1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for declarations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTConsumer.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/ASTLambda.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/AST/CommentDiagnostic.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclTemplate.h" 25 #include "clang/AST/EvaluatedExprVisitor.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/PartialDiagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex 33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex 35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() 36 #include "clang/Parse/ParseDiagnostic.h" 37 #include "clang/Sema/CXXFieldCollector.h" 38 #include "clang/Sema/DeclSpec.h" 39 #include "clang/Sema/DelayedDiagnostic.h" 40 #include "clang/Sema/Initialization.h" 41 #include "clang/Sema/Lookup.h" 42 #include "clang/Sema/ParsedTemplate.h" 43 #include "clang/Sema/Scope.h" 44 #include "clang/Sema/ScopeInfo.h" 45 #include "clang/Sema/Template.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/Triple.h" 48 #include <algorithm> 49 #include <cstring> 50 #include <functional> 51 using namespace clang; 52 using namespace sema; 53 54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { 55 if (OwnedType) { 56 Decl *Group[2] = { OwnedType, Ptr }; 57 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); 58 } 59 60 return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); 61 } 62 63 namespace { 64 65 class TypeNameValidatorCCC : public CorrectionCandidateCallback { 66 public: 67 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false, 68 bool AllowTemplates=false) 69 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), 70 AllowClassTemplates(AllowTemplates) { 71 WantExpressionKeywords = false; 72 WantCXXNamedCasts = false; 73 WantRemainingKeywords = false; 74 } 75 76 bool ValidateCandidate(const TypoCorrection &candidate) override { 77 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 78 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); 79 bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND); 80 return (IsType || AllowedTemplate) && 81 (AllowInvalidDecl || !ND->isInvalidDecl()); 82 } 83 return !WantClassName && candidate.isKeyword(); 84 } 85 86 private: 87 bool AllowInvalidDecl; 88 bool WantClassName; 89 bool AllowClassTemplates; 90 }; 91 92 } 93 94 /// \brief Determine whether the token kind starts a simple-type-specifier. 95 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { 96 switch (Kind) { 97 // FIXME: Take into account the current language when deciding whether a 98 // token kind is a valid type specifier 99 case tok::kw_short: 100 case tok::kw_long: 101 case tok::kw___int64: 102 case tok::kw___int128: 103 case tok::kw_signed: 104 case tok::kw_unsigned: 105 case tok::kw_void: 106 case tok::kw_char: 107 case tok::kw_int: 108 case tok::kw_half: 109 case tok::kw_float: 110 case tok::kw_double: 111 case tok::kw_wchar_t: 112 case tok::kw_bool: 113 case tok::kw___underlying_type: 114 return true; 115 116 case tok::annot_typename: 117 case tok::kw_char16_t: 118 case tok::kw_char32_t: 119 case tok::kw_typeof: 120 case tok::annot_decltype: 121 case tok::kw_decltype: 122 return getLangOpts().CPlusPlus; 123 124 default: 125 break; 126 } 127 128 return false; 129 } 130 131 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, 132 const IdentifierInfo &II, 133 SourceLocation NameLoc) { 134 // Find the first parent class template context, if any. 135 // FIXME: Perform the lookup in all enclosing class templates. 136 const CXXRecordDecl *RD = nullptr; 137 for (DeclContext *DC = S.CurContext; DC; DC = DC->getParent()) { 138 RD = dyn_cast<CXXRecordDecl>(DC); 139 if (RD && RD->getDescribedClassTemplate()) 140 break; 141 } 142 if (!RD) 143 return ParsedType(); 144 145 // Look for type decls in dependent base classes that have known primary 146 // templates. 147 bool FoundTypeDecl = false; 148 for (const auto &Base : RD->bases()) { 149 auto *TST = Base.getType()->getAs<TemplateSpecializationType>(); 150 if (!TST || !TST->isDependentType()) 151 continue; 152 auto *TD = TST->getTemplateName().getAsTemplateDecl(); 153 if (!TD) 154 continue; 155 auto *BasePrimaryTemplate = 156 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl()); 157 if (!BasePrimaryTemplate) 158 continue; 159 // FIXME: Allow lookup into non-dependent bases of dependent bases, possibly 160 // by calling or integrating with the main LookupQualifiedName mechanism. 161 for (NamedDecl *ND : BasePrimaryTemplate->lookup(&II)) { 162 if (FoundTypeDecl) 163 return ParsedType(); 164 FoundTypeDecl = isa<TypeDecl>(ND); 165 if (!FoundTypeDecl) 166 return ParsedType(); 167 } 168 } 169 if (!FoundTypeDecl) 170 return ParsedType(); 171 172 // We found some types in dependent base classes. Recover as if the user 173 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the 174 // lookup during template instantiation. 175 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II; 176 177 ASTContext &Context = S.Context; 178 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, 179 cast<Type>(Context.getRecordType(RD))); 180 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); 181 182 CXXScopeSpec SS; 183 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 184 185 TypeLocBuilder Builder; 186 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 187 DepTL.setNameLoc(NameLoc); 188 DepTL.setElaboratedKeywordLoc(SourceLocation()); 189 DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); 190 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 191 } 192 193 /// \brief If the identifier refers to a type name within this scope, 194 /// return the declaration of that type. 195 /// 196 /// This routine performs ordinary name lookup of the identifier II 197 /// within the given scope, with optional C++ scope specifier SS, to 198 /// determine whether the name refers to a type. If so, returns an 199 /// opaque pointer (actually a QualType) corresponding to that 200 /// type. Otherwise, returns NULL. 201 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, 202 Scope *S, CXXScopeSpec *SS, 203 bool isClassName, bool HasTrailingDot, 204 ParsedType ObjectTypePtr, 205 bool IsCtorOrDtorName, 206 bool WantNontrivialTypeSourceInfo, 207 IdentifierInfo **CorrectedII) { 208 // Determine where we will perform name lookup. 209 DeclContext *LookupCtx = nullptr; 210 if (ObjectTypePtr) { 211 QualType ObjectType = ObjectTypePtr.get(); 212 if (ObjectType->isRecordType()) 213 LookupCtx = computeDeclContext(ObjectType); 214 } else if (SS && SS->isNotEmpty()) { 215 LookupCtx = computeDeclContext(*SS, false); 216 217 if (!LookupCtx) { 218 if (isDependentScopeSpecifier(*SS)) { 219 // C++ [temp.res]p3: 220 // A qualified-id that refers to a type and in which the 221 // nested-name-specifier depends on a template-parameter (14.6.2) 222 // shall be prefixed by the keyword typename to indicate that the 223 // qualified-id denotes a type, forming an 224 // elaborated-type-specifier (7.1.5.3). 225 // 226 // We therefore do not perform any name lookup if the result would 227 // refer to a member of an unknown specialization. 228 if (!isClassName && !IsCtorOrDtorName) 229 return ParsedType(); 230 231 // We know from the grammar that this name refers to a type, 232 // so build a dependent node to describe the type. 233 if (WantNontrivialTypeSourceInfo) 234 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); 235 236 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); 237 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, 238 II, NameLoc); 239 return ParsedType::make(T); 240 } 241 242 return ParsedType(); 243 } 244 245 if (!LookupCtx->isDependentContext() && 246 RequireCompleteDeclContext(*SS, LookupCtx)) 247 return ParsedType(); 248 } 249 250 // FIXME: LookupNestedNameSpecifierName isn't the right kind of 251 // lookup for class-names. 252 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : 253 LookupOrdinaryName; 254 LookupResult Result(*this, &II, NameLoc, Kind); 255 if (LookupCtx) { 256 // Perform "qualified" name lookup into the declaration context we 257 // computed, which is either the type of the base of a member access 258 // expression or the declaration context associated with a prior 259 // nested-name-specifier. 260 LookupQualifiedName(Result, LookupCtx); 261 262 if (ObjectTypePtr && Result.empty()) { 263 // C++ [basic.lookup.classref]p3: 264 // If the unqualified-id is ~type-name, the type-name is looked up 265 // in the context of the entire postfix-expression. If the type T of 266 // the object expression is of a class type C, the type-name is also 267 // looked up in the scope of class C. At least one of the lookups shall 268 // find a name that refers to (possibly cv-qualified) T. 269 LookupName(Result, S); 270 } 271 } else { 272 // Perform unqualified name lookup. 273 LookupName(Result, S); 274 275 // For unqualified lookup in a class template in MSVC mode, look into 276 // dependent base classes where the primary class template is known. 277 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { 278 if (ParsedType TypeInBase = 279 recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) 280 return TypeInBase; 281 } 282 } 283 284 NamedDecl *IIDecl = nullptr; 285 switch (Result.getResultKind()) { 286 case LookupResult::NotFound: 287 case LookupResult::NotFoundInCurrentInstantiation: 288 if (CorrectedII) { 289 TypoCorrection Correction = CorrectTypo( 290 Result.getLookupNameInfo(), Kind, S, SS, 291 llvm::make_unique<TypeNameValidatorCCC>(true, isClassName), 292 CTK_ErrorRecovery); 293 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); 294 TemplateTy Template; 295 bool MemberOfUnknownSpecialization; 296 UnqualifiedId TemplateName; 297 TemplateName.setIdentifier(NewII, NameLoc); 298 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); 299 CXXScopeSpec NewSS, *NewSSPtr = SS; 300 if (SS && NNS) { 301 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 302 NewSSPtr = &NewSS; 303 } 304 if (Correction && (NNS || NewII != &II) && 305 // Ignore a correction to a template type as the to-be-corrected 306 // identifier is not a template (typo correction for template names 307 // is handled elsewhere). 308 !(getLangOpts().CPlusPlus && NewSSPtr && 309 isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(), 310 false, Template, MemberOfUnknownSpecialization))) { 311 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, 312 isClassName, HasTrailingDot, ObjectTypePtr, 313 IsCtorOrDtorName, 314 WantNontrivialTypeSourceInfo); 315 if (Ty) { 316 diagnoseTypo(Correction, 317 PDiag(diag::err_unknown_type_or_class_name_suggest) 318 << Result.getLookupName() << isClassName); 319 if (SS && NNS) 320 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); 321 *CorrectedII = NewII; 322 return Ty; 323 } 324 } 325 } 326 // If typo correction failed or was not performed, fall through 327 case LookupResult::FoundOverloaded: 328 case LookupResult::FoundUnresolvedValue: 329 Result.suppressDiagnostics(); 330 return ParsedType(); 331 332 case LookupResult::Ambiguous: 333 // Recover from type-hiding ambiguities by hiding the type. We'll 334 // do the lookup again when looking for an object, and we can 335 // diagnose the error then. If we don't do this, then the error 336 // about hiding the type will be immediately followed by an error 337 // that only makes sense if the identifier was treated like a type. 338 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { 339 Result.suppressDiagnostics(); 340 return ParsedType(); 341 } 342 343 // Look to see if we have a type anywhere in the list of results. 344 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); 345 Res != ResEnd; ++Res) { 346 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) { 347 if (!IIDecl || 348 (*Res)->getLocation().getRawEncoding() < 349 IIDecl->getLocation().getRawEncoding()) 350 IIDecl = *Res; 351 } 352 } 353 354 if (!IIDecl) { 355 // None of the entities we found is a type, so there is no way 356 // to even assume that the result is a type. In this case, don't 357 // complain about the ambiguity. The parser will either try to 358 // perform this lookup again (e.g., as an object name), which 359 // will produce the ambiguity, or will complain that it expected 360 // a type name. 361 Result.suppressDiagnostics(); 362 return ParsedType(); 363 } 364 365 // We found a type within the ambiguous lookup; diagnose the 366 // ambiguity and then return that type. This might be the right 367 // answer, or it might not be, but it suppresses any attempt to 368 // perform the name lookup again. 369 break; 370 371 case LookupResult::Found: 372 IIDecl = Result.getFoundDecl(); 373 break; 374 } 375 376 assert(IIDecl && "Didn't find decl"); 377 378 QualType T; 379 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { 380 DiagnoseUseOfDecl(IIDecl, NameLoc); 381 382 T = Context.getTypeDeclType(TD); 383 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 384 385 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a 386 // constructor or destructor name (in such a case, the scope specifier 387 // will be attached to the enclosing Expr or Decl node). 388 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) { 389 if (WantNontrivialTypeSourceInfo) { 390 // Construct a type with type-source information. 391 TypeLocBuilder Builder; 392 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 393 394 T = getElaboratedType(ETK_None, *SS, T); 395 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 396 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 397 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); 398 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 399 } else { 400 T = getElaboratedType(ETK_None, *SS, T); 401 } 402 } 403 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { 404 (void)DiagnoseUseOfDecl(IDecl, NameLoc); 405 if (!HasTrailingDot) 406 T = Context.getObjCInterfaceType(IDecl); 407 } 408 409 if (T.isNull()) { 410 // If it's not plausibly a type, suppress diagnostics. 411 Result.suppressDiagnostics(); 412 return ParsedType(); 413 } 414 return ParsedType::make(T); 415 } 416 417 // Builds a fake NNS for the given decl context. 418 static NestedNameSpecifier * 419 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { 420 for (;; DC = DC->getLookupParent()) { 421 DC = DC->getPrimaryContext(); 422 auto *ND = dyn_cast<NamespaceDecl>(DC); 423 if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) 424 return NestedNameSpecifier::Create(Context, nullptr, ND); 425 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 426 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 427 RD->getTypeForDecl()); 428 else if (isa<TranslationUnitDecl>(DC)) 429 return NestedNameSpecifier::GlobalSpecifier(Context); 430 } 431 llvm_unreachable("something isn't in TU scope?"); 432 } 433 434 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II, 435 SourceLocation NameLoc) { 436 // Accepting an undeclared identifier as a default argument for a template 437 // type parameter is a Microsoft extension. 438 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; 439 440 // Build a fake DependentNameType that will perform lookup into CurContext at 441 // instantiation time. The name specifier isn't dependent, so template 442 // instantiation won't transform it. It will retry the lookup, however. 443 NestedNameSpecifier *NNS = 444 synthesizeCurrentNestedNameSpecifier(Context, CurContext); 445 QualType T = Context.getDependentNameType(ETK_None, NNS, &II); 446 447 // Build type location information. We synthesized the qualifier, so we have 448 // to build a fake NestedNameSpecifierLoc. 449 NestedNameSpecifierLocBuilder NNSLocBuilder; 450 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 451 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); 452 453 TypeLocBuilder Builder; 454 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 455 DepTL.setNameLoc(NameLoc); 456 DepTL.setElaboratedKeywordLoc(SourceLocation()); 457 DepTL.setQualifierLoc(QualifierLoc); 458 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 459 } 460 461 /// isTagName() - This method is called *for error recovery purposes only* 462 /// to determine if the specified name is a valid tag name ("struct foo"). If 463 /// so, this returns the TST for the tag corresponding to it (TST_enum, 464 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose 465 /// cases in C where the user forgot to specify the tag. 466 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { 467 // Do a tag name lookup in this scope. 468 LookupResult R(*this, &II, SourceLocation(), LookupTagName); 469 LookupName(R, S, false); 470 R.suppressDiagnostics(); 471 if (R.getResultKind() == LookupResult::Found) 472 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { 473 switch (TD->getTagKind()) { 474 case TTK_Struct: return DeclSpec::TST_struct; 475 case TTK_Interface: return DeclSpec::TST_interface; 476 case TTK_Union: return DeclSpec::TST_union; 477 case TTK_Class: return DeclSpec::TST_class; 478 case TTK_Enum: return DeclSpec::TST_enum; 479 } 480 } 481 482 return DeclSpec::TST_unspecified; 483 } 484 485 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, 486 /// if a CXXScopeSpec's type is equal to the type of one of the base classes 487 /// then downgrade the missing typename error to a warning. 488 /// This is needed for MSVC compatibility; Example: 489 /// @code 490 /// template<class T> class A { 491 /// public: 492 /// typedef int TYPE; 493 /// }; 494 /// template<class T> class B : public A<T> { 495 /// public: 496 /// A<T>::TYPE a; // no typename required because A<T> is a base class. 497 /// }; 498 /// @endcode 499 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { 500 if (CurContext->isRecord()) { 501 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) 502 return true; 503 504 const Type *Ty = SS->getScopeRep()->getAsType(); 505 506 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); 507 for (const auto &Base : RD->bases()) 508 if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) 509 return true; 510 return S->isFunctionPrototypeScope(); 511 } 512 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); 513 } 514 515 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, 516 SourceLocation IILoc, 517 Scope *S, 518 CXXScopeSpec *SS, 519 ParsedType &SuggestedType, 520 bool AllowClassTemplates) { 521 // We don't have anything to suggest (yet). 522 SuggestedType = ParsedType(); 523 524 // There may have been a typo in the name of the type. Look up typo 525 // results, in case we have something that we can suggest. 526 if (TypoCorrection Corrected = 527 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, 528 llvm::make_unique<TypeNameValidatorCCC>( 529 false, false, AllowClassTemplates), 530 CTK_ErrorRecovery)) { 531 if (Corrected.isKeyword()) { 532 // We corrected to a keyword. 533 diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II); 534 II = Corrected.getCorrectionAsIdentifierInfo(); 535 } else { 536 // We found a similarly-named type or interface; suggest that. 537 if (!SS || !SS->isSet()) { 538 diagnoseTypo(Corrected, 539 PDiag(diag::err_unknown_typename_suggest) << II); 540 } else if (DeclContext *DC = computeDeclContext(*SS, false)) { 541 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 542 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 543 II->getName().equals(CorrectedStr); 544 diagnoseTypo(Corrected, 545 PDiag(diag::err_unknown_nested_typename_suggest) 546 << II << DC << DroppedSpecifier << SS->getRange()); 547 } else { 548 llvm_unreachable("could not have corrected a typo here"); 549 } 550 551 CXXScopeSpec tmpSS; 552 if (Corrected.getCorrectionSpecifier()) 553 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 554 SourceRange(IILoc)); 555 SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), 556 IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false, 557 false, ParsedType(), 558 /*IsCtorOrDtorName=*/false, 559 /*NonTrivialTypeSourceInfo=*/true); 560 } 561 return; 562 } 563 564 if (getLangOpts().CPlusPlus) { 565 // See if II is a class template that the user forgot to pass arguments to. 566 UnqualifiedId Name; 567 Name.setIdentifier(II, IILoc); 568 CXXScopeSpec EmptySS; 569 TemplateTy TemplateResult; 570 bool MemberOfUnknownSpecialization; 571 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, 572 Name, ParsedType(), true, TemplateResult, 573 MemberOfUnknownSpecialization) == TNK_Type_template) { 574 TemplateName TplName = TemplateResult.get(); 575 Diag(IILoc, diag::err_template_missing_args) << TplName; 576 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) { 577 Diag(TplDecl->getLocation(), diag::note_template_decl_here) 578 << TplDecl->getTemplateParameters()->getSourceRange(); 579 } 580 return; 581 } 582 } 583 584 // FIXME: Should we move the logic that tries to recover from a missing tag 585 // (struct, union, enum) from Parser::ParseImplicitInt here, instead? 586 587 if (!SS || (!SS->isSet() && !SS->isInvalid())) 588 Diag(IILoc, diag::err_unknown_typename) << II; 589 else if (DeclContext *DC = computeDeclContext(*SS, false)) 590 Diag(IILoc, diag::err_typename_nested_not_found) 591 << II << DC << SS->getRange(); 592 else if (isDependentScopeSpecifier(*SS)) { 593 unsigned DiagID = diag::err_typename_missing; 594 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) 595 DiagID = diag::ext_typename_missing; 596 597 Diag(SS->getRange().getBegin(), DiagID) 598 << SS->getScopeRep() << II->getName() 599 << SourceRange(SS->getRange().getBegin(), IILoc) 600 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); 601 SuggestedType = ActOnTypenameType(S, SourceLocation(), 602 *SS, *II, IILoc).get(); 603 } else { 604 assert(SS && SS->isInvalid() && 605 "Invalid scope specifier has already been diagnosed"); 606 } 607 } 608 609 /// \brief Determine whether the given result set contains either a type name 610 /// or 611 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { 612 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && 613 NextToken.is(tok::less); 614 615 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 616 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) 617 return true; 618 619 if (CheckTemplate && isa<TemplateDecl>(*I)) 620 return true; 621 } 622 623 return false; 624 } 625 626 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, 627 Scope *S, CXXScopeSpec &SS, 628 IdentifierInfo *&Name, 629 SourceLocation NameLoc) { 630 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); 631 SemaRef.LookupParsedName(R, S, &SS); 632 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { 633 StringRef FixItTagName; 634 switch (Tag->getTagKind()) { 635 case TTK_Class: 636 FixItTagName = "class "; 637 break; 638 639 case TTK_Enum: 640 FixItTagName = "enum "; 641 break; 642 643 case TTK_Struct: 644 FixItTagName = "struct "; 645 break; 646 647 case TTK_Interface: 648 FixItTagName = "__interface "; 649 break; 650 651 case TTK_Union: 652 FixItTagName = "union "; 653 break; 654 } 655 656 StringRef TagName = FixItTagName.drop_back(); 657 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) 658 << Name << TagName << SemaRef.getLangOpts().CPlusPlus 659 << FixItHint::CreateInsertion(NameLoc, FixItTagName); 660 661 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); 662 I != IEnd; ++I) 663 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 664 << Name << TagName; 665 666 // Replace lookup results with just the tag decl. 667 Result.clear(Sema::LookupTagName); 668 SemaRef.LookupParsedName(Result, S, &SS); 669 return true; 670 } 671 672 return false; 673 } 674 675 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. 676 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, 677 QualType T, SourceLocation NameLoc) { 678 ASTContext &Context = S.Context; 679 680 TypeLocBuilder Builder; 681 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 682 683 T = S.getElaboratedType(ETK_None, SS, T); 684 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 685 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 686 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 687 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 688 } 689 690 Sema::NameClassification 691 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, 692 SourceLocation NameLoc, const Token &NextToken, 693 bool IsAddressOfOperand, 694 std::unique_ptr<CorrectionCandidateCallback> CCC) { 695 DeclarationNameInfo NameInfo(Name, NameLoc); 696 ObjCMethodDecl *CurMethod = getCurMethodDecl(); 697 698 if (NextToken.is(tok::coloncolon)) { 699 BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(), 700 QualType(), false, SS, nullptr, false); 701 } 702 703 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 704 LookupParsedName(Result, S, &SS, !CurMethod); 705 706 // For unqualified lookup in a class template in MSVC mode, look into 707 // dependent base classes where the primary class template is known. 708 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { 709 if (ParsedType TypeInBase = 710 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) 711 return TypeInBase; 712 } 713 714 // Perform lookup for Objective-C instance variables (including automatically 715 // synthesized instance variables), if we're in an Objective-C method. 716 // FIXME: This lookup really, really needs to be folded in to the normal 717 // unqualified lookup mechanism. 718 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { 719 ExprResult E = LookupInObjCMethod(Result, S, Name, true); 720 if (E.get() || E.isInvalid()) 721 return E; 722 } 723 724 bool SecondTry = false; 725 bool IsFilteredTemplateName = false; 726 727 Corrected: 728 switch (Result.getResultKind()) { 729 case LookupResult::NotFound: 730 // If an unqualified-id is followed by a '(', then we have a function 731 // call. 732 if (!SS.isSet() && NextToken.is(tok::l_paren)) { 733 // In C++, this is an ADL-only call. 734 // FIXME: Reference? 735 if (getLangOpts().CPlusPlus) 736 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); 737 738 // C90 6.3.2.2: 739 // If the expression that precedes the parenthesized argument list in a 740 // function call consists solely of an identifier, and if no 741 // declaration is visible for this identifier, the identifier is 742 // implicitly declared exactly as if, in the innermost block containing 743 // the function call, the declaration 744 // 745 // extern int identifier (); 746 // 747 // appeared. 748 // 749 // We also allow this in C99 as an extension. 750 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) { 751 Result.addDecl(D); 752 Result.resolveKind(); 753 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false); 754 } 755 } 756 757 // In C, we first see whether there is a tag type by the same name, in 758 // which case it's likely that the user just forget to write "enum", 759 // "struct", or "union". 760 if (!getLangOpts().CPlusPlus && !SecondTry && 761 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 762 break; 763 } 764 765 // Perform typo correction to determine if there is another name that is 766 // close to this name. 767 if (!SecondTry && CCC) { 768 SecondTry = true; 769 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), 770 Result.getLookupKind(), S, 771 &SS, std::move(CCC), 772 CTK_ErrorRecovery)) { 773 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; 774 unsigned QualifiedDiag = diag::err_no_member_suggest; 775 776 NamedDecl *FirstDecl = Corrected.getCorrectionDecl(); 777 NamedDecl *UnderlyingFirstDecl 778 = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr; 779 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 780 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { 781 UnqualifiedDiag = diag::err_no_template_suggest; 782 QualifiedDiag = diag::err_no_member_template_suggest; 783 } else if (UnderlyingFirstDecl && 784 (isa<TypeDecl>(UnderlyingFirstDecl) || 785 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || 786 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { 787 UnqualifiedDiag = diag::err_unknown_typename_suggest; 788 QualifiedDiag = diag::err_unknown_nested_typename_suggest; 789 } 790 791 if (SS.isEmpty()) { 792 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); 793 } else {// FIXME: is this even reachable? Test it. 794 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 795 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 796 Name->getName().equals(CorrectedStr); 797 diagnoseTypo(Corrected, PDiag(QualifiedDiag) 798 << Name << computeDeclContext(SS, false) 799 << DroppedSpecifier << SS.getRange()); 800 } 801 802 // Update the name, so that the caller has the new name. 803 Name = Corrected.getCorrectionAsIdentifierInfo(); 804 805 // Typo correction corrected to a keyword. 806 if (Corrected.isKeyword()) 807 return Name; 808 809 // Also update the LookupResult... 810 // FIXME: This should probably go away at some point 811 Result.clear(); 812 Result.setLookupName(Corrected.getCorrection()); 813 if (FirstDecl) 814 Result.addDecl(FirstDecl); 815 816 // If we found an Objective-C instance variable, let 817 // LookupInObjCMethod build the appropriate expression to 818 // reference the ivar. 819 // FIXME: This is a gross hack. 820 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { 821 Result.clear(); 822 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier())); 823 return E; 824 } 825 826 goto Corrected; 827 } 828 } 829 830 // We failed to correct; just fall through and let the parser deal with it. 831 Result.suppressDiagnostics(); 832 return NameClassification::Unknown(); 833 834 case LookupResult::NotFoundInCurrentInstantiation: { 835 // We performed name lookup into the current instantiation, and there were 836 // dependent bases, so we treat this result the same way as any other 837 // dependent nested-name-specifier. 