1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements decl-related attribute processing. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/Mangle.h" 23 #include "clang/Basic/CharInfo.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Lex/Preprocessor.h" 27 #include "clang/Sema/DeclSpec.h" 28 #include "clang/Sema/DelayedDiagnostic.h" 29 #include "clang/Sema/Lookup.h" 30 #include "clang/Sema/Scope.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Support/MathExtras.h" 33 using namespace clang; 34 using namespace sema; 35 36 namespace AttributeLangSupport { 37 enum LANG { 38 C, 39 Cpp, 40 ObjC 41 }; 42 } 43 44 //===----------------------------------------------------------------------===// 45 // Helper functions 46 //===----------------------------------------------------------------------===// 47 48 /// isFunctionOrMethod - Return true if the given decl has function 49 /// type (function or function-typed variable) or an Objective-C 50 /// method. 51 static bool isFunctionOrMethod(const Decl *D) { 52 return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D); 53 } 54 55 /// Return true if the given decl has a declarator that should have 56 /// been processed by Sema::GetTypeForDeclarator. 57 static bool hasDeclarator(const Decl *D) { 58 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. 59 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) || 60 isa<ObjCPropertyDecl>(D); 61 } 62 63 /// hasFunctionProto - Return true if the given decl has a argument 64 /// information. This decl should have already passed 65 /// isFunctionOrMethod or isFunctionOrMethodOrBlock. 66 static bool hasFunctionProto(const Decl *D) { 67 if (const FunctionType *FnTy = D->getFunctionType()) 68 return isa<FunctionProtoType>(FnTy); 69 return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D); 70 } 71 72 /// getFunctionOrMethodNumParams - Return number of function or method 73 /// parameters. It is an error to call this on a K&R function (use 74 /// hasFunctionProto first). 75 static unsigned getFunctionOrMethodNumParams(const Decl *D) { 76 if (const FunctionType *FnTy = D->getFunctionType()) 77 return cast<FunctionProtoType>(FnTy)->getNumParams(); 78 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) 79 return BD->getNumParams(); 80 return cast<ObjCMethodDecl>(D)->param_size(); 81 } 82 83 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) { 84 if (const FunctionType *FnTy = D->getFunctionType()) 85 return cast<FunctionProtoType>(FnTy)->getParamType(Idx); 86 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) 87 return BD->getParamDecl(Idx)->getType(); 88 89 return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType(); 90 } 91 92 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) { 93 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 94 return FD->getParamDecl(Idx)->getSourceRange(); 95 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 96 return MD->parameters()[Idx]->getSourceRange(); 97 if (const auto *BD = dyn_cast<BlockDecl>(D)) 98 return BD->getParamDecl(Idx)->getSourceRange(); 99 return SourceRange(); 100 } 101 102 static QualType getFunctionOrMethodResultType(const Decl *D) { 103 if (const FunctionType *FnTy = D->getFunctionType()) 104 return cast<FunctionType>(FnTy)->getReturnType(); 105 return cast<ObjCMethodDecl>(D)->getReturnType(); 106 } 107 108 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) { 109 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 110 return FD->getReturnTypeSourceRange(); 111 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 112 return MD->getReturnTypeSourceRange(); 113 return SourceRange(); 114 } 115 116 static bool isFunctionOrMethodVariadic(const Decl *D) { 117 if (const FunctionType *FnTy = D->getFunctionType()) { 118 const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy); 119 return proto->isVariadic(); 120 } 121 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) 122 return BD->isVariadic(); 123 124 return cast<ObjCMethodDecl>(D)->isVariadic(); 125 } 126 127 static bool isInstanceMethod(const Decl *D) { 128 if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) 129 return MethodDecl->isInstance(); 130 return false; 131 } 132 133 static inline bool isNSStringType(QualType T, ASTContext &Ctx) { 134 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 135 if (!PT) 136 return false; 137 138 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); 139 if (!Cls) 140 return false; 141 142 IdentifierInfo* ClsName = Cls->getIdentifier(); 143 144 // FIXME: Should we walk the chain of classes? 145 return ClsName == &Ctx.Idents.get("NSString") || 146 ClsName == &Ctx.Idents.get("NSMutableString"); 147 } 148 149 static inline bool isCFStringType(QualType T, ASTContext &Ctx) { 150 const PointerType *PT = T->getAs<PointerType>(); 151 if (!PT) 152 return false; 153 154 const RecordType *RT = PT->getPointeeType()->getAs<RecordType>(); 155 if (!RT) 156 return false; 157 158 const RecordDecl *RD = RT->getDecl(); 159 if (RD->getTagKind() != TTK_Struct) 160 return false; 161 162 return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); 163 } 164 165 static unsigned getNumAttributeArgs(const AttributeList &Attr) { 166 // FIXME: Include the type in the argument list. 167 return Attr.getNumArgs() + Attr.hasParsedType(); 168 } 169 170 template <typename Compare> 171 static bool checkAttributeNumArgsImpl(Sema &S, const AttributeList &Attr, 172 unsigned Num, unsigned Diag, 173 Compare Comp) { 174 if (Comp(getNumAttributeArgs(Attr), Num)) { 175 S.Diag(Attr.getLoc(), Diag) << Attr.getName() << Num; 176 return false; 177 } 178 179 return true; 180 } 181 182 /// \brief Check if the attribute has exactly as many args as Num. May 183 /// output an error. 184 static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr, 185 unsigned Num) { 186 return checkAttributeNumArgsImpl(S, Attr, Num, 187 diag::err_attribute_wrong_number_arguments, 188 std::not_equal_to<unsigned>()); 189 } 190 191 /// \brief Check if the attribute has at least as many args as Num. May 192 /// output an error. 193 static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr, 194 unsigned Num) { 195 return checkAttributeNumArgsImpl(S, Attr, Num, 196 diag::err_attribute_too_few_arguments, 197 std::less<unsigned>()); 198 } 199 200 /// \brief Check if the attribute has at most as many args as Num. May 201 /// output an error. 202 static bool checkAttributeAtMostNumArgs(Sema &S, const AttributeList &Attr, 203 unsigned Num) { 204 return checkAttributeNumArgsImpl(S, Attr, Num, 205 diag::err_attribute_too_many_arguments, 206 std::greater<unsigned>()); 207 } 208 209 /// \brief If Expr is a valid integer constant, get the value of the integer 210 /// expression and return success or failure. May output an error. 211 static bool checkUInt32Argument(Sema &S, const AttributeList &Attr, 212 const Expr *Expr, uint32_t &Val, 213 unsigned Idx = UINT_MAX) { 214 llvm::APSInt I(32); 215 if (Expr->isTypeDependent() || Expr->isValueDependent() || 216 !Expr->isIntegerConstantExpr(I, S.Context)) { 217 if (Idx != UINT_MAX) 218 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 219 << Attr.getName() << Idx << AANT_ArgumentIntegerConstant 220 << Expr->getSourceRange(); 221 else 222 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) 223 << Attr.getName() << AANT_ArgumentIntegerConstant 224 << Expr->getSourceRange(); 225 return false; 226 } 227 228 if (!I.isIntN(32)) { 229 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) 230 << I.toString(10, false) << 32 << /* Unsigned */ 1; 231 return false; 232 } 233 234 Val = (uint32_t)I.getZExtValue(); 235 return true; 236 } 237 238 /// \brief Diagnose mutually exclusive attributes when present on a given 239 /// declaration. Returns true if diagnosed. 240 template <typename AttrTy> 241 static bool checkAttrMutualExclusion(Sema &S, Decl *D, 242 const AttributeList &Attr) { 243 if (AttrTy *A = D->getAttr<AttrTy>()) { 244 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) 245 << Attr.getName() << A; 246 return true; 247 } 248 return false; 249 } 250 251 /// \brief Check if IdxExpr is a valid parameter index for a function or 252 /// instance method D. May output an error. 253 /// 254 /// \returns true if IdxExpr is a valid index. 255 static bool checkFunctionOrMethodParameterIndex(Sema &S, const Decl *D, 256 const AttributeList &Attr, 257 unsigned AttrArgNum, 258 const Expr *IdxExpr, 259 uint64_t &Idx) { 260 assert(isFunctionOrMethod(D)); 261 262 // In C++ the implicit 'this' function parameter also counts. 263 // Parameters are counted from one. 264 bool HP = hasFunctionProto(D); 265 bool HasImplicitThisParam = isInstanceMethod(D); 266 bool IV = HP && isFunctionOrMethodVariadic(D); 267 unsigned NumParams = 268 (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam; 269 270 llvm::APSInt IdxInt; 271 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || 272 !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) { 273 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 274 << Attr.getName() << AttrArgNum << AANT_ArgumentIntegerConstant 275 << IdxExpr->getSourceRange(); 276 return false; 277 } 278 279 Idx = IdxInt.getLimitedValue(); 280 if (Idx < 1 || (!IV && Idx > NumParams)) { 281 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) 282 << Attr.getName() << AttrArgNum << IdxExpr->getSourceRange(); 283 return false; 284 } 285 Idx--; // Convert to zero-based. 286 if (HasImplicitThisParam) { 287 if (Idx == 0) { 288 S.Diag(Attr.getLoc(), 289 diag::err_attribute_invalid_implicit_this_argument) 290 << Attr.getName() << IdxExpr->getSourceRange(); 291 return false; 292 } 293 --Idx; 294 } 295 296 return true; 297 } 298 299 /// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal. 300 /// If not emit an error and return false. If the argument is an identifier it 301 /// will emit an error with a fixit hint and treat it as if it was a string 302 /// literal. 303 bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr, 304 unsigned ArgNum, StringRef &Str, 305 SourceLocation *ArgLocation) { 306 // Look for identifiers. If we have one emit a hint to fix it to a literal. 307 if (Attr.isArgIdent(ArgNum)) { 308 IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum); 309 Diag(Loc->Loc, diag::err_attribute_argument_type) 310 << Attr.getName() << AANT_ArgumentString 311 << FixItHint::CreateInsertion(Loc->Loc, "\"") 312 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(Loc->Loc), "\""); 313 Str = Loc->Ident->getName(); 314 if (ArgLocation) 315 *ArgLocation = Loc->Loc; 316 return true; 317 } 318 319 // Now check for an actual string literal. 320 Expr *ArgExpr = Attr.getArgAsExpr(ArgNum); 321 StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts()); 322 if (ArgLocation) 323 *ArgLocation = ArgExpr->getLocStart(); 324 325 if (!Literal || !Literal->isAscii()) { 326 Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type) 327 << Attr.getName() << AANT_ArgumentString; 328 return false; 329 } 330 331 Str = Literal->getString(); 332 return true; 333 } 334 335 /// \brief Applies the given attribute to the Decl without performing any 336 /// additional semantic checking. 337 template <typename AttrType> 338 static void handleSimpleAttribute(Sema &S, Decl *D, 339 const AttributeList &Attr) { 340 D->addAttr(::new (S.Context) AttrType(Attr.getRange(), S.Context, 341 Attr.getAttributeSpellingListIndex())); 342 } 343 344 /// \brief Check if the passed-in expression is of type int or bool. 345 static bool isIntOrBool(Expr *Exp) { 346 QualType QT = Exp->getType(); 347 return QT->isBooleanType() || QT->isIntegerType(); 348 } 349 350 351 // Check to see if the type is a smart pointer of some kind. We assume 352 // it's a smart pointer if it defines both operator-> and operator*. 353 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { 354 DeclContextLookupConstResult Res1 = RT->getDecl()->lookup( 355 S.Context.DeclarationNames.getCXXOperatorName(OO_Star)); 356 if (Res1.empty()) 357 return false; 358 359 DeclContextLookupConstResult Res2 = RT->getDecl()->lookup( 360 S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow)); 361 if (Res2.empty()) 362 return false; 363 364 return true; 365 } 366 367 /// \brief Check if passed in Decl is a pointer type. 368 /// Note that this function may produce an error message. 369 /// \return true if the Decl is a pointer type; false otherwise 370 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, 371 const AttributeList &Attr) { 372 const ValueDecl *vd = cast<ValueDecl>(D); 373 QualType QT = vd->getType(); 374 if (QT->isAnyPointerType()) 375 return true; 376 377 if (const RecordType *RT = QT->getAs<RecordType>()) { 378 // If it's an incomplete type, it could be a smart pointer; skip it. 379 // (We don't want to force template instantiation if we can avoid it, 380 // since that would alter the order in which templates are instantiated.) 381 if (RT->isIncompleteType()) 382 return true; 383 384 if (threadSafetyCheckIsSmartPointer(S, RT)) 385 return true; 386 } 387 388 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer) 389 << Attr.getName() << QT; 390 return false; 391 } 392 393 /// \brief Checks that the passed in QualType either is of RecordType or points 394 /// to RecordType. Returns the relevant RecordType, null if it does not exit. 395 static const RecordType *getRecordType(QualType QT) { 396 if (const RecordType *RT = QT->getAs<RecordType>()) 397 return RT; 398 399 // Now check if we point to record type. 400 if (const PointerType *PT = QT->getAs<PointerType>()) 401 return PT->getPointeeType()->getAs<RecordType>(); 402 403 return nullptr; 404 } 405 406 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { 407 const RecordType *RT = getRecordType(Ty); 408 409 if (!RT) 410 return false; 411 412 // Don't check for the capability if the class hasn't been defined yet. 413 if (RT->isIncompleteType()) 414 return true; 415 416 // Allow smart pointers to be used as capability objects. 417 // FIXME -- Check the type that the smart pointer points to. 418 if (threadSafetyCheckIsSmartPointer(S, RT)) 419 return true; 420 421 // Check if the record itself has a capability. 422 RecordDecl *RD = RT->getDecl(); 423 if (RD->hasAttr<CapabilityAttr>()) 424 return true; 425 426 // Else check if any base classes have a capability. 427 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 428 CXXBasePaths BPaths(false, false); 429 if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &P, 430 void *) { 431 return BS->getType()->getAs<RecordType>() 432 ->getDecl()->hasAttr<CapabilityAttr>(); 433 }, nullptr, BPaths)) 434 return true; 435 } 436 return false; 437 } 438 439 static bool checkTypedefTypeForCapability(QualType Ty) { 440 const auto *TD = Ty->getAs<TypedefType>(); 441 if (!TD) 442 return false; 443 444 TypedefNameDecl *TN = TD->getDecl(); 445 if (!TN) 446 return false; 447 448 return TN->hasAttr<CapabilityAttr>(); 449 } 450 451 static bool typeHasCapability(Sema &S, QualType Ty) { 452 if (checkTypedefTypeForCapability(Ty)) 453 return true; 454 455 if (checkRecordTypeForCapability(S, Ty)) 456 return true; 457 458 return false; 459 } 460 461 static bool isCapabilityExpr(Sema &S, const Expr *Ex) { 462 // Capability expressions are simple expressions involving the boolean logic 463 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once 464 // a DeclRefExpr is found, its type should be checked to determine whether it 465 // is a capability or not. 466 467 if (const auto *E = dyn_cast<DeclRefExpr>(Ex)) 468 return typeHasCapability(S, E->getType()); 469 else if (const auto *E = dyn_cast<CastExpr>(Ex)) 470 return isCapabilityExpr(S, E->getSubExpr()); 471 else if (const auto *E = dyn_cast<ParenExpr>(Ex)) 472 return isCapabilityExpr(S, E->getSubExpr()); 473 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) { 474 if (E->getOpcode() == UO_LNot) 475 return isCapabilityExpr(S, E->getSubExpr()); 476 return false; 477 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) { 478 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) 479 return isCapabilityExpr(S, E->getLHS()) && 480 isCapabilityExpr(S, E->getRHS()); 481 return false; 482 } 483 484 return false; 485 } 486 487 /// \brief Checks that all attribute arguments, starting from Sidx, resolve to 488 /// a capability object. 489 /// \param Sidx The attribute argument index to start checking with. 490 /// \param ParamIdxOk Whether an argument can be indexing into a function 491 /// parameter list. 492 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, 493 const AttributeList &Attr, 494 SmallVectorImpl<Expr *> &Args, 495 int Sidx = 0, 496 bool ParamIdxOk = false) { 497 for (unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) { 498 Expr *ArgExp = Attr.getArgAsExpr(Idx); 499 500 if (ArgExp->isTypeDependent()) { 501 // FIXME -- need to check this again on template instantiation 502 Args.push_back(ArgExp); 503 continue; 504 } 505 506 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) { 507 if (StrLit->getLength() == 0 || 508 (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) { 509 // Pass empty strings to the analyzer without warnings. 510 // Treat "*" as the universal lock. 511 Args.push_back(ArgExp); 512 continue; 513 } 514 515 // We allow constant strings to be used as a placeholder for expressions 516 // that are not valid C++ syntax, but warn that they are ignored. 517 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) << 518 Attr.getName(); 519 Args.push_back(ArgExp); 520 continue; 521 } 522 523 QualType ArgTy = ArgExp->getType(); 524 525 // A pointer to member expression of the form &MyClass::mu is treated 526 // specially -- we need to look at the type of the member. 527 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp)) 528 if (UOp->getOpcode() == UO_AddrOf) 529 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr())) 530 if (DRE->getDecl()->isCXXInstanceMember()) 531 ArgTy = DRE->getDecl()->getType(); 532 533 // First see if we can just cast to record type, or pointer to record type. 534 const RecordType *RT = getRecordType(ArgTy); 535 536 // Now check if we index into a record type function param. 537 if(!RT && ParamIdxOk) { 538 FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 539 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp); 540 if(FD && IL) { 541 unsigned int NumParams = FD->getNumParams(); 542 llvm::APInt ArgValue = IL->getValue(); 543 uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); 544 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; 545 if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { 546 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range) 547 << Attr.getName() << Idx + 1 << NumParams; 548 continue; 549 } 550 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); 551 } 552 } 553 554 // If the type does not have a capability, see if the components of the 555 // expression have capabilities. This allows for writing C code where the 556 // capability may be on the type, and the expression is a capability 557 // boolean logic expression. Eg) requires_capability(A || B && !C) 558 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) 559 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable) 560 << Attr.getName() << ArgTy; 561 562 Args.push_back(ArgExp); 563 } 564 } 565 566 //===----------------------------------------------------------------------===// 567 // Attribute Implementations 568 //===----------------------------------------------------------------------===// 569 570 static void handlePtGuardedVarAttr(Sema &S, Decl *D, 571 const AttributeList &Attr) { 572 if (!threadSafetyCheckIsPointer(S, D, Attr)) 573 return; 574 575 D->addAttr(::new (S.Context) 576 PtGuardedVarAttr(Attr.getRange(), S.Context, 577 Attr.getAttributeSpellingListIndex())); 578 } 579 580 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, 581 const AttributeList &Attr, 582 Expr* &Arg) { 583 SmallVector<Expr*, 1> Args; 584 // check that all arguments are lockable objects 585 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); 586 unsigned Size = Args.size(); 587 if (Size != 1) 588 return false; 589 590 Arg = Args[0]; 591 592 return true; 593 } 594 595 static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) { 596 Expr *Arg = nullptr; 597 if (!checkGuardedByAttrCommon(S, D, Attr, Arg)) 598 return; 599 600 D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg, 601 Attr.getAttributeSpellingListIndex())); 602 } 603 604 static void handlePtGuardedByAttr(Sema &S, Decl *D, 605 const AttributeList &Attr) { 606 Expr *Arg = nullptr; 607 if (!checkGuardedByAttrCommon(S, D, Attr, Arg)) 608 return; 609 610 if (!threadSafetyCheckIsPointer(S, D, Attr)) 611 return; 612 613 D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(), 614 S.Context, Arg, 615 Attr.getAttributeSpellingListIndex())); 616 } 617 618 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, 619 const AttributeList &Attr, 620 SmallVectorImpl<Expr *> &Args) { 621 if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) 622 return false; 623 624 // Check that this attribute only applies to lockable types. 625 QualType QT = cast<ValueDecl>(D)->getType(); 626 if (!QT->isDependentType()) { 627 const RecordType *RT = getRecordType(QT); 628 if (!RT || !RT->getDecl()->hasAttr<CapabilityAttr>()) { 629 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable) 630 << Attr.getName(); 631 return false; 632 } 633 } 634 635 // Check that all arguments are lockable objects. 