } 6840 6841 TypeSourceInfo *ConvTSI = nullptr; 6842 QualType ConvType = 6843 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 6844 6845 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { 6846 // Conversion functions don't have return types, but the parser will 6847 // happily parse something like: 6848 // 6849 // class X { 6850 // float operator bool(); 6851 // }; 6852 // 6853 // The return type will be changed later anyway. 6854 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 6855 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 6856 << SourceRange(D.getIdentifierLoc()); 6857 D.setInvalidType(); 6858 } 6859 6860 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); 6861 6862 // Make sure we don't have any parameters. 6863 if (Proto->getNumParams() > 0) { 6864 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 6865 6866 // Delete the parameters. 6867 D.getFunctionTypeInfo().freeParams(); 6868 D.setInvalidType(); 6869 } else if (Proto->isVariadic()) { 6870 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 6871 D.setInvalidType(); 6872 } 6873 6874 // Diagnose "&operator bool()" and other such nonsense. This 6875 // is actually a gcc extension which we don't support. 6876 if (Proto->getReturnType() != ConvType) { 6877 bool NeedsTypedef = false; 6878 SourceRange Before, After; 6879 6880 // Walk the chunks and extract information on them for our diagnostic. 6881 bool PastFunctionChunk = false; 6882 for (auto &Chunk : D.type_objects()) { 6883 switch (Chunk.Kind) { 6884 case DeclaratorChunk::Function: 6885 if (!PastFunctionChunk) { 6886 if (Chunk.Fun.HasTrailingReturnType) { 6887 TypeSourceInfo *TRT = nullptr; 6888 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 6889 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 6890 } 6891 PastFunctionChunk = true; 6892 break; 6893 } 6894 // Fall through. 6895 case DeclaratorChunk::Array: 6896 NeedsTypedef = true; 6897 extendRight(After, Chunk.getSourceRange()); 6898 break; 6899 6900 case DeclaratorChunk::Pointer: 6901 case DeclaratorChunk::BlockPointer: 6902 case DeclaratorChunk::Reference: 6903 case DeclaratorChunk::MemberPointer: 6904 extendLeft(Before, Chunk.getSourceRange()); 6905 break; 6906 6907 case DeclaratorChunk::Paren: 6908 extendLeft(Before, Chunk.Loc); 6909 extendRight(After, Chunk.EndLoc); 6910 break; 6911 } 6912 } 6913 6914 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 6915 After.isValid() ? After.getBegin() : 6916 D.getIdentifierLoc(); 6917 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 6918 DB << Before << After; 6919 6920 if (!NeedsTypedef) { 6921 DB << /*don't need a typedef*/0; 6922 6923 // If we can provide a correct fix-it hint, do so. 6924 if (After.isInvalid() && ConvTSI) { 6925 SourceLocation InsertLoc = 6926 PP.getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd()); 6927 DB << FixItHint::CreateInsertion(InsertLoc, " ") 6928 << FixItHint::CreateInsertionFromRange( 6929 InsertLoc, CharSourceRange::getTokenRange(Before)) 6930 << FixItHint::CreateRemoval(Before); 6931 } 6932 } else if (!Proto->getReturnType()->isDependentType()) { 6933 DB << /*typedef*/1 << Proto->getReturnType(); 6934 } else if (getLangOpts().CPlusPlus11) { 6935 DB << /*alias template*/2 << Proto->getReturnType(); 6936 } else { 6937 DB << /*might not be fixable*/3; 6938 } 6939 6940 // Recover by incorporating the other type chunks into the result type. 6941 // Note, this does *not* change the name of the function. This is compatible 6942 // with the GCC extension: 6943 // struct S { &operator int(); } s; 6944 // int &r = s.operator int(); // ok in GCC 6945 // S::operator int&() {} // error in GCC, function name is 'operator int'. 6946 ConvType = Proto->getReturnType(); 6947 } 6948 6949 // C++ [class.conv.fct]p4: 6950 // The conversion-type-id shall not represent a function type nor 6951 // an array type. 6952 if (ConvType->isArrayType()) { 6953 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 6954 ConvType = Context.getPointerType(ConvType); 6955 D.setInvalidType(); 6956 } else if (ConvType->isFunctionType()) { 6957 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 6958 ConvType = Context.getPointerType(ConvType); 6959 D.setInvalidType(); 6960 } 6961 6962 // Rebuild the function type "R" without any parameters (in case any 6963 // of the errors above fired) and with the conversion type as the 6964 // return type. 6965 if (D.isInvalidType()) 6966 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); 6967 6968 // C++0x explicit conversion operators. 6969 if (D.getDeclSpec().isExplicitSpecified()) 6970 Diag(D.getDeclSpec().getExplicitSpecLoc(), 6971 getLangOpts().CPlusPlus11 ? 6972 diag::warn_cxx98_compat_explicit_conversion_functions : 6973 diag::ext_explicit_conversion_functions) 6974 << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); 6975 } 6976 6977 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 6978 /// the declaration of the given C++ conversion function. This routine 6979 /// is responsible for recording the conversion function in the C++ 6980 /// class, if possible. 6981 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 6982 assert(Conversion && "Expected to receive a conversion function declaration"); 6983 6984 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 6985 6986 // Make sure we aren't redeclaring the conversion function. 6987 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 6988 6989 // C++ [class.conv.fct]p1: 6990 // [...] A conversion function is never used to convert a 6991 // (possibly cv-qualified) object to the (possibly cv-qualified) 6992 // same object type (or a reference to it), to a (possibly 6993 // cv-qualified) base class of that type (or a reference to it), 6994 // or to (possibly cv-qualified) void. 6995 // FIXME: Suppress this warning if the conversion function ends up being a 6996 // virtual function that overrides a virtual function in a base class. 6997 QualType ClassType 6998 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 6999 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 7000 ConvType = ConvTypeRef->getPointeeType(); 7001 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 7002 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 7003 /* Suppress diagnostics for instantiations. */; 7004 else if (ConvType->isRecordType()) { 7005 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 7006 if (ConvType == ClassType) 7007 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 7008 << ClassType; 7009 else if (IsDerivedFrom(ClassType, ConvType)) 7010 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 7011 << ClassType << ConvType; 7012 } else if (ConvType->isVoidType()) { 7013 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 7014 << ClassType << ConvType; 7015 } 7016 7017 if (FunctionTemplateDecl *ConversionTemplate 7018 = Conversion->getDescribedFunctionTemplate()) 7019 return ConversionTemplate; 7020 7021 return Conversion; 7022 } 7023 7024 //===----------------------------------------------------------------------===// 7025 // Namespace Handling 7026 //===----------------------------------------------------------------------===// 7027 7028 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is 7029 /// reopened. 7030 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 7031 SourceLocation Loc, 7032 IdentifierInfo *II, bool *IsInline, 7033 NamespaceDecl *PrevNS) { 7034 assert(*IsInline != PrevNS->isInline()); 7035 7036 // HACK: Work around a bug in libstdc++4.6's <atomic>, where 7037 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as 7038 // inline namespaces, with the intention of bringing names into namespace std. 7039 // 7040 // We support this just well enough to get that case working; this is not 7041 // sufficient to support reopening namespaces as inline in general. 7042 if (*IsInline && II && II->getName().startswith("__atomic") && 7043 S.getSourceManager().isInSystemHeader(Loc)) { 7044 // Mark all prior declarations of the namespace as inline. 7045 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS; 7046 NS = NS->getPreviousDecl()) 7047 NS->setInline(*IsInline); 7048 // Patch up the lookup table for the containing namespace. This isn't really 7049 // correct, but it's good enough for this particular case. 7050 for (auto *I : PrevNS->decls()) 7051 if (auto *ND = dyn_cast<NamedDecl>(I)) 7052 PrevNS->getParent()->makeDeclVisibleInContext(ND); 7053 return; 7054 } 7055 7056 if (PrevNS->isInline()) 7057 // The user probably just forgot the 'inline', so suggest that it 7058 // be added back. 7059 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 7060 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 7061 else 7062 S.Diag(Loc, diag::err_inline_namespace_mismatch) << *IsInline; 7063 7064 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 7065 *IsInline = PrevNS->isInline(); 7066 } 7067 7068 /// ActOnStartNamespaceDef - This is called at the start of a namespace 7069 /// definition. 7070 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, 7071 SourceLocation InlineLoc, 7072 SourceLocation NamespaceLoc, 7073 SourceLocation IdentLoc, 7074 IdentifierInfo *II, 7075 SourceLocation LBrace, 7076 AttributeList *AttrList) { 7077 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 7078 // For anonymous namespace, take the location of the left brace. 7079 SourceLocation Loc = II ? IdentLoc : LBrace; 7080 bool IsInline = InlineLoc.isValid(); 7081 bool IsInvalid = false; 7082 bool IsStd = false; 7083 bool AddToKnown = false; 7084 Scope *DeclRegionScope = NamespcScope->getParent(); 7085 7086 NamespaceDecl *PrevNS = nullptr; 7087 if (II) { 7088 // C++ [namespace.def]p2: 7089 // The identifier in an original-namespace-definition shall not 7090 // have been previously defined in the declarative region in 7091 // which the original-namespace-definition appears. The 7092 // identifier in an original-namespace-definition is the name of 7093 // the namespace. Subsequently in that declarative region, it is 7094 // treated as an original-namespace-name. 7095 // 7096 // Since namespace names are unique in their scope, and we don't 7097 // look through using directives, just look for any ordinary names. 7098 7099 const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member | 7100 Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag | 7101 Decl::IDNS_Namespace; 7102 NamedDecl *PrevDecl = nullptr; 7103 DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II); 7104 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 7105 ++I) { 7106 if ((*I)->getIdentifierNamespace() & IDNS) { 7107 PrevDecl = *I; 7108 break; 7109 } 7110 } 7111 7112 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 7113 7114 if (PrevNS) { 7115 // This is an extended namespace definition. 7116 if (IsInline != PrevNS->isInline()) 7117 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 7118 &IsInline, PrevNS); 7119 } else if (PrevDecl) { 7120 // This is an invalid name redefinition. 7121 Diag(Loc, diag::err_redefinition_different_kind) 7122 << II; 7123 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 7124 IsInvalid = true; 7125 // Continue on to push Namespc as current DeclContext and return it. 7126 } else if (II->isStr("std") && 7127 CurContext->getRedeclContext()->isTranslationUnit()) { 7128 // This is the first "real" definition of the namespace "std", so update 7129 // our cache of the "std" namespace to point at this definition. 7130 PrevNS = getStdNamespace(); 7131 IsStd = true; 7132 AddToKnown = !IsInline; 7133 } else { 7134 // We've seen this namespace for the first time. 7135 AddToKnown = !IsInline; 7136 } 7137 } else { 7138 // Anonymous namespaces. 7139 7140 // Determine whether the parent already has an anonymous namespace. 7141 DeclContext *Parent = CurContext->getRedeclContext(); 7142 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 7143 PrevNS = TU->getAnonymousNamespace(); 7144 } else { 7145 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 7146 PrevNS = ND->getAnonymousNamespace(); 7147 } 7148 7149 if (PrevNS && IsInline != PrevNS->isInline()) 7150 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 7151 &IsInline, PrevNS); 7152 } 7153 7154 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, 7155 StartLoc, Loc, II, PrevNS); 7156 if (IsInvalid) 7157 Namespc->setInvalidDecl(); 7158 7159 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 7160 7161 // FIXME: Should we be merging attributes? 7162 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 7163 PushNamespaceVisibilityAttr(Attr, Loc); 7164 7165 if (IsStd) 7166 StdNamespace = Namespc; 7167 if (AddToKnown) 7168 KnownNamespaces[Namespc] = false; 7169 7170 if (II) { 7171 PushOnScopeChains(Namespc, DeclRegionScope); 7172 } else { 7173 // Link the anonymous namespace into its parent. 7174 DeclContext *Parent = CurContext->getRedeclContext(); 7175 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 7176 TU->setAnonymousNamespace(Namespc); 7177 } else { 7178 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 7179 } 7180 7181 CurContext->addDecl(Namespc); 7182 7183 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 7184 // behaves as if it were replaced by 7185 // namespace unique { /* empty body */ } 7186 // using namespace unique; 7187 // namespace unique { namespace-body } 7188 // where all occurrences of 'unique' in a translation unit are 7189 // replaced by the same identifier and this identifier differs 7190 // from all other identifiers in the entire program. 7191 7192 // We just create the namespace with an empty name and then add an 7193 // implicit using declaration, just like the standard suggests. 7194 // 7195 // CodeGen enforces the "universally unique" aspect by giving all 7196 // declarations semantically contained within an anonymous 7197 // namespace internal linkage. 7198 7199 if (!PrevNS) { 7200 UsingDirectiveDecl* UD 7201 = UsingDirectiveDecl::Create(Context, Parent, 7202 /* 'using' */ LBrace, 7203 /* 'namespace' */ SourceLocation(), 7204 /* qualifier */ NestedNameSpecifierLoc(), 7205 /* identifier */ SourceLocation(), 7206 Namespc, 7207 /* Ancestor */ Parent); 7208 UD->setImplicit(); 7209 Parent->addDecl(UD); 7210 } 7211 } 7212 7213 ActOnDocumentableDecl(Namespc); 7214 7215 // Although we could have an invalid decl (i.e. the namespace name is a 7216 // redefinition), push it as current DeclContext and try to continue parsing. 7217 // FIXME: We should be able to push Namespc here, so that the each DeclContext 7218 // for the namespace has the declarations that showed up in that particular 7219 // namespace definition. 7220 PushDeclContext(NamespcScope, Namespc); 7221 return Namespc; 7222 } 7223 7224 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 7225 /// is a namespace alias, returns the namespace it points to. 7226 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 7227 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 7228 return AD->getNamespace(); 7229 return dyn_cast_or_null<NamespaceDecl>(D); 7230 } 7231 7232 /// ActOnFinishNamespaceDef - This callback is called after a namespace is 7233 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 7234 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 7235 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 7236 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 7237 Namespc->setRBraceLoc(RBrace); 7238 PopDeclContext(); 7239 if (Namespc->hasAttr<VisibilityAttr>()) 7240 PopPragmaVisibility(true, RBrace); 7241 } 7242 7243 CXXRecordDecl *Sema::getStdBadAlloc() const { 7244 return cast_or_null<CXXRecordDecl>( 7245 StdBadAlloc.get(Context.getExternalSource())); 7246 } 7247 7248 NamespaceDecl *Sema::getStdNamespace() const { 7249 return cast_or_null<NamespaceDecl>( 7250 StdNamespace.get(Context.getExternalSource())); 7251 } 7252 7253 /// \brief Retrieve the special "std" namespace, which may require us to 7254 /// implicitly define the namespace. 7255 NamespaceDecl *Sema::getOrCreateStdNamespace() { 7256 if (!StdNamespace) { 7257 // The "std" namespace has not yet been defined, so build one implicitly. 7258 StdNamespace = NamespaceDecl::Create(Context, 7259 Context.getTranslationUnitDecl(), 7260 /*Inline=*/false, 7261 SourceLocation(), SourceLocation(), 7262 &PP.getIdentifierTable().get("std"), 7263 /*PrevDecl=*/nullptr); 7264 getStdNamespace()->setImplicit(true); 7265 } 7266 7267 return getStdNamespace(); 7268 } 7269 7270 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 7271 assert(getLangOpts().CPlusPlus && 7272 "Looking for std::initializer_list outside of C++."); 7273 7274 // We're looking for implicit instantiations of 7275 // template <typename E> class std::initializer_list. 7276 7277 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 7278 return false; 7279 7280 ClassTemplateDecl *Template = nullptr; 7281 const TemplateArgument *Arguments = nullptr; 7282 7283 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7284 7285 ClassTemplateSpecializationDecl *Specialization = 7286 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 7287 if (!Specialization) 7288 return false; 7289 7290 Template = Specialization->getSpecializedTemplate(); 7291 Arguments = Specialization->getTemplateArgs().data(); 7292 } else if (const TemplateSpecializationType *TST = 7293 Ty->getAs<TemplateSpecializationType>()) { 7294 Template = dyn_cast_or_null<ClassTemplateDecl>( 7295 TST->getTemplateName().getAsTemplateDecl()); 7296 Arguments = TST->getArgs(); 7297 } 7298 if (!Template) 7299 return false; 7300 7301 if (!StdInitializerList) { 7302 // Haven't recognized std::initializer_list yet, maybe this is it. 7303 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 7304 if (TemplateClass->getIdentifier() != 7305 &PP.getIdentifierTable().get("initializer_list") || 7306 !getStdNamespace()->InEnclosingNamespaceSetOf( 7307 TemplateClass->getDeclContext())) 7308 return false; 7309 // This is a template called std::initializer_list, but is it the right 7310 // template? 7311 TemplateParameterList *Params = Template->getTemplateParameters(); 7312 if (Params->getMinRequiredArguments() != 1) 7313 return false; 7314 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 7315 return false; 7316 7317 // It's the right template. 7318 StdInitializerList = Template; 7319 } 7320 7321 if (Template != StdInitializerList) 7322 return false; 7323 7324 // This is an instance of std::initializer_list. Find the argument type. 7325 if (Element) 7326 *Element = Arguments[0].getAsType(); 7327 return true; 7328 } 7329 7330 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 7331 NamespaceDecl *Std = S.getStdNamespace(); 7332 if (!Std) { 7333 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 7334 return nullptr; 7335 } 7336 7337 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 7338 Loc, Sema::LookupOrdinaryName); 7339 if (!S.LookupQualifiedName(Result, Std)) { 7340 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 7341 return nullptr; 7342 } 7343 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 7344 if (!Template) { 7345 Result.suppressDiagnostics(); 7346 // We found something weird. Complain about the first thing we found. 7347 NamedDecl *Found = *Result.begin(); 7348 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 7349 return nullptr; 7350 } 7351 7352 // We found some template called std::initializer_list. Now verify that it's 7353 // correct. 7354 TemplateParameterList *Params = Template->getTemplateParameters(); 7355 if (Params->getMinRequiredArguments() != 1 || 7356 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 7357 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 7358 return nullptr; 7359 } 7360 7361 return Template; 7362 } 7363 7364 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 7365 if (!StdInitializerList) { 7366 StdInitializerList = LookupStdInitializerList(*this, Loc); 7367 if (!StdInitializerList) 7368 return QualType(); 7369 } 7370 7371 TemplateArgumentListInfo Args(Loc, Loc); 7372 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 7373 Context.getTrivialTypeSourceInfo(Element, 7374 Loc))); 7375 return Context.getCanonicalType( 7376 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 7377 } 7378 7379 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) { 7380 // C++ [dcl.init.list]p2: 7381 // A constructor is an initializer-list constructor if its first parameter 7382 // is of type std::initializer_list<E> or reference to possibly cv-qualified 7383 // std::initializer_list<E> for some type E, and either there are no other 7384 // parameters or else all other parameters have default arguments. 7385 if (Ctor->getNumParams() < 1 || 7386 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg())) 7387 return false; 7388 7389 QualType ArgType = Ctor->getParamDecl(0)->getType(); 7390 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 7391 ArgType = RT->getPointeeType().getUnqualifiedType(); 7392 7393 return isStdInitializerList(ArgType, nullptr); 7394 } 7395 7396 /// \brief Determine whether a using statement is in a context where it will be 7397 /// apply in all contexts. 7398 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 7399 switch (CurContext->getDeclKind()) { 7400 case Decl::TranslationUnit: 7401 return true; 7402 case Decl::LinkageSpec: 7403 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 7404 default: 7405 return false; 7406 } 7407 } 7408 7409 namespace { 7410 7411 // Callback to only accept typo corrections that are namespaces. 7412 class NamespaceValidatorCCC : public CorrectionCandidateCallback { 7413 public: 7414 bool ValidateCandidate(const TypoCorrection &candidate) override { 7415 if (NamedDecl *ND = candidate.getCorrectionDecl()) 7416 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 7417 return false; 7418 } 7419 }; 7420 7421 } 7422 7423 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 7424 CXXScopeSpec &SS, 7425 SourceLocation IdentLoc, 7426 IdentifierInfo *Ident) { 7427 R.clear(); 7428 if (TypoCorrection Corrected = 7429 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, 7430 llvm::make_unique<NamespaceValidatorCCC>(), 7431 Sema::CTK_ErrorRecovery)) { 7432 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 7433 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 7434 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 7435 Ident->getName().equals(CorrectedStr); 7436 S.diagnoseTypo(Corrected, 7437 S.PDiag(diag::err_using_directive_member_suggest) 7438 << Ident << DC << DroppedSpecifier << SS.getRange(), 7439 S.PDiag(diag::note_namespace_defined_here)); 7440 } else { 7441 S.diagnoseTypo(Corrected, 7442 S.PDiag(diag::err_using_directive_suggest) << Ident, 7443 S.PDiag(diag::note_namespace_defined_here)); 7444 } 7445 R.addDecl(Corrected.getCorrectionDecl()); 7446 return true; 7447 } 7448 return false; 7449 } 7450 7451 Decl *Sema::ActOnUsingDirective(Scope *S, 7452 SourceLocation UsingLoc, 7453 SourceLocation NamespcLoc, 7454 CXXScopeSpec &SS, 7455 SourceLocation IdentLoc, 7456 IdentifierInfo *NamespcName, 7457 AttributeList *AttrList) { 7458 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 7459 assert(NamespcName && "Invalid NamespcName."); 7460 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 7461 7462 // This can only happen along a recovery path. 7463 while (S->getFlags() & Scope::TemplateParamScope) 7464 S = S->getParent(); 7465 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 7466 7467 UsingDirectiveDecl *UDir = nullptr; 7468 NestedNameSpecifier *Qualifier = nullptr; 7469 if (SS.isSet()) 7470 Qualifier = SS.getScopeRep(); 7471 7472 // Lookup namespace name. 7473 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 7474 LookupParsedName(R, S, &SS); 7475 if (R.isAmbiguous()) 7476 return nullptr; 7477 7478 if (R.empty()) { 7479 R.clear(); 7480 // Allow "using namespace std;" or "using namespace ::std;" even if 7481 // "std" hasn't been defined yet, for GCC compatibility. 7482 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 7483 NamespcName->isStr("std")) { 7484 Diag(IdentLoc, diag::ext_using_undefined_std); 7485 R.addDecl(getOrCreateStdNamespace()); 7486 R.resolveKind(); 7487 } 7488 // Otherwise, attempt typo correction. 7489 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 7490 } 7491 7492 if (!R.empty()) { 7493 NamedDecl *Named = R.getFoundDecl(); 7494 assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named)) 7495 && "expected namespace decl"); 7496 7497 // The use of a nested name specifier may trigger deprecation warnings. 7498 DiagnoseUseOfDecl(Named, IdentLoc); 7499 7500 // C++ [namespace.udir]p1: 7501 // A using-directive specifies that the names in the nominated 7502 // namespace can be used in the scope in which the 7503 // using-directive appears after the using-directive. During 7504 // unqualified name lookup (3.4.1), the names appear as if they 7505 // were declared in the nearest enclosing namespace which 7506 // contains both the using-directive and the nominated 7507 // namespace. [Note: in this context, "contains" means "contains 7508 // directly or indirectly". ] 7509 7510 // Find enclosing context containing both using-directive and 7511 // nominated namespace. 7512 NamespaceDecl *NS = getNamespaceDecl(Named); 7513 DeclContext *CommonAncestor = cast<DeclContext>(NS); 7514 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 7515 CommonAncestor = CommonAncestor->getParent(); 7516 7517 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 7518 SS.getWithLocInContext(Context), 7519 IdentLoc, Named, CommonAncestor); 7520 7521 if (IsUsingDirectiveInToplevelContext(CurContext) && 7522 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 7523 Diag(IdentLoc, diag::warn_using_directive_in_header); 7524 } 7525 7526 PushUsingDirective(S, UDir); 7527 } else { 7528 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 7529 } 7530 7531 if (UDir) 7532 ProcessDeclAttributeList(S, UDir, AttrList); 7533 7534 return UDir; 7535 } 7536 7537 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 7538 // If the scope has an associated entity and the using directive is at 7539 // namespace or translation unit scope, add the UsingDirectiveDecl into 7540 // its lookup structure so qualified name lookup can find it. 7541 DeclContext *Ctx = S->getEntity(); 7542 if (Ctx && !Ctx->isFunctionOrMethod()) 7543 Ctx->addDecl(UDir); 7544 else 7545 // Otherwise, it is at block scope. The using-directives will affect lookup 7546 // only to the end of the scope. 7547 S->PushUsingDirective(UDir); 7548 } 7549 7550 7551 Decl *Sema::ActOnUsingDeclaration(Scope *S, 7552 AccessSpecifier AS, 7553 bool HasUsingKeyword, 7554 SourceLocation UsingLoc, 7555 CXXScopeSpec &SS, 7556 UnqualifiedId &Name, 7557 AttributeList *AttrList, 7558 bool HasTypenameKeyword, 7559 SourceLocation TypenameLoc) { 7560 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 7561 7562 switch (Name.getKind()) { 7563 case UnqualifiedId::IK_ImplicitSelfParam: 7564 case UnqualifiedId::IK_Identifier: 7565 case UnqualifiedId::IK_OperatorFunctionId: 7566 case UnqualifiedId::IK_LiteralOperatorId: 7567 case UnqualifiedId::IK_ConversionFunctionId: 7568 break; 7569 7570 case UnqualifiedId::IK_ConstructorName: 7571 case UnqualifiedId::IK_ConstructorTemplateId: 7572 // C++11 inheriting constructors. 7573 Diag(Name.getLocStart(), 7574 getLangOpts().CPlusPlus11 ? 7575 diag::warn_cxx98_compat_using_decl_constructor : 7576 diag::err_using_decl_constructor) 7577 << SS.getRange(); 7578 7579 if (getLangOpts().CPlusPlus11) break; 7580 7581 return nullptr; 7582 7583 case UnqualifiedId::IK_DestructorName: 7584 Diag(Name.getLocStart(), diag::err_using_decl_destructor) 7585 << SS.getRange(); 7586 return nullptr; 7587 7588 case UnqualifiedId::IK_TemplateId: 7589 Diag(Name.getLocStart(), diag::err_using_decl_template_id) 7590 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 7591 return nullptr; 7592 } 7593 7594 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 7595 DeclarationName TargetName = TargetNameInfo.getName(); 7596 if (!TargetName) 7597 return nullptr; 7598 7599 // Warn about access declarations. 7600 if (!HasUsingKeyword) { 7601 Diag(Name.getLocStart(), 7602 getLangOpts().CPlusPlus11 ? diag::err_access_decl 7603 : diag::warn_access_decl_deprecated) 7604 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 7605 } 7606 7607 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 7608 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 7609 return nullptr; 7610 7611 NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, 7612 TargetNameInfo, AttrList, 7613 /* IsInstantiation */ false, 7614 HasTypenameKeyword, TypenameLoc); 7615 if (UD) 7616 PushOnScopeChains(UD, S, /*AddToContext*/ false); 7617 7618 return UD; 7619 } 7620 7621 /// \brief Determine whether a using declaration considers the given 7622 /// declarations as "equivalent", e.g., if they are redeclarations of 7623 /// the same entity or are both typedefs of the same type. 7624 static bool 7625 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 7626 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 7627 return true; 7628 7629 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 7630 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 7631 return Context.hasSameType(TD1->getUnderlyingType(), 7632 TD2->getUnderlyingType()); 7633 7634 return false; 7635 } 7636 7637 7638 /// Determines whether to create a using shadow decl for a particular 7639 /// decl, given the set of decls existing prior to this using lookup. 7640 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, 7641 const LookupResult &Previous, 7642 UsingShadowDecl *&PrevShadow) { 7643 // Diagnose finding a decl which is not from a base class of the 7644 // current class. We do this now because there are cases where this 7645 // function will silently decide not to build a shadow decl, which 7646 // will pre-empt further diagnostics. 7647 // 7648 // We don't need to do this in C++0x because we do the check once on 7649 // the qualifier. 7650 // 7651 // FIXME: diagnose the following if we care enough: 7652 // struct A { int foo; }; 7653 // struct B : A { using A::foo; }; 7654 // template <class T> struct C : A {}; 7655 // template <class T> struct D : C<T> { using B::foo; } // <--- 7656 // This is invalid (during instantiation) in C++03 because B::foo 7657 // resolves to the using decl in B, which is not a base class of D<T>. 7658 // We can't diagnose it immediately because C<T> is an unknown 7659 // specialization. The UsingShadowDecl in D<T> then points directly 7660 // to A::foo, which will look well-formed when we instantiate. 7661 // The right solution is to not collapse the shadow-decl chain. 7662 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) { 7663 DeclContext *OrigDC = Orig->getDeclContext(); 7664 7665 // Handle enums and anonymous structs. 7666 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); 7667 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 7668 while (OrigRec->isAnonymousStructOrUnion()) 7669 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 7670 7671 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 7672 if (OrigDC == CurContext) { 7673 Diag(Using->getLocation(), 7674 diag::err_using_decl_nested_name_specifier_is_current_class) 7675 << Using->getQualifierLoc().getSourceRange(); 7676 Diag(Orig->getLocation(), diag::note_using_decl_target); 7677 return true; 7678 } 7679 7680 Diag(Using->getQualifierLoc().getBeginLoc(), 7681 diag::err_using_decl_nested_name_specifier_is_not_base_class) 7682 << Using->getQualifier() 7683 << cast<CXXRecordDecl>(CurContext) 7684 << Using->getQualifierLoc().getSourceRange(); 7685 Diag(Orig->getLocation(), diag::note_using_decl_target); 7686 return true; 7687 } 7688 } 7689 7690 if (Previous.empty()) return false; 7691 7692 NamedDecl *Target = Orig; 7693 if (isa<UsingShadowDecl>(Target)) 7694 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 7695 7696 // If the target happens to be one of the previous declarations, we 7697 // don't have a conflict. 