838 839 // C++ [temp.res]p2: 840 // A name used in a template declaration or definition and that is 841 // dependent on a template-parameter is assumed not to name a type 842 // unless the applicable name lookup finds a type name or the name is 843 // qualified by the keyword typename. 844 // 845 // FIXME: If the next token is '<', we might want to ask the parser to 846 // perform some heroics to see if we actually have a 847 // template-argument-list, which would indicate a missing 'template' 848 // keyword here. 849 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), 850 NameInfo, IsAddressOfOperand, 851 /*TemplateArgs=*/nullptr); 852 } 853 854 case LookupResult::Found: 855 case LookupResult::FoundOverloaded: 856 case LookupResult::FoundUnresolvedValue: 857 break; 858 859 case LookupResult::Ambiguous: 860 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 861 hasAnyAcceptableTemplateNames(Result)) { 862 // C++ [temp.local]p3: 863 // A lookup that finds an injected-class-name (10.2) can result in an 864 // ambiguity in certain cases (for example, if it is found in more than 865 // one base class). If all of the injected-class-names that are found 866 // refer to specializations of the same class template, and if the name 867 // is followed by a template-argument-list, the reference refers to the 868 // class template itself and not a specialization thereof, and is not 869 // ambiguous. 870 // 871 // This filtering can make an ambiguous result into an unambiguous one, 872 // so try again after filtering out template names. 873 FilterAcceptableTemplateNames(Result); 874 if (!Result.isAmbiguous()) { 875 IsFilteredTemplateName = true; 876 break; 877 } 878 } 879 880 // Diagnose the ambiguity and return an error. 881 return NameClassification::Error(); 882 } 883 884 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 885 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) { 886 // C++ [temp.names]p3: 887 // After name lookup (3.4) finds that a name is a template-name or that 888 // an operator-function-id or a literal- operator-id refers to a set of 889 // overloaded functions any member of which is a function template if 890 // this is followed by a <, the < is always taken as the delimiter of a 891 // template-argument-list and never as the less-than operator. 892 if (!IsFilteredTemplateName) 893 FilterAcceptableTemplateNames(Result); 894 895 if (!Result.empty()) { 896 bool IsFunctionTemplate; 897 bool IsVarTemplate; 898 TemplateName Template; 899 if (Result.end() - Result.begin() > 1) { 900 IsFunctionTemplate = true; 901 Template = Context.getOverloadedTemplateName(Result.begin(), 902 Result.end()); 903 } else { 904 TemplateDecl *TD 905 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl()); 906 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); 907 IsVarTemplate = isa<VarTemplateDecl>(TD); 908 909 if (SS.isSet() && !SS.isInvalid()) 910 Template = Context.getQualifiedTemplateName(SS.getScopeRep(), 911 /*TemplateKeyword=*/false, 912 TD); 913 else 914 Template = TemplateName(TD); 915 } 916 917 if (IsFunctionTemplate) { 918 // Function templates always go through overload resolution, at which 919 // point we'll perform the various checks (e.g., accessibility) we need 920 // to based on which function we selected. 921 Result.suppressDiagnostics(); 922 923 return NameClassification::FunctionTemplate(Template); 924 } 925 926 return IsVarTemplate ? NameClassification::VarTemplate(Template) 927 : NameClassification::TypeTemplate(Template); 928 } 929 } 930 931 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); 932 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { 933 DiagnoseUseOfDecl(Type, NameLoc); 934 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 935 QualType T = Context.getTypeDeclType(Type); 936 if (SS.isNotEmpty()) 937 return buildNestedType(*this, SS, T, NameLoc); 938 return ParsedType::make(T); 939 } 940 941 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); 942 if (!Class) { 943 // FIXME: It's unfortunate that we don't have a Type node for handling this. 944 if (ObjCCompatibleAliasDecl *Alias = 945 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) 946 Class = Alias->getClassInterface(); 947 } 948 949 if (Class) { 950 DiagnoseUseOfDecl(Class, NameLoc); 951 952 if (NextToken.is(tok::period)) { 953 // Interface. <something> is parsed as a property reference expression. 954 // Just return "unknown" as a fall-through for now. 955 Result.suppressDiagnostics(); 956 return NameClassification::Unknown(); 957 } 958 959 QualType T = Context.getObjCInterfaceType(Class); 960 return ParsedType::make(T); 961 } 962 963 // We can have a type template here if we're classifying a template argument. 964 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl)) 965 return NameClassification::TypeTemplate( 966 TemplateName(cast<TemplateDecl>(FirstDecl))); 967 968 // Check for a tag type hidden by a non-type decl in a few cases where it 969 // seems likely a type is wanted instead of the non-type that was found. 970 bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star); 971 if ((NextToken.is(tok::identifier) || 972 (NextIsOp && 973 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && 974 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 975 TypeDecl *Type = Result.getAsSingle<TypeDecl>(); 976 DiagnoseUseOfDecl(Type, NameLoc); 977 QualType T = Context.getTypeDeclType(Type); 978 if (SS.isNotEmpty()) 979 return buildNestedType(*this, SS, T, NameLoc); 980 return ParsedType::make(T); 981 } 982 983 if (FirstDecl->isCXXClassMember()) 984 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 985 nullptr); 986 987 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 988 return BuildDeclarationNameExpr(SS, Result, ADL); 989 } 990 991 // Determines the context to return to after temporarily entering a 992 // context. This depends in an unnecessarily complicated way on the 993 // exact ordering of callbacks from the parser. 994 DeclContext *Sema::getContainingDC(DeclContext *DC) { 995 996 // Functions defined inline within classes aren't parsed until we've 997 // finished parsing the top-level class, so the top-level class is 998 // the context we'll need to return to. 999 // A Lambda call operator whose parent is a class must not be treated 1000 // as an inline member function. A Lambda can be used legally 1001 // either as an in-class member initializer or a default argument. These 1002 // are parsed once the class has been marked complete and so the containing 1003 // context would be the nested class (when the lambda is defined in one); 1004 // If the class is not complete, then the lambda is being used in an 1005 // ill-formed fashion (such as to specify the width of a bit-field, or 1006 // in an array-bound) - in which case we still want to return the 1007 // lexically containing DC (which could be a nested class). 1008 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) { 1009 DC = DC->getLexicalParent(); 1010 1011 // A function not defined within a class will always return to its 1012 // lexical context. 1013 if (!isa<CXXRecordDecl>(DC)) 1014 return DC; 1015 1016 // A C++ inline method/friend is parsed *after* the topmost class 1017 // it was declared in is fully parsed ("complete"); the topmost 1018 // class is the context we need to return to. 1019 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) 1020 DC = RD; 1021 1022 // Return the declaration context of the topmost class the inline method is 1023 // declared in. 1024 return DC; 1025 } 1026 1027 return DC->getLexicalParent(); 1028 } 1029 1030 void Sema::PushDeclContext(Scope *S, DeclContext *DC) { 1031 assert(getContainingDC(DC) == CurContext && 1032 "The next DeclContext should be lexically contained in the current one."); 1033 CurContext = DC; 1034 S->setEntity(DC); 1035 } 1036 1037 void Sema::PopDeclContext() { 1038 assert(CurContext && "DeclContext imbalance!"); 1039 1040 CurContext = getContainingDC(CurContext); 1041 assert(CurContext && "Popped translation unit!"); 1042 } 1043 1044 /// EnterDeclaratorContext - Used when we must lookup names in the context 1045 /// of a declarator's nested name specifier. 1046 /// 1047 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { 1048 // C++0x [basic.lookup.unqual]p13: 1049 // A name used in the definition of a static data member of class 1050 // X (after the qualified-id of the static member) is looked up as 1051 // if the name was used in a member function of X. 1052 // C++0x [basic.lookup.unqual]p14: 1053 // If a variable member of a namespace is defined outside of the 1054 // scope of its namespace then any name used in the definition of 1055 // the variable member (after the declarator-id) is looked up as 1056 // if the definition of the variable member occurred in its 1057 // namespace. 1058 // Both of these imply that we should push a scope whose context 1059 // is the semantic context of the declaration. We can't use 1060 // PushDeclContext here because that context is not necessarily 1061 // lexically contained in the current context. Fortunately, 1062 // the containing scope should have the appropriate information. 1063 1064 assert(!S->getEntity() && "scope already has entity"); 1065 1066 #ifndef NDEBUG 1067 Scope *Ancestor = S->getParent(); 1068 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1069 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); 1070 #endif 1071 1072 CurContext = DC; 1073 S->setEntity(DC); 1074 } 1075 1076 void Sema::ExitDeclaratorContext(Scope *S) { 1077 assert(S->getEntity() == CurContext && "Context imbalance!"); 1078 1079 // Switch back to the lexical context. The safety of this is 1080 // enforced by an assert in EnterDeclaratorContext. 1081 Scope *Ancestor = S->getParent(); 1082 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1083 CurContext = Ancestor->getEntity(); 1084 1085 // We don't need to do anything with the scope, which is going to 1086 // disappear. 1087 } 1088 1089 1090 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { 1091 // We assume that the caller has already called 1092 // ActOnReenterTemplateScope so getTemplatedDecl() works. 1093 FunctionDecl *FD = D->getAsFunction(); 1094 if (!FD) 1095 return; 1096 1097 // Same implementation as PushDeclContext, but enters the context 1098 // from the lexical parent, rather than the top-level class. 1099 assert(CurContext == FD->getLexicalParent() && 1100 "The next DeclContext should be lexically contained in the current one."); 1101 CurContext = FD; 1102 S->setEntity(CurContext); 1103 1104 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { 1105 ParmVarDecl *Param = FD->getParamDecl(P); 1106 // If the parameter has an identifier, then add it to the scope 1107 if (Param->getIdentifier()) { 1108 S->AddDecl(Param); 1109 IdResolver.AddDecl(Param); 1110 } 1111 } 1112 } 1113 1114 1115 void Sema::ActOnExitFunctionContext() { 1116 // Same implementation as PopDeclContext, but returns to the lexical parent, 1117 // rather than the top-level class. 1118 assert(CurContext && "DeclContext imbalance!"); 1119 CurContext = CurContext->getLexicalParent(); 1120 assert(CurContext && "Popped translation unit!"); 1121 } 1122 1123 1124 /// \brief Determine whether we allow overloading of the function 1125 /// PrevDecl with another declaration. 1126 /// 1127 /// This routine determines whether overloading is possible, not 1128 /// whether some new function is actually an overload. It will return 1129 /// true in C++ (where we can always provide overloads) or, as an 1130 /// extension, in C when the previous function is already an 1131 /// overloaded function declaration or has the "overloadable" 1132 /// attribute. 1133 static bool AllowOverloadingOfFunction(LookupResult &Previous, 1134 ASTContext &Context) { 1135 if (Context.getLangOpts().CPlusPlus) 1136 return true; 1137 1138 if (Previous.getResultKind() == LookupResult::FoundOverloaded) 1139 return true; 1140 1141 return (Previous.getResultKind() == LookupResult::Found 1142 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>()); 1143 } 1144 1145 /// Add this decl to the scope shadowed decl chains. 1146 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { 1147 // Move up the scope chain until we find the nearest enclosing 1148 // non-transparent context. The declaration will be introduced into this 1149 // scope. 1150 while (S->getEntity() && S->getEntity()->isTransparentContext()) 1151 S = S->getParent(); 1152 1153 // Add scoped declarations into their context, so that they can be 1154 // found later. Declarations without a context won't be inserted 1155 // into any context. 1156 if (AddToContext) 1157 CurContext->addDecl(D); 1158 1159 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they 1160 // are function-local declarations. 1161 if (getLangOpts().CPlusPlus && D->isOutOfLine() && 1162 !D->getDeclContext()->getRedeclContext()->Equals( 1163 D->getLexicalDeclContext()->getRedeclContext()) && 1164 !D->getLexicalDeclContext()->isFunctionOrMethod()) 1165 return; 1166 1167 // Template instantiations should also not be pushed into scope. 1168 if (isa<FunctionDecl>(D) && 1169 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) 1170 return; 1171 1172 // If this replaces anything in the current scope, 1173 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), 1174 IEnd = IdResolver.end(); 1175 for (; I != IEnd; ++I) { 1176 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { 1177 S->RemoveDecl(*I); 1178 IdResolver.RemoveDecl(*I); 1179 1180 // Should only need to replace one decl. 1181 break; 1182 } 1183 } 1184 1185 S->AddDecl(D); 1186 1187 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { 1188 // Implicitly-generated labels may end up getting generated in an order that 1189 // isn't strictly lexical, which breaks name lookup. Be careful to insert 1190 // the label at the appropriate place in the identifier chain. 1191 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { 1192 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); 1193 if (IDC == CurContext) { 1194 if (!S->isDeclScope(*I)) 1195 continue; 1196 } else if (IDC->Encloses(CurContext)) 1197 break; 1198 } 1199 1200 IdResolver.InsertDeclAfter(I, D); 1201 } else { 1202 IdResolver.AddDecl(D); 1203 } 1204 } 1205 1206 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) { 1207 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope) 1208 TUScope->AddDecl(D); 1209 } 1210 1211 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, 1212 bool AllowInlineNamespace) { 1213 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); 1214 } 1215 1216 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { 1217 DeclContext *TargetDC = DC->getPrimaryContext(); 1218 do { 1219 if (DeclContext *ScopeDC = S->getEntity()) 1220 if (ScopeDC->getPrimaryContext() == TargetDC) 1221 return S; 1222 } while ((S = S->getParent())); 1223 1224 return nullptr; 1225 } 1226 1227 static bool isOutOfScopePreviousDeclaration(NamedDecl *, 1228 DeclContext*, 1229 ASTContext&); 1230 1231 /// Filters out lookup results that don't fall within the given scope 1232 /// as determined by isDeclInScope. 1233 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, 1234 bool ConsiderLinkage, 1235 bool AllowInlineNamespace) { 1236 LookupResult::Filter F = R.makeFilter(); 1237 while (F.hasNext()) { 1238 NamedDecl *D = F.next(); 1239 1240 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) 1241 continue; 1242 1243 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) 1244 continue; 1245 1246 F.erase(); 1247 } 1248 1249 F.done(); 1250 } 1251 1252 static bool isUsingDecl(NamedDecl *D) { 1253 return isa<UsingShadowDecl>(D) || 1254 isa<UnresolvedUsingTypenameDecl>(D) || 1255 isa<UnresolvedUsingValueDecl>(D); 1256 } 1257 1258 /// Removes using shadow declarations from the lookup results. 1259 static void RemoveUsingDecls(LookupResult &R) { 1260 LookupResult::Filter F = R.makeFilter(); 1261 while (F.hasNext()) 1262 if (isUsingDecl(F.next())) 1263 F.erase(); 1264 1265 F.done(); 1266 } 1267 1268 /// \brief Check for this common pattern: 1269 /// @code 1270 /// class S { 1271 /// S(const S&); // DO NOT IMPLEMENT 1272 /// void operator=(const S&); // DO NOT IMPLEMENT 1273 /// }; 1274 /// @endcode 1275 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { 1276 // FIXME: Should check for private access too but access is set after we get 1277 // the decl here. 1278 if (D->doesThisDeclarationHaveABody()) 1279 return false; 1280 1281 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 1282 return CD->isCopyConstructor(); 1283 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 1284 return Method->isCopyAssignmentOperator(); 1285 return false; 1286 } 1287 1288 // We need this to handle 1289 // 1290 // typedef struct { 1291 // void *foo() { return 0; } 1292 // } A; 1293 // 1294 // When we see foo we don't know if after the typedef we will get 'A' or '*A' 1295 // for example. If 'A', foo will have external linkage. If we have '*A', 1296 // foo will have no linkage. Since we can't know until we get to the end 1297 // of the typedef, this function finds out if D might have non-external linkage. 1298 // Callers should verify at the end of the TU if it D has external linkage or 1299 // not. 1300 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { 1301 const DeclContext *DC = D->getDeclContext(); 1302 while (!DC->isTranslationUnit()) { 1303 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ 1304 if (!RD->hasNameForLinkage()) 1305 return true; 1306 } 1307 DC = DC->getParent(); 1308 } 1309 1310 return !D->isExternallyVisible(); 1311 } 1312 1313 // FIXME: This needs to be refactored; some other isInMainFile users want 1314 // these semantics. 1315 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { 1316 if (S.TUKind != TU_Complete) 1317 return false; 1318 return S.SourceMgr.isInMainFile(Loc); 1319 } 1320 1321 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { 1322 assert(D); 1323 1324 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) 1325 return false; 1326 1327 // Ignore all entities declared within templates, and out-of-line definitions 1328 // of members of class templates. 1329 if (D->getDeclContext()->isDependentContext() || 1330 D->getLexicalDeclContext()->isDependentContext()) 1331 return false; 1332 1333 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1334 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1335 return false; 1336 1337 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 1338 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) 1339 return false; 1340 } else { 1341 // 'static inline' functions are defined in headers; don't warn. 1342 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) 1343 return false; 1344 } 1345 1346 if (FD->doesThisDeclarationHaveABody() && 1347 Context.DeclMustBeEmitted(FD)) 1348 return false; 1349 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1350 // Constants and utility variables are defined in headers with internal 1351 // linkage; don't warn. (Unlike functions, there isn't a convenient marker 1352 // like "inline".) 1353 if (!isMainFileLoc(*this, VD->getLocation())) 1354 return false; 1355 1356 if (Context.DeclMustBeEmitted(VD)) 1357 return false; 1358 1359 if (VD->isStaticDataMember() && 1360 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1361 return false; 1362 } else { 1363 return false; 1364 } 1365 1366 // Only warn for unused decls internal to the translation unit. 1367 // FIXME: This seems like a bogus check; it suppresses -Wunused-function 1368 // for inline functions defined in the main source file, for instance. 1369 return mightHaveNonExternalLinkage(D); 1370 } 1371 1372 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { 1373 if (!D) 1374 return; 1375 1376 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1377 const FunctionDecl *First = FD->getFirstDecl(); 1378 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1379 return; // First should already be in the vector. 1380 } 1381 1382 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1383 const VarDecl *First = VD->getFirstDecl(); 1384 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1385 return; // First should already be in the vector. 1386 } 1387 1388 if (ShouldWarnIfUnusedFileScopedDecl(D)) 1389 UnusedFileScopedDecls.push_back(D); 1390 } 1391 1392 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { 1393 if (D->isInvalidDecl()) 1394 return false; 1395 1396 if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() || 1397 D->hasAttr<ObjCPreciseLifetimeAttr>()) 1398 return false; 1399 1400 if (isa<LabelDecl>(D)) 1401 return true; 1402 1403 // Except for labels, we only care about unused decls that are local to 1404 // functions. 1405 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); 1406 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) 1407 // For dependent types, the diagnostic is deferred. 1408 WithinFunction = 1409 WithinFunction || (R->isLocalClass() && !R->isDependentType()); 1410 if (!WithinFunction) 1411 return false; 1412 1413 if (isa<TypedefNameDecl>(D)) 1414 return true; 1415 1416 // White-list anything that isn't a local variable. 1417 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) 1418 return false; 1419 1420 // Types of valid local variables should be complete, so this should succeed. 1421 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1422 1423 // White-list anything with an __attribute__((unused)) type. 1424 QualType Ty = VD->getType(); 1425 1426 // Only look at the outermost level of typedef. 1427 if (const TypedefType *TT = Ty->getAs<TypedefType>()) { 1428 if (TT->getDecl()->hasAttr<UnusedAttr>()) 1429 return false; 1430 } 1431 1432 // If we failed to complete the type for some reason, or if the type is 1433 // dependent, don't diagnose the variable. 1434 if (Ty->isIncompleteType() || Ty->isDependentType()) 1435 return false; 1436 1437 if (const TagType *TT = Ty->getAs<TagType>()) { 1438 const TagDecl *Tag = TT->getDecl(); 1439 if (Tag->hasAttr<UnusedAttr>()) 1440 return false; 1441 1442 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 1443 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) 1444 return false; 1445 1446 if (const Expr *Init = VD->getInit()) { 1447 if (const ExprWithCleanups *Cleanups = 1448 dyn_cast<ExprWithCleanups>(Init)) 1449 Init = Cleanups->getSubExpr(); 1450 const CXXConstructExpr *Construct = 1451 dyn_cast<CXXConstructExpr>(Init); 1452 if (Construct && !Construct->isElidable()) { 1453 CXXConstructorDecl *CD = Construct->getConstructor(); 1454 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>()) 1455 return false; 1456 } 1457 } 1458 } 1459 } 1460 1461 // TODO: __attribute__((unused)) templates? 1462 } 1463 1464 return true; 1465 } 1466 1467 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, 1468 FixItHint &Hint) { 1469 if (isa<LabelDecl>(D)) { 1470 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(), 1471 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true); 1472 if (AfterColon.isInvalid()) 1473 return; 1474 Hint = FixItHint::CreateRemoval(CharSourceRange:: 1475 getCharRange(D->getLocStart(), AfterColon)); 1476 } 1477 return; 1478 } 1479 1480 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { 1481 if (D->getTypeForDecl()->isDependentType()) 1482 return; 1483 1484 for (auto *TmpD : D->decls()) { 1485 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 1486 DiagnoseUnusedDecl(T); 1487 else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) 1488 DiagnoseUnusedNestedTypedefs(R); 1489 } 1490 } 1491 1492 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used 1493 /// unless they are marked attr(unused). 1494 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { 1495 if (!ShouldDiagnoseUnusedDecl(D)) 1496 return; 1497 1498 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 1499 // typedefs can be referenced later on, so the diagnostics are emitted 1500 // at end-of-translation-unit. 1501 UnusedLocalTypedefNameCandidates.insert(TD); 1502 return; 1503 } 1504 1505 FixItHint Hint; 1506 GenerateFixForUnusedDecl(D, Context, Hint); 1507 1508 unsigned DiagID; 1509 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) 1510 DiagID = diag::warn_unused_exception_param; 1511 else if (isa<LabelDecl>(D)) 1512 DiagID = diag::warn_unused_label; 1513 else 1514 DiagID = diag::warn_unused_variable; 1515 1516 Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint; 1517 } 1518 1519 static void CheckPoppedLabel(LabelDecl *L, Sema &S) { 1520 // Verify that we have no forward references left. If so, there was a goto 1521 // or address of a label taken, but no definition of it. Label fwd 1522 // definitions are indicated with a null substmt which is also not a resolved 1523 // MS inline assembly label name. 1524 bool Diagnose = false; 1525 if (L->isMSAsmLabel()) 1526 Diagnose = !L->isResolvedMSAsmLabel(); 1527 else 1528 Diagnose = L->getStmt() == nullptr; 1529 if (Diagnose) 1530 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName(); 1531 } 1532 1533 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { 1534 S->mergeNRVOIntoParent(); 1535 1536 if (S->decl_empty()) return; 1537 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && 1538 "Scope shouldn't contain decls!"); 1539 1540 for (auto *TmpD : S->decls()) { 1541 assert(TmpD && "This decl didn't get pushed??"); 1542 1543 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); 1544 NamedDecl *D = cast<NamedDecl>(TmpD); 1545 1546 if (!D->getDeclName()) continue; 1547 1548 // Diagnose unused variables in this scope. 1549 if (!S->hasUnrecoverableErrorOccurred()) { 1550 DiagnoseUnusedDecl(D); 1551 if (const auto *RD = dyn_cast<RecordDecl>(D)) 1552 DiagnoseUnusedNestedTypedefs(RD); 1553 } 1554 1555 // If this was a forward reference to a label, verify it was defined. 1556 if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) 1557 CheckPoppedLabel(LD, *this); 1558 1559 // Remove this name from our lexical scope. 1560 IdResolver.RemoveDecl(D); 1561 } 1562 } 1563 1564 /// \brief Look for an Objective-C class in the translation unit. 1565 /// 1566 /// \param Id The name of the Objective-C class we're looking for. If 1567 /// typo-correction fixes this name, the Id will be updated 1568 /// to the fixed name. 1569 /// 1570 /// \param IdLoc The location of the name in the translation unit. 1571 /// 1572 /// \param DoTypoCorrection If true, this routine will attempt typo correction 1573 /// if there is no class with the given name. 1574 /// 1575 /// \returns The declaration of the named Objective-C class, or NULL if the 1576 /// class could not be found. 1577 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, 1578 SourceLocation IdLoc, 1579 bool DoTypoCorrection) { 1580 // The third "scope" argument is 0 since we aren't enabling lazy built-in 1581 // creation from this context. 1582 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); 1583 1584 if (!IDecl && DoTypoCorrection) { 1585 // Perform typo correction at the given location, but only if we 1586 // find an Objective-C class name. 1587 if (TypoCorrection C = CorrectTypo( 1588 DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr, 1589 llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(), 1590 CTK_ErrorRecovery)) { 1591 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); 1592 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); 1593 Id = IDecl->getIdentifier(); 1594 } 1595 } 1596 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); 1597 // This routine must always return a class definition, if any. 1598 if (Def && Def->getDefinition()) 1599 Def = Def->getDefinition(); 1600 return Def; 1601 } 1602 1603 /// getNonFieldDeclScope - Retrieves the innermost scope, starting 1604 /// from S, where a non-field would be declared. This routine copes 1605 /// with the difference between C and C++ scoping rules in structs and 1606 /// unions. For example, the following code is well-formed in C but 1607 /// ill-formed in C++: 1608 /// @code 1609 /// struct S6 { 1610 /// enum { BAR } e; 1611 /// }; 1612 /// 1613 /// void test_S6() { 1614 /// struct S6 a; 1615 /// a.e = BAR; 1616 /// } 1617 /// @endcode 1618 /// For the declaration of BAR, this routine will return a different 1619 /// scope. The scope S will be the scope of the unnamed enumeration 1620 /// within S6. In C++, this routine will return the scope associated 1621 /// with S6, because the enumeration's scope is a transparent 1622 /// context but structures can contain non-field names. In C, this 1623 /// routine will return the translation unit scope, since the 1624 /// enumeration's scope is a transparent context and structures cannot 1625 /// contain non-field names. 1626 Scope *Sema::getNonFieldDeclScope(Scope *S) { 1627 while (((S->getFlags() & Scope::DeclScope) == 0) || 1628 (S->getEntity() && S->getEntity()->isTransparentContext()) || 1629 (S->isClassScope() && !getLangOpts().CPlusPlus)) 1630 S = S->getParent(); 1631 return S; 1632 } 1633 1634 /// \brief Looks up the declaration of "struct objc_super" and 1635 /// saves it for later use in building builtin declaration of 1636 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such 1637 /// pre-existing declaration exists no action takes place. 