636 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); 637 if (Args.empty()) 638 return false; 639 640 return true; 641 } 642 643 static void handleAcquiredAfterAttr(Sema &S, Decl *D, 644 const AttributeList &Attr) { 645 SmallVector<Expr*, 1> Args; 646 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args)) 647 return; 648 649 Expr **StartArg = &Args[0]; 650 D->addAttr(::new (S.Context) 651 AcquiredAfterAttr(Attr.getRange(), S.Context, 652 StartArg, Args.size(), 653 Attr.getAttributeSpellingListIndex())); 654 } 655 656 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, 657 const AttributeList &Attr) { 658 SmallVector<Expr*, 1> Args; 659 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args)) 660 return; 661 662 Expr **StartArg = &Args[0]; 663 D->addAttr(::new (S.Context) 664 AcquiredBeforeAttr(Attr.getRange(), S.Context, 665 StartArg, Args.size(), 666 Attr.getAttributeSpellingListIndex())); 667 } 668 669 static bool checkLockFunAttrCommon(Sema &S, Decl *D, 670 const AttributeList &Attr, 671 SmallVectorImpl<Expr *> &Args) { 672 // zero or more arguments ok 673 // check that all arguments are lockable objects 674 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true); 675 676 return true; 677 } 678 679 static void handleAssertSharedLockAttr(Sema &S, Decl *D, 680 const AttributeList &Attr) { 681 SmallVector<Expr*, 1> Args; 682 if (!checkLockFunAttrCommon(S, D, Attr, Args)) 683 return; 684 685 unsigned Size = Args.size(); 686 Expr **StartArg = Size == 0 ? nullptr : &Args[0]; 687 D->addAttr(::new (S.Context) 688 AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size, 689 Attr.getAttributeSpellingListIndex())); 690 } 691 692 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, 693 const AttributeList &Attr) { 694 SmallVector<Expr*, 1> Args; 695 if (!checkLockFunAttrCommon(S, D, Attr, Args)) 696 return; 697 698 unsigned Size = Args.size(); 699 Expr **StartArg = Size == 0 ? nullptr : &Args[0]; 700 D->addAttr(::new (S.Context) 701 AssertExclusiveLockAttr(Attr.getRange(), S.Context, 702 StartArg, Size, 703 Attr.getAttributeSpellingListIndex())); 704 } 705 706 707 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, 708 const AttributeList &Attr, 709 SmallVectorImpl<Expr *> &Args) { 710 if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) 711 return false; 712 713 if (!isIntOrBool(Attr.getArgAsExpr(0))) { 714 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 715 << Attr.getName() << 1 << AANT_ArgumentIntOrBool; 716 return false; 717 } 718 719 // check that all arguments are lockable objects 720 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 1); 721 722 return true; 723 } 724 725 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, 726 const AttributeList &Attr) { 727 SmallVector<Expr*, 2> Args; 728 if (!checkTryLockFunAttrCommon(S, D, Attr, Args)) 729 return; 730 731 D->addAttr(::new (S.Context) 732 SharedTrylockFunctionAttr(Attr.getRange(), S.Context, 733 Attr.getArgAsExpr(0), 734 Args.data(), Args.size(), 735 Attr.getAttributeSpellingListIndex())); 736 } 737 738 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, 739 const AttributeList &Attr) { 740 SmallVector<Expr*, 2> Args; 741 if (!checkTryLockFunAttrCommon(S, D, Attr, Args)) 742 return; 743 744 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( 745 Attr.getRange(), S.Context, Attr.getArgAsExpr(0), Args.data(), 746 Args.size(), Attr.getAttributeSpellingListIndex())); 747 } 748 749 static void handleLockReturnedAttr(Sema &S, Decl *D, 750 const AttributeList &Attr) { 751 // check that the argument is lockable object 752 SmallVector<Expr*, 1> Args; 753 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); 754 unsigned Size = Args.size(); 755 if (Size == 0) 756 return; 757 758 D->addAttr(::new (S.Context) 759 LockReturnedAttr(Attr.getRange(), S.Context, Args[0], 760 Attr.getAttributeSpellingListIndex())); 761 } 762 763 static void handleLocksExcludedAttr(Sema &S, Decl *D, 764 const AttributeList &Attr) { 765 if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) 766 return; 767 768 // check that all arguments are lockable objects 769 SmallVector<Expr*, 1> Args; 770 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); 771 unsigned Size = Args.size(); 772 if (Size == 0) 773 return; 774 Expr **StartArg = &Args[0]; 775 776 D->addAttr(::new (S.Context) 777 LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size, 778 Attr.getAttributeSpellingListIndex())); 779 } 780 781 static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) { 782 Expr *Cond = Attr.getArgAsExpr(0); 783 if (!Cond->isTypeDependent()) { 784 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 785 if (Converted.isInvalid()) 786 return; 787 Cond = Converted.get(); 788 } 789 790 StringRef Msg; 791 if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg)) 792 return; 793 794 SmallVector<PartialDiagnosticAt, 8> Diags; 795 if (!Cond->isValueDependent() && 796 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D), 797 Diags)) { 798 S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr); 799 for (int I = 0, N = Diags.size(); I != N; ++I) 800 S.Diag(Diags[I].first, Diags[I].second); 801 return; 802 } 803 804 D->addAttr(::new (S.Context) 805 EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg, 806 Attr.getAttributeSpellingListIndex())); 807 } 808 809 static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) { 810 ConsumableAttr::ConsumedState DefaultState; 811 812 if (Attr.isArgIdent(0)) { 813 IdentifierLoc *IL = Attr.getArgAsIdent(0); 814 if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), 815 DefaultState)) { 816 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) 817 << Attr.getName() << IL->Ident; 818 return; 819 } 820 } else { 821 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) 822 << Attr.getName() << AANT_ArgumentIdentifier; 823 return; 824 } 825 826 D->addAttr(::new (S.Context) 827 ConsumableAttr(Attr.getRange(), S.Context, DefaultState, 828 Attr.getAttributeSpellingListIndex())); 829 } 830 831 832 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, 833 const AttributeList &Attr) { 834 ASTContext &CurrContext = S.getASTContext(); 835 QualType ThisType = MD->getThisType(CurrContext)->getPointeeType(); 836 837 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { 838 if (!RD->hasAttr<ConsumableAttr>()) { 839 S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) << 840 RD->getNameAsString(); 841 842 return false; 843 } 844 } 845 846 return true; 847 } 848 849 850 static void handleCallableWhenAttr(Sema &S, Decl *D, 851 const AttributeList &Attr) { 852 if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) 853 return; 854 855 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr)) 856 return; 857 858 SmallVector<CallableWhenAttr::ConsumedState, 3> States; 859 for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) { 860 CallableWhenAttr::ConsumedState CallableState; 861 862 StringRef StateString; 863 SourceLocation Loc; 864 if (Attr.isArgIdent(ArgIndex)) { 865 IdentifierLoc *Ident = Attr.getArgAsIdent(ArgIndex); 866 StateString = Ident->Ident->getName(); 867 Loc = Ident->Loc; 868 } else { 869 if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc)) 870 return; 871 } 872 873 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, 874 CallableState)) { 875 S.Diag(Loc, diag::warn_attribute_type_not_supported) 876 << Attr.getName() << StateString; 877 return; 878 } 879 880 States.push_back(CallableState); 881 } 882 883 D->addAttr(::new (S.Context) 884 CallableWhenAttr(Attr.getRange(), S.Context, States.data(), 885 States.size(), Attr.getAttributeSpellingListIndex())); 886 } 887 888 889 static void handleParamTypestateAttr(Sema &S, Decl *D, 890 const AttributeList &Attr) { 891 ParamTypestateAttr::ConsumedState ParamState; 892 893 if (Attr.isArgIdent(0)) { 894 IdentifierLoc *Ident = Attr.getArgAsIdent(0); 895 StringRef StateString = Ident->Ident->getName(); 896 897 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, 898 ParamState)) { 899 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) 900 << Attr.getName() << StateString; 901 return; 902 } 903 } else { 904 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << 905 Attr.getName() << AANT_ArgumentIdentifier; 906 return; 907 } 908 909 // FIXME: This check is currently being done in the analysis. It can be 910 // enabled here only after the parser propagates attributes at 911 // template specialization definition, not declaration. 912 //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); 913 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); 914 // 915 //if (!RD || !RD->hasAttr<ConsumableAttr>()) { 916 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << 917 // ReturnType.getAsString(); 918 // return; 919 //} 920 921 D->addAttr(::new (S.Context) 922 ParamTypestateAttr(Attr.getRange(), S.Context, ParamState, 923 Attr.getAttributeSpellingListIndex())); 924 } 925 926 927 static void handleReturnTypestateAttr(Sema &S, Decl *D, 928 const AttributeList &Attr) { 929 ReturnTypestateAttr::ConsumedState ReturnState; 930 931 if (Attr.isArgIdent(0)) { 932 IdentifierLoc *IL = Attr.getArgAsIdent(0); 933 if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), 934 ReturnState)) { 935 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) 936 << Attr.getName() << IL->Ident; 937 return; 938 } 939 } else { 940 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << 941 Attr.getName() << AANT_ArgumentIdentifier; 942 return; 943 } 944 945 // FIXME: This check is currently being done in the analysis. It can be 946 // enabled here only after the parser propagates attributes at 947 // template specialization definition, not declaration. 948 //QualType ReturnType; 949 // 950 //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { 951 // ReturnType = Param->getType(); 952 // 953 //} else if (const CXXConstructorDecl *Constructor = 954 // dyn_cast<CXXConstructorDecl>(D)) { 955 // ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType(); 956 // 957 //} else { 958 // 959 // ReturnType = cast<FunctionDecl>(D)->getCallResultType(); 960 //} 961 // 962 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); 963 // 964 //if (!RD || !RD->hasAttr<ConsumableAttr>()) { 965 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << 966 // ReturnType.getAsString(); 967 // return; 968 //} 969 970 D->addAttr(::new (S.Context) 971 ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState, 972 Attr.getAttributeSpellingListIndex())); 973 } 974 975 976 static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) { 977 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr)) 978 return; 979 980 SetTypestateAttr::ConsumedState NewState; 981 if (Attr.isArgIdent(0)) { 982 IdentifierLoc *Ident = Attr.getArgAsIdent(0); 983 StringRef Param = Ident->Ident->getName(); 984 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { 985 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) 986 << Attr.getName() << Param; 987 return; 988 } 989 } else { 990 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << 991 Attr.getName() << AANT_ArgumentIdentifier; 992 return; 993 } 994 995 D->addAttr(::new (S.Context) 996 SetTypestateAttr(Attr.getRange(), S.Context, NewState, 997 Attr.getAttributeSpellingListIndex())); 998 } 999 1000 static void handleTestTypestateAttr(Sema &S, Decl *D, 1001 const AttributeList &Attr) { 1002 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr)) 1003 return; 1004 1005 TestTypestateAttr::ConsumedState TestState; 1006 if (Attr.isArgIdent(0)) { 1007 IdentifierLoc *Ident = Attr.getArgAsIdent(0); 1008 StringRef Param = Ident->Ident->getName(); 1009 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { 1010 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) 1011 << Attr.getName() << Param; 1012 return; 1013 } 1014 } else { 1015 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << 1016 Attr.getName() << AANT_ArgumentIdentifier; 1017 return; 1018 } 1019 1020 D->addAttr(::new (S.Context) 1021 TestTypestateAttr(Attr.getRange(), S.Context, TestState, 1022 Attr.getAttributeSpellingListIndex())); 1023 } 1024 1025 static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D, 1026 const AttributeList &Attr) { 1027 // Remember this typedef decl, we will need it later for diagnostics. 1028 S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D)); 1029 } 1030 1031 static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1032 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 1033 TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context, 1034 Attr.getAttributeSpellingListIndex())); 1035 else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) { 1036 // If the alignment is less than or equal to 8 bits, the packed attribute 1037 // has no effect. 1038 if (!FD->getType()->isDependentType() && 1039 !FD->getType()->isIncompleteType() && 1040 S.Context.getTypeAlign(FD->getType()) <= 8) 1041 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type) 1042 << Attr.getName() << FD->getType(); 1043 else 1044 FD->addAttr(::new (S.Context) 1045 PackedAttr(Attr.getRange(), S.Context, 1046 Attr.getAttributeSpellingListIndex())); 1047 } else 1048 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); 1049 } 1050 1051 static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) { 1052 // The IBOutlet/IBOutletCollection attributes only apply to instance 1053 // variables or properties of Objective-C classes. The outlet must also 1054 // have an object reference type. 1055 if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) { 1056 if (!VD->getType()->getAs<ObjCObjectPointerType>()) { 1057 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) 1058 << Attr.getName() << VD->getType() << 0; 1059 return false; 1060 } 1061 } 1062 else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) { 1063 if (!PD->getType()->getAs<ObjCObjectPointerType>()) { 1064 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) 1065 << Attr.getName() << PD->getType() << 1; 1066 return false; 1067 } 1068 } 1069 else { 1070 S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName(); 1071 return false; 1072 } 1073 1074 return true; 1075 } 1076 1077 static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) { 1078 if (!checkIBOutletCommon(S, D, Attr)) 1079 return; 1080 1081 D->addAttr(::new (S.Context) 1082 IBOutletAttr(Attr.getRange(), S.Context, 1083 Attr.getAttributeSpellingListIndex())); 1084 } 1085 1086 static void handleIBOutletCollection(Sema &S, Decl *D, 1087 const AttributeList &Attr) { 1088 1089 // The iboutletcollection attribute can have zero or one arguments. 1090 if (Attr.getNumArgs() > 1) { 1091 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) 1092 << Attr.getName() << 1; 1093 return; 1094 } 1095 1096 if (!checkIBOutletCommon(S, D, Attr)) 1097 return; 1098 1099 ParsedType PT; 1100 1101 if (Attr.hasParsedType()) 1102 PT = Attr.getTypeArg(); 1103 else { 1104 PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(), 1105 S.getScopeForContext(D->getDeclContext()->getParent())); 1106 if (!PT) { 1107 S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject"; 1108 return; 1109 } 1110 } 1111 1112 TypeSourceInfo *QTLoc = nullptr; 1113 QualType QT = S.GetTypeFromParser(PT, &QTLoc); 1114 if (!QTLoc) 1115 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc()); 1116 1117 // Diagnose use of non-object type in iboutletcollection attribute. 1118 // FIXME. Gnu attribute extension ignores use of builtin types in 1119 // attributes. So, __attribute__((iboutletcollection(char))) will be 1120 // treated as __attribute__((iboutletcollection())). 1121 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { 1122 S.Diag(Attr.getLoc(), 1123 QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype 1124 : diag::err_iboutletcollection_type) << QT; 1125 return; 1126 } 1127 1128 D->addAttr(::new (S.Context) 1129 IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc, 1130 Attr.getAttributeSpellingListIndex())); 1131 } 1132 1133 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { 1134 if (RefOkay) { 1135 if (T->isReferenceType()) 1136 return true; 1137 } else { 1138 T = T.getNonReferenceType(); 1139 } 1140 1141 // The nonnull attribute, and other similar attributes, can be applied to a 1142 // transparent union that contains a pointer type. 1143 if (const RecordType *UT = T->getAsUnionType()) { 1144 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { 1145 RecordDecl *UD = UT->getDecl(); 1146 for (const auto *I : UD->fields()) { 1147 QualType QT = I->getType(); 1148 if (QT->isAnyPointerType() || QT->isBlockPointerType()) 1149 return true; 1150 } 1151 } 1152 } 1153 1154 return T->isAnyPointerType() || T->isBlockPointerType(); 1155 } 1156 1157 static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &Attr, 1158 SourceRange AttrParmRange, 1159 SourceRange TypeRange, 1160 bool isReturnValue = false) { 1161 if (!S.isValidPointerAttrType(T)) { 1162 S.Diag(Attr.getLoc(), isReturnValue 1163 ? diag::warn_attribute_return_pointers_only 1164 : diag::warn_attribute_pointers_only) 1165 << Attr.getName() << AttrParmRange << TypeRange; 1166 return false; 1167 } 1168 return true; 1169 } 1170 1171 static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1172 SmallVector<unsigned, 8> NonNullArgs; 1173 for (unsigned I = 0; I < Attr.getNumArgs(); ++I) { 1174 Expr *Ex = Attr.getArgAsExpr(I); 1175 uint64_t Idx; 1176 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, I + 1, Ex, Idx)) 1177 return; 1178 1179 // Is the function argument a pointer type? 1180 if (Idx < getFunctionOrMethodNumParams(D) && 1181 !attrNonNullArgCheck(S, getFunctionOrMethodParamType(D, Idx), Attr, 1182 Ex->getSourceRange(), 1183 getFunctionOrMethodParamRange(D, Idx))) 1184 continue; 1185 1186 NonNullArgs.push_back(Idx); 1187 } 1188 1189 // If no arguments were specified to __attribute__((nonnull)) then all pointer 1190 // arguments have a nonnull attribute; warn if there aren't any. Skip this 1191 // check if the attribute came from a macro expansion or a template 1192 // instantiation. 1193 if (NonNullArgs.empty() && Attr.getLoc().isFileID() && 1194 S.ActiveTemplateInstantiations.empty()) { 1195 bool AnyPointers = isFunctionOrMethodVariadic(D); 1196 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); 1197 I != E && !AnyPointers; ++I) { 1198 QualType T = getFunctionOrMethodParamType(D, I); 1199 if (T->isDependentType() || S.isValidPointerAttrType(T)) 1200 AnyPointers = true; 1201 } 1202 1203 if (!AnyPointers) 1204 S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers); 1205 } 1206 1207 unsigned *Start = NonNullArgs.data(); 1208 unsigned Size = NonNullArgs.size(); 1209 llvm::array_pod_sort(Start, Start + Size); 1210 D->addAttr(::new (S.Context) 1211 NonNullAttr(Attr.getRange(), S.Context, Start, Size, 1212 Attr.getAttributeSpellingListIndex())); 1213 } 1214 1215 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, 1216 const AttributeList &Attr) { 1217 if (Attr.getNumArgs() > 0) { 1218 if (D->getFunctionType()) { 1219 handleNonNullAttr(S, D, Attr); 1220 } else { 1221 S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_parm_no_args) 1222 << D->getSourceRange(); 1223 } 1224 return; 1225 } 1226 1227 // Is the argument a pointer type? 1228 if (!attrNonNullArgCheck(S, D->getType(), Attr, SourceRange(), 1229 D->getSourceRange())) 1230 return; 1231 1232 D->addAttr(::new (S.Context) 1233 NonNullAttr(Attr.getRange(), S.Context, nullptr, 0, 1234 Attr.getAttributeSpellingListIndex())); 1235 } 1236 1237 static void handleReturnsNonNullAttr(Sema &S, Decl *D, 1238 const AttributeList &Attr) { 1239 QualType ResultType = getFunctionOrMethodResultType(D); 1240 SourceRange SR = getFunctionOrMethodResultSourceRange(D); 1241 if (!attrNonNullArgCheck(S, ResultType, Attr, SourceRange(), SR, 1242 /* isReturnValue */ true)) 1243 return; 1244 1245 D->addAttr(::new (S.Context) 1246 ReturnsNonNullAttr(Attr.getRange(), S.Context, 1247 Attr.getAttributeSpellingListIndex())); 1248 } 1249 1250 static void handleAssumeAlignedAttr(Sema &S, Decl *D, 1251 const AttributeList &Attr) { 1252 Expr *E = Attr.getArgAsExpr(0), 1253 *OE = Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr; 1254 S.AddAssumeAlignedAttr(Attr.getRange(), D, E, OE, 1255 Attr.getAttributeSpellingListIndex()); 1256 } 1257 1258 void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E, 1259 Expr *OE, unsigned SpellingListIndex) { 1260 QualType ResultType = getFunctionOrMethodResultType(D); 1261 SourceRange SR = getFunctionOrMethodResultSourceRange(D); 1262 1263 AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex); 1264 SourceLocation AttrLoc = AttrRange.getBegin(); 1265 1266 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { 1267 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) 1268 << &TmpAttr << AttrRange << SR; 1269 return; 1270 } 1271 1272 if (!E->isValueDependent()) { 1273 llvm::APSInt I(64); 1274 if (!E->isIntegerConstantExpr(I, Context)) { 1275 if (OE) 1276 Diag(AttrLoc, diag::err_attribute_argument_n_type) 1277 << &TmpAttr << 1 << AANT_ArgumentIntegerConstant 1278 << E->getSourceRange(); 1279 else 1280 Diag(AttrLoc, diag::err_attribute_argument_type) 1281 << &TmpAttr << AANT_ArgumentIntegerConstant 1282 << E->getSourceRange(); 1283 return; 1284 } 1285 1286 if (!I.isPowerOf2()) { 1287 Diag(AttrLoc, diag::err_alignment_not_power_of_two) 1288 << E->getSourceRange(); 1289 return; 1290 } 1291 } 1292 1293 if (OE) { 1294 if (!OE->isValueDependent()) { 1295 llvm::APSInt I(64); 1296 if (!OE->isIntegerConstantExpr(I, Context)) { 1297 Diag(AttrLoc, diag::err_attribute_argument_n_type) 1298 << &TmpAttr << 2 << AANT_ArgumentIntegerConstant 1299 << OE->getSourceRange(); 1300 return; 1301 } 1302 } 1303 } 1304 1305 D->addAttr(::new (Context) 1306 AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex)); 1307 } 1308 1309 static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) { 1310 // This attribute must be applied to a function declaration. The first 1311 // argument to the attribute must be an identifier, the name of the resource, 1312 // for example: malloc. The following arguments must be argument indexes, the 1313 // arguments must be of integer type for Returns, otherwise of pointer type. 1314 // The difference between Holds and Takes is that a pointer may still be used 1315 // after being held. free() should be __attribute((ownership_takes)), whereas 1316 // a list append function may well be __attribute((ownership_holds)). 1317 1318 if (!AL.isArgIdent(0)) { 1319 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) 1320 << AL.getName() << 1 << AANT_ArgumentIdentifier; 1321 return; 1322 } 1323 1324 // Figure out our Kind. 1325 OwnershipAttr::OwnershipKind K = 1326 OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0, 1327 AL.getAttributeSpellingListIndex()).getOwnKind(); 1328 1329 // Check arguments. 