7698 // 7699 // FIXME: but we might be increasing its access, in which case we 7700 // should redeclare it. 7701 NamedDecl *NonTag = nullptr, *Tag = nullptr; 7702 bool FoundEquivalentDecl = false; 7703 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 7704 I != E; ++I) { 7705 NamedDecl *D = (*I)->getUnderlyingDecl(); 7706 if (IsEquivalentForUsingDecl(Context, D, Target)) { 7707 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 7708 PrevShadow = Shadow; 7709 FoundEquivalentDecl = true; 7710 } 7711 7712 (isa<TagDecl>(D) ? Tag : NonTag) = D; 7713 } 7714 7715 if (FoundEquivalentDecl) 7716 return false; 7717 7718 if (FunctionDecl *FD = Target->getAsFunction()) { 7719 NamedDecl *OldDecl = nullptr; 7720 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 7721 /*IsForUsingDecl*/ true)) { 7722 case Ovl_Overload: 7723 return false; 7724 7725 case Ovl_NonFunction: 7726 Diag(Using->getLocation(), diag::err_using_decl_conflict); 7727 break; 7728 7729 // We found a decl with the exact signature. 7730 case Ovl_Match: 7731 // If we're in a record, we want to hide the target, so we 7732 // return true (without a diagnostic) to tell the caller not to 7733 // build a shadow decl. 7734 if (CurContext->isRecord()) 7735 return true; 7736 7737 // If we're not in a record, this is an error. 7738 Diag(Using->getLocation(), diag::err_using_decl_conflict); 7739 break; 7740 } 7741 7742 Diag(Target->getLocation(), diag::note_using_decl_target); 7743 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 7744 return true; 7745 } 7746 7747 // Target is not a function. 7748 7749 if (isa<TagDecl>(Target)) { 7750 // No conflict between a tag and a non-tag. 7751 if (!Tag) return false; 7752 7753 Diag(Using->getLocation(), diag::err_using_decl_conflict); 7754 Diag(Target->getLocation(), diag::note_using_decl_target); 7755 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 7756 return true; 7757 } 7758 7759 // No conflict between a tag and a non-tag. 7760 if (!NonTag) return false; 7761 7762 Diag(Using->getLocation(), diag::err_using_decl_conflict); 7763 Diag(Target->getLocation(), diag::note_using_decl_target); 7764 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 7765 return true; 7766 } 7767 7768 /// Builds a shadow declaration corresponding to a 'using' declaration. 7769 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, 7770 UsingDecl *UD, 7771 NamedDecl *Orig, 7772 UsingShadowDecl *PrevDecl) { 7773 7774 // If we resolved to another shadow declaration, just coalesce them. 7775 NamedDecl *Target = Orig; 7776 if (isa<UsingShadowDecl>(Target)) { 7777 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 7778 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 7779 } 7780 7781 UsingShadowDecl *Shadow 7782 = UsingShadowDecl::Create(Context, CurContext, 7783 UD->getLocation(), UD, Target); 7784 UD->addShadowDecl(Shadow); 7785 7786 Shadow->setAccess(UD->getAccess()); 7787 if (Orig->isInvalidDecl() || UD->isInvalidDecl()) 7788 Shadow->setInvalidDecl(); 7789 7790 Shadow->setPreviousDecl(PrevDecl); 7791 7792 if (S) 7793 PushOnScopeChains(Shadow, S); 7794 else 7795 CurContext->addDecl(Shadow); 7796 7797 7798 return Shadow; 7799 } 7800 7801 /// Hides a using shadow declaration. This is required by the current 7802 /// using-decl implementation when a resolvable using declaration in a 7803 /// class is followed by a declaration which would hide or override 7804 /// one or more of the using decl's targets; for example: 7805 /// 7806 /// struct Base { void foo(int); }; 7807 /// struct Derived : Base { 7808 /// using Base::foo; 7809 /// void foo(int); 7810 /// }; 7811 /// 7812 /// The governing language is C++03 [namespace.udecl]p12: 7813 /// 7814 /// When a using-declaration brings names from a base class into a 7815 /// derived class scope, member functions in the derived class 7816 /// override and/or hide member functions with the same name and 7817 /// parameter types in a base class (rather than conflicting). 7818 /// 7819 /// There are two ways to implement this: 7820 /// (1) optimistically create shadow decls when they're not hidden 7821 /// by existing declarations, or 7822 /// (2) don't create any shadow decls (or at least don't make them 7823 /// visible) until we've fully parsed/instantiated the class. 7824 /// The problem with (1) is that we might have to retroactively remove 7825 /// a shadow decl, which requires several O(n) operations because the 7826 /// decl structures are (very reasonably) not designed for removal. 7827 /// (2) avoids this but is very fiddly and phase-dependent. 7828 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 7829 if (Shadow->getDeclName().getNameKind() == 7830 DeclarationName::CXXConversionFunctionName) 7831 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 7832 7833 // Remove it from the DeclContext... 7834 Shadow->getDeclContext()->removeDecl(Shadow); 7835 7836 // ...and the scope, if applicable... 7837 if (S) { 7838 S->RemoveDecl(Shadow); 7839 IdResolver.RemoveDecl(Shadow); 7840 } 7841 7842 // ...and the using decl. 7843 Shadow->getUsingDecl()->removeShadowDecl(Shadow); 7844 7845 // TODO: complain somehow if Shadow was used. It shouldn't 7846 // be possible for this to happen, because...? 7847 } 7848 7849 /// Find the base specifier for a base class with the given type. 7850 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 7851 QualType DesiredBase, 7852 bool &AnyDependentBases) { 7853 // Check whether the named type is a direct base class. 7854 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified(); 7855 for (auto &Base : Derived->bases()) { 7856 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 7857 if (CanonicalDesiredBase == BaseType) 7858 return &Base; 7859 if (BaseType->isDependentType()) 7860 AnyDependentBases = true; 7861 } 7862 return nullptr; 7863 } 7864 7865 namespace { 7866 class UsingValidatorCCC : public CorrectionCandidateCallback { 7867 public: 7868 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 7869 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 7870 : HasTypenameKeyword(HasTypenameKeyword), 7871 IsInstantiation(IsInstantiation), OldNNS(NNS), 7872 RequireMemberOf(RequireMemberOf) {} 7873 7874 bool ValidateCandidate(const TypoCorrection &Candidate) override { 7875 NamedDecl *ND = Candidate.getCorrectionDecl(); 7876 7877 // Keywords are not valid here. 7878 if (!ND || isa<NamespaceDecl>(ND)) 7879 return false; 7880 7881 // Completely unqualified names are invalid for a 'using' declaration. 7882 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 7883 return false; 7884 7885 if (RequireMemberOf) { 7886 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 7887 if (FoundRecord && FoundRecord->isInjectedClassName()) { 7888 // No-one ever wants a using-declaration to name an injected-class-name 7889 // of a base class, unless they're declaring an inheriting constructor. 7890 ASTContext &Ctx = ND->getASTContext(); 7891 if (!Ctx.getLangOpts().CPlusPlus11) 7892 return false; 7893 QualType FoundType = Ctx.getRecordType(FoundRecord); 7894 7895 // Check that the injected-class-name is named as a member of its own 7896 // type; we don't want to suggest 'using Derived::Base;', since that 7897 // means something else. 7898 NestedNameSpecifier *Specifier = 7899 Candidate.WillReplaceSpecifier() 7900 ? Candidate.getCorrectionSpecifier() 7901 : OldNNS; 7902 if (!Specifier->getAsType() || 7903 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 7904 return false; 7905 7906 // Check that this inheriting constructor declaration actually names a 7907 // direct base class of the current class. 7908 bool AnyDependentBases = false; 7909 if (!findDirectBaseWithType(RequireMemberOf, 7910 Ctx.getRecordType(FoundRecord), 7911 AnyDependentBases) && 7912 !AnyDependentBases) 7913 return false; 7914 } else { 7915 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 7916 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 7917 return false; 7918 7919 // FIXME: Check that the base class member is accessible? 7920 } 7921 } 7922 7923 if (isa<TypeDecl>(ND)) 7924 return HasTypenameKeyword || !IsInstantiation; 7925 7926 return !HasTypenameKeyword; 7927 } 7928 7929 private: 7930 bool HasTypenameKeyword; 7931 bool IsInstantiation; 7932 NestedNameSpecifier *OldNNS; 7933 CXXRecordDecl *RequireMemberOf; 7934 }; 7935 } // end anonymous namespace 7936 7937 /// Builds a using declaration. 7938 /// 7939 /// \param IsInstantiation - Whether this call arises from an 7940 /// instantiation of an unresolved using declaration. We treat 7941 /// the lookup differently for these declarations. 7942 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, 7943 SourceLocation UsingLoc, 7944 CXXScopeSpec &SS, 7945 DeclarationNameInfo NameInfo, 7946 AttributeList *AttrList, 7947 bool IsInstantiation, 7948 bool HasTypenameKeyword, 7949 SourceLocation TypenameLoc) { 7950 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 7951 SourceLocation IdentLoc = NameInfo.getLoc(); 7952 assert(IdentLoc.isValid() && "Invalid TargetName location."); 7953 7954 // FIXME: We ignore attributes for now. 7955 7956 if (SS.isEmpty()) { 7957 Diag(IdentLoc, diag::err_using_requires_qualname); 7958 return nullptr; 7959 } 7960 7961 // Do the redeclaration lookup in the current scope. 7962 LookupResult Previous(*this, NameInfo, LookupUsingDeclName, 7963 ForRedeclaration); 7964 Previous.setHideTags(false); 7965 if (S) { 7966 LookupName(Previous, S); 7967 7968 // It is really dumb that we have to do this. 7969 LookupResult::Filter F = Previous.makeFilter(); 7970 while (F.hasNext()) { 7971 NamedDecl *D = F.next(); 7972 if (!isDeclInScope(D, CurContext, S)) 7973 F.erase(); 7974 // If we found a local extern declaration that's not ordinarily visible, 7975 // and this declaration is being added to a non-block scope, ignore it. 7976 // We're only checking for scope conflicts here, not also for violations 7977 // of the linkage rules. 7978 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 7979 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 7980 F.erase(); 7981 } 7982 F.done(); 7983 } else { 7984 assert(IsInstantiation && "no scope in non-instantiation"); 7985 assert(CurContext->isRecord() && "scope not record in instantiation"); 7986 LookupQualifiedName(Previous, CurContext); 7987 } 7988 7989 // Check for invalid redeclarations. 7990 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 7991 SS, IdentLoc, Previous)) 7992 return nullptr; 7993 7994 // Check for bad qualifiers. 7995 if (CheckUsingDeclQualifier(UsingLoc, SS, NameInfo, IdentLoc)) 7996 return nullptr; 7997 7998 DeclContext *LookupContext = computeDeclContext(SS); 7999 NamedDecl *D; 8000 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 8001 if (!LookupContext) { 8002 if (HasTypenameKeyword) { 8003 // FIXME: not all declaration name kinds are legal here 8004 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 8005 UsingLoc, TypenameLoc, 8006 QualifierLoc, 8007 IdentLoc, NameInfo.getName()); 8008 } else { 8009 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 8010 QualifierLoc, NameInfo); 8011 } 8012 D->setAccess(AS); 8013 CurContext->addDecl(D); 8014 return D; 8015 } 8016 8017 auto Build = [&](bool Invalid) { 8018 UsingDecl *UD = 8019 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo, 8020 HasTypenameKeyword); 8021 UD->setAccess(AS); 8022 CurContext->addDecl(UD); 8023 UD->setInvalidDecl(Invalid); 8024 return UD; 8025 }; 8026 auto BuildInvalid = [&]{ return Build(true); }; 8027 auto BuildValid = [&]{ return Build(false); }; 8028 8029 if (RequireCompleteDeclContext(SS, LookupContext)) 8030 return BuildInvalid(); 8031 8032 // The normal rules do not apply to inheriting constructor declarations. 8033 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) { 8034 UsingDecl *UD = BuildValid(); 8035 CheckInheritingConstructorUsingDecl(UD); 8036 return UD; 8037 } 8038 8039 // Otherwise, look up the target name. 8040 8041 LookupResult R(*this, NameInfo, LookupOrdinaryName); 8042 8043 // Unlike most lookups, we don't always want to hide tag 8044 // declarations: tag names are visible through the using declaration 8045 // even if hidden by ordinary names, *except* in a dependent context 8046 // where it's important for the sanity of two-phase lookup. 8047 if (!IsInstantiation) 8048 R.setHideTags(false); 8049 8050 // For the purposes of this lookup, we have a base object type 8051 // equal to that of the current context. 8052 if (CurContext->isRecord()) { 8053 R.setBaseObjectType( 8054 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 8055 } 8056 8057 LookupQualifiedName(R, LookupContext); 8058 8059 // Try to correct typos if possible. 8060 if (R.empty()) { 8061 if (TypoCorrection Corrected = CorrectTypo( 8062 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 8063 llvm::make_unique<UsingValidatorCCC>( 8064 HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 8065 dyn_cast<CXXRecordDecl>(CurContext)), 8066 CTK_ErrorRecovery)) { 8067 // We reject any correction for which ND would be NULL. 8068 NamedDecl *ND = Corrected.getCorrectionDecl(); 8069 8070 // We reject candidates where DroppedSpecifier == true, hence the 8071 // literal '0' below. 8072 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 8073 << NameInfo.getName() << LookupContext << 0 8074 << SS.getRange()); 8075 8076 // If we corrected to an inheriting constructor, handle it as one. 8077 auto *RD = dyn_cast<CXXRecordDecl>(ND); 8078 if (RD && RD->isInjectedClassName()) { 8079 // Fix up the information we'll use to build the using declaration. 8080 if (Corrected.WillReplaceSpecifier()) { 8081 NestedNameSpecifierLocBuilder Builder; 8082 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 8083 QualifierLoc.getSourceRange()); 8084 QualifierLoc = Builder.getWithLocInContext(Context); 8085 } 8086 8087 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 8088 Context.getCanonicalType(Context.getRecordType(RD)))); 8089 NameInfo.setNamedTypeInfo(nullptr); 8090 8091 // Build it and process it as an inheriting constructor. 8092 UsingDecl *UD = BuildValid(); 8093 CheckInheritingConstructorUsingDecl(UD); 8094 return UD; 8095 } 8096 8097 // FIXME: Pick up all the declarations if we found an overloaded function. 8098 R.setLookupName(Corrected.getCorrection()); 8099 R.addDecl(ND); 8100 } else { 8101 Diag(IdentLoc, diag::err_no_member) 8102 << NameInfo.getName() << LookupContext << SS.getRange(); 8103 return BuildInvalid(); 8104 } 8105 } 8106 8107 if (R.isAmbiguous()) 8108 return BuildInvalid(); 8109 8110 if (HasTypenameKeyword) { 8111 // If we asked for a typename and got a non-type decl, error out. 8112 if (!R.getAsSingle<TypeDecl>()) { 8113 Diag(IdentLoc, diag::err_using_typename_non_type); 8114 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 8115 Diag((*I)->getUnderlyingDecl()->getLocation(), 8116 diag::note_using_decl_target); 8117 return BuildInvalid(); 8118 } 8119 } else { 8120 // If we asked for a non-typename and we got a type, error out, 8121 // but only if this is an instantiation of an unresolved using 8122 // decl. Otherwise just silently find the type name. 8123 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 8124 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 8125 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 8126 return BuildInvalid(); 8127 } 8128 } 8129 8130 // C++0x N2914 [namespace.udecl]p6: 8131 // A using-declaration shall not name a namespace. 8132 if (R.getAsSingle<NamespaceDecl>()) { 8133 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 8134 << SS.getRange(); 8135 return BuildInvalid(); 8136 } 8137 8138 UsingDecl *UD = BuildValid(); 8139 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 8140 UsingShadowDecl *PrevDecl = nullptr; 8141 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 8142 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 8143 } 8144 8145 return UD; 8146 } 8147 8148 /// Additional checks for a using declaration referring to a constructor name. 8149 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 8150 assert(!UD->hasTypename() && "expecting a constructor name"); 8151 8152 const Type *SourceType = UD->getQualifier()->getAsType(); 8153 assert(SourceType && 8154 "Using decl naming constructor doesn't have type in scope spec."); 8155 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 8156 8157 // Check whether the named type is a direct base class. 8158 bool AnyDependentBases = false; 8159 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 8160 AnyDependentBases); 8161 if (!Base && !AnyDependentBases) { 8162 Diag(UD->getUsingLoc(), 8163 diag::err_using_decl_constructor_not_in_direct_base) 8164 << UD->getNameInfo().getSourceRange() 8165 << QualType(SourceType, 0) << TargetClass; 8166 UD->setInvalidDecl(); 8167 return true; 8168 } 8169 8170 if (Base) 8171 Base->setInheritConstructors(); 8172 8173 return false; 8174 } 8175 8176 /// Checks that the given using declaration is not an invalid 8177 /// redeclaration. Note that this is checking only for the using decl 8178 /// itself, not for any ill-formedness among the UsingShadowDecls. 8179 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 8180 bool HasTypenameKeyword, 8181 const CXXScopeSpec &SS, 8182 SourceLocation NameLoc, 8183 const LookupResult &Prev) { 8184 // C++03 [namespace.udecl]p8: 8185 // C++0x [namespace.udecl]p10: 8186 // A using-declaration is a declaration and can therefore be used 8187 // repeatedly where (and only where) multiple declarations are 8188 // allowed. 8189 // 8190 // That's in non-member contexts. 8191 if (!CurContext->getRedeclContext()->isRecord()) 8192 return false; 8193 8194 NestedNameSpecifier *Qual = SS.getScopeRep(); 8195 8196 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 8197 NamedDecl *D = *I; 8198 8199 bool DTypename; 8200 NestedNameSpecifier *DQual; 8201 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 8202 DTypename = UD->hasTypename(); 8203 DQual = UD->getQualifier(); 8204 } else if (UnresolvedUsingValueDecl *UD 8205 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 8206 DTypename = false; 8207 DQual = UD->getQualifier(); 8208 } else if (UnresolvedUsingTypenameDecl *UD 8209 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 8210 DTypename = true; 8211 DQual = UD->getQualifier(); 8212 } else continue; 8213 8214 // using decls differ if one says 'typename' and the other doesn't. 8215 // FIXME: non-dependent using decls? 8216 if (HasTypenameKeyword != DTypename) continue; 8217 8218 // using decls differ if they name different scopes (but note that 8219 // template instantiation can cause this check to trigger when it 8220 // didn't before instantiation). 8221 if (Context.getCanonicalNestedNameSpecifier(Qual) != 8222 Context.getCanonicalNestedNameSpecifier(DQual)) 8223 continue; 8224 8225 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 8226 Diag(D->getLocation(), diag::note_using_decl) << 1; 8227 return true; 8228 } 8229 8230 return false; 8231 } 8232 8233 8234 /// Checks that the given nested-name qualifier used in a using decl 8235 /// in the current context is appropriately related to the current 8236 /// scope. If an error is found, diagnoses it and returns true. 8237 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, 8238 const CXXScopeSpec &SS, 8239 const DeclarationNameInfo &NameInfo, 8240 SourceLocation NameLoc) { 8241 DeclContext *NamedContext = computeDeclContext(SS); 8242 8243 if (!CurContext->isRecord()) { 8244 // C++03 [namespace.udecl]p3: 8245 // C++0x [namespace.udecl]p8: 8246 // A using-declaration for a class member shall be a member-declaration. 8247 8248 // If we weren't able to compute a valid scope, it must be a 8249 // dependent class scope. 8250 if (!NamedContext || NamedContext->isRecord()) { 8251 auto *RD = dyn_cast_or_null<CXXRecordDecl>(NamedContext); 8252 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD)) 8253 RD = nullptr; 8254 8255 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) 8256 << SS.getRange(); 8257 8258 // If we have a complete, non-dependent source type, try to suggest a 8259 // way to get the same effect. 8260 if (!RD) 8261 return true; 8262 8263 // Find what this using-declaration was referring to. 8264 LookupResult R(*this, NameInfo, LookupOrdinaryName); 8265 R.setHideTags(false); 8266 R.suppressDiagnostics(); 8267 LookupQualifiedName(R, RD); 8268 8269 if (R.getAsSingle<TypeDecl>()) { 8270 if (getLangOpts().CPlusPlus11) { 8271 // Convert 'using X::Y;' to 'using Y = X::Y;'. 8272 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 8273 << 0 // alias declaration 8274 << FixItHint::CreateInsertion(SS.getBeginLoc(), 8275 NameInfo.getName().getAsString() + 8276 " = "); 8277 } else { 8278 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 8279 SourceLocation InsertLoc = 8280 PP.getLocForEndOfToken(NameInfo.getLocEnd()); 8281 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 8282 << 1 // typedef declaration 8283 << FixItHint::CreateReplacement(UsingLoc, "typedef") 8284 << FixItHint::CreateInsertion( 8285 InsertLoc, " " + NameInfo.getName().getAsString()); 8286 } 8287 } else if (R.getAsSingle<VarDecl>()) { 8288 // Don't provide a fixit outside C++11 mode; we don't want to suggest 8289 // repeating the type of the static data member here. 8290 FixItHint FixIt; 8291 if (getLangOpts().CPlusPlus11) { 8292 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 8293 FixIt = FixItHint::CreateReplacement( 8294 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 8295 } 8296 8297 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 8298 << 2 // reference declaration 8299 << FixIt; 8300 } 8301 return true; 8302 } 8303 8304 // Otherwise, everything is known to be fine. 8305 return false; 8306 } 8307 8308 // The current scope is a record. 8309 8310 // If the named context is dependent, we can't decide much. 8311 if (!NamedContext) { 8312 // FIXME: in C++0x, we can diagnose if we can prove that the 8313 // nested-name-specifier does not refer to a base class, which is 8314 // still possible in some cases. 8315 8316 // Otherwise we have to conservatively report that things might be 8317 // okay. 8318 return false; 8319 } 8320 8321 if (!NamedContext->isRecord()) { 8322 // Ideally this would point at the last name in the specifier, 8323 // but we don't have that level of source info. 8324 Diag(SS.getRange().getBegin(), 8325 diag::err_using_decl_nested_name_specifier_is_not_class) 8326 << SS.getScopeRep() << SS.getRange(); 8327 return true; 8328 } 8329 8330 if (!NamedContext->isDependentContext() && 8331 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 8332 return true; 8333 8334 if (getLangOpts().CPlusPlus11) { 8335 // C++0x [namespace.udecl]p3: 8336 // In a using-declaration used as a member-declaration, the 8337 // nested-name-specifier shall name a base class of the class 8338 // being defined. 8339 8340 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 8341 cast<CXXRecordDecl>(NamedContext))) { 8342 if (CurContext == NamedContext) { 8343 Diag(NameLoc, 8344 diag::err_using_decl_nested_name_specifier_is_current_class) 8345 << SS.getRange(); 8346 return true; 8347 } 8348 8349 Diag(SS.getRange().getBegin(), 8350 diag::err_using_decl_nested_name_specifier_is_not_base_class) 8351 << SS.getScopeRep() 8352 << cast<CXXRecordDecl>(CurContext) 8353 << SS.getRange(); 8354 return true; 8355 } 8356 8357 return false; 8358 } 8359 8360 // C++03 [namespace.udecl]p4: 8361 // A using-declaration used as a member-declaration shall refer 8362 // to a member of a base class of the class being defined [etc.]. 8363 8364 // Salient point: SS doesn't have to name a base class as long as 8365 // lookup only finds members from base classes. Therefore we can 8366 // diagnose here only if we can prove that that can't happen, 8367 // i.e. if the class hierarchies provably don't intersect. 8368 8369 // TODO: it would be nice if "definitely valid" results were cached 8370 // in the UsingDecl and UsingShadowDecl so that these checks didn't 8371 // need to be repeated. 8372 8373 struct UserData { 8374 llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases; 8375 8376 static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { 8377 UserData *Data = reinterpret_cast<UserData*>(OpaqueData); 8378 Data->Bases.insert(Base); 8379 return true; 8380 } 8381 8382 bool hasDependentBases(const CXXRecordDecl *Class) { 8383 return !Class->forallBases(collect, this); 8384 } 8385 8386 /// Returns true if the base is dependent or is one of the 8387 /// accumulated base classes. 8388 static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { 8389 UserData *Data = reinterpret_cast<UserData*>(OpaqueData); 8390 return !Data->Bases.count(Base); 8391 } 8392 8393 bool mightShareBases(const CXXRecordDecl *Class) { 8394 return Bases.count(Class) || !Class->forallBases(doesNotContain, this); 8395 } 8396 }; 8397 8398 UserData Data; 8399 8400 // Returns false if we find a dependent base. 8401 if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext))) 8402 return false; 8403 8404 // Returns false if the class has a dependent base or if it or one 8405 // of its bases is present in the base set of the current context. 8406 if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext))) 8407 return false; 8408 8409 Diag(SS.getRange().getBegin(), 8410 diag::err_using_decl_nested_name_specifier_is_not_base_class) 8411 << SS.getScopeRep() 8412 << cast<CXXRecordDecl>(CurContext) 8413 << SS.getRange(); 8414 8415 return true; 8416 } 8417 8418 Decl *Sema::ActOnAliasDeclaration(Scope *S, 8419 AccessSpecifier AS, 8420 MultiTemplateParamsArg TemplateParamLists, 8421 SourceLocation UsingLoc, 8422 UnqualifiedId &Name, 8423 AttributeList *AttrList, 8424 TypeResult Type) { 8425 // Skip up to the relevant declaration scope. 8426 while (S->getFlags() & Scope::TemplateParamScope) 8427 S = S->getParent(); 8428 assert((S->getFlags() & Scope::DeclScope) && 8429 "got alias-declaration outside of declaration scope"); 8430 8431 if (Type.isInvalid()) 8432 return nullptr; 8433 8434 bool Invalid = false; 8435 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 8436 TypeSourceInfo *TInfo = nullptr; 8437 GetTypeFromParser(Type.get(), &TInfo); 8438 8439 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 8440 return nullptr; 8441 8442 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 8443 UPPC_DeclarationType)) { 8444 Invalid = true; 8445 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 8446 TInfo->getTypeLoc().getBeginLoc()); 8447 } 8448 8449 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration); 8450 LookupName(Previous, S); 8451 8452 // Warn about shadowing the name of a template parameter. 8453 if (Previous.isSingleResult() && 8454 Previous.getFoundDecl()->isTemplateParameter()) { 8455 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 8456 Previous.clear(); 8457 } 8458 8459 assert(Name.Kind == UnqualifiedId::IK_Identifier && 8460 "name in alias declaration must be an identifier"); 8461 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 8462 Name.StartLocation, 8463 Name.Identifier, TInfo); 8464 8465 NewTD->setAccess(AS); 8466 8467 if (Invalid) 8468 NewTD->setInvalidDecl(); 8469 8470 ProcessDeclAttributeList(S, NewTD, AttrList); 8471 8472 CheckTypedefForVariablyModifiedType(S, NewTD); 8473 Invalid |= NewTD->isInvalidDecl(); 8474 8475 bool Redeclaration = false; 8476 8477 NamedDecl *NewND; 8478 if (TemplateParamLists.size()) { 8479 TypeAliasTemplateDecl *OldDecl = nullptr; 8480 TemplateParameterList *OldTemplateParams = nullptr; 8481 8482 if (TemplateParamLists.size() != 1) { 8483 Diag(UsingLoc, diag::err_alias_template_extra_headers) 8484 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 8485 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 8486 } 8487 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 8488 8489 // Only consider previous declarations in the same scope. 8490 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 8491 /*ExplicitInstantiationOrSpecialization*/false); 8492 if (!Previous.empty()) { 8493 Redeclaration = true; 8494 8495 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 8496 if (!OldDecl && !Invalid) { 8497 Diag(UsingLoc, diag::err_redefinition_different_kind) 8498 << Name.Identifier; 8499 8500 NamedDecl *OldD = Previous.getRepresentativeDecl(); 8501 if (OldD->getLocation().isValid()) 8502 Diag(OldD->getLocation(), diag::note_previous_definition); 8503 8504 Invalid = true; 8505 } 8506 8507 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 8508 if (TemplateParameterListsAreEqual(TemplateParams, 8509 OldDecl->getTemplateParameters(), 8510 /*Complain=*/true, 8511 TPL_TemplateMatch)) 8512 OldTemplateParams = OldDecl->getTemplateParameters(); 8513 else 8514 Invalid = true; 8515 8516 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 8517 if (!Invalid && 8518 !Context.hasSameType(OldTD->getUnderlyingType(), 8519 NewTD->getUnderlyingType())) { 8520 // FIXME: The C++0x standard does not clearly say this is ill-formed, 8521 // but we can't reasonably accept it. 8522 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 8523 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 8524 if (OldTD->getLocation().isValid()) 8525 Diag(OldTD->getLocation(), diag::note_previous_definition); 8526 Invalid = true; 8527 } 8528 } 8529 } 8530 8531 // Merge any previous default template arguments into our parameters, 8532 // and check the parameter list. 8533 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 8534 TPC_TypeAliasTemplate)) 8535 return nullptr; 8536 8537 TypeAliasTemplateDecl *NewDecl = 8538 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 8539 Name.Identifier, TemplateParams, 8540 NewTD); 8541 NewTD->setDescribedAliasTemplate(NewDecl); 8542 8543 NewDecl->setAccess(AS); 8544 8545 if (Invalid) 8546 NewDecl->setInvalidDecl(); 8547 else if (OldDecl) 8548 NewDecl->setPreviousDecl(OldDecl); 8549 8550 NewND = NewDecl; 8551 } else { 8552 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 8553 NewND = NewTD; 8554 } 8555 8556 if (!Redeclaration) 8557 PushOnScopeChains(NewND, S); 8558 8559 ActOnDocumentableDecl(NewND); 8560 return NewND; 8561 } 8562 8563 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 8564 SourceLocation AliasLoc, 8565 IdentifierInfo *Alias, CXXScopeSpec &SS, 8566 SourceLocation IdentLoc, 8567 IdentifierInfo *Ident) { 8568 8569 // Lookup the namespace name. 8570 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 8571 LookupParsedName(R, S, &SS); 8572 8573 if (R.isAmbiguous()) 8574 return nullptr; 8575 8576 if (R.empty()) { 8577 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 8578 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 8579 return nullptr; 8580 } 8581 } 8582 assert(!R.isAmbiguous() && !R.empty()); 8583 8584 // Check if we have a previous declaration with the same name. 8585 NamedDecl *PrevDecl = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName, 8586 ForRedeclaration); 8587 if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S)) 8588 PrevDecl = nullptr; 8589 8590 NamedDecl *ND = R.getFoundDecl(); 8591 8592 if (PrevDecl) { 8593 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 8594 // We already have an alias with the same name that points to the same 8595 // namespace; check that it matches. 8596 if (!AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 8597 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 8598 << Alias; 8599 Diag(PrevDecl->getLocation(), diag::note_previous_namespace_alias) 8600 << AD->getNamespace(); 8601 return nullptr; 8602 } 8603 } else { 8604 unsigned DiagID = isa<NamespaceDecl>(PrevDecl) 8605 ? diag::err_redefinition 8606 : diag::err_redefinition_different_kind; 8607 Diag(AliasLoc, DiagID) << Alias; 8608 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 8609 return nullptr; 8610 } 8611 } 8612 8613 // The use of a nested name specifier may trigger deprecation warnings. 