1638 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S, 1639 IdentifierInfo *II) { 1640 if (!II->isStr("objc_msgSendSuper")) 1641 return; 1642 ASTContext &Context = ThisSema.Context; 1643 1644 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"), 1645 SourceLocation(), Sema::LookupTagName); 1646 ThisSema.LookupName(Result, S); 1647 if (Result.getResultKind() == LookupResult::Found) 1648 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 1649 Context.setObjCSuperType(Context.getTagDeclType(TD)); 1650 } 1651 1652 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) { 1653 switch (Error) { 1654 case ASTContext::GE_None: 1655 return ""; 1656 case ASTContext::GE_Missing_stdio: 1657 return "stdio.h"; 1658 case ASTContext::GE_Missing_setjmp: 1659 return "setjmp.h"; 1660 case ASTContext::GE_Missing_ucontext: 1661 return "ucontext.h"; 1662 } 1663 llvm_unreachable("unhandled error kind"); 1664 } 1665 1666 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at 1667 /// file scope. lazily create a decl for it. ForRedeclaration is true 1668 /// if we're creating this built-in in anticipation of redeclaring the 1669 /// built-in. 1670 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, 1671 Scope *S, bool ForRedeclaration, 1672 SourceLocation Loc) { 1673 LookupPredefedObjCSuperType(*this, S, II); 1674 1675 ASTContext::GetBuiltinTypeError Error; 1676 QualType R = Context.GetBuiltinType(ID, Error); 1677 if (Error) { 1678 if (ForRedeclaration) 1679 Diag(Loc, diag::warn_implicit_decl_requires_sysheader) 1680 << getHeaderName(Error) 1681 << Context.BuiltinInfo.GetName(ID); 1682 return nullptr; 1683 } 1684 1685 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) { 1686 Diag(Loc, diag::ext_implicit_lib_function_decl) 1687 << Context.BuiltinInfo.GetName(ID) 1688 << R; 1689 if (Context.BuiltinInfo.getHeaderName(ID) && 1690 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc)) 1691 Diag(Loc, diag::note_include_header_or_declare) 1692 << Context.BuiltinInfo.getHeaderName(ID) 1693 << Context.BuiltinInfo.GetName(ID); 1694 } 1695 1696 DeclContext *Parent = Context.getTranslationUnitDecl(); 1697 if (getLangOpts().CPlusPlus) { 1698 LinkageSpecDecl *CLinkageDecl = 1699 LinkageSpecDecl::Create(Context, Parent, Loc, Loc, 1700 LinkageSpecDecl::lang_c, false); 1701 CLinkageDecl->setImplicit(); 1702 Parent->addDecl(CLinkageDecl); 1703 Parent = CLinkageDecl; 1704 } 1705 1706 FunctionDecl *New = FunctionDecl::Create(Context, 1707 Parent, 1708 Loc, Loc, II, R, /*TInfo=*/nullptr, 1709 SC_Extern, 1710 false, 1711 /*hasPrototype=*/true); 1712 New->setImplicit(); 1713 1714 // Create Decl objects for each parameter, adding them to the 1715 // FunctionDecl. 1716 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { 1717 SmallVector<ParmVarDecl*, 16> Params; 1718 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1719 ParmVarDecl *parm = 1720 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(), 1721 nullptr, FT->getParamType(i), /*TInfo=*/nullptr, 1722 SC_None, nullptr); 1723 parm->setScopeInfo(0, i); 1724 Params.push_back(parm); 1725 } 1726 New->setParams(Params); 1727 } 1728 1729 AddKnownFunctionAttributes(New); 1730 RegisterLocallyScopedExternCDecl(New, S); 1731 1732 // TUScope is the translation-unit scope to insert this function into. 1733 // FIXME: This is hideous. We need to teach PushOnScopeChains to 1734 // relate Scopes to DeclContexts, and probably eliminate CurContext 1735 // entirely, but we're not there yet. 1736 DeclContext *SavedContext = CurContext; 1737 CurContext = Parent; 1738 PushOnScopeChains(New, TUScope); 1739 CurContext = SavedContext; 1740 return New; 1741 } 1742 1743 /// \brief Filter out any previous declarations that the given declaration 1744 /// should not consider because they are not permitted to conflict, e.g., 1745 /// because they come from hidden sub-modules and do not refer to the same 1746 /// entity. 1747 static void filterNonConflictingPreviousDecls(ASTContext &context, 1748 NamedDecl *decl, 1749 LookupResult &previous){ 1750 // This is only interesting when modules are enabled. 1751 if (!context.getLangOpts().Modules) 1752 return; 1753 1754 // Empty sets are uninteresting. 1755 if (previous.empty()) 1756 return; 1757 1758 LookupResult::Filter filter = previous.makeFilter(); 1759 while (filter.hasNext()) { 1760 NamedDecl *old = filter.next(); 1761 1762 // Non-hidden declarations are never ignored. 1763 if (!old->isHidden()) 1764 continue; 1765 1766 if (!old->isExternallyVisible()) 1767 filter.erase(); 1768 } 1769 1770 filter.done(); 1771 } 1772 1773 /// Typedef declarations don't have linkage, but they still denote the same 1774 /// entity if their types are the same. 1775 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's 1776 /// isSameEntity. 1777 static void filterNonConflictingPreviousTypedefDecls(ASTContext &Context, 1778 TypedefNameDecl *Decl, 1779 LookupResult &Previous) { 1780 // This is only interesting when modules are enabled. 1781 if (!Context.getLangOpts().Modules) 1782 return; 1783 1784 // Empty sets are uninteresting. 1785 if (Previous.empty()) 1786 return; 1787 1788 LookupResult::Filter Filter = Previous.makeFilter(); 1789 while (Filter.hasNext()) { 1790 NamedDecl *Old = Filter.next(); 1791 1792 // Non-hidden declarations are never ignored. 1793 if (!Old->isHidden()) 1794 continue; 1795 1796 // Declarations of the same entity are not ignored, even if they have 1797 // different linkages. 1798 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) 1799 if (Context.hasSameType(OldTD->getUnderlyingType(), 1800 Decl->getUnderlyingType())) 1801 continue; 1802 1803 if (!Old->isExternallyVisible()) 1804 Filter.erase(); 1805 } 1806 1807 Filter.done(); 1808 } 1809 1810 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { 1811 QualType OldType; 1812 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) 1813 OldType = OldTypedef->getUnderlyingType(); 1814 else 1815 OldType = Context.getTypeDeclType(Old); 1816 QualType NewType = New->getUnderlyingType(); 1817 1818 if (NewType->isVariablyModifiedType()) { 1819 // Must not redefine a typedef with a variably-modified type. 1820 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 1821 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) 1822 << Kind << NewType; 1823 if (Old->getLocation().isValid()) 1824 Diag(Old->getLocation(), diag::note_previous_definition); 1825 New->setInvalidDecl(); 1826 return true; 1827 } 1828 1829 if (OldType != NewType && 1830 !OldType->isDependentType() && 1831 !NewType->isDependentType() && 1832 !Context.hasSameType(OldType, NewType)) { 1833 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 1834 Diag(New->getLocation(), diag::err_redefinition_different_typedef) 1835 << Kind << NewType << OldType; 1836 if (Old->getLocation().isValid()) 1837 Diag(Old->getLocation(), diag::note_previous_definition); 1838 New->setInvalidDecl(); 1839 return true; 1840 } 1841 return false; 1842 } 1843 1844 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the 1845 /// same name and scope as a previous declaration 'Old'. Figure out 1846 /// how to resolve this situation, merging decls or emitting 1847 /// diagnostics as appropriate. If there was an error, set New to be invalid. 1848 /// 1849 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) { 1850 // If the new decl is known invalid already, don't bother doing any 1851 // merging checks. 1852 if (New->isInvalidDecl()) return; 1853 1854 // Allow multiple definitions for ObjC built-in typedefs. 1855 // FIXME: Verify the underlying types are equivalent! 1856 if (getLangOpts().ObjC1) { 1857 const IdentifierInfo *TypeID = New->getIdentifier(); 1858 switch (TypeID->getLength()) { 1859 default: break; 1860 case 2: 1861 { 1862 if (!TypeID->isStr("id")) 1863 break; 1864 QualType T = New->getUnderlyingType(); 1865 if (!T->isPointerType()) 1866 break; 1867 if (!T->isVoidPointerType()) { 1868 QualType PT = T->getAs<PointerType>()->getPointeeType(); 1869 if (!PT->isStructureType()) 1870 break; 1871 } 1872 Context.setObjCIdRedefinitionType(T); 1873 // Install the built-in type for 'id', ignoring the current definition. 1874 New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); 1875 return; 1876 } 1877 case 5: 1878 if (!TypeID->isStr("Class")) 1879 break; 1880 Context.setObjCClassRedefinitionType(New->getUnderlyingType()); 1881 // Install the built-in type for 'Class', ignoring the current definition. 1882 New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); 1883 return; 1884 case 3: 1885 if (!TypeID->isStr("SEL")) 1886 break; 1887 Context.setObjCSelRedefinitionType(New->getUnderlyingType()); 1888 // Install the built-in type for 'SEL', ignoring the current definition. 1889 New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); 1890 return; 1891 } 1892 // Fall through - the typedef name was not a builtin type. 1893 } 1894 1895 // Verify the old decl was also a type. 1896 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); 1897 if (!Old) { 1898 Diag(New->getLocation(), diag::err_redefinition_different_kind) 1899 << New->getDeclName(); 1900 1901 NamedDecl *OldD = OldDecls.getRepresentativeDecl(); 1902 if (OldD->getLocation().isValid()) 1903 Diag(OldD->getLocation(), diag::note_previous_definition); 1904 1905 return New->setInvalidDecl(); 1906 } 1907 1908 // If the old declaration is invalid, just give up here. 1909 if (Old->isInvalidDecl()) 1910 return New->setInvalidDecl(); 1911 1912 // If the typedef types are not identical, reject them in all languages and 1913 // with any extensions enabled. 1914 if (isIncompatibleTypedef(Old, New)) 1915 return; 1916 1917 // The types match. Link up the redeclaration chain and merge attributes if 1918 // the old declaration was a typedef. 1919 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { 1920 New->setPreviousDecl(Typedef); 1921 mergeDeclAttributes(New, Old); 1922 } 1923 1924 if (getLangOpts().MicrosoftExt) 1925 return; 1926 1927 if (getLangOpts().CPlusPlus) { 1928 // C++ [dcl.typedef]p2: 1929 // In a given non-class scope, a typedef specifier can be used to 1930 // redefine the name of any type declared in that scope to refer 1931 // to the type to which it already refers. 1932 if (!isa<CXXRecordDecl>(CurContext)) 1933 return; 1934 1935 // C++0x [dcl.typedef]p4: 1936 // In a given class scope, a typedef specifier can be used to redefine 1937 // any class-name declared in that scope that is not also a typedef-name 1938 // to refer to the type to which it already refers. 1939 // 1940 // This wording came in via DR424, which was a correction to the 1941 // wording in DR56, which accidentally banned code like: 1942 // 1943 // struct S { 1944 // typedef struct A { } A; 1945 // }; 1946 // 1947 // in the C++03 standard. We implement the C++0x semantics, which 1948 // allow the above but disallow 1949 // 1950 // struct S { 1951 // typedef int I; 1952 // typedef int I; 1953 // }; 1954 // 1955 // since that was the intent of DR56. 1956 if (!isa<TypedefNameDecl>(Old)) 1957 return; 1958 1959 Diag(New->getLocation(), diag::err_redefinition) 1960 << New->getDeclName(); 1961 Diag(Old->getLocation(), diag::note_previous_definition); 1962 return New->setInvalidDecl(); 1963 } 1964 1965 // Modules always permit redefinition of typedefs, as does C11. 1966 if (getLangOpts().Modules || getLangOpts().C11) 1967 return; 1968 1969 // If we have a redefinition of a typedef in C, emit a warning. This warning 1970 // is normally mapped to an error, but can be controlled with 1971 // -Wtypedef-redefinition. If either the original or the redefinition is 1972 // in a system header, don't emit this for compatibility with GCC. 1973 if (getDiagnostics().getSuppressSystemWarnings() && 1974 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 1975 Context.getSourceManager().isInSystemHeader(New->getLocation()))) 1976 return; 1977 1978 Diag(New->getLocation(), diag::ext_redefinition_of_typedef) 1979 << New->getDeclName(); 1980 Diag(Old->getLocation(), diag::note_previous_definition); 1981 return; 1982 } 1983 1984 /// DeclhasAttr - returns true if decl Declaration already has the target 1985 /// attribute. 1986 static bool DeclHasAttr(const Decl *D, const Attr *A) { 1987 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); 1988 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); 1989 for (const auto *i : D->attrs()) 1990 if (i->getKind() == A->getKind()) { 1991 if (Ann) { 1992 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) 1993 return true; 1994 continue; 1995 } 1996 // FIXME: Don't hardcode this check 1997 if (OA && isa<OwnershipAttr>(i)) 1998 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); 1999 return true; 2000 } 2001 2002 return false; 2003 } 2004 2005 static bool isAttributeTargetADefinition(Decl *D) { 2006 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 2007 return VD->isThisDeclarationADefinition(); 2008 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 2009 return TD->isCompleteDefinition() || TD->isBeingDefined(); 2010 return true; 2011 } 2012 2013 /// Merge alignment attributes from \p Old to \p New, taking into account the 2014 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. 2015 /// 2016 /// \return \c true if any attributes were added to \p New. 2017 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { 2018 // Look for alignas attributes on Old, and pick out whichever attribute 2019 // specifies the strictest alignment requirement. 2020 AlignedAttr *OldAlignasAttr = nullptr; 2021 AlignedAttr *OldStrictestAlignAttr = nullptr; 2022 unsigned OldAlign = 0; 2023 for (auto *I : Old->specific_attrs<AlignedAttr>()) { 2024 // FIXME: We have no way of representing inherited dependent alignments 2025 // in a case like: 2026 // template<int A, int B> struct alignas(A) X; 2027 // template<int A, int B> struct alignas(B) X {}; 2028 // For now, we just ignore any alignas attributes which are not on the 2029 // definition in such a case. 2030 if (I->isAlignmentDependent()) 2031 return false; 2032 2033 if (I->isAlignas()) 2034 OldAlignasAttr = I; 2035 2036 unsigned Align = I->getAlignment(S.Context); 2037 if (Align > OldAlign) { 2038 OldAlign = Align; 2039 OldStrictestAlignAttr = I; 2040 } 2041 } 2042 2043 // Look for alignas attributes on New. 2044 AlignedAttr *NewAlignasAttr = nullptr; 2045 unsigned NewAlign = 0; 2046 for (auto *I : New->specific_attrs<AlignedAttr>()) { 2047 if (I->isAlignmentDependent()) 2048 return false; 2049 2050 if (I->isAlignas()) 2051 NewAlignasAttr = I; 2052 2053 unsigned Align = I->getAlignment(S.Context); 2054 if (Align > NewAlign) 2055 NewAlign = Align; 2056 } 2057 2058 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { 2059 // Both declarations have 'alignas' attributes. We require them to match. 2060 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but 2061 // fall short. (If two declarations both have alignas, they must both match 2062 // every definition, and so must match each other if there is a definition.) 2063 2064 // If either declaration only contains 'alignas(0)' specifiers, then it 2065 // specifies the natural alignment for the type. 2066 if (OldAlign == 0 || NewAlign == 0) { 2067 QualType Ty; 2068 if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) 2069 Ty = VD->getType(); 2070 else 2071 Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); 2072 2073 if (OldAlign == 0) 2074 OldAlign = S.Context.getTypeAlign(Ty); 2075 if (NewAlign == 0) 2076 NewAlign = S.Context.getTypeAlign(Ty); 2077 } 2078 2079 if (OldAlign != NewAlign) { 2080 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) 2081 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() 2082 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); 2083 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); 2084 } 2085 } 2086 2087 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { 2088 // C++11 [dcl.align]p6: 2089 // if any declaration of an entity has an alignment-specifier, 2090 // every defining declaration of that entity shall specify an 2091 // equivalent alignment. 2092 // C11 6.7.5/7: 2093 // If the definition of an object does not have an alignment 2094 // specifier, any other declaration of that object shall also 2095 // have no alignment specifier. 2096 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) 2097 << OldAlignasAttr; 2098 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) 2099 << OldAlignasAttr; 2100 } 2101 2102 bool AnyAdded = false; 2103 2104 // Ensure we have an attribute representing the strictest alignment. 2105 if (OldAlign > NewAlign) { 2106 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); 2107 Clone->setInherited(true); 2108 New->addAttr(Clone); 2109 AnyAdded = true; 2110 } 2111 2112 // Ensure we have an alignas attribute if the old declaration had one. 2113 if (OldAlignasAttr && !NewAlignasAttr && 2114 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { 2115 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); 2116 Clone->setInherited(true); 2117 New->addAttr(Clone); 2118 AnyAdded = true; 2119 } 2120 2121 return AnyAdded; 2122 } 2123 2124 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, 2125 const InheritableAttr *Attr, bool Override) { 2126 InheritableAttr *NewAttr = nullptr; 2127 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex(); 2128 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) 2129 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(), 2130 AA->getIntroduced(), AA->getDeprecated(), 2131 AA->getObsoleted(), AA->getUnavailable(), 2132 AA->getMessage(), Override, 2133 AttrSpellingListIndex); 2134 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) 2135 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), 2136 AttrSpellingListIndex); 2137 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) 2138 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), 2139 AttrSpellingListIndex); 2140 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) 2141 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(), 2142 AttrSpellingListIndex); 2143 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) 2144 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(), 2145 AttrSpellingListIndex); 2146 else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) 2147 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(), 2148 FA->getFormatIdx(), FA->getFirstArg(), 2149 AttrSpellingListIndex); 2150 else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) 2151 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(), 2152 AttrSpellingListIndex); 2153 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) 2154 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(), 2155 AttrSpellingListIndex, 2156 IA->getSemanticSpelling()); 2157 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) 2158 NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(), 2159 &S.Context.Idents.get(AA->getSpelling()), 2160 AttrSpellingListIndex); 2161 else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) 2162 NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex); 2163 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) 2164 NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex); 2165 else if (isa<AlignedAttr>(Attr)) 2166 // AlignedAttrs are handled separately, because we need to handle all 2167 // such attributes on a declaration at the same time. 2168 NewAttr = nullptr; 2169 else if (isa<DeprecatedAttr>(Attr) && Override) 2170 NewAttr = nullptr; 2171 else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr)) 2172 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); 2173 2174 if (NewAttr) { 2175 NewAttr->setInherited(true); 2176 D->addAttr(NewAttr); 2177 return true; 2178 } 2179 2180 return false; 2181 } 2182 2183 static const Decl *getDefinition(const Decl *D) { 2184 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) 2185 return TD->getDefinition(); 2186 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2187 const VarDecl *Def = VD->getDefinition(); 2188 if (Def) 2189 return Def; 2190 return VD->getActingDefinition(); 2191 } 2192 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2193 const FunctionDecl* Def; 2194 if (FD->isDefined(Def)) 2195 return Def; 2196 } 2197 return nullptr; 2198 } 2199 2200 static bool hasAttribute(const Decl *D, attr::Kind Kind) { 2201 for (const auto *Attribute : D->attrs()) 2202 if (Attribute->getKind() == Kind) 2203 return true; 2204 return false; 2205 } 2206 2207 /// checkNewAttributesAfterDef - If we already have a definition, check that 2208 /// there are no new attributes in this declaration. 2209 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { 2210 if (!New->hasAttrs()) 2211 return; 2212 2213 const Decl *Def = getDefinition(Old); 2214 if (!Def || Def == New) 2215 return; 2216 2217 AttrVec &NewAttributes = New->getAttrs(); 2218 for (unsigned I = 0, E = NewAttributes.size(); I != E;) { 2219 const Attr *NewAttribute = NewAttributes[I]; 2220 2221 if (isa<AliasAttr>(NewAttribute)) { 2222 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) 2223 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def)); 2224 else { 2225 VarDecl *VD = cast<VarDecl>(New); 2226 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == 2227 VarDecl::TentativeDefinition 2228 ? diag::err_alias_after_tentative 2229 : diag::err_redefinition; 2230 S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); 2231 S.Diag(Def->getLocation(), diag::note_previous_definition); 2232 VD->setInvalidDecl(); 2233 } 2234 ++I; 2235 continue; 2236 } 2237 2238 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { 2239 // Tentative definitions are only interesting for the alias check above. 2240 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { 2241 ++I; 2242 continue; 2243 } 2244 } 2245 2246 if (hasAttribute(Def, NewAttribute->getKind())) { 2247 ++I; 2248 continue; // regular attr merging will take care of validating this. 2249 } 2250 2251 if (isa<C11NoReturnAttr>(NewAttribute)) { 2252 // C's _Noreturn is allowed to be added to a function after it is defined. 2253 ++I; 2254 continue; 2255 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { 2256 if (AA->isAlignas()) { 2257 // C++11 [dcl.align]p6: 2258 // if any declaration of an entity has an alignment-specifier, 2259 // every defining declaration of that entity shall specify an 2260 // equivalent alignment. 2261 // C11 6.7.5/7: 2262 // If the definition of an object does not have an alignment 2263 // specifier, any other declaration of that object shall also 2264 // have no alignment specifier. 2265 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) 2266 << AA; 2267 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) 2268 << AA; 2269 NewAttributes.erase(NewAttributes.begin() + I); 2270 --E; 2271 continue; 2272 } 2273 } 2274 2275 S.Diag(NewAttribute->getLocation(), 2276 diag::warn_attribute_precede_definition); 2277 S.Diag(Def->getLocation(), diag::note_previous_definition); 2278 NewAttributes.erase(NewAttributes.begin() + I); 2279 --E; 2280 } 2281 } 2282 2283 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. 2284 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, 2285 AvailabilityMergeKind AMK) { 2286 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { 2287 UsedAttr *NewAttr = OldAttr->clone(Context); 2288 NewAttr->setInherited(true); 2289 New->addAttr(NewAttr); 2290 } 2291 2292 if (!Old->hasAttrs() && !New->hasAttrs()) 2293 return; 2294 2295 // attributes declared post-definition are currently ignored 2296 checkNewAttributesAfterDef(*this, New, Old); 2297 2298 if (!Old->hasAttrs()) 2299 return; 2300 2301 bool foundAny = New->hasAttrs(); 2302 2303 // Ensure that any moving of objects within the allocated map is done before 2304 // we process them. 2305 if (!foundAny) New->setAttrs(AttrVec()); 2306 2307 for (auto *I : Old->specific_attrs<InheritableAttr>()) { 2308 bool Override = false; 2309 // Ignore deprecated/unavailable/availability attributes if requested. 2310 if (isa<DeprecatedAttr>(I) || 2311 isa<UnavailableAttr>(I) || 2312 isa<AvailabilityAttr>(I)) { 2313 switch (AMK) { 2314 case AMK_None: 2315 continue; 2316 2317 case AMK_Redeclaration: 2318 break; 2319 2320 case AMK_Override: 2321 Override = true; 2322 break; 2323 } 2324 } 2325 2326 // Already handled. 2327 if (isa<UsedAttr>(I)) 2328 continue; 2329 2330 if (mergeDeclAttribute(*this, New, I, Override)) 2331 foundAny = true; 2332 } 2333 2334 if (mergeAlignedAttrs(*this, New, Old)) 2335 foundAny = true; 2336 2337 if (!foundAny) New->dropAttrs(); 2338 } 2339 2340 /// mergeParamDeclAttributes - Copy attributes from the old parameter 2341 /// to the new one. 2342 static void mergeParamDeclAttributes(ParmVarDecl *newDecl, 2343 const ParmVarDecl *oldDecl, 2344 Sema &S) { 2345 // C++11 [dcl.attr.depend]p2: 2346 // The first declaration of a function shall specify the 2347 // carries_dependency attribute for its declarator-id if any declaration 2348 // of the function specifies the carries_dependency attribute. 2349 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); 2350 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { 2351 S.Diag(CDA->getLocation(), 2352 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; 2353 // Find the first declaration of the parameter. 2354 // FIXME: Should we build redeclaration chains for function parameters? 2355 const FunctionDecl *FirstFD = 2356 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); 2357 const ParmVarDecl *FirstVD = 2358 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); 2359 S.Diag(FirstVD->getLocation(), 2360 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; 2361 } 2362 2363 if (!oldDecl->hasAttrs()) 2364 return; 2365 2366 bool foundAny = newDecl->hasAttrs(); 2367 2368 // Ensure that any moving of objects within the allocated map is 2369 // done before we process them. 2370 if (!foundAny) newDecl->setAttrs(AttrVec()); 2371 2372 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { 2373 if (!DeclHasAttr(newDecl, I)) { 2374 InheritableAttr *newAttr = 2375 cast<InheritableParamAttr>(I->clone(S.Context)); 2376 newAttr->setInherited(true); 2377 newDecl->addAttr(newAttr); 2378 foundAny = true; 2379 } 2380 } 2381 2382 if (!foundAny) newDecl->dropAttrs(); 2383 } 2384 2385 namespace { 2386 2387 /// Used in MergeFunctionDecl to keep track of function parameters in 2388 /// C. 2389 struct GNUCompatibleParamWarning { 2390 ParmVarDecl *OldParm; 2391 ParmVarDecl *NewParm; 2392 QualType PromotedType; 2393 }; 2394 2395 } 2396 2397 /// getSpecialMember - get the special member enum for a method. 2398 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) { 2399 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 2400 if (Ctor->isDefaultConstructor()) 2401 return Sema::CXXDefaultConstructor; 2402 2403 if (Ctor->isCopyConstructor()) 2404 return Sema::CXXCopyConstructor; 2405 2406 if (Ctor->isMoveConstructor()) 2407 return Sema::CXXMoveConstructor; 2408 } else if (isa<CXXDestructorDecl>(MD)) { 2409 return Sema::CXXDestructor; 2410 } else if (MD->isCopyAssignmentOperator()) { 2411 return Sema::CXXCopyAssignment; 2412 } else if (MD->isMoveAssignmentOperator()) { 2413 return Sema::CXXMoveAssignment; 2414 } 2415 2416 return Sema::CXXInvalid; 2417 } 2418 2419 // Determine whether the previous declaration was a definition, implicit 2420 // declaration, or a declaration. 2421 template <typename T> 2422 static std::pair<diag::kind, SourceLocation> 2423 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { 2424 diag::kind PrevDiag; 2425 SourceLocation OldLocation = Old->getLocation(); 2426 if (Old->isThisDeclarationADefinition()) 2427 PrevDiag = diag::note_previous_definition; 2428 else if (Old->isImplicit()) { 2429 PrevDiag = diag::note_previous_implicit_declaration; 2430 if (OldLocation.isInvalid()) 2431 OldLocation = New->getLocation(); 2432 } else 2433 PrevDiag = diag::note_previous_declaration; 2434 return std::make_pair(PrevDiag, OldLocation); 2435 } 2436 2437 /// canRedefineFunction - checks if a function can be redefined. Currently, 2438 /// only extern inline functions can be redefined, and even then only in 2439 /// GNU89 mode. 2440 static bool canRedefineFunction(const FunctionDecl *FD, 2441 const LangOptions& LangOpts) { 2442 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && 2443 !LangOpts.CPlusPlus && 2444 FD->isInlineSpecified() && 2445 FD->getStorageClass() == SC_Extern); 2446 } 2447 2448 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { 2449 const AttributedType *AT = T->getAs<AttributedType>(); 2450 while (AT && !AT->isCallingConv()) 2451 AT = AT->getModifiedType()->getAs<AttributedType>(); 2452 return AT; 2453 } 2454 2455 template <typename T> 2456 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { 2457 const DeclContext *DC = Old->getDeclContext(); 2458 if (DC->isRecord()) 2459 return false; 2460 2461 LanguageLinkage OldLinkage = Old->getLanguageLinkage(); 2462 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) 2463 return true; 2464 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) 2465 return true; 2466 return false; 2467 } 2468 2469 /// MergeFunctionDecl - We just parsed a function 'New' from 2470 /// declarator D which has the same name and scope as a previous 2471 /// declaration 'Old'. Figure out how to resolve this situation, 2472 /// merging decls or emitting diagnostics as appropriate. 2473 /// 2474 /// In C++, New and Old must be declarations that are not 2475 /// overloaded. Use IsOverload to determine whether New and Old are 2476 /// overloaded, and to select the Old declaration that New should be 2477 /// merged with. 2478 /// 2479 /// Returns true if there was an error, false otherwise. 