1330 switch (K) { 1331 case OwnershipAttr::Takes: 1332 case OwnershipAttr::Holds: 1333 if (AL.getNumArgs() < 2) { 1334 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) 1335 << AL.getName() << 2; 1336 return; 1337 } 1338 break; 1339 case OwnershipAttr::Returns: 1340 if (AL.getNumArgs() > 2) { 1341 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) 1342 << AL.getName() << 1; 1343 return; 1344 } 1345 break; 1346 } 1347 1348 IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; 1349 1350 // Normalize the argument, __foo__ becomes foo. 1351 StringRef ModuleName = Module->getName(); 1352 if (ModuleName.startswith("__") && ModuleName.endswith("__") && 1353 ModuleName.size() > 4) { 1354 ModuleName = ModuleName.drop_front(2).drop_back(2); 1355 Module = &S.PP.getIdentifierTable().get(ModuleName); 1356 } 1357 1358 SmallVector<unsigned, 8> OwnershipArgs; 1359 for (unsigned i = 1; i < AL.getNumArgs(); ++i) { 1360 Expr *Ex = AL.getArgAsExpr(i); 1361 uint64_t Idx; 1362 if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx)) 1363 return; 1364 1365 // Is the function argument a pointer type? 1366 QualType T = getFunctionOrMethodParamType(D, Idx); 1367 int Err = -1; // No error 1368 switch (K) { 1369 case OwnershipAttr::Takes: 1370 case OwnershipAttr::Holds: 1371 if (!T->isAnyPointerType() && !T->isBlockPointerType()) 1372 Err = 0; 1373 break; 1374 case OwnershipAttr::Returns: 1375 if (!T->isIntegerType()) 1376 Err = 1; 1377 break; 1378 } 1379 if (-1 != Err) { 1380 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err 1381 << Ex->getSourceRange(); 1382 return; 1383 } 1384 1385 // Check we don't have a conflict with another ownership attribute. 1386 for (const auto *I : D->specific_attrs<OwnershipAttr>()) { 1387 // Cannot have two ownership attributes of different kinds for the same 1388 // index. 1389 if (I->getOwnKind() != K && I->args_end() != 1390 std::find(I->args_begin(), I->args_end(), Idx)) { 1391 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) 1392 << AL.getName() << I; 1393 return; 1394 } else if (K == OwnershipAttr::Returns && 1395 I->getOwnKind() == OwnershipAttr::Returns) { 1396 // A returns attribute conflicts with any other returns attribute using 1397 // a different index. Note, diagnostic reporting is 1-based, but stored 1398 // argument indexes are 0-based. 1399 if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) { 1400 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) 1401 << *(I->args_begin()) + 1; 1402 if (I->args_size()) 1403 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) 1404 << (unsigned)Idx + 1 << Ex->getSourceRange(); 1405 return; 1406 } 1407 } 1408 } 1409 OwnershipArgs.push_back(Idx); 1410 } 1411 1412 unsigned* start = OwnershipArgs.data(); 1413 unsigned size = OwnershipArgs.size(); 1414 llvm::array_pod_sort(start, start + size); 1415 1416 D->addAttr(::new (S.Context) 1417 OwnershipAttr(AL.getLoc(), S.Context, Module, start, size, 1418 AL.getAttributeSpellingListIndex())); 1419 } 1420 1421 static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1422 // Check the attribute arguments. 1423 if (Attr.getNumArgs() > 1) { 1424 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) 1425 << Attr.getName() << 1; 1426 return; 1427 } 1428 1429 NamedDecl *nd = cast<NamedDecl>(D); 1430 1431 // gcc rejects 1432 // class c { 1433 // static int a __attribute__((weakref ("v2"))); 1434 // static int b() __attribute__((weakref ("f3"))); 1435 // }; 1436 // and ignores the attributes of 1437 // void f(void) { 1438 // static int a __attribute__((weakref ("v2"))); 1439 // } 1440 // we reject them 1441 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); 1442 if (!Ctx->isFileContext()) { 1443 S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) 1444 << nd; 1445 return; 1446 } 1447 1448 // The GCC manual says 1449 // 1450 // At present, a declaration to which `weakref' is attached can only 1451 // be `static'. 1452 // 1453 // It also says 1454 // 1455 // Without a TARGET, 1456 // given as an argument to `weakref' or to `alias', `weakref' is 1457 // equivalent to `weak'. 1458 // 1459 // gcc 4.4.1 will accept 1460 // int a7 __attribute__((weakref)); 1461 // as 1462 // int a7 __attribute__((weak)); 1463 // This looks like a bug in gcc. We reject that for now. We should revisit 1464 // it if this behaviour is actually used. 1465 1466 // GCC rejects 1467 // static ((alias ("y"), weakref)). 1468 // Should we? How to check that weakref is before or after alias? 1469 1470 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead 1471 // of transforming it into an AliasAttr. The WeakRefAttr never uses the 1472 // StringRef parameter it was given anyway. 1473 StringRef Str; 1474 if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str)) 1475 // GCC will accept anything as the argument of weakref. Should we 1476 // check for an existing decl? 1477 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str, 1478 Attr.getAttributeSpellingListIndex())); 1479 1480 D->addAttr(::new (S.Context) 1481 WeakRefAttr(Attr.getRange(), S.Context, 1482 Attr.getAttributeSpellingListIndex())); 1483 } 1484 1485 static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1486 StringRef Str; 1487 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str)) 1488 return; 1489 1490 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 1491 S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin); 1492 return; 1493 } 1494 1495 // FIXME: check if target symbol exists in current file 1496 1497 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str, 1498 Attr.getAttributeSpellingListIndex())); 1499 } 1500 1501 static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1502 if (checkAttrMutualExclusion<HotAttr>(S, D, Attr)) 1503 return; 1504 1505 D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context, 1506 Attr.getAttributeSpellingListIndex())); 1507 } 1508 1509 static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1510 if (checkAttrMutualExclusion<ColdAttr>(S, D, Attr)) 1511 return; 1512 1513 D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context, 1514 Attr.getAttributeSpellingListIndex())); 1515 } 1516 1517 static void handleTLSModelAttr(Sema &S, Decl *D, 1518 const AttributeList &Attr) { 1519 StringRef Model; 1520 SourceLocation LiteralLoc; 1521 // Check that it is a string. 1522 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc)) 1523 return; 1524 1525 // Check that the value. 1526 if (Model != "global-dynamic" && Model != "local-dynamic" 1527 && Model != "initial-exec" && Model != "local-exec") { 1528 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); 1529 return; 1530 } 1531 1532 D->addAttr(::new (S.Context) 1533 TLSModelAttr(Attr.getRange(), S.Context, Model, 1534 Attr.getAttributeSpellingListIndex())); 1535 } 1536 1537 static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1538 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1539 QualType RetTy = FD->getReturnType(); 1540 if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) { 1541 D->addAttr(::new (S.Context) 1542 MallocAttr(Attr.getRange(), S.Context, 1543 Attr.getAttributeSpellingListIndex())); 1544 return; 1545 } 1546 } 1547 1548 S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only); 1549 } 1550 1551 static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1552 if (S.LangOpts.CPlusPlus) { 1553 S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang) 1554 << Attr.getName() << AttributeLangSupport::Cpp; 1555 return; 1556 } 1557 1558 D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context, 1559 Attr.getAttributeSpellingListIndex())); 1560 } 1561 1562 static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) { 1563 if (hasDeclarator(D)) return; 1564 1565 if (S.CheckNoReturnAttr(attr)) return; 1566 1567 if (!isa<ObjCMethodDecl>(D)) { 1568 S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) 1569 << attr.getName() << ExpectedFunctionOrMethod; 1570 return; 1571 } 1572 1573 D->addAttr(::new (S.Context) 1574 NoReturnAttr(attr.getRange(), S.Context, 1575 attr.getAttributeSpellingListIndex())); 1576 } 1577 1578 bool Sema::CheckNoReturnAttr(const AttributeList &attr) { 1579 if (!checkAttributeNumArgs(*this, attr, 0)) { 1580 attr.setInvalid(); 1581 return true; 1582 } 1583 1584 return false; 1585 } 1586 1587 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, 1588 const AttributeList &Attr) { 1589 1590 // The checking path for 'noreturn' and 'analyzer_noreturn' are different 1591 // because 'analyzer_noreturn' does not impact the type. 1592 if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) { 1593 ValueDecl *VD = dyn_cast<ValueDecl>(D); 1594 if (!VD || (!VD->getType()->isBlockPointerType() && 1595 !VD->getType()->isFunctionPointerType())) { 1596 S.Diag(Attr.getLoc(), 1597 Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type 1598 : diag::warn_attribute_wrong_decl_type) 1599 << Attr.getName() << ExpectedFunctionMethodOrBlock; 1600 return; 1601 } 1602 } 1603 1604 D->addAttr(::new (S.Context) 1605 AnalyzerNoReturnAttr(Attr.getRange(), S.Context, 1606 Attr.getAttributeSpellingListIndex())); 1607 } 1608 1609 // PS3 PPU-specific. 1610 static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1611 /* 1612 Returning a Vector Class in Registers 1613 1614 According to the PPU ABI specifications, a class with a single member of 1615 vector type is returned in memory when used as the return value of a function. 1616 This results in inefficient code when implementing vector classes. To return 1617 the value in a single vector register, add the vecreturn attribute to the 1618 class definition. This attribute is also applicable to struct types. 1619 1620 Example: 1621 1622 struct Vector 1623 { 1624 __vector float xyzw; 1625 } __attribute__((vecreturn)); 1626 1627 Vector Add(Vector lhs, Vector rhs) 1628 { 1629 Vector result; 1630 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); 1631 return result; // This will be returned in a register 1632 } 1633 */ 1634 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { 1635 S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << A; 1636 return; 1637 } 1638 1639 RecordDecl *record = cast<RecordDecl>(D); 1640 int count = 0; 1641 1642 if (!isa<CXXRecordDecl>(record)) { 1643 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); 1644 return; 1645 } 1646 1647 if (!cast<CXXRecordDecl>(record)->isPOD()) { 1648 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record); 1649 return; 1650 } 1651 1652 for (const auto *I : record->fields()) { 1653 if ((count == 1) || !I->getType()->isVectorType()) { 1654 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); 1655 return; 1656 } 1657 count++; 1658 } 1659 1660 D->addAttr(::new (S.Context) 1661 VecReturnAttr(Attr.getRange(), S.Context, 1662 Attr.getAttributeSpellingListIndex())); 1663 } 1664 1665 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, 1666 const AttributeList &Attr) { 1667 if (isa<ParmVarDecl>(D)) { 1668 // [[carries_dependency]] can only be applied to a parameter if it is a 1669 // parameter of a function declaration or lambda. 1670 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { 1671 S.Diag(Attr.getLoc(), 1672 diag::err_carries_dependency_param_not_function_decl); 1673 return; 1674 } 1675 } 1676 1677 D->addAttr(::new (S.Context) CarriesDependencyAttr( 1678 Attr.getRange(), S.Context, 1679 Attr.getAttributeSpellingListIndex())); 1680 } 1681 1682 static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1683 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1684 if (VD->hasLocalStorage()) { 1685 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); 1686 return; 1687 } 1688 } else if (!isFunctionOrMethod(D)) { 1689 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) 1690 << Attr.getName() << ExpectedVariableOrFunction; 1691 return; 1692 } 1693 1694 D->addAttr(::new (S.Context) 1695 UsedAttr(Attr.getRange(), S.Context, 1696 Attr.getAttributeSpellingListIndex())); 1697 } 1698 1699 static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1700 uint32_t priority = ConstructorAttr::DefaultPriority; 1701 if (Attr.getNumArgs() && 1702 !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority)) 1703 return; 1704 1705 D->addAttr(::new (S.Context) 1706 ConstructorAttr(Attr.getRange(), S.Context, priority, 1707 Attr.getAttributeSpellingListIndex())); 1708 } 1709 1710 static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { 1711 uint32_t priority = DestructorAttr::DefaultPriority; 1712 if (Attr.getNumArgs() && 1713 !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority)) 1714 return; 1715 1716 D->addAttr(::new (S.Context) 1717 DestructorAttr(Attr.getRange(), S.Context, priority, 1718 Attr.getAttributeSpellingListIndex())); 1719 } 1720 1721 template <typename AttrTy> 1722 static void handleAttrWithMessage(Sema &S, Decl *D, 1723 const AttributeList &Attr) { 1724 // Handle the case where the attribute has a text message. 1725 StringRef Str; 1726 if (Attr.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str)) 1727 return; 1728 1729 D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str, 1730 Attr.getAttributeSpellingListIndex())); 1731 } 1732 1733 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D, 1734 const AttributeList &Attr) { 1735 if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) { 1736 S.Diag(Attr.getLoc(), diag::err_objc_attr_protocol_requires_definition) 1737 << Attr.getName() << Attr.getRange(); 1738 return; 1739 } 1740 1741 D->addAttr(::new (S.Context) 1742 ObjCExplicitProtocolImplAttr(Attr.getRange(), S.Context, 1743 Attr.getAttributeSpellingListIndex())); 1744 } 1745 1746 static bool checkAvailabilityAttr(Sema &S, SourceRange Range, 1747 IdentifierInfo *Platform, 1748 VersionTuple Introduced, 1749 VersionTuple Deprecated, 1750 VersionTuple Obsoleted) { 1751 StringRef PlatformName 1752 = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); 1753 if (PlatformName.empty()) 1754 PlatformName = Platform->getName(); 1755 1756 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all 1757 // of these steps are needed). 1758 if (!Introduced.empty() && !Deprecated.empty() && 1759 !(Introduced <= Deprecated)) { 1760 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) 1761 << 1 << PlatformName << Deprecated.getAsString() 1762 << 0 << Introduced.getAsString(); 1763 return true; 1764 } 1765 1766 if (!Introduced.empty() && !Obsoleted.empty() && 1767 !(Introduced <= Obsoleted)) { 1768 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) 1769 << 2 << PlatformName << Obsoleted.getAsString() 1770 << 0 << Introduced.getAsString(); 1771 return true; 1772 } 1773 1774 if (!Deprecated.empty() && !Obsoleted.empty() && 1775 !(Deprecated <= Obsoleted)) { 1776 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) 1777 << 2 << PlatformName << Obsoleted.getAsString() 1778 << 1 << Deprecated.getAsString(); 1779 return true; 1780 } 1781 1782 return false; 1783 } 1784 1785 /// \brief Check whether the two versions match. 1786 /// 1787 /// If either version tuple is empty, then they are assumed to match. If 1788 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. 1789 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, 1790 bool BeforeIsOkay) { 1791 if (X.empty() || Y.empty()) 1792 return true; 1793 1794 if (X == Y) 1795 return true; 1796 1797 if (BeforeIsOkay && X < Y) 1798 return true; 1799 1800 return false; 1801 } 1802 1803 AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range, 1804 IdentifierInfo *Platform, 1805 VersionTuple Introduced, 1806 VersionTuple Deprecated, 1807 VersionTuple Obsoleted, 1808 bool IsUnavailable, 1809 StringRef Message, 1810 bool Override, 1811 unsigned AttrSpellingListIndex) { 1812 VersionTuple MergedIntroduced = Introduced; 1813 VersionTuple MergedDeprecated = Deprecated; 1814 VersionTuple MergedObsoleted = Obsoleted; 1815 bool FoundAny = false; 1816 1817 if (D->hasAttrs()) { 1818 AttrVec &Attrs = D->getAttrs(); 1819 for (unsigned i = 0, e = Attrs.size(); i != e;) { 1820 const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]); 1821 if (!OldAA) { 1822 ++i; 1823 continue; 1824 } 1825 1826 IdentifierInfo *OldPlatform = OldAA->getPlatform(); 1827 if (OldPlatform != Platform) { 1828 ++i; 1829 continue; 1830 } 1831 1832 FoundAny = true; 1833 VersionTuple OldIntroduced = OldAA->getIntroduced(); 1834 VersionTuple OldDeprecated = OldAA->getDeprecated(); 1835 VersionTuple OldObsoleted = OldAA->getObsoleted(); 1836 bool OldIsUnavailable = OldAA->getUnavailable(); 1837 1838 if (!versionsMatch(OldIntroduced, Introduced, Override) || 1839 !versionsMatch(Deprecated, OldDeprecated, Override) || 1840 !versionsMatch(Obsoleted, OldObsoleted, Override) || 1841 !(OldIsUnavailable == IsUnavailable || 1842 (Override && !OldIsUnavailable && IsUnavailable))) { 1843 if (Override) { 1844 int Which = -1; 1845 VersionTuple FirstVersion; 1846 VersionTuple SecondVersion; 1847 if (!versionsMatch(OldIntroduced, Introduced, Override)) { 1848 Which = 0; 1849 FirstVersion = OldIntroduced; 1850 SecondVersion = Introduced; 1851 } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) { 1852 Which = 1; 1853 FirstVersion = Deprecated; 1854 SecondVersion = OldDeprecated; 1855 } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) { 1856 Which = 2; 1857 FirstVersion = Obsoleted; 1858 SecondVersion = OldObsoleted; 1859 } 1860 1861 if (Which == -1) { 1862 Diag(OldAA->getLocation(), 1863 diag::warn_mismatched_availability_override_unavail) 1864 << AvailabilityAttr::getPrettyPlatformName(Platform->getName()); 1865 } else { 1866 Diag(OldAA->getLocation(), 1867 diag::warn_mismatched_availability_override) 1868 << Which 1869 << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) 1870 << FirstVersion.getAsString() << SecondVersion.getAsString(); 1871 } 1872 Diag(Range.getBegin(), diag::note_overridden_method); 1873 } else { 1874 Diag(OldAA->getLocation(), diag::warn_mismatched_availability); 1875 Diag(Range.getBegin(), diag::note_previous_attribute); 1876 } 1877 1878 Attrs.erase(Attrs.begin() + i); 1879 --e; 1880 continue; 1881 } 1882 1883 VersionTuple MergedIntroduced2 = MergedIntroduced; 1884 VersionTuple MergedDeprecated2 = MergedDeprecated; 1885 VersionTuple MergedObsoleted2 = MergedObsoleted; 1886 1887 if (MergedIntroduced2.empty()) 1888 MergedIntroduced2 = OldIntroduced; 1889 if (MergedDeprecated2.empty()) 1890 MergedDeprecated2 = OldDeprecated; 1891 if (MergedObsoleted2.empty()) 1892 MergedObsoleted2 = OldObsoleted; 1893 1894 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, 1895 MergedIntroduced2, MergedDeprecated2, 1896 MergedObsoleted2)) { 1897 Attrs.erase(Attrs.begin() + i); 1898 --e; 1899 continue; 1900 } 1901 1902 MergedIntroduced = MergedIntroduced2; 1903 MergedDeprecated = MergedDeprecated2; 1904 MergedObsoleted = MergedObsoleted2; 1905 ++i; 1906 } 1907 } 1908 1909 if (FoundAny && 1910 MergedIntroduced == Introduced && 1911 MergedDeprecated == Deprecated && 1912 MergedObsoleted == Obsoleted) 1913 return nullptr; 1914 1915 // Only create a new attribute if !Override, but we want to do 1916 // the checking. 1917 if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced, 1918 MergedDeprecated, MergedObsoleted) && 1919 !Override) { 1920 return ::new (Context) AvailabilityAttr(Range, Context, Platform, 1921 Introduced, Deprecated, 1922 Obsoleted, IsUnavailable, Message, 1923 AttrSpellingListIndex); 1924 } 1925 return nullptr; 1926 } 1927 1928 static void handleAvailabilityAttr(Sema &S, Decl *D, 1929 const AttributeList &Attr) { 1930 if (!checkAttributeNumArgs(S, Attr, 1)) 1931 return; 1932 IdentifierLoc *Platform = Attr.getArgAsIdent(0); 1933 unsigned Index = Attr.getAttributeSpellingListIndex(); 1934 1935 IdentifierInfo *II = Platform->Ident; 1936 if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) 1937 S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) 1938 << Platform->Ident; 1939 1940 NamedDecl *ND = dyn_cast<NamedDecl>(D); 1941 if (!ND) { 1942 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); 1943 return; 1944 } 1945 1946 AvailabilityChange Introduced = Attr.getAvailabilityIntroduced(); 1947 AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated(); 1948 AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted(); 1949 bool IsUnavailable = Attr.getUnavailableLoc().isValid(); 1950 StringRef Str; 1951 if (const StringLiteral *SE = 1952 dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr())) 1953 Str = SE->getString(); 1954 1955 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II, 1956 Introduced.Version, 1957 Deprecated.Version, 1958 Obsoleted.Version, 1959 IsUnavailable, Str, 1960 /*Override=*/false, 1961 Index); 1962 if (NewAttr) 1963 D->addAttr(NewAttr); 1964 } 1965 1966 template <class T> 1967 static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range, 1968 typename T::VisibilityType value, 1969 unsigned attrSpellingListIndex) { 1970 T *existingAttr = D->getAttr<T>(); 1971 if (existingAttr) { 1972 typename T::VisibilityType existingValue = existingAttr->getVisibility(); 1973 if (existingValue == value) 1974 return nullptr; 1975 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); 1976 S.Diag(range.getBegin(), diag::note_previous_attribute); 1977 D->dropAttr<T>(); 1978 } 1979 return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex); 1980 } 1981 1982 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range, 1983 VisibilityAttr::VisibilityType Vis, 1984 unsigned AttrSpellingListIndex) { 1985 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis, 1986 AttrSpellingListIndex); 1987 } 1988 1989 TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range, 1990 TypeVisibilityAttr::VisibilityType Vis, 1991 unsigned AttrSpellingListIndex) { 1992 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis, 1993 AttrSpellingListIndex); 1994 } 1995 1996 static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr, 1997 bool isTypeVisibility) { 1998 // Visibility attributes don't mean anything on a typedef. 1999 if (isa<TypedefNameDecl>(D)) { 2000 S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored) 2001 << Attr.getName(); 2002 return; 2003 } 2004 2005 // 'type_visibility' can only go on a type or namespace. 2006 if (isTypeVisibility && 2007 !(isa<TagDecl>(D) || 2008 isa<ObjCInterfaceDecl>(D) || 2009 isa<NamespaceDecl>(D))) { 2010 S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type) 2011 << Attr.getName() << ExpectedTypeOrNamespace; 2012 return; 2013 } 2014 2015 // Check that the argument is a string literal. 