8614 DiagnoseUseOfDecl(ND, IdentLoc); 8615 8616 NamespaceAliasDecl *AliasDecl = 8617 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 8618 Alias, SS.getWithLocInContext(Context), 8619 IdentLoc, ND); 8620 if (PrevDecl) 8621 AliasDecl->setPreviousDecl(cast<NamespaceAliasDecl>(PrevDecl)); 8622 8623 PushOnScopeChains(AliasDecl, S); 8624 return AliasDecl; 8625 } 8626 8627 Sema::ImplicitExceptionSpecification 8628 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc, 8629 CXXMethodDecl *MD) { 8630 CXXRecordDecl *ClassDecl = MD->getParent(); 8631 8632 // C++ [except.spec]p14: 8633 // An implicitly declared special member function (Clause 12) shall have an 8634 // exception-specification. [...] 8635 ImplicitExceptionSpecification ExceptSpec(*this); 8636 if (ClassDecl->isInvalidDecl()) 8637 return ExceptSpec; 8638 8639 // Direct base-class constructors. 8640 for (const auto &B : ClassDecl->bases()) { 8641 if (B.isVirtual()) // Handled below. 8642 continue; 8643 8644 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) { 8645 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 8646 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl); 8647 // If this is a deleted function, add it anyway. This might be conformant 8648 // with the standard. This might not. I'm not sure. It might not matter. 8649 if (Constructor) 8650 ExceptSpec.CalledDecl(B.getLocStart(), Constructor); 8651 } 8652 } 8653 8654 // Virtual base-class constructors. 8655 for (const auto &B : ClassDecl->vbases()) { 8656 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) { 8657 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 8658 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl); 8659 // If this is a deleted function, add it anyway. This might be conformant 8660 // with the standard. This might not. I'm not sure. It might not matter. 8661 if (Constructor) 8662 ExceptSpec.CalledDecl(B.getLocStart(), Constructor); 8663 } 8664 } 8665 8666 // Field constructors. 8667 for (const auto *F : ClassDecl->fields()) { 8668 if (F->hasInClassInitializer()) { 8669 if (Expr *E = F->getInClassInitializer()) 8670 ExceptSpec.CalledExpr(E); 8671 } else if (const RecordType *RecordTy 8672 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) { 8673 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 8674 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl); 8675 // If this is a deleted function, add it anyway. This might be conformant 8676 // with the standard. This might not. I'm not sure. It might not matter. 8677 // In particular, the problem is that this function never gets called. It 8678 // might just be ill-formed because this function attempts to refer to 8679 // a deleted function here. 8680 if (Constructor) 8681 ExceptSpec.CalledDecl(F->getLocation(), Constructor); 8682 } 8683 } 8684 8685 return ExceptSpec; 8686 } 8687 8688 Sema::ImplicitExceptionSpecification 8689 Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) { 8690 CXXRecordDecl *ClassDecl = CD->getParent(); 8691 8692 // C++ [except.spec]p14: 8693 // An inheriting constructor [...] shall have an exception-specification. [...] 8694 ImplicitExceptionSpecification ExceptSpec(*this); 8695 if (ClassDecl->isInvalidDecl()) 8696 return ExceptSpec; 8697 8698 // Inherited constructor. 8699 const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor(); 8700 const CXXRecordDecl *InheritedDecl = InheritedCD->getParent(); 8701 // FIXME: Copying or moving the parameters could add extra exceptions to the 8702 // set, as could the default arguments for the inherited constructor. This 8703 // will be addressed when we implement the resolution of core issue 1351. 8704 ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD); 8705 8706 // Direct base-class constructors. 8707 for (const auto &B : ClassDecl->bases()) { 8708 if (B.isVirtual()) // Handled below. 8709 continue; 8710 8711 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) { 8712 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 8713 if (BaseClassDecl == InheritedDecl) 8714 continue; 8715 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl); 8716 if (Constructor) 8717 ExceptSpec.CalledDecl(B.getLocStart(), Constructor); 8718 } 8719 } 8720 8721 // Virtual base-class constructors. 8722 for (const auto &B : ClassDecl->vbases()) { 8723 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) { 8724 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 8725 if (BaseClassDecl == InheritedDecl) 8726 continue; 8727 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl); 8728 if (Constructor) 8729 ExceptSpec.CalledDecl(B.getLocStart(), Constructor); 8730 } 8731 } 8732 8733 // Field constructors. 8734 for (const auto *F : ClassDecl->fields()) { 8735 if (F->hasInClassInitializer()) { 8736 if (Expr *E = F->getInClassInitializer()) 8737 ExceptSpec.CalledExpr(E); 8738 } else if (const RecordType *RecordTy 8739 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) { 8740 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 8741 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl); 8742 if (Constructor) 8743 ExceptSpec.CalledDecl(F->getLocation(), Constructor); 8744 } 8745 } 8746 8747 return ExceptSpec; 8748 } 8749 8750 namespace { 8751 /// RAII object to register a special member as being currently declared. 8752 struct DeclaringSpecialMember { 8753 Sema &S; 8754 Sema::SpecialMemberDecl D; 8755 bool WasAlreadyBeingDeclared; 8756 8757 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 8758 : S(S), D(RD, CSM) { 8759 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 8760 if (WasAlreadyBeingDeclared) 8761 // This almost never happens, but if it does, ensure that our cache 8762 // doesn't contain a stale result. 8763 S.SpecialMemberCache.clear(); 8764 8765 // FIXME: Register a note to be produced if we encounter an error while 8766 // declaring the special member. 8767 } 8768 ~DeclaringSpecialMember() { 8769 if (!WasAlreadyBeingDeclared) 8770 S.SpecialMembersBeingDeclared.erase(D); 8771 } 8772 8773 /// \brief Are we already trying to declare this special member? 8774 bool isAlreadyBeingDeclared() const { 8775 return WasAlreadyBeingDeclared; 8776 } 8777 }; 8778 } 8779 8780 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 8781 CXXRecordDecl *ClassDecl) { 8782 // C++ [class.ctor]p5: 8783 // A default constructor for a class X is a constructor of class X 8784 // that can be called without an argument. If there is no 8785 // user-declared constructor for class X, a default constructor is 8786 // implicitly declared. An implicitly-declared default constructor 8787 // is an inline public member of its class. 8788 assert(ClassDecl->needsImplicitDefaultConstructor() && 8789 "Should not build implicit default constructor!"); 8790 8791 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 8792 if (DSM.isAlreadyBeingDeclared()) 8793 return nullptr; 8794 8795 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 8796 CXXDefaultConstructor, 8797 false); 8798 8799 // Create the actual constructor declaration. 8800 CanQualType ClassType 8801 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 8802 SourceLocation ClassLoc = ClassDecl->getLocation(); 8803 DeclarationName Name 8804 = Context.DeclarationNames.getCXXConstructorName(ClassType); 8805 DeclarationNameInfo NameInfo(Name, ClassLoc); 8806 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 8807 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), 8808 /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true, 8809 /*isImplicitlyDeclared=*/true, Constexpr); 8810 DefaultCon->setAccess(AS_public); 8811 DefaultCon->setDefaulted(); 8812 8813 if (getLangOpts().CUDA) { 8814 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 8815 DefaultCon, 8816 /* ConstRHS */ false, 8817 /* Diagnose */ false); 8818 } 8819 8820 // Build an exception specification pointing back at this constructor. 8821 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon); 8822 DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 8823 8824 // We don't need to use SpecialMemberIsTrivial here; triviality for default 8825 // constructors is easy to compute. 8826 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 8827 8828 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 8829 SetDeclDeleted(DefaultCon, ClassLoc); 8830 8831 // Note that we have declared this constructor. 8832 ++ASTContext::NumImplicitDefaultConstructorsDeclared; 8833 8834 if (Scope *S = getScopeForContext(ClassDecl)) 8835 PushOnScopeChains(DefaultCon, S, false); 8836 ClassDecl->addDecl(DefaultCon); 8837 8838 return DefaultCon; 8839 } 8840 8841 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 8842 CXXConstructorDecl *Constructor) { 8843 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 8844 !Constructor->doesThisDeclarationHaveABody() && 8845 !Constructor->isDeleted()) && 8846 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 8847 8848 CXXRecordDecl *ClassDecl = Constructor->getParent(); 8849 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 8850 8851 SynthesizedFunctionScope Scope(*this, Constructor); 8852 DiagnosticErrorTrap Trap(Diags); 8853 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) || 8854 Trap.hasErrorOccurred()) { 8855 Diag(CurrentLocation, diag::note_member_synthesized_at) 8856 << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl); 8857 Constructor->setInvalidDecl(); 8858 return; 8859 } 8860 8861 // The exception specification is needed because we are defining the 8862 // function. 8863 ResolveExceptionSpec(CurrentLocation, 8864 Constructor->getType()->castAs<FunctionProtoType>()); 8865 8866 SourceLocation Loc = Constructor->getLocEnd().isValid() 8867 ? Constructor->getLocEnd() 8868 : Constructor->getLocation(); 8869 Constructor->setBody(new (Context) CompoundStmt(Loc)); 8870 8871 Constructor->markUsed(Context); 8872 MarkVTableUsed(CurrentLocation, ClassDecl); 8873 8874 if (ASTMutationListener *L = getASTMutationListener()) { 8875 L->CompletedImplicitDefinition(Constructor); 8876 } 8877 8878 DiagnoseUninitializedFields(*this, Constructor); 8879 } 8880 8881 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 8882 // Perform any delayed checks on exception specifications. 8883 CheckDelayedMemberExceptionSpecs(); 8884 } 8885 8886 namespace { 8887 /// Information on inheriting constructors to declare. 8888 class InheritingConstructorInfo { 8889 public: 8890 InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived) 8891 : SemaRef(SemaRef), Derived(Derived) { 8892 // Mark the constructors that we already have in the derived class. 8893 // 8894 // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...] 8895 // unless there is a user-declared constructor with the same signature in 8896 // the class where the using-declaration appears. 8897 visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived); 8898 } 8899 8900 void inheritAll(CXXRecordDecl *RD) { 8901 visitAll(RD, &InheritingConstructorInfo::inherit); 8902 } 8903 8904 private: 8905 /// Information about an inheriting constructor. 8906 struct InheritingConstructor { 8907 InheritingConstructor() 8908 : DeclaredInDerived(false), BaseCtor(nullptr), DerivedCtor(nullptr) {} 8909 8910 /// If \c true, a constructor with this signature is already declared 8911 /// in the derived class. 8912 bool DeclaredInDerived; 8913 8914 /// The constructor which is inherited. 8915 const CXXConstructorDecl *BaseCtor; 8916 8917 /// The derived constructor we declared. 8918 CXXConstructorDecl *DerivedCtor; 8919 }; 8920 8921 /// Inheriting constructors with a given canonical type. There can be at 8922 /// most one such non-template constructor, and any number of templated 8923 /// constructors. 8924 struct InheritingConstructorsForType { 8925 InheritingConstructor NonTemplate; 8926 SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4> 8927 Templates; 8928 8929 InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) { 8930 if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) { 8931 TemplateParameterList *ParamList = FTD->getTemplateParameters(); 8932 for (unsigned I = 0, N = Templates.size(); I != N; ++I) 8933 if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first, 8934 false, S.TPL_TemplateMatch)) 8935 return Templates[I].second; 8936 Templates.push_back(std::make_pair(ParamList, InheritingConstructor())); 8937 return Templates.back().second; 8938 } 8939 8940 return NonTemplate; 8941 } 8942 }; 8943 8944 /// Get or create the inheriting constructor record for a constructor. 8945 InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor, 8946 QualType CtorType) { 8947 return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()] 8948 .getEntry(SemaRef, Ctor); 8949 } 8950 8951 typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*); 8952 8953 /// Process all constructors for a class. 8954 void visitAll(const CXXRecordDecl *RD, VisitFn Callback) { 8955 for (const auto *Ctor : RD->ctors()) 8956 (this->*Callback)(Ctor); 8957 for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> 8958 I(RD->decls_begin()), E(RD->decls_end()); 8959 I != E; ++I) { 8960 const FunctionDecl *FD = (*I)->getTemplatedDecl(); 8961 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 8962 (this->*Callback)(CD); 8963 } 8964 } 8965 8966 /// Note that a constructor (or constructor template) was declared in Derived. 8967 void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) { 8968 getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true; 8969 } 8970 8971 /// Inherit a single constructor. 8972 void inherit(const CXXConstructorDecl *Ctor) { 8973 const FunctionProtoType *CtorType = 8974 Ctor->getType()->castAs<FunctionProtoType>(); 8975 ArrayRef<QualType> ArgTypes = CtorType->getParamTypes(); 8976 FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo(); 8977 8978 SourceLocation UsingLoc = getUsingLoc(Ctor->getParent()); 8979 8980 // Core issue (no number yet): the ellipsis is always discarded. 8981 if (EPI.Variadic) { 8982 SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis); 8983 SemaRef.Diag(Ctor->getLocation(), 8984 diag::note_using_decl_constructor_ellipsis); 8985 EPI.Variadic = false; 8986 } 8987 8988 // Declare a constructor for each number of parameters. 8989 // 8990 // C++11 [class.inhctor]p1: 8991 // The candidate set of inherited constructors from the class X named in 8992 // the using-declaration consists of [... modulo defects ...] for each 8993 // constructor or constructor template of X, the set of constructors or 8994 // constructor templates that results from omitting any ellipsis parameter 8995 // specification and successively omitting parameters with a default 8996 // argument from the end of the parameter-type-list 8997 unsigned MinParams = minParamsToInherit(Ctor); 8998 unsigned Params = Ctor->getNumParams(); 8999 if (Params >= MinParams) { 9000 do 9001 declareCtor(UsingLoc, Ctor, 9002 SemaRef.Context.getFunctionType( 9003 Ctor->getReturnType(), ArgTypes.slice(0, Params), EPI)); 9004 while (Params > MinParams && 9005 Ctor->getParamDecl(--Params)->hasDefaultArg()); 9006 } 9007 } 9008 9009 /// Find the using-declaration which specified that we should inherit the 9010 /// constructors of \p Base. 9011 SourceLocation getUsingLoc(const CXXRecordDecl *Base) { 9012 // No fancy lookup required; just look for the base constructor name 9013 // directly within the derived class. 9014 ASTContext &Context = SemaRef.Context; 9015 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName( 9016 Context.getCanonicalType(Context.getRecordType(Base))); 9017 DeclContext::lookup_const_result Decls = Derived->lookup(Name); 9018 return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation(); 9019 } 9020 9021 unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) { 9022 // C++11 [class.inhctor]p3: 9023 // [F]or each constructor template in the candidate set of inherited 9024 // constructors, a constructor template is implicitly declared 9025 if (Ctor->getDescribedFunctionTemplate()) 9026 return 0; 9027 9028 // For each non-template constructor in the candidate set of inherited 9029 // constructors other than a constructor having no parameters or a 9030 // copy/move constructor having a single parameter, a constructor is 9031 // implicitly declared [...] 9032 if (Ctor->getNumParams() == 0) 9033 return 1; 9034 if (Ctor->isCopyOrMoveConstructor()) 9035 return 2; 9036 9037 // Per discussion on core reflector, never inherit a constructor which 9038 // would become a default, copy, or move constructor of Derived either. 9039 const ParmVarDecl *PD = Ctor->getParamDecl(0); 9040 const ReferenceType *RT = PD->getType()->getAs<ReferenceType>(); 9041 return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1; 9042 } 9043 9044 /// Declare a single inheriting constructor, inheriting the specified 9045 /// constructor, with the given type. 9046 void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor, 9047 QualType DerivedType) { 9048 InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType); 9049 9050 // C++11 [class.inhctor]p3: 9051 // ... a constructor is implicitly declared with the same constructor 9052 // characteristics unless there is a user-declared constructor with 9053 // the same signature in the class where the using-declaration appears 9054 if (Entry.DeclaredInDerived) 9055 return; 9056 9057 // C++11 [class.inhctor]p7: 9058 // If two using-declarations declare inheriting constructors with the 9059 // same signature, the program is ill-formed 9060 if (Entry.DerivedCtor) { 9061 if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) { 9062 // Only diagnose this once per constructor. 9063 if (Entry.DerivedCtor->isInvalidDecl()) 9064 return; 9065 Entry.DerivedCtor->setInvalidDecl(); 9066 9067 SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict); 9068 SemaRef.Diag(BaseCtor->getLocation(), 9069 diag::note_using_decl_constructor_conflict_current_ctor); 9070 SemaRef.Diag(Entry.BaseCtor->getLocation(), 9071 diag::note_using_decl_constructor_conflict_previous_ctor); 9072 SemaRef.Diag(Entry.DerivedCtor->getLocation(), 9073 diag::note_using_decl_constructor_conflict_previous_using); 9074 } else { 9075 // Core issue (no number): if the same inheriting constructor is 9076 // produced by multiple base class constructors from the same base 9077 // class, the inheriting constructor is defined as deleted. 9078 SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc); 9079 } 9080 9081 return; 9082 } 9083 9084 ASTContext &Context = SemaRef.Context; 9085 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName( 9086 Context.getCanonicalType(Context.getRecordType(Derived))); 9087 DeclarationNameInfo NameInfo(Name, UsingLoc); 9088 9089 TemplateParameterList *TemplateParams = nullptr; 9090 if (const FunctionTemplateDecl *FTD = 9091 BaseCtor->getDescribedFunctionTemplate()) { 9092 TemplateParams = FTD->getTemplateParameters(); 9093 // We're reusing template parameters from a different DeclContext. This 9094 // is questionable at best, but works out because the template depth in 9095 // both places is guaranteed to be 0. 9096 // FIXME: Rebuild the template parameters in the new context, and 9097 // transform the function type to refer to them. 9098 } 9099 9100 // Build type source info pointing at the using-declaration. This is 9101 // required by template instantiation. 9102 TypeSourceInfo *TInfo = 9103 Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc); 9104 FunctionProtoTypeLoc ProtoLoc = 9105 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 9106 9107 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 9108 Context, Derived, UsingLoc, NameInfo, DerivedType, 9109 TInfo, BaseCtor->isExplicit(), /*Inline=*/true, 9110 /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr()); 9111 9112 // Build an unevaluated exception specification for this constructor. 9113 const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>(); 9114 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 9115 EPI.ExceptionSpec.Type = EST_Unevaluated; 9116 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 9117 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 9118 FPT->getParamTypes(), EPI)); 9119 9120 // Build the parameter declarations. 9121 SmallVector<ParmVarDecl *, 16> ParamDecls; 9122 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 9123 TypeSourceInfo *TInfo = 9124 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 9125 ParmVarDecl *PD = ParmVarDecl::Create( 9126 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 9127 FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr); 9128 PD->setScopeInfo(0, I); 9129 PD->setImplicit(); 9130 ParamDecls.push_back(PD); 9131 ProtoLoc.setParam(I, PD); 9132 } 9133 9134 // Set up the new constructor. 9135 DerivedCtor->setAccess(BaseCtor->getAccess()); 9136 DerivedCtor->setParams(ParamDecls); 9137 DerivedCtor->setInheritedConstructor(BaseCtor); 9138 if (BaseCtor->isDeleted()) 9139 SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc); 9140 9141 // If this is a constructor template, build the template declaration. 9142 if (TemplateParams) { 9143 FunctionTemplateDecl *DerivedTemplate = 9144 FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name, 9145 TemplateParams, DerivedCtor); 9146 DerivedTemplate->setAccess(BaseCtor->getAccess()); 9147 DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate); 9148 Derived->addDecl(DerivedTemplate); 9149 } else { 9150 Derived->addDecl(DerivedCtor); 9151 } 9152 9153 Entry.BaseCtor = BaseCtor; 9154 Entry.DerivedCtor = DerivedCtor; 9155 } 9156 9157 Sema &SemaRef; 9158 CXXRecordDecl *Derived; 9159 typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType; 9160 MapType Map; 9161 }; 9162 } 9163 9164 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) { 9165 // Defer declaring the inheriting constructors until the class is 9166 // instantiated. 9167 if (ClassDecl->isDependentContext()) 9168 return; 9169 9170 // Find base classes from which we might inherit constructors. 9171 SmallVector<CXXRecordDecl*, 4> InheritedBases; 9172 for (const auto &BaseIt : ClassDecl->bases()) 9173 if (BaseIt.getInheritConstructors()) 9174 InheritedBases.push_back(BaseIt.getType()->getAsCXXRecordDecl()); 9175 9176 // Go no further if we're not inheriting any constructors. 9177 if (InheritedBases.empty()) 9178 return; 9179 9180 // Declare the inherited constructors. 9181 InheritingConstructorInfo ICI(*this, ClassDecl); 9182 for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I) 9183 ICI.inheritAll(InheritedBases[I]); 9184 } 9185 9186 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 9187 CXXConstructorDecl *Constructor) { 9188 CXXRecordDecl *ClassDecl = Constructor->getParent(); 9189 assert(Constructor->getInheritedConstructor() && 9190 !Constructor->doesThisDeclarationHaveABody() && 9191 !Constructor->isDeleted()); 9192 9193 SynthesizedFunctionScope Scope(*this, Constructor); 9194 DiagnosticErrorTrap Trap(Diags); 9195 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) || 9196 Trap.hasErrorOccurred()) { 9197 Diag(CurrentLocation, diag::note_inhctor_synthesized_at) 9198 << Context.getTagDeclType(ClassDecl); 9199 Constructor->setInvalidDecl(); 9200 return; 9201 } 9202 9203 SourceLocation Loc = Constructor->getLocation(); 9204 Constructor->setBody(new (Context) CompoundStmt(Loc)); 9205 9206 Constructor->markUsed(Context); 9207 MarkVTableUsed(CurrentLocation, ClassDecl); 9208 9209 if (ASTMutationListener *L = getASTMutationListener()) { 9210 L->CompletedImplicitDefinition(Constructor); 9211 } 9212 } 9213 9214 9215 Sema::ImplicitExceptionSpecification 9216 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) { 9217 CXXRecordDecl *ClassDecl = MD->getParent(); 9218 9219 // C++ [except.spec]p14: 9220 // An implicitly declared special member function (Clause 12) shall have 9221 // an exception-specification. 9222 ImplicitExceptionSpecification ExceptSpec(*this); 9223 if (ClassDecl->isInvalidDecl()) 9224 return ExceptSpec; 9225 9226 // Direct base-class destructors. 9227 for (const auto &B : ClassDecl->bases()) { 9228 if (B.isVirtual()) // Handled below. 9229 continue; 9230 9231 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) 9232 ExceptSpec.CalledDecl(B.getLocStart(), 9233 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); 9234 } 9235 9236 // Virtual base-class destructors. 9237 for (const auto &B : ClassDecl->vbases()) { 9238 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) 9239 ExceptSpec.CalledDecl(B.getLocStart(), 9240 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); 9241 } 9242 9243 // Field destructors. 9244 for (const auto *F : ClassDecl->fields()) { 9245 if (const RecordType *RecordTy 9246 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) 9247 ExceptSpec.CalledDecl(F->getLocation(), 9248 LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl()))); 9249 } 9250 9251 return ExceptSpec; 9252 } 9253 9254 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 9255 // C++ [class.dtor]p2: 9256 // If a class has no user-declared destructor, a destructor is 9257 // declared implicitly. An implicitly-declared destructor is an 9258 // inline public member of its class. 9259 assert(ClassDecl->needsImplicitDestructor()); 9260 9261 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 9262 if (DSM.isAlreadyBeingDeclared()) 9263 return nullptr; 9264 9265 // Create the actual destructor declaration. 9266 CanQualType ClassType 9267 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 9268 SourceLocation ClassLoc = ClassDecl->getLocation(); 9269 DeclarationName Name 9270 = Context.DeclarationNames.getCXXDestructorName(ClassType); 9271 DeclarationNameInfo NameInfo(Name, ClassLoc); 9272 CXXDestructorDecl *Destructor 9273 = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, 9274 QualType(), nullptr, /*isInline=*/true, 9275 /*isImplicitlyDeclared=*/true); 9276 Destructor->setAccess(AS_public); 9277 Destructor->setDefaulted(); 9278 9279 if (getLangOpts().CUDA) { 9280 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 9281 Destructor, 9282 /* ConstRHS */ false, 9283 /* Diagnose */ false); 9284 } 9285 9286 // Build an exception specification pointing back at this destructor. 9287 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor); 9288 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 9289 9290 AddOverriddenMethods(ClassDecl, Destructor); 9291 9292 // We don't need to use SpecialMemberIsTrivial here; triviality for 9293 // destructors is easy to compute. 9294 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 9295 9296 if (ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 9297 SetDeclDeleted(Destructor, ClassLoc); 9298 9299 // Note that we have declared this destructor. 9300 ++ASTContext::NumImplicitDestructorsDeclared; 9301 9302 // Introduce this destructor into its scope. 9303 if (Scope *S = getScopeForContext(ClassDecl)) 9304 PushOnScopeChains(Destructor, S, false); 9305 ClassDecl->addDecl(Destructor); 9306 9307 return Destructor; 9308 } 9309 9310 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 9311 CXXDestructorDecl *Destructor) { 9312 assert((Destructor->isDefaulted() && 9313 !Destructor->doesThisDeclarationHaveABody() && 9314 !Destructor->isDeleted()) && 9315 "DefineImplicitDestructor - call it for implicit default dtor"); 9316 CXXRecordDecl *ClassDecl = Destructor->getParent(); 9317 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 9318 9319 if (Destructor->isInvalidDecl()) 9320 return; 9321 9322 SynthesizedFunctionScope Scope(*this, Destructor); 9323 9324 DiagnosticErrorTrap Trap(Diags); 9325 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 9326 Destructor->getParent()); 9327 9328 if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) { 9329 Diag(CurrentLocation, diag::note_member_synthesized_at) 9330 << CXXDestructor << Context.getTagDeclType(ClassDecl); 9331 9332 Destructor->setInvalidDecl(); 9333 return; 9334 } 9335 9336 // The exception specification is needed because we are defining the 9337 // function. 9338 ResolveExceptionSpec(CurrentLocation, 9339 Destructor->getType()->castAs<FunctionProtoType>()); 9340 9341 SourceLocation Loc = Destructor->getLocEnd().isValid() 9342 ? Destructor->getLocEnd() 9343 : Destructor->getLocation(); 9344 Destructor->setBody(new (Context) CompoundStmt(Loc)); 9345 Destructor->markUsed(Context); 9346 MarkVTableUsed(CurrentLocation, ClassDecl); 9347 9348 if (ASTMutationListener *L = getASTMutationListener()) { 9349 L->CompletedImplicitDefinition(Destructor); 9350 } 9351 } 9352 9353 /// \brief Perform any semantic analysis which needs to be delayed until all 9354 /// pending class member declarations have been parsed. 9355 void Sema::ActOnFinishCXXMemberDecls() { 9356 // If the context is an invalid C++ class, just suppress these checks. 9357 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 9358 if (Record->isInvalidDecl()) { 9359 DelayedDefaultedMemberExceptionSpecs.clear(); 9360 DelayedExceptionSpecChecks.clear(); 9361 return; 9362 } 9363 } 9364 } 9365 9366 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl, 9367 CXXDestructorDecl *Destructor) { 9368 assert(getLangOpts().CPlusPlus11 && 9369 "adjusting dtor exception specs was introduced in c++11"); 9370 9371 // C++11 [class.dtor]p3: 9372 // A declaration of a destructor that does not have an exception- 9373 // specification is implicitly considered to have the same exception- 9374 // specification as an implicit declaration. 9375 const FunctionProtoType *DtorType = Destructor->getType()-> 9376 getAs<FunctionProtoType>(); 9377 if (DtorType->hasExceptionSpec()) 9378 return; 9379 9380 // Replace the destructor's type, building off the existing one. Fortunately, 9381 // the only thing of interest in the destructor type is its extended info. 9382 // The return and arguments are fixed. 9383 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 9384 EPI.ExceptionSpec.Type = EST_Unevaluated; 9385 EPI.ExceptionSpec.SourceDecl = Destructor; 9386 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 9387 9388 // FIXME: If the destructor has a body that could throw, and the newly created 9389 // spec doesn't allow exceptions, we should emit a warning, because this 9390 // change in behavior can break conforming C++03 programs at runtime. 9391 // However, we don't have a body or an exception specification yet, so it 9392 // needs to be done somewhere else. 9393 } 9394 9395 namespace { 9396 /// \brief An abstract base class for all helper classes used in building the 9397 // copy/move operators. These classes serve as factory functions and help us 9398 // avoid using the same Expr* in the AST twice. 