2480 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, 2481 Scope *S, bool MergeTypeWithOld) { 2482 // Verify the old decl was also a function. 2483 FunctionDecl *Old = OldD->getAsFunction(); 2484 if (!Old) { 2485 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { 2486 if (New->getFriendObjectKind()) { 2487 Diag(New->getLocation(), diag::err_using_decl_friend); 2488 Diag(Shadow->getTargetDecl()->getLocation(), 2489 diag::note_using_decl_target); 2490 Diag(Shadow->getUsingDecl()->getLocation(), 2491 diag::note_using_decl) << 0; 2492 return true; 2493 } 2494 2495 // C++11 [namespace.udecl]p14: 2496 // If a function declaration in namespace scope or block scope has the 2497 // same name and the same parameter-type-list as a function introduced 2498 // by a using-declaration, and the declarations do not declare the same 2499 // function, the program is ill-formed. 2500 2501 // Check whether the two declarations might declare the same function. 2502 Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl()); 2503 if (Old && 2504 !Old->getDeclContext()->getRedeclContext()->Equals( 2505 New->getDeclContext()->getRedeclContext()) && 2506 !(Old->isExternC() && New->isExternC())) 2507 Old = nullptr; 2508 2509 if (!Old) { 2510 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); 2511 Diag(Shadow->getTargetDecl()->getLocation(), 2512 diag::note_using_decl_target); 2513 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 2514 return true; 2515 } 2516 OldD = Old; 2517 } else { 2518 Diag(New->getLocation(), diag::err_redefinition_different_kind) 2519 << New->getDeclName(); 2520 Diag(OldD->getLocation(), diag::note_previous_definition); 2521 return true; 2522 } 2523 } 2524 2525 // If the old declaration is invalid, just give up here. 2526 if (Old->isInvalidDecl()) 2527 return true; 2528 2529 diag::kind PrevDiag; 2530 SourceLocation OldLocation; 2531 std::tie(PrevDiag, OldLocation) = 2532 getNoteDiagForInvalidRedeclaration(Old, New); 2533 2534 // Don't complain about this if we're in GNU89 mode and the old function 2535 // is an extern inline function. 2536 // Don't complain about specializations. They are not supposed to have 2537 // storage classes. 2538 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && 2539 New->getStorageClass() == SC_Static && 2540 Old->hasExternalFormalLinkage() && 2541 !New->getTemplateSpecializationInfo() && 2542 !canRedefineFunction(Old, getLangOpts())) { 2543 if (getLangOpts().MicrosoftExt) { 2544 Diag(New->getLocation(), diag::ext_static_non_static) << New; 2545 Diag(OldLocation, PrevDiag); 2546 } else { 2547 Diag(New->getLocation(), diag::err_static_non_static) << New; 2548 Diag(OldLocation, PrevDiag); 2549 return true; 2550 } 2551 } 2552 2553 2554 // If a function is first declared with a calling convention, but is later 2555 // declared or defined without one, all following decls assume the calling 2556 // convention of the first. 2557 // 2558 // It's OK if a function is first declared without a calling convention, 2559 // but is later declared or defined with the default calling convention. 2560 // 2561 // To test if either decl has an explicit calling convention, we look for 2562 // AttributedType sugar nodes on the type as written. If they are missing or 2563 // were canonicalized away, we assume the calling convention was implicit. 2564 // 2565 // Note also that we DO NOT return at this point, because we still have 2566 // other tests to run. 2567 QualType OldQType = Context.getCanonicalType(Old->getType()); 2568 QualType NewQType = Context.getCanonicalType(New->getType()); 2569 const FunctionType *OldType = cast<FunctionType>(OldQType); 2570 const FunctionType *NewType = cast<FunctionType>(NewQType); 2571 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 2572 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 2573 bool RequiresAdjustment = false; 2574 2575 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { 2576 FunctionDecl *First = Old->getFirstDecl(); 2577 const FunctionType *FT = 2578 First->getType().getCanonicalType()->castAs<FunctionType>(); 2579 FunctionType::ExtInfo FI = FT->getExtInfo(); 2580 bool NewCCExplicit = getCallingConvAttributedType(New->getType()); 2581 if (!NewCCExplicit) { 2582 // Inherit the CC from the previous declaration if it was specified 2583 // there but not here. 2584 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 2585 RequiresAdjustment = true; 2586 } else { 2587 // Calling conventions aren't compatible, so complain. 2588 bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); 2589 Diag(New->getLocation(), diag::err_cconv_change) 2590 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 2591 << !FirstCCExplicit 2592 << (!FirstCCExplicit ? "" : 2593 FunctionType::getNameForCallConv(FI.getCC())); 2594 2595 // Put the note on the first decl, since it is the one that matters. 2596 Diag(First->getLocation(), diag::note_previous_declaration); 2597 return true; 2598 } 2599 } 2600 2601 // FIXME: diagnose the other way around? 2602 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { 2603 NewTypeInfo = NewTypeInfo.withNoReturn(true); 2604 RequiresAdjustment = true; 2605 } 2606 2607 // Merge regparm attribute. 2608 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || 2609 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { 2610 if (NewTypeInfo.getHasRegParm()) { 2611 Diag(New->getLocation(), diag::err_regparm_mismatch) 2612 << NewType->getRegParmType() 2613 << OldType->getRegParmType(); 2614 Diag(OldLocation, diag::note_previous_declaration); 2615 return true; 2616 } 2617 2618 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); 2619 RequiresAdjustment = true; 2620 } 2621 2622 // Merge ns_returns_retained attribute. 2623 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { 2624 if (NewTypeInfo.getProducesResult()) { 2625 Diag(New->getLocation(), diag::err_returns_retained_mismatch); 2626 Diag(OldLocation, diag::note_previous_declaration); 2627 return true; 2628 } 2629 2630 NewTypeInfo = NewTypeInfo.withProducesResult(true); 2631 RequiresAdjustment = true; 2632 } 2633 2634 if (RequiresAdjustment) { 2635 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); 2636 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); 2637 New->setType(QualType(AdjustedType, 0)); 2638 NewQType = Context.getCanonicalType(New->getType()); 2639 NewType = cast<FunctionType>(NewQType); 2640 } 2641 2642 // If this redeclaration makes the function inline, we may need to add it to 2643 // UndefinedButUsed. 2644 if (!Old->isInlined() && New->isInlined() && 2645 !New->hasAttr<GNUInlineAttr>() && 2646 (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) && 2647 Old->isUsed(false) && 2648 !Old->isDefined() && !New->isThisDeclarationADefinition()) 2649 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 2650 SourceLocation())); 2651 2652 // If this redeclaration makes it newly gnu_inline, we don't want to warn 2653 // about it. 2654 if (New->hasAttr<GNUInlineAttr>() && 2655 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { 2656 UndefinedButUsed.erase(Old->getCanonicalDecl()); 2657 } 2658 2659 if (getLangOpts().CPlusPlus) { 2660 // (C++98 13.1p2): 2661 // Certain function declarations cannot be overloaded: 2662 // -- Function declarations that differ only in the return type 2663 // cannot be overloaded. 2664 2665 // Go back to the type source info to compare the declared return types, 2666 // per C++1y [dcl.type.auto]p13: 2667 // Redeclarations or specializations of a function or function template 2668 // with a declared return type that uses a placeholder type shall also 2669 // use that placeholder, not a deduced type. 2670 QualType OldDeclaredReturnType = 2671 (Old->getTypeSourceInfo() 2672 ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>() 2673 : OldType)->getReturnType(); 2674 QualType NewDeclaredReturnType = 2675 (New->getTypeSourceInfo() 2676 ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>() 2677 : NewType)->getReturnType(); 2678 QualType ResQT; 2679 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && 2680 !((NewQType->isDependentType() || OldQType->isDependentType()) && 2681 New->isLocalExternDecl())) { 2682 if (NewDeclaredReturnType->isObjCObjectPointerType() && 2683 OldDeclaredReturnType->isObjCObjectPointerType()) 2684 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); 2685 if (ResQT.isNull()) { 2686 if (New->isCXXClassMember() && New->isOutOfLine()) 2687 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) 2688 << New << New->getReturnTypeSourceRange(); 2689 else 2690 Diag(New->getLocation(), diag::err_ovl_diff_return_type) 2691 << New->getReturnTypeSourceRange(); 2692 Diag(OldLocation, PrevDiag) << Old << Old->getType() 2693 << Old->getReturnTypeSourceRange(); 2694 return true; 2695 } 2696 else 2697 NewQType = ResQT; 2698 } 2699 2700 QualType OldReturnType = OldType->getReturnType(); 2701 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); 2702 if (OldReturnType != NewReturnType) { 2703 // If this function has a deduced return type and has already been 2704 // defined, copy the deduced value from the old declaration. 2705 AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); 2706 if (OldAT && OldAT->isDeduced()) { 2707 New->setType( 2708 SubstAutoType(New->getType(), 2709 OldAT->isDependentType() ? Context.DependentTy 2710 : OldAT->getDeducedType())); 2711 NewQType = Context.getCanonicalType( 2712 SubstAutoType(NewQType, 2713 OldAT->isDependentType() ? Context.DependentTy 2714 : OldAT->getDeducedType())); 2715 } 2716 } 2717 2718 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 2719 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 2720 if (OldMethod && NewMethod) { 2721 // Preserve triviality. 2722 NewMethod->setTrivial(OldMethod->isTrivial()); 2723 2724 // MSVC allows explicit template specialization at class scope: 2725 // 2 CXXMethodDecls referring to the same function will be injected. 2726 // We don't want a redeclaration error. 2727 bool IsClassScopeExplicitSpecialization = 2728 OldMethod->isFunctionTemplateSpecialization() && 2729 NewMethod->isFunctionTemplateSpecialization(); 2730 bool isFriend = NewMethod->getFriendObjectKind(); 2731 2732 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && 2733 !IsClassScopeExplicitSpecialization) { 2734 // -- Member function declarations with the same name and the 2735 // same parameter types cannot be overloaded if any of them 2736 // is a static member function declaration. 2737 if (OldMethod->isStatic() != NewMethod->isStatic()) { 2738 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); 2739 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 2740 return true; 2741 } 2742 2743 // C++ [class.mem]p1: 2744 // [...] A member shall not be declared twice in the 2745 // member-specification, except that a nested class or member 2746 // class template can be declared and then later defined. 2747 if (ActiveTemplateInstantiations.empty()) { 2748 unsigned NewDiag; 2749 if (isa<CXXConstructorDecl>(OldMethod)) 2750 NewDiag = diag::err_constructor_redeclared; 2751 else if (isa<CXXDestructorDecl>(NewMethod)) 2752 NewDiag = diag::err_destructor_redeclared; 2753 else if (isa<CXXConversionDecl>(NewMethod)) 2754 NewDiag = diag::err_conv_function_redeclared; 2755 else 2756 NewDiag = diag::err_member_redeclared; 2757 2758 Diag(New->getLocation(), NewDiag); 2759 } else { 2760 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) 2761 << New << New->getType(); 2762 } 2763 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 2764 2765 // Complain if this is an explicit declaration of a special 2766 // member that was initially declared implicitly. 2767 // 2768 // As an exception, it's okay to befriend such methods in order 2769 // to permit the implicit constructor/destructor/operator calls. 2770 } else if (OldMethod->isImplicit()) { 2771 if (isFriend) { 2772 NewMethod->setImplicit(); 2773 } else { 2774 Diag(NewMethod->getLocation(), 2775 diag::err_definition_of_implicitly_declared_member) 2776 << New << getSpecialMember(OldMethod); 2777 return true; 2778 } 2779 } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) { 2780 Diag(NewMethod->getLocation(), 2781 diag::err_definition_of_explicitly_defaulted_member) 2782 << getSpecialMember(OldMethod); 2783 return true; 2784 } 2785 } 2786 2787 // C++11 [dcl.attr.noreturn]p1: 2788 // The first declaration of a function shall specify the noreturn 2789 // attribute if any declaration of that function specifies the noreturn 2790 // attribute. 2791 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>(); 2792 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) { 2793 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl); 2794 Diag(Old->getFirstDecl()->getLocation(), 2795 diag::note_noreturn_missing_first_decl); 2796 } 2797 2798 // C++11 [dcl.attr.depend]p2: 2799 // The first declaration of a function shall specify the 2800 // carries_dependency attribute for its declarator-id if any declaration 2801 // of the function specifies the carries_dependency attribute. 2802 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); 2803 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { 2804 Diag(CDA->getLocation(), 2805 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; 2806 Diag(Old->getFirstDecl()->getLocation(), 2807 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; 2808 } 2809 2810 // (C++98 8.3.5p3): 2811 // All declarations for a function shall agree exactly in both the 2812 // return type and the parameter-type-list. 2813 // We also want to respect all the extended bits except noreturn. 2814 2815 // noreturn should now match unless the old type info didn't have it. 2816 QualType OldQTypeForComparison = OldQType; 2817 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { 2818 assert(OldQType == QualType(OldType, 0)); 2819 const FunctionType *OldTypeForComparison 2820 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); 2821 OldQTypeForComparison = QualType(OldTypeForComparison, 0); 2822 assert(OldQTypeForComparison.isCanonical()); 2823 } 2824 2825 if (haveIncompatibleLanguageLinkages(Old, New)) { 2826 // As a special case, retain the language linkage from previous 2827 // declarations of a friend function as an extension. 2828 // 2829 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC 2830 // and is useful because there's otherwise no way to specify language 2831 // linkage within class scope. 2832 // 2833 // Check cautiously as the friend object kind isn't yet complete. 2834 if (New->getFriendObjectKind() != Decl::FOK_None) { 2835 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; 2836 Diag(OldLocation, PrevDiag); 2837 } else { 2838 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 2839 Diag(OldLocation, PrevDiag); 2840 return true; 2841 } 2842 } 2843 2844 if (OldQTypeForComparison == NewQType) 2845 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 2846 2847 if ((NewQType->isDependentType() || OldQType->isDependentType()) && 2848 New->isLocalExternDecl()) { 2849 // It's OK if we couldn't merge types for a local function declaraton 2850 // if either the old or new type is dependent. We'll merge the types 2851 // when we instantiate the function. 2852 return false; 2853 } 2854 2855 // Fall through for conflicting redeclarations and redefinitions. 2856 } 2857 2858 // C: Function types need to be compatible, not identical. This handles 2859 // duplicate function decls like "void f(int); void f(enum X);" properly. 2860 if (!getLangOpts().CPlusPlus && 2861 Context.typesAreCompatible(OldQType, NewQType)) { 2862 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); 2863 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); 2864 const FunctionProtoType *OldProto = nullptr; 2865 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && 2866 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { 2867 // The old declaration provided a function prototype, but the 2868 // new declaration does not. Merge in the prototype. 2869 assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); 2870 SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); 2871 NewQType = 2872 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, 2873 OldProto->getExtProtoInfo()); 2874 New->setType(NewQType); 2875 New->setHasInheritedPrototype(); 2876 2877 // Synthesize parameters with the same types. 2878 SmallVector<ParmVarDecl*, 16> Params; 2879 for (const auto &ParamType : OldProto->param_types()) { 2880 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), 2881 SourceLocation(), nullptr, 2882 ParamType, /*TInfo=*/nullptr, 2883 SC_None, nullptr); 2884 Param->setScopeInfo(0, Params.size()); 2885 Param->setImplicit(); 2886 Params.push_back(Param); 2887 } 2888 2889 New->setParams(Params); 2890 } 2891 2892 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 2893 } 2894 2895 // GNU C permits a K&R definition to follow a prototype declaration 2896 // if the declared types of the parameters in the K&R definition 2897 // match the types in the prototype declaration, even when the 2898 // promoted types of the parameters from the K&R definition differ 2899 // from the types in the prototype. GCC then keeps the types from 2900 // the prototype. 2901 // 2902 // If a variadic prototype is followed by a non-variadic K&R definition, 2903 // the K&R definition becomes variadic. This is sort of an edge case, but 2904 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and 2905 // C99 6.9.1p8. 2906 if (!getLangOpts().CPlusPlus && 2907 Old->hasPrototype() && !New->hasPrototype() && 2908 New->getType()->getAs<FunctionProtoType>() && 2909 Old->getNumParams() == New->getNumParams()) { 2910 SmallVector<QualType, 16> ArgTypes; 2911 SmallVector<GNUCompatibleParamWarning, 16> Warnings; 2912 const FunctionProtoType *OldProto 2913 = Old->getType()->getAs<FunctionProtoType>(); 2914 const FunctionProtoType *NewProto 2915 = New->getType()->getAs<FunctionProtoType>(); 2916 2917 // Determine whether this is the GNU C extension. 2918 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), 2919 NewProto->getReturnType()); 2920 bool LooseCompatible = !MergedReturn.isNull(); 2921 for (unsigned Idx = 0, End = Old->getNumParams(); 2922 LooseCompatible && Idx != End; ++Idx) { 2923 ParmVarDecl *OldParm = Old->getParamDecl(Idx); 2924 ParmVarDecl *NewParm = New->getParamDecl(Idx); 2925 if (Context.typesAreCompatible(OldParm->getType(), 2926 NewProto->getParamType(Idx))) { 2927 ArgTypes.push_back(NewParm->getType()); 2928 } else if (Context.typesAreCompatible(OldParm->getType(), 2929 NewParm->getType(), 2930 /*CompareUnqualified=*/true)) { 2931 GNUCompatibleParamWarning Warn = { OldParm, NewParm, 2932 NewProto->getParamType(Idx) }; 2933 Warnings.push_back(Warn); 2934 ArgTypes.push_back(NewParm->getType()); 2935 } else 2936 LooseCompatible = false; 2937 } 2938 2939 if (LooseCompatible) { 2940 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { 2941 Diag(Warnings[Warn].NewParm->getLocation(), 2942 diag::ext_param_promoted_not_compatible_with_prototype) 2943 << Warnings[Warn].PromotedType 2944 << Warnings[Warn].OldParm->getType(); 2945 if (Warnings[Warn].OldParm->getLocation().isValid()) 2946 Diag(Warnings[Warn].OldParm->getLocation(), 2947 diag::note_previous_declaration); 2948 } 2949 2950 if (MergeTypeWithOld) 2951 New->setType(Context.getFunctionType(MergedReturn, ArgTypes, 2952 OldProto->getExtProtoInfo())); 2953 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 2954 } 2955 2956 // Fall through to diagnose conflicting types. 2957 } 2958 2959 // A function that has already been declared has been redeclared or 2960 // defined with a different type; show an appropriate diagnostic. 2961 2962 // If the previous declaration was an implicitly-generated builtin 2963 // declaration, then at the very least we should use a specialized note. 2964 unsigned BuiltinID; 2965 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { 2966 // If it's actually a library-defined builtin function like 'malloc' 2967 // or 'printf', just warn about the incompatible redeclaration. 2968 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { 2969 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; 2970 Diag(OldLocation, diag::note_previous_builtin_declaration) 2971 << Old << Old->getType(); 2972 2973 // If this is a global redeclaration, just forget hereafter 2974 // about the "builtin-ness" of the function. 2975 // 2976 // Doing this for local extern declarations is problematic. If 2977 // the builtin declaration remains visible, a second invalid 2978 // local declaration will produce a hard error; if it doesn't 2979 // remain visible, a single bogus local redeclaration (which is 2980 // actually only a warning) could break all the downstream code. 2981 if (!New->getLexicalDeclContext()->isFunctionOrMethod()) 2982 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin); 2983 2984 return false; 2985 } 2986 2987 PrevDiag = diag::note_previous_builtin_declaration; 2988 } 2989 2990 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); 2991 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 2992 return true; 2993 } 2994 2995 /// \brief Completes the merge of two function declarations that are 2996 /// known to be compatible. 2997 /// 2998 /// This routine handles the merging of attributes and other 2999 /// properties of function declarations from the old declaration to 3000 /// the new declaration, once we know that New is in fact a 3001 /// redeclaration of Old. 3002 /// 3003 /// \returns false 3004 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, 3005 Scope *S, bool MergeTypeWithOld) { 3006 // Merge the attributes 3007 mergeDeclAttributes(New, Old); 3008 3009 // Merge "pure" flag. 3010 if (Old->isPure()) 3011 New->setPure(); 3012 3013 // Merge "used" flag. 3014 if (Old->getMostRecentDecl()->isUsed(false)) 3015 New->setIsUsed(); 3016 3017 // Merge attributes from the parameters. These can mismatch with K&R 3018 // declarations. 3019 if (New->getNumParams() == Old->getNumParams()) 3020 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) 3021 mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i), 3022 *this); 3023 3024 if (getLangOpts().CPlusPlus) 3025 return MergeCXXFunctionDecl(New, Old, S); 3026 3027 // Merge the function types so the we get the composite types for the return 3028 // and argument types. Per C11 6.2.7/4, only update the type if the old decl 3029 // was visible. 3030 QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); 3031 if (!Merged.isNull() && MergeTypeWithOld) 3032 New->setType(Merged); 3033 3034 return false; 3035 } 3036 3037 3038 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, 3039 ObjCMethodDecl *oldMethod) { 3040 3041 // Merge the attributes, including deprecated/unavailable 3042 AvailabilityMergeKind MergeKind = 3043 isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration 3044 : AMK_Override; 3045 mergeDeclAttributes(newMethod, oldMethod, MergeKind); 3046 3047 // Merge attributes from the parameters. 3048 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), 3049 oe = oldMethod->param_end(); 3050 for (ObjCMethodDecl::param_iterator 3051 ni = newMethod->param_begin(), ne = newMethod->param_end(); 3052 ni != ne && oi != oe; ++ni, ++oi) 3053 mergeParamDeclAttributes(*ni, *oi, *this); 3054 3055 CheckObjCMethodOverride(newMethod, oldMethod); 3056 } 3057 3058 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and 3059 /// scope as a previous declaration 'Old'. Figure out how to merge their types, 3060 /// emitting diagnostics as appropriate. 3061 /// 3062 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back 3063 /// to here in AddInitializerToDecl. We can't check them before the initializer 3064 /// is attached. 3065 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, 3066 bool MergeTypeWithOld) { 3067 if (New->isInvalidDecl() || Old->isInvalidDecl()) 3068 return; 3069 3070 QualType MergedT; 3071 if (getLangOpts().CPlusPlus) { 3072 if (New->getType()->isUndeducedType()) { 3073 // We don't know what the new type is until the initializer is attached. 3074 return; 3075 } else if (Context.hasSameType(New->getType(), Old->getType())) { 3076 // These could still be something that needs exception specs checked. 3077 return MergeVarDeclExceptionSpecs(New, Old); 3078 } 3079 // C++ [basic.link]p10: 3080 // [...] the types specified by all declarations referring to a given 3081 // object or function shall be identical, except that declarations for an 3082 // array object can specify array types that differ by the presence or 3083 // absence of a major array bound (8.3.4). 3084 else if (Old->getType()->isIncompleteArrayType() && 3085 New->getType()->isArrayType()) { 3086 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 3087 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 3088 if (Context.hasSameType(OldArray->getElementType(), 3089 NewArray->getElementType())) 3090 MergedT = New->getType(); 3091 } else if (Old->getType()->isArrayType() && 3092 New->getType()->isIncompleteArrayType()) { 3093 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 3094 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 3095 if (Context.hasSameType(OldArray->getElementType(), 3096 NewArray->getElementType())) 3097 MergedT = Old->getType(); 3098 } else if (New->getType()->isObjCObjectPointerType() && 3099 Old->getType()->isObjCObjectPointerType()) { 3100 MergedT = Context.mergeObjCGCQualifiers(New->getType(), 3101 Old->getType()); 3102 } 3103 } else { 3104 // C 6.2.7p2: 3105 // All declarations that refer to the same object or function shall have 3106 // compatible type. 3107 MergedT = Context.mergeTypes(New->getType(), Old->getType()); 3108 } 3109 if (MergedT.isNull()) { 3110 // It's OK if we couldn't merge types if either type is dependent, for a 3111 // block-scope variable. In other cases (static data members of class 3112 // templates, variable templates, ...), we require the types to be 3113 // equivalent. 3114 // FIXME: The C++ standard doesn't say anything about this. 3115 if ((New->getType()->isDependentType() || 3116 Old->getType()->isDependentType()) && New->isLocalVarDecl()) { 3117 // If the old type was dependent, we can't merge with it, so the new type 3118 // becomes dependent for now. We'll reproduce the original type when we 3119 // instantiate the TypeSourceInfo for the variable. 3120 if (!New->getType()->isDependentType() && MergeTypeWithOld) 3121 New->setType(Context.DependentTy); 3122 return; 3123 } 3124 3125 // FIXME: Even if this merging succeeds, some other non-visible declaration 3126 // of this variable might have an incompatible type. For instance: 3127 // 3128 // extern int arr[]; 3129 // void f() { extern int arr[2]; } 3130 // void g() { extern int arr[3]; } 3131 // 3132 // Neither C nor C++ requires a diagnostic for this, but we should still try 3133 // to diagnose it. 3134 Diag(New->getLocation(), diag::err_redefinition_different_type) 3135 << New->getDeclName() << New->getType() << Old->getType(); 3136 Diag(Old->getLocation(), diag::note_previous_definition); 3137 return New->setInvalidDecl(); 3138 } 3139 3140 // Don't actually update the type on the new declaration if the old 3141 // declaration was an extern declaration in a different scope. 3142 if (MergeTypeWithOld) 3143 New->setType(MergedT); 3144 } 3145 3146 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, 3147 LookupResult &Previous) { 3148 // C11 6.2.7p4: 3149 // For an identifier with internal or external linkage declared 3150 // in a scope in which a prior declaration of that identifier is 3151 // visible, if the prior declaration specifies internal or 3152 // external linkage, the type of the identifier at the later 3153 // declaration becomes the composite type. 3154 // 3155 // If the variable isn't visible, we do not merge with its type. 3156 if (Previous.isShadowed()) 3157 return false; 3158 3159 if (S.getLangOpts().CPlusPlus) { 3160 // C++11 [dcl.array]p3: 3161 // If there is a preceding declaration of the entity in the same 3162 // scope in which the bound was specified, an omitted array bound 3163 // is taken to be the same as in that earlier declaration. 3164 return NewVD->isPreviousDeclInSameBlockScope() || 3165 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && 3166 !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); 3167 } else { 3168 // If the old declaration was function-local, don't merge with its 3169 // type unless we're in the same function. 3170 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || 3171 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); 3172 } 3173 } 3174 3175 /// MergeVarDecl - We just parsed a variable 'New' which has the same name 3176 /// and scope as a previous declaration 'Old'. Figure out how to resolve this 3177 /// situation, merging decls or emitting diagnostics as appropriate. 3178 /// 3179 /// Tentative definition rules (C99 6.9.2p2) are checked by 3180 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative 3181 /// definitions here, since the initializer hasn't been attached. 3182 /// 3183 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { 3184 // If the new decl is already invalid, don't do any other checking. 3185 if (New->isInvalidDecl()) 3186 return; 3187 3188 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); 3189 3190 // Verify the old decl was also a variable or variable template. 