2016 StringRef TypeStr; 2017 SourceLocation LiteralLoc; 2018 if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc)) 2019 return; 2020 2021 VisibilityAttr::VisibilityType type; 2022 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { 2023 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) 2024 << Attr.getName() << TypeStr; 2025 return; 2026 } 2027 2028 // Complain about attempts to use protected visibility on targets 2029 // (like Darwin) that don't support it. 2030 if (type == VisibilityAttr::Protected && 2031 !S.Context.getTargetInfo().hasProtectedVisibility()) { 2032 S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility); 2033 type = VisibilityAttr::Default; 2034 } 2035 2036 unsigned Index = Attr.getAttributeSpellingListIndex(); 2037 clang::Attr *newAttr; 2038 if (isTypeVisibility) { 2039 newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(), 2040 (TypeVisibilityAttr::VisibilityType) type, 2041 Index); 2042 } else { 2043 newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index); 2044 } 2045 if (newAttr) 2046 D->addAttr(newAttr); 2047 } 2048 2049 static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl, 2050 const AttributeList &Attr) { 2051 ObjCMethodDecl *method = cast<ObjCMethodDecl>(decl); 2052 if (!Attr.isArgIdent(0)) { 2053 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 2054 << Attr.getName() << 1 << AANT_ArgumentIdentifier; 2055 return; 2056 } 2057 2058 IdentifierLoc *IL = Attr.getArgAsIdent(0); 2059 ObjCMethodFamilyAttr::FamilyKind F; 2060 if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { 2061 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName() 2062 << IL->Ident; 2063 return; 2064 } 2065 2066 if (F == ObjCMethodFamilyAttr::OMF_init && 2067 !method->getReturnType()->isObjCObjectPointerType()) { 2068 S.Diag(method->getLocation(), diag::err_init_method_bad_return_type) 2069 << method->getReturnType(); 2070 // Ignore the attribute. 2071 return; 2072 } 2073 2074 method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(), 2075 S.Context, F, 2076 Attr.getAttributeSpellingListIndex())); 2077 } 2078 2079 static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) { 2080 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { 2081 QualType T = TD->getUnderlyingType(); 2082 if (!T->isCARCBridgableType()) { 2083 S.Diag(TD->getLocation(), diag::err_nsobject_attribute); 2084 return; 2085 } 2086 } 2087 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) { 2088 QualType T = PD->getType(); 2089 if (!T->isCARCBridgableType()) { 2090 S.Diag(PD->getLocation(), diag::err_nsobject_attribute); 2091 return; 2092 } 2093 } 2094 else { 2095 // It is okay to include this attribute on properties, e.g.: 2096 // 2097 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); 2098 // 2099 // In this case it follows tradition and suppresses an error in the above 2100 // case. 2101 S.Diag(D->getLocation(), diag::warn_nsobject_attribute); 2102 } 2103 D->addAttr(::new (S.Context) 2104 ObjCNSObjectAttr(Attr.getRange(), S.Context, 2105 Attr.getAttributeSpellingListIndex())); 2106 } 2107 2108 static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) { 2109 if (!Attr.isArgIdent(0)) { 2110 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 2111 << Attr.getName() << 1 << AANT_ArgumentIdentifier; 2112 return; 2113 } 2114 2115 IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident; 2116 BlocksAttr::BlockType type; 2117 if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { 2118 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) 2119 << Attr.getName() << II; 2120 return; 2121 } 2122 2123 D->addAttr(::new (S.Context) 2124 BlocksAttr(Attr.getRange(), S.Context, type, 2125 Attr.getAttributeSpellingListIndex())); 2126 } 2127 2128 static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) { 2129 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; 2130 if (Attr.getNumArgs() > 0) { 2131 Expr *E = Attr.getArgAsExpr(0); 2132 llvm::APSInt Idx(32); 2133 if (E->isTypeDependent() || E->isValueDependent() || 2134 !E->isIntegerConstantExpr(Idx, S.Context)) { 2135 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 2136 << Attr.getName() << 1 << AANT_ArgumentIntegerConstant 2137 << E->getSourceRange(); 2138 return; 2139 } 2140 2141 if (Idx.isSigned() && Idx.isNegative()) { 2142 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero) 2143 << E->getSourceRange(); 2144 return; 2145 } 2146 2147 sentinel = Idx.getZExtValue(); 2148 } 2149 2150 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; 2151 if (Attr.getNumArgs() > 1) { 2152 Expr *E = Attr.getArgAsExpr(1); 2153 llvm::APSInt Idx(32); 2154 if (E->isTypeDependent() || E->isValueDependent() || 2155 !E->isIntegerConstantExpr(Idx, S.Context)) { 2156 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 2157 << Attr.getName() << 2 << AANT_ArgumentIntegerConstant 2158 << E->getSourceRange(); 2159 return; 2160 } 2161 nullPos = Idx.getZExtValue(); 2162 2163 if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) { 2164 // FIXME: This error message could be improved, it would be nice 2165 // to say what the bounds actually are. 2166 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) 2167 << E->getSourceRange(); 2168 return; 2169 } 2170 } 2171 2172 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2173 const FunctionType *FT = FD->getType()->castAs<FunctionType>(); 2174 if (isa<FunctionNoProtoType>(FT)) { 2175 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments); 2176 return; 2177 } 2178 2179 if (!cast<FunctionProtoType>(FT)->isVariadic()) { 2180 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; 2181 return; 2182 } 2183 } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { 2184 if (!MD->isVariadic()) { 2185 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; 2186 return; 2187 } 2188 } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 2189 if (!BD->isVariadic()) { 2190 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; 2191 return; 2192 } 2193 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 2194 QualType Ty = V->getType(); 2195 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { 2196 const FunctionType *FT = Ty->isFunctionPointerType() 2197 ? D->getFunctionType() 2198 : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); 2199 if (!cast<FunctionProtoType>(FT)->isVariadic()) { 2200 int m = Ty->isFunctionPointerType() ? 0 : 1; 2201 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; 2202 return; 2203 } 2204 } else { 2205 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) 2206 << Attr.getName() << ExpectedFunctionMethodOrBlock; 2207 return; 2208 } 2209 } else { 2210 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) 2211 << Attr.getName() << ExpectedFunctionMethodOrBlock; 2212 return; 2213 } 2214 D->addAttr(::new (S.Context) 2215 SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos, 2216 Attr.getAttributeSpellingListIndex())); 2217 } 2218 2219 static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) { 2220 if (D->getFunctionType() && 2221 D->getFunctionType()->getReturnType()->isVoidType()) { 2222 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) 2223 << Attr.getName() << 0; 2224 return; 2225 } 2226 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) 2227 if (MD->getReturnType()->isVoidType()) { 2228 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) 2229 << Attr.getName() << 1; 2230 return; 2231 } 2232 2233 D->addAttr(::new (S.Context) 2234 WarnUnusedResultAttr(Attr.getRange(), S.Context, 2235 Attr.getAttributeSpellingListIndex())); 2236 } 2237 2238 static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) { 2239 // weak_import only applies to variable & function declarations. 2240 bool isDef = false; 2241 if (!D->canBeWeakImported(isDef)) { 2242 if (isDef) 2243 S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition) 2244 << "weak_import"; 2245 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || 2246 (S.Context.getTargetInfo().getTriple().isOSDarwin() && 2247 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { 2248 // Nothing to warn about here. 2249 } else 2250 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) 2251 << Attr.getName() << ExpectedVariableOrFunction; 2252 2253 return; 2254 } 2255 2256 D->addAttr(::new (S.Context) 2257 WeakImportAttr(Attr.getRange(), S.Context, 2258 Attr.getAttributeSpellingListIndex())); 2259 } 2260 2261 // Handles reqd_work_group_size and work_group_size_hint. 2262 template <typename WorkGroupAttr> 2263 static void handleWorkGroupSize(Sema &S, Decl *D, 2264 const AttributeList &Attr) { 2265 uint32_t WGSize[3]; 2266 for (unsigned i = 0; i < 3; ++i) { 2267 const Expr *E = Attr.getArgAsExpr(i); 2268 if (!checkUInt32Argument(S, Attr, E, WGSize[i], i)) 2269 return; 2270 if (WGSize[i] == 0) { 2271 S.Diag(Attr.getLoc(), diag::err_attribute_argument_is_zero) 2272 << Attr.getName() << E->getSourceRange(); 2273 return; 2274 } 2275 } 2276 2277 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); 2278 if (Existing && !(Existing->getXDim() == WGSize[0] && 2279 Existing->getYDim() == WGSize[1] && 2280 Existing->getZDim() == WGSize[2])) 2281 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName(); 2282 2283 D->addAttr(::new (S.Context) WorkGroupAttr(Attr.getRange(), S.Context, 2284 WGSize[0], WGSize[1], WGSize[2], 2285 Attr.getAttributeSpellingListIndex())); 2286 } 2287 2288 static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) { 2289 if (!Attr.hasParsedType()) { 2290 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) 2291 << Attr.getName() << 1; 2292 return; 2293 } 2294 2295 TypeSourceInfo *ParmTSI = nullptr; 2296 QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI); 2297 assert(ParmTSI && "no type source info for attribute argument"); 2298 2299 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && 2300 (ParmType->isBooleanType() || 2301 !ParmType->isIntegralType(S.getASTContext()))) { 2302 S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint) 2303 << ParmType; 2304 return; 2305 } 2306 2307 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { 2308 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { 2309 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName(); 2310 return; 2311 } 2312 } 2313 2314 D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context, 2315 ParmTSI, 2316 Attr.getAttributeSpellingListIndex())); 2317 } 2318 2319 SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range, 2320 StringRef Name, 2321 unsigned AttrSpellingListIndex) { 2322 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { 2323 if (ExistingAttr->getName() == Name) 2324 return nullptr; 2325 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section); 2326 Diag(Range.getBegin(), diag::note_previous_attribute); 2327 return nullptr; 2328 } 2329 return ::new (Context) SectionAttr(Range, Context, Name, 2330 AttrSpellingListIndex); 2331 } 2332 2333 static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) { 2334 // Make sure that there is a string literal as the sections's single 2335 // argument. 2336 StringRef Str; 2337 SourceLocation LiteralLoc; 2338 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc)) 2339 return; 2340 2341 // If the target wants to validate the section specifier, make it happen. 2342 std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str); 2343 if (!Error.empty()) { 2344 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) 2345 << Error; 2346 return; 2347 } 2348 2349 unsigned Index = Attr.getAttributeSpellingListIndex(); 2350 SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index); 2351 if (NewAttr) 2352 D->addAttr(NewAttr); 2353 } 2354 2355 2356 static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) { 2357 VarDecl *VD = cast<VarDecl>(D); 2358 if (!VD->hasLocalStorage()) { 2359 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); 2360 return; 2361 } 2362 2363 Expr *E = Attr.getArgAsExpr(0); 2364 SourceLocation Loc = E->getExprLoc(); 2365 FunctionDecl *FD = nullptr; 2366 DeclarationNameInfo NI; 2367 2368 // gcc only allows for simple identifiers. Since we support more than gcc, we 2369 // will warn the user. 2370 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 2371 if (DRE->hasQualifier()) 2372 S.Diag(Loc, diag::warn_cleanup_ext); 2373 FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 2374 NI = DRE->getNameInfo(); 2375 if (!FD) { 2376 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 2377 << NI.getName(); 2378 return; 2379 } 2380 } else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 2381 if (ULE->hasExplicitTemplateArgs()) 2382 S.Diag(Loc, diag::warn_cleanup_ext); 2383 FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); 2384 NI = ULE->getNameInfo(); 2385 if (!FD) { 2386 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 2387 << NI.getName(); 2388 if (ULE->getType() == S.Context.OverloadTy) 2389 S.NoteAllOverloadCandidates(ULE); 2390 return; 2391 } 2392 } else { 2393 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; 2394 return; 2395 } 2396 2397 if (FD->getNumParams() != 1) { 2398 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) 2399 << NI.getName(); 2400 return; 2401 } 2402 2403 // We're currently more strict than GCC about what function types we accept. 2404 // If this ever proves to be a problem it should be easy to fix. 2405 QualType Ty = S.Context.getPointerType(VD->getType()); 2406 QualType ParamTy = FD->getParamDecl(0)->getType(); 2407 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), 2408 ParamTy, Ty) != Sema::Compatible) { 2409 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) 2410 << NI.getName() << ParamTy << Ty; 2411 return; 2412 } 2413 2414 D->addAttr(::new (S.Context) 2415 CleanupAttr(Attr.getRange(), S.Context, FD, 2416 Attr.getAttributeSpellingListIndex())); 2417 } 2418 2419 /// Handle __attribute__((format_arg((idx)))) attribute based on 2420 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html 2421 static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) { 2422 Expr *IdxExpr = Attr.getArgAsExpr(0); 2423 uint64_t Idx; 2424 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 1, IdxExpr, Idx)) 2425 return; 2426 2427 // make sure the format string is really a string 2428 QualType Ty = getFunctionOrMethodParamType(D, Idx); 2429 2430 bool not_nsstring_type = !isNSStringType(Ty, S.Context); 2431 if (not_nsstring_type && 2432 !isCFStringType(Ty, S.Context) && 2433 (!Ty->isPointerType() || 2434 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { 2435 S.Diag(Attr.getLoc(), diag::err_format_attribute_not) 2436 << (not_nsstring_type ? "a string type" : "an NSString") 2437 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); 2438 return; 2439 } 2440 Ty = getFunctionOrMethodResultType(D); 2441 if (!isNSStringType(Ty, S.Context) && 2442 !isCFStringType(Ty, S.Context) && 2443 (!Ty->isPointerType() || 2444 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { 2445 S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not) 2446 << (not_nsstring_type ? "string type" : "NSString") 2447 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); 2448 return; 2449 } 2450 2451 // We cannot use the Idx returned from checkFunctionOrMethodParameterIndex 2452 // because that has corrected for the implicit this parameter, and is zero- 2453 // based. The attribute expects what the user wrote explicitly. 2454 llvm::APSInt Val; 2455 IdxExpr->EvaluateAsInt(Val, S.Context); 2456 2457 D->addAttr(::new (S.Context) 2458 FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(), 2459 Attr.getAttributeSpellingListIndex())); 2460 } 2461 2462 enum FormatAttrKind { 2463 CFStringFormat, 2464 NSStringFormat, 2465 StrftimeFormat, 2466 SupportedFormat, 2467 IgnoredFormat, 2468 InvalidFormat 2469 }; 2470 2471 /// getFormatAttrKind - Map from format attribute names to supported format 2472 /// types. 2473 static FormatAttrKind getFormatAttrKind(StringRef Format) { 2474 return llvm::StringSwitch<FormatAttrKind>(Format) 2475 // Check for formats that get handled specially. 2476 .Case("NSString", NSStringFormat) 2477 .Case("CFString", CFStringFormat) 2478 .Case("strftime", StrftimeFormat) 2479 2480 // Otherwise, check for supported formats. 2481 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) 2482 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) 2483 .Case("kprintf", SupportedFormat) // OpenBSD. 2484 2485 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) 2486 .Default(InvalidFormat); 2487 } 2488 2489 /// Handle __attribute__((init_priority(priority))) attributes based on 2490 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html 2491 static void handleInitPriorityAttr(Sema &S, Decl *D, 2492 const AttributeList &Attr) { 2493 if (!S.getLangOpts().CPlusPlus) { 2494 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); 2495 return; 2496 } 2497 2498 if (S.getCurFunctionOrMethodDecl()) { 2499 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); 2500 Attr.setInvalid(); 2501 return; 2502 } 2503 QualType T = cast<VarDecl>(D)->getType(); 2504 if (S.Context.getAsArrayType(T)) 2505 T = S.Context.getBaseElementType(T); 2506 if (!T->getAs<RecordType>()) { 2507 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); 2508 Attr.setInvalid(); 2509 return; 2510 } 2511 2512 Expr *E = Attr.getArgAsExpr(0); 2513 uint32_t prioritynum; 2514 if (!checkUInt32Argument(S, Attr, E, prioritynum)) { 2515 Attr.setInvalid(); 2516 return; 2517 } 2518 2519 if (prioritynum < 101 || prioritynum > 65535) { 2520 S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range) 2521 << E->getSourceRange(); 2522 Attr.setInvalid(); 2523 return; 2524 } 2525 D->addAttr(::new (S.Context) 2526 InitPriorityAttr(Attr.getRange(), S.Context, prioritynum, 2527 Attr.getAttributeSpellingListIndex())); 2528 } 2529 2530 FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range, 2531 IdentifierInfo *Format, int FormatIdx, 2532 int FirstArg, 2533 unsigned AttrSpellingListIndex) { 2534 // Check whether we already have an equivalent format attribute. 2535 for (auto *F : D->specific_attrs<FormatAttr>()) { 2536 if (F->getType() == Format && 2537 F->getFormatIdx() == FormatIdx && 2538 F->getFirstArg() == FirstArg) { 2539 // If we don't have a valid location for this attribute, adopt the 2540 // location. 2541 if (F->getLocation().isInvalid()) 2542 F->setRange(Range); 2543 return nullptr; 2544 } 2545 } 2546 2547 return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx, 2548 FirstArg, AttrSpellingListIndex); 2549 } 2550 2551 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on 2552 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html 2553 static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) { 2554 if (!Attr.isArgIdent(0)) { 2555 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 2556 << Attr.getName() << 1 << AANT_ArgumentIdentifier; 2557 return; 2558 } 2559 2560 // In C++ the implicit 'this' function parameter also counts, and they are 2561 // counted from one. 2562 bool HasImplicitThisParam = isInstanceMethod(D); 2563 unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; 2564 2565 IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident; 2566 StringRef Format = II->getName(); 2567 2568 // Normalize the argument, __foo__ becomes foo. 2569 if (Format.startswith("__") && Format.endswith("__")) { 2570 Format = Format.substr(2, Format.size() - 4); 2571 // If we've modified the string name, we need a new identifier for it. 2572 II = &S.Context.Idents.get(Format); 2573 } 2574 2575 // Check for supported formats. 2576 FormatAttrKind Kind = getFormatAttrKind(Format); 2577 2578 if (Kind == IgnoredFormat) 2579 return; 2580 2581 if (Kind == InvalidFormat) { 2582 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) 2583 << Attr.getName() << II->getName(); 2584 return; 2585 } 2586 2587 // checks for the 2nd argument 2588 Expr *IdxExpr = Attr.getArgAsExpr(1); 2589 uint32_t Idx; 2590 if (!checkUInt32Argument(S, Attr, IdxExpr, Idx, 2)) 2591 return; 2592 2593 if (Idx < 1 || Idx > NumArgs) { 2594 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) 2595 << Attr.getName() << 2 << IdxExpr->getSourceRange(); 2596 return; 2597 } 2598 2599 // FIXME: Do we need to bounds check? 2600 unsigned ArgIdx = Idx - 1; 2601 2602 if (HasImplicitThisParam) { 2603 if (ArgIdx == 0) { 2604 S.Diag(Attr.getLoc(), 2605 diag::err_format_attribute_implicit_this_format_string) 2606 << IdxExpr->getSourceRange(); 2607 return; 2608 } 2609 ArgIdx--; 2610 } 2611 2612 // make sure the format string is really a string 2613 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); 2614 2615 if (Kind == CFStringFormat) { 2616 if (!isCFStringType(Ty, S.Context)) { 2617 S.Diag(Attr.getLoc(), diag::err_format_attribute_not) 2618 << "a CFString" << IdxExpr->getSourceRange() 2619 << getFunctionOrMethodParamRange(D, ArgIdx); 2620 return; 2621 } 2622 } else if (Kind == NSStringFormat) { 2623 // FIXME: do we need to check if the type is NSString*? What are the 2624 // semantics? 2625 if (!isNSStringType(Ty, S.Context)) { 2626 S.Diag(Attr.getLoc(), diag::err_format_attribute_not) 2627 << "an NSString" << IdxExpr->getSourceRange() 2628 << getFunctionOrMethodParamRange(D, ArgIdx); 2629 return; 2630 } 2631 } else if (!Ty->isPointerType() || 2632 !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) { 2633 S.Diag(Attr.getLoc(), diag::err_format_attribute_not) 2634 << "a string type" << IdxExpr->getSourceRange() 2635 << getFunctionOrMethodParamRange(D, ArgIdx); 2636 return; 2637 } 2638 2639 // check the 3rd argument 2640 Expr *FirstArgExpr = Attr.getArgAsExpr(2); 2641 uint32_t FirstArg; 2642 if (!checkUInt32Argument(S, Attr, FirstArgExpr, FirstArg, 3)) 2643 return; 2644 2645 // check if the function is variadic if the 3rd argument non-zero 2646 if (FirstArg != 0) { 2647 if (isFunctionOrMethodVariadic(D)) { 2648 ++NumArgs; // +1 for ... 2649 } else { 2650 S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); 2651 return; 2652 } 2653 } 2654 2655 // strftime requires FirstArg to be 0 because it doesn't read from any 2656 // variable the input is just the current time + the format string. 2657 if (Kind == StrftimeFormat) { 2658 if (FirstArg != 0) { 2659 S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter) 2660 << FirstArgExpr->getSourceRange(); 2661 return; 2662 } 2663 // if 0 it disables parameter checking (to use with e.g. va_list) 2664 } else if (FirstArg != 0 && FirstArg != NumArgs) { 2665 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) 2666 << Attr.getName() << 3 << FirstArgExpr->getSourceRange(); 2667 return; 2668 } 2669 2670 FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II, 2671 Idx, FirstArg, 2672 Attr.getAttributeSpellingListIndex()); 2673 if (NewAttr) 2674 D->addAttr(NewAttr); 2675 } 2676 2677 static void handleTransparentUnionAttr(Sema &S, Decl *D, 2678 const AttributeList &Attr) { 2679 // Try to find the underlying union declaration. 