9399 class ExprBuilder { 9400 ExprBuilder(const ExprBuilder&) LLVM_DELETED_FUNCTION; 9401 ExprBuilder &operator=(const ExprBuilder&) LLVM_DELETED_FUNCTION; 9402 9403 protected: 9404 static Expr *assertNotNull(Expr *E) { 9405 assert(E && "Expression construction must not fail."); 9406 return E; 9407 } 9408 9409 public: 9410 ExprBuilder() {} 9411 virtual ~ExprBuilder() {} 9412 9413 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 9414 }; 9415 9416 class RefBuilder: public ExprBuilder { 9417 VarDecl *Var; 9418 QualType VarType; 9419 9420 public: 9421 Expr *build(Sema &S, SourceLocation Loc) const override { 9422 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get()); 9423 } 9424 9425 RefBuilder(VarDecl *Var, QualType VarType) 9426 : Var(Var), VarType(VarType) {} 9427 }; 9428 9429 class ThisBuilder: public ExprBuilder { 9430 public: 9431 Expr *build(Sema &S, SourceLocation Loc) const override { 9432 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 9433 } 9434 }; 9435 9436 class CastBuilder: public ExprBuilder { 9437 const ExprBuilder &Builder; 9438 QualType Type; 9439 ExprValueKind Kind; 9440 const CXXCastPath &Path; 9441 9442 public: 9443 Expr *build(Sema &S, SourceLocation Loc) const override { 9444 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 9445 CK_UncheckedDerivedToBase, Kind, 9446 &Path).get()); 9447 } 9448 9449 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 9450 const CXXCastPath &Path) 9451 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 9452 }; 9453 9454 class DerefBuilder: public ExprBuilder { 9455 const ExprBuilder &Builder; 9456 9457 public: 9458 Expr *build(Sema &S, SourceLocation Loc) const override { 9459 return assertNotNull( 9460 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 9461 } 9462 9463 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 9464 }; 9465 9466 class MemberBuilder: public ExprBuilder { 9467 const ExprBuilder &Builder; 9468 QualType Type; 9469 CXXScopeSpec SS; 9470 bool IsArrow; 9471 LookupResult &MemberLookup; 9472 9473 public: 9474 Expr *build(Sema &S, SourceLocation Loc) const override { 9475 return assertNotNull(S.BuildMemberReferenceExpr( 9476 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 9477 nullptr, MemberLookup, nullptr).get()); 9478 } 9479 9480 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 9481 LookupResult &MemberLookup) 9482 : Builder(Builder), Type(Type), IsArrow(IsArrow), 9483 MemberLookup(MemberLookup) {} 9484 }; 9485 9486 class MoveCastBuilder: public ExprBuilder { 9487 const ExprBuilder &Builder; 9488 9489 public: 9490 Expr *build(Sema &S, SourceLocation Loc) const override { 9491 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 9492 } 9493 9494 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 9495 }; 9496 9497 class LvalueConvBuilder: public ExprBuilder { 9498 const ExprBuilder &Builder; 9499 9500 public: 9501 Expr *build(Sema &S, SourceLocation Loc) const override { 9502 return assertNotNull( 9503 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 9504 } 9505 9506 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 9507 }; 9508 9509 class SubscriptBuilder: public ExprBuilder { 9510 const ExprBuilder &Base; 9511 const ExprBuilder &Index; 9512 9513 public: 9514 Expr *build(Sema &S, SourceLocation Loc) const override { 9515 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 9516 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 9517 } 9518 9519 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 9520 : Base(Base), Index(Index) {} 9521 }; 9522 9523 } // end anonymous namespace 9524 9525 /// When generating a defaulted copy or move assignment operator, if a field 9526 /// should be copied with __builtin_memcpy rather than via explicit assignments, 9527 /// do so. This optimization only applies for arrays of scalars, and for arrays 9528 /// of class type where the selected copy/move-assignment operator is trivial. 9529 static StmtResult 9530 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 9531 const ExprBuilder &ToB, const ExprBuilder &FromB) { 9532 // Compute the size of the memory buffer to be copied. 9533 QualType SizeType = S.Context.getSizeType(); 9534 llvm::APInt Size(S.Context.getTypeSize(SizeType), 9535 S.Context.getTypeSizeInChars(T).getQuantity()); 9536 9537 // Take the address of the field references for "from" and "to". We 9538 // directly construct UnaryOperators here because semantic analysis 9539 // does not permit us to take the address of an xvalue. 9540 Expr *From = FromB.build(S, Loc); 9541 From = new (S.Context) UnaryOperator(From, UO_AddrOf, 9542 S.Context.getPointerType(From->getType()), 9543 VK_RValue, OK_Ordinary, Loc); 9544 Expr *To = ToB.build(S, Loc); 9545 To = new (S.Context) UnaryOperator(To, UO_AddrOf, 9546 S.Context.getPointerType(To->getType()), 9547 VK_RValue, OK_Ordinary, Loc); 9548 9549 const Type *E = T->getBaseElementTypeUnsafe(); 9550 bool NeedsCollectableMemCpy = 9551 E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember(); 9552 9553 // Create a reference to the __builtin_objc_memmove_collectable function 9554 StringRef MemCpyName = NeedsCollectableMemCpy ? 9555 "__builtin_objc_memmove_collectable" : 9556 "__builtin_memcpy"; 9557 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 9558 Sema::LookupOrdinaryName); 9559 S.LookupName(R, S.TUScope, true); 9560 9561 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 9562 if (!MemCpy) 9563 // Something went horribly wrong earlier, and we will have complained 9564 // about it. 9565 return StmtError(); 9566 9567 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 9568 VK_RValue, Loc, nullptr); 9569 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 9570 9571 Expr *CallArgs[] = { 9572 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 9573 }; 9574 ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 9575 Loc, CallArgs, Loc); 9576 9577 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 9578 return Call.getAs<Stmt>(); 9579 } 9580 9581 /// \brief Builds a statement that copies/moves the given entity from \p From to 9582 /// \c To. 9583 /// 9584 /// This routine is used to copy/move the members of a class with an 9585 /// implicitly-declared copy/move assignment operator. When the entities being 9586 /// copied are arrays, this routine builds for loops to copy them. 9587 /// 9588 /// \param S The Sema object used for type-checking. 9589 /// 9590 /// \param Loc The location where the implicit copy/move is being generated. 9591 /// 9592 /// \param T The type of the expressions being copied/moved. Both expressions 9593 /// must have this type. 9594 /// 9595 /// \param To The expression we are copying/moving to. 9596 /// 9597 /// \param From The expression we are copying/moving from. 9598 /// 9599 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 9600 /// Otherwise, it's a non-static member subobject. 9601 /// 9602 /// \param Copying Whether we're copying or moving. 9603 /// 9604 /// \param Depth Internal parameter recording the depth of the recursion. 9605 /// 9606 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 9607 /// if a memcpy should be used instead. 9608 static StmtResult 9609 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 9610 const ExprBuilder &To, const ExprBuilder &From, 9611 bool CopyingBaseSubobject, bool Copying, 9612 unsigned Depth = 0) { 9613 // C++11 [class.copy]p28: 9614 // Each subobject is assigned in the manner appropriate to its type: 9615 // 9616 // - if the subobject is of class type, as if by a call to operator= with 9617 // the subobject as the object expression and the corresponding 9618 // subobject of x as a single function argument (as if by explicit 9619 // qualification; that is, ignoring any possible virtual overriding 9620 // functions in more derived classes); 9621 // 9622 // C++03 [class.copy]p13: 9623 // - if the subobject is of class type, the copy assignment operator for 9624 // the class is used (as if by explicit qualification; that is, 9625 // ignoring any possible virtual overriding functions in more derived 9626 // classes); 9627 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 9628 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 9629 9630 // Look for operator=. 9631 DeclarationName Name 9632 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 9633 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 9634 S.LookupQualifiedName(OpLookup, ClassDecl, false); 9635 9636 // Prior to C++11, filter out any result that isn't a copy/move-assignment 9637 // operator. 9638 if (!S.getLangOpts().CPlusPlus11) { 9639 LookupResult::Filter F = OpLookup.makeFilter(); 9640 while (F.hasNext()) { 9641 NamedDecl *D = F.next(); 9642 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 9643 if (Method->isCopyAssignmentOperator() || 9644 (!Copying && Method->isMoveAssignmentOperator())) 9645 continue; 9646 9647 F.erase(); 9648 } 9649 F.done(); 9650 } 9651 9652 // Suppress the protected check (C++ [class.protected]) for each of the 9653 // assignment operators we found. This strange dance is required when 9654 // we're assigning via a base classes's copy-assignment operator. To 9655 // ensure that we're getting the right base class subobject (without 9656 // ambiguities), we need to cast "this" to that subobject type; to 9657 // ensure that we don't go through the virtual call mechanism, we need 9658 // to qualify the operator= name with the base class (see below). However, 9659 // this means that if the base class has a protected copy assignment 9660 // operator, the protected member access check will fail. So, we 9661 // rewrite "protected" access to "public" access in this case, since we 9662 // know by construction that we're calling from a derived class. 9663 if (CopyingBaseSubobject) { 9664 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 9665 L != LEnd; ++L) { 9666 if (L.getAccess() == AS_protected) 9667 L.setAccess(AS_public); 9668 } 9669 } 9670 9671 // Create the nested-name-specifier that will be used to qualify the 9672 // reference to operator=; this is required to suppress the virtual 9673 // call mechanism. 9674 CXXScopeSpec SS; 9675 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 9676 SS.MakeTrivial(S.Context, 9677 NestedNameSpecifier::Create(S.Context, nullptr, false, 9678 CanonicalT), 9679 Loc); 9680 9681 // Create the reference to operator=. 9682 ExprResult OpEqualRef 9683 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false, 9684 SS, /*TemplateKWLoc=*/SourceLocation(), 9685 /*FirstQualifierInScope=*/nullptr, 9686 OpLookup, 9687 /*TemplateArgs=*/nullptr, 9688 /*SuppressQualifierCheck=*/true); 9689 if (OpEqualRef.isInvalid()) 9690 return StmtError(); 9691 9692 // Build the call to the assignment operator. 9693 9694 Expr *FromInst = From.build(S, Loc); 9695 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 9696 OpEqualRef.getAs<Expr>(), 9697 Loc, FromInst, Loc); 9698 if (Call.isInvalid()) 9699 return StmtError(); 9700 9701 // If we built a call to a trivial 'operator=' while copying an array, 9702 // bail out. We'll replace the whole shebang with a memcpy. 9703 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 9704 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 9705 return StmtResult((Stmt*)nullptr); 9706 9707 // Convert to an expression-statement, and clean up any produced 9708 // temporaries. 9709 return S.ActOnExprStmt(Call); 9710 } 9711 9712 // - if the subobject is of scalar type, the built-in assignment 9713 // operator is used. 9714 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 9715 if (!ArrayTy) { 9716 ExprResult Assignment = S.CreateBuiltinBinOp( 9717 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 9718 if (Assignment.isInvalid()) 9719 return StmtError(); 9720 return S.ActOnExprStmt(Assignment); 9721 } 9722 9723 // - if the subobject is an array, each element is assigned, in the 9724 // manner appropriate to the element type; 9725 9726 // Construct a loop over the array bounds, e.g., 9727 // 9728 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 9729 // 9730 // that will copy each of the array elements. 9731 QualType SizeType = S.Context.getSizeType(); 9732 9733 // Create the iteration variable. 9734 IdentifierInfo *IterationVarName = nullptr; 9735 { 9736 SmallString<8> Str; 9737 llvm::raw_svector_ostream OS(Str); 9738 OS << "__i" << Depth; 9739 IterationVarName = &S.Context.Idents.get(OS.str()); 9740 } 9741 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 9742 IterationVarName, SizeType, 9743 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 9744 SC_None); 9745 9746 // Initialize the iteration variable to zero. 9747 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 9748 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 9749 9750 // Creates a reference to the iteration variable. 9751 RefBuilder IterationVarRef(IterationVar, SizeType); 9752 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 9753 9754 // Create the DeclStmt that holds the iteration variable. 9755 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 9756 9757 // Subscript the "from" and "to" expressions with the iteration variable. 9758 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 9759 MoveCastBuilder FromIndexMove(FromIndexCopy); 9760 const ExprBuilder *FromIndex; 9761 if (Copying) 9762 FromIndex = &FromIndexCopy; 9763 else 9764 FromIndex = &FromIndexMove; 9765 9766 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 9767 9768 // Build the copy/move for an individual element of the array. 9769 StmtResult Copy = 9770 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 9771 ToIndex, *FromIndex, CopyingBaseSubobject, 9772 Copying, Depth + 1); 9773 // Bail out if copying fails or if we determined that we should use memcpy. 9774 if (Copy.isInvalid() || !Copy.get()) 9775 return Copy; 9776 9777 // Create the comparison against the array bound. 9778 llvm::APInt Upper 9779 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 9780 Expr *Comparison 9781 = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc), 9782 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), 9783 BO_NE, S.Context.BoolTy, 9784 VK_RValue, OK_Ordinary, Loc, false); 9785 9786 // Create the pre-increment of the iteration variable. 9787 Expr *Increment 9788 = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc, 9789 SizeType, VK_LValue, OK_Ordinary, Loc); 9790 9791 // Construct the loop that copies all elements of this array. 9792 return S.ActOnForStmt(Loc, Loc, InitStmt, 9793 S.MakeFullExpr(Comparison), 9794 nullptr, S.MakeFullDiscardedValueExpr(Increment), 9795 Loc, Copy.get()); 9796 } 9797 9798 static StmtResult 9799 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 9800 const ExprBuilder &To, const ExprBuilder &From, 9801 bool CopyingBaseSubobject, bool Copying) { 9802 // Maybe we should use a memcpy? 9803 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 9804 T.isTriviallyCopyableType(S.Context)) 9805 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 9806 9807 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 9808 CopyingBaseSubobject, 9809 Copying, 0)); 9810 9811 // If we ended up picking a trivial assignment operator for an array of a 9812 // non-trivially-copyable class type, just emit a memcpy. 9813 if (!Result.isInvalid() && !Result.get()) 9814 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 9815 9816 return Result; 9817 } 9818 9819 Sema::ImplicitExceptionSpecification 9820 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) { 9821 CXXRecordDecl *ClassDecl = MD->getParent(); 9822 9823 ImplicitExceptionSpecification ExceptSpec(*this); 9824 if (ClassDecl->isInvalidDecl()) 9825 return ExceptSpec; 9826 9827 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>(); 9828 assert(T->getNumParams() == 1 && "not a copy assignment op"); 9829 unsigned ArgQuals = 9830 T->getParamType(0).getNonReferenceType().getCVRQualifiers(); 9831 9832 // C++ [except.spec]p14: 9833 // An implicitly declared special member function (Clause 12) shall have an 9834 // exception-specification. [...] 9835 9836 // It is unspecified whether or not an implicit copy assignment operator 9837 // attempts to deduplicate calls to assignment operators of virtual bases are 9838 // made. As such, this exception specification is effectively unspecified. 9839 // Based on a similar decision made for constness in C++0x, we're erring on 9840 // the side of assuming such calls to be made regardless of whether they 9841 // actually happen. 9842 for (const auto &Base : ClassDecl->bases()) { 9843 if (Base.isVirtual()) 9844 continue; 9845 9846 CXXRecordDecl *BaseClassDecl 9847 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 9848 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl, 9849 ArgQuals, false, 0)) 9850 ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign); 9851 } 9852 9853 for (const auto &Base : ClassDecl->vbases()) { 9854 CXXRecordDecl *BaseClassDecl 9855 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 9856 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl, 9857 ArgQuals, false, 0)) 9858 ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign); 9859 } 9860 9861 for (const auto *Field : ClassDecl->fields()) { 9862 QualType FieldType = Context.getBaseElementType(Field->getType()); 9863 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { 9864 if (CXXMethodDecl *CopyAssign = 9865 LookupCopyingAssignment(FieldClassDecl, 9866 ArgQuals | FieldType.getCVRQualifiers(), 9867 false, 0)) 9868 ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign); 9869 } 9870 } 9871 9872 return ExceptSpec; 9873 } 9874 9875 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 9876 // Note: The following rules are largely analoguous to the copy 9877 // constructor rules. Note that virtual bases are not taken into account 9878 // for determining the argument type of the operator. Note also that 9879 // operators taking an object instead of a reference are allowed. 9880 assert(ClassDecl->needsImplicitCopyAssignment()); 9881 9882 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 9883 if (DSM.isAlreadyBeingDeclared()) 9884 return nullptr; 9885 9886 QualType ArgType = Context.getTypeDeclType(ClassDecl); 9887 QualType RetType = Context.getLValueReferenceType(ArgType); 9888 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 9889 if (Const) 9890 ArgType = ArgType.withConst(); 9891 ArgType = Context.getLValueReferenceType(ArgType); 9892 9893 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 9894 CXXCopyAssignment, 9895 Const); 9896 9897 // An implicitly-declared copy assignment operator is an inline public 9898 // member of its class. 9899 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 9900 SourceLocation ClassLoc = ClassDecl->getLocation(); 9901 DeclarationNameInfo NameInfo(Name, ClassLoc); 9902 CXXMethodDecl *CopyAssignment = 9903 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(), 9904 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 9905 /*isInline=*/true, Constexpr, SourceLocation()); 9906 CopyAssignment->setAccess(AS_public); 9907 CopyAssignment->setDefaulted(); 9908 CopyAssignment->setImplicit(); 9909 9910 if (getLangOpts().CUDA) { 9911 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 9912 CopyAssignment, 9913 /* ConstRHS */ Const, 9914 /* Diagnose */ false); 9915 } 9916 9917 // Build an exception specification pointing back at this member. 9918 FunctionProtoType::ExtProtoInfo EPI = 9919 getImplicitMethodEPI(*this, CopyAssignment); 9920 CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI)); 9921 9922 // Add the parameter to the operator. 9923 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 9924 ClassLoc, ClassLoc, 9925 /*Id=*/nullptr, ArgType, 9926 /*TInfo=*/nullptr, SC_None, 9927 nullptr); 9928 CopyAssignment->setParams(FromParam); 9929 9930 AddOverriddenMethods(ClassDecl, CopyAssignment); 9931 9932 CopyAssignment->setTrivial( 9933 ClassDecl->needsOverloadResolutionForCopyAssignment() 9934 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 9935 : ClassDecl->hasTrivialCopyAssignment()); 9936 9937 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) 9938 SetDeclDeleted(CopyAssignment, ClassLoc); 9939 9940 // Note that we have added this copy-assignment operator. 9941 ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; 9942 9943 if (Scope *S = getScopeForContext(ClassDecl)) 9944 PushOnScopeChains(CopyAssignment, S, false); 9945 ClassDecl->addDecl(CopyAssignment); 9946 9947 return CopyAssignment; 9948 } 9949 9950 /// Diagnose an implicit copy operation for a class which is odr-used, but 9951 /// which is deprecated because the class has a user-declared copy constructor, 9952 /// copy assignment operator, or destructor. 9953 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp, 9954 SourceLocation UseLoc) { 9955 assert(CopyOp->isImplicit()); 9956 9957 CXXRecordDecl *RD = CopyOp->getParent(); 9958 CXXMethodDecl *UserDeclaredOperation = nullptr; 9959 9960 // In Microsoft mode, assignment operations don't affect constructors and 9961 // vice versa. 9962 if (RD->hasUserDeclaredDestructor()) { 9963 UserDeclaredOperation = RD->getDestructor(); 9964 } else if (!isa<CXXConstructorDecl>(CopyOp) && 9965 RD->hasUserDeclaredCopyConstructor() && 9966 !S.getLangOpts().MSVCCompat) { 9967 // Find any user-declared copy constructor. 9968 for (auto *I : RD->ctors()) { 9969 if (I->isCopyConstructor()) { 9970 UserDeclaredOperation = I; 9971 break; 9972 } 9973 } 9974 assert(UserDeclaredOperation); 9975 } else if (isa<CXXConstructorDecl>(CopyOp) && 9976 RD->hasUserDeclaredCopyAssignment() && 9977 !S.getLangOpts().MSVCCompat) { 9978 // Find any user-declared move assignment operator. 9979 for (auto *I : RD->methods()) { 9980 if (I->isCopyAssignmentOperator()) { 9981 UserDeclaredOperation = I; 9982 break; 9983 } 9984 } 9985 assert(UserDeclaredOperation); 9986 } 9987 9988 if (UserDeclaredOperation) { 9989 S.Diag(UserDeclaredOperation->getLocation(), 9990 diag::warn_deprecated_copy_operation) 9991 << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp) 9992 << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation); 9993 S.Diag(UseLoc, diag::note_member_synthesized_at) 9994 << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor 9995 : Sema::CXXCopyAssignment) 9996 << RD; 9997 } 9998 } 9999 10000 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 10001 CXXMethodDecl *CopyAssignOperator) { 10002 assert((CopyAssignOperator->isDefaulted() && 10003 CopyAssignOperator->isOverloadedOperator() && 10004 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 10005 !CopyAssignOperator->doesThisDeclarationHaveABody() && 10006 !CopyAssignOperator->isDeleted()) && 10007 "DefineImplicitCopyAssignment called for wrong function"); 10008 10009 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 10010 10011 if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) { 10012 CopyAssignOperator->setInvalidDecl(); 10013 return; 10014 } 10015 10016 // C++11 [class.copy]p18: 10017 // The [definition of an implicitly declared copy assignment operator] is 10018 // deprecated if the class has a user-declared copy constructor or a 10019 // user-declared destructor. 10020 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 10021 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation); 10022 10023 CopyAssignOperator->markUsed(Context); 10024 10025 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 10026 DiagnosticErrorTrap Trap(Diags); 10027 10028 // C++0x [class.copy]p30: 10029 // The implicitly-defined or explicitly-defaulted copy assignment operator 10030 // for a non-union class X performs memberwise copy assignment of its 10031 // subobjects. The direct base classes of X are assigned first, in the 10032 // order of their declaration in the base-specifier-list, and then the 10033 // immediate non-static data members of X are assigned, in the order in 10034 // which they were declared in the class definition. 10035 10036 // The statements that form the synthesized function body. 10037 SmallVector<Stmt*, 8> Statements; 10038 10039 // The parameter for the "other" object, which we are copying from. 10040 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 10041 Qualifiers OtherQuals = Other->getType().getQualifiers(); 10042 QualType OtherRefType = Other->getType(); 10043 if (const LValueReferenceType *OtherRef 10044 = OtherRefType->getAs<LValueReferenceType>()) { 10045 OtherRefType = OtherRef->getPointeeType(); 10046 OtherQuals = OtherRefType.getQualifiers(); 10047 } 10048 10049 // Our location for everything implicitly-generated. 10050 SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid() 10051 ? CopyAssignOperator->getLocEnd() 10052 : CopyAssignOperator->getLocation(); 10053 10054 // Builds a DeclRefExpr for the "other" object. 10055 RefBuilder OtherRef(Other, OtherRefType); 10056 10057 // Builds the "this" pointer. 10058 ThisBuilder This; 10059 10060 // Assign base classes. 10061 bool Invalid = false; 10062 for (auto &Base : ClassDecl->bases()) { 10063 // Form the assignment: 10064 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 10065 QualType BaseType = Base.getType().getUnqualifiedType(); 10066 if (!BaseType->isRecordType()) { 10067 Invalid = true; 10068 continue; 10069 } 10070 10071 CXXCastPath BasePath; 10072 BasePath.push_back(&Base); 10073 10074 // Construct the "from" expression, which is an implicit cast to the 10075 // appropriately-qualified base type. 10076 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 10077 VK_LValue, BasePath); 10078 10079 // Dereference "this". 10080 DerefBuilder DerefThis(This); 10081 CastBuilder To(DerefThis, 10082 Context.getCVRQualifiedType( 10083 BaseType, CopyAssignOperator->getTypeQualifiers()), 10084 VK_LValue, BasePath); 10085 10086 // Build the copy. 10087 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 10088 To, From, 10089 /*CopyingBaseSubobject=*/true, 10090 /*Copying=*/true); 10091 if (Copy.isInvalid()) { 10092 Diag(CurrentLocation, diag::note_member_synthesized_at) 10093 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 10094 CopyAssignOperator->setInvalidDecl(); 10095 return; 10096 } 10097 10098 // Success! Record the copy. 10099 Statements.push_back(Copy.getAs<Expr>()); 10100 } 10101 10102 // Assign non-static members. 10103 for (auto *Field : ClassDecl->fields()) { 10104 if (Field->isUnnamedBitfield()) 10105 continue; 10106 10107 if (Field->isInvalidDecl()) { 10108 Invalid = true; 10109 continue; 10110 } 10111 10112 // Check for members of reference type; we can't copy those. 10113 if (Field->getType()->isReferenceType()) { 10114 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 10115 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 10116 Diag(Field->getLocation(), diag::note_declared_at); 10117 Diag(CurrentLocation, diag::note_member_synthesized_at) 10118 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 10119 Invalid = true; 10120 continue; 10121 } 10122 10123 // Check for members of const-qualified, non-class type. 10124 QualType BaseType = Context.getBaseElementType(Field->getType()); 10125 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 10126 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 10127 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 10128 Diag(Field->getLocation(), diag::note_declared_at); 10129 Diag(CurrentLocation, diag::note_member_synthesized_at) 10130 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 10131 Invalid = true; 10132 continue; 10133 } 10134 10135 // Suppress assigning zero-width bitfields. 10136 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0) 10137 continue; 10138 10139 QualType FieldType = Field->getType().getNonReferenceType(); 10140 if (FieldType->isIncompleteArrayType()) { 10141 assert(ClassDecl->hasFlexibleArrayMember() && 10142 "Incomplete array type is not valid"); 10143 continue; 10144 } 10145 10146 // Build references to the field in the object we're copying from and to. 10147 CXXScopeSpec SS; // Intentionally empty 10148 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 10149 LookupMemberName); 10150 MemberLookup.addDecl(Field); 10151 MemberLookup.resolveKind(); 10152 10153 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 10154 10155 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); 10156 10157 // Build the copy of this field. 10158 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 10159 To, From, 10160 /*CopyingBaseSubobject=*/false, 10161 /*Copying=*/true); 10162 if (Copy.isInvalid()) { 10163 Diag(CurrentLocation, diag::note_member_synthesized_at) 10164 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 10165 CopyAssignOperator->setInvalidDecl(); 10166 return; 10167 } 10168 10169 // Success! Record the copy. 10170 Statements.push_back(Copy.getAs<Stmt>()); 10171 } 10172 10173 if (!Invalid) { 10174 // Add a "return *this;" 10175 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 10176 10177 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 10178 if (Return.isInvalid()) 10179 Invalid = true; 10180 else { 10181 Statements.push_back(Return.getAs<Stmt>()); 10182 10183 if (Trap.hasErrorOccurred()) { 10184 Diag(CurrentLocation, diag::note_member_synthesized_at) 10185 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); 10186 Invalid = true; 10187 } 10188 } 10189 } 10190 10191 // The exception specification is needed because we are defining the 10192 // function. 10193 ResolveExceptionSpec(CurrentLocation, 10194 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 10195 10196 if (Invalid) { 10197 CopyAssignOperator->setInvalidDecl(); 10198 return; 10199 } 10200 10201 StmtResult Body; 10202 { 10203 CompoundScopeRAII CompoundScope(*this); 10204 Body = ActOnCompoundStmt(Loc, Loc, Statements, 10205 /*isStmtExpr=*/false); 10206 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 10207 } 10208 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 10209 10210 if (ASTMutationListener *L = getASTMutationListener()) { 10211 L->CompletedImplicitDefinition(CopyAssignOperator); 10212 } 10213 } 10214 10215 Sema::ImplicitExceptionSpecification 10216 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) { 10217 CXXRecordDecl *ClassDecl = MD->getParent(); 10218 10219 ImplicitExceptionSpecification ExceptSpec(*this); 10220 if (ClassDecl->isInvalidDecl()) 10221 return ExceptSpec; 10222 10223 // C++0x [except.spec]p14: 10224 // An implicitly declared special member function (Clause 12) shall have an 10225 // exception-specification. [...] 10226 10227 // It is unspecified whether or not an implicit move assignment operator 10228 // attempts to deduplicate calls to assignment operators of virtual bases are 10229 // made. As such, this exception specification is effectively unspecified. 10230 // Based on a similar decision made for constness in C++0x, we're erring on 10231 // the side of assuming such calls to be made regardless of whether they 10232 // actually happen. 10233 // Note that a move constructor is not implicitly declared when there are 10234 // virtual bases, but it can still be user-declared and explicitly defaulted. 10235 for (const auto &Base : ClassDecl->bases()) { 10236 if (Base.isVirtual()) 10237 continue; 10238 10239 CXXRecordDecl *BaseClassDecl 10240 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 10241 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl, 10242 0, false, 0)) 10243 ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign); 10244 } 10245 10246 for (const auto &Base : ClassDecl->vbases()) { 10247 CXXRecordDecl *BaseClassDecl 10248 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 10249 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl, 10250 0, false, 0)) 10251 ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign); 10252 } 10253 10254 for (const auto *Field : ClassDecl->fields()) { 10255 QualType FieldType = Context.getBaseElementType(Field->getType()); 10256 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { 10257 if (CXXMethodDecl *MoveAssign = 10258 LookupMovingAssignment(FieldClassDecl, 10259 FieldType.getCVRQualifiers(), 10260 false, 0)) 10261 ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign); 10262 } 10263 } 10264 10265 return ExceptSpec; 10266 } 10267 10268 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 10269 assert(ClassDecl->needsImplicitMoveAssignment()); 10270 10271 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 10272 if (DSM.isAlreadyBeingDeclared()) 10273 return nullptr; 10274 10275 // Note: The following rules are largely analoguous to the move 10276 // constructor rules. 10277 10278 QualType ArgType = Context.getTypeDeclType(ClassDecl); 10279 QualType RetType = Context.getLValueReferenceType(ArgType); 10280 ArgType = Context.getRValueReferenceType(ArgType); 10281 10282 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 10283 CXXMoveAssignment, 10284 false); 10285 10286 // An implicitly-declared move assignment operator is an inline public 10287 // member of its class. 