3191 VarDecl *Old = nullptr; 3192 VarTemplateDecl *OldTemplate = nullptr; 3193 if (Previous.isSingleResult()) { 3194 if (NewTemplate) { 3195 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); 3196 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; 3197 } else 3198 Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); 3199 } 3200 if (!Old) { 3201 Diag(New->getLocation(), diag::err_redefinition_different_kind) 3202 << New->getDeclName(); 3203 Diag(Previous.getRepresentativeDecl()->getLocation(), 3204 diag::note_previous_definition); 3205 return New->setInvalidDecl(); 3206 } 3207 3208 if (!shouldLinkPossiblyHiddenDecl(Old, New)) 3209 return; 3210 3211 // Ensure the template parameters are compatible. 3212 if (NewTemplate && 3213 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 3214 OldTemplate->getTemplateParameters(), 3215 /*Complain=*/true, TPL_TemplateMatch)) 3216 return; 3217 3218 // C++ [class.mem]p1: 3219 // A member shall not be declared twice in the member-specification [...] 3220 // 3221 // Here, we need only consider static data members. 3222 if (Old->isStaticDataMember() && !New->isOutOfLine()) { 3223 Diag(New->getLocation(), diag::err_duplicate_member) 3224 << New->getIdentifier(); 3225 Diag(Old->getLocation(), diag::note_previous_declaration); 3226 New->setInvalidDecl(); 3227 } 3228 3229 mergeDeclAttributes(New, Old); 3230 // Warn if an already-declared variable is made a weak_import in a subsequent 3231 // declaration 3232 if (New->hasAttr<WeakImportAttr>() && 3233 Old->getStorageClass() == SC_None && 3234 !Old->hasAttr<WeakImportAttr>()) { 3235 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); 3236 Diag(Old->getLocation(), diag::note_previous_definition); 3237 // Remove weak_import attribute on new declaration. 3238 New->dropAttr<WeakImportAttr>(); 3239 } 3240 3241 // Merge the types. 3242 VarDecl *MostRecent = Old->getMostRecentDecl(); 3243 if (MostRecent != Old) { 3244 MergeVarDeclTypes(New, MostRecent, 3245 mergeTypeWithPrevious(*this, New, MostRecent, Previous)); 3246 if (New->isInvalidDecl()) 3247 return; 3248 } 3249 3250 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); 3251 if (New->isInvalidDecl()) 3252 return; 3253 3254 diag::kind PrevDiag; 3255 SourceLocation OldLocation; 3256 std::tie(PrevDiag, OldLocation) = 3257 getNoteDiagForInvalidRedeclaration(Old, New); 3258 3259 // [dcl.stc]p8: Check if we have a non-static decl followed by a static. 3260 if (New->getStorageClass() == SC_Static && 3261 !New->isStaticDataMember() && 3262 Old->hasExternalFormalLinkage()) { 3263 if (getLangOpts().MicrosoftExt) { 3264 Diag(New->getLocation(), diag::ext_static_non_static) 3265 << New->getDeclName(); 3266 Diag(OldLocation, PrevDiag); 3267 } else { 3268 Diag(New->getLocation(), diag::err_static_non_static) 3269 << New->getDeclName(); 3270 Diag(OldLocation, PrevDiag); 3271 return New->setInvalidDecl(); 3272 } 3273 } 3274 // C99 6.2.2p4: 3275 // For an identifier declared with the storage-class specifier 3276 // extern in a scope in which a prior declaration of that 3277 // identifier is visible,23) if the prior declaration specifies 3278 // internal or external linkage, the linkage of the identifier at 3279 // the later declaration is the same as the linkage specified at 3280 // the prior declaration. If no prior declaration is visible, or 3281 // if the prior declaration specifies no linkage, then the 3282 // identifier has external linkage. 3283 if (New->hasExternalStorage() && Old->hasLinkage()) 3284 /* Okay */; 3285 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && 3286 !New->isStaticDataMember() && 3287 Old->getCanonicalDecl()->getStorageClass() == SC_Static) { 3288 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); 3289 Diag(OldLocation, PrevDiag); 3290 return New->setInvalidDecl(); 3291 } 3292 3293 // Check if extern is followed by non-extern and vice-versa. 3294 if (New->hasExternalStorage() && 3295 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { 3296 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); 3297 Diag(OldLocation, PrevDiag); 3298 return New->setInvalidDecl(); 3299 } 3300 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && 3301 !New->hasExternalStorage()) { 3302 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); 3303 Diag(OldLocation, PrevDiag); 3304 return New->setInvalidDecl(); 3305 } 3306 3307 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. 3308 3309 // FIXME: The test for external storage here seems wrong? We still 3310 // need to check for mismatches. 3311 if (!New->hasExternalStorage() && !New->isFileVarDecl() && 3312 // Don't complain about out-of-line definitions of static members. 3313 !(Old->getLexicalDeclContext()->isRecord() && 3314 !New->getLexicalDeclContext()->isRecord())) { 3315 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); 3316 Diag(OldLocation, PrevDiag); 3317 return New->setInvalidDecl(); 3318 } 3319 3320 if (New->getTLSKind() != Old->getTLSKind()) { 3321 if (!Old->getTLSKind()) { 3322 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); 3323 Diag(OldLocation, PrevDiag); 3324 } else if (!New->getTLSKind()) { 3325 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); 3326 Diag(OldLocation, PrevDiag); 3327 } else { 3328 // Do not allow redeclaration to change the variable between requiring 3329 // static and dynamic initialization. 3330 // FIXME: GCC allows this, but uses the TLS keyword on the first 3331 // declaration to determine the kind. Do we need to be compatible here? 3332 Diag(New->getLocation(), diag::err_thread_thread_different_kind) 3333 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); 3334 Diag(OldLocation, PrevDiag); 3335 } 3336 } 3337 3338 // C++ doesn't have tentative definitions, so go right ahead and check here. 3339 const VarDecl *Def; 3340 if (getLangOpts().CPlusPlus && 3341 New->isThisDeclarationADefinition() == VarDecl::Definition && 3342 (Def = Old->getDefinition())) { 3343 Diag(New->getLocation(), diag::err_redefinition) << New; 3344 Diag(Def->getLocation(), diag::note_previous_definition); 3345 New->setInvalidDecl(); 3346 return; 3347 } 3348 3349 if (haveIncompatibleLanguageLinkages(Old, New)) { 3350 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 3351 Diag(OldLocation, PrevDiag); 3352 New->setInvalidDecl(); 3353 return; 3354 } 3355 3356 // Merge "used" flag. 3357 if (Old->getMostRecentDecl()->isUsed(false)) 3358 New->setIsUsed(); 3359 3360 // Keep a chain of previous declarations. 3361 New->setPreviousDecl(Old); 3362 if (NewTemplate) 3363 NewTemplate->setPreviousDecl(OldTemplate); 3364 3365 // Inherit access appropriately. 3366 New->setAccess(Old->getAccess()); 3367 if (NewTemplate) 3368 NewTemplate->setAccess(New->getAccess()); 3369 } 3370 3371 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 3372 /// no declarator (e.g. "struct foo;") is parsed. 3373 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, 3374 DeclSpec &DS) { 3375 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg()); 3376 } 3377 3378 static void HandleTagNumbering(Sema &S, const TagDecl *Tag, Scope *TagScope) { 3379 if (!S.Context.getLangOpts().CPlusPlus) 3380 return; 3381 3382 if (isa<CXXRecordDecl>(Tag->getParent())) { 3383 // If this tag is the direct child of a class, number it if 3384 // it is anonymous. 3385 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) 3386 return; 3387 MangleNumberingContext &MCtx = 3388 S.Context.getManglingNumberContext(Tag->getParent()); 3389 S.Context.setManglingNumber( 3390 Tag, MCtx.getManglingNumber(Tag, TagScope->getMSLocalManglingNumber())); 3391 return; 3392 } 3393 3394 // If this tag isn't a direct child of a class, number it if it is local. 3395 Decl *ManglingContextDecl; 3396 if (MangleNumberingContext *MCtx = 3397 S.getCurrentMangleNumberContext(Tag->getDeclContext(), 3398 ManglingContextDecl)) { 3399 S.Context.setManglingNumber( 3400 Tag, 3401 MCtx->getManglingNumber(Tag, TagScope->getMSLocalManglingNumber())); 3402 } 3403 } 3404 3405 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 3406 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template 3407 /// parameters to cope with template friend declarations. 3408 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, 3409 DeclSpec &DS, 3410 MultiTemplateParamsArg TemplateParams, 3411 bool IsExplicitInstantiation) { 3412 Decl *TagD = nullptr; 3413 TagDecl *Tag = nullptr; 3414 if (DS.getTypeSpecType() == DeclSpec::TST_class || 3415 DS.getTypeSpecType() == DeclSpec::TST_struct || 3416 DS.getTypeSpecType() == DeclSpec::TST_interface || 3417 DS.getTypeSpecType() == DeclSpec::TST_union || 3418 DS.getTypeSpecType() == DeclSpec::TST_enum) { 3419 TagD = DS.getRepAsDecl(); 3420 3421 if (!TagD) // We probably had an error 3422 return nullptr; 3423 3424 // Note that the above type specs guarantee that the 3425 // type rep is a Decl, whereas in many of the others 3426 // it's a Type. 3427 if (isa<TagDecl>(TagD)) 3428 Tag = cast<TagDecl>(TagD); 3429 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) 3430 Tag = CTD->getTemplatedDecl(); 3431 } 3432 3433 if (Tag) { 3434 HandleTagNumbering(*this, Tag, S); 3435 Tag->setFreeStanding(); 3436 if (Tag->isInvalidDecl()) 3437 return Tag; 3438 } 3439 3440 if (unsigned TypeQuals = DS.getTypeQualifiers()) { 3441 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object 3442 // or incomplete types shall not be restrict-qualified." 3443 if (TypeQuals & DeclSpec::TQ_restrict) 3444 Diag(DS.getRestrictSpecLoc(), 3445 diag::err_typecheck_invalid_restrict_not_pointer_noarg) 3446 << DS.getSourceRange(); 3447 } 3448 3449 if (DS.isConstexprSpecified()) { 3450 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations 3451 // and definitions of functions and variables. 3452 if (Tag) 3453 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) 3454 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 : 3455 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 : 3456 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 : 3457 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4); 3458 else 3459 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators); 3460 // Don't emit warnings after this error. 3461 return TagD; 3462 } 3463 3464 DiagnoseFunctionSpecifiers(DS); 3465 3466 if (DS.isFriendSpecified()) { 3467 // If we're dealing with a decl but not a TagDecl, assume that 3468 // whatever routines created it handled the friendship aspect. 3469 if (TagD && !Tag) 3470 return nullptr; 3471 return ActOnFriendTypeDecl(S, DS, TemplateParams); 3472 } 3473 3474 CXXScopeSpec &SS = DS.getTypeSpecScope(); 3475 bool IsExplicitSpecialization = 3476 !TemplateParams.empty() && TemplateParams.back()->size() == 0; 3477 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && 3478 !IsExplicitInstantiation && !IsExplicitSpecialization) { 3479 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a 3480 // nested-name-specifier unless it is an explicit instantiation 3481 // or an explicit specialization. 3482 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. 3483 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) 3484 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 : 3485 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 : 3486 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 : 3487 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4) 3488 << SS.getRange(); 3489 return nullptr; 3490 } 3491 3492 // Track whether this decl-specifier declares anything. 3493 bool DeclaresAnything = true; 3494 3495 // Handle anonymous struct definitions. 3496 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { 3497 if (!Record->getDeclName() && Record->isCompleteDefinition() && 3498 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { 3499 if (getLangOpts().CPlusPlus || 3500 Record->getDeclContext()->isRecord()) 3501 return BuildAnonymousStructOrUnion(S, DS, AS, Record, Context.getPrintingPolicy()); 3502 3503 DeclaresAnything = false; 3504 } 3505 } 3506 3507 // C11 6.7.2.1p2: 3508 // A struct-declaration that does not declare an anonymous structure or 3509 // anonymous union shall contain a struct-declarator-list. 3510 // 3511 // This rule also existed in C89 and C99; the grammar for struct-declaration 3512 // did not permit a struct-declaration without a struct-declarator-list. 3513 if (!getLangOpts().CPlusPlus && CurContext->isRecord() && 3514 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { 3515 // Check for Microsoft C extension: anonymous struct/union member. 3516 // Handle 2 kinds of anonymous struct/union: 3517 // struct STRUCT; 3518 // union UNION; 3519 // and 3520 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. 3521 // UNION_TYPE; <- where UNION_TYPE is a typedef union. 3522 if ((Tag && Tag->getDeclName()) || 3523 DS.getTypeSpecType() == DeclSpec::TST_typename) { 3524 RecordDecl *Record = nullptr; 3525 if (Tag) 3526 Record = dyn_cast<RecordDecl>(Tag); 3527 else if (const RecordType *RT = 3528 DS.getRepAsType().get()->getAsStructureType()) 3529 Record = RT->getDecl(); 3530 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) 3531 Record = UT->getDecl(); 3532 3533 if (Record && getLangOpts().MicrosoftExt) { 3534 Diag(DS.getLocStart(), diag::ext_ms_anonymous_record) 3535 << Record->isUnion() << DS.getSourceRange(); 3536 return BuildMicrosoftCAnonymousStruct(S, DS, Record); 3537 } 3538 3539 DeclaresAnything = false; 3540 } 3541 } 3542 3543 // Skip all the checks below if we have a type error. 3544 if (DS.getTypeSpecType() == DeclSpec::TST_error || 3545 (TagD && TagD->isInvalidDecl())) 3546 return TagD; 3547 3548 if (getLangOpts().CPlusPlus && 3549 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) 3550 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) 3551 if (Enum->enumerator_begin() == Enum->enumerator_end() && 3552 !Enum->getIdentifier() && !Enum->isInvalidDecl()) 3553 DeclaresAnything = false; 3554 3555 if (!DS.isMissingDeclaratorOk()) { 3556 // Customize diagnostic for a typedef missing a name. 3557 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 3558 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name) 3559 << DS.getSourceRange(); 3560 else 3561 DeclaresAnything = false; 3562 } 3563 3564 if (DS.isModulePrivateSpecified() && 3565 Tag && Tag->getDeclContext()->isFunctionOrMethod()) 3566 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) 3567 << Tag->getTagKind() 3568 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); 3569 3570 ActOnDocumentableDecl(TagD); 3571 3572 // C 6.7/2: 3573 // A declaration [...] shall declare at least a declarator [...], a tag, 3574 // or the members of an enumeration. 3575 // C++ [dcl.dcl]p3: 3576 // [If there are no declarators], and except for the declaration of an 3577 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 3578 // names into the program, or shall redeclare a name introduced by a 3579 // previous declaration. 3580 if (!DeclaresAnything) { 3581 // In C, we allow this as a (popular) extension / bug. Don't bother 3582 // producing further diagnostics for redundant qualifiers after this. 3583 Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange(); 3584 return TagD; 3585 } 3586 3587 // C++ [dcl.stc]p1: 3588 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the 3589 // init-declarator-list of the declaration shall not be empty. 3590 // C++ [dcl.fct.spec]p1: 3591 // If a cv-qualifier appears in a decl-specifier-seq, the 3592 // init-declarator-list of the declaration shall not be empty. 3593 // 3594 // Spurious qualifiers here appear to be valid in C. 3595 unsigned DiagID = diag::warn_standalone_specifier; 3596 if (getLangOpts().CPlusPlus) 3597 DiagID = diag::ext_standalone_specifier; 3598 3599 // Note that a linkage-specification sets a storage class, but 3600 // 'extern "C" struct foo;' is actually valid and not theoretically 3601 // useless. 3602 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 3603 if (SCS == DeclSpec::SCS_mutable) 3604 // Since mutable is not a viable storage class specifier in C, there is 3605 // no reason to treat it as an extension. Instead, diagnose as an error. 3606 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); 3607 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) 3608 Diag(DS.getStorageClassSpecLoc(), DiagID) 3609 << DeclSpec::getSpecifierName(SCS); 3610 } 3611 3612 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 3613 Diag(DS.getThreadStorageClassSpecLoc(), DiagID) 3614 << DeclSpec::getSpecifierName(TSCS); 3615 if (DS.getTypeQualifiers()) { 3616 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 3617 Diag(DS.getConstSpecLoc(), DiagID) << "const"; 3618 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 3619 Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; 3620 // Restrict is covered above. 3621 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 3622 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; 3623 } 3624 3625 // Warn about ignored type attributes, for example: 3626 // __attribute__((aligned)) struct A; 3627 // Attributes should be placed after tag to apply to type declaration. 3628 if (!DS.getAttributes().empty()) { 3629 DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); 3630 if (TypeSpecType == DeclSpec::TST_class || 3631 TypeSpecType == DeclSpec::TST_struct || 3632 TypeSpecType == DeclSpec::TST_interface || 3633 TypeSpecType == DeclSpec::TST_union || 3634 TypeSpecType == DeclSpec::TST_enum) { 3635 AttributeList* attrs = DS.getAttributes().getList(); 3636 while (attrs) { 3637 Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored) 3638 << attrs->getName() 3639 << (TypeSpecType == DeclSpec::TST_class ? 0 : 3640 TypeSpecType == DeclSpec::TST_struct ? 1 : 3641 TypeSpecType == DeclSpec::TST_union ? 2 : 3642 TypeSpecType == DeclSpec::TST_interface ? 3 : 4); 3643 attrs = attrs->getNext(); 3644 } 3645 } 3646 } 3647 3648 return TagD; 3649 } 3650 3651 /// We are trying to inject an anonymous member into the given scope; 3652 /// check if there's an existing declaration that can't be overloaded. 3653 /// 3654 /// \return true if this is a forbidden redeclaration 3655 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, 3656 Scope *S, 3657 DeclContext *Owner, 3658 DeclarationName Name, 3659 SourceLocation NameLoc, 3660 unsigned diagnostic) { 3661 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, 3662 Sema::ForRedeclaration); 3663 if (!SemaRef.LookupName(R, S)) return false; 3664 3665 if (R.getAsSingle<TagDecl>()) 3666 return false; 3667 3668 // Pick a representative declaration. 3669 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); 3670 assert(PrevDecl && "Expected a non-null Decl"); 3671 3672 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) 3673 return false; 3674 3675 SemaRef.Diag(NameLoc, diagnostic) << Name; 3676 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 3677 3678 return true; 3679 } 3680 3681 /// InjectAnonymousStructOrUnionMembers - Inject the members of the 3682 /// anonymous struct or union AnonRecord into the owning context Owner 3683 /// and scope S. This routine will be invoked just after we realize 3684 /// that an unnamed union or struct is actually an anonymous union or 3685 /// struct, e.g., 3686 /// 3687 /// @code 3688 /// union { 3689 /// int i; 3690 /// float f; 3691 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and 3692 /// // f into the surrounding scope.x 3693 /// @endcode 3694 /// 3695 /// This routine is recursive, injecting the names of nested anonymous 3696 /// structs/unions into the owning context and scope as well. 3697 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, 3698 DeclContext *Owner, 3699 RecordDecl *AnonRecord, 3700 AccessSpecifier AS, 3701 SmallVectorImpl<NamedDecl *> &Chaining, 3702 bool MSAnonStruct) { 3703 unsigned diagKind 3704 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl 3705 : diag::err_anonymous_struct_member_redecl; 3706 3707 bool Invalid = false; 3708 3709 // Look every FieldDecl and IndirectFieldDecl with a name. 3710 for (auto *D : AnonRecord->decls()) { 3711 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && 3712 cast<NamedDecl>(D)->getDeclName()) { 3713 ValueDecl *VD = cast<ValueDecl>(D); 3714 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), 3715 VD->getLocation(), diagKind)) { 3716 // C++ [class.union]p2: 3717 // The names of the members of an anonymous union shall be 3718 // distinct from the names of any other entity in the 3719 // scope in which the anonymous union is declared. 3720 Invalid = true; 3721 } else { 3722 // C++ [class.union]p2: 3723 // For the purpose of name lookup, after the anonymous union 3724 // definition, the members of the anonymous union are 3725 // considered to have been defined in the scope in which the 3726 // anonymous union is declared. 3727 unsigned OldChainingSize = Chaining.size(); 3728 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) 3729 for (auto *PI : IF->chain()) 3730 Chaining.push_back(PI); 3731 else 3732 Chaining.push_back(VD); 3733 3734 assert(Chaining.size() >= 2); 3735 NamedDecl **NamedChain = 3736 new (SemaRef.Context)NamedDecl*[Chaining.size()]; 3737 for (unsigned i = 0; i < Chaining.size(); i++) 3738 NamedChain[i] = Chaining[i]; 3739 3740 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 3741 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), 3742 VD->getType(), NamedChain, Chaining.size()); 3743 3744 for (const auto *Attr : VD->attrs()) 3745 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 3746 3747 IndirectField->setAccess(AS); 3748 IndirectField->setImplicit(); 3749 SemaRef.PushOnScopeChains(IndirectField, S); 3750 3751 // That includes picking up the appropriate access specifier. 3752 if (AS != AS_none) IndirectField->setAccess(AS); 3753 3754 Chaining.resize(OldChainingSize); 3755 } 3756 } 3757 } 3758 3759 return Invalid; 3760 } 3761 3762 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to 3763 /// a VarDecl::StorageClass. Any error reporting is up to the caller: 3764 /// illegal input values are mapped to SC_None. 3765 static StorageClass 3766 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { 3767 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); 3768 assert(StorageClassSpec != DeclSpec::SCS_typedef && 3769 "Parser allowed 'typedef' as storage class VarDecl."); 3770 switch (StorageClassSpec) { 3771 case DeclSpec::SCS_unspecified: return SC_None; 3772 case DeclSpec::SCS_extern: 3773 if (DS.isExternInLinkageSpec()) 3774 return SC_None; 3775 return SC_Extern; 3776 case DeclSpec::SCS_static: return SC_Static; 3777 case DeclSpec::SCS_auto: return SC_Auto; 3778 case DeclSpec::SCS_register: return SC_Register; 3779 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 3780 // Illegal SCSs map to None: error reporting is up to the caller. 3781 case DeclSpec::SCS_mutable: // Fall through. 3782 case DeclSpec::SCS_typedef: return SC_None; 3783 } 3784 llvm_unreachable("unknown storage class specifier"); 3785 } 3786 3787 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { 3788 assert(Record->hasInClassInitializer()); 3789 3790 for (const auto *I : Record->decls()) { 3791 const auto *FD = dyn_cast<FieldDecl>(I); 3792 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 3793 FD = IFD->getAnonField(); 3794 if (FD && FD->hasInClassInitializer()) 3795 return FD->getLocation(); 3796 } 3797 3798 llvm_unreachable("couldn't find in-class initializer"); 3799 } 3800 3801 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 3802 SourceLocation DefaultInitLoc) { 3803 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 3804 return; 3805 3806 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); 3807 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; 3808 } 3809 3810 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 3811 CXXRecordDecl *AnonUnion) { 3812 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 3813 return; 3814 3815 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); 3816 } 3817 3818 /// BuildAnonymousStructOrUnion - Handle the declaration of an 3819 /// anonymous structure or union. Anonymous unions are a C++ feature 3820 /// (C++ [class.union]) and a C11 feature; anonymous structures 3821 /// are a C11 feature and GNU C++ extension. 3822 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, 3823 AccessSpecifier AS, 3824 RecordDecl *Record, 3825 const PrintingPolicy &Policy) { 3826 DeclContext *Owner = Record->getDeclContext(); 3827 3828 // Diagnose whether this anonymous struct/union is an extension. 3829 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) 3830 Diag(Record->getLocation(), diag::ext_anonymous_union); 3831 else if (!Record->isUnion() && getLangOpts().CPlusPlus) 3832 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); 3833 else if (!Record->isUnion() && !getLangOpts().C11) 3834 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); 3835 3836 // C and C++ require different kinds of checks for anonymous 3837 // structs/unions. 3838 bool Invalid = false; 3839 if (getLangOpts().CPlusPlus) { 3840 const char *PrevSpec = nullptr; 3841 unsigned DiagID; 3842 if (Record->isUnion()) { 3843 // C++ [class.union]p6: 3844 // Anonymous unions declared in a named namespace or in the 3845 // global namespace shall be declared static. 3846 if (DS.getStorageClassSpec() != DeclSpec::SCS_static && 3847 (isa<TranslationUnitDecl>(Owner) || 3848 (isa<NamespaceDecl>(Owner) && 3849 cast<NamespaceDecl>(Owner)->getDeclName()))) { 3850 Diag(Record->getLocation(), diag::err_anonymous_union_not_static) 3851 << FixItHint::CreateInsertion(Record->getLocation(), "static "); 3852 3853 // Recover by adding 'static'. 3854 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), 3855 PrevSpec, DiagID, Policy); 3856 } 3857 // C++ [class.union]p6: 3858 // A storage class is not allowed in a declaration of an 3859 // anonymous union in a class scope. 3860 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 3861 isa<RecordDecl>(Owner)) { 3862 Diag(DS.getStorageClassSpecLoc(), 3863 diag::err_anonymous_union_with_storage_spec) 3864 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 3865 3866 // Recover by removing the storage specifier. 3867 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 3868 SourceLocation(), 3869 PrevSpec, DiagID, Context.getPrintingPolicy()); 3870 } 3871 } 3872 3873 // Ignore const/volatile/restrict qualifiers. 3874 if (DS.getTypeQualifiers()) { 3875 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 3876 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) 3877 << Record->isUnion() << "const" 3878 << FixItHint::CreateRemoval(DS.getConstSpecLoc()); 3879 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 3880 Diag(DS.getVolatileSpecLoc(), 3881 diag::ext_anonymous_struct_union_qualified) 3882 << Record->isUnion() << "volatile" 3883 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); 3884 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 3885 Diag(DS.getRestrictSpecLoc(), 3886 diag::ext_anonymous_struct_union_qualified) 3887 << Record->isUnion() << "restrict" 3888 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); 3889 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 3890 Diag(DS.getAtomicSpecLoc(), 3891 diag::ext_anonymous_struct_union_qualified) 3892 << Record->isUnion() << "_Atomic" 3893 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); 3894 3895 DS.ClearTypeQualifiers(); 3896 } 3897 3898 // C++ [class.union]p2: 3899 // The member-specification of an anonymous union shall only 3900 // define non-static data members. [Note: nested types and 3901 // functions cannot be declared within an anonymous union. ] 3902 for (auto *Mem : Record->decls()) { 3903 if (auto *FD = dyn_cast<FieldDecl>(Mem)) { 3904 // C++ [class.union]p3: 3905 // An anonymous union shall not have private or protected 3906 // members (clause 11). 3907 assert(FD->getAccess() != AS_none); 3908 if (FD->getAccess() != AS_public) { 3909 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) 3910 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected); 3911 Invalid = true; 3912 } 3913 3914 // C++ [class.union]p1 3915 // An object of a class with a non-trivial constructor, a non-trivial 3916 // copy constructor, a non-trivial destructor, or a non-trivial copy 3917 // assignment operator cannot be a member of a union, nor can an 3918 // array of such objects. 3919 if (CheckNontrivialField(FD)) 3920 Invalid = true; 3921 } else if (Mem->isImplicit()) { 3922 // Any implicit members are fine. 3923 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { 3924 // This is a type that showed up in an 3925 // elaborated-type-specifier inside the anonymous struct or 3926 // union, but which actually declares a type outside of the 3927 // anonymous struct or union. It's okay. 3928 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { 3929 if (!MemRecord->isAnonymousStructOrUnion() && 3930 MemRecord->getDeclName()) { 3931 // Visual C++ allows type definition in anonymous struct or union. 3932 if (getLangOpts().MicrosoftExt) 3933 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) 3934 << (int)Record->isUnion(); 3935 else { 3936 // This is a nested type declaration. 3937 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) 3938 << (int)Record->isUnion(); 3939 Invalid = true; 3940 } 3941 } else { 3942 // This is an anonymous type definition within another anonymous type. 3943 // This is a popular extension, provided by Plan9, MSVC and GCC, but 3944 // not part of standard C++. 