2680 RecordDecl *RD = nullptr; 2681 TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D); 2682 if (TD && TD->getUnderlyingType()->isUnionType()) 2683 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); 2684 else 2685 RD = dyn_cast<RecordDecl>(D); 2686 2687 if (!RD || !RD->isUnion()) { 2688 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) 2689 << Attr.getName() << ExpectedUnion; 2690 return; 2691 } 2692 2693 if (!RD->isCompleteDefinition()) { 2694 S.Diag(Attr.getLoc(), 2695 diag::warn_transparent_union_attribute_not_definition); 2696 return; 2697 } 2698 2699 RecordDecl::field_iterator Field = RD->field_begin(), 2700 FieldEnd = RD->field_end(); 2701 if (Field == FieldEnd) { 2702 S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields); 2703 return; 2704 } 2705 2706 FieldDecl *FirstField = *Field; 2707 QualType FirstType = FirstField->getType(); 2708 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { 2709 S.Diag(FirstField->getLocation(), 2710 diag::warn_transparent_union_attribute_floating) 2711 << FirstType->isVectorType() << FirstType; 2712 return; 2713 } 2714 2715 uint64_t FirstSize = S.Context.getTypeSize(FirstType); 2716 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); 2717 for (; Field != FieldEnd; ++Field) { 2718 QualType FieldType = Field->getType(); 2719 // FIXME: this isn't fully correct; we also need to test whether the 2720 // members of the union would all have the same calling convention as the 2721 // first member of the union. Checking just the size and alignment isn't 2722 // sufficient (consider structs passed on the stack instead of in registers 2723 // as an example). 2724 if (S.Context.getTypeSize(FieldType) != FirstSize || 2725 S.Context.getTypeAlign(FieldType) > FirstAlign) { 2726 // Warn if we drop the attribute. 2727 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; 2728 unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType) 2729 : S.Context.getTypeAlign(FieldType); 2730 S.Diag(Field->getLocation(), 2731 diag::warn_transparent_union_attribute_field_size_align) 2732 << isSize << Field->getDeclName() << FieldBits; 2733 unsigned FirstBits = isSize? FirstSize : FirstAlign; 2734 S.Diag(FirstField->getLocation(), 2735 diag::note_transparent_union_first_field_size_align) 2736 << isSize << FirstBits; 2737 return; 2738 } 2739 } 2740 2741 RD->addAttr(::new (S.Context) 2742 TransparentUnionAttr(Attr.getRange(), S.Context, 2743 Attr.getAttributeSpellingListIndex())); 2744 } 2745 2746 static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) { 2747 // Make sure that there is a string literal as the annotation's single 2748 // argument. 2749 StringRef Str; 2750 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str)) 2751 return; 2752 2753 // Don't duplicate annotations that are already set. 2754 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2755 if (I->getAnnotation() == Str) 2756 return; 2757 } 2758 2759 D->addAttr(::new (S.Context) 2760 AnnotateAttr(Attr.getRange(), S.Context, Str, 2761 Attr.getAttributeSpellingListIndex())); 2762 } 2763 2764 static void handleAlignValueAttr(Sema &S, Decl *D, 2765 const AttributeList &Attr) { 2766 S.AddAlignValueAttr(Attr.getRange(), D, Attr.getArgAsExpr(0), 2767 Attr.getAttributeSpellingListIndex()); 2768 } 2769 2770 void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E, 2771 unsigned SpellingListIndex) { 2772 AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex); 2773 SourceLocation AttrLoc = AttrRange.getBegin(); 2774 2775 QualType T; 2776 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) 2777 T = TD->getUnderlyingType(); 2778 else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) 2779 T = VD->getType(); 2780 else 2781 llvm_unreachable("Unknown decl type for align_value"); 2782 2783 if (!T->isDependentType() && !T->isAnyPointerType() && 2784 !T->isReferenceType() && !T->isMemberPointerType()) { 2785 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) 2786 << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange(); 2787 return; 2788 } 2789 2790 if (!E->isValueDependent()) { 2791 llvm::APSInt Alignment(32); 2792 ExprResult ICE 2793 = VerifyIntegerConstantExpression(E, &Alignment, 2794 diag::err_align_value_attribute_argument_not_int, 2795 /*AllowFold*/ false); 2796 if (ICE.isInvalid()) 2797 return; 2798 2799 if (!Alignment.isPowerOf2()) { 2800 Diag(AttrLoc, diag::err_alignment_not_power_of_two) 2801 << E->getSourceRange(); 2802 return; 2803 } 2804 2805 D->addAttr(::new (Context) 2806 AlignValueAttr(AttrRange, Context, ICE.get(), 2807 SpellingListIndex)); 2808 return; 2809 } 2810 2811 // Save dependent expressions in the AST to be instantiated. 2812 D->addAttr(::new (Context) AlignValueAttr(TmpAttr)); 2813 return; 2814 } 2815 2816 static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) { 2817 // check the attribute arguments. 2818 if (Attr.getNumArgs() > 1) { 2819 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) 2820 << Attr.getName() << 1; 2821 return; 2822 } 2823 2824 if (Attr.getNumArgs() == 0) { 2825 D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context, 2826 true, nullptr, Attr.getAttributeSpellingListIndex())); 2827 return; 2828 } 2829 2830 Expr *E = Attr.getArgAsExpr(0); 2831 if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) { 2832 S.Diag(Attr.getEllipsisLoc(), 2833 diag::err_pack_expansion_without_parameter_packs); 2834 return; 2835 } 2836 2837 if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) 2838 return; 2839 2840 S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(), 2841 Attr.isPackExpansion()); 2842 } 2843 2844 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E, 2845 unsigned SpellingListIndex, bool IsPackExpansion) { 2846 AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex); 2847 SourceLocation AttrLoc = AttrRange.getBegin(); 2848 2849 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. 2850 if (TmpAttr.isAlignas()) { 2851 // C++11 [dcl.align]p1: 2852 // An alignment-specifier may be applied to a variable or to a class 2853 // data member, but it shall not be applied to a bit-field, a function 2854 // parameter, the formal parameter of a catch clause, or a variable 2855 // declared with the register storage class specifier. An 2856 // alignment-specifier may also be applied to the declaration of a class 2857 // or enumeration type. 2858 // C11 6.7.5/2: 2859 // An alignment attribute shall not be specified in a declaration of 2860 // a typedef, or a bit-field, or a function, or a parameter, or an 2861 // object declared with the register storage-class specifier. 2862 int DiagKind = -1; 2863 if (isa<ParmVarDecl>(D)) { 2864 DiagKind = 0; 2865 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 2866 if (VD->getStorageClass() == SC_Register) 2867 DiagKind = 1; 2868 if (VD->isExceptionVariable()) 2869 DiagKind = 2; 2870 } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) { 2871 if (FD->isBitField()) 2872 DiagKind = 3; 2873 } else if (!isa<TagDecl>(D)) { 2874 Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr 2875 << (TmpAttr.isC11() ? ExpectedVariableOrField 2876 : ExpectedVariableFieldOrTag); 2877 return; 2878 } 2879 if (DiagKind != -1) { 2880 Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) 2881 << &TmpAttr << DiagKind; 2882 return; 2883 } 2884 } 2885 2886 if (E->isTypeDependent() || E->isValueDependent()) { 2887 // Save dependent expressions in the AST to be instantiated. 2888 AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr); 2889 AA->setPackExpansion(IsPackExpansion); 2890 D->addAttr(AA); 2891 return; 2892 } 2893 2894 // FIXME: Cache the number on the Attr object? 2895 llvm::APSInt Alignment(32); 2896 ExprResult ICE 2897 = VerifyIntegerConstantExpression(E, &Alignment, 2898 diag::err_aligned_attribute_argument_not_int, 2899 /*AllowFold*/ false); 2900 if (ICE.isInvalid()) 2901 return; 2902 2903 // C++11 [dcl.align]p2: 2904 // -- if the constant expression evaluates to zero, the alignment 2905 // specifier shall have no effect 2906 // C11 6.7.5p6: 2907 // An alignment specification of zero has no effect. 2908 if (!(TmpAttr.isAlignas() && !Alignment) && 2909 !llvm::isPowerOf2_64(Alignment.getZExtValue())) { 2910 Diag(AttrLoc, diag::err_alignment_not_power_of_two) 2911 << E->getSourceRange(); 2912 return; 2913 } 2914 2915 // Alignment calculations can wrap around if it's greater than 2**28. 2916 unsigned MaxValidAlignment = TmpAttr.isDeclspec() ? 8192 : 268435456; 2917 if (Alignment.getZExtValue() > MaxValidAlignment) { 2918 Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment 2919 << E->getSourceRange(); 2920 return; 2921 } 2922 2923 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true, 2924 ICE.get(), SpellingListIndex); 2925 AA->setPackExpansion(IsPackExpansion); 2926 D->addAttr(AA); 2927 } 2928 2929 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS, 2930 unsigned SpellingListIndex, bool IsPackExpansion) { 2931 // FIXME: Cache the number on the Attr object if non-dependent? 2932 // FIXME: Perform checking of type validity 2933 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS, 2934 SpellingListIndex); 2935 AA->setPackExpansion(IsPackExpansion); 2936 D->addAttr(AA); 2937 } 2938 2939 void Sema::CheckAlignasUnderalignment(Decl *D) { 2940 assert(D->hasAttrs() && "no attributes on decl"); 2941 2942 QualType Ty; 2943 if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) 2944 Ty = VD->getType(); 2945 else 2946 Ty = Context.getTagDeclType(cast<TagDecl>(D)); 2947 if (Ty->isDependentType() || Ty->isIncompleteType()) 2948 return; 2949 2950 // C++11 [dcl.align]p5, C11 6.7.5/4: 2951 // The combined effect of all alignment attributes in a declaration shall 2952 // not specify an alignment that is less strict than the alignment that 2953 // would otherwise be required for the entity being declared. 2954 AlignedAttr *AlignasAttr = nullptr; 2955 unsigned Align = 0; 2956 for (auto *I : D->specific_attrs<AlignedAttr>()) { 2957 if (I->isAlignmentDependent()) 2958 return; 2959 if (I->isAlignas()) 2960 AlignasAttr = I; 2961 Align = std::max(Align, I->getAlignment(Context)); 2962 } 2963 2964 if (AlignasAttr && Align) { 2965 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); 2966 CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty); 2967 if (NaturalAlign > RequestedAlign) 2968 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) 2969 << Ty << (unsigned)NaturalAlign.getQuantity(); 2970 } 2971 } 2972 2973 bool Sema::checkMSInheritanceAttrOnDefinition( 2974 CXXRecordDecl *RD, SourceRange Range, bool BestCase, 2975 MSInheritanceAttr::Spelling SemanticSpelling) { 2976 assert(RD->hasDefinition() && "RD has no definition!"); 2977 2978 // We may not have seen base specifiers or any virtual methods yet. We will 2979 // have to wait until the record is defined to catch any mismatches. 2980 if (!RD->getDefinition()->isCompleteDefinition()) 2981 return false; 2982 2983 // The unspecified model never matches what a definition could need. 2984 if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance) 2985 return false; 2986 2987 if (BestCase) { 2988 if (RD->calculateInheritanceModel() == SemanticSpelling) 2989 return false; 2990 } else { 2991 if (RD->calculateInheritanceModel() <= SemanticSpelling) 2992 return false; 2993 } 2994 2995 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) 2996 << 0 /*definition*/; 2997 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) 2998 << RD->getNameAsString(); 2999 return true; 3000 } 3001 3002 /// handleModeAttr - This attribute modifies the width of a decl with primitive 3003 /// type. 3004 /// 3005 /// Despite what would be logical, the mode attribute is a decl attribute, not a 3006 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be 3007 /// HImode, not an intermediate pointer. 3008 static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3009 // This attribute isn't documented, but glibc uses it. It changes 3010 // the width of an int or unsigned int to the specified size. 3011 if (!Attr.isArgIdent(0)) { 3012 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() 3013 << AANT_ArgumentIdentifier; 3014 return; 3015 } 3016 3017 IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident; 3018 StringRef Str = Name->getName(); 3019 3020 // Normalize the attribute name, __foo__ becomes foo. 3021 if (Str.startswith("__") && Str.endswith("__")) 3022 Str = Str.substr(2, Str.size() - 4); 3023 3024 unsigned DestWidth = 0; 3025 bool IntegerMode = true; 3026 bool ComplexMode = false; 3027 switch (Str.size()) { 3028 case 2: 3029 switch (Str[0]) { 3030 case 'Q': DestWidth = 8; break; 3031 case 'H': DestWidth = 16; break; 3032 case 'S': DestWidth = 32; break; 3033 case 'D': DestWidth = 64; break; 3034 case 'X': DestWidth = 96; break; 3035 case 'T': DestWidth = 128; break; 3036 } 3037 if (Str[1] == 'F') { 3038 IntegerMode = false; 3039 } else if (Str[1] == 'C') { 3040 IntegerMode = false; 3041 ComplexMode = true; 3042 } else if (Str[1] != 'I') { 3043 DestWidth = 0; 3044 } 3045 break; 3046 case 4: 3047 // FIXME: glibc uses 'word' to define register_t; this is narrower than a 3048 // pointer on PIC16 and other embedded platforms. 3049 if (Str == "word") 3050 DestWidth = S.Context.getTargetInfo().getPointerWidth(0); 3051 else if (Str == "byte") 3052 DestWidth = S.Context.getTargetInfo().getCharWidth(); 3053 break; 3054 case 7: 3055 if (Str == "pointer") 3056 DestWidth = S.Context.getTargetInfo().getPointerWidth(0); 3057 break; 3058 case 11: 3059 if (Str == "unwind_word") 3060 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); 3061 break; 3062 } 3063 3064 QualType OldTy; 3065 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) 3066 OldTy = TD->getUnderlyingType(); 3067 else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) 3068 OldTy = VD->getType(); 3069 else { 3070 S.Diag(D->getLocation(), diag::err_attr_wrong_decl) 3071 << Attr.getName() << Attr.getRange(); 3072 return; 3073 } 3074 3075 if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType()) 3076 S.Diag(Attr.getLoc(), diag::err_mode_not_primitive); 3077 else if (IntegerMode) { 3078 if (!OldTy->isIntegralOrEnumerationType()) 3079 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); 3080 } else if (ComplexMode) { 3081 if (!OldTy->isComplexType()) 3082 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); 3083 } else { 3084 if (!OldTy->isFloatingType()) 3085 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); 3086 } 3087 3088 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t 3089 // and friends, at least with glibc. 3090 // FIXME: Make sure floating-point mappings are accurate 3091 // FIXME: Support XF and TF types 3092 if (!DestWidth) { 3093 S.Diag(Attr.getLoc(), diag::err_machine_mode) << 0 /*Unknown*/ << Name; 3094 return; 3095 } 3096 3097 QualType NewTy; 3098 3099 if (IntegerMode) 3100 NewTy = S.Context.getIntTypeForBitwidth(DestWidth, 3101 OldTy->isSignedIntegerType()); 3102 else 3103 NewTy = S.Context.getRealTypeForBitwidth(DestWidth); 3104 3105 if (NewTy.isNull()) { 3106 S.Diag(Attr.getLoc(), diag::err_machine_mode) << 1 /*Unsupported*/ << Name; 3107 return; 3108 } 3109 3110 if (ComplexMode) { 3111 NewTy = S.Context.getComplexType(NewTy); 3112 } 3113 3114 // Install the new type. 3115 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) 3116 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); 3117 else 3118 cast<ValueDecl>(D)->setType(NewTy); 3119 3120 D->addAttr(::new (S.Context) 3121 ModeAttr(Attr.getRange(), S.Context, Name, 3122 Attr.getAttributeSpellingListIndex())); 3123 } 3124 3125 static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3126 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 3127 if (!VD->hasGlobalStorage()) 3128 S.Diag(Attr.getLoc(), 3129 diag::warn_attribute_requires_functions_or_static_globals) 3130 << Attr.getName(); 3131 } else if (!isFunctionOrMethod(D)) { 3132 S.Diag(Attr.getLoc(), 3133 diag::warn_attribute_requires_functions_or_static_globals) 3134 << Attr.getName(); 3135 return; 3136 } 3137 3138 D->addAttr(::new (S.Context) 3139 NoDebugAttr(Attr.getRange(), S.Context, 3140 Attr.getAttributeSpellingListIndex())); 3141 } 3142 3143 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range, 3144 IdentifierInfo *Ident, 3145 unsigned AttrSpellingListIndex) { 3146 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { 3147 Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident; 3148 Diag(Optnone->getLocation(), diag::note_conflicting_attribute); 3149 return nullptr; 3150 } 3151 3152 if (D->hasAttr<AlwaysInlineAttr>()) 3153 return nullptr; 3154 3155 return ::new (Context) AlwaysInlineAttr(Range, Context, 3156 AttrSpellingListIndex); 3157 } 3158 3159 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range, 3160 unsigned AttrSpellingListIndex) { 3161 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { 3162 Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'"; 3163 Diag(Optnone->getLocation(), diag::note_conflicting_attribute); 3164 return nullptr; 3165 } 3166 3167 if (D->hasAttr<MinSizeAttr>()) 3168 return nullptr; 3169 3170 return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex); 3171 } 3172 3173 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range, 3174 unsigned AttrSpellingListIndex) { 3175 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { 3176 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; 3177 Diag(Range.getBegin(), diag::note_conflicting_attribute); 3178 D->dropAttr<AlwaysInlineAttr>(); 3179 } 3180 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { 3181 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; 3182 Diag(Range.getBegin(), diag::note_conflicting_attribute); 3183 D->dropAttr<MinSizeAttr>(); 3184 } 3185 3186 if (D->hasAttr<OptimizeNoneAttr>()) 3187 return nullptr; 3188 3189 return ::new (Context) OptimizeNoneAttr(Range, Context, 3190 AttrSpellingListIndex); 3191 } 3192 3193 static void handleAlwaysInlineAttr(Sema &S, Decl *D, 3194 const AttributeList &Attr) { 3195 if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr( 3196 D, Attr.getRange(), Attr.getName(), 3197 Attr.getAttributeSpellingListIndex())) 3198 D->addAttr(Inline); 3199 } 3200 3201 static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3202 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr( 3203 D, Attr.getRange(), Attr.getAttributeSpellingListIndex())) 3204 D->addAttr(MinSize); 3205 } 3206 3207 static void handleOptimizeNoneAttr(Sema &S, Decl *D, 3208 const AttributeList &Attr) { 3209 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr( 3210 D, Attr.getRange(), Attr.getAttributeSpellingListIndex())) 3211 D->addAttr(Optnone); 3212 } 3213 3214 static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3215 FunctionDecl *FD = cast<FunctionDecl>(D); 3216 if (!FD->getReturnType()->isVoidType()) { 3217 SourceRange RTRange = FD->getReturnTypeSourceRange(); 3218 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) 3219 << FD->getType() 3220 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 3221 : FixItHint()); 3222 return; 3223 } 3224 3225 D->addAttr(::new (S.Context) 3226 CUDAGlobalAttr(Attr.getRange(), S.Context, 3227 Attr.getAttributeSpellingListIndex())); 3228 } 3229 3230 static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3231 FunctionDecl *Fn = cast<FunctionDecl>(D); 3232 if (!Fn->isInlineSpecified()) { 3233 S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); 3234 return; 3235 } 3236 3237 D->addAttr(::new (S.Context) 3238 GNUInlineAttr(Attr.getRange(), S.Context, 3239 Attr.getAttributeSpellingListIndex())); 3240 } 3241 3242 static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3243 if (hasDeclarator(D)) return; 3244 3245 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3246 // Diagnostic is emitted elsewhere: here we store the (valid) Attr 3247 // in the Decl node for syntactic reasoning, e.g., pretty-printing. 3248 CallingConv CC; 3249 if (S.CheckCallingConvAttr(Attr, CC, FD)) 3250 return; 3251 3252 if (!isa<ObjCMethodDecl>(D)) { 3253 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) 3254 << Attr.getName() << ExpectedFunctionOrMethod; 3255 return; 3256 } 3257 3258 switch (Attr.getKind()) { 3259 case AttributeList::AT_FastCall: 3260 D->addAttr(::new (S.Context) 3261 FastCallAttr(Attr.getRange(), S.Context, 3262 Attr.getAttributeSpellingListIndex())); 3263 return; 3264 case AttributeList::AT_StdCall: 3265 D->addAttr(::new (S.Context) 3266 StdCallAttr(Attr.getRange(), S.Context, 3267 Attr.getAttributeSpellingListIndex())); 3268 return; 3269 case AttributeList::AT_ThisCall: 3270 D->addAttr(::new (S.Context) 3271 ThisCallAttr(Attr.getRange(), S.Context, 3272 Attr.getAttributeSpellingListIndex())); 3273 return; 3274 case AttributeList::AT_CDecl: 3275 D->addAttr(::new (S.Context) 3276 CDeclAttr(Attr.getRange(), S.Context, 3277 Attr.getAttributeSpellingListIndex())); 3278 return; 3279 case AttributeList::AT_Pascal: 3280 D->addAttr(::new (S.Context) 3281 PascalAttr(Attr.getRange(), S.Context, 3282 Attr.getAttributeSpellingListIndex())); 3283 return; 3284 case AttributeList::AT_VectorCall: 3285 D->addAttr(::new (S.Context) 3286 VectorCallAttr(Attr.getRange(), S.Context, 3287 Attr.getAttributeSpellingListIndex())); 3288 return; 3289 case AttributeList::AT_MSABI: 3290 D->addAttr(::new (S.Context) 3291 MSABIAttr(Attr.getRange(), S.Context, 3292 Attr.getAttributeSpellingListIndex())); 3293 return; 3294 case AttributeList::AT_SysVABI: 3295 D->addAttr(::new (S.Context) 3296 SysVABIAttr(Attr.getRange(), S.Context, 3297 Attr.getAttributeSpellingListIndex())); 3298 return; 3299 case AttributeList::AT_Pcs: { 3300 PcsAttr::PCSType PCS; 3301 switch (CC) { 3302 case CC_AAPCS: 3303 PCS = PcsAttr::AAPCS; 3304 break; 3305 case CC_AAPCS_VFP: 3306 PCS = PcsAttr::AAPCS_VFP; 3307 break; 3308 default: 3309 llvm_unreachable("unexpected calling convention in pcs attribute"); 3310 } 3311 3312 D->addAttr(::new (S.Context) 3313 PcsAttr(Attr.getRange(), S.Context, PCS, 3314 Attr.getAttributeSpellingListIndex())); 3315 return; 3316 } 3317 case AttributeList::AT_PnaclCall: 3318 D->addAttr(::new (S.Context) 3319 PnaclCallAttr(Attr.getRange(), S.Context, 3320 Attr.getAttributeSpellingListIndex())); 3321 return; 3322 case AttributeList::AT_IntelOclBicc: 3323 D->addAttr(::new (S.Context) 3324 IntelOclBiccAttr(Attr.getRange(), S.Context, 3325 Attr.getAttributeSpellingListIndex())); 3326 return; 3327 3328 default: 3329 llvm_unreachable("unexpected attribute kind"); 3330 } 3331 } 3332 3333 bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC, 3334 const FunctionDecl *FD) { 3335 if (attr.isInvalid()) 3336 return true; 3337 3338 unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0; 3339 if (!checkAttributeNumArgs(*this, attr, ReqArgs)) { 3340 attr.setInvalid(); 3341 return true; 3342 } 3343 3344 // TODO: diagnose uses of these conventions on the wrong target. 