10288 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 10289 SourceLocation ClassLoc = ClassDecl->getLocation(); 10290 DeclarationNameInfo NameInfo(Name, ClassLoc); 10291 CXXMethodDecl *MoveAssignment = 10292 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(), 10293 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 10294 /*isInline=*/true, Constexpr, SourceLocation()); 10295 MoveAssignment->setAccess(AS_public); 10296 MoveAssignment->setDefaulted(); 10297 MoveAssignment->setImplicit(); 10298 10299 if (getLangOpts().CUDA) { 10300 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 10301 MoveAssignment, 10302 /* ConstRHS */ false, 10303 /* Diagnose */ false); 10304 } 10305 10306 // Build an exception specification pointing back at this member. 10307 FunctionProtoType::ExtProtoInfo EPI = 10308 getImplicitMethodEPI(*this, MoveAssignment); 10309 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI)); 10310 10311 // Add the parameter to the operator. 10312 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 10313 ClassLoc, ClassLoc, 10314 /*Id=*/nullptr, ArgType, 10315 /*TInfo=*/nullptr, SC_None, 10316 nullptr); 10317 MoveAssignment->setParams(FromParam); 10318 10319 AddOverriddenMethods(ClassDecl, MoveAssignment); 10320 10321 MoveAssignment->setTrivial( 10322 ClassDecl->needsOverloadResolutionForMoveAssignment() 10323 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 10324 : ClassDecl->hasTrivialMoveAssignment()); 10325 10326 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 10327 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 10328 SetDeclDeleted(MoveAssignment, ClassLoc); 10329 } 10330 10331 // Note that we have added this copy-assignment operator. 10332 ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; 10333 10334 if (Scope *S = getScopeForContext(ClassDecl)) 10335 PushOnScopeChains(MoveAssignment, S, false); 10336 ClassDecl->addDecl(MoveAssignment); 10337 10338 return MoveAssignment; 10339 } 10340 10341 /// Check if we're implicitly defining a move assignment operator for a class 10342 /// with virtual bases. Such a move assignment might move-assign the virtual 10343 /// base multiple times. 10344 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 10345 SourceLocation CurrentLocation) { 10346 assert(!Class->isDependentContext() && "should not define dependent move"); 10347 10348 // Only a virtual base could get implicitly move-assigned multiple times. 10349 // Only a non-trivial move assignment can observe this. We only want to 10350 // diagnose if we implicitly define an assignment operator that assigns 10351 // two base classes, both of which move-assign the same virtual base. 10352 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 10353 Class->getNumBases() < 2) 10354 return; 10355 10356 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 10357 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 10358 VBaseMap VBases; 10359 10360 for (auto &BI : Class->bases()) { 10361 Worklist.push_back(&BI); 10362 while (!Worklist.empty()) { 10363 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 10364 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 10365 10366 // If the base has no non-trivial move assignment operators, 10367 // we don't care about moves from it. 10368 if (!Base->hasNonTrivialMoveAssignment()) 10369 continue; 10370 10371 // If there's nothing virtual here, skip it. 10372 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 10373 continue; 10374 10375 // If we're not actually going to call a move assignment for this base, 10376 // or the selected move assignment is trivial, skip it. 10377 Sema::SpecialMemberOverloadResult *SMOR = 10378 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 10379 /*ConstArg*/false, /*VolatileArg*/false, 10380 /*RValueThis*/true, /*ConstThis*/false, 10381 /*VolatileThis*/false); 10382 if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() || 10383 !SMOR->getMethod()->isMoveAssignmentOperator()) 10384 continue; 10385 10386 if (BaseSpec->isVirtual()) { 10387 // We're going to move-assign this virtual base, and its move 10388 // assignment operator is not trivial. If this can happen for 10389 // multiple distinct direct bases of Class, diagnose it. (If it 10390 // only happens in one base, we'll diagnose it when synthesizing 10391 // that base class's move assignment operator.) 10392 CXXBaseSpecifier *&Existing = 10393 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 10394 .first->second; 10395 if (Existing && Existing != &BI) { 10396 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 10397 << Class << Base; 10398 S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here) 10399 << (Base->getCanonicalDecl() == 10400 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 10401 << Base << Existing->getType() << Existing->getSourceRange(); 10402 S.Diag(BI.getLocStart(), diag::note_vbase_moved_here) 10403 << (Base->getCanonicalDecl() == 10404 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 10405 << Base << BI.getType() << BaseSpec->getSourceRange(); 10406 10407 // Only diagnose each vbase once. 10408 Existing = nullptr; 10409 } 10410 } else { 10411 // Only walk over bases that have defaulted move assignment operators. 10412 // We assume that any user-provided move assignment operator handles 10413 // the multiple-moves-of-vbase case itself somehow. 10414 if (!SMOR->getMethod()->isDefaulted()) 10415 continue; 10416 10417 // We're going to move the base classes of Base. Add them to the list. 10418 for (auto &BI : Base->bases()) 10419 Worklist.push_back(&BI); 10420 } 10421 } 10422 } 10423 } 10424 10425 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 10426 CXXMethodDecl *MoveAssignOperator) { 10427 assert((MoveAssignOperator->isDefaulted() && 10428 MoveAssignOperator->isOverloadedOperator() && 10429 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 10430 !MoveAssignOperator->doesThisDeclarationHaveABody() && 10431 !MoveAssignOperator->isDeleted()) && 10432 "DefineImplicitMoveAssignment called for wrong function"); 10433 10434 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 10435 10436 if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) { 10437 MoveAssignOperator->setInvalidDecl(); 10438 return; 10439 } 10440 10441 MoveAssignOperator->markUsed(Context); 10442 10443 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 10444 DiagnosticErrorTrap Trap(Diags); 10445 10446 // C++0x [class.copy]p28: 10447 // The implicitly-defined or move assignment operator for a non-union class 10448 // X performs memberwise move assignment of its subobjects. The direct base 10449 // classes of X are assigned first, in the order of their declaration in the 10450 // base-specifier-list, and then the immediate non-static data members of X 10451 // are assigned, in the order in which they were declared in the class 10452 // definition. 10453 10454 // Issue a warning if our implicit move assignment operator will move 10455 // from a virtual base more than once. 10456 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 10457 10458 // The statements that form the synthesized function body. 10459 SmallVector<Stmt*, 8> Statements; 10460 10461 // The parameter for the "other" object, which we are move from. 10462 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 10463 QualType OtherRefType = Other->getType()-> 10464 getAs<RValueReferenceType>()->getPointeeType(); 10465 assert(!OtherRefType.getQualifiers() && 10466 "Bad argument type of defaulted move assignment"); 10467 10468 // Our location for everything implicitly-generated. 10469 SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid() 10470 ? MoveAssignOperator->getLocEnd() 10471 : MoveAssignOperator->getLocation(); 10472 10473 // Builds a reference to the "other" object. 10474 RefBuilder OtherRef(Other, OtherRefType); 10475 // Cast to rvalue. 10476 MoveCastBuilder MoveOther(OtherRef); 10477 10478 // Builds the "this" pointer. 10479 ThisBuilder This; 10480 10481 // Assign base classes. 10482 bool Invalid = false; 10483 for (auto &Base : ClassDecl->bases()) { 10484 // C++11 [class.copy]p28: 10485 // It is unspecified whether subobjects representing virtual base classes 10486 // are assigned more than once by the implicitly-defined copy assignment 10487 // operator. 10488 // FIXME: Do not assign to a vbase that will be assigned by some other base 10489 // class. For a move-assignment, this can result in the vbase being moved 10490 // multiple times. 10491 10492 // Form the assignment: 10493 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 10494 QualType BaseType = Base.getType().getUnqualifiedType(); 10495 if (!BaseType->isRecordType()) { 10496 Invalid = true; 10497 continue; 10498 } 10499 10500 CXXCastPath BasePath; 10501 BasePath.push_back(&Base); 10502 10503 // Construct the "from" expression, which is an implicit cast to the 10504 // appropriately-qualified base type. 10505 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 10506 10507 // Dereference "this". 10508 DerefBuilder DerefThis(This); 10509 10510 // Implicitly cast "this" to the appropriately-qualified base type. 10511 CastBuilder To(DerefThis, 10512 Context.getCVRQualifiedType( 10513 BaseType, MoveAssignOperator->getTypeQualifiers()), 10514 VK_LValue, BasePath); 10515 10516 // Build the move. 10517 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 10518 To, From, 10519 /*CopyingBaseSubobject=*/true, 10520 /*Copying=*/false); 10521 if (Move.isInvalid()) { 10522 Diag(CurrentLocation, diag::note_member_synthesized_at) 10523 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); 10524 MoveAssignOperator->setInvalidDecl(); 10525 return; 10526 } 10527 10528 // Success! Record the move. 10529 Statements.push_back(Move.getAs<Expr>()); 10530 } 10531 10532 // Assign non-static members. 10533 for (auto *Field : ClassDecl->fields()) { 10534 if (Field->isUnnamedBitfield()) 10535 continue; 10536 10537 if (Field->isInvalidDecl()) { 10538 Invalid = true; 10539 continue; 10540 } 10541 10542 // Check for members of reference type; we can't move those. 10543 if (Field->getType()->isReferenceType()) { 10544 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 10545 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 10546 Diag(Field->getLocation(), diag::note_declared_at); 10547 Diag(CurrentLocation, diag::note_member_synthesized_at) 10548 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); 10549 Invalid = true; 10550 continue; 10551 } 10552 10553 // Check for members of const-qualified, non-class type. 10554 QualType BaseType = Context.getBaseElementType(Field->getType()); 10555 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 10556 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 10557 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 10558 Diag(Field->getLocation(), diag::note_declared_at); 10559 Diag(CurrentLocation, diag::note_member_synthesized_at) 10560 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); 10561 Invalid = true; 10562 continue; 10563 } 10564 10565 // Suppress assigning zero-width bitfields. 10566 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0) 10567 continue; 10568 10569 QualType FieldType = Field->getType().getNonReferenceType(); 10570 if (FieldType->isIncompleteArrayType()) { 10571 assert(ClassDecl->hasFlexibleArrayMember() && 10572 "Incomplete array type is not valid"); 10573 continue; 10574 } 10575 10576 // Build references to the field in the object we're copying from and to. 10577 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 10578 LookupMemberName); 10579 MemberLookup.addDecl(Field); 10580 MemberLookup.resolveKind(); 10581 MemberBuilder From(MoveOther, OtherRefType, 10582 /*IsArrow=*/false, MemberLookup); 10583 MemberBuilder To(This, getCurrentThisType(), 10584 /*IsArrow=*/true, MemberLookup); 10585 10586 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 10587 "Member reference with rvalue base must be rvalue except for reference " 10588 "members, which aren't allowed for move assignment."); 10589 10590 // Build the move of this field. 10591 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 10592 To, From, 10593 /*CopyingBaseSubobject=*/false, 10594 /*Copying=*/false); 10595 if (Move.isInvalid()) { 10596 Diag(CurrentLocation, diag::note_member_synthesized_at) 10597 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); 10598 MoveAssignOperator->setInvalidDecl(); 10599 return; 10600 } 10601 10602 // Success! Record the copy. 10603 Statements.push_back(Move.getAs<Stmt>()); 10604 } 10605 10606 if (!Invalid) { 10607 // Add a "return *this;" 10608 ExprResult ThisObj = 10609 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 10610 10611 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 10612 if (Return.isInvalid()) 10613 Invalid = true; 10614 else { 10615 Statements.push_back(Return.getAs<Stmt>()); 10616 10617 if (Trap.hasErrorOccurred()) { 10618 Diag(CurrentLocation, diag::note_member_synthesized_at) 10619 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); 10620 Invalid = true; 10621 } 10622 } 10623 } 10624 10625 // The exception specification is needed because we are defining the 10626 // function. 10627 ResolveExceptionSpec(CurrentLocation, 10628 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 10629 10630 if (Invalid) { 10631 MoveAssignOperator->setInvalidDecl(); 10632 return; 10633 } 10634 10635 StmtResult Body; 10636 { 10637 CompoundScopeRAII CompoundScope(*this); 10638 Body = ActOnCompoundStmt(Loc, Loc, Statements, 10639 /*isStmtExpr=*/false); 10640 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 10641 } 10642 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 10643 10644 if (ASTMutationListener *L = getASTMutationListener()) { 10645 L->CompletedImplicitDefinition(MoveAssignOperator); 10646 } 10647 } 10648 10649 Sema::ImplicitExceptionSpecification 10650 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) { 10651 CXXRecordDecl *ClassDecl = MD->getParent(); 10652 10653 ImplicitExceptionSpecification ExceptSpec(*this); 10654 if (ClassDecl->isInvalidDecl()) 10655 return ExceptSpec; 10656 10657 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>(); 10658 assert(T->getNumParams() >= 1 && "not a copy ctor"); 10659 unsigned Quals = T->getParamType(0).getNonReferenceType().getCVRQualifiers(); 10660 10661 // C++ [except.spec]p14: 10662 // An implicitly declared special member function (Clause 12) shall have an 10663 // exception-specification. [...] 10664 for (const auto &Base : ClassDecl->bases()) { 10665 // Virtual bases are handled below. 10666 if (Base.isVirtual()) 10667 continue; 10668 10669 CXXRecordDecl *BaseClassDecl 10670 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 10671 if (CXXConstructorDecl *CopyConstructor = 10672 LookupCopyingConstructor(BaseClassDecl, Quals)) 10673 ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor); 10674 } 10675 for (const auto &Base : ClassDecl->vbases()) { 10676 CXXRecordDecl *BaseClassDecl 10677 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 10678 if (CXXConstructorDecl *CopyConstructor = 10679 LookupCopyingConstructor(BaseClassDecl, Quals)) 10680 ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor); 10681 } 10682 for (const auto *Field : ClassDecl->fields()) { 10683 QualType FieldType = Context.getBaseElementType(Field->getType()); 10684 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { 10685 if (CXXConstructorDecl *CopyConstructor = 10686 LookupCopyingConstructor(FieldClassDecl, 10687 Quals | FieldType.getCVRQualifiers())) 10688 ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor); 10689 } 10690 } 10691 10692 return ExceptSpec; 10693 } 10694 10695 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 10696 CXXRecordDecl *ClassDecl) { 10697 // C++ [class.copy]p4: 10698 // If the class definition does not explicitly declare a copy 10699 // constructor, one is declared implicitly. 10700 assert(ClassDecl->needsImplicitCopyConstructor()); 10701 10702 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 10703 if (DSM.isAlreadyBeingDeclared()) 10704 return nullptr; 10705 10706 QualType ClassType = Context.getTypeDeclType(ClassDecl); 10707 QualType ArgType = ClassType; 10708 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 10709 if (Const) 10710 ArgType = ArgType.withConst(); 10711 ArgType = Context.getLValueReferenceType(ArgType); 10712 10713 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 10714 CXXCopyConstructor, 10715 Const); 10716 10717 DeclarationName Name 10718 = Context.DeclarationNames.getCXXConstructorName( 10719 Context.getCanonicalType(ClassType)); 10720 SourceLocation ClassLoc = ClassDecl->getLocation(); 10721 DeclarationNameInfo NameInfo(Name, ClassLoc); 10722 10723 // An implicitly-declared copy constructor is an inline public 10724 // member of its class. 10725 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 10726 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 10727 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true, 10728 Constexpr); 10729 CopyConstructor->setAccess(AS_public); 10730 CopyConstructor->setDefaulted(); 10731 10732 if (getLangOpts().CUDA) { 10733 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 10734 CopyConstructor, 10735 /* ConstRHS */ Const, 10736 /* Diagnose */ false); 10737 } 10738 10739 // Build an exception specification pointing back at this member. 10740 FunctionProtoType::ExtProtoInfo EPI = 10741 getImplicitMethodEPI(*this, CopyConstructor); 10742 CopyConstructor->setType( 10743 Context.getFunctionType(Context.VoidTy, ArgType, EPI)); 10744 10745 // Add the parameter to the constructor. 10746 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, 10747 ClassLoc, ClassLoc, 10748 /*IdentifierInfo=*/nullptr, 10749 ArgType, /*TInfo=*/nullptr, 10750 SC_None, nullptr); 10751 CopyConstructor->setParams(FromParam); 10752 10753 CopyConstructor->setTrivial( 10754 ClassDecl->needsOverloadResolutionForCopyConstructor() 10755 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 10756 : ClassDecl->hasTrivialCopyConstructor()); 10757 10758 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) 10759 SetDeclDeleted(CopyConstructor, ClassLoc); 10760 10761 // Note that we have declared this constructor. 10762 ++ASTContext::NumImplicitCopyConstructorsDeclared; 10763 10764 if (Scope *S = getScopeForContext(ClassDecl)) 10765 PushOnScopeChains(CopyConstructor, S, false); 10766 ClassDecl->addDecl(CopyConstructor); 10767 10768 return CopyConstructor; 10769 } 10770 10771 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 10772 CXXConstructorDecl *CopyConstructor) { 10773 assert((CopyConstructor->isDefaulted() && 10774 CopyConstructor->isCopyConstructor() && 10775 !CopyConstructor->doesThisDeclarationHaveABody() && 10776 !CopyConstructor->isDeleted()) && 10777 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 10778 10779 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 10780 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 10781 10782 // C++11 [class.copy]p7: 10783 // The [definition of an implicitly declared copy constructor] is 10784 // deprecated if the class has a user-declared copy assignment operator 10785 // or a user-declared destructor. 10786 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 10787 diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation); 10788 10789 SynthesizedFunctionScope Scope(*this, CopyConstructor); 10790 DiagnosticErrorTrap Trap(Diags); 10791 10792 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) || 10793 Trap.hasErrorOccurred()) { 10794 Diag(CurrentLocation, diag::note_member_synthesized_at) 10795 << CXXCopyConstructor << Context.getTagDeclType(ClassDecl); 10796 CopyConstructor->setInvalidDecl(); 10797 } else { 10798 SourceLocation Loc = CopyConstructor->getLocEnd().isValid() 10799 ? CopyConstructor->getLocEnd() 10800 : CopyConstructor->getLocation(); 10801 Sema::CompoundScopeRAII CompoundScope(*this); 10802 CopyConstructor->setBody( 10803 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); 10804 } 10805 10806 // The exception specification is needed because we are defining the 10807 // function. 10808 ResolveExceptionSpec(CurrentLocation, 10809 CopyConstructor->getType()->castAs<FunctionProtoType>()); 10810 10811 CopyConstructor->markUsed(Context); 10812 MarkVTableUsed(CurrentLocation, ClassDecl); 10813 10814 if (ASTMutationListener *L = getASTMutationListener()) { 10815 L->CompletedImplicitDefinition(CopyConstructor); 10816 } 10817 } 10818 10819 Sema::ImplicitExceptionSpecification 10820 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) { 10821 CXXRecordDecl *ClassDecl = MD->getParent(); 10822 10823 // C++ [except.spec]p14: 10824 // An implicitly declared special member function (Clause 12) shall have an 10825 // exception-specification. [...] 10826 ImplicitExceptionSpecification ExceptSpec(*this); 10827 if (ClassDecl->isInvalidDecl()) 10828 return ExceptSpec; 10829 10830 // Direct base-class constructors. 10831 for (const auto &B : ClassDecl->bases()) { 10832 if (B.isVirtual()) // Handled below. 10833 continue; 10834 10835 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) { 10836 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 10837 CXXConstructorDecl *Constructor = 10838 LookupMovingConstructor(BaseClassDecl, 0); 10839 // If this is a deleted function, add it anyway. This might be conformant 10840 // with the standard. This might not. I'm not sure. It might not matter. 10841 if (Constructor) 10842 ExceptSpec.CalledDecl(B.getLocStart(), Constructor); 10843 } 10844 } 10845 10846 // Virtual base-class constructors. 10847 for (const auto &B : ClassDecl->vbases()) { 10848 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) { 10849 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 10850 CXXConstructorDecl *Constructor = 10851 LookupMovingConstructor(BaseClassDecl, 0); 10852 // If this is a deleted function, add it anyway. This might be conformant 10853 // with the standard. This might not. I'm not sure. It might not matter. 10854 if (Constructor) 10855 ExceptSpec.CalledDecl(B.getLocStart(), Constructor); 10856 } 10857 } 10858 10859 // Field constructors. 10860 for (const auto *F : ClassDecl->fields()) { 10861 QualType FieldType = Context.getBaseElementType(F->getType()); 10862 if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) { 10863 CXXConstructorDecl *Constructor = 10864 LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers()); 10865 // If this is a deleted function, add it anyway. This might be conformant 10866 // with the standard. This might not. I'm not sure. It might not matter. 10867 // In particular, the problem is that this function never gets called. It 10868 // might just be ill-formed because this function attempts to refer to 10869 // a deleted function here. 10870 if (Constructor) 10871 ExceptSpec.CalledDecl(F->getLocation(), Constructor); 10872 } 10873 } 10874 10875 return ExceptSpec; 10876 } 10877 10878 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 10879 CXXRecordDecl *ClassDecl) { 10880 assert(ClassDecl->needsImplicitMoveConstructor()); 10881 10882 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 10883 if (DSM.isAlreadyBeingDeclared()) 10884 return nullptr; 10885 10886 QualType ClassType = Context.getTypeDeclType(ClassDecl); 10887 QualType ArgType = Context.getRValueReferenceType(ClassType); 10888 10889 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 10890 CXXMoveConstructor, 10891 false); 10892 10893 DeclarationName Name 10894 = Context.DeclarationNames.getCXXConstructorName( 10895 Context.getCanonicalType(ClassType)); 10896 SourceLocation ClassLoc = ClassDecl->getLocation(); 10897 DeclarationNameInfo NameInfo(Name, ClassLoc); 10898 10899 // C++11 [class.copy]p11: 10900 // An implicitly-declared copy/move constructor is an inline public 10901 // member of its class. 10902 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 10903 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 10904 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true, 10905 Constexpr); 10906 MoveConstructor->setAccess(AS_public); 10907 MoveConstructor->setDefaulted(); 10908 10909 if (getLangOpts().CUDA) { 10910 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 10911 MoveConstructor, 10912 /* ConstRHS */ false, 10913 /* Diagnose */ false); 10914 } 10915 10916 // Build an exception specification pointing back at this member. 10917 FunctionProtoType::ExtProtoInfo EPI = 10918 getImplicitMethodEPI(*this, MoveConstructor); 10919 MoveConstructor->setType( 10920 Context.getFunctionType(Context.VoidTy, ArgType, EPI)); 10921 10922 // Add the parameter to the constructor. 10923 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 10924 ClassLoc, ClassLoc, 10925 /*IdentifierInfo=*/nullptr, 10926 ArgType, /*TInfo=*/nullptr, 10927 SC_None, nullptr); 10928 MoveConstructor->setParams(FromParam); 10929 10930 MoveConstructor->setTrivial( 10931 ClassDecl->needsOverloadResolutionForMoveConstructor() 10932 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 10933 : ClassDecl->hasTrivialMoveConstructor()); 10934 10935 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 10936 ClassDecl->setImplicitMoveConstructorIsDeleted(); 10937 SetDeclDeleted(MoveConstructor, ClassLoc); 10938 } 10939 10940 // Note that we have declared this constructor. 10941 ++ASTContext::NumImplicitMoveConstructorsDeclared; 10942 10943 if (Scope *S = getScopeForContext(ClassDecl)) 10944 PushOnScopeChains(MoveConstructor, S, false); 10945 ClassDecl->addDecl(MoveConstructor); 10946 10947 return MoveConstructor; 10948 } 10949 10950 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 10951 CXXConstructorDecl *MoveConstructor) { 10952 assert((MoveConstructor->isDefaulted() && 10953 MoveConstructor->isMoveConstructor() && 10954 !MoveConstructor->doesThisDeclarationHaveABody() && 10955 !MoveConstructor->isDeleted()) && 10956 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 10957 10958 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 10959 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 10960 10961 SynthesizedFunctionScope Scope(*this, MoveConstructor); 10962 DiagnosticErrorTrap Trap(Diags); 10963 10964 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) || 10965 Trap.hasErrorOccurred()) { 10966 Diag(CurrentLocation, diag::note_member_synthesized_at) 10967 << CXXMoveConstructor << Context.getTagDeclType(ClassDecl); 10968 MoveConstructor->setInvalidDecl(); 10969 } else { 10970 SourceLocation Loc = MoveConstructor->getLocEnd().isValid() 10971 ? MoveConstructor->getLocEnd() 10972 : MoveConstructor->getLocation(); 10973 Sema::CompoundScopeRAII CompoundScope(*this); 10974 MoveConstructor->setBody(ActOnCompoundStmt( 10975 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); 10976 } 10977 10978 // The exception specification is needed because we are defining the 10979 // function. 10980 ResolveExceptionSpec(CurrentLocation, 10981 MoveConstructor->getType()->castAs<FunctionProtoType>()); 10982 10983 MoveConstructor->markUsed(Context); 10984 MarkVTableUsed(CurrentLocation, ClassDecl); 10985 10986 if (ASTMutationListener *L = getASTMutationListener()) { 10987 L->CompletedImplicitDefinition(MoveConstructor); 10988 } 10989 } 10990 10991 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 10992 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 10993 } 10994 10995 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 10996 SourceLocation CurrentLocation, 10997 CXXConversionDecl *Conv) { 10998 CXXRecordDecl *Lambda = Conv->getParent(); 10999 CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 11000 // If we are defining a specialization of a conversion to function-ptr 11001 // cache the deduced template arguments for this specialization 11002 // so that we can use them to retrieve the corresponding call-operator 11003 // and static-invoker. 11004 const TemplateArgumentList *DeducedTemplateArgs = nullptr; 11005 11006 // Retrieve the corresponding call-operator specialization. 11007 if (Lambda->isGenericLambda()) { 11008 assert(Conv->isFunctionTemplateSpecialization()); 11009 FunctionTemplateDecl *CallOpTemplate = 11010 CallOp->getDescribedFunctionTemplate(); 11011 DeducedTemplateArgs = Conv->getTemplateSpecializationArgs(); 11012 void *InsertPos = nullptr; 11013 FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization( 11014 DeducedTemplateArgs->asArray(), 11015 InsertPos); 11016 assert(CallOpSpec && 11017 "Conversion operator must have a corresponding call operator"); 11018 CallOp = cast<CXXMethodDecl>(CallOpSpec); 11019 } 11020 // Mark the call operator referenced (and add to pending instantiations 11021 // if necessary). 11022 // For both the conversion and static-invoker template specializations 11023 // we construct their body's in this function, so no need to add them 11024 // to the PendingInstantiations. 11025 MarkFunctionReferenced(CurrentLocation, CallOp); 11026 11027 SynthesizedFunctionScope Scope(*this, Conv); 11028 DiagnosticErrorTrap Trap(Diags); 11029 11030 // Retrieve the static invoker... 11031 CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker(); 11032 // ... and get the corresponding specialization for a generic lambda. 11033 if (Lambda->isGenericLambda()) { 11034 assert(DeducedTemplateArgs && 11035 "Must have deduced template arguments from Conversion Operator"); 11036 FunctionTemplateDecl *InvokeTemplate = 11037 Invoker->getDescribedFunctionTemplate(); 11038 void *InsertPos = nullptr; 11039 FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization( 11040 DeducedTemplateArgs->asArray(), 11041 InsertPos); 11042 assert(InvokeSpec && 11043 "Must have a corresponding static invoker specialization"); 11044 Invoker = cast<CXXMethodDecl>(InvokeSpec); 11045 } 11046 // Construct the body of the conversion function { return __invoke; }. 11047 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), 11048 VK_LValue, Conv->getLocation()).get(); 11049 assert(FunctionRef && "Can't refer to __invoke function?"); 11050 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 11051 Conv->setBody(new (Context) CompoundStmt(Context, Return, 11052 Conv->getLocation(), 11053 Conv->getLocation())); 11054 11055 Conv->markUsed(Context); 11056 Conv->setReferenced(); 11057 11058 // Fill in the __invoke function with a dummy implementation. IR generation 11059 // will fill in the actual details. 11060 Invoker->markUsed(Context); 11061 Invoker->setReferenced(); 11062 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 11063 11064 if (ASTMutationListener *L = getASTMutationListener()) { 11065 L->CompletedImplicitDefinition(Conv); 11066 L->CompletedImplicitDefinition(Invoker); 11067 } 11068 } 11069 11070 11071 11072 void Sema::DefineImplicitLambdaToBlockPointerConversion( 11073 SourceLocation CurrentLocation, 11074 CXXConversionDecl *Conv) 11075 { 11076 assert(!Conv->getParent()->isGenericLambda()); 11077 11078 Conv->markUsed(Context); 11079 11080 SynthesizedFunctionScope Scope(*this, Conv); 11081 DiagnosticErrorTrap Trap(Diags); 11082 11083 // Copy-initialize the lambda object as needed to capture it. 11084 Expr *This = ActOnCXXThis(CurrentLocation).get(); 11085 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 11086 11087 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 11088 Conv->getLocation(), 11089 Conv, DerefThis); 11090 11091 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 11092 // behavior. Note that only the general conversion function does this 11093 // (since it's unusable otherwise); in the case where we inline the 11094 // block literal, it has block literal lifetime semantics. 11095 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 11096 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(), 11097 CK_CopyAndAutoreleaseBlockObject, 11098 BuildBlock.get(), nullptr, VK_RValue); 11099 11100 if (BuildBlock.isInvalid()) { 11101 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 11102 Conv->setInvalidDecl(); 11103 return; 11104 } 11105 11106 // Create the return statement that returns the block from the conversion 11107 // function. 11108 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 11109 if (Return.isInvalid()) { 11110 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 11111 Conv->setInvalidDecl(); 11112 return; 11113 } 11114 11115 // Set the body of the conversion function. 