3945 Diag(MemRecord->getLocation(), 3946 diag::ext_anonymous_record_with_anonymous_type) 3947 << (int)Record->isUnion(); 3948 } 3949 } else if (isa<AccessSpecDecl>(Mem)) { 3950 // Any access specifier is fine. 3951 } else if (isa<StaticAssertDecl>(Mem)) { 3952 // In C++1z, static_assert declarations are also fine. 3953 } else { 3954 // We have something that isn't a non-static data 3955 // member. Complain about it. 3956 unsigned DK = diag::err_anonymous_record_bad_member; 3957 if (isa<TypeDecl>(Mem)) 3958 DK = diag::err_anonymous_record_with_type; 3959 else if (isa<FunctionDecl>(Mem)) 3960 DK = diag::err_anonymous_record_with_function; 3961 else if (isa<VarDecl>(Mem)) 3962 DK = diag::err_anonymous_record_with_static; 3963 3964 // Visual C++ allows type definition in anonymous struct or union. 3965 if (getLangOpts().MicrosoftExt && 3966 DK == diag::err_anonymous_record_with_type) 3967 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) 3968 << (int)Record->isUnion(); 3969 else { 3970 Diag(Mem->getLocation(), DK) 3971 << (int)Record->isUnion(); 3972 Invalid = true; 3973 } 3974 } 3975 } 3976 3977 // C++11 [class.union]p8 (DR1460): 3978 // At most one variant member of a union may have a 3979 // brace-or-equal-initializer. 3980 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && 3981 Owner->isRecord()) 3982 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), 3983 cast<CXXRecordDecl>(Record)); 3984 } 3985 3986 if (!Record->isUnion() && !Owner->isRecord()) { 3987 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) 3988 << (int)getLangOpts().CPlusPlus; 3989 Invalid = true; 3990 } 3991 3992 // Mock up a declarator. 3993 Declarator Dc(DS, Declarator::MemberContext); 3994 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 3995 assert(TInfo && "couldn't build declarator info for anonymous struct/union"); 3996 3997 // Create a declaration for this anonymous struct/union. 3998 NamedDecl *Anon = nullptr; 3999 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { 4000 Anon = FieldDecl::Create(Context, OwningClass, 4001 DS.getLocStart(), 4002 Record->getLocation(), 4003 /*IdentifierInfo=*/nullptr, 4004 Context.getTypeDeclType(Record), 4005 TInfo, 4006 /*BitWidth=*/nullptr, /*Mutable=*/false, 4007 /*InitStyle=*/ICIS_NoInit); 4008 Anon->setAccess(AS); 4009 if (getLangOpts().CPlusPlus) 4010 FieldCollector->Add(cast<FieldDecl>(Anon)); 4011 } else { 4012 DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); 4013 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); 4014 if (SCSpec == DeclSpec::SCS_mutable) { 4015 // mutable can only appear on non-static class members, so it's always 4016 // an error here 4017 Diag(Record->getLocation(), diag::err_mutable_nonmember); 4018 Invalid = true; 4019 SC = SC_None; 4020 } 4021 4022 Anon = VarDecl::Create(Context, Owner, 4023 DS.getLocStart(), 4024 Record->getLocation(), /*IdentifierInfo=*/nullptr, 4025 Context.getTypeDeclType(Record), 4026 TInfo, SC); 4027 4028 // Default-initialize the implicit variable. This initialization will be 4029 // trivial in almost all cases, except if a union member has an in-class 4030 // initializer: 4031 // union { int n = 0; }; 4032 ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false); 4033 } 4034 Anon->setImplicit(); 4035 4036 // Mark this as an anonymous struct/union type. 4037 Record->setAnonymousStructOrUnion(true); 4038 4039 // Add the anonymous struct/union object to the current 4040 // context. We'll be referencing this object when we refer to one of 4041 // its members. 4042 Owner->addDecl(Anon); 4043 4044 // Inject the members of the anonymous struct/union into the owning 4045 // context and into the identifier resolver chain for name lookup 4046 // purposes. 4047 SmallVector<NamedDecl*, 2> Chain; 4048 Chain.push_back(Anon); 4049 4050 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, 4051 Chain, false)) 4052 Invalid = true; 4053 4054 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { 4055 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 4056 Decl *ManglingContextDecl; 4057 if (MangleNumberingContext *MCtx = 4058 getCurrentMangleNumberContext(NewVD->getDeclContext(), 4059 ManglingContextDecl)) { 4060 Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber())); 4061 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 4062 } 4063 } 4064 } 4065 4066 if (Invalid) 4067 Anon->setInvalidDecl(); 4068 4069 return Anon; 4070 } 4071 4072 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an 4073 /// Microsoft C anonymous structure. 4074 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx 4075 /// Example: 4076 /// 4077 /// struct A { int a; }; 4078 /// struct B { struct A; int b; }; 4079 /// 4080 /// void foo() { 4081 /// B var; 4082 /// var.a = 3; 4083 /// } 4084 /// 4085 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, 4086 RecordDecl *Record) { 4087 assert(Record && "expected a record!"); 4088 4089 // Mock up a declarator. 4090 Declarator Dc(DS, Declarator::TypeNameContext); 4091 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 4092 assert(TInfo && "couldn't build declarator info for anonymous struct"); 4093 4094 auto *ParentDecl = cast<RecordDecl>(CurContext); 4095 QualType RecTy = Context.getTypeDeclType(Record); 4096 4097 // Create a declaration for this anonymous struct. 4098 NamedDecl *Anon = FieldDecl::Create(Context, 4099 ParentDecl, 4100 DS.getLocStart(), 4101 DS.getLocStart(), 4102 /*IdentifierInfo=*/nullptr, 4103 RecTy, 4104 TInfo, 4105 /*BitWidth=*/nullptr, /*Mutable=*/false, 4106 /*InitStyle=*/ICIS_NoInit); 4107 Anon->setImplicit(); 4108 4109 // Add the anonymous struct object to the current context. 4110 CurContext->addDecl(Anon); 4111 4112 // Inject the members of the anonymous struct into the current 4113 // context and into the identifier resolver chain for name lookup 4114 // purposes. 4115 SmallVector<NamedDecl*, 2> Chain; 4116 Chain.push_back(Anon); 4117 4118 RecordDecl *RecordDef = Record->getDefinition(); 4119 if (RequireCompleteType(Anon->getLocation(), RecTy, 4120 diag::err_field_incomplete) || 4121 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, 4122 AS_none, Chain, true)) { 4123 Anon->setInvalidDecl(); 4124 ParentDecl->setInvalidDecl(); 4125 } 4126 4127 return Anon; 4128 } 4129 4130 /// GetNameForDeclarator - Determine the full declaration name for the 4131 /// given Declarator. 4132 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { 4133 return GetNameFromUnqualifiedId(D.getName()); 4134 } 4135 4136 /// \brief Retrieves the declaration name from a parsed unqualified-id. 4137 DeclarationNameInfo 4138 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { 4139 DeclarationNameInfo NameInfo; 4140 NameInfo.setLoc(Name.StartLocation); 4141 4142 switch (Name.getKind()) { 4143 4144 case UnqualifiedId::IK_ImplicitSelfParam: 4145 case UnqualifiedId::IK_Identifier: 4146 NameInfo.setName(Name.Identifier); 4147 NameInfo.setLoc(Name.StartLocation); 4148 return NameInfo; 4149 4150 case UnqualifiedId::IK_OperatorFunctionId: 4151 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( 4152 Name.OperatorFunctionId.Operator)); 4153 NameInfo.setLoc(Name.StartLocation); 4154 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc 4155 = Name.OperatorFunctionId.SymbolLocations[0]; 4156 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc 4157 = Name.EndLocation.getRawEncoding(); 4158 return NameInfo; 4159 4160 case UnqualifiedId::IK_LiteralOperatorId: 4161 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( 4162 Name.Identifier)); 4163 NameInfo.setLoc(Name.StartLocation); 4164 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); 4165 return NameInfo; 4166 4167 case UnqualifiedId::IK_ConversionFunctionId: { 4168 TypeSourceInfo *TInfo; 4169 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); 4170 if (Ty.isNull()) 4171 return DeclarationNameInfo(); 4172 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( 4173 Context.getCanonicalType(Ty))); 4174 NameInfo.setLoc(Name.StartLocation); 4175 NameInfo.setNamedTypeInfo(TInfo); 4176 return NameInfo; 4177 } 4178 4179 case UnqualifiedId::IK_ConstructorName: { 4180 TypeSourceInfo *TInfo; 4181 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); 4182 if (Ty.isNull()) 4183 return DeclarationNameInfo(); 4184 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 4185 Context.getCanonicalType(Ty))); 4186 NameInfo.setLoc(Name.StartLocation); 4187 NameInfo.setNamedTypeInfo(TInfo); 4188 return NameInfo; 4189 } 4190 4191 case UnqualifiedId::IK_ConstructorTemplateId: { 4192 // In well-formed code, we can only have a constructor 4193 // template-id that refers to the current context, so go there 4194 // to find the actual type being constructed. 4195 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); 4196 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) 4197 return DeclarationNameInfo(); 4198 4199 // Determine the type of the class being constructed. 4200 QualType CurClassType = Context.getTypeDeclType(CurClass); 4201 4202 // FIXME: Check two things: that the template-id names the same type as 4203 // CurClassType, and that the template-id does not occur when the name 4204 // was qualified. 4205 4206 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 4207 Context.getCanonicalType(CurClassType))); 4208 NameInfo.setLoc(Name.StartLocation); 4209 // FIXME: should we retrieve TypeSourceInfo? 4210 NameInfo.setNamedTypeInfo(nullptr); 4211 return NameInfo; 4212 } 4213 4214 case UnqualifiedId::IK_DestructorName: { 4215 TypeSourceInfo *TInfo; 4216 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); 4217 if (Ty.isNull()) 4218 return DeclarationNameInfo(); 4219 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( 4220 Context.getCanonicalType(Ty))); 4221 NameInfo.setLoc(Name.StartLocation); 4222 NameInfo.setNamedTypeInfo(TInfo); 4223 return NameInfo; 4224 } 4225 4226 case UnqualifiedId::IK_TemplateId: { 4227 TemplateName TName = Name.TemplateId->Template.get(); 4228 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; 4229 return Context.getNameForTemplate(TName, TNameLoc); 4230 } 4231 4232 } // switch (Name.getKind()) 4233 4234 llvm_unreachable("Unknown name kind"); 4235 } 4236 4237 static QualType getCoreType(QualType Ty) { 4238 do { 4239 if (Ty->isPointerType() || Ty->isReferenceType()) 4240 Ty = Ty->getPointeeType(); 4241 else if (Ty->isArrayType()) 4242 Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); 4243 else 4244 return Ty.withoutLocalFastQualifiers(); 4245 } while (true); 4246 } 4247 4248 /// hasSimilarParameters - Determine whether the C++ functions Declaration 4249 /// and Definition have "nearly" matching parameters. This heuristic is 4250 /// used to improve diagnostics in the case where an out-of-line function 4251 /// definition doesn't match any declaration within the class or namespace. 4252 /// Also sets Params to the list of indices to the parameters that differ 4253 /// between the declaration and the definition. If hasSimilarParameters 4254 /// returns true and Params is empty, then all of the parameters match. 4255 static bool hasSimilarParameters(ASTContext &Context, 4256 FunctionDecl *Declaration, 4257 FunctionDecl *Definition, 4258 SmallVectorImpl<unsigned> &Params) { 4259 Params.clear(); 4260 if (Declaration->param_size() != Definition->param_size()) 4261 return false; 4262 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { 4263 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); 4264 QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); 4265 4266 // The parameter types are identical 4267 if (Context.hasSameType(DefParamTy, DeclParamTy)) 4268 continue; 4269 4270 QualType DeclParamBaseTy = getCoreType(DeclParamTy); 4271 QualType DefParamBaseTy = getCoreType(DefParamTy); 4272 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); 4273 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); 4274 4275 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || 4276 (DeclTyName && DeclTyName == DefTyName)) 4277 Params.push_back(Idx); 4278 else // The two parameters aren't even close 4279 return false; 4280 } 4281 4282 return true; 4283 } 4284 4285 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given 4286 /// declarator needs to be rebuilt in the current instantiation. 4287 /// Any bits of declarator which appear before the name are valid for 4288 /// consideration here. That's specifically the type in the decl spec 4289 /// and the base type in any member-pointer chunks. 4290 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, 4291 DeclarationName Name) { 4292 // The types we specifically need to rebuild are: 4293 // - typenames, typeofs, and decltypes 4294 // - types which will become injected class names 4295 // Of course, we also need to rebuild any type referencing such a 4296 // type. It's safest to just say "dependent", but we call out a 4297 // few cases here. 4298 4299 DeclSpec &DS = D.getMutableDeclSpec(); 4300 switch (DS.getTypeSpecType()) { 4301 case DeclSpec::TST_typename: 4302 case DeclSpec::TST_typeofType: 4303 case DeclSpec::TST_underlyingType: 4304 case DeclSpec::TST_atomic: { 4305 // Grab the type from the parser. 4306 TypeSourceInfo *TSI = nullptr; 4307 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); 4308 if (T.isNull() || !T->isDependentType()) break; 4309 4310 // Make sure there's a type source info. This isn't really much 4311 // of a waste; most dependent types should have type source info 4312 // attached already. 4313 if (!TSI) 4314 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); 4315 4316 // Rebuild the type in the current instantiation. 4317 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); 4318 if (!TSI) return true; 4319 4320 // Store the new type back in the decl spec. 4321 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); 4322 DS.UpdateTypeRep(LocType); 4323 break; 4324 } 4325 4326 case DeclSpec::TST_decltype: 4327 case DeclSpec::TST_typeofExpr: { 4328 Expr *E = DS.getRepAsExpr(); 4329 ExprResult Result = S.RebuildExprInCurrentInstantiation(E); 4330 if (Result.isInvalid()) return true; 4331 DS.UpdateExprRep(Result.get()); 4332 break; 4333 } 4334 4335 default: 4336 // Nothing to do for these decl specs. 4337 break; 4338 } 4339 4340 // It doesn't matter what order we do this in. 4341 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { 4342 DeclaratorChunk &Chunk = D.getTypeObject(I); 4343 4344 // The only type information in the declarator which can come 4345 // before the declaration name is the base type of a member 4346 // pointer. 4347 if (Chunk.Kind != DeclaratorChunk::MemberPointer) 4348 continue; 4349 4350 // Rebuild the scope specifier in-place. 4351 CXXScopeSpec &SS = Chunk.Mem.Scope(); 4352 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) 4353 return true; 4354 } 4355 4356 return false; 4357 } 4358 4359 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { 4360 D.setFunctionDefinitionKind(FDK_Declaration); 4361 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); 4362 4363 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && 4364 Dcl && Dcl->getDeclContext()->isFileContext()) 4365 Dcl->setTopLevelDeclInObjCContainer(); 4366 4367 return Dcl; 4368 } 4369 4370 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: 4371 /// If T is the name of a class, then each of the following shall have a 4372 /// name different from T: 4373 /// - every static data member of class T; 4374 /// - every member function of class T 4375 /// - every member of class T that is itself a type; 4376 /// \returns true if the declaration name violates these rules. 4377 bool Sema::DiagnoseClassNameShadow(DeclContext *DC, 4378 DeclarationNameInfo NameInfo) { 4379 DeclarationName Name = NameInfo.getName(); 4380 4381 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 4382 if (Record->getIdentifier() && Record->getDeclName() == Name) { 4383 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; 4384 return true; 4385 } 4386 4387 return false; 4388 } 4389 4390 /// \brief Diagnose a declaration whose declarator-id has the given 4391 /// nested-name-specifier. 4392 /// 4393 /// \param SS The nested-name-specifier of the declarator-id. 4394 /// 4395 /// \param DC The declaration context to which the nested-name-specifier 4396 /// resolves. 4397 /// 4398 /// \param Name The name of the entity being declared. 4399 /// 4400 /// \param Loc The location of the name of the entity being declared. 4401 /// 4402 /// \returns true if we cannot safely recover from this error, false otherwise. 4403 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, 4404 DeclarationName Name, 4405 SourceLocation Loc) { 4406 DeclContext *Cur = CurContext; 4407 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) 4408 Cur = Cur->getParent(); 4409 4410 // If the user provided a superfluous scope specifier that refers back to the 4411 // class in which the entity is already declared, diagnose and ignore it. 4412 // 4413 // class X { 4414 // void X::f(); 4415 // }; 4416 // 4417 // Note, it was once ill-formed to give redundant qualification in all 4418 // contexts, but that rule was removed by DR482. 4419 if (Cur->Equals(DC)) { 4420 if (Cur->isRecord()) { 4421 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification 4422 : diag::err_member_extra_qualification) 4423 << Name << FixItHint::CreateRemoval(SS.getRange()); 4424 SS.clear(); 4425 } else { 4426 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; 4427 } 4428 return false; 4429 } 4430 4431 // Check whether the qualifying scope encloses the scope of the original 4432 // declaration. 4433 if (!Cur->Encloses(DC)) { 4434 if (Cur->isRecord()) 4435 Diag(Loc, diag::err_member_qualification) 4436 << Name << SS.getRange(); 4437 else if (isa<TranslationUnitDecl>(DC)) 4438 Diag(Loc, diag::err_invalid_declarator_global_scope) 4439 << Name << SS.getRange(); 4440 else if (isa<FunctionDecl>(Cur)) 4441 Diag(Loc, diag::err_invalid_declarator_in_function) 4442 << Name << SS.getRange(); 4443 else if (isa<BlockDecl>(Cur)) 4444 Diag(Loc, diag::err_invalid_declarator_in_block) 4445 << Name << SS.getRange(); 4446 else 4447 Diag(Loc, diag::err_invalid_declarator_scope) 4448 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); 4449 4450 return true; 4451 } 4452 4453 if (Cur->isRecord()) { 4454 // Cannot qualify members within a class. 4455 Diag(Loc, diag::err_member_qualification) 4456 << Name << SS.getRange(); 4457 SS.clear(); 4458 4459 // C++ constructors and destructors with incorrect scopes can break 4460 // our AST invariants by having the wrong underlying types. If 4461 // that's the case, then drop this declaration entirely. 4462 if ((Name.getNameKind() == DeclarationName::CXXConstructorName || 4463 Name.getNameKind() == DeclarationName::CXXDestructorName) && 4464 !Context.hasSameType(Name.getCXXNameType(), 4465 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) 4466 return true; 4467 4468 return false; 4469 } 4470 4471 // C++11 [dcl.meaning]p1: 4472 // [...] "The nested-name-specifier of the qualified declarator-id shall 4473 // not begin with a decltype-specifer" 4474 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); 4475 while (SpecLoc.getPrefix()) 4476 SpecLoc = SpecLoc.getPrefix(); 4477 if (dyn_cast_or_null<DecltypeType>( 4478 SpecLoc.getNestedNameSpecifier()->getAsType())) 4479 Diag(Loc, diag::err_decltype_in_declarator) 4480 << SpecLoc.getTypeLoc().getSourceRange(); 4481 4482 return false; 4483 } 4484 4485 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, 4486 MultiTemplateParamsArg TemplateParamLists) { 4487 // TODO: consider using NameInfo for diagnostic. 4488 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 4489 DeclarationName Name = NameInfo.getName(); 4490 4491 // All of these full declarators require an identifier. If it doesn't have 4492 // one, the ParsedFreeStandingDeclSpec action should be used. 4493 if (!Name) { 4494 if (!D.isInvalidType()) // Reject this if we think it is valid. 4495 Diag(D.getDeclSpec().getLocStart(), 4496 diag::err_declarator_need_ident) 4497 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 4498 return nullptr; 4499 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) 4500 return nullptr; 4501 4502 // The scope passed in may not be a decl scope. Zip up the scope tree until 4503 // we find one that is. 4504 while ((S->getFlags() & Scope::DeclScope) == 0 || 4505 (S->getFlags() & Scope::TemplateParamScope) != 0) 4506 S = S->getParent(); 4507 4508 DeclContext *DC = CurContext; 4509 if (D.getCXXScopeSpec().isInvalid()) 4510 D.setInvalidType(); 4511 else if (D.getCXXScopeSpec().isSet()) { 4512 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 4513 UPPC_DeclarationQualifier)) 4514 return nullptr; 4515 4516 bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); 4517 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); 4518 if (!DC || isa<EnumDecl>(DC)) { 4519 // If we could not compute the declaration context, it's because the 4520 // declaration context is dependent but does not refer to a class, 4521 // class template, or class template partial specialization. Complain 4522 // and return early, to avoid the coming semantic disaster. 4523 Diag(D.getIdentifierLoc(), 4524 diag::err_template_qualified_declarator_no_match) 4525 << D.getCXXScopeSpec().getScopeRep() 4526 << D.getCXXScopeSpec().getRange(); 4527 return nullptr; 4528 } 4529 bool IsDependentContext = DC->isDependentContext(); 4530 4531 if (!IsDependentContext && 4532 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) 4533 return nullptr; 4534 4535 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { 4536 Diag(D.getIdentifierLoc(), 4537 diag::err_member_def_undefined_record) 4538 << Name << DC << D.getCXXScopeSpec().getRange(); 4539 D.setInvalidType(); 4540 } else if (!D.getDeclSpec().isFriendSpecified()) { 4541 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC, 4542 Name, D.getIdentifierLoc())) { 4543 if (DC->isRecord()) 4544 return nullptr; 4545 4546 D.setInvalidType(); 4547 } 4548 } 4549 4550 // Check whether we need to rebuild the type of the given 4551 // declaration in the current instantiation. 4552 if (EnteringContext && IsDependentContext && 4553 TemplateParamLists.size() != 0) { 4554 ContextRAII SavedContext(*this, DC); 4555 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) 4556 D.setInvalidType(); 4557 } 4558 } 4559 4560 if (DiagnoseClassNameShadow(DC, NameInfo)) 4561 // If this is a typedef, we'll end up spewing multiple diagnostics. 4562 // Just return early; it's safer. 4563 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 4564 return nullptr; 4565 4566 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 4567 QualType R = TInfo->getType(); 4568 4569 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 4570 UPPC_DeclarationType)) 4571 D.setInvalidType(); 4572 4573 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 4574 ForRedeclaration); 4575 4576 // See if this is a redefinition of a variable in the same scope. 4577 if (!D.getCXXScopeSpec().isSet()) { 4578 bool IsLinkageLookup = false; 4579 bool CreateBuiltins = false; 4580 4581 // If the declaration we're planning to build will be a function 4582 // or object with linkage, then look for another declaration with 4583 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). 4584 // 4585 // If the declaration we're planning to build will be declared with 4586 // external linkage in the translation unit, create any builtin with 4587 // the same name. 4588 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 4589 /* Do nothing*/; 4590 else if (CurContext->isFunctionOrMethod() && 4591 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || 4592 R->isFunctionType())) { 4593 IsLinkageLookup = true; 4594 CreateBuiltins = 4595 CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); 4596 } else if (CurContext->getRedeclContext()->isTranslationUnit() && 4597 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) 4598 CreateBuiltins = true; 4599 4600 if (IsLinkageLookup) 4601 Previous.clear(LookupRedeclarationWithLinkage); 4602 4603 LookupName(Previous, S, CreateBuiltins); 4604 } else { // Something like "int foo::x;" 4605 LookupQualifiedName(Previous, DC); 4606 4607 // C++ [dcl.meaning]p1: 4608 // When the declarator-id is qualified, the declaration shall refer to a 4609 // previously declared member of the class or namespace to which the 4610 // qualifier refers (or, in the case of a namespace, of an element of the 4611 // inline namespace set of that namespace (7.3.1)) or to a specialization 4612 // thereof; [...] 4613 // 4614 // Note that we already checked the context above, and that we do not have 4615 // enough information to make sure that Previous contains the declaration 4616 // we want to match. For example, given: 4617 // 4618 // class X { 4619 // void f(); 4620 // void f(float); 4621 // }; 4622 // 4623 // void X::f(int) { } // ill-formed 4624 // 4625 // In this case, Previous will point to the overload set 4626 // containing the two f's declared in X, but neither of them 4627 // matches. 4628 4629 // C++ [dcl.meaning]p1: 4630 // [...] the member shall not merely have been introduced by a 4631 // using-declaration in the scope of the class or namespace nominated by 4632 // the nested-name-specifier of the declarator-id. 4633 RemoveUsingDecls(Previous); 4634 } 4635 4636 if (Previous.isSingleResult() && 4637 Previous.getFoundDecl()->isTemplateParameter()) { 4638 // Maybe we will complain about the shadowed template parameter. 4639 if (!D.isInvalidType()) 4640 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 4641 Previous.getFoundDecl()); 4642 4643 // Just pretend that we didn't see the previous declaration. 4644 Previous.clear(); 4645 } 4646 4647 // In C++, the previous declaration we find might be a tag type 4648 // (class or enum). In this case, the new declaration will hide the 4649 // tag type. Note that this does does not apply if we're declaring a 4650 // typedef (C++ [dcl.typedef]p4). 4651 if (Previous.isSingleTagDecl() && 4652 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) 4653 Previous.clear(); 4654 4655 // Check that there are no default arguments other than in the parameters 4656 // of a function declaration (C++ only). 4657 if (getLangOpts().CPlusPlus) 4658 CheckExtraCXXDefaultArguments(D); 4659 4660 NamedDecl *New; 4661 4662 bool AddToScope = true; 4663 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4664 if (TemplateParamLists.size()) { 4665 Diag(D.getIdentifierLoc(), diag::err_template_typedef); 4666 return nullptr; 4667 } 4668 4669 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); 4670 } else if (R->isFunctionType()) { 4671 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, 4672 TemplateParamLists, 4673 AddToScope); 4674 } else { 4675 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, 4676 AddToScope); 4677 } 4678 4679 if (!New) 4680 return nullptr; 4681 4682 // If this has an identifier and is not an invalid redeclaration or 4683 // function template specialization, add it to the scope stack. 4684 if (New->getDeclName() && AddToScope && 4685 !(D.isRedeclaration() && New->isInvalidDecl())) { 4686 // Only make a locally-scoped extern declaration visible if it is the first 4687 // declaration of this entity. Qualified lookup for such an entity should 4688 // only find this declaration if there is no visible declaration of it. 4689 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl(); 4690 PushOnScopeChains(New, S, AddToContext); 4691 if (!AddToContext) 4692 CurContext->addHiddenDecl(New); 4693 } 4694 4695 return New; 4696 } 4697 4698 /// Helper method to turn variable array types into constant array 4699 /// types in certain situations which would otherwise be errors (for 4700 /// GCC compatibility). 4701 static QualType TryToFixInvalidVariablyModifiedType(QualType T, 4702 ASTContext &Context, 4703 bool &SizeIsNegative, 4704 llvm::APSInt &Oversized) { 4705 // This method tries to turn a variable array into a constant 4706 // array even when the size isn't an ICE. This is necessary 4707 // for compatibility with code that depends on gcc's buggy 4708 // constant expression folding, like struct {char x[(int)(char*)2];} 4709 SizeIsNegative = false; 4710 Oversized = 0; 4711 4712 if (T->isDependentType()) 4713 return QualType(); 4714 4715 QualifierCollector Qs; 4716 const Type *Ty = Qs.strip(T); 4717 4718 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { 4719 QualType Pointee = PTy->getPointeeType(); 4720 QualType FixedType = 4721 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, 4722 Oversized); 4723 if (FixedType.isNull()) return FixedType; 4724 FixedType = Context.getPointerType(FixedType); 4725 return Qs.apply(Context, FixedType); 4726 } 4727 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { 4728 QualType Inner = PTy->getInnerType(); 4729 QualType FixedType = 4730 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, 4731 Oversized); 4732 if (FixedType.isNull()) return FixedType; 4733 FixedType = Context.getParenType(FixedType); 4734 return Qs.apply(Context, FixedType); 4735 } 4736 4737 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); 4738 if (!VLATy) 4739 return QualType(); 4740 // FIXME: We should probably handle this case 4741 if (VLATy->getElementType()->isVariablyModifiedType()) 4742 return QualType(); 4743 4744 llvm::APSInt Res; 4745 if (!VLATy->getSizeExpr() || 4746 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context)) 4747 return QualType(); 4748 4749 // Check whether the array size is negative. 4750 if (Res.isSigned() && Res.isNegative()) { 4751 SizeIsNegative = true; 4752 return QualType(); 4753 } 4754 4755 // Check whether the array is too large to be addressed. 