3345 switch (attr.getKind()) { 3346 case AttributeList::AT_CDecl: CC = CC_C; break; 3347 case AttributeList::AT_FastCall: CC = CC_X86FastCall; break; 3348 case AttributeList::AT_StdCall: CC = CC_X86StdCall; break; 3349 case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break; 3350 case AttributeList::AT_Pascal: CC = CC_X86Pascal; break; 3351 case AttributeList::AT_VectorCall: CC = CC_X86VectorCall; break; 3352 case AttributeList::AT_MSABI: 3353 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : 3354 CC_X86_64Win64; 3355 break; 3356 case AttributeList::AT_SysVABI: 3357 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : 3358 CC_C; 3359 break; 3360 case AttributeList::AT_Pcs: { 3361 StringRef StrRef; 3362 if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) { 3363 attr.setInvalid(); 3364 return true; 3365 } 3366 if (StrRef == "aapcs") { 3367 CC = CC_AAPCS; 3368 break; 3369 } else if (StrRef == "aapcs-vfp") { 3370 CC = CC_AAPCS_VFP; 3371 break; 3372 } 3373 3374 attr.setInvalid(); 3375 Diag(attr.getLoc(), diag::err_invalid_pcs); 3376 return true; 3377 } 3378 case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break; 3379 case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break; 3380 default: llvm_unreachable("unexpected attribute kind"); 3381 } 3382 3383 const TargetInfo &TI = Context.getTargetInfo(); 3384 TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC); 3385 if (A == TargetInfo::CCCR_Warning) { 3386 Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName(); 3387 3388 TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown; 3389 if (FD) 3390 MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member : 3391 TargetInfo::CCMT_NonMember; 3392 CC = TI.getDefaultCallingConv(MT); 3393 } 3394 3395 return false; 3396 } 3397 3398 /// Checks a regparm attribute, returning true if it is ill-formed and 3399 /// otherwise setting numParams to the appropriate value. 3400 bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) { 3401 if (Attr.isInvalid()) 3402 return true; 3403 3404 if (!checkAttributeNumArgs(*this, Attr, 1)) { 3405 Attr.setInvalid(); 3406 return true; 3407 } 3408 3409 uint32_t NP; 3410 Expr *NumParamsExpr = Attr.getArgAsExpr(0); 3411 if (!checkUInt32Argument(*this, Attr, NumParamsExpr, NP)) { 3412 Attr.setInvalid(); 3413 return true; 3414 } 3415 3416 if (Context.getTargetInfo().getRegParmMax() == 0) { 3417 Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform) 3418 << NumParamsExpr->getSourceRange(); 3419 Attr.setInvalid(); 3420 return true; 3421 } 3422 3423 numParams = NP; 3424 if (numParams > Context.getTargetInfo().getRegParmMax()) { 3425 Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number) 3426 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); 3427 Attr.setInvalid(); 3428 return true; 3429 } 3430 3431 return false; 3432 } 3433 3434 static void handleLaunchBoundsAttr(Sema &S, Decl *D, 3435 const AttributeList &Attr) { 3436 uint32_t MaxThreads, MinBlocks = 0; 3437 if (!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), MaxThreads, 1)) 3438 return; 3439 if (Attr.getNumArgs() > 1 && !checkUInt32Argument(S, Attr, 3440 Attr.getArgAsExpr(1), 3441 MinBlocks, 2)) 3442 return; 3443 3444 D->addAttr(::new (S.Context) 3445 CUDALaunchBoundsAttr(Attr.getRange(), S.Context, 3446 MaxThreads, MinBlocks, 3447 Attr.getAttributeSpellingListIndex())); 3448 } 3449 3450 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, 3451 const AttributeList &Attr) { 3452 if (!Attr.isArgIdent(0)) { 3453 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 3454 << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier; 3455 return; 3456 } 3457 3458 if (!checkAttributeNumArgs(S, Attr, 3)) 3459 return; 3460 3461 IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident; 3462 3463 if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) { 3464 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) 3465 << Attr.getName() << ExpectedFunctionOrMethod; 3466 return; 3467 } 3468 3469 uint64_t ArgumentIdx; 3470 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 2, Attr.getArgAsExpr(1), 3471 ArgumentIdx)) 3472 return; 3473 3474 uint64_t TypeTagIdx; 3475 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 3, Attr.getArgAsExpr(2), 3476 TypeTagIdx)) 3477 return; 3478 3479 bool IsPointer = (Attr.getName()->getName() == "pointer_with_type_tag"); 3480 if (IsPointer) { 3481 // Ensure that buffer has a pointer type. 3482 QualType BufferTy = getFunctionOrMethodParamType(D, ArgumentIdx); 3483 if (!BufferTy->isPointerType()) { 3484 S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only) 3485 << Attr.getName(); 3486 } 3487 } 3488 3489 D->addAttr(::new (S.Context) 3490 ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind, 3491 ArgumentIdx, TypeTagIdx, IsPointer, 3492 Attr.getAttributeSpellingListIndex())); 3493 } 3494 3495 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, 3496 const AttributeList &Attr) { 3497 if (!Attr.isArgIdent(0)) { 3498 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) 3499 << Attr.getName() << 1 << AANT_ArgumentIdentifier; 3500 return; 3501 } 3502 3503 if (!checkAttributeNumArgs(S, Attr, 1)) 3504 return; 3505 3506 if (!isa<VarDecl>(D)) { 3507 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) 3508 << Attr.getName() << ExpectedVariable; 3509 return; 3510 } 3511 3512 IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident; 3513 TypeSourceInfo *MatchingCTypeLoc = nullptr; 3514 S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc); 3515 assert(MatchingCTypeLoc && "no type source info for attribute argument"); 3516 3517 D->addAttr(::new (S.Context) 3518 TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind, 3519 MatchingCTypeLoc, 3520 Attr.getLayoutCompatible(), 3521 Attr.getMustBeNull(), 3522 Attr.getAttributeSpellingListIndex())); 3523 } 3524 3525 //===----------------------------------------------------------------------===// 3526 // Checker-specific attribute handlers. 3527 //===----------------------------------------------------------------------===// 3528 3529 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType type) { 3530 return type->isDependentType() || 3531 type->isObjCRetainableType(); 3532 } 3533 3534 static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) { 3535 return type->isDependentType() || 3536 type->isObjCObjectPointerType() || 3537 S.Context.isObjCNSObjectType(type); 3538 } 3539 static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) { 3540 return type->isDependentType() || 3541 type->isPointerType() || 3542 isValidSubjectOfNSAttribute(S, type); 3543 } 3544 3545 static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3546 ParmVarDecl *param = cast<ParmVarDecl>(D); 3547 bool typeOK, cf; 3548 3549 if (Attr.getKind() == AttributeList::AT_NSConsumed) { 3550 typeOK = isValidSubjectOfNSAttribute(S, param->getType()); 3551 cf = false; 3552 } else { 3553 typeOK = isValidSubjectOfCFAttribute(S, param->getType()); 3554 cf = true; 3555 } 3556 3557 if (!typeOK) { 3558 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type) 3559 << Attr.getRange() << Attr.getName() << cf; 3560 return; 3561 } 3562 3563 if (cf) 3564 param->addAttr(::new (S.Context) 3565 CFConsumedAttr(Attr.getRange(), S.Context, 3566 Attr.getAttributeSpellingListIndex())); 3567 else 3568 param->addAttr(::new (S.Context) 3569 NSConsumedAttr(Attr.getRange(), S.Context, 3570 Attr.getAttributeSpellingListIndex())); 3571 } 3572 3573 static void handleNSReturnsRetainedAttr(Sema &S, Decl *D, 3574 const AttributeList &Attr) { 3575 3576 QualType returnType; 3577 3578 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) 3579 returnType = MD->getReturnType(); 3580 else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && 3581 (Attr.getKind() == AttributeList::AT_NSReturnsRetained)) 3582 return; // ignore: was handled as a type attribute 3583 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) 3584 returnType = PD->getType(); 3585 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 3586 returnType = FD->getReturnType(); 3587 else { 3588 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) 3589 << Attr.getRange() << Attr.getName() 3590 << ExpectedFunctionOrMethod; 3591 return; 3592 } 3593 3594 bool typeOK; 3595 bool cf; 3596 switch (Attr.getKind()) { 3597 default: llvm_unreachable("invalid ownership attribute"); 3598 case AttributeList::AT_NSReturnsRetained: 3599 typeOK = isValidSubjectOfNSReturnsRetainedAttribute(returnType); 3600 cf = false; 3601 break; 3602 3603 case AttributeList::AT_NSReturnsAutoreleased: 3604 case AttributeList::AT_NSReturnsNotRetained: 3605 typeOK = isValidSubjectOfNSAttribute(S, returnType); 3606 cf = false; 3607 break; 3608 3609 case AttributeList::AT_CFReturnsRetained: 3610 case AttributeList::AT_CFReturnsNotRetained: 3611 typeOK = isValidSubjectOfCFAttribute(S, returnType); 3612 cf = true; 3613 break; 3614 } 3615 3616 if (!typeOK) { 3617 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type) 3618 << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf; 3619 return; 3620 } 3621 3622 switch (Attr.getKind()) { 3623 default: 3624 llvm_unreachable("invalid ownership attribute"); 3625 case AttributeList::AT_NSReturnsAutoreleased: 3626 D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr( 3627 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); 3628 return; 3629 case AttributeList::AT_CFReturnsNotRetained: 3630 D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr( 3631 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); 3632 return; 3633 case AttributeList::AT_NSReturnsNotRetained: 3634 D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr( 3635 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); 3636 return; 3637 case AttributeList::AT_CFReturnsRetained: 3638 D->addAttr(::new (S.Context) CFReturnsRetainedAttr( 3639 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); 3640 return; 3641 case AttributeList::AT_NSReturnsRetained: 3642 D->addAttr(::new (S.Context) NSReturnsRetainedAttr( 3643 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); 3644 return; 3645 }; 3646 } 3647 3648 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, 3649 const AttributeList &attr) { 3650 const int EP_ObjCMethod = 1; 3651 const int EP_ObjCProperty = 2; 3652 3653 SourceLocation loc = attr.getLoc(); 3654 QualType resultType; 3655 if (isa<ObjCMethodDecl>(D)) 3656 resultType = cast<ObjCMethodDecl>(D)->getReturnType(); 3657 else 3658 resultType = cast<ObjCPropertyDecl>(D)->getType(); 3659 3660 if (!resultType->isReferenceType() && 3661 (!resultType->isPointerType() || resultType->isObjCRetainableType())) { 3662 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type) 3663 << SourceRange(loc) 3664 << attr.getName() 3665 << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty) 3666 << /*non-retainable pointer*/ 2; 3667 3668 // Drop the attribute. 3669 return; 3670 } 3671 3672 D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr( 3673 attr.getRange(), S.Context, attr.getAttributeSpellingListIndex())); 3674 } 3675 3676 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, 3677 const AttributeList &attr) { 3678 ObjCMethodDecl *method = cast<ObjCMethodDecl>(D); 3679 3680 DeclContext *DC = method->getDeclContext(); 3681 if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) { 3682 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol) 3683 << attr.getName() << 0; 3684 S.Diag(PDecl->getLocation(), diag::note_protocol_decl); 3685 return; 3686 } 3687 if (method->getMethodFamily() == OMF_dealloc) { 3688 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol) 3689 << attr.getName() << 1; 3690 return; 3691 } 3692 3693 method->addAttr(::new (S.Context) 3694 ObjCRequiresSuperAttr(attr.getRange(), S.Context, 3695 attr.getAttributeSpellingListIndex())); 3696 } 3697 3698 static void handleCFAuditedTransferAttr(Sema &S, Decl *D, 3699 const AttributeList &Attr) { 3700 if (checkAttrMutualExclusion<CFUnknownTransferAttr>(S, D, Attr)) 3701 return; 3702 3703 D->addAttr(::new (S.Context) 3704 CFAuditedTransferAttr(Attr.getRange(), S.Context, 3705 Attr.getAttributeSpellingListIndex())); 3706 } 3707 3708 static void handleCFUnknownTransferAttr(Sema &S, Decl *D, 3709 const AttributeList &Attr) { 3710 if (checkAttrMutualExclusion<CFAuditedTransferAttr>(S, D, Attr)) 3711 return; 3712 3713 D->addAttr(::new (S.Context) 3714 CFUnknownTransferAttr(Attr.getRange(), S.Context, 3715 Attr.getAttributeSpellingListIndex())); 3716 } 3717 3718 static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D, 3719 const AttributeList &Attr) { 3720 IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr; 3721 3722 if (!Parm) { 3723 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0; 3724 return; 3725 } 3726 3727 D->addAttr(::new (S.Context) 3728 ObjCBridgeAttr(Attr.getRange(), S.Context, Parm->Ident, 3729 Attr.getAttributeSpellingListIndex())); 3730 } 3731 3732 static void handleObjCBridgeMutableAttr(Sema &S, Scope *Sc, Decl *D, 3733 const AttributeList &Attr) { 3734 IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr; 3735 3736 if (!Parm) { 3737 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0; 3738 return; 3739 } 3740 3741 D->addAttr(::new (S.Context) 3742 ObjCBridgeMutableAttr(Attr.getRange(), S.Context, Parm->Ident, 3743 Attr.getAttributeSpellingListIndex())); 3744 } 3745 3746 static void handleObjCBridgeRelatedAttr(Sema &S, Scope *Sc, Decl *D, 3747 const AttributeList &Attr) { 3748 IdentifierInfo *RelatedClass = 3749 Attr.isArgIdent(0) ? Attr.getArgAsIdent(0)->Ident : nullptr; 3750 if (!RelatedClass) { 3751 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0; 3752 return; 3753 } 3754 IdentifierInfo *ClassMethod = 3755 Attr.getArgAsIdent(1) ? Attr.getArgAsIdent(1)->Ident : nullptr; 3756 IdentifierInfo *InstanceMethod = 3757 Attr.getArgAsIdent(2) ? Attr.getArgAsIdent(2)->Ident : nullptr; 3758 D->addAttr(::new (S.Context) 3759 ObjCBridgeRelatedAttr(Attr.getRange(), S.Context, RelatedClass, 3760 ClassMethod, InstanceMethod, 3761 Attr.getAttributeSpellingListIndex())); 3762 } 3763 3764 static void handleObjCDesignatedInitializer(Sema &S, Decl *D, 3765 const AttributeList &Attr) { 3766 ObjCInterfaceDecl *IFace; 3767 if (ObjCCategoryDecl *CatDecl = 3768 dyn_cast<ObjCCategoryDecl>(D->getDeclContext())) 3769 IFace = CatDecl->getClassInterface(); 3770 else 3771 IFace = cast<ObjCInterfaceDecl>(D->getDeclContext()); 3772 IFace->setHasDesignatedInitializers(); 3773 D->addAttr(::new (S.Context) 3774 ObjCDesignatedInitializerAttr(Attr.getRange(), S.Context, 3775 Attr.getAttributeSpellingListIndex())); 3776 } 3777 3778 static void handleObjCRuntimeName(Sema &S, Decl *D, 3779 const AttributeList &Attr) { 3780 StringRef MetaDataName; 3781 if (!S.checkStringLiteralArgumentAttr(Attr, 0, MetaDataName)) 3782 return; 3783 D->addAttr(::new (S.Context) 3784 ObjCRuntimeNameAttr(Attr.getRange(), S.Context, 3785 MetaDataName, 3786 Attr.getAttributeSpellingListIndex())); 3787 } 3788 3789 static void handleObjCOwnershipAttr(Sema &S, Decl *D, 3790 const AttributeList &Attr) { 3791 if (hasDeclarator(D)) return; 3792 3793 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) 3794 << Attr.getRange() << Attr.getName() << ExpectedVariable; 3795 } 3796 3797 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, 3798 const AttributeList &Attr) { 3799 ValueDecl *vd = cast<ValueDecl>(D); 3800 QualType type = vd->getType(); 3801 3802 if (!type->isDependentType() && 3803 !type->isObjCLifetimeType()) { 3804 S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type) 3805 << type; 3806 return; 3807 } 3808 3809 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); 3810 3811 // If we have no lifetime yet, check the lifetime we're presumably 3812 // going to infer. 3813 if (lifetime == Qualifiers::OCL_None && !type->isDependentType()) 3814 lifetime = type->getObjCARCImplicitLifetime(); 3815 3816 switch (lifetime) { 3817 case Qualifiers::OCL_None: 3818 assert(type->isDependentType() && 3819 "didn't infer lifetime for non-dependent type?"); 3820 break; 3821 3822 case Qualifiers::OCL_Weak: // meaningful 3823 case Qualifiers::OCL_Strong: // meaningful 3824 break; 3825 3826 case Qualifiers::OCL_ExplicitNone: 3827 case Qualifiers::OCL_Autoreleasing: 3828 S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless) 3829 << (lifetime == Qualifiers::OCL_Autoreleasing); 3830 break; 3831 } 3832 3833 D->addAttr(::new (S.Context) 3834 ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context, 3835 Attr.getAttributeSpellingListIndex())); 3836 } 3837 3838 //===----------------------------------------------------------------------===// 3839 // Microsoft specific attribute handlers. 3840 //===----------------------------------------------------------------------===// 3841 3842 static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3843 if (!S.LangOpts.CPlusPlus) { 3844 S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang) 3845 << Attr.getName() << AttributeLangSupport::C; 3846 return; 3847 } 3848 3849 if (!isa<CXXRecordDecl>(D)) { 3850 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) 3851 << Attr.getName() << ExpectedClass; 3852 return; 3853 } 3854 3855 StringRef StrRef; 3856 SourceLocation LiteralLoc; 3857 if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc)) 3858 return; 3859 3860 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or 3861 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. 3862 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') 3863 StrRef = StrRef.drop_front().drop_back(); 3864 3865 // Validate GUID length. 3866 if (StrRef.size() != 36) { 3867 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); 3868 return; 3869 } 3870 3871 for (unsigned i = 0; i < 36; ++i) { 3872 if (i == 8 || i == 13 || i == 18 || i == 23) { 3873 if (StrRef[i] != '-') { 3874 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); 3875 return; 3876 } 3877 } else if (!isHexDigit(StrRef[i])) { 3878 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); 3879 return; 3880 } 3881 } 3882 3883 D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef, 3884 Attr.getAttributeSpellingListIndex())); 3885 } 3886 3887 static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3888 if (!S.LangOpts.CPlusPlus) { 3889 S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang) 3890 << Attr.getName() << AttributeLangSupport::C; 3891 return; 3892 } 3893 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( 3894 D, Attr.getRange(), /*BestCase=*/true, 3895 Attr.getAttributeSpellingListIndex(), 3896 (MSInheritanceAttr::Spelling)Attr.getSemanticSpelling()); 3897 if (IA) 3898 D->addAttr(IA); 3899 } 3900 3901 static void handleDeclspecThreadAttr(Sema &S, Decl *D, 3902 const AttributeList &Attr) { 3903 VarDecl *VD = cast<VarDecl>(D); 3904 if (!S.Context.getTargetInfo().isTLSSupported()) { 3905 S.Diag(Attr.getLoc(), diag::err_thread_unsupported); 3906 return; 3907 } 3908 if (VD->getTSCSpec() != TSCS_unspecified) { 3909 S.Diag(Attr.getLoc(), diag::err_declspec_thread_on_thread_variable); 3910 return; 3911 } 3912 if (VD->hasLocalStorage()) { 3913 S.Diag(Attr.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; 3914 return; 3915 } 3916 VD->addAttr(::new (S.Context) ThreadAttr( 3917 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); 3918 } 3919 3920 static void handleARMInterruptAttr(Sema &S, Decl *D, 3921 const AttributeList &Attr) { 3922 // Check the attribute arguments. 3923 if (Attr.getNumArgs() > 1) { 3924 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) 3925 << Attr.getName() << 1; 3926 return; 3927 } 3928 3929 StringRef Str; 3930 SourceLocation ArgLoc; 3931 3932 if (Attr.getNumArgs() == 0) 3933 Str = ""; 3934 else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc)) 3935 return; 3936 3937 ARMInterruptAttr::InterruptType Kind; 3938 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { 3939 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) 3940 << Attr.getName() << Str << ArgLoc; 3941 return; 3942 } 3943 3944 unsigned Index = Attr.getAttributeSpellingListIndex(); 3945 D->addAttr(::new (S.Context) 3946 ARMInterruptAttr(Attr.getLoc(), S.Context, Kind, Index)); 3947 } 3948 3949 static void handleMSP430InterruptAttr(Sema &S, Decl *D, 3950 const AttributeList &Attr) { 3951 if (!checkAttributeNumArgs(S, Attr, 1)) 3952 return; 3953 3954 if (!Attr.isArgExpr(0)) { 3955 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() 3956 << AANT_ArgumentIntegerConstant; 3957 return; 3958 } 3959 3960 // FIXME: Check for decl - it should be void ()(void). 3961 3962 Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0)); 3963 llvm::APSInt NumParams(32); 3964 if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) { 3965 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) 3966 << Attr.getName() << AANT_ArgumentIntegerConstant 3967 << NumParamsExpr->getSourceRange(); 3968 return; 3969 } 3970 3971 unsigned Num = NumParams.getLimitedValue(255); 3972 if ((Num & 1) || Num > 30) { 3973 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) 3974 << Attr.getName() << (int)NumParams.getSExtValue() 3975 << NumParamsExpr->getSourceRange(); 3976 return; 3977 } 3978 3979 D->addAttr(::new (S.Context) 3980 MSP430InterruptAttr(Attr.getLoc(), S.Context, Num, 3981 Attr.getAttributeSpellingListIndex())); 3982 D->addAttr(UsedAttr::CreateImplicit(S.Context)); 3983 } 3984 3985 static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &Attr) { 3986 // Dispatch the interrupt attribute based on the current target. 