11116 Stmt *ReturnS = Return.get(); 11117 Conv->setBody(new (Context) CompoundStmt(Context, ReturnS, 11118 Conv->getLocation(), 11119 Conv->getLocation())); 11120 11121 // We're done; notify the mutation listener, if any. 11122 if (ASTMutationListener *L = getASTMutationListener()) { 11123 L->CompletedImplicitDefinition(Conv); 11124 } 11125 } 11126 11127 /// \brief Determine whether the given list arguments contains exactly one 11128 /// "real" (non-default) argument. 11129 static bool hasOneRealArgument(MultiExprArg Args) { 11130 switch (Args.size()) { 11131 case 0: 11132 return false; 11133 11134 default: 11135 if (!Args[1]->isDefaultArgument()) 11136 return false; 11137 11138 // fall through 11139 case 1: 11140 return !Args[0]->isDefaultArgument(); 11141 } 11142 11143 return false; 11144 } 11145 11146 ExprResult 11147 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 11148 CXXConstructorDecl *Constructor, 11149 MultiExprArg ExprArgs, 11150 bool HadMultipleCandidates, 11151 bool IsListInitialization, 11152 bool IsStdInitListInitialization, 11153 bool RequiresZeroInit, 11154 unsigned ConstructKind, 11155 SourceRange ParenRange) { 11156 bool Elidable = false; 11157 11158 // C++0x [class.copy]p34: 11159 // When certain criteria are met, an implementation is allowed to 11160 // omit the copy/move construction of a class object, even if the 11161 // copy/move constructor and/or destructor for the object have 11162 // side effects. [...] 11163 // - when a temporary class object that has not been bound to a 11164 // reference (12.2) would be copied/moved to a class object 11165 // with the same cv-unqualified type, the copy/move operation 11166 // can be omitted by constructing the temporary object 11167 // directly into the target of the omitted copy/move 11168 if (ConstructKind == CXXConstructExpr::CK_Complete && 11169 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 11170 Expr *SubExpr = ExprArgs[0]; 11171 Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent()); 11172 } 11173 11174 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, 11175 Elidable, ExprArgs, HadMultipleCandidates, 11176 IsListInitialization, 11177 IsStdInitListInitialization, RequiresZeroInit, 11178 ConstructKind, ParenRange); 11179 } 11180 11181 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 11182 /// including handling of its default argument expressions. 11183 ExprResult 11184 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 11185 CXXConstructorDecl *Constructor, bool Elidable, 11186 MultiExprArg ExprArgs, 11187 bool HadMultipleCandidates, 11188 bool IsListInitialization, 11189 bool IsStdInitListInitialization, 11190 bool RequiresZeroInit, 11191 unsigned ConstructKind, 11192 SourceRange ParenRange) { 11193 MarkFunctionReferenced(ConstructLoc, Constructor); 11194 return CXXConstructExpr::Create( 11195 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 11196 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 11197 RequiresZeroInit, 11198 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 11199 ParenRange); 11200 } 11201 11202 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { 11203 assert(Field->hasInClassInitializer()); 11204 11205 // If we already have the in-class initializer nothing needs to be done. 11206 if (Field->getInClassInitializer()) 11207 return CXXDefaultInitExpr::Create(Context, Loc, Field); 11208 11209 // Maybe we haven't instantiated the in-class initializer. Go check the 11210 // pattern FieldDecl to see if it has one. 11211 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); 11212 11213 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { 11214 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); 11215 DeclContext::lookup_result Lookup = 11216 ClassPattern->lookup(Field->getDeclName()); 11217 assert(Lookup.size() == 1); 11218 FieldDecl *Pattern = cast<FieldDecl>(Lookup[0]); 11219 if (InstantiateInClassInitializer(Loc, Field, Pattern, 11220 getTemplateInstantiationArgs(Field))) 11221 return ExprError(); 11222 return CXXDefaultInitExpr::Create(Context, Loc, Field); 11223 } 11224 11225 // DR1351: 11226 // If the brace-or-equal-initializer of a non-static data member 11227 // invokes a defaulted default constructor of its class or of an 11228 // enclosing class in a potentially evaluated subexpression, the 11229 // program is ill-formed. 11230 // 11231 // This resolution is unworkable: the exception specification of the 11232 // default constructor can be needed in an unevaluated context, in 11233 // particular, in the operand of a noexcept-expression, and we can be 11234 // unable to compute an exception specification for an enclosed class. 11235 // 11236 // Any attempt to resolve the exception specification of a defaulted default 11237 // constructor before the initializer is lexically complete will ultimately 11238 // come here at which point we can diagnose it. 11239 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); 11240 if (OutermostClass == ParentRD) { 11241 Diag(Field->getLocEnd(), diag::err_in_class_initializer_not_yet_parsed) 11242 << ParentRD << Field; 11243 } else { 11244 Diag(Field->getLocEnd(), 11245 diag::err_in_class_initializer_not_yet_parsed_outer_class) 11246 << ParentRD << OutermostClass << Field; 11247 } 11248 11249 return ExprError(); 11250 } 11251 11252 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 11253 if (VD->isInvalidDecl()) return; 11254 11255 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 11256 if (ClassDecl->isInvalidDecl()) return; 11257 if (ClassDecl->hasIrrelevantDestructor()) return; 11258 if (ClassDecl->isDependentContext()) return; 11259 11260 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 11261 MarkFunctionReferenced(VD->getLocation(), Destructor); 11262 CheckDestructorAccess(VD->getLocation(), Destructor, 11263 PDiag(diag::err_access_dtor_var) 11264 << VD->getDeclName() 11265 << VD->getType()); 11266 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 11267 11268 if (Destructor->isTrivial()) return; 11269 if (!VD->hasGlobalStorage()) return; 11270 11271 // Emit warning for non-trivial dtor in global scope (a real global, 11272 // class-static, function-static). 11273 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 11274 11275 // TODO: this should be re-enabled for static locals by !CXAAtExit 11276 if (!VD->isStaticLocal()) 11277 Diag(VD->getLocation(), diag::warn_global_destructor); 11278 } 11279 11280 /// \brief Given a constructor and the set of arguments provided for the 11281 /// constructor, convert the arguments and add any required default arguments 11282 /// to form a proper call to this constructor. 11283 /// 11284 /// \returns true if an error occurred, false otherwise. 11285 bool 11286 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 11287 MultiExprArg ArgsPtr, 11288 SourceLocation Loc, 11289 SmallVectorImpl<Expr*> &ConvertedArgs, 11290 bool AllowExplicit, 11291 bool IsListInitialization) { 11292 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 11293 unsigned NumArgs = ArgsPtr.size(); 11294 Expr **Args = ArgsPtr.data(); 11295 11296 const FunctionProtoType *Proto 11297 = Constructor->getType()->getAs<FunctionProtoType>(); 11298 assert(Proto && "Constructor without a prototype?"); 11299 unsigned NumParams = Proto->getNumParams(); 11300 11301 // If too few arguments are available, we'll fill in the rest with defaults. 11302 if (NumArgs < NumParams) 11303 ConvertedArgs.reserve(NumParams); 11304 else 11305 ConvertedArgs.reserve(NumArgs); 11306 11307 VariadicCallType CallType = 11308 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 11309 SmallVector<Expr *, 8> AllArgs; 11310 bool Invalid = GatherArgumentsForCall(Loc, Constructor, 11311 Proto, 0, 11312 llvm::makeArrayRef(Args, NumArgs), 11313 AllArgs, 11314 CallType, AllowExplicit, 11315 IsListInitialization); 11316 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 11317 11318 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 11319 11320 CheckConstructorCall(Constructor, 11321 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), 11322 Proto, Loc); 11323 11324 return Invalid; 11325 } 11326 11327 static inline bool 11328 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 11329 const FunctionDecl *FnDecl) { 11330 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 11331 if (isa<NamespaceDecl>(DC)) { 11332 return SemaRef.Diag(FnDecl->getLocation(), 11333 diag::err_operator_new_delete_declared_in_namespace) 11334 << FnDecl->getDeclName(); 11335 } 11336 11337 if (isa<TranslationUnitDecl>(DC) && 11338 FnDecl->getStorageClass() == SC_Static) { 11339 return SemaRef.Diag(FnDecl->getLocation(), 11340 diag::err_operator_new_delete_declared_static) 11341 << FnDecl->getDeclName(); 11342 } 11343 11344 return false; 11345 } 11346 11347 static inline bool 11348 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 11349 CanQualType ExpectedResultType, 11350 CanQualType ExpectedFirstParamType, 11351 unsigned DependentParamTypeDiag, 11352 unsigned InvalidParamTypeDiag) { 11353 QualType ResultType = 11354 FnDecl->getType()->getAs<FunctionType>()->getReturnType(); 11355 11356 // Check that the result type is not dependent. 11357 if (ResultType->isDependentType()) 11358 return SemaRef.Diag(FnDecl->getLocation(), 11359 diag::err_operator_new_delete_dependent_result_type) 11360 << FnDecl->getDeclName() << ExpectedResultType; 11361 11362 // Check that the result type is what we expect. 11363 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) 11364 return SemaRef.Diag(FnDecl->getLocation(), 11365 diag::err_operator_new_delete_invalid_result_type) 11366 << FnDecl->getDeclName() << ExpectedResultType; 11367 11368 // A function template must have at least 2 parameters. 11369 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 11370 return SemaRef.Diag(FnDecl->getLocation(), 11371 diag::err_operator_new_delete_template_too_few_parameters) 11372 << FnDecl->getDeclName(); 11373 11374 // The function decl must have at least 1 parameter. 11375 if (FnDecl->getNumParams() == 0) 11376 return SemaRef.Diag(FnDecl->getLocation(), 11377 diag::err_operator_new_delete_too_few_parameters) 11378 << FnDecl->getDeclName(); 11379 11380 // Check the first parameter type is not dependent. 11381 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 11382 if (FirstParamType->isDependentType()) 11383 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) 11384 << FnDecl->getDeclName() << ExpectedFirstParamType; 11385 11386 // Check that the first parameter type is what we expect. 11387 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 11388 ExpectedFirstParamType) 11389 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) 11390 << FnDecl->getDeclName() << ExpectedFirstParamType; 11391 11392 return false; 11393 } 11394 11395 static bool 11396 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 11397 // C++ [basic.stc.dynamic.allocation]p1: 11398 // A program is ill-formed if an allocation function is declared in a 11399 // namespace scope other than global scope or declared static in global 11400 // scope. 11401 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 11402 return true; 11403 11404 CanQualType SizeTy = 11405 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 11406 11407 // C++ [basic.stc.dynamic.allocation]p1: 11408 // The return type shall be void*. The first parameter shall have type 11409 // std::size_t. 11410 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 11411 SizeTy, 11412 diag::err_operator_new_dependent_param_type, 11413 diag::err_operator_new_param_type)) 11414 return true; 11415 11416 // C++ [basic.stc.dynamic.allocation]p1: 11417 // The first parameter shall not have an associated default argument. 11418 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 11419 return SemaRef.Diag(FnDecl->getLocation(), 11420 diag::err_operator_new_default_arg) 11421 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 11422 11423 return false; 11424 } 11425 11426 static bool 11427 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 11428 // C++ [basic.stc.dynamic.deallocation]p1: 11429 // A program is ill-formed if deallocation functions are declared in a 11430 // namespace scope other than global scope or declared static in global 11431 // scope. 11432 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 11433 return true; 11434 11435 // C++ [basic.stc.dynamic.deallocation]p2: 11436 // Each deallocation function shall return void and its first parameter 11437 // shall be void*. 11438 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, 11439 SemaRef.Context.VoidPtrTy, 11440 diag::err_operator_delete_dependent_param_type, 11441 diag::err_operator_delete_param_type)) 11442 return true; 11443 11444 return false; 11445 } 11446 11447 /// CheckOverloadedOperatorDeclaration - Check whether the declaration 11448 /// of this overloaded operator is well-formed. If so, returns false; 11449 /// otherwise, emits appropriate diagnostics and returns true. 11450 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 11451 assert(FnDecl && FnDecl->isOverloadedOperator() && 11452 "Expected an overloaded operator declaration"); 11453 11454 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 11455 11456 // C++ [over.oper]p5: 11457 // The allocation and deallocation functions, operator new, 11458 // operator new[], operator delete and operator delete[], are 11459 // described completely in 3.7.3. The attributes and restrictions 11460 // found in the rest of this subclause do not apply to them unless 11461 // explicitly stated in 3.7.3. 11462 if (Op == OO_Delete || Op == OO_Array_Delete) 11463 return CheckOperatorDeleteDeclaration(*this, FnDecl); 11464 11465 if (Op == OO_New || Op == OO_Array_New) 11466 return CheckOperatorNewDeclaration(*this, FnDecl); 11467 11468 // C++ [over.oper]p6: 11469 // An operator function shall either be a non-static member 11470 // function or be a non-member function and have at least one 11471 // parameter whose type is a class, a reference to a class, an 11472 // enumeration, or a reference to an enumeration. 11473 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 11474 if (MethodDecl->isStatic()) 11475 return Diag(FnDecl->getLocation(), 11476 diag::err_operator_overload_static) << FnDecl->getDeclName(); 11477 } else { 11478 bool ClassOrEnumParam = false; 11479 for (auto Param : FnDecl->params()) { 11480 QualType ParamType = Param->getType().getNonReferenceType(); 11481 if (ParamType->isDependentType() || ParamType->isRecordType() || 11482 ParamType->isEnumeralType()) { 11483 ClassOrEnumParam = true; 11484 break; 11485 } 11486 } 11487 11488 if (!ClassOrEnumParam) 11489 return Diag(FnDecl->getLocation(), 11490 diag::err_operator_overload_needs_class_or_enum) 11491 << FnDecl->getDeclName(); 11492 } 11493 11494 // C++ [over.oper]p8: 11495 // An operator function cannot have default arguments (8.3.6), 11496 // except where explicitly stated below. 11497 // 11498 // Only the function-call operator allows default arguments 11499 // (C++ [over.call]p1). 11500 if (Op != OO_Call) { 11501 for (auto Param : FnDecl->params()) { 11502 if (Param->hasDefaultArg()) 11503 return Diag(Param->getLocation(), 11504 diag::err_operator_overload_default_arg) 11505 << FnDecl->getDeclName() << Param->getDefaultArgRange(); 11506 } 11507 } 11508 11509 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 11510 { false, false, false } 11511 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 11512 , { Unary, Binary, MemberOnly } 11513 #include "clang/Basic/OperatorKinds.def" 11514 }; 11515 11516 bool CanBeUnaryOperator = OperatorUses[Op][0]; 11517 bool CanBeBinaryOperator = OperatorUses[Op][1]; 11518 bool MustBeMemberOperator = OperatorUses[Op][2]; 11519 11520 // C++ [over.oper]p8: 11521 // [...] Operator functions cannot have more or fewer parameters 11522 // than the number required for the corresponding operator, as 11523 // described in the rest of this subclause. 11524 unsigned NumParams = FnDecl->getNumParams() 11525 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 11526 if (Op != OO_Call && 11527 ((NumParams == 1 && !CanBeUnaryOperator) || 11528 (NumParams == 2 && !CanBeBinaryOperator) || 11529 (NumParams < 1) || (NumParams > 2))) { 11530 // We have the wrong number of parameters. 11531 unsigned ErrorKind; 11532 if (CanBeUnaryOperator && CanBeBinaryOperator) { 11533 ErrorKind = 2; // 2 -> unary or binary. 11534 } else if (CanBeUnaryOperator) { 11535 ErrorKind = 0; // 0 -> unary 11536 } else { 11537 assert(CanBeBinaryOperator && 11538 "All non-call overloaded operators are unary or binary!"); 11539 ErrorKind = 1; // 1 -> binary 11540 } 11541 11542 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 11543 << FnDecl->getDeclName() << NumParams << ErrorKind; 11544 } 11545 11546 // Overloaded operators other than operator() cannot be variadic. 11547 if (Op != OO_Call && 11548 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { 11549 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 11550 << FnDecl->getDeclName(); 11551 } 11552 11553 // Some operators must be non-static member functions. 11554 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 11555 return Diag(FnDecl->getLocation(), 11556 diag::err_operator_overload_must_be_member) 11557 << FnDecl->getDeclName(); 11558 } 11559 11560 // C++ [over.inc]p1: 11561 // The user-defined function called operator++ implements the 11562 // prefix and postfix ++ operator. If this function is a member 11563 // function with no parameters, or a non-member function with one 11564 // parameter of class or enumeration type, it defines the prefix 11565 // increment operator ++ for objects of that type. If the function 11566 // is a member function with one parameter (which shall be of type 11567 // int) or a non-member function with two parameters (the second 11568 // of which shall be of type int), it defines the postfix 11569 // increment operator ++ for objects of that type. 11570 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 11571 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 11572 QualType ParamType = LastParam->getType(); 11573 11574 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 11575 !ParamType->isDependentType()) 11576 return Diag(LastParam->getLocation(), 11577 diag::err_operator_overload_post_incdec_must_be_int) 11578 << LastParam->getType() << (Op == OO_MinusMinus); 11579 } 11580 11581 return false; 11582 } 11583 11584 /// CheckLiteralOperatorDeclaration - Check whether the declaration 11585 /// of this literal operator function is well-formed. If so, returns 11586 /// false; otherwise, emits appropriate diagnostics and returns true. 11587 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 11588 if (isa<CXXMethodDecl>(FnDecl)) { 11589 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 11590 << FnDecl->getDeclName(); 11591 return true; 11592 } 11593 11594 if (FnDecl->isExternC()) { 11595 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 11596 return true; 11597 } 11598 11599 bool Valid = false; 11600 11601 // This might be the definition of a literal operator template. 11602 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 11603 // This might be a specialization of a literal operator template. 11604 if (!TpDecl) 11605 TpDecl = FnDecl->getPrimaryTemplate(); 11606 11607 // template <char...> type operator "" name() and 11608 // template <class T, T...> type operator "" name() are the only valid 11609 // template signatures, and the only valid signatures with no parameters. 11610 if (TpDecl) { 11611 if (FnDecl->param_size() == 0) { 11612 // Must have one or two template parameters 11613 TemplateParameterList *Params = TpDecl->getTemplateParameters(); 11614 if (Params->size() == 1) { 11615 NonTypeTemplateParmDecl *PmDecl = 11616 dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0)); 11617 11618 // The template parameter must be a char parameter pack. 11619 if (PmDecl && PmDecl->isTemplateParameterPack() && 11620 Context.hasSameType(PmDecl->getType(), Context.CharTy)) 11621 Valid = true; 11622 } else if (Params->size() == 2) { 11623 TemplateTypeParmDecl *PmType = 11624 dyn_cast<TemplateTypeParmDecl>(Params->getParam(0)); 11625 NonTypeTemplateParmDecl *PmArgs = 11626 dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 11627 11628 // The second template parameter must be a parameter pack with the 11629 // first template parameter as its type. 11630 if (PmType && PmArgs && 11631 !PmType->isTemplateParameterPack() && 11632 PmArgs->isTemplateParameterPack()) { 11633 const TemplateTypeParmType *TArgs = 11634 PmArgs->getType()->getAs<TemplateTypeParmType>(); 11635 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 11636 TArgs->getIndex() == PmType->getIndex()) { 11637 Valid = true; 11638 if (ActiveTemplateInstantiations.empty()) 11639 Diag(FnDecl->getLocation(), 11640 diag::ext_string_literal_operator_template); 11641 } 11642 } 11643 } 11644 } 11645 } else if (FnDecl->param_size()) { 11646 // Check the first parameter 11647 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 11648 11649 QualType T = (*Param)->getType().getUnqualifiedType(); 11650 11651 // unsigned long long int, long double, and any character type are allowed 11652 // as the only parameters. 11653 if (Context.hasSameType(T, Context.UnsignedLongLongTy) || 11654 Context.hasSameType(T, Context.LongDoubleTy) || 11655 Context.hasSameType(T, Context.CharTy) || 11656 Context.hasSameType(T, Context.WideCharTy) || 11657 Context.hasSameType(T, Context.Char16Ty) || 11658 Context.hasSameType(T, Context.Char32Ty)) { 11659 if (++Param == FnDecl->param_end()) 11660 Valid = true; 11661 goto FinishedParams; 11662 } 11663 11664 // Otherwise it must be a pointer to const; let's strip those qualifiers. 11665 const PointerType *PT = T->getAs<PointerType>(); 11666 if (!PT) 11667 goto FinishedParams; 11668 T = PT->getPointeeType(); 11669 if (!T.isConstQualified() || T.isVolatileQualified()) 11670 goto FinishedParams; 11671 T = T.getUnqualifiedType(); 11672 11673 // Move on to the second parameter; 11674 ++Param; 11675 11676 // If there is no second parameter, the first must be a const char * 11677 if (Param == FnDecl->param_end()) { 11678 if (Context.hasSameType(T, Context.CharTy)) 11679 Valid = true; 11680 goto FinishedParams; 11681 } 11682 11683 // const char *, const wchar_t*, const char16_t*, and const char32_t* 11684 // are allowed as the first parameter to a two-parameter function 11685 if (!(Context.hasSameType(T, Context.CharTy) || 11686 Context.hasSameType(T, Context.WideCharTy) || 11687 Context.hasSameType(T, Context.Char16Ty) || 11688 Context.hasSameType(T, Context.Char32Ty))) 11689 goto FinishedParams; 11690 11691 // The second and final parameter must be an std::size_t 11692 T = (*Param)->getType().getUnqualifiedType(); 11693 if (Context.hasSameType(T, Context.getSizeType()) && 11694 ++Param == FnDecl->param_end()) 11695 Valid = true; 11696 } 11697 11698 // FIXME: This diagnostic is absolutely terrible. 11699 FinishedParams: 11700 if (!Valid) { 11701 Diag(FnDecl->getLocation(), diag::err_literal_operator_params) 11702 << FnDecl->getDeclName(); 11703 return true; 11704 } 11705 11706 // A parameter-declaration-clause containing a default argument is not 11707 // equivalent to any of the permitted forms. 11708 for (auto Param : FnDecl->params()) { 11709 if (Param->hasDefaultArg()) { 11710 Diag(Param->getDefaultArgRange().getBegin(), 11711 diag::err_literal_operator_default_argument) 11712 << Param->getDefaultArgRange(); 11713 break; 11714 } 11715 } 11716 11717 StringRef LiteralName 11718 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); 11719 if (LiteralName[0] != '_') { 11720 // C++11 [usrlit.suffix]p1: 11721 // Literal suffix identifiers that do not start with an underscore 11722 // are reserved for future standardization. 11723 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 11724 << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); 11725 } 11726 11727 return false; 11728 } 11729 11730 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 11731 /// linkage specification, including the language and (if present) 11732 /// the '{'. ExternLoc is the location of the 'extern', Lang is the 11733 /// language string literal. LBraceLoc, if valid, provides the location of 11734 /// the '{' brace. Otherwise, this linkage specification does not 11735 /// have any braces. 11736 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 11737 Expr *LangStr, 11738 SourceLocation LBraceLoc) { 11739 StringLiteral *Lit = cast<StringLiteral>(LangStr); 11740 if (!Lit->isAscii()) { 11741 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) 11742 << LangStr->getSourceRange(); 11743 return nullptr; 11744 } 11745 11746 StringRef Lang = Lit->getString(); 11747 LinkageSpecDecl::LanguageIDs Language; 11748 if (Lang == "C") 11749 Language = LinkageSpecDecl::lang_c; 11750 else if (Lang == "C++") 11751 Language = LinkageSpecDecl::lang_cxx; 11752 else { 11753 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 11754 << LangStr->getSourceRange(); 11755 return nullptr; 11756 } 11757 11758 // FIXME: Add all the various semantics of linkage specifications 11759 11760 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 11761 LangStr->getExprLoc(), Language, 11762 LBraceLoc.isValid()); 11763 CurContext->addDecl(D); 11764 PushDeclContext(S, D); 11765 return D; 11766 } 11767 11768 /// ActOnFinishLinkageSpecification - Complete the definition of 11769 /// the C++ linkage specification LinkageSpec. If RBraceLoc is 11770 /// valid, it's the position of the closing '}' brace in a linkage 11771 /// specification that uses braces. 11772 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 11773 Decl *LinkageSpec, 11774 SourceLocation RBraceLoc) { 11775 if (RBraceLoc.isValid()) { 11776 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 11777 LSDecl->setRBraceLoc(RBraceLoc); 11778 } 11779 PopDeclContext(); 11780 return LinkageSpec; 11781 } 11782 11783 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 11784 AttributeList *AttrList, 11785 SourceLocation SemiLoc) { 11786 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 11787 // Attribute declarations appertain to empty declaration so we handle 11788 // them here. 11789 if (AttrList) 11790 ProcessDeclAttributeList(S, ED, AttrList); 11791 11792 CurContext->addDecl(ED); 11793 return ED; 11794 } 11795 11796 /// \brief Perform semantic analysis for the variable declaration that 11797 /// occurs within a C++ catch clause, returning the newly-created 11798 /// variable. 11799 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 11800 TypeSourceInfo *TInfo, 11801 SourceLocation StartLoc, 11802 SourceLocation Loc, 11803 IdentifierInfo *Name) { 11804 bool Invalid = false; 11805 QualType ExDeclType = TInfo->getType(); 11806 11807 // Arrays and functions decay. 11808 if (ExDeclType->isArrayType()) 11809 ExDeclType = Context.getArrayDecayedType(ExDeclType); 11810 else if (ExDeclType->isFunctionType()) 11811 ExDeclType = Context.getPointerType(ExDeclType); 11812 11813 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 11814 // The exception-declaration shall not denote a pointer or reference to an 11815 // incomplete type, other than [cv] void*. 11816 // N2844 forbids rvalue references. 11817 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 11818 Diag(Loc, diag::err_catch_rvalue_ref); 11819 Invalid = true; 11820 } 11821 11822 QualType BaseType = ExDeclType; 11823 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 11824 unsigned DK = diag::err_catch_incomplete; 11825 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 11826 BaseType = Ptr->getPointeeType(); 11827 Mode = 1; 11828 DK = diag::err_catch_incomplete_ptr; 11829 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 11830 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 11831 BaseType = Ref->getPointeeType(); 11832 Mode = 2; 11833 DK = diag::err_catch_incomplete_ref; 11834 } 11835 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 11836 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 11837 Invalid = true; 11838 11839 if (!Invalid && !ExDeclType->isDependentType() && 11840 RequireNonAbstractType(Loc, ExDeclType, 11841 diag::err_abstract_type_in_decl, 11842 AbstractVariableType)) 11843 Invalid = true; 11844 11845 // Only the non-fragile NeXT runtime currently supports C++ catches 11846 // of ObjC types, and no runtime supports catching ObjC types by value. 11847 if (!Invalid && getLangOpts().ObjC1) { 11848 QualType T = ExDeclType; 11849 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 11850 T = RT->getPointeeType(); 11851 11852 if (T->isObjCObjectType()) { 11853 Diag(Loc, diag::err_objc_object_catch); 11854 Invalid = true; 11855 } else if (T->isObjCObjectPointerType()) { 11856 // FIXME: should this be a test for macosx-fragile specifically? 11857 if (getLangOpts().ObjCRuntime.isFragile()) 11858 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 11859 } 11860 } 11861 11862 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 11863 ExDeclType, TInfo, SC_None); 11864 ExDecl->setExceptionVariable(true); 11865 11866 // In ARC, infer 'retaining' for variables of retainable type. 11867 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 11868 Invalid = true; 11869 11870 if (!Invalid && !ExDeclType->isDependentType()) { 11871 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 11872 // Insulate this from anything else we might currently be parsing. 11873 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated); 11874 11875 // C++ [except.handle]p16: 11876 // The object declared in an exception-declaration or, if the 11877 // exception-declaration does not specify a name, a temporary (12.2) is 11878 // copy-initialized (8.5) from the exception object. [...] 11879 // The object is destroyed when the handler exits, after the destruction 11880 // of any automatic objects initialized within the handler. 11881 // 11882 // We just pretend to initialize the object with itself, then make sure 11883 // it can be destroyed later. 11884 QualType initType = ExDeclType; 11885 11886 InitializedEntity entity = 11887 InitializedEntity::InitializeVariable(ExDecl); 11888 InitializationKind initKind = 11889 InitializationKind::CreateCopy(Loc, SourceLocation()); 11890 11891 Expr *opaqueValue = 11892 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 11893 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 11894 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 11895 if (result.isInvalid()) 11896 Invalid = true; 11897 else { 11898 // If the constructor used was non-trivial, set this as the 11899 // "initializer". 11900 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 11901 if (!construct->getConstructor()->isTrivial()) { 11902 Expr *init = MaybeCreateExprWithCleanups(construct); 11903 ExDecl->setInit(init); 11904 } 11905 11906 // And make sure it's destructable. 11907 FinalizeVarWithDestructor(ExDecl, recordType); 11908 } 11909 } 11910 } 11911 11912 if (Invalid) 11913 ExDecl->setInvalidDecl(); 11914 11915 return ExDecl; 11916 } 11917 11918 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 11919 /// handler. 11920 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 11921 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 11922 bool Invalid = D.isInvalidType(); 11923 11924 // Check for unexpanded parameter packs. 11925 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 11926 UPPC_ExceptionType)) { 11927 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 11928 D.getIdentifierLoc()); 11929 Invalid = true; 11930 } 11931 11932 IdentifierInfo *II = D.getIdentifier(); 11933 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 11934 LookupOrdinaryName, 11935 ForRedeclaration)) { 11936 // The scope should be freshly made just for us. There is just no way 11937 // it contains any previous declaration, except for function parameters in 11938 // a function-try-block's catch statement. 