4756 unsigned ActiveSizeBits 4757 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), 4758 Res); 4759 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 4760 Oversized = Res; 4761 return QualType(); 4762 } 4763 4764 return Context.getConstantArrayType(VLATy->getElementType(), 4765 Res, ArrayType::Normal, 0); 4766 } 4767 4768 static void 4769 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { 4770 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { 4771 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); 4772 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), 4773 DstPTL.getPointeeLoc()); 4774 DstPTL.setStarLoc(SrcPTL.getStarLoc()); 4775 return; 4776 } 4777 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { 4778 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); 4779 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), 4780 DstPTL.getInnerLoc()); 4781 DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); 4782 DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); 4783 return; 4784 } 4785 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); 4786 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); 4787 TypeLoc SrcElemTL = SrcATL.getElementLoc(); 4788 TypeLoc DstElemTL = DstATL.getElementLoc(); 4789 DstElemTL.initializeFullCopy(SrcElemTL); 4790 DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); 4791 DstATL.setSizeExpr(SrcATL.getSizeExpr()); 4792 DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); 4793 } 4794 4795 /// Helper method to turn variable array types into constant array 4796 /// types in certain situations which would otherwise be errors (for 4797 /// GCC compatibility). 4798 static TypeSourceInfo* 4799 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, 4800 ASTContext &Context, 4801 bool &SizeIsNegative, 4802 llvm::APSInt &Oversized) { 4803 QualType FixedTy 4804 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, 4805 SizeIsNegative, Oversized); 4806 if (FixedTy.isNull()) 4807 return nullptr; 4808 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); 4809 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), 4810 FixedTInfo->getTypeLoc()); 4811 return FixedTInfo; 4812 } 4813 4814 /// \brief Register the given locally-scoped extern "C" declaration so 4815 /// that it can be found later for redeclarations. We include any extern "C" 4816 /// declaration that is not visible in the translation unit here, not just 4817 /// function-scope declarations. 4818 void 4819 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { 4820 if (!getLangOpts().CPlusPlus && 4821 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) 4822 // Don't need to track declarations in the TU in C. 4823 return; 4824 4825 // Note that we have a locally-scoped external with this name. 4826 // FIXME: There can be multiple such declarations if they are functions marked 4827 // __attribute__((overloadable)) declared in function scope in C. 4828 LocallyScopedExternCDecls[ND->getDeclName()] = ND; 4829 } 4830 4831 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { 4832 if (ExternalSource) { 4833 // Load locally-scoped external decls from the external source. 4834 // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls? 4835 SmallVector<NamedDecl *, 4> Decls; 4836 ExternalSource->ReadLocallyScopedExternCDecls(Decls); 4837 for (unsigned I = 0, N = Decls.size(); I != N; ++I) { 4838 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos 4839 = LocallyScopedExternCDecls.find(Decls[I]->getDeclName()); 4840 if (Pos == LocallyScopedExternCDecls.end()) 4841 LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I]; 4842 } 4843 } 4844 4845 NamedDecl *D = LocallyScopedExternCDecls.lookup(Name); 4846 return D ? D->getMostRecentDecl() : nullptr; 4847 } 4848 4849 /// \brief Diagnose function specifiers on a declaration of an identifier that 4850 /// does not identify a function. 4851 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { 4852 // FIXME: We should probably indicate the identifier in question to avoid 4853 // confusion for constructs like "inline int a(), b;" 4854 if (DS.isInlineSpecified()) 4855 Diag(DS.getInlineSpecLoc(), 4856 diag::err_inline_non_function); 4857 4858 if (DS.isVirtualSpecified()) 4859 Diag(DS.getVirtualSpecLoc(), 4860 diag::err_virtual_non_function); 4861 4862 if (DS.isExplicitSpecified()) 4863 Diag(DS.getExplicitSpecLoc(), 4864 diag::err_explicit_non_function); 4865 4866 if (DS.isNoreturnSpecified()) 4867 Diag(DS.getNoreturnSpecLoc(), 4868 diag::err_noreturn_non_function); 4869 } 4870 4871 NamedDecl* 4872 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, 4873 TypeSourceInfo *TInfo, LookupResult &Previous) { 4874 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). 4875 if (D.getCXXScopeSpec().isSet()) { 4876 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) 4877 << D.getCXXScopeSpec().getRange(); 4878 D.setInvalidType(); 4879 // Pretend we didn't see the scope specifier. 4880 DC = CurContext; 4881 Previous.clear(); 4882 } 4883 4884 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 4885 4886 if (D.getDeclSpec().isConstexprSpecified()) 4887 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) 4888 << 1; 4889 4890 if (D.getName().Kind != UnqualifiedId::IK_Identifier) { 4891 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) 4892 << D.getName().getSourceRange(); 4893 return nullptr; 4894 } 4895 4896 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); 4897 if (!NewTD) return nullptr; 4898 4899 // Handle attributes prior to checking for duplicates in MergeVarDecl 4900 ProcessDeclAttributes(S, NewTD, D); 4901 4902 CheckTypedefForVariablyModifiedType(S, NewTD); 4903 4904 bool Redeclaration = D.isRedeclaration(); 4905 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); 4906 D.setRedeclaration(Redeclaration); 4907 return ND; 4908 } 4909 4910 void 4911 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { 4912 // C99 6.7.7p2: If a typedef name specifies a variably modified type 4913 // then it shall have block scope. 4914 // Note that variably modified types must be fixed before merging the decl so 4915 // that redeclarations will match. 4916 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); 4917 QualType T = TInfo->getType(); 4918 if (T->isVariablyModifiedType()) { 4919 getCurFunction()->setHasBranchProtectedScope(); 4920 4921 if (S->getFnParent() == nullptr) { 4922 bool SizeIsNegative; 4923 llvm::APSInt Oversized; 4924 TypeSourceInfo *FixedTInfo = 4925 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 4926 SizeIsNegative, 4927 Oversized); 4928 if (FixedTInfo) { 4929 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size); 4930 NewTD->setTypeSourceInfo(FixedTInfo); 4931 } else { 4932 if (SizeIsNegative) 4933 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); 4934 else if (T->isVariableArrayType()) 4935 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); 4936 else if (Oversized.getBoolValue()) 4937 Diag(NewTD->getLocation(), diag::err_array_too_large) 4938 << Oversized.toString(10); 4939 else 4940 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); 4941 NewTD->setInvalidDecl(); 4942 } 4943 } 4944 } 4945 } 4946 4947 4948 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which 4949 /// declares a typedef-name, either using the 'typedef' type specifier or via 4950 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. 4951 NamedDecl* 4952 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, 4953 LookupResult &Previous, bool &Redeclaration) { 4954 // Merge the decl with the existing one if appropriate. If the decl is 4955 // in an outer scope, it isn't the same thing. 4956 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, 4957 /*AllowInlineNamespace*/false); 4958 filterNonConflictingPreviousTypedefDecls(Context, NewTD, Previous); 4959 if (!Previous.empty()) { 4960 Redeclaration = true; 4961 MergeTypedefNameDecl(NewTD, Previous); 4962 } 4963 4964 // If this is the C FILE type, notify the AST context. 4965 if (IdentifierInfo *II = NewTD->getIdentifier()) 4966 if (!NewTD->isInvalidDecl() && 4967 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 4968 if (II->isStr("FILE")) 4969 Context.setFILEDecl(NewTD); 4970 else if (II->isStr("jmp_buf")) 4971 Context.setjmp_bufDecl(NewTD); 4972 else if (II->isStr("sigjmp_buf")) 4973 Context.setsigjmp_bufDecl(NewTD); 4974 else if (II->isStr("ucontext_t")) 4975 Context.setucontext_tDecl(NewTD); 4976 } 4977 4978 return NewTD; 4979 } 4980 4981 /// \brief Determines whether the given declaration is an out-of-scope 4982 /// previous declaration. 4983 /// 4984 /// This routine should be invoked when name lookup has found a 4985 /// previous declaration (PrevDecl) that is not in the scope where a 4986 /// new declaration by the same name is being introduced. If the new 4987 /// declaration occurs in a local scope, previous declarations with 4988 /// linkage may still be considered previous declarations (C99 4989 /// 6.2.2p4-5, C++ [basic.link]p6). 4990 /// 4991 /// \param PrevDecl the previous declaration found by name 4992 /// lookup 4993 /// 4994 /// \param DC the context in which the new declaration is being 4995 /// declared. 4996 /// 4997 /// \returns true if PrevDecl is an out-of-scope previous declaration 4998 /// for a new delcaration with the same name. 4999 static bool 5000 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, 5001 ASTContext &Context) { 5002 if (!PrevDecl) 5003 return false; 5004 5005 if (!PrevDecl->hasLinkage()) 5006 return false; 5007 5008 if (Context.getLangOpts().CPlusPlus) { 5009 // C++ [basic.link]p6: 5010 // If there is a visible declaration of an entity with linkage 5011 // having the same name and type, ignoring entities declared 5012 // outside the innermost enclosing namespace scope, the block 5013 // scope declaration declares that same entity and receives the 5014 // linkage of the previous declaration. 5015 DeclContext *OuterContext = DC->getRedeclContext(); 5016 if (!OuterContext->isFunctionOrMethod()) 5017 // This rule only applies to block-scope declarations. 5018 return false; 5019 5020 DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); 5021 if (PrevOuterContext->isRecord()) 5022 // We found a member function: ignore it. 5023 return false; 5024 5025 // Find the innermost enclosing namespace for the new and 5026 // previous declarations. 5027 OuterContext = OuterContext->getEnclosingNamespaceContext(); 5028 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); 5029 5030 // The previous declaration is in a different namespace, so it 5031 // isn't the same function. 5032 if (!OuterContext->Equals(PrevOuterContext)) 5033 return false; 5034 } 5035 5036 return true; 5037 } 5038 5039 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) { 5040 CXXScopeSpec &SS = D.getCXXScopeSpec(); 5041 if (!SS.isSet()) return; 5042 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext())); 5043 } 5044 5045 bool Sema::inferObjCARCLifetime(ValueDecl *decl) { 5046 QualType type = decl->getType(); 5047 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); 5048 if (lifetime == Qualifiers::OCL_Autoreleasing) { 5049 // Various kinds of declaration aren't allowed to be __autoreleasing. 5050 unsigned kind = -1U; 5051 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 5052 if (var->hasAttr<BlocksAttr>()) 5053 kind = 0; // __block 5054 else if (!var->hasLocalStorage()) 5055 kind = 1; // global 5056 } else if (isa<ObjCIvarDecl>(decl)) { 5057 kind = 3; // ivar 5058 } else if (isa<FieldDecl>(decl)) { 5059 kind = 2; // field 5060 } 5061 5062 if (kind != -1U) { 5063 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) 5064 << kind; 5065 } 5066 } else if (lifetime == Qualifiers::OCL_None) { 5067 // Try to infer lifetime. 5068 if (!type->isObjCLifetimeType()) 5069 return false; 5070 5071 lifetime = type->getObjCARCImplicitLifetime(); 5072 type = Context.getLifetimeQualifiedType(type, lifetime); 5073 decl->setType(type); 5074 } 5075 5076 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 5077 // Thread-local variables cannot have lifetime. 5078 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && 5079 var->getTLSKind()) { 5080 Diag(var->getLocation(), diag::err_arc_thread_ownership) 5081 << var->getType(); 5082 return true; 5083 } 5084 } 5085 5086 return false; 5087 } 5088 5089 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { 5090 // Ensure that an auto decl is deduced otherwise the checks below might cache 5091 // the wrong linkage. 5092 assert(S.ParsingInitForAutoVars.count(&ND) == 0); 5093 5094 // 'weak' only applies to declarations with external linkage. 5095 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { 5096 if (!ND.isExternallyVisible()) { 5097 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); 5098 ND.dropAttr<WeakAttr>(); 5099 } 5100 } 5101 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { 5102 if (ND.isExternallyVisible()) { 5103 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); 5104 ND.dropAttr<WeakRefAttr>(); 5105 } 5106 } 5107 5108 // 'selectany' only applies to externally visible varable declarations. 5109 // It does not apply to functions. 5110 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { 5111 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { 5112 S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data); 5113 ND.dropAttr<SelectAnyAttr>(); 5114 } 5115 } 5116 5117 // dll attributes require external linkage. 5118 if (const InheritableAttr *Attr = getDLLAttr(&ND)) { 5119 if (!ND.isExternallyVisible()) { 5120 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) 5121 << &ND << Attr; 5122 ND.setInvalidDecl(); 5123 } 5124 } 5125 } 5126 5127 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, 5128 NamedDecl *NewDecl, 5129 bool IsSpecialization) { 5130 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) 5131 OldDecl = OldTD->getTemplatedDecl(); 5132 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) 5133 NewDecl = NewTD->getTemplatedDecl(); 5134 5135 if (!OldDecl || !NewDecl) 5136 return; 5137 5138 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); 5139 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); 5140 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); 5141 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); 5142 5143 // dllimport and dllexport are inheritable attributes so we have to exclude 5144 // inherited attribute instances. 5145 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || 5146 (NewExportAttr && !NewExportAttr->isInherited()); 5147 5148 // A redeclaration is not allowed to add a dllimport or dllexport attribute, 5149 // the only exception being explicit specializations. 5150 // Implicitly generated declarations are also excluded for now because there 5151 // is no other way to switch these to use dllimport or dllexport. 5152 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; 5153 5154 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { 5155 // If the declaration hasn't been used yet, allow with a warning for 5156 // free functions and global variables. 5157 bool JustWarn = false; 5158 if (!OldDecl->isUsed() && !OldDecl->isCXXClassMember()) { 5159 auto *VD = dyn_cast<VarDecl>(OldDecl); 5160 if (VD && !VD->getDescribedVarTemplate()) 5161 JustWarn = true; 5162 auto *FD = dyn_cast<FunctionDecl>(OldDecl); 5163 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) 5164 JustWarn = true; 5165 } 5166 5167 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration 5168 : diag::err_attribute_dll_redeclaration; 5169 S.Diag(NewDecl->getLocation(), DiagID) 5170 << NewDecl 5171 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); 5172 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 5173 if (!JustWarn) { 5174 NewDecl->setInvalidDecl(); 5175 return; 5176 } 5177 } 5178 5179 // A redeclaration is not allowed to drop a dllimport attribute, the only 5180 // exceptions being inline function definitions, local extern declarations, 5181 // and qualified friend declarations. 5182 // NB: MSVC converts such a declaration to dllexport. 5183 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; 5184 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) 5185 // Ignore static data because out-of-line definitions are diagnosed 5186 // separately. 5187 IsStaticDataMember = VD->isStaticDataMember(); 5188 else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { 5189 IsInline = FD->isInlined(); 5190 IsQualifiedFriend = FD->getQualifier() && 5191 FD->getFriendObjectKind() == Decl::FOK_Declared; 5192 } 5193 5194 if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember && 5195 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { 5196 S.Diag(NewDecl->getLocation(), 5197 diag::warn_redeclaration_without_attribute_prev_attribute_ignored) 5198 << NewDecl << OldImportAttr; 5199 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 5200 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); 5201 OldDecl->dropAttr<DLLImportAttr>(); 5202 NewDecl->dropAttr<DLLImportAttr>(); 5203 } else if (IsInline && OldImportAttr && 5204 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5205 // In MinGW, seeing a function declared inline drops the dllimport attribute. 5206 OldDecl->dropAttr<DLLImportAttr>(); 5207 NewDecl->dropAttr<DLLImportAttr>(); 5208 S.Diag(NewDecl->getLocation(), 5209 diag::warn_dllimport_dropped_from_inline_function) 5210 << NewDecl << OldImportAttr; 5211 } 5212 } 5213 5214 /// Given that we are within the definition of the given function, 5215 /// will that definition behave like C99's 'inline', where the 5216 /// definition is discarded except for optimization purposes? 5217 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { 5218 // Try to avoid calling GetGVALinkageForFunction. 5219 5220 // All cases of this require the 'inline' keyword. 5221 if (!FD->isInlined()) return false; 5222 5223 // This is only possible in C++ with the gnu_inline attribute. 5224 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) 5225 return false; 5226 5227 // Okay, go ahead and call the relatively-more-expensive function. 5228 5229 #ifndef NDEBUG 5230 // AST quite reasonably asserts that it's working on a function 5231 // definition. We don't really have a way to tell it that we're 5232 // currently defining the function, so just lie to it in +Asserts 5233 // builds. This is an awful hack. 5234 FD->setLazyBody(1); 5235 #endif 5236 5237 bool isC99Inline = 5238 S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; 5239 5240 #ifndef NDEBUG 5241 FD->setLazyBody(0); 5242 #endif 5243 5244 return isC99Inline; 5245 } 5246 5247 /// Determine whether a variable is extern "C" prior to attaching 5248 /// an initializer. We can't just call isExternC() here, because that 5249 /// will also compute and cache whether the declaration is externally 5250 /// visible, which might change when we attach the initializer. 5251 /// 5252 /// This can only be used if the declaration is known to not be a 5253 /// redeclaration of an internal linkage declaration. 5254 /// 5255 /// For instance: 5256 /// 5257 /// auto x = []{}; 5258 /// 5259 /// Attaching the initializer here makes this declaration not externally 5260 /// visible, because its type has internal linkage. 5261 /// 5262 /// FIXME: This is a hack. 5263 template<typename T> 5264 static bool isIncompleteDeclExternC(Sema &S, const T *D) { 5265 if (S.getLangOpts().CPlusPlus) { 5266 // In C++, the overloadable attribute negates the effects of extern "C". 5267 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) 5268 return false; 5269 } 5270 return D->isExternC(); 5271 } 5272 5273 static bool shouldConsiderLinkage(const VarDecl *VD) { 5274 const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); 5275 if (DC->isFunctionOrMethod()) 5276 return VD->hasExternalStorage(); 5277 if (DC->isFileContext()) 5278 return true; 5279 if (DC->isRecord()) 5280 return false; 5281 llvm_unreachable("Unexpected context"); 5282 } 5283 5284 static bool shouldConsiderLinkage(const FunctionDecl *FD) { 5285 const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); 5286 if (DC->isFileContext() || DC->isFunctionOrMethod()) 5287 return true; 5288 if (DC->isRecord()) 5289 return false; 5290 llvm_unreachable("Unexpected context"); 5291 } 5292 5293 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList, 5294 AttributeList::Kind Kind) { 5295 for (const AttributeList *L = AttrList; L; L = L->getNext()) 5296 if (L->getKind() == Kind) 5297 return true; 5298 return false; 5299 } 5300 5301 static bool hasParsedAttr(Scope *S, const Declarator &PD, 5302 AttributeList::Kind Kind) { 5303 // Check decl attributes on the DeclSpec. 5304 if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind)) 5305 return true; 5306 5307 // Walk the declarator structure, checking decl attributes that were in a type 5308 // position to the decl itself. 5309 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { 5310 if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind)) 5311 return true; 5312 } 5313 5314 // Finally, check attributes on the decl itself. 5315 return hasParsedAttr(S, PD.getAttributes(), Kind); 5316 } 5317 5318 /// Adjust the \c DeclContext for a function or variable that might be a 5319 /// function-local external declaration. 5320 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { 5321 if (!DC->isFunctionOrMethod()) 5322 return false; 5323 5324 // If this is a local extern function or variable declared within a function 5325 // template, don't add it into the enclosing namespace scope until it is 5326 // instantiated; it might have a dependent type right now. 5327 if (DC->isDependentContext()) 5328 return true; 5329 5330 // C++11 [basic.link]p7: 5331 // When a block scope declaration of an entity with linkage is not found to 5332 // refer to some other declaration, then that entity is a member of the 5333 // innermost enclosing namespace. 5334 // 5335 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a 5336 // semantically-enclosing namespace, not a lexically-enclosing one. 5337 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) 5338 DC = DC->getParent(); 5339 return true; 5340 } 5341 5342 NamedDecl * 5343 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, 5344 TypeSourceInfo *TInfo, LookupResult &Previous, 5345 MultiTemplateParamsArg TemplateParamLists, 5346 bool &AddToScope) { 5347 QualType R = TInfo->getType(); 5348 DeclarationName Name = GetNameForDeclarator(D).getName(); 5349 5350 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); 5351 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); 5352 5353 // dllimport globals without explicit storage class are treated as extern. We 5354 // have to change the storage class this early to get the right DeclContext. 5355 if (SC == SC_None && !DC->isRecord() && 5356 hasParsedAttr(S, D, AttributeList::AT_DLLImport) && 5357 !hasParsedAttr(S, D, AttributeList::AT_DLLExport)) 5358 SC = SC_Extern; 5359 5360 DeclContext *OriginalDC = DC; 5361 bool IsLocalExternDecl = SC == SC_Extern && 5362 adjustContextForLocalExternDecl(DC); 5363 5364 if (getLangOpts().OpenCL) { 5365 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. 5366 QualType NR = R; 5367 while (NR->isPointerType()) { 5368 if (NR->isFunctionPointerType()) { 5369 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable); 5370 D.setInvalidType(); 5371 break; 5372 } 5373 NR = NR->getPointeeType(); 5374 } 5375 5376 if (!getOpenCLOptions().cl_khr_fp16) { 5377 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and 5378 // half array type (unless the cl_khr_fp16 extension is enabled). 5379 if (Context.getBaseElementType(R)->isHalfType()) { 5380 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R; 5381 D.setInvalidType(); 5382 } 5383 } 5384 } 5385 5386 if (SCSpec == DeclSpec::SCS_mutable) { 5387 // mutable can only appear on non-static class members, so it's always 5388 // an error here 5389 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); 5390 D.setInvalidType(); 5391 SC = SC_None; 5392 } 5393 5394 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && 5395 !D.getAsmLabel() && !getSourceManager().isInSystemMacro( 5396 D.getDeclSpec().getStorageClassSpecLoc())) { 5397 // In C++11, the 'register' storage class specifier is deprecated. 5398 // Suppress the warning in system macros, it's used in macros in some 5399 // popular C system headers, such as in glibc's htonl() macro. 5400 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 5401 diag::warn_deprecated_register) 5402 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 5403 } 5404 5405 IdentifierInfo *II = Name.getAsIdentifierInfo(); 5406 if (!II) { 5407 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) 5408 << Name; 5409 return nullptr; 5410 } 5411 5412 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 5413 5414 if (!DC->isRecord() && S->getFnParent() == nullptr) { 5415 // C99 6.9p2: The storage-class specifiers auto and register shall not 5416 // appear in the declaration specifiers in an external declaration. 5417 // Global Register+Asm is a GNU extension we support. 5418 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { 5419 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); 5420 D.setInvalidType(); 5421 } 5422 } 5423 5424 if (getLangOpts().OpenCL) { 5425 // Set up the special work-group-local storage class for variables in the 5426 // OpenCL __local address space. 5427 if (R.getAddressSpace() == LangAS::opencl_local) { 5428 SC = SC_OpenCLWorkGroupLocal; 5429 } 5430 5431 // OpenCL v1.2 s6.9.b p4: 5432 // The sampler type cannot be used with the __local and __global address 5433 // space qualifiers. 5434 if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local || 5435 R.getAddressSpace() == LangAS::opencl_global)) { 5436 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace); 5437 } 5438 5439 // OpenCL 1.2 spec, p6.9 r: 5440 // The event type cannot be used to declare a program scope variable. 5441 // The event type cannot be used with the __local, __constant and __global 5442 // address space qualifiers. 5443 if (R->isEventT()) { 5444 if (S->getParent() == nullptr) { 5445 Diag(D.getLocStart(), diag::err_event_t_global_var); 5446 D.setInvalidType(); 5447 } 5448 5449 if (R.getAddressSpace()) { 5450 Diag(D.getLocStart(), diag::err_event_t_addr_space_qual); 5451 D.setInvalidType(); 5452 } 5453 } 5454 } 5455 5456 bool IsExplicitSpecialization = false; 5457 bool IsVariableTemplateSpecialization = false; 5458 bool IsPartialSpecialization = false; 5459 bool IsVariableTemplate = false; 5460 VarDecl *NewVD = nullptr; 5461 VarTemplateDecl *NewTemplate = nullptr; 5462 TemplateParameterList *TemplateParams = nullptr; 5463 if (!getLangOpts().CPlusPlus) { 5464 NewVD = VarDecl::Create(Context, DC, D.getLocStart(), 5465 D.getIdentifierLoc(), II, 5466 R, TInfo, SC); 5467 5468 if (D.isInvalidType()) 5469 NewVD->setInvalidDecl(); 5470 } else { 5471 bool Invalid = false; 5472 5473 if (DC->isRecord() && !CurContext->isRecord()) { 5474 // This is an out-of-line definition of a static data member. 5475 switch (SC) { 5476 case SC_None: 5477 break; 5478 case SC_Static: 5479 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 5480 diag::err_static_out_of_line) 5481 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 5482 break; 5483 case SC_Auto: 5484 case SC_Register: 5485 case SC_Extern: 5486 // [dcl.stc] p2: The auto or register specifiers shall be applied only 5487 // to names of variables declared in a block or to function parameters. 5488 // [dcl.stc] p6: The extern specifier cannot be used in the declaration 5489 // of class members 5490 5491 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 5492 diag::err_storage_class_for_static_member) 5493 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 5494 break; 5495 case SC_PrivateExtern: 5496 llvm_unreachable("C storage class in c++!"); 5497 case SC_OpenCLWorkGroupLocal: 5498 llvm_unreachable("OpenCL storage class in c++!"); 5499 } 5500 } 5501 5502 if (SC == SC_Static && CurContext->isRecord()) { 5503 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { 5504 if (RD->isLocalClass()) 5505 Diag(D.getIdentifierLoc(), 5506 diag::err_static_data_member_not_allowed_in_local_class) 5507 << Name << RD->getDeclName(); 5508 5509 // C++98 [class.union]p1: If a union contains a static data member, 5510 // the program is ill-formed. C++11 drops this restriction. 5511 if (RD->isUnion()) 5512 Diag(D.getIdentifierLoc(), 5513 getLangOpts().CPlusPlus11 5514 ? diag::warn_cxx98_compat_static_data_member_in_union 5515 : diag::ext_static_data_member_in_union) << Name; 5516 // We conservatively disallow static data members in anonymous structs. 5517 else if (!RD->getDeclName()) 5518 Diag(D.getIdentifierLoc(), 5519 diag::err_static_data_member_not_allowed_in_anon_struct) 5520 << Name << RD->isUnion(); 5521 } 5522 } 5523 5524 // Match up the template parameter lists with the scope specifier, then 5525 // determine whether we have a template or a template specialization. 5526 TemplateParams = MatchTemplateParametersToScopeSpecifier( 5527 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(), 5528 D.getCXXScopeSpec(), 5529 D.getName().getKind() == UnqualifiedId::IK_TemplateId 5530 ? D.getName().TemplateId 5531 : nullptr, 5532 TemplateParamLists, 5533 /*never a friend*/ false, IsExplicitSpecialization, Invalid); 5534 5535 if (TemplateParams) { 5536 if (!TemplateParams->size() && 5537 D.getName().getKind() != UnqualifiedId::IK_TemplateId) { 5538 // There is an extraneous 'template<>' for this variable. Complain 5539 // about it, but allow the declaration of the variable. 