3987 if (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::msp430) 3988 handleMSP430InterruptAttr(S, D, Attr); 3989 else 3990 handleARMInterruptAttr(S, D, Attr); 3991 } 3992 3993 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, 3994 const AttributeList &Attr) { 3995 uint32_t NumRegs; 3996 Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0)); 3997 if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs)) 3998 return; 3999 4000 D->addAttr(::new (S.Context) 4001 AMDGPUNumVGPRAttr(Attr.getLoc(), S.Context, 4002 NumRegs, 4003 Attr.getAttributeSpellingListIndex())); 4004 } 4005 4006 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, 4007 const AttributeList &Attr) { 4008 uint32_t NumRegs; 4009 Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0)); 4010 if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs)) 4011 return; 4012 4013 D->addAttr(::new (S.Context) 4014 AMDGPUNumSGPRAttr(Attr.getLoc(), S.Context, 4015 NumRegs, 4016 Attr.getAttributeSpellingListIndex())); 4017 } 4018 4019 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D, 4020 const AttributeList& Attr) { 4021 // If we try to apply it to a function pointer, don't warn, but don't 4022 // do anything, either. It doesn't matter anyway, because there's nothing 4023 // special about calling a force_align_arg_pointer function. 4024 ValueDecl *VD = dyn_cast<ValueDecl>(D); 4025 if (VD && VD->getType()->isFunctionPointerType()) 4026 return; 4027 // Also don't warn on function pointer typedefs. 4028 TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D); 4029 if (TD && (TD->getUnderlyingType()->isFunctionPointerType() || 4030 TD->getUnderlyingType()->isFunctionType())) 4031 return; 4032 // Attribute can only be applied to function types. 4033 if (!isa<FunctionDecl>(D)) { 4034 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) 4035 << Attr.getName() << /* function */0; 4036 return; 4037 } 4038 4039 D->addAttr(::new (S.Context) 4040 X86ForceAlignArgPointerAttr(Attr.getRange(), S.Context, 4041 Attr.getAttributeSpellingListIndex())); 4042 } 4043 4044 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range, 4045 unsigned AttrSpellingListIndex) { 4046 if (D->hasAttr<DLLExportAttr>()) { 4047 Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'"; 4048 return nullptr; 4049 } 4050 4051 if (D->hasAttr<DLLImportAttr>()) 4052 return nullptr; 4053 4054 return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex); 4055 } 4056 4057 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range, 4058 unsigned AttrSpellingListIndex) { 4059 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { 4060 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; 4061 D->dropAttr<DLLImportAttr>(); 4062 } 4063 4064 if (D->hasAttr<DLLExportAttr>()) 4065 return nullptr; 4066 4067 return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex); 4068 } 4069 4070 static void handleDLLAttr(Sema &S, Decl *D, const AttributeList &A) { 4071 if (isa<ClassTemplatePartialSpecializationDecl>(D) && 4072 S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4073 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) 4074 << A.getName(); 4075 return; 4076 } 4077 4078 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4079 if (FD->isInlined() && A.getKind() == AttributeList::AT_DLLImport && 4080 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4081 // MinGW doesn't allow dllimport on inline functions. 4082 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) 4083 << A.getName(); 4084 return; 4085 } 4086 } 4087 4088 unsigned Index = A.getAttributeSpellingListIndex(); 4089 Attr *NewAttr = A.getKind() == AttributeList::AT_DLLExport 4090 ? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index) 4091 : (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index); 4092 if (NewAttr) 4093 D->addAttr(NewAttr); 4094 } 4095 4096 MSInheritanceAttr * 4097 Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase, 4098 unsigned AttrSpellingListIndex, 4099 MSInheritanceAttr::Spelling SemanticSpelling) { 4100 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { 4101 if (IA->getSemanticSpelling() == SemanticSpelling) 4102 return nullptr; 4103 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) 4104 << 1 /*previous declaration*/; 4105 Diag(Range.getBegin(), diag::note_previous_ms_inheritance); 4106 D->dropAttr<MSInheritanceAttr>(); 4107 } 4108 4109 CXXRecordDecl *RD = cast<CXXRecordDecl>(D); 4110 if (RD->hasDefinition()) { 4111 if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase, 4112 SemanticSpelling)) { 4113 return nullptr; 4114 } 4115 } else { 4116 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) { 4117 Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance) 4118 << 1 /*partial specialization*/; 4119 return nullptr; 4120 } 4121 if (RD->getDescribedClassTemplate()) { 4122 Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance) 4123 << 0 /*primary template*/; 4124 return nullptr; 4125 } 4126 } 4127 4128 return ::new (Context) 4129 MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex); 4130 } 4131 4132 static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) { 4133 // The capability attributes take a single string parameter for the name of 4134 // the capability they represent. The lockable attribute does not take any 4135 // parameters. However, semantically, both attributes represent the same 4136 // concept, and so they use the same semantic attribute. Eventually, the 4137 // lockable attribute will be removed. 4138 // 4139 // For backward compatibility, any capability which has no specified string 4140 // literal will be considered a "mutex." 4141 StringRef N("mutex"); 4142 SourceLocation LiteralLoc; 4143 if (Attr.getKind() == AttributeList::AT_Capability && 4144 !S.checkStringLiteralArgumentAttr(Attr, 0, N, &LiteralLoc)) 4145 return; 4146 4147 // Currently, there are only two names allowed for a capability: role and 4148 // mutex (case insensitive). Diagnose other capability names. 4149 if (!N.equals_lower("mutex") && !N.equals_lower("role")) 4150 S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N; 4151 4152 D->addAttr(::new (S.Context) CapabilityAttr(Attr.getRange(), S.Context, N, 4153 Attr.getAttributeSpellingListIndex())); 4154 } 4155 4156 static void handleAssertCapabilityAttr(Sema &S, Decl *D, 4157 const AttributeList &Attr) { 4158 D->addAttr(::new (S.Context) AssertCapabilityAttr(Attr.getRange(), S.Context, 4159 Attr.getArgAsExpr(0), 4160 Attr.getAttributeSpellingListIndex())); 4161 } 4162 4163 static void handleAcquireCapabilityAttr(Sema &S, Decl *D, 4164 const AttributeList &Attr) { 4165 SmallVector<Expr*, 1> Args; 4166 if (!checkLockFunAttrCommon(S, D, Attr, Args)) 4167 return; 4168 4169 D->addAttr(::new (S.Context) AcquireCapabilityAttr(Attr.getRange(), 4170 S.Context, 4171 Args.data(), Args.size(), 4172 Attr.getAttributeSpellingListIndex())); 4173 } 4174 4175 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, 4176 const AttributeList &Attr) { 4177 SmallVector<Expr*, 2> Args; 4178 if (!checkTryLockFunAttrCommon(S, D, Attr, Args)) 4179 return; 4180 4181 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(Attr.getRange(), 4182 S.Context, 4183 Attr.getArgAsExpr(0), 4184 Args.data(), 4185 Args.size(), 4186 Attr.getAttributeSpellingListIndex())); 4187 } 4188 4189 static void handleReleaseCapabilityAttr(Sema &S, Decl *D, 4190 const AttributeList &Attr) { 4191 // Check that all arguments are lockable objects. 4192 SmallVector<Expr *, 1> Args; 4193 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, true); 4194 4195 D->addAttr(::new (S.Context) ReleaseCapabilityAttr( 4196 Attr.getRange(), S.Context, Args.data(), Args.size(), 4197 Attr.getAttributeSpellingListIndex())); 4198 } 4199 4200 static void handleRequiresCapabilityAttr(Sema &S, Decl *D, 4201 const AttributeList &Attr) { 4202 if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) 4203 return; 4204 4205 // check that all arguments are lockable objects 4206 SmallVector<Expr*, 1> Args; 4207 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args); 4208 if (Args.empty()) 4209 return; 4210 4211 RequiresCapabilityAttr *RCA = ::new (S.Context) 4212 RequiresCapabilityAttr(Attr.getRange(), S.Context, Args.data(), 4213 Args.size(), Attr.getAttributeSpellingListIndex()); 4214 4215 D->addAttr(RCA); 4216 } 4217 4218 static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) { 4219 if (auto *NSD = dyn_cast<NamespaceDecl>(D)) { 4220 if (NSD->isAnonymousNamespace()) { 4221 S.Diag(Attr.getLoc(), diag::warn_deprecated_anonymous_namespace); 4222 // Do not want to attach the attribute to the namespace because that will 4223 // cause confusing diagnostic reports for uses of declarations within the 4224 // namespace. 4225 return; 4226 } 4227 } 4228 handleAttrWithMessage<DeprecatedAttr>(S, D, Attr); 4229 } 4230 4231 /// Handles semantic checking for features that are common to all attributes, 4232 /// such as checking whether a parameter was properly specified, or the correct 4233 /// number of arguments were passed, etc. 4234 static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D, 4235 const AttributeList &Attr) { 4236 // Several attributes carry different semantics than the parsing requires, so 4237 // those are opted out of the common handling. 4238 // 4239 // We also bail on unknown and ignored attributes because those are handled 4240 // as part of the target-specific handling logic. 4241 if (Attr.hasCustomParsing() || 4242 Attr.getKind() == AttributeList::UnknownAttribute) 4243 return false; 4244 4245 // Check whether the attribute requires specific language extensions to be 4246 // enabled. 4247 if (!Attr.diagnoseLangOpts(S)) 4248 return true; 4249 4250 if (Attr.getMinArgs() == Attr.getMaxArgs()) { 4251 // If there are no optional arguments, then checking for the argument count 4252 // is trivial. 4253 if (!checkAttributeNumArgs(S, Attr, Attr.getMinArgs())) 4254 return true; 4255 } else { 4256 // There are optional arguments, so checking is slightly more involved. 4257 if (Attr.getMinArgs() && 4258 !checkAttributeAtLeastNumArgs(S, Attr, Attr.getMinArgs())) 4259 return true; 4260 else if (!Attr.hasVariadicArg() && Attr.getMaxArgs() && 4261 !checkAttributeAtMostNumArgs(S, Attr, Attr.getMaxArgs())) 4262 return true; 4263 } 4264 4265 // Check whether the attribute appertains to the given subject. 4266 if (!Attr.diagnoseAppertainsTo(S, D)) 4267 return true; 4268 4269 return false; 4270 } 4271 4272 //===----------------------------------------------------------------------===// 4273 // Top Level Sema Entry Points 4274 //===----------------------------------------------------------------------===// 4275 4276 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if 4277 /// the attribute applies to decls. If the attribute is a type attribute, just 4278 /// silently ignore it if a GNU attribute. 4279 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, 4280 const AttributeList &Attr, 4281 bool IncludeCXX11Attributes) { 4282 if (Attr.isInvalid() || Attr.getKind() == AttributeList::IgnoredAttribute) 4283 return; 4284 4285 // Ignore C++11 attributes on declarator chunks: they appertain to the type 4286 // instead. 4287 if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes) 4288 return; 4289 4290 // Unknown attributes are automatically warned on. Target-specific attributes 4291 // which do not apply to the current target architecture are treated as 4292 // though they were unknown attributes. 4293 if (Attr.getKind() == AttributeList::UnknownAttribute || 4294 !Attr.existsInTarget(S.Context.getTargetInfo().getTriple())) { 4295 S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute() 4296 ? diag::warn_unhandled_ms_attribute_ignored 4297 : diag::warn_unknown_attribute_ignored) 4298 << Attr.getName(); 4299 return; 4300 } 4301 4302 if (handleCommonAttributeFeatures(S, scope, D, Attr)) 4303 return; 4304 4305 switch (Attr.getKind()) { 4306 default: 4307 // Type attributes are handled elsewhere; silently move on. 4308 assert(Attr.isTypeAttr() && "Non-type attribute not handled"); 4309 break; 4310 case AttributeList::AT_Interrupt: 4311 handleInterruptAttr(S, D, Attr); 4312 break; 4313 case AttributeList::AT_X86ForceAlignArgPointer: 4314 handleX86ForceAlignArgPointerAttr(S, D, Attr); 4315 break; 4316 case AttributeList::AT_DLLExport: 4317 case AttributeList::AT_DLLImport: 4318 handleDLLAttr(S, D, Attr); 4319 break; 4320 case AttributeList::AT_Mips16: 4321 handleSimpleAttribute<Mips16Attr>(S, D, Attr); 4322 break; 4323 case AttributeList::AT_NoMips16: 4324 handleSimpleAttribute<NoMips16Attr>(S, D, Attr); 4325 break; 4326 case AttributeList::AT_AMDGPUNumVGPR: 4327 handleAMDGPUNumVGPRAttr(S, D, Attr); 4328 break; 4329 case AttributeList::AT_AMDGPUNumSGPR: 4330 handleAMDGPUNumSGPRAttr(S, D, Attr); 4331 break; 4332 case AttributeList::AT_IBAction: 4333 handleSimpleAttribute<IBActionAttr>(S, D, Attr); 4334 break; 4335 case AttributeList::AT_IBOutlet: 4336 handleIBOutlet(S, D, Attr); 4337 break; 4338 case AttributeList::AT_IBOutletCollection: 4339 handleIBOutletCollection(S, D, Attr); 4340 break; 4341 case AttributeList::AT_Alias: 4342 handleAliasAttr(S, D, Attr); 4343 break; 4344 case AttributeList::AT_Aligned: 4345 handleAlignedAttr(S, D, Attr); 4346 break; 4347 case AttributeList::AT_AlignValue: 4348 handleAlignValueAttr(S, D, Attr); 4349 break; 4350 case AttributeList::AT_AlwaysInline: 4351 handleAlwaysInlineAttr(S, D, Attr); 4352 break; 4353 case AttributeList::AT_AnalyzerNoReturn: 4354 handleAnalyzerNoReturnAttr(S, D, Attr); 4355 break; 4356 case AttributeList::AT_TLSModel: 4357 handleTLSModelAttr(S, D, Attr); 4358 break; 4359 case AttributeList::AT_Annotate: 4360 handleAnnotateAttr(S, D, Attr); 4361 break; 4362 case AttributeList::AT_Availability: 4363 handleAvailabilityAttr(S, D, Attr); 4364 break; 4365 case AttributeList::AT_CarriesDependency: 4366 handleDependencyAttr(S, scope, D, Attr); 4367 break; 4368 case AttributeList::AT_Common: 4369 handleCommonAttr(S, D, Attr); 4370 break; 4371 case AttributeList::AT_CUDAConstant: 4372 handleSimpleAttribute<CUDAConstantAttr>(S, D, Attr); 4373 break; 4374 case AttributeList::AT_Constructor: 4375 handleConstructorAttr(S, D, Attr); 4376 break; 4377 case AttributeList::AT_CXX11NoReturn: 4378 handleSimpleAttribute<CXX11NoReturnAttr>(S, D, Attr); 4379 break; 4380 case AttributeList::AT_Deprecated: 4381 handleDeprecatedAttr(S, D, Attr); 4382 break; 4383 case AttributeList::AT_Destructor: 4384 handleDestructorAttr(S, D, Attr); 4385 break; 4386 case AttributeList::AT_EnableIf: 4387 handleEnableIfAttr(S, D, Attr); 4388 break; 4389 case AttributeList::AT_ExtVectorType: 4390 handleExtVectorTypeAttr(S, scope, D, Attr); 4391 break; 4392 case AttributeList::AT_MinSize: 4393 handleMinSizeAttr(S, D, Attr); 4394 break; 4395 case AttributeList::AT_OptimizeNone: 4396 handleOptimizeNoneAttr(S, D, Attr); 4397 break; 4398 case AttributeList::AT_Flatten: 4399 handleSimpleAttribute<FlattenAttr>(S, D, Attr); 4400 break; 4401 case AttributeList::AT_Format: 4402 handleFormatAttr(S, D, Attr); 4403 break; 4404 case AttributeList::AT_FormatArg: 4405 handleFormatArgAttr(S, D, Attr); 4406 break; 4407 case AttributeList::AT_CUDAGlobal: 4408 handleGlobalAttr(S, D, Attr); 4409 break; 4410 case AttributeList::AT_CUDADevice: 4411 handleSimpleAttribute<CUDADeviceAttr>(S, D, Attr); 4412 break; 4413 case AttributeList::AT_CUDAHost: 4414 handleSimpleAttribute<CUDAHostAttr>(S, D, Attr); 4415 break; 4416 case AttributeList::AT_GNUInline: 4417 handleGNUInlineAttr(S, D, Attr); 4418 break; 4419 case AttributeList::AT_CUDALaunchBounds: 4420 handleLaunchBoundsAttr(S, D, Attr); 4421 break; 4422 case AttributeList::AT_Malloc: 4423 handleMallocAttr(S, D, Attr); 4424 break; 4425 case AttributeList::AT_MayAlias: 4426 handleSimpleAttribute<MayAliasAttr>(S, D, Attr); 4427 break; 4428 case AttributeList::AT_Mode: 4429 handleModeAttr(S, D, Attr); 4430 break; 4431 case AttributeList::AT_NoCommon: 4432 handleSimpleAttribute<NoCommonAttr>(S, D, Attr); 4433 break; 4434 case AttributeList::AT_NoSplitStack: 4435 handleSimpleAttribute<NoSplitStackAttr>(S, D, Attr); 4436 break; 4437 case AttributeList::AT_NonNull: 4438 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(D)) 4439 handleNonNullAttrParameter(S, PVD, Attr); 4440 else 4441 handleNonNullAttr(S, D, Attr); 4442 break; 4443 case AttributeList::AT_ReturnsNonNull: 4444 handleReturnsNonNullAttr(S, D, Attr); 4445 break; 4446 case AttributeList::AT_AssumeAligned: 4447 handleAssumeAlignedAttr(S, D, Attr); 4448 break; 4449 case AttributeList::AT_Overloadable: 4450 handleSimpleAttribute<OverloadableAttr>(S, D, Attr); 4451 break; 4452 case AttributeList::AT_Ownership: 4453 handleOwnershipAttr(S, D, Attr); 4454 break; 4455 case AttributeList::AT_Cold: 4456 handleColdAttr(S, D, Attr); 4457 break; 4458 case AttributeList::AT_Hot: 4459 handleHotAttr(S, D, Attr); 4460 break; 4461 case AttributeList::AT_Naked: 4462 handleSimpleAttribute<NakedAttr>(S, D, Attr); 4463 break; 4464 case AttributeList::AT_NoReturn: 4465 handleNoReturnAttr(S, D, Attr); 4466 break; 4467 case AttributeList::AT_NoThrow: 4468 handleSimpleAttribute<NoThrowAttr>(S, D, Attr); 4469 break; 4470 case AttributeList::AT_CUDAShared: 4471 handleSimpleAttribute<CUDASharedAttr>(S, D, Attr); 4472 break; 4473 case AttributeList::AT_VecReturn: 4474 handleVecReturnAttr(S, D, Attr); 4475 break; 4476 4477 case AttributeList::AT_ObjCOwnership: 4478 handleObjCOwnershipAttr(S, D, Attr); 4479 break; 4480 case AttributeList::AT_ObjCPreciseLifetime: 4481 handleObjCPreciseLifetimeAttr(S, D, Attr); 4482 break; 4483 4484 case AttributeList::AT_ObjCReturnsInnerPointer: 4485 handleObjCReturnsInnerPointerAttr(S, D, Attr); 4486 break; 4487 4488 case AttributeList::AT_ObjCRequiresSuper: 4489 handleObjCRequiresSuperAttr(S, D, Attr); 4490 break; 4491 4492 case AttributeList::AT_ObjCBridge: 4493 handleObjCBridgeAttr(S, scope, D, Attr); 4494 break; 4495 4496 case AttributeList::AT_ObjCBridgeMutable: 4497 handleObjCBridgeMutableAttr(S, scope, D, Attr); 4498 break; 4499 4500 case AttributeList::AT_ObjCBridgeRelated: 4501 handleObjCBridgeRelatedAttr(S, scope, D, Attr); 4502 break; 4503 4504 case AttributeList::AT_ObjCDesignatedInitializer: 4505 handleObjCDesignatedInitializer(S, D, Attr); 4506 break; 4507 4508 case AttributeList::AT_ObjCRuntimeName: 4509 handleObjCRuntimeName(S, D, Attr); 4510 break; 4511 4512 case AttributeList::AT_CFAuditedTransfer: 4513 handleCFAuditedTransferAttr(S, D, Attr); 4514 break; 4515 case AttributeList::AT_CFUnknownTransfer: 4516 handleCFUnknownTransferAttr(S, D, Attr); 4517 break; 4518 4519 case AttributeList::AT_CFConsumed: 4520 case AttributeList::AT_NSConsumed: 4521 handleNSConsumedAttr(S, D, Attr); 4522 break; 4523 case AttributeList::AT_NSConsumesSelf: 4524 handleSimpleAttribute<NSConsumesSelfAttr>(S, D, Attr); 4525 break; 4526 4527 case AttributeList::AT_NSReturnsAutoreleased: 4528 case AttributeList::AT_NSReturnsNotRetained: 4529 case AttributeList::AT_CFReturnsNotRetained: 4530 case AttributeList::AT_NSReturnsRetained: 4531 case AttributeList::AT_CFReturnsRetained: 4532 handleNSReturnsRetainedAttr(S, D, Attr); 4533 break; 4534 case AttributeList::AT_WorkGroupSizeHint: 4535 handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, Attr); 4536 break; 4537 case AttributeList::AT_ReqdWorkGroupSize: 4538 handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, Attr); 4539 break; 4540 case AttributeList::AT_VecTypeHint: 4541 handleVecTypeHint(S, D, Attr); 4542 break; 4543 4544 case AttributeList::AT_InitPriority: 4545 handleInitPriorityAttr(S, D, Attr); 4546 break; 4547 4548 case AttributeList::AT_Packed: 4549 handlePackedAttr(S, D, Attr); 4550 break; 4551 case AttributeList::AT_Section: 4552 handleSectionAttr(S, D, Attr); 4553 break; 4554 case AttributeList::AT_Unavailable: 4555 handleAttrWithMessage<UnavailableAttr>(S, D, Attr); 4556 break; 4557 case AttributeList::AT_ArcWeakrefUnavailable: 4558 handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, Attr); 4559 break; 4560 case AttributeList::AT_ObjCRootClass: 4561 handleSimpleAttribute<ObjCRootClassAttr>(S, D, Attr); 4562 break; 4563 case AttributeList::AT_ObjCExplicitProtocolImpl: 4564 handleObjCSuppresProtocolAttr(S, D, Attr); 4565 break; 4566 case AttributeList::AT_ObjCRequiresPropertyDefs: 4567 handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, Attr); 4568 break; 4569 case AttributeList::AT_Unused: 4570 handleSimpleAttribute<UnusedAttr>(S, D, Attr); 4571 break; 4572 case AttributeList::AT_ReturnsTwice: 4573 handleSimpleAttribute<ReturnsTwiceAttr>(S, D, Attr); 4574 break; 4575 case AttributeList::AT_Used: 4576 handleUsedAttr(S, D, Attr); 4577 break; 4578 case AttributeList::AT_Visibility: 4579 handleVisibilityAttr(S, D, Attr, false); 4580 break; 4581 case AttributeList::AT_TypeVisibility: 4582 handleVisibilityAttr(S, D, Attr, true); 4583 break; 4584 case AttributeList::AT_WarnUnused: 4585 handleSimpleAttribute<WarnUnusedAttr>(S, D, Attr); 4586 break; 4587 case AttributeList::AT_WarnUnusedResult: 4588 handleWarnUnusedResult(S, D, Attr); 4589 break; 4590 case AttributeList::AT_Weak: 4591 handleSimpleAttribute<WeakAttr>(S, D, Attr); 4592 break; 4593 case AttributeList::AT_WeakRef: 4594 handleWeakRefAttr(S, D, Attr); 4595 break; 4596 case AttributeList::AT_WeakImport: 4597 handleWeakImportAttr(S, D, Attr); 4598 break; 4599 case AttributeList::AT_TransparentUnion: 4600 handleTransparentUnionAttr(S, D, Attr); 4601 break; 4602 case AttributeList::AT_ObjCException: 4603 handleSimpleAttribute<ObjCExceptionAttr>(S, D, Attr); 4604 break; 4605 case AttributeList::AT_ObjCMethodFamily: 4606 handleObjCMethodFamilyAttr(S, D, Attr); 4607 break; 4608 case AttributeList::AT_ObjCNSObject: 4609 handleObjCNSObject(S, D, Attr); 4610 break; 4611 case AttributeList::AT_Blocks: 4612 handleBlocksAttr(S, D, Attr); 4613 break; 4614 case AttributeList::AT_Sentinel: 4615 handleSentinelAttr(S, D, Attr); 4616 break; 4617 case AttributeList::AT_Const: 4618 handleSimpleAttribute<ConstAttr>(S, D, Attr); 4619 break; 4620 case AttributeList::AT_Pure: 4621 handleSimpleAttribute<PureAttr>(S, D, Attr); 4622 break; 4623 case AttributeList::AT_Cleanup: 4624 handleCleanupAttr(S, D, Attr); 4625 break; 4626 case AttributeList::AT_NoDebug: 4627 handleNoDebugAttr(S, D, Attr); 4628 break; 4629 case AttributeList::AT_NoDuplicate: 4630 