11939 assert(!S->isDeclScope(PrevDecl)); 11940 if (isDeclInScope(PrevDecl, CurContext, S)) { 11941 Diag(D.getIdentifierLoc(), diag::err_redefinition) 11942 << D.getIdentifier(); 11943 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11944 Invalid = true; 11945 } else if (PrevDecl->isTemplateParameter()) 11946 // Maybe we will complain about the shadowed template parameter. 11947 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 11948 } 11949 11950 if (D.getCXXScopeSpec().isSet() && !Invalid) { 11951 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 11952 << D.getCXXScopeSpec().getRange(); 11953 Invalid = true; 11954 } 11955 11956 VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo, 11957 D.getLocStart(), 11958 D.getIdentifierLoc(), 11959 D.getIdentifier()); 11960 if (Invalid) 11961 ExDecl->setInvalidDecl(); 11962 11963 // Add the exception declaration into this scope. 11964 if (II) 11965 PushOnScopeChains(ExDecl, S); 11966 else 11967 CurContext->addDecl(ExDecl); 11968 11969 ProcessDeclAttributes(S, ExDecl, D); 11970 return ExDecl; 11971 } 11972 11973 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 11974 Expr *AssertExpr, 11975 Expr *AssertMessageExpr, 11976 SourceLocation RParenLoc) { 11977 StringLiteral *AssertMessage = 11978 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; 11979 11980 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 11981 return nullptr; 11982 11983 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 11984 AssertMessage, RParenLoc, false); 11985 } 11986 11987 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 11988 Expr *AssertExpr, 11989 StringLiteral *AssertMessage, 11990 SourceLocation RParenLoc, 11991 bool Failed) { 11992 assert(AssertExpr != nullptr && "Expected non-null condition"); 11993 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 11994 !Failed) { 11995 // In a static_assert-declaration, the constant-expression shall be a 11996 // constant expression that can be contextually converted to bool. 11997 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 11998 if (Converted.isInvalid()) 11999 Failed = true; 12000 12001 llvm::APSInt Cond; 12002 if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond, 12003 diag::err_static_assert_expression_is_not_constant, 12004 /*AllowFold=*/false).isInvalid()) 12005 Failed = true; 12006 12007 if (!Failed && !Cond) { 12008 SmallString<256> MsgBuffer; 12009 llvm::raw_svector_ostream Msg(MsgBuffer); 12010 if (AssertMessage) 12011 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy()); 12012 Diag(StaticAssertLoc, diag::err_static_assert_failed) 12013 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 12014 Failed = true; 12015 } 12016 } 12017 12018 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 12019 AssertExpr, AssertMessage, RParenLoc, 12020 Failed); 12021 12022 CurContext->addDecl(Decl); 12023 return Decl; 12024 } 12025 12026 /// \brief Perform semantic analysis of the given friend type declaration. 12027 /// 12028 /// \returns A friend declaration that. 12029 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 12030 SourceLocation FriendLoc, 12031 TypeSourceInfo *TSInfo) { 12032 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); 12033 12034 QualType T = TSInfo->getType(); 12035 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); 12036 12037 // C++03 [class.friend]p2: 12038 // An elaborated-type-specifier shall be used in a friend declaration 12039 // for a class.* 12040 // 12041 // * The class-key of the elaborated-type-specifier is required. 12042 if (!ActiveTemplateInstantiations.empty()) { 12043 // Do not complain about the form of friend template types during 12044 // template instantiation; we will already have complained when the 12045 // template was declared. 12046 } else { 12047 if (!T->isElaboratedTypeSpecifier()) { 12048 // If we evaluated the type to a record type, suggest putting 12049 // a tag in front. 12050 if (const RecordType *RT = T->getAs<RecordType>()) { 12051 RecordDecl *RD = RT->getDecl(); 12052 12053 SmallString<16> InsertionText(" "); 12054 InsertionText += RD->getKindName(); 12055 12056 Diag(TypeRange.getBegin(), 12057 getLangOpts().CPlusPlus11 ? 12058 diag::warn_cxx98_compat_unelaborated_friend_type : 12059 diag::ext_unelaborated_friend_type) 12060 << (unsigned) RD->getTagKind() 12061 << T 12062 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc), 12063 InsertionText); 12064 } else { 12065 Diag(FriendLoc, 12066 getLangOpts().CPlusPlus11 ? 12067 diag::warn_cxx98_compat_nonclass_type_friend : 12068 diag::ext_nonclass_type_friend) 12069 << T 12070 << TypeRange; 12071 } 12072 } else if (T->getAs<EnumType>()) { 12073 Diag(FriendLoc, 12074 getLangOpts().CPlusPlus11 ? 12075 diag::warn_cxx98_compat_enum_friend : 12076 diag::ext_enum_friend) 12077 << T 12078 << TypeRange; 12079 } 12080 12081 // C++11 [class.friend]p3: 12082 // A friend declaration that does not declare a function shall have one 12083 // of the following forms: 12084 // friend elaborated-type-specifier ; 12085 // friend simple-type-specifier ; 12086 // friend typename-specifier ; 12087 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 12088 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 12089 } 12090 12091 // If the type specifier in a friend declaration designates a (possibly 12092 // cv-qualified) class type, that class is declared as a friend; otherwise, 12093 // the friend declaration is ignored. 12094 return FriendDecl::Create(Context, CurContext, 12095 TSInfo->getTypeLoc().getLocStart(), TSInfo, 12096 FriendLoc); 12097 } 12098 12099 /// Handle a friend tag declaration where the scope specifier was 12100 /// templated. 12101 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, 12102 unsigned TagSpec, SourceLocation TagLoc, 12103 CXXScopeSpec &SS, 12104 IdentifierInfo *Name, 12105 SourceLocation NameLoc, 12106 AttributeList *Attr, 12107 MultiTemplateParamsArg TempParamLists) { 12108 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 12109 12110 bool isExplicitSpecialization = false; 12111 bool Invalid = false; 12112 12113 if (TemplateParameterList *TemplateParams = 12114 MatchTemplateParametersToScopeSpecifier( 12115 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 12116 isExplicitSpecialization, Invalid)) { 12117 if (TemplateParams->size() > 0) { 12118 // This is a declaration of a class template. 12119 if (Invalid) 12120 return nullptr; 12121 12122 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 12123 NameLoc, Attr, TemplateParams, AS_public, 12124 /*ModulePrivateLoc=*/SourceLocation(), 12125 FriendLoc, TempParamLists.size() - 1, 12126 TempParamLists.data()).get(); 12127 } else { 12128 // The "template<>" header is extraneous. 12129 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 12130 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 12131 isExplicitSpecialization = true; 12132 } 12133 } 12134 12135 if (Invalid) return nullptr; 12136 12137 bool isAllExplicitSpecializations = true; 12138 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 12139 if (TempParamLists[I]->size()) { 12140 isAllExplicitSpecializations = false; 12141 break; 12142 } 12143 } 12144 12145 // FIXME: don't ignore attributes. 12146 12147 // If it's explicit specializations all the way down, just forget 12148 // about the template header and build an appropriate non-templated 12149 // friend. TODO: for source fidelity, remember the headers. 12150 if (isAllExplicitSpecializations) { 12151 if (SS.isEmpty()) { 12152 bool Owned = false; 12153 bool IsDependent = false; 12154 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, 12155 Attr, AS_public, 12156 /*ModulePrivateLoc=*/SourceLocation(), 12157 MultiTemplateParamsArg(), Owned, IsDependent, 12158 /*ScopedEnumKWLoc=*/SourceLocation(), 12159 /*ScopedEnumUsesClassTag=*/false, 12160 /*UnderlyingType=*/TypeResult(), 12161 /*IsTypeSpecifier=*/false); 12162 } 12163 12164 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 12165 ElaboratedTypeKeyword Keyword 12166 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 12167 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 12168 *Name, NameLoc); 12169 if (T.isNull()) 12170 return nullptr; 12171 12172 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 12173 if (isa<DependentNameType>(T)) { 12174 DependentNameTypeLoc TL = 12175 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 12176 TL.setElaboratedKeywordLoc(TagLoc); 12177 TL.setQualifierLoc(QualifierLoc); 12178 TL.setNameLoc(NameLoc); 12179 } else { 12180 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 12181 TL.setElaboratedKeywordLoc(TagLoc); 12182 TL.setQualifierLoc(QualifierLoc); 12183 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 12184 } 12185 12186 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 12187 TSI, FriendLoc, TempParamLists); 12188 Friend->setAccess(AS_public); 12189 CurContext->addDecl(Friend); 12190 return Friend; 12191 } 12192 12193 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 12194 12195 12196 12197 // Handle the case of a templated-scope friend class. e.g. 12198 // template <class T> class A<T>::B; 12199 // FIXME: we don't support these right now. 12200 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 12201 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 12202 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 12203 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 12204 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 12205 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 12206 TL.setElaboratedKeywordLoc(TagLoc); 12207 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 12208 TL.setNameLoc(NameLoc); 12209 12210 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 12211 TSI, FriendLoc, TempParamLists); 12212 Friend->setAccess(AS_public); 12213 Friend->setUnsupportedFriend(true); 12214 CurContext->addDecl(Friend); 12215 return Friend; 12216 } 12217 12218 12219 /// Handle a friend type declaration. This works in tandem with 12220 /// ActOnTag. 12221 /// 12222 /// Notes on friend class templates: 12223 /// 12224 /// We generally treat friend class declarations as if they were 12225 /// declaring a class. So, for example, the elaborated type specifier 12226 /// in a friend declaration is required to obey the restrictions of a 12227 /// class-head (i.e. no typedefs in the scope chain), template 12228 /// parameters are required to match up with simple template-ids, &c. 12229 /// However, unlike when declaring a template specialization, it's 12230 /// okay to refer to a template specialization without an empty 12231 /// template parameter declaration, e.g. 12232 /// friend class A<T>::B<unsigned>; 12233 /// We permit this as a special case; if there are any template 12234 /// parameters present at all, require proper matching, i.e. 12235 /// template <> template \<class T> friend class A<int>::B; 12236 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 12237 MultiTemplateParamsArg TempParams) { 12238 SourceLocation Loc = DS.getLocStart(); 12239 12240 assert(DS.isFriendSpecified()); 12241 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 12242 12243 // Try to convert the decl specifier to a type. This works for 12244 // friend templates because ActOnTag never produces a ClassTemplateDecl 12245 // for a TUK_Friend. 12246 Declarator TheDeclarator(DS, Declarator::MemberContext); 12247 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 12248 QualType T = TSI->getType(); 12249 if (TheDeclarator.isInvalidType()) 12250 return nullptr; 12251 12252 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 12253 return nullptr; 12254 12255 // This is definitely an error in C++98. It's probably meant to 12256 // be forbidden in C++0x, too, but the specification is just 12257 // poorly written. 12258 // 12259 // The problem is with declarations like the following: 12260 // template <T> friend A<T>::foo; 12261 // where deciding whether a class C is a friend or not now hinges 12262 // on whether there exists an instantiation of A that causes 12263 // 'foo' to equal C. There are restrictions on class-heads 12264 // (which we declare (by fiat) elaborated friend declarations to 12265 // be) that makes this tractable. 12266 // 12267 // FIXME: handle "template <> friend class A<T>;", which 12268 // is possibly well-formed? Who even knows? 12269 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 12270 Diag(Loc, diag::err_tagless_friend_type_template) 12271 << DS.getSourceRange(); 12272 return nullptr; 12273 } 12274 12275 // C++98 [class.friend]p1: A friend of a class is a function 12276 // or class that is not a member of the class . . . 12277 // This is fixed in DR77, which just barely didn't make the C++03 12278 // deadline. It's also a very silly restriction that seriously 12279 // affects inner classes and which nobody else seems to implement; 12280 // thus we never diagnose it, not even in -pedantic. 12281 // 12282 // But note that we could warn about it: it's always useless to 12283 // friend one of your own members (it's not, however, worthless to 12284 // friend a member of an arbitrary specialization of your template). 12285 12286 Decl *D; 12287 if (unsigned NumTempParamLists = TempParams.size()) 12288 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 12289 NumTempParamLists, 12290 TempParams.data(), 12291 TSI, 12292 DS.getFriendSpecLoc()); 12293 else 12294 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 12295 12296 if (!D) 12297 return nullptr; 12298 12299 D->setAccess(AS_public); 12300 CurContext->addDecl(D); 12301 12302 return D; 12303 } 12304 12305 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 12306 MultiTemplateParamsArg TemplateParams) { 12307 const DeclSpec &DS = D.getDeclSpec(); 12308 12309 assert(DS.isFriendSpecified()); 12310 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 12311 12312 SourceLocation Loc = D.getIdentifierLoc(); 12313 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 12314 12315 // C++ [class.friend]p1 12316 // A friend of a class is a function or class.... 12317 // Note that this sees through typedefs, which is intended. 12318 // It *doesn't* see through dependent types, which is correct 12319 // according to [temp.arg.type]p3: 12320 // If a declaration acquires a function type through a 12321 // type dependent on a template-parameter and this causes 12322 // a declaration that does not use the syntactic form of a 12323 // function declarator to have a function type, the program 12324 // is ill-formed. 12325 if (!TInfo->getType()->isFunctionType()) { 12326 Diag(Loc, diag::err_unexpected_friend); 12327 12328 // It might be worthwhile to try to recover by creating an 12329 // appropriate declaration. 12330 return nullptr; 12331 } 12332 12333 // C++ [namespace.memdef]p3 12334 // - If a friend declaration in a non-local class first declares a 12335 // class or function, the friend class or function is a member 12336 // of the innermost enclosing namespace. 12337 // - The name of the friend is not found by simple name lookup 12338 // until a matching declaration is provided in that namespace 12339 // scope (either before or after the class declaration granting 12340 // friendship). 12341 // - If a friend function is called, its name may be found by the 12342 // name lookup that considers functions from namespaces and 12343 // classes associated with the types of the function arguments. 12344 // - When looking for a prior declaration of a class or a function 12345 // declared as a friend, scopes outside the innermost enclosing 12346 // namespace scope are not considered. 12347 12348 CXXScopeSpec &SS = D.getCXXScopeSpec(); 12349 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 12350 DeclarationName Name = NameInfo.getName(); 12351 assert(Name); 12352 12353 // Check for unexpanded parameter packs. 12354 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 12355 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 12356 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 12357 return nullptr; 12358 12359 // The context we found the declaration in, or in which we should 12360 // create the declaration. 12361 DeclContext *DC; 12362 Scope *DCScope = S; 12363 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 12364 ForRedeclaration); 12365 12366 // There are five cases here. 12367 // - There's no scope specifier and we're in a local class. Only look 12368 // for functions declared in the immediately-enclosing block scope. 12369 // We recover from invalid scope qualifiers as if they just weren't there. 12370 FunctionDecl *FunctionContainingLocalClass = nullptr; 12371 if ((SS.isInvalid() || !SS.isSet()) && 12372 (FunctionContainingLocalClass = 12373 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 12374 // C++11 [class.friend]p11: 12375 // If a friend declaration appears in a local class and the name 12376 // specified is an unqualified name, a prior declaration is 12377 // looked up without considering scopes that are outside the 12378 // innermost enclosing non-class scope. For a friend function 12379 // declaration, if there is no prior declaration, the program is 12380 // ill-formed. 12381 12382 // Find the innermost enclosing non-class scope. This is the block 12383 // scope containing the local class definition (or for a nested class, 12384 // the outer local class). 12385 DCScope = S->getFnParent(); 12386 12387 // Look up the function name in the scope. 12388 Previous.clear(LookupLocalFriendName); 12389 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 12390 12391 if (!Previous.empty()) { 12392 // All possible previous declarations must have the same context: 12393 // either they were declared at block scope or they are members of 12394 // one of the enclosing local classes. 12395 DC = Previous.getRepresentativeDecl()->getDeclContext(); 12396 } else { 12397 // This is ill-formed, but provide the context that we would have 12398 // declared the function in, if we were permitted to, for error recovery. 12399 DC = FunctionContainingLocalClass; 12400 } 12401 adjustContextForLocalExternDecl(DC); 12402 12403 // C++ [class.friend]p6: 12404 // A function can be defined in a friend declaration of a class if and 12405 // only if the class is a non-local class (9.8), the function name is 12406 // unqualified, and the function has namespace scope. 12407 if (D.isFunctionDefinition()) { 12408 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 12409 } 12410 12411 // - There's no scope specifier, in which case we just go to the 12412 // appropriate scope and look for a function or function template 12413 // there as appropriate. 12414 } else if (SS.isInvalid() || !SS.isSet()) { 12415 // C++11 [namespace.memdef]p3: 12416 // If the name in a friend declaration is neither qualified nor 12417 // a template-id and the declaration is a function or an 12418 // elaborated-type-specifier, the lookup to determine whether 12419 // the entity has been previously declared shall not consider 12420 // any scopes outside the innermost enclosing namespace. 12421 bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId; 12422 12423 // Find the appropriate context according to the above. 12424 DC = CurContext; 12425 12426 // Skip class contexts. If someone can cite chapter and verse 12427 // for this behavior, that would be nice --- it's what GCC and 12428 // EDG do, and it seems like a reasonable intent, but the spec 12429 // really only says that checks for unqualified existing 12430 // declarations should stop at the nearest enclosing namespace, 12431 // not that they should only consider the nearest enclosing 12432 // namespace. 12433 while (DC->isRecord()) 12434 DC = DC->getParent(); 12435 12436 DeclContext *LookupDC = DC; 12437 while (LookupDC->isTransparentContext()) 12438 LookupDC = LookupDC->getParent(); 12439 12440 while (true) { 12441 LookupQualifiedName(Previous, LookupDC); 12442 12443 if (!Previous.empty()) { 12444 DC = LookupDC; 12445 break; 12446 } 12447 12448 if (isTemplateId) { 12449 if (isa<TranslationUnitDecl>(LookupDC)) break; 12450 } else { 12451 if (LookupDC->isFileContext()) break; 12452 } 12453 LookupDC = LookupDC->getParent(); 12454 } 12455 12456 DCScope = getScopeForDeclContext(S, DC); 12457 12458 // - There's a non-dependent scope specifier, in which case we 12459 // compute it and do a previous lookup there for a function 12460 // or function template. 12461 } else if (!SS.getScopeRep()->isDependent()) { 12462 DC = computeDeclContext(SS); 12463 if (!DC) return nullptr; 12464 12465 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 12466 12467 LookupQualifiedName(Previous, DC); 12468 12469 // Ignore things found implicitly in the wrong scope. 12470 // TODO: better diagnostics for this case. Suggesting the right 12471 // qualified scope would be nice... 12472 LookupResult::Filter F = Previous.makeFilter(); 12473 while (F.hasNext()) { 12474 NamedDecl *D = F.next(); 12475 if (!DC->InEnclosingNamespaceSetOf( 12476 D->getDeclContext()->getRedeclContext())) 12477 F.erase(); 12478 } 12479 F.done(); 12480 12481 if (Previous.empty()) { 12482 D.setInvalidType(); 12483 Diag(Loc, diag::err_qualified_friend_not_found) 12484 << Name << TInfo->getType(); 12485 return nullptr; 12486 } 12487 12488 // C++ [class.friend]p1: A friend of a class is a function or 12489 // class that is not a member of the class . . . 12490 if (DC->Equals(CurContext)) 12491 Diag(DS.getFriendSpecLoc(), 12492 getLangOpts().CPlusPlus11 ? 12493 diag::warn_cxx98_compat_friend_is_member : 12494 diag::err_friend_is_member); 12495 12496 if (D.isFunctionDefinition()) { 12497 // C++ [class.friend]p6: 12498 // A function can be defined in a friend declaration of a class if and 12499 // only if the class is a non-local class (9.8), the function name is 12500 // unqualified, and the function has namespace scope. 12501 SemaDiagnosticBuilder DB 12502 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 12503 12504 DB << SS.getScopeRep(); 12505 if (DC->isFileContext()) 12506 DB << FixItHint::CreateRemoval(SS.getRange()); 12507 SS.clear(); 12508 } 12509 12510 // - There's a scope specifier that does not match any template 12511 // parameter lists, in which case we use some arbitrary context, 12512 // create a method or method template, and wait for instantiation. 12513 // - There's a scope specifier that does match some template 12514 // parameter lists, which we don't handle right now. 12515 } else { 12516 if (D.isFunctionDefinition()) { 12517 // C++ [class.friend]p6: 12518 // A function can be defined in a friend declaration of a class if and 12519 // only if the class is a non-local class (9.8), the function name is 12520 // unqualified, and the function has namespace scope. 12521 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 12522 << SS.getScopeRep(); 12523 } 12524 12525 DC = CurContext; 12526 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 12527 } 12528 12529 if (!DC->isRecord()) { 12530 // This implies that it has to be an operator or function. 12531 if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || 12532 D.getName().getKind() == UnqualifiedId::IK_DestructorName || 12533 D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { 12534 Diag(Loc, diag::err_introducing_special_friend) << 12535 (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : 12536 D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); 12537 return nullptr; 12538 } 12539 } 12540 12541 // FIXME: This is an egregious hack to cope with cases where the scope stack 12542 // does not contain the declaration context, i.e., in an out-of-line 12543 // definition of a class. 12544 Scope FakeDCScope(S, Scope::DeclScope, Diags); 12545 if (!DCScope) { 12546 FakeDCScope.setEntity(DC); 12547 DCScope = &FakeDCScope; 12548 } 12549 12550 bool AddToScope = true; 12551 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 12552 TemplateParams, AddToScope); 12553 if (!ND) return nullptr; 12554 12555 assert(ND->getLexicalDeclContext() == CurContext); 12556 12557 // If we performed typo correction, we might have added a scope specifier 12558 // and changed the decl context. 12559 DC = ND->getDeclContext(); 12560 12561 // Add the function declaration to the appropriate lookup tables, 12562 // adjusting the redeclarations list as necessary. We don't 12563 // want to do this yet if the friending class is dependent. 12564 // 12565 // Also update the scope-based lookup if the target context's 12566 // lookup context is in lexical scope. 12567 if (!CurContext->isDependentContext()) { 12568 DC = DC->getRedeclContext(); 12569 DC->makeDeclVisibleInContext(ND); 12570 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 12571 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 12572 } 12573 12574 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 12575 D.getIdentifierLoc(), ND, 12576 DS.getFriendSpecLoc()); 12577 FrD->setAccess(AS_public); 12578 CurContext->addDecl(FrD); 12579 12580 if (ND->isInvalidDecl()) { 12581 FrD->setInvalidDecl(); 12582 } else { 12583 if (DC->isRecord()) CheckFriendAccess(ND); 12584 12585 FunctionDecl *FD; 12586 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 12587 FD = FTD->getTemplatedDecl(); 12588 else 12589 FD = cast<FunctionDecl>(ND); 12590 12591 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 12592 // default argument expression, that declaration shall be a definition 12593 // and shall be the only declaration of the function or function 12594 // template in the translation unit. 12595 if (functionDeclHasDefaultArgument(FD)) { 12596 if (FunctionDecl *OldFD = FD->getPreviousDecl()) { 12597 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 12598 Diag(OldFD->getLocation(), diag::note_previous_declaration); 12599 } else if (!D.isFunctionDefinition()) 12600 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 12601 } 12602 12603 // Mark templated-scope function declarations as unsupported. 12604 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 12605 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 12606 << SS.getScopeRep() << SS.getRange() 12607 << cast<CXXRecordDecl>(CurContext); 12608 FrD->setUnsupportedFriend(true); 12609 } 12610 } 12611 12612 return ND; 12613 } 12614 12615 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 12616 AdjustDeclIfTemplate(Dcl); 12617 12618 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 12619 if (!Fn) { 12620 Diag(DelLoc, diag::err_deleted_non_function); 12621 return; 12622 } 12623 12624 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 12625 // Don't consider the implicit declaration we generate for explicit 12626 // specializations. FIXME: Do not generate these implicit declarations. 12627 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 12628 Prev->getPreviousDecl()) && 12629 !Prev->isDefined()) { 12630 Diag(DelLoc, diag::err_deleted_decl_not_first); 12631 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 12632 Prev->isImplicit() ? diag::note_previous_implicit_declaration 12633 : diag::note_previous_declaration); 12634 } 12635 // If the declaration wasn't the first, we delete the function anyway for 12636 // recovery. 12637 Fn = Fn->getCanonicalDecl(); 12638 } 12639 12640 // dllimport/dllexport cannot be deleted. 12641 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 12642 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 12643 Fn->setInvalidDecl(); 12644 } 12645 12646 if (Fn->isDeleted()) 12647 return; 12648 12649 // See if we're deleting a function which is already known to override a 12650 // non-deleted virtual function. 12651 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) { 12652 bool IssuedDiagnostic = false; 12653 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), 12654 E = MD->end_overridden_methods(); 12655 I != E; ++I) { 12656 if (!(*MD->begin_overridden_methods())->isDeleted()) { 12657 if (!IssuedDiagnostic) { 12658 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName(); 12659 IssuedDiagnostic = true; 12660 } 12661 Diag((*I)->getLocation(), diag::note_overridden_virtual_function); 12662 } 12663 } 12664 } 12665 12666 // C++11 [basic.start.main]p3: 12667 // A program that defines main as deleted [...] is ill-formed. 12668 if (Fn->isMain()) 12669 Diag(DelLoc, diag::err_deleted_main); 12670 12671 Fn->setDeletedAsWritten(); 12672 } 12673 12674 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 12675 CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl); 12676 12677 if (MD) { 12678 if (MD->getParent()->isDependentType()) { 12679 MD->setDefaulted(); 12680 MD->setExplicitlyDefaulted(); 12681 return; 12682 } 12683 12684 CXXSpecialMember Member = getSpecialMember(MD); 12685 if (Member == CXXInvalid) { 12686 if (!MD->isInvalidDecl()) 12687 Diag(DefaultLoc, diag::err_default_special_members); 12688 return; 12689 } 12690 12691 MD->setDefaulted(); 12692 MD->setExplicitlyDefaulted(); 12693 12694 // If this definition appears within the record, do the checking when 12695 // the record is complete. 12696 const FunctionDecl *Primary = MD; 12697 if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern()) 12698 // Find the uninstantiated declaration that actually had the '= default' 12699 // on it. 12700 Pattern->isDefined(Primary); 12701 12702 // If the method was defaulted on its first declaration, we will have 12703 // already performed the checking in CheckCompletedCXXClass. Such a 12704 // declaration doesn't trigger an implicit definition. 12705 if (Primary == Primary->getCanonicalDecl()) 12706 return; 12707 12708 CheckExplicitlyDefaultedSpecialMember(MD); 12709 12710 if (MD->isInvalidDecl()) 12711 return; 12712 12713 switch (Member) { 12714 case CXXDefaultConstructor: 12715 DefineImplicitDefaultConstructor(DefaultLoc, 12716 cast<CXXConstructorDecl>(MD)); 12717 break; 12718 case CXXCopyConstructor: 12719 DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD)); 12720 break; 12721 case CXXCopyAssignment: 12722 DefineImplicitCopyAssignment(DefaultLoc, MD); 12723 break; 12724 case CXXDestructor: 12725 DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD)); 12726 break; 12727 case CXXMoveConstructor: 12728 DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD)); 12729 break; 12730 case CXXMoveAssignment: 12731 DefineImplicitMoveAssignment(DefaultLoc, MD); 12732 break; 12733 case CXXInvalid: 12734 llvm_unreachable("Invalid special member."); 12735 } 12736 } else { 12737 Diag(DefaultLoc, diag::err_default_special_members); 12738 } 12739 } 12740 12741 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 12742 for (Stmt::child_range CI = S->children(); CI; ++CI) { 12743 Stmt *SubStmt = *CI; 12744 if (!SubStmt) 12745 continue; 12746 if (isa<ReturnStmt>(SubStmt)) 12747 Self.Diag(SubStmt->getLocStart(), 12748 diag::err_return_in_constructor_handler); 12749 if (!isa<Expr>(SubStmt)) 12750 SearchForReturnInStmt(Self, SubStmt); 12751 } 12752 } 12753 12754 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 12755 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 12756 CXXCatchStmt *Handler = TryBlock->getHandler(I); 12757 SearchForReturnInStmt(*this, Handler); 12758 } 12759 } 12760 12761 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 12762 const CXXMethodDecl *Old) { 12763 const FunctionType *NewFT = New->getType()->getAs<FunctionType>(); 12764 const FunctionType *OldFT = Old->getType()->getAs<FunctionType>(); 12765 12766 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 12767 12768 // If the calling conventions match, everything is fine 12769 if (NewCC == OldCC) 12770 return false; 12771 12772 // If the calling conventions mismatch because the new function is static, 12773 // suppress the calling convention mismatch error; the error about static 12774 // function override (err_static_overrides_virtual from 12775 // Sema::CheckFunctionDeclaration) is more clear. 12776 if (New->getStorageClass() == SC_Static) 12777 return false; 12778 12779 Diag(New->getLocation(), 12780 diag::err_conflicting_overriding_cc_attributes) 12781 << New->getDeclName() << New->getType() << Old->getType(); 12782 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 12783 return true; 12784 } 12785 12786 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 12787 const CXXMethodDecl *Old) { 12788 QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType(); 12789 QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType(); 12790 12791 if (Context.hasSameType(NewTy, OldTy) || 12792 NewTy->isDependentType() || OldTy->isDependentType()) 12793 return false; 12794 12795 // Check if the return types are covariant 12796 QualType NewClassTy, OldClassTy; 12797 12798 /// Both types must be pointers or references to classes. 12799 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 12800 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 12801 NewClassTy = NewPT->getPointeeType(); 12802 OldClassTy = OldPT->getPointeeType(); 12803 } 12804 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 12805 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 12806 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 12807 NewClassTy = NewRT->getPointeeType(); 12808 OldClassTy = OldRT->getPointeeType(); 12809 } 12810 } 12811 } 12812 12813 // The return types aren't either both pointers or references to a class type. 12814 if (NewClassTy.isNull()) { 12815 Diag(New->getLocation(), 12816 diag::err_different_return_type_for_overriding_virtual_function) 12817 << New->getDeclName() << NewTy << OldTy 12818 << New->getReturnTypeSourceRange(); 12819 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 12820 << Old->getReturnTypeSourceRange(); 12821 12822 return true; 12823 } 12824 12825 // C++ [class.virtual]p6: 12826 // If the return type of D::f differs from the return type of B::f, the 12827 // class type in the return type of D::f shall be complete at the point of 12828 // declaration of D::f or shall be the class type D. 12829 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 12830 if (!RT->isBeingDefined() && 12831 RequireCompleteType(New->getLocation(), NewClassTy, 12832 diag::err_covariant_return_incomplete, 12833 New->getDeclName())) 12834 return true; 12835 } 12836 12837 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 12838 // Check if the new class derives from the old class. 12839 if (!IsDerivedFrom(NewClassTy, OldClassTy)) { 12840 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 12841 << New->getDeclName() << NewTy << OldTy 12842 << New->getReturnTypeSourceRange(); 12843 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 12844 << Old->getReturnTypeSourceRange(); 12845 return true; 12846 } 12847 12848 // Check if we the conversion from derived to base is valid. 12849 if (CheckDerivedToBaseConversion( 12850 NewClassTy, OldClassTy, 12851 diag::err_covariant_return_inaccessible_base, 12852 diag::err_covariant_return_ambiguous_derived_to_base_conv, 12853 New->getLocation(), New->getReturnTypeSourceRange(), 12854 New->getDeclName(), nullptr)) { 12855 // FIXME: this note won't trigger for delayed access control 12856 // diagnostics, and it's impossible to get an undelayed error 12857 // here from access control during the original parse because 12858 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 12859 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 12860 << Old->getReturnTypeSourceRange(); 12861 return true; 12862 } 12863 } 12864 12865 // The qualifiers of the return types must be the same. 12866 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 12867 Diag(New->getLocation(), 12868 diag::err_covariant_return_type_different_qualifications) 12869 << New->getDeclName() << NewTy << OldTy 12870 << New->getReturnTypeSourceRange(); 12871 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 12872 << Old->getReturnTypeSourceRange(); 12873 return true; 12874 }; 12875 12876 12877 // The new class type must have the same or less qualifiers as the old type. 12878 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 12879 Diag(New->getLocation(), 12880 diag::err_covariant_return_type_class_type_more_qualified) 12881 << New->getDeclName() << NewTy << OldTy 12882 << New->getReturnTypeSourceRange(); 12883 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 12884 << Old->getReturnTypeSourceRange(); 12885 return true; 12886 }; 12887 12888 return false; 12889 } 12890 12891 /// \brief Mark the given method pure. 12892 /// 12893 /// \param Method the method to be marked pure. 12894 /// 12895 /// \param InitRange the source range that covers the "0" initializer. 12896 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 12897 SourceLocation EndLoc = InitRange.getEnd(); 12898 if (EndLoc.isValid()) 12899 Method->setRangeEnd(EndLoc); 12900 12901 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 12902 Method->setPure(); 12903 return false; 12904 } 12905 12906 if (!Method->isInvalidDecl()) 12907 Diag(Method->getLocation(), diag::err_non_virtual_pure) 12908 << Method->getDeclName() << InitRange; 12909 return true; 12910 } 12911 12912 /// \brief Determine whether the given declaration is a static data member. 12913 static bool isStaticDataMember(const Decl *D) { 12914 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 12915 return Var->isStaticDataMember(); 12916 12917 return false; 12918 } 12919 12920 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse 12921 /// an initializer for the out-of-line declaration 'Dcl'. The scope 12922 /// is a fresh scope pushed for just this purpose. 12923 /// 12924 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 12925 /// static data member of class X, names should be looked up in the scope of 12926 /// class X. 12927 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 12928 // If there is no declaration, there was an error parsing it. 12929 if (!D || D->isInvalidDecl()) 12930 return; 12931 12932 // We will always have a nested name specifier here, but this declaration 12933 // might not be out of line if the specifier names the current namespace: 12934 // extern int n; 12935 // int ::n = 0; 12936 if (D->isOutOfLine()) 12937 EnterDeclaratorContext(S, D->getDeclContext()); 12938 12939 // If we are parsing the initializer for a static data member, push a 12940 // new expression evaluation context that is associated with this static 12941 // data member. 12942 if (isStaticDataMember(D)) 12943 PushExpressionEvaluationContext(PotentiallyEvaluated, D); 12944 } 12945 12946 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an 12947 /// initializer for the out-of-line declaration 'D'. 12948 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 12949 // If there is no declaration, there was an error parsing it. 12950 if (!D || D->isInvalidDecl()) 12951 return; 12952 12953 if (isStaticDataMember(D)) 12954 PopExpressionEvaluationContext(); 12955 12956 if (D->isOutOfLine()) 12957 ExitDeclaratorContext(S); 12958 } 12959 12960 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 12961 /// C++ if/switch/while/for statement. 12962 /// e.g: "if (int x = f()) {...}" 12963 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 12964 // C++ 6.4p2: 12965 // The declarator shall not specify a function or an array. 12966 // The type-specifier-seq shall not contain typedef and shall not declare a 12967 // new class or enumeration. 12968 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 12969 "Parser allowed 'typedef' as storage class of condition decl."); 12970 12971 Decl *Dcl = ActOnDeclarator(S, D); 12972 if (!Dcl) 12973 return true; 12974 12975 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 12976 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 12977 << D.getSourceRange(); 12978 return true; 12979 } 12980 12981 return Dcl; 12982 } 12983 12984 void Sema::LoadExternalVTableUses() { 12985 if (!ExternalSource) 12986 return; 12987 12988 SmallVector<ExternalVTableUse, 4> VTables; 12989 ExternalSource->ReadUsedVTables(VTables); 12990 SmallVector<VTableUse, 4> NewUses; 12991 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 12992 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 12993 = VTablesUsed.find(VTables[I].Record); 12994 // Even if a definition wasn't required before, it may be required now. 12995 if (Pos != VTablesUsed.end()) { 12996 if (!Pos->second && VTables[I].DefinitionRequired) 12997 Pos->second = true; 12998 continue; 12999 } 13000 13001 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 13002 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 13003 } 13004 13005 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 13006 } 13007 13008 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 13009 bool DefinitionRequired) { 13010 // Ignore any vtable uses in unevaluated operands or for classes that do 13011 // not have a vtable. 13012 if (!Class->isDynamicClass() || Class->isDependentContext() || 13013 CurContext->isDependentContext() || isUnevaluatedContext()) 13014 return; 13015 13016 // Try to insert this class into the map. 13017 LoadExternalVTableUses(); 13018 Class = cast<CXXRecordDecl>(Class->getCanonicalDecl()); 13019 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 13020 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 13021 if (!Pos.second) { 13022 // If we already had an entry, check to see if we are promoting this vtable 13023 // to require a definition. If so, we need to reappend to the VTableUses 13024 // list, since we may have already processed the first entry. 13025 if (DefinitionRequired && !Pos.first->second) { 13026 Pos.first->second = true; 13027 } else { 13028 // Otherwise, we can early exit. 13029 return; 13030 } 13031 } else { 13032 // The Microsoft ABI requires that we perform the destructor body 13033 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 13034 // the deleting destructor is emitted with the vtable, not with the 13035 // destructor definition as in the Itanium ABI. 13036 // If it has a definition, we do the check at that point instead. 13037 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 13038 Class->hasUserDeclaredDestructor() && 13039 !Class->getDestructor()->isDefined() && 13040 !Class->getDestructor()->isDeleted()) { 13041 CXXDestructorDecl *DD = Class->getDestructor(); 13042 ContextRAII SavedContext(*this, DD); 13043 CheckDestructor(DD); 13044 } 13045 } 13046 13047 // Local classes need to have their virtual members marked 13048 // immediately. For all other classes, we mark their virtual members 13049 // at the end of the translation unit. 13050 if (Class->isLocalClass()) 13051 MarkVirtualMembersReferenced(Loc, Class); 13052 else 13053 VTableUses.push_back(std::make_pair(Class, Loc)); 13054 } 13055 13056 bool Sema::DefineUsedVTables() { 13057 LoadExternalVTableUses(); 13058 if (VTableUses.empty()) 13059 return false; 13060 13061 // Note: The VTableUses vector could grow as a result of marking 13062 // the members of a class as "used", so we check the size each 13063 // time through the loop and prefer indices (which are stable) to 13064 // iterators (which are not). 13065 bool DefinedAnything = false; 13066 for (unsigned I = 0; I != VTableUses.size(); ++I) { 13067 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 13068 if (!Class) 13069 continue; 13070 13071 SourceLocation Loc = VTableUses[I].second; 13072 13073 bool DefineVTable = true; 13074 13075 // If this class has a key function, but that key function is 13076 // defined in another translation unit, we don't need to emit the 13077 // vtable even though we're using it. 13078 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 13079 if (KeyFunction && !KeyFunction->hasBody()) { 13080 // The key function is in another translation unit. 13081 DefineVTable = false; 13082 TemplateSpecializationKind TSK = 13083 KeyFunction->getTemplateSpecializationKind(); 13084 assert(TSK != TSK_ExplicitInstantiationDefinition && 13085 TSK != TSK_ImplicitInstantiation && 13086 "Instantiations don't have key functions"); 13087 (void)TSK; 13088 } else if (!KeyFunction) { 13089 // If we have a class with no key function that is the subject 13090 // of an explicit instantiation declaration, suppress the 13091 // vtable; it will live with the explicit instantiation 13092 // definition. 13093 bool IsExplicitInstantiationDeclaration 13094 = Class->getTemplateSpecializationKind() 13095 == TSK_ExplicitInstantiationDeclaration; 13096 for (auto R : Class->redecls()) { 13097 TemplateSpecializationKind TSK 13098 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 13099 if (TSK == TSK_ExplicitInstantiationDeclaration) 13100 IsExplicitInstantiationDeclaration = true; 13101 else if (TSK == TSK_ExplicitInstantiationDefinition) { 13102 IsExplicitInstantiationDeclaration = false; 13103 break; 13104 } 13105 } 13106 13107 if (IsExplicitInstantiationDeclaration) 13108 DefineVTable = false; 13109 } 13110 13111 // The exception specifications for all virtual members may be needed even 13112 // if we are not providing an authoritative form of the vtable in this TU. 13113 // We may choose to emit it available_externally anyway. 13114 if (!DefineVTable) { 13115 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 13116 continue; 13117 } 13118 13119 // Mark all of the virtual members of this class as referenced, so 13120 // that we can build a vtable. Then, tell the AST consumer that a 13121 // vtable for this class is required. 13122 DefinedAnything = true; 13123 MarkVirtualMembersReferenced(Loc, Class); 13124 CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl()); 13125 Consumer.HandleVTable(Class, VTablesUsed[Canonical]); 13126 13127 // Optionally warn if we're emitting a weak vtable. 13128 if (Class->isExternallyVisible() && 13129 Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { 13130 const FunctionDecl *KeyFunctionDef = nullptr; 13131 if (!KeyFunction || 13132 (KeyFunction->hasBody(KeyFunctionDef) && 13133 KeyFunctionDef->isInlined())) 13134 Diag(Class->getLocation(), Class->getTemplateSpecializationKind() == 13135 TSK_ExplicitInstantiationDefinition 13136 ? diag::warn_weak_template_vtable : diag::warn_weak_vtable) 13137 << Class; 13138 } 13139 } 13140 VTableUses.clear(); 13141 13142 return DefinedAnything; 13143 } 13144 13145 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 13146 const CXXRecordDecl *RD) { 13147 for (const auto *I : RD->methods()) 13148 if (I->isVirtual() && !I->isPure()) 13149 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 13150 } 13151 13152 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 13153 const CXXRecordDecl *RD) { 13154 // Mark all functions which will appear in RD's vtable as used. 13155 CXXFinalOverriderMap FinalOverriders; 13156 RD->getFinalOverriders(FinalOverriders); 13157 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 13158 E = FinalOverriders.end(); 13159 I != E; ++I) { 13160 for (OverridingMethods::const_iterator OI = I->second.begin(), 13161 OE = I->second.end(); 13162 OI != OE; ++OI) { 13163 assert(OI->second.size() > 0 && "no final overrider"); 13164 CXXMethodDecl *Overrider = OI->second.front().Method; 13165 13166 // C++ [basic.def.odr]p2: 13167 // [...] A virtual member function is used if it is not pure. [...] 13168 if (!Overrider->isPure()) 13169 MarkFunctionReferenced(Loc, Overrider); 13170 } 13171 } 13172 13173 // Only classes that have virtual bases need a VTT. 13174 if (RD->getNumVBases() == 0) 13175 return; 13176 13177 for (const auto &I : RD->bases()) { 13178 const CXXRecordDecl *Base = 13179 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 13180 if (Base->getNumVBases() == 0) 13181 continue; 13182 MarkVirtualMembersReferenced(Loc, Base); 13183 } 13184 } 13185 13186 /// SetIvarInitializers - This routine builds initialization ASTs for the 13187 /// Objective-C implementation whose ivars need be initialized. 13188 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 13189 if (!getLangOpts().CPlusPlus) 13190 return; 13191 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 13192 SmallVector<ObjCIvarDecl*, 8> ivars; 13193 CollectIvarsToConstructOrDestruct(OID, ivars); 13194 if (ivars.empty()) 13195 return; 13196 SmallVector<CXXCtorInitializer*, 32> AllToInit; 13197 for (unsigned i = 0; i < ivars.size(); i++) { 13198 FieldDecl *Field = ivars[i]; 13199 if (Field->isInvalidDecl()) 13200 continue; 13201 13202 CXXCtorInitializer *Member; 13203 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 13204 InitializationKind InitKind = 13205 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 13206 13207 InitializationSequence InitSeq(*this, InitEntity, InitKind, None); 13208 ExprResult MemberInit = 13209 InitSeq.Perform(*this, InitEntity, InitKind, None); 13210 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 13211 // Note, MemberInit could actually come back empty if no initialization 13212 // is required (e.g., because it would call a trivial default constructor) 13213 if (!MemberInit.get() || MemberInit.isInvalid()) 13214 continue; 13215 13216 Member = 13217 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 13218 SourceLocation(), 13219 MemberInit.getAs<Expr>(), 13220 SourceLocation()); 13221 AllToInit.push_back(Member); 13222 13223 // Be sure that the destructor is accessible and is marked as referenced. 13224 if (const RecordType *RecordTy = 13225 Context.getBaseElementType(Field->getType()) 13226 ->getAs<RecordType>()) { 13227 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 13228 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 13229 MarkFunctionReferenced(Field->getLocation(), Destructor); 13230 CheckDestructorAccess(Field->getLocation(), Destructor, 13231 PDiag(diag::err_access_dtor_ivar) 13232 << Context.getBaseElementType(Field->getType())); 13233 } 13234 } 13235 } 13236 ObjCImplementation->setIvarInitializers(Context, 13237 AllToInit.data(), AllToInit.size()); 13238 } 13239 } 13240 13241 static 13242 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 13243 llvm::SmallSet<CXXConstructorDecl*, 4> &Valid, 13244 llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid, 13245 llvm::SmallSet<CXXConstructorDecl*, 4> &Current, 13246 Sema &S) { 13247 if (Ctor->isInvalidDecl()) 13248 return; 13249 13250 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 13251 13252 // Target may not be determinable yet, for instance if this is a dependent 13253 // call in an uninstantiated template. 13254 if (Target) { 13255 const FunctionDecl *FNTarget = nullptr; 13256 (void)Target->hasBody(FNTarget); 13257 Target = const_cast<CXXConstructorDecl*>( 13258 cast_or_null<CXXConstructorDecl>(FNTarget)); 13259 } 13260 13261 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 13262 // Avoid dereferencing a null pointer here. 13263 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 13264 13265 if (!Current.insert(Canonical).second) 13266 return; 13267 13268 // We know that beyond here, we aren't chaining into a cycle. 13269 if (!Target || !Target->isDelegatingConstructor() || 13270 Target->isInvalidDecl() || Valid.count(TCanonical)) { 13271 Valid.insert(Current.begin(), Current.end()); 13272 Current.clear(); 13273 // We've hit a cycle. 13274 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 13275 Current.count(TCanonical)) { 13276 // If we haven't diagnosed this cycle yet, do so now. 13277 if (!Invalid.count(TCanonical)) { 13278 S.Diag((*Ctor->init_begin())->getSourceLocation(), 13279 diag::warn_delegating_ctor_cycle) 13280 << Ctor; 13281 13282 // Don't add a note for a function delegating directly to itself. 13283 if (TCanonical != Canonical) 13284 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 13285 13286 CXXConstructorDecl *C = Target; 13287 while (C->getCanonicalDecl() != Canonical) { 13288 const FunctionDecl *FNTarget = nullptr; 13289 (void)C->getTargetConstructor()->hasBody(FNTarget); 13290 assert(FNTarget && "Ctor cycle through bodiless function"); 13291 13292 C = const_cast<CXXConstructorDecl*>( 13293 cast<CXXConstructorDecl>(FNTarget)); 13294 S.Diag(C->getLocation(), diag::note_which_delegates_to); 13295 } 13296 } 13297 13298 Invalid.insert(Current.begin(), Current.end()); 13299 Current.clear(); 13300 } else { 13301 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 13302 } 13303 } 13304 13305 13306 void Sema::CheckDelegatingCtorCycles() { 13307 llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 13308 13309 for (DelegatingCtorDeclsType::iterator 13310 I = DelegatingCtorDecls.begin(ExternalSource), 13311 E = DelegatingCtorDecls.end(); 13312 I != E; ++I) 13313 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 13314 13315 for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(), 13316 CE = Invalid.end(); 13317 CI != CE; ++CI) 13318 (*CI)->setInvalidDecl(); 13319 } 13320 13321 namespace { 13322 /// \brief AST visitor that finds references to the 'this' expression. 13323 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 13324 Sema &S; 13325 13326 public: 13327 explicit FindCXXThisExpr(Sema &S) : S(S) { } 13328 13329 bool VisitCXXThisExpr(CXXThisExpr *E) { 13330 S.Diag(E->getLocation(), diag::err_this_static_member_func) 13331 << E->isImplicit(); 13332 return false; 13333 } 13334 }; 13335 } 13336 13337 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 13338 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 13339 if (!TSInfo) 13340 return false; 13341 13342 TypeLoc TL = TSInfo->getTypeLoc(); 13343 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 13344 if (!ProtoTL) 13345 return false; 13346 13347 // C++11 [expr.prim.general]p3: 13348 // [The expression this] shall not appear before the optional 13349 // cv-qualifier-seq and it shall not appear within the declaration of a 13350 // static member function (although its type and value category are defined 13351 // within a static member function as they are within a non-static member 13352 // function). [ Note: this is because declaration matching does not occur 13353 // until the complete declarator is known. - end note ] 13354 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 13355 FindCXXThisExpr Finder(*this); 13356 13357 // If the return type came after the cv-qualifier-seq, check it now. 13358 if (Proto->hasTrailingReturn() && 13359 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 13360 return true; 13361 13362 // Check the exception specification. 13363 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 13364 return true; 13365 13366 return checkThisInStaticMemberFunctionAttributes(Method); 13367 } 13368 13369 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 13370 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 13371 if (!TSInfo) 13372 return false; 13373 13374 TypeLoc TL = TSInfo->getTypeLoc(); 13375 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 13376 if (!ProtoTL) 13377 return false; 13378 13379 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 13380 FindCXXThisExpr Finder(*this); 13381 13382 switch (Proto->getExceptionSpecType()) { 13383 case EST_Unparsed: 13384 case EST_Uninstantiated: 13385 case EST_Unevaluated: 13386 case EST_BasicNoexcept: 13387 case EST_DynamicNone: 13388 case EST_MSAny: 13389 case EST_None: 13390 break; 13391 13392 case EST_ComputedNoexcept: 13393 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 13394 return true; 13395 13396 case EST_Dynamic: 13397 for (const auto &E : Proto->exceptions()) { 13398 if (!Finder.TraverseType(E)) 13399 return true; 13400 } 13401 break; 13402 } 13403 13404 return false; 13405 } 13406 13407 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 13408 FindCXXThisExpr Finder(*this); 13409 13410 // Check attributes. 13411 for (const auto *A : Method->attrs()) { 13412 // FIXME: This should be emitted by tblgen. 13413 Expr *Arg = nullptr; 13414 ArrayRef<Expr *> Args; 13415 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 13416 Arg = G->getArg(); 13417 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 13418 Arg = G->getArg(); 13419 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 13420 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); 13421 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 13422 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); 13423 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 13424 Arg = ETLF->getSuccessValue(); 13425 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); 13426 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 13427 Arg = STLF->getSuccessValue(); 13428 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); 13429 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 13430 Arg = LR->getArg(); 13431 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 13432 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); 13433 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 13434 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 13435 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 13436 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 13437 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 13438 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 13439 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 13440 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 13441 13442 if (Arg && !Finder.TraverseStmt(Arg)) 13443 return true; 13444 13445 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 13446 if (!Finder.TraverseStmt(Args[I])) 13447 return true; 13448 } 13449 } 13450 13451 return false; 13452 } 13453 13454 void Sema::checkExceptionSpecification( 13455 bool IsTopLevel, ExceptionSpecificationType EST, 13456 ArrayRef<ParsedType> DynamicExceptions, 13457 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 13458 SmallVectorImpl<QualType> &Exceptions, 13459 FunctionProtoType::ExceptionSpecInfo &ESI) { 13460 Exceptions.clear(); 13461 ESI.Type = EST; 13462 if (EST == EST_Dynamic) { 13463 Exceptions.reserve(DynamicExceptions.size()); 13464 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 13465 // FIXME: Preserve type source info. 13466 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 13467 13468 if (IsTopLevel) { 13469 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 13470 collectUnexpandedParameterPacks(ET, Unexpanded); 13471 if (!Unexpanded.empty()) { 13472 DiagnoseUnexpandedParameterPacks( 13473 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 13474 Unexpanded); 13475 continue; 13476 } 13477 } 13478 13479 // Check that the type is valid for an exception spec, and 13480 // drop it if not. 13481 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 13482 Exceptions.push_back(ET); 13483 } 13484 ESI.Exceptions = Exceptions; 13485 return; 13486 } 13487 13488 if (EST == EST_ComputedNoexcept) { 13489 // If an error occurred, there's no expression here. 13490 if (NoexceptExpr) { 13491 assert((NoexceptExpr->isTypeDependent() || 13492 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 13493 Context.BoolTy) && 13494 "Parser should have made sure that the expression is boolean"); 13495 if (IsTopLevel && NoexceptExpr && 13496 DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 13497 ESI.Type = EST_BasicNoexcept; 13498 return; 13499 } 13500 13501 if (!NoexceptExpr->isValueDependent()) 13502 NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, nullptr, 13503 diag::err_noexcept_needs_constant_expression, 13504 /*AllowFold*/ false).get(); 13505 ESI.NoexceptExpr = NoexceptExpr; 13506 } 13507 return; 13508 } 13509 } 13510 13511 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 13512 ExceptionSpecificationType EST, 13513 SourceRange SpecificationRange, 13514 ArrayRef<ParsedType> DynamicExceptions, 13515 ArrayRef<SourceRange> DynamicExceptionRanges, 13516 Expr *NoexceptExpr) { 13517 if (!MethodD) 13518 return; 13519 13520 // Dig out the method we're referring to. 13521 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 13522 MethodD = FunTmpl->getTemplatedDecl(); 13523 13524 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 13525 if (!Method) 13526 return; 13527 13528 // Check the exception specification. 13529 llvm::SmallVector<QualType, 4> Exceptions; 13530 FunctionProtoType::ExceptionSpecInfo ESI; 13531 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 13532 DynamicExceptionRanges, NoexceptExpr, Exceptions, 13533 ESI); 13534 13535 // Update the exception specification on the function type. 13536 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 13537 13538 if (Method->isStatic()) 13539 checkThisInStaticMemberFunctionExceptionSpec(Method); 13540 13541 if (Method->isVirtual()) { 13542 // Check overrides, which we previously had to delay. 13543 for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(), 13544 OEnd = Method->end_overridden_methods(); 13545 O != OEnd; ++O) 13546 CheckOverridingFunctionExceptionSpec(Method, *O); 13547 } 13548 } 13549 13550 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 13551 /// 13552 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 13553 SourceLocation DeclStart, 13554 Declarator &D, Expr *BitWidth, 13555 InClassInitStyle InitStyle, 13556 AccessSpecifier AS, 13557 AttributeList *MSPropertyAttr) { 13558 IdentifierInfo *II = D.getIdentifier(); 13559 if (!II) { 13560 Diag(DeclStart, diag::err_anonymous_property); 13561 return nullptr; 13562 } 13563 SourceLocation Loc = D.getIdentifierLoc(); 13564 13565 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 13566 QualType T = TInfo->getType(); 13567 if (getLangOpts().CPlusPlus) { 13568 CheckExtraCXXDefaultArguments(D); 13569 13570 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 13571 UPPC_DataMemberType)) { 13572 D.setInvalidType(); 13573 T = Context.IntTy; 13574 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 13575 } 13576 } 13577 13578 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 13579 13580 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 13581 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 13582 diag::err_invalid_thread) 13583 << DeclSpec::getSpecifierName(TSCS); 13584 13585 // Check to see if this name was declared as a member previously 13586 NamedDecl *PrevDecl = nullptr; 13587 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration); 13588 LookupName(Previous, S); 13589 switch (Previous.getResultKind()) { 13590 case LookupResult::Found: 13591 case LookupResult::FoundUnresolvedValue: 13592 PrevDecl = Previous.getAsSingle<NamedDecl>(); 13593 break; 13594 13595 case LookupResult::FoundOverloaded: 13596 PrevDecl = Previous.getRepresentativeDecl(); 13597 break; 13598 13599 case LookupResult::NotFound: 13600 case LookupResult::NotFoundInCurrentInstantiation: 13601 case LookupResult::Ambiguous: 13602 break; 13603 } 13604 13605 if (PrevDecl && PrevDecl->isTemplateParameter()) { 13606 // Maybe we will complain about the shadowed template parameter. 13607 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 13608 // Just pretend that we didn't see the previous declaration. 13609 PrevDecl = nullptr; 13610 } 13611 13612 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 13613 PrevDecl = nullptr; 13614 13615 SourceLocation TSSL = D.getLocStart(); 13616 const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData(); 13617 MSPropertyDecl *NewPD = MSPropertyDecl::Create( 13618 Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId); 13619 ProcessDeclAttributes(TUScope, NewPD, D); 13620 NewPD->setAccess(AS); 13621 13622 if (NewPD->isInvalidDecl()) 13623 Record->setInvalidDecl(); 13624 13625 if (D.getDeclSpec().isModulePrivateSpecified()) 13626 NewPD->setModulePrivate(); 13627 13628 if (NewPD->isInvalidDecl() && PrevDecl) { 13629 // Don't introduce NewFD into scope; there's already something 13630 // with the same name in the same scope. 13631 } else if (II) { 13632 PushOnScopeChains(NewPD, S); 13633 } else 13634 Record->addDecl(NewPD); 13635 13636 return NewPD; 13637 } 13638