handleSimpleAttribute<NoDuplicateAttr>(S, D, Attr); 4631 break; 4632 case AttributeList::AT_NoInline: 4633 handleSimpleAttribute<NoInlineAttr>(S, D, Attr); 4634 break; 4635 case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg. 4636 handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, Attr); 4637 break; 4638 case AttributeList::AT_StdCall: 4639 case AttributeList::AT_CDecl: 4640 case AttributeList::AT_FastCall: 4641 case AttributeList::AT_ThisCall: 4642 case AttributeList::AT_Pascal: 4643 case AttributeList::AT_VectorCall: 4644 case AttributeList::AT_MSABI: 4645 case AttributeList::AT_SysVABI: 4646 case AttributeList::AT_Pcs: 4647 case AttributeList::AT_PnaclCall: 4648 case AttributeList::AT_IntelOclBicc: 4649 handleCallConvAttr(S, D, Attr); 4650 break; 4651 case AttributeList::AT_OpenCLKernel: 4652 handleSimpleAttribute<OpenCLKernelAttr>(S, D, Attr); 4653 break; 4654 case AttributeList::AT_OpenCLImageAccess: 4655 handleSimpleAttribute<OpenCLImageAccessAttr>(S, D, Attr); 4656 break; 4657 4658 // Microsoft attributes: 4659 case AttributeList::AT_MsStruct: 4660 handleSimpleAttribute<MsStructAttr>(S, D, Attr); 4661 break; 4662 case AttributeList::AT_Uuid: 4663 handleUuidAttr(S, D, Attr); 4664 break; 4665 case AttributeList::AT_MSInheritance: 4666 handleMSInheritanceAttr(S, D, Attr); 4667 break; 4668 case AttributeList::AT_SelectAny: 4669 handleSimpleAttribute<SelectAnyAttr>(S, D, Attr); 4670 break; 4671 case AttributeList::AT_Thread: 4672 handleDeclspecThreadAttr(S, D, Attr); 4673 break; 4674 4675 // Thread safety attributes: 4676 case AttributeList::AT_AssertExclusiveLock: 4677 handleAssertExclusiveLockAttr(S, D, Attr); 4678 break; 4679 case AttributeList::AT_AssertSharedLock: 4680 handleAssertSharedLockAttr(S, D, Attr); 4681 break; 4682 case AttributeList::AT_GuardedVar: 4683 handleSimpleAttribute<GuardedVarAttr>(S, D, Attr); 4684 break; 4685 case AttributeList::AT_PtGuardedVar: 4686 handlePtGuardedVarAttr(S, D, Attr); 4687 break; 4688 case AttributeList::AT_ScopedLockable: 4689 handleSimpleAttribute<ScopedLockableAttr>(S, D, Attr); 4690 break; 4691 case AttributeList::AT_NoSanitizeAddress: 4692 handleSimpleAttribute<NoSanitizeAddressAttr>(S, D, Attr); 4693 break; 4694 case AttributeList::AT_NoThreadSafetyAnalysis: 4695 handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, Attr); 4696 break; 4697 case AttributeList::AT_NoSanitizeThread: 4698 handleSimpleAttribute<NoSanitizeThreadAttr>(S, D, Attr); 4699 break; 4700 case AttributeList::AT_NoSanitizeMemory: 4701 handleSimpleAttribute<NoSanitizeMemoryAttr>(S, D, Attr); 4702 break; 4703 case AttributeList::AT_GuardedBy: 4704 handleGuardedByAttr(S, D, Attr); 4705 break; 4706 case AttributeList::AT_PtGuardedBy: 4707 handlePtGuardedByAttr(S, D, Attr); 4708 break; 4709 case AttributeList::AT_ExclusiveTrylockFunction: 4710 handleExclusiveTrylockFunctionAttr(S, D, Attr); 4711 break; 4712 case AttributeList::AT_LockReturned: 4713 handleLockReturnedAttr(S, D, Attr); 4714 break; 4715 case AttributeList::AT_LocksExcluded: 4716 handleLocksExcludedAttr(S, D, Attr); 4717 break; 4718 case AttributeList::AT_SharedTrylockFunction: 4719 handleSharedTrylockFunctionAttr(S, D, Attr); 4720 break; 4721 case AttributeList::AT_AcquiredBefore: 4722 handleAcquiredBeforeAttr(S, D, Attr); 4723 break; 4724 case AttributeList::AT_AcquiredAfter: 4725 handleAcquiredAfterAttr(S, D, Attr); 4726 break; 4727 4728 // Capability analysis attributes. 4729 case AttributeList::AT_Capability: 4730 case AttributeList::AT_Lockable: 4731 handleCapabilityAttr(S, D, Attr); 4732 break; 4733 case AttributeList::AT_RequiresCapability: 4734 handleRequiresCapabilityAttr(S, D, Attr); 4735 break; 4736 4737 case AttributeList::AT_AssertCapability: 4738 handleAssertCapabilityAttr(S, D, Attr); 4739 break; 4740 case AttributeList::AT_AcquireCapability: 4741 handleAcquireCapabilityAttr(S, D, Attr); 4742 break; 4743 case AttributeList::AT_ReleaseCapability: 4744 handleReleaseCapabilityAttr(S, D, Attr); 4745 break; 4746 case AttributeList::AT_TryAcquireCapability: 4747 handleTryAcquireCapabilityAttr(S, D, Attr); 4748 break; 4749 4750 // Consumed analysis attributes. 4751 case AttributeList::AT_Consumable: 4752 handleConsumableAttr(S, D, Attr); 4753 break; 4754 case AttributeList::AT_ConsumableAutoCast: 4755 handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, Attr); 4756 break; 4757 case AttributeList::AT_ConsumableSetOnRead: 4758 handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, Attr); 4759 break; 4760 case AttributeList::AT_CallableWhen: 4761 handleCallableWhenAttr(S, D, Attr); 4762 break; 4763 case AttributeList::AT_ParamTypestate: 4764 handleParamTypestateAttr(S, D, Attr); 4765 break; 4766 case AttributeList::AT_ReturnTypestate: 4767 handleReturnTypestateAttr(S, D, Attr); 4768 break; 4769 case AttributeList::AT_SetTypestate: 4770 handleSetTypestateAttr(S, D, Attr); 4771 break; 4772 case AttributeList::AT_TestTypestate: 4773 handleTestTypestateAttr(S, D, Attr); 4774 break; 4775 4776 // Type safety attributes. 4777 case AttributeList::AT_ArgumentWithTypeTag: 4778 handleArgumentWithTypeTagAttr(S, D, Attr); 4779 break; 4780 case AttributeList::AT_TypeTagForDatatype: 4781 handleTypeTagForDatatypeAttr(S, D, Attr); 4782 break; 4783 } 4784 } 4785 4786 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified 4787 /// attribute list to the specified decl, ignoring any type attributes. 4788 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, 4789 const AttributeList *AttrList, 4790 bool IncludeCXX11Attributes) { 4791 for (const AttributeList* l = AttrList; l; l = l->getNext()) 4792 ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes); 4793 4794 // FIXME: We should be able to handle these cases in TableGen. 4795 // GCC accepts 4796 // static int a9 __attribute__((weakref)); 4797 // but that looks really pointless. We reject it. 4798 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { 4799 Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) 4800 << cast<NamedDecl>(D); 4801 D->dropAttr<WeakRefAttr>(); 4802 return; 4803 } 4804 4805 // FIXME: We should be able to handle this in TableGen as well. It would be 4806 // good to have a way to specify "these attributes must appear as a group", 4807 // for these. Additionally, it would be good to have a way to specify "these 4808 // attribute must never appear as a group" for attributes like cold and hot. 4809 if (!D->hasAttr<OpenCLKernelAttr>()) { 4810 // These attributes cannot be applied to a non-kernel function. 4811 if (Attr *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { 4812 // FIXME: This emits a different error message than 4813 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. 4814 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 4815 D->setInvalidDecl(); 4816 } else if (Attr *A = D->getAttr<WorkGroupSizeHintAttr>()) { 4817 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 4818 D->setInvalidDecl(); 4819 } else if (Attr *A = D->getAttr<VecTypeHintAttr>()) { 4820 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; 4821 D->setInvalidDecl(); 4822 } else if (Attr *A = D->getAttr<AMDGPUNumVGPRAttr>()) { 4823 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 4824 << A << ExpectedKernelFunction; 4825 D->setInvalidDecl(); 4826 } else if (Attr *A = D->getAttr<AMDGPUNumSGPRAttr>()) { 4827 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) 4828 << A << ExpectedKernelFunction; 4829 D->setInvalidDecl(); 4830 } 4831 } 4832 } 4833 4834 // Annotation attributes are the only attributes allowed after an access 4835 // specifier. 4836 bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, 4837 const AttributeList *AttrList) { 4838 for (const AttributeList* l = AttrList; l; l = l->getNext()) { 4839 if (l->getKind() == AttributeList::AT_Annotate) { 4840 ProcessDeclAttribute(*this, nullptr, ASDecl, *l, l->isCXX11Attribute()); 4841 } else { 4842 Diag(l->getLoc(), diag::err_only_annotate_after_access_spec); 4843 return true; 4844 } 4845 } 4846 4847 return false; 4848 } 4849 4850 /// checkUnusedDeclAttributes - Check a list of attributes to see if it 4851 /// contains any decl attributes that we should warn about. 4852 static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) { 4853 for ( ; A; A = A->getNext()) { 4854 // Only warn if the attribute is an unignored, non-type attribute. 4855 if (A->isUsedAsTypeAttr() || A->isInvalid()) continue; 4856 if (A->getKind() == AttributeList::IgnoredAttribute) continue; 4857 4858 if (A->getKind() == AttributeList::UnknownAttribute) { 4859 S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored) 4860 << A->getName() << A->getRange(); 4861 } else { 4862 S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl) 4863 << A->getName() << A->getRange(); 4864 } 4865 } 4866 } 4867 4868 /// checkUnusedDeclAttributes - Given a declarator which is not being 4869 /// used to build a declaration, complain about any decl attributes 4870 /// which might be lying around on it. 4871 void Sema::checkUnusedDeclAttributes(Declarator &D) { 4872 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList()); 4873 ::checkUnusedDeclAttributes(*this, D.getAttributes()); 4874 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) 4875 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); 4876 } 4877 4878 /// DeclClonePragmaWeak - clone existing decl (maybe definition), 4879 /// \#pragma weak needs a non-definition decl and source may not have one. 4880 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, 4881 SourceLocation Loc) { 4882 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); 4883 NamedDecl *NewD = nullptr; 4884 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 4885 FunctionDecl *NewFD; 4886 // FIXME: Missing call to CheckFunctionDeclaration(). 4887 // FIXME: Mangling? 4888 // FIXME: Is the qualifier info correct? 4889 // FIXME: Is the DeclContext correct? 4890 NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(), 4891 Loc, Loc, DeclarationName(II), 4892 FD->getType(), FD->getTypeSourceInfo(), 4893 SC_None, false/*isInlineSpecified*/, 4894 FD->hasPrototype(), 4895 false/*isConstexprSpecified*/); 4896 NewD = NewFD; 4897 4898 if (FD->getQualifier()) 4899 NewFD->setQualifierInfo(FD->getQualifierLoc()); 4900 4901 // Fake up parameter variables; they are declared as if this were 4902 // a typedef. 4903 QualType FDTy = FD->getType(); 4904 if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) { 4905 SmallVector<ParmVarDecl*, 16> Params; 4906 for (const auto &AI : FT->param_types()) { 4907 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); 4908 Param->setScopeInfo(0, Params.size()); 4909 Params.push_back(Param); 4910 } 4911 NewFD->setParams(Params); 4912 } 4913 } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) { 4914 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), 4915 VD->getInnerLocStart(), VD->getLocation(), II, 4916 VD->getType(), VD->getTypeSourceInfo(), 4917 VD->getStorageClass()); 4918 if (VD->getQualifier()) { 4919 VarDecl *NewVD = cast<VarDecl>(NewD); 4920 NewVD->setQualifierInfo(VD->getQualifierLoc()); 4921 } 4922 } 4923 return NewD; 4924 } 4925 4926 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak 4927 /// applied to it, possibly with an alias. 4928 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { 4929 if (W.getUsed()) return; // only do this once 4930 W.setUsed(true); 4931 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) 4932 IdentifierInfo *NDId = ND->getIdentifier(); 4933 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); 4934 NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(), 4935 W.getLocation())); 4936 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); 4937 WeakTopLevelDecl.push_back(NewD); 4938 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin 4939 // to insert Decl at TU scope, sorry. 4940 DeclContext *SavedContext = CurContext; 4941 CurContext = Context.getTranslationUnitDecl(); 4942 NewD->setDeclContext(CurContext); 4943 NewD->setLexicalDeclContext(CurContext); 4944 PushOnScopeChains(NewD, S); 4945 CurContext = SavedContext; 4946 } else { // just add weak to existing 4947 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); 4948 } 4949 } 4950 4951 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { 4952 // It's valid to "forward-declare" #pragma weak, in which case we 4953 // have to do this. 4954 LoadExternalWeakUndeclaredIdentifiers(); 4955 if (!WeakUndeclaredIdentifiers.empty()) { 4956 NamedDecl *ND = nullptr; 4957 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 4958 if (VD->isExternC()) 4959 ND = VD; 4960 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 4961 if (FD->isExternC()) 4962 ND = FD; 4963 if (ND) { 4964 if (IdentifierInfo *Id = ND->getIdentifier()) { 4965 llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I 4966 = WeakUndeclaredIdentifiers.find(Id); 4967 if (I != WeakUndeclaredIdentifiers.end()) { 4968 WeakInfo W = I->second; 4969 DeclApplyPragmaWeak(S, ND, W); 4970 WeakUndeclaredIdentifiers[Id] = W; 4971 } 4972 } 4973 } 4974 } 4975 } 4976 4977 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in 4978 /// it, apply them to D. This is a bit tricky because PD can have attributes 4979 /// specified in many different places, and we need to find and apply them all. 4980 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { 4981 // Apply decl attributes from the DeclSpec if present. 4982 if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList()) 4983 ProcessDeclAttributeList(S, D, Attrs); 4984 4985 // Walk the declarator structure, applying decl attributes that were in a type 4986 // position to the decl itself. This handles cases like: 4987 // int *__attr__(x)** D; 4988 // when X is a decl attribute. 4989 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) 4990 if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs()) 4991 ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false); 4992 4993 // Finally, apply any attributes on the decl itself. 4994 if (const AttributeList *Attrs = PD.getAttributes()) 4995 ProcessDeclAttributeList(S, D, Attrs); 4996 } 4997 4998 /// Is the given declaration allowed to use a forbidden type? 4999 static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) { 5000 // Private ivars are always okay. Unfortunately, people don't 5001 // always properly make their ivars private, even in system headers. 5002 // Plus we need to make fields okay, too. 5003 // Function declarations in sys headers will be marked unavailable. 5004 if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) && 5005 !isa<FunctionDecl>(decl)) 5006 return false; 5007 5008 // Require it to be declared in a system header. 5009 return S.Context.getSourceManager().isInSystemHeader(decl->getLocation()); 5010 } 5011 5012 /// Handle a delayed forbidden-type diagnostic. 5013 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag, 5014 Decl *decl) { 5015 if (decl && isForbiddenTypeAllowed(S, decl)) { 5016 decl->addAttr(UnavailableAttr::CreateImplicit(S.Context, 5017 "this system declaration uses an unsupported type", 5018 diag.Loc)); 5019 return; 5020 } 5021 if (S.getLangOpts().ObjCAutoRefCount) 5022 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) { 5023 // FIXME: we may want to suppress diagnostics for all 5024 // kind of forbidden type messages on unavailable functions. 5025 if (FD->hasAttr<UnavailableAttr>() && 5026 diag.getForbiddenTypeDiagnostic() == 5027 diag::err_arc_array_param_no_ownership) { 5028 diag.Triggered = true; 5029 return; 5030 } 5031 } 5032 5033 S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic()) 5034 << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument(); 5035 diag.Triggered = true; 5036 } 5037 5038 5039 static bool isDeclDeprecated(Decl *D) { 5040 do { 5041 if (D->isDeprecated()) 5042 return true; 5043 // A category implicitly has the availability of the interface. 5044 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D)) 5045 return CatD->getClassInterface()->isDeprecated(); 5046 } while ((D = cast_or_null<Decl>(D->getDeclContext()))); 5047 return false; 5048 } 5049 5050 static bool isDeclUnavailable(Decl *D) { 5051 do { 5052 if (D->isUnavailable()) 5053 return true; 5054 // A category implicitly has the availability of the interface. 5055 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D)) 5056 return CatD->getClassInterface()->isUnavailable(); 5057 } while ((D = cast_or_null<Decl>(D->getDeclContext()))); 5058 return false; 5059 } 5060 5061 static void DoEmitAvailabilityWarning(Sema &S, DelayedDiagnostic::DDKind K, 5062 Decl *Ctx, const NamedDecl *D, 5063 StringRef Message, SourceLocation Loc, 5064 const ObjCInterfaceDecl *UnknownObjCClass, 5065 const ObjCPropertyDecl *ObjCProperty, 5066 bool ObjCPropertyAccess) { 5067 // Diagnostics for deprecated or unavailable. 5068 unsigned diag, diag_message, diag_fwdclass_message; 5069 5070 // Matches 'diag::note_property_attribute' options. 5071 unsigned property_note_select; 5072 5073 // Matches diag::note_availability_specified_here. 5074 unsigned available_here_select_kind; 5075 5076 // Don't warn if our current context is deprecated or unavailable. 5077 switch (K) { 5078 case DelayedDiagnostic::Deprecation: 5079 if (isDeclDeprecated(Ctx)) 5080 return; 5081 diag = !ObjCPropertyAccess ? diag::warn_deprecated 5082 : diag::warn_property_method_deprecated; 5083 diag_message = diag::warn_deprecated_message; 5084 diag_fwdclass_message = diag::warn_deprecated_fwdclass_message; 5085 property_note_select = /* deprecated */ 0; 5086 available_here_select_kind = /* deprecated */ 2; 5087 break; 5088 5089 case DelayedDiagnostic::Unavailable: 5090 if (isDeclUnavailable(Ctx)) 5091 return; 5092 diag = !ObjCPropertyAccess ? diag::err_unavailable 5093 : diag::err_property_method_unavailable; 5094 diag_message = diag::err_unavailable_message; 5095 diag_fwdclass_message = diag::warn_unavailable_fwdclass_message; 5096 property_note_select = /* unavailable */ 1; 5097 available_here_select_kind = /* unavailable */ 0; 5098 break; 5099 5100 default: 5101 llvm_unreachable("Neither a deprecation or unavailable kind"); 5102 } 5103 5104 if (!Message.empty()) { 5105 S.Diag(Loc, diag_message) << D << Message; 5106 if (ObjCProperty) 5107 S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute) 5108 << ObjCProperty->getDeclName() << property_note_select; 5109 } else if (!UnknownObjCClass) { 5110 S.Diag(Loc, diag) << D; 5111 if (ObjCProperty) 5112 S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute) 5113 << ObjCProperty->getDeclName() << property_note_select; 5114 } else { 5115 S.Diag(Loc, diag_fwdclass_message) << D; 5116 S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class); 5117 } 5118 5119 S.Diag(D->getLocation(), diag::note_availability_specified_here) 5120 << D << available_here_select_kind; 5121 } 5122 5123 static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD, 5124 Decl *Ctx) { 5125 DD.Triggered = true; 5126 DoEmitAvailabilityWarning(S, (DelayedDiagnostic::DDKind)DD.Kind, Ctx, 5127 DD.getDeprecationDecl(), DD.getDeprecationMessage(), 5128 DD.Loc, DD.getUnknownObjCClass(), 5129 DD.getObjCProperty(), false); 5130 } 5131 5132 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { 5133 assert(DelayedDiagnostics.getCurrentPool()); 5134 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); 5135 DelayedDiagnostics.popWithoutEmitting(state); 5136 5137 // When delaying diagnostics to run in the context of a parsed 5138 // declaration, we only want to actually emit anything if parsing 5139 // succeeds. 5140 if (!decl) return; 5141 5142 // We emit all the active diagnostics in this pool or any of its 5143 // parents. In general, we'll get one pool for the decl spec 5144 // and a child pool for each declarator; in a decl group like: 5145 // deprecated_typedef foo, *bar, baz(); 5146 // only the declarator pops will be passed decls. This is correct; 5147 // we really do need to consider delayed diagnostics from the decl spec 5148 // for each of the different declarations. 5149 const DelayedDiagnosticPool *pool = &poppedPool; 5150 do { 5151 for (DelayedDiagnosticPool::pool_iterator 5152 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { 5153 // This const_cast is a bit lame. Really, Triggered should be mutable. 5154 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); 5155 if (diag.Triggered) 5156 continue; 5157 5158 switch (diag.Kind) { 5159 case DelayedDiagnostic::Deprecation: 5160 case DelayedDiagnostic::Unavailable: 5161 // Don't bother giving deprecation/unavailable diagnostics if 5162 // the decl is invalid. 5163 if (!decl->isInvalidDecl()) 5164 handleDelayedAvailabilityCheck(*this, diag, decl); 5165 break; 5166 5167 case DelayedDiagnostic::Access: 5168 HandleDelayedAccessCheck(diag, decl); 5169 break; 5170 5171 case DelayedDiagnostic::ForbiddenType: 5172 handleDelayedForbiddenType(*this, diag, decl); 5173 break; 5174 } 5175 } 5176 } while ((pool = pool->getParent())); 5177 } 5178 5179 /// Given a set of delayed diagnostics, re-emit them as if they had 5180 /// been delayed in the current context instead of in the given pool. 5181 /// Essentially, this just moves them to the current pool. 5182 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { 5183 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); 5184 assert(curPool && "re-emitting in undelayed context not supported"); 5185 curPool->steal(pool); 5186 } 5187 5188 void Sema::EmitAvailabilityWarning(AvailabilityDiagnostic AD, 5189 NamedDecl *D, StringRef Message, 5190 SourceLocation Loc, 5191 const ObjCInterfaceDecl *UnknownObjCClass, 5192 const ObjCPropertyDecl *ObjCProperty, 5193 bool ObjCPropertyAccess) { 5194 // Delay if we're currently parsing a declaration. 5195 if (DelayedDiagnostics.shouldDelayDiagnostics()) { 5196 DelayedDiagnostics.add(DelayedDiagnostic::makeAvailability( 5197 AD, Loc, D, UnknownObjCClass, ObjCProperty, Message, 5198 ObjCPropertyAccess)); 5199 return; 5200 } 5201 5202 Decl *Ctx = cast<Decl>(getCurLexicalContext()); 5203 DelayedDiagnostic::DDKind K; 5204 switch (AD) { 5205 case AD_Deprecation: 5206 K = DelayedDiagnostic::Deprecation; 5207 break; 5208 case AD_Unavailable: 5209 K = DelayedDiagnostic::Unavailable; 5210 break; 5211 } 5212 5213 DoEmitAvailabilityWarning(*this, K, Ctx, D, Message, Loc, 5214 UnknownObjCClass, ObjCProperty, ObjCPropertyAccess); 5215 } 5216