5540 Diag(TemplateParams->getTemplateLoc(), 5541 diag::err_template_variable_noparams) 5542 << II 5543 << SourceRange(TemplateParams->getTemplateLoc(), 5544 TemplateParams->getRAngleLoc()); 5545 TemplateParams = nullptr; 5546 } else { 5547 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5548 // This is an explicit specialization or a partial specialization. 5549 // FIXME: Check that we can declare a specialization here. 5550 IsVariableTemplateSpecialization = true; 5551 IsPartialSpecialization = TemplateParams->size() > 0; 5552 } else { // if (TemplateParams->size() > 0) 5553 // This is a template declaration. 5554 IsVariableTemplate = true; 5555 5556 // Check that we can declare a template here. 5557 if (CheckTemplateDeclScope(S, TemplateParams)) 5558 return nullptr; 5559 5560 // Only C++1y supports variable templates (N3651). 5561 Diag(D.getIdentifierLoc(), 5562 getLangOpts().CPlusPlus14 5563 ? diag::warn_cxx11_compat_variable_template 5564 : diag::ext_variable_template); 5565 } 5566 } 5567 } else { 5568 assert(D.getName().getKind() != UnqualifiedId::IK_TemplateId && 5569 "should have a 'template<>' for this decl"); 5570 } 5571 5572 if (IsVariableTemplateSpecialization) { 5573 SourceLocation TemplateKWLoc = 5574 TemplateParamLists.size() > 0 5575 ? TemplateParamLists[0]->getTemplateLoc() 5576 : SourceLocation(); 5577 DeclResult Res = ActOnVarTemplateSpecialization( 5578 S, D, TInfo, TemplateKWLoc, TemplateParams, SC, 5579 IsPartialSpecialization); 5580 if (Res.isInvalid()) 5581 return nullptr; 5582 NewVD = cast<VarDecl>(Res.get()); 5583 AddToScope = false; 5584 } else 5585 NewVD = VarDecl::Create(Context, DC, D.getLocStart(), 5586 D.getIdentifierLoc(), II, R, TInfo, SC); 5587 5588 // If this is supposed to be a variable template, create it as such. 5589 if (IsVariableTemplate) { 5590 NewTemplate = 5591 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, 5592 TemplateParams, NewVD); 5593 NewVD->setDescribedVarTemplate(NewTemplate); 5594 } 5595 5596 // If this decl has an auto type in need of deduction, make a note of the 5597 // Decl so we can diagnose uses of it in its own initializer. 5598 if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType()) 5599 ParsingInitForAutoVars.insert(NewVD); 5600 5601 if (D.isInvalidType() || Invalid) { 5602 NewVD->setInvalidDecl(); 5603 if (NewTemplate) 5604 NewTemplate->setInvalidDecl(); 5605 } 5606 5607 SetNestedNameSpecifier(NewVD, D); 5608 5609 // If we have any template parameter lists that don't directly belong to 5610 // the variable (matching the scope specifier), store them. 5611 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; 5612 if (TemplateParamLists.size() > VDTemplateParamLists) 5613 NewVD->setTemplateParameterListsInfo( 5614 Context, TemplateParamLists.size() - VDTemplateParamLists, 5615 TemplateParamLists.data()); 5616 5617 if (D.getDeclSpec().isConstexprSpecified()) 5618 NewVD->setConstexpr(true); 5619 } 5620 5621 // Set the lexical context. If the declarator has a C++ scope specifier, the 5622 // lexical context will be different from the semantic context. 5623 NewVD->setLexicalDeclContext(CurContext); 5624 if (NewTemplate) 5625 NewTemplate->setLexicalDeclContext(CurContext); 5626 5627 if (IsLocalExternDecl) 5628 NewVD->setLocalExternDecl(); 5629 5630 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { 5631 // C++11 [dcl.stc]p4: 5632 // When thread_local is applied to a variable of block scope the 5633 // storage-class-specifier static is implied if it does not appear 5634 // explicitly. 5635 // Core issue: 'static' is not implied if the variable is declared 5636 // 'extern'. 5637 if (NewVD->hasLocalStorage() && 5638 (SCSpec != DeclSpec::SCS_unspecified || 5639 TSCS != DeclSpec::TSCS_thread_local || 5640 !DC->isFunctionOrMethod())) 5641 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 5642 diag::err_thread_non_global) 5643 << DeclSpec::getSpecifierName(TSCS); 5644 else if (!Context.getTargetInfo().isTLSSupported()) 5645 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 5646 diag::err_thread_unsupported); 5647 else 5648 NewVD->setTSCSpec(TSCS); 5649 } 5650 5651 // C99 6.7.4p3 5652 // An inline definition of a function with external linkage shall 5653 // not contain a definition of a modifiable object with static or 5654 // thread storage duration... 5655 // We only apply this when the function is required to be defined 5656 // elsewhere, i.e. when the function is not 'extern inline'. Note 5657 // that a local variable with thread storage duration still has to 5658 // be marked 'static'. Also note that it's possible to get these 5659 // semantics in C++ using __attribute__((gnu_inline)). 5660 if (SC == SC_Static && S->getFnParent() != nullptr && 5661 !NewVD->getType().isConstQualified()) { 5662 FunctionDecl *CurFD = getCurFunctionDecl(); 5663 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { 5664 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 5665 diag::warn_static_local_in_extern_inline); 5666 MaybeSuggestAddingStaticToDecl(CurFD); 5667 } 5668 } 5669 5670 if (D.getDeclSpec().isModulePrivateSpecified()) { 5671 if (IsVariableTemplateSpecialization) 5672 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 5673 << (IsPartialSpecialization ? 1 : 0) 5674 << FixItHint::CreateRemoval( 5675 D.getDeclSpec().getModulePrivateSpecLoc()); 5676 else if (IsExplicitSpecialization) 5677 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 5678 << 2 5679 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 5680 else if (NewVD->hasLocalStorage()) 5681 Diag(NewVD->getLocation(), diag::err_module_private_local) 5682 << 0 << NewVD->getDeclName() 5683 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 5684 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 5685 else { 5686 NewVD->setModulePrivate(); 5687 if (NewTemplate) 5688 NewTemplate->setModulePrivate(); 5689 } 5690 } 5691 5692 // Handle attributes prior to checking for duplicates in MergeVarDecl 5693 ProcessDeclAttributes(S, NewVD, D); 5694 5695 if (getLangOpts().CUDA) { 5696 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static 5697 // storage [duration]." 5698 if (SC == SC_None && S->getFnParent() != nullptr && 5699 (NewVD->hasAttr<CUDASharedAttr>() || 5700 NewVD->hasAttr<CUDAConstantAttr>())) { 5701 NewVD->setStorageClass(SC_Static); 5702 } 5703 } 5704 5705 // Ensure that dllimport globals without explicit storage class are treated as 5706 // extern. The storage class is set above using parsed attributes. Now we can 5707 // check the VarDecl itself. 5708 assert(!NewVD->hasAttr<DLLImportAttr>() || 5709 NewVD->getAttr<DLLImportAttr>()->isInherited() || 5710 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); 5711 5712 // In auto-retain/release, infer strong retension for variables of 5713 // retainable type. 5714 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) 5715 NewVD->setInvalidDecl(); 5716 5717 // Handle GNU asm-label extension (encoded as an attribute). 5718 if (Expr *E = (Expr*)D.getAsmLabel()) { 5719 // The parser guarantees this is a string. 5720 StringLiteral *SE = cast<StringLiteral>(E); 5721 StringRef Label = SE->getString(); 5722 if (S->getFnParent() != nullptr) { 5723 switch (SC) { 5724 case SC_None: 5725 case SC_Auto: 5726 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; 5727 break; 5728 case SC_Register: 5729 // Local Named register 5730 if (!Context.getTargetInfo().isValidGCCRegisterName(Label)) 5731 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 5732 break; 5733 case SC_Static: 5734 case SC_Extern: 5735 case SC_PrivateExtern: 5736 case SC_OpenCLWorkGroupLocal: 5737 break; 5738 } 5739 } else if (SC == SC_Register) { 5740 // Global Named register 5741 if (!Context.getTargetInfo().isValidGCCRegisterName(Label)) 5742 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 5743 if (!R->isIntegralType(Context) && !R->isPointerType()) { 5744 Diag(D.getLocStart(), diag::err_asm_bad_register_type); 5745 NewVD->setInvalidDecl(true); 5746 } 5747 } 5748 5749 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), 5750 Context, Label, 0)); 5751 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 5752 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 5753 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); 5754 if (I != ExtnameUndeclaredIdentifiers.end()) { 5755 NewVD->addAttr(I->second); 5756 ExtnameUndeclaredIdentifiers.erase(I); 5757 } 5758 } 5759 5760 // Diagnose shadowed variables before filtering for scope. 5761 if (D.getCXXScopeSpec().isEmpty()) 5762 CheckShadow(S, NewVD, Previous); 5763 5764 // Don't consider existing declarations that are in a different 5765 // scope and are out-of-semantic-context declarations (if the new 5766 // declaration has linkage). 5767 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), 5768 D.getCXXScopeSpec().isNotEmpty() || 5769 IsExplicitSpecialization || 5770 IsVariableTemplateSpecialization); 5771 5772 // Check whether the previous declaration is in the same block scope. This 5773 // affects whether we merge types with it, per C++11 [dcl.array]p3. 5774 if (getLangOpts().CPlusPlus && 5775 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) 5776 NewVD->setPreviousDeclInSameBlockScope( 5777 Previous.isSingleResult() && !Previous.isShadowed() && 5778 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); 5779 5780 if (!getLangOpts().CPlusPlus) { 5781 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 5782 } else { 5783 // If this is an explicit specialization of a static data member, check it. 5784 if (IsExplicitSpecialization && !NewVD->isInvalidDecl() && 5785 CheckMemberSpecialization(NewVD, Previous)) 5786 NewVD->setInvalidDecl(); 5787 5788 // Merge the decl with the existing one if appropriate. 5789 if (!Previous.empty()) { 5790 if (Previous.isSingleResult() && 5791 isa<FieldDecl>(Previous.getFoundDecl()) && 5792 D.getCXXScopeSpec().isSet()) { 5793 // The user tried to define a non-static data member 5794 // out-of-line (C++ [dcl.meaning]p1). 5795 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) 5796 << D.getCXXScopeSpec().getRange(); 5797 Previous.clear(); 5798 NewVD->setInvalidDecl(); 5799 } 5800 } else if (D.getCXXScopeSpec().isSet()) { 5801 // No previous declaration in the qualifying scope. 5802 Diag(D.getIdentifierLoc(), diag::err_no_member) 5803 << Name << computeDeclContext(D.getCXXScopeSpec(), true) 5804 << D.getCXXScopeSpec().getRange(); 5805 NewVD->setInvalidDecl(); 5806 } 5807 5808 if (!IsVariableTemplateSpecialization) 5809 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 5810 5811 if (NewTemplate) { 5812 VarTemplateDecl *PrevVarTemplate = 5813 NewVD->getPreviousDecl() 5814 ? NewVD->getPreviousDecl()->getDescribedVarTemplate() 5815 : nullptr; 5816 5817 // Check the template parameter list of this declaration, possibly 5818 // merging in the template parameter list from the previous variable 5819 // template declaration. 5820 if (CheckTemplateParameterList( 5821 TemplateParams, 5822 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() 5823 : nullptr, 5824 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && 5825 DC->isDependentContext()) 5826 ? TPC_ClassTemplateMember 5827 : TPC_VarTemplate)) 5828 NewVD->setInvalidDecl(); 5829 5830 // If we are providing an explicit specialization of a static variable 5831 // template, make a note of that. 5832 if (PrevVarTemplate && 5833 PrevVarTemplate->getInstantiatedFromMemberTemplate()) 5834 PrevVarTemplate->setMemberSpecialization(); 5835 } 5836 } 5837 5838 ProcessPragmaWeak(S, NewVD); 5839 5840 // If this is the first declaration of an extern C variable, update 5841 // the map of such variables. 5842 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && 5843 isIncompleteDeclExternC(*this, NewVD)) 5844 RegisterLocallyScopedExternCDecl(NewVD, S); 5845 5846 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 5847 Decl *ManglingContextDecl; 5848 if (MangleNumberingContext *MCtx = 5849 getCurrentMangleNumberContext(NewVD->getDeclContext(), 5850 ManglingContextDecl)) { 5851 Context.setManglingNumber( 5852 NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber())); 5853 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 5854 } 5855 } 5856 5857 if (D.isRedeclaration() && !Previous.empty()) { 5858 checkDLLAttributeRedeclaration( 5859 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD, 5860 IsExplicitSpecialization); 5861 } 5862 5863 if (NewTemplate) { 5864 if (NewVD->isInvalidDecl()) 5865 NewTemplate->setInvalidDecl(); 5866 ActOnDocumentableDecl(NewTemplate); 5867 return NewTemplate; 5868 } 5869 5870 return NewVD; 5871 } 5872 5873 /// \brief Diagnose variable or built-in function shadowing. Implements 5874 /// -Wshadow. 5875 /// 5876 /// This method is called whenever a VarDecl is added to a "useful" 5877 /// scope. 5878 /// 5879 /// \param S the scope in which the shadowing name is being declared 5880 /// \param R the lookup of the name 5881 /// 5882 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) { 5883 // Return if warning is ignored. 5884 if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc())) 5885 return; 5886 5887 // Don't diagnose declarations at file scope. 5888 if (D->hasGlobalStorage()) 5889 return; 5890 5891 DeclContext *NewDC = D->getDeclContext(); 5892 5893 // Only diagnose if we're shadowing an unambiguous field or variable. 5894 if (R.getResultKind() != LookupResult::Found) 5895 return; 5896 5897 NamedDecl* ShadowedDecl = R.getFoundDecl(); 5898 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl)) 5899 return; 5900 5901 // Fields are not shadowed by variables in C++ static methods. 5902 if (isa<FieldDecl>(ShadowedDecl)) 5903 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) 5904 if (MD->isStatic()) 5905 return; 5906 5907 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) 5908 if (shadowedVar->isExternC()) { 5909 // For shadowing external vars, make sure that we point to the global 5910 // declaration, not a locally scoped extern declaration. 5911 for (auto I : shadowedVar->redecls()) 5912 if (I->isFileVarDecl()) { 5913 ShadowedDecl = I; 5914 break; 5915 } 5916 } 5917 5918 DeclContext *OldDC = ShadowedDecl->getDeclContext(); 5919 5920 // Only warn about certain kinds of shadowing for class members. 5921 if (NewDC && NewDC->isRecord()) { 5922 // In particular, don't warn about shadowing non-class members. 5923 if (!OldDC->isRecord()) 5924 return; 5925 5926 // TODO: should we warn about static data members shadowing 5927 // static data members from base classes? 5928 5929 // TODO: don't diagnose for inaccessible shadowed members. 5930 // This is hard to do perfectly because we might friend the 5931 // shadowing context, but that's just a false negative. 5932 } 5933 5934 // Determine what kind of declaration we're shadowing. 5935 unsigned Kind; 5936 if (isa<RecordDecl>(OldDC)) { 5937 if (isa<FieldDecl>(ShadowedDecl)) 5938 Kind = 3; // field 5939 else 5940 Kind = 2; // static data member 5941 } else if (OldDC->isFileContext()) 5942 Kind = 1; // global 5943 else 5944 Kind = 0; // local 5945 5946 DeclarationName Name = R.getLookupName(); 5947 5948 // Emit warning and note. 5949 if (getSourceManager().isInSystemMacro(R.getNameLoc())) 5950 return; 5951 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC; 5952 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 5953 } 5954 5955 /// \brief Check -Wshadow without the advantage of a previous lookup. 5956 void Sema::CheckShadow(Scope *S, VarDecl *D) { 5957 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) 5958 return; 5959 5960 LookupResult R(*this, D->getDeclName(), D->getLocation(), 5961 Sema::LookupOrdinaryName, Sema::ForRedeclaration); 5962 LookupName(R, S); 5963 CheckShadow(S, D, R); 5964 } 5965 5966 /// Check for conflict between this global or extern "C" declaration and 5967 /// previous global or extern "C" declarations. This is only used in C++. 5968 template<typename T> 5969 static bool checkGlobalOrExternCConflict( 5970 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { 5971 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); 5972 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); 5973 5974 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { 5975 // The common case: this global doesn't conflict with any extern "C" 5976 // declaration. 5977 return false; 5978 } 5979 5980 if (Prev) { 5981 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { 5982 // Both the old and new declarations have C language linkage. This is a 5983 // redeclaration. 5984 Previous.clear(); 5985 Previous.addDecl(Prev); 5986 return true; 5987 } 5988 5989 // This is a global, non-extern "C" declaration, and there is a previous 5990 // non-global extern "C" declaration. Diagnose if this is a variable 5991 // declaration. 5992 if (!isa<VarDecl>(ND)) 5993 return false; 5994 } else { 5995 // The declaration is extern "C". Check for any declaration in the 5996 // translation unit which might conflict. 5997 if (IsGlobal) { 5998 // We have already performed the lookup into the translation unit. 5999 IsGlobal = false; 6000 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6001 I != E; ++I) { 6002 if (isa<VarDecl>(*I)) { 6003 Prev = *I; 6004 break; 6005 } 6006 } 6007 } else { 6008 DeclContext::lookup_result R = 6009 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); 6010 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); 6011 I != E; ++I) { 6012 if (isa<VarDecl>(*I)) { 6013 Prev = *I; 6014 break; 6015 } 6016 // FIXME: If we have any other entity with this name in global scope, 6017 // the declaration is ill-formed, but that is a defect: it breaks the 6018 // 'stat' hack, for instance. Only variables can have mangled name 6019 // clashes with extern "C" declarations, so only they deserve a 6020 // diagnostic. 6021 } 6022 } 6023 6024 if (!Prev) 6025 return false; 6026 } 6027 6028 // Use the first declaration's location to ensure we point at something which 6029 // is lexically inside an extern "C" linkage-spec. 6030 assert(Prev && "should have found a previous declaration to diagnose"); 6031 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) 6032 Prev = FD->getFirstDecl(); 6033 else 6034 Prev = cast<VarDecl>(Prev)->getFirstDecl(); 6035 6036 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) 6037 << IsGlobal << ND; 6038 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) 6039 << IsGlobal; 6040 return false; 6041 } 6042 6043 /// Apply special rules for handling extern "C" declarations. Returns \c true 6044 /// if we have found that this is a redeclaration of some prior entity. 6045 /// 6046 /// Per C++ [dcl.link]p6: 6047 /// Two declarations [for a function or variable] with C language linkage 6048 /// with the same name that appear in different scopes refer to the same 6049 /// [entity]. An entity with C language linkage shall not be declared with 6050 /// the same name as an entity in global scope. 6051 template<typename T> 6052 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, 6053 LookupResult &Previous) { 6054 if (!S.getLangOpts().CPlusPlus) { 6055 // In C, when declaring a global variable, look for a corresponding 'extern' 6056 // variable declared in function scope. We don't need this in C++, because 6057 // we find local extern decls in the surrounding file-scope DeclContext. 6058 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 6059 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { 6060 Previous.clear(); 6061 Previous.addDecl(Prev); 6062 return true; 6063 } 6064 } 6065 return false; 6066 } 6067 6068 // A declaration in the translation unit can conflict with an extern "C" 6069 // declaration. 6070 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) 6071 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); 6072 6073 // An extern "C" declaration can conflict with a declaration in the 6074 // translation unit or can be a redeclaration of an extern "C" declaration 6075 // in another scope. 6076 if (isIncompleteDeclExternC(S,ND)) 6077 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); 6078 6079 // Neither global nor extern "C": nothing to do. 6080 return false; 6081 } 6082 6083 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { 6084 // If the decl is already known invalid, don't check it. 6085 if (NewVD->isInvalidDecl()) 6086 return; 6087 6088 TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo(); 6089 QualType T = TInfo->getType(); 6090 6091 // Defer checking an 'auto' type until its initializer is attached. 6092 if (T->isUndeducedType()) 6093 return; 6094 6095 if (NewVD->hasAttrs()) 6096 CheckAlignasUnderalignment(NewVD); 6097 6098 if (T->isObjCObjectType()) { 6099 Diag(NewVD->getLocation(), diag::err_statically_allocated_object) 6100 << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); 6101 T = Context.getObjCObjectPointerType(T); 6102 NewVD->setType(T); 6103 } 6104 6105 // Emit an error if an address space was applied to decl with local storage. 6106 // This includes arrays of objects with address space qualifiers, but not 6107 // automatic variables that point to other address spaces. 6108 // ISO/IEC TR 18037 S5.1.2 6109 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) { 6110 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl); 6111 NewVD->setInvalidDecl(); 6112 return; 6113 } 6114 6115 // OpenCL v1.2 s6.5 - All program scope variables must be declared in the 6116 // __constant address space. 6117 if (getLangOpts().OpenCL && NewVD->isFileVarDecl() 6118 && T.getAddressSpace() != LangAS::opencl_constant 6119 && !T->isSamplerT()){ 6120 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space); 6121 NewVD->setInvalidDecl(); 6122 return; 6123 } 6124 6125 // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program 6126 // scope. 6127 if ((getLangOpts().OpenCLVersion >= 120) 6128 && NewVD->isStaticLocal()) { 6129 Diag(NewVD->getLocation(), diag::err_static_function_scope); 6130 NewVD->setInvalidDecl(); 6131 return; 6132 } 6133 6134 if (NewVD->hasLocalStorage() && T.isObjCGCWeak() 6135 && !NewVD->hasAttr<BlocksAttr>()) { 6136 if (getLangOpts().getGC() != LangOptions::NonGC) 6137 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); 6138 else { 6139 assert(!getLangOpts().ObjCAutoRefCount); 6140 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); 6141 } 6142 } 6143 6144 bool isVM = T->isVariablyModifiedType(); 6145 if (isVM || NewVD->hasAttr<CleanupAttr>() || 6146 NewVD->hasAttr<BlocksAttr>()) 6147 getCurFunction()->setHasBranchProtectedScope(); 6148 6149 if ((isVM && NewVD->hasLinkage()) || 6150 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { 6151 bool SizeIsNegative; 6152 llvm::APSInt Oversized; 6153 TypeSourceInfo *FixedTInfo = 6154 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 6155 SizeIsNegative, Oversized); 6156 if (!FixedTInfo && T->isVariableArrayType()) { 6157 const VariableArrayType *VAT = Context.getAsVariableArrayType(T); 6158 // FIXME: This won't give the correct result for 6159 // int a[10][n]; 6160 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); 6161 6162 if (NewVD->isFileVarDecl()) 6163 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) 6164 << SizeRange; 6165 else if (NewVD->isStaticLocal()) 6166 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) 6167 << SizeRange; 6168 else 6169 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) 6170 << SizeRange; 6171 NewVD->setInvalidDecl(); 6172 return; 6173 } 6174 6175 if (!FixedTInfo) { 6176 if (NewVD->isFileVarDecl()) 6177 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); 6178 else 6179 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); 6180 NewVD->setInvalidDecl(); 6181 return; 6182 } 6183 6184 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); 6185 NewVD->setType(FixedTInfo->getType()); 6186 NewVD->setTypeSourceInfo(FixedTInfo); 6187 } 6188 6189 if (T->isVoidType()) { 6190 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names 6191 // of objects and functions. 6192 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { 6193 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) 6194 << T; 6195 NewVD->setInvalidDecl(); 6196 return; 6197 } 6198 } 6199 6200 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { 6201 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); 6202 NewVD->setInvalidDecl(); 6203 return; 6204 } 6205 6206 if (isVM && NewVD->hasAttr<BlocksAttr>()) { 6207 Diag(NewVD->getLocation(), diag::err_block_on_vm); 6208 NewVD->setInvalidDecl(); 6209 return; 6210 } 6211 6212 if (NewVD->isConstexpr() && !T->isDependentType() && 6213 RequireLiteralType(NewVD->getLocation(), T, 6214 diag::err_constexpr_var_non_literal)) { 6215 NewVD->setInvalidDecl(); 6216 return; 6217 } 6218 } 6219 6220 /// \brief Perform semantic checking on a newly-created variable 6221 /// declaration. 6222 /// 6223 /// This routine performs all of the type-checking required for a 6224 /// variable declaration once it has been built. It is used both to 6225 /// check variables after they have been parsed and their declarators 6226 /// have been translated into a declaration, and to check variables 6227 /// that have been instantiated from a template. 6228 /// 6229 /// Sets NewVD->isInvalidDecl() if an error was encountered. 6230 /// 6231 /// Returns true if the variable declaration is a redeclaration. 6232 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { 6233 CheckVariableDeclarationType(NewVD); 6234 6235 // If the decl is already known invalid, don't check it. 6236 if (NewVD->isInvalidDecl()) 6237 return false; 6238 6239 // If we did not find anything by this name, look for a non-visible 6240 // extern "C" declaration with the same name. 6241 if (Previous.empty() && 6242 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) 6243 Previous.setShadowed(); 6244 6245 // Filter out any non-conflicting previous declarations. 6246 filterNonConflictingPreviousDecls(Context, NewVD, Previous); 6247 6248 if (!Previous.empty()) { 6249 MergeVarDecl(NewVD, Previous); 6250 return true; 6251 } 6252 return false; 6253 } 6254 6255 /// \brief Data used with FindOverriddenMethod 6256 struct FindOverriddenMethodData { 6257 Sema *S; 6258 CXXMethodDecl *Method; 6259 }; 6260 6261 /// \brief Member lookup function that determines whether a given C++ 6262 /// method overrides a method in a base class, to be used with 6263 /// CXXRecordDecl::lookupInBases(). 6264 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier, 6265 CXXBasePath &Path, 6266 void *UserData) { 6267 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); 6268 6269 FindOverriddenMethodData *Data 6270 = reinterpret_cast<FindOverriddenMethodData*>(UserData); 6271 6272 DeclarationName Name = Data->Method->getDeclName(); 6273 6274 // FIXME: Do we care about other names here too? 6275 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 6276 // We really want to find the base class destructor here. 6277 QualType T = Data->S->Context.getTypeDeclType(BaseRecord); 6278 CanQualType CT = Data->S->Context.getCanonicalType(T); 6279 6280 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT); 6281 } 6282 6283 for (Path.Decls = BaseRecord->lookup(Name); 6284 !Path.Decls.empty(); 6285 Path.Decls = Path.Decls.slice(1)) { 6286 NamedDecl *D = Path.Decls.front(); 6287 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 6288 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false)) 6289 return true; 6290 } 6291 } 6292 6293 return false; 6294 } 6295 6296 namespace { 6297 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted }; 6298 } 6299 /// \brief Report an error regarding overriding, along with any relevant 6300 /// overriden methods. 6301 /// 6302 /// \param DiagID the primary error to report. 6303 /// \param MD the overriding method. 6304 /// \param OEK which overrides to include as notes. 6305 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD, 6306 OverrideErrorKind OEK = OEK_All) { 6307 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6308 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), 6309 E = MD->end_overridden_methods(); 6310 I != E; ++I) { 6311 // This check (& the OEK parameter) could be replaced by a predicate, but 6312 // without lambdas that would be overkill. This is still nicer than writing 6313 // out the diag loop 3 times. 6314 if ((OEK == OEK_All) || 6315 (OEK == OEK_NonDeleted && !(*I)->isDeleted()) || 6316 (OEK == OEK_Deleted && (*I)->isDeleted())) 6317 S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function); 6318 } 6319 } 6320 6321 /// AddOverriddenMethods - See if a method overrides any in the base classes, 6322 /// and if so, check that it's a valid override and remember it. 6323 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { 6324 // Look for methods in base classes that this method might override. 6325 CXXBasePaths Paths; 6326 FindOverriddenMethodData Data; 6327 Data.Method = MD; 6328 Data.S = this; 6329 bool hasDeletedOverridenMethods = false; 6330 bool hasNonDeletedOverridenMethods = false; 6331 bool AddedAny = false; 6332 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) { 6333 for (auto *I : Paths.found_decls()) { 6334 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) { 6335 MD->addOverriddenMethod(OldMD->getCanonicalDecl()); 6336 if (!CheckOverridingFunctionReturnType(MD, OldMD) && 6337 !CheckOverridingFunctionAttributes(MD, OldMD) && 6338 !CheckOverridingFunctionExceptionSpec(MD, OldMD) && 6339 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { 6340 hasDeletedOverridenMethods |= OldMD->isDeleted(); 6341 hasNonDeletedOverridenMethods |= !OldMD->isDeleted(); 6342 AddedAny = true; 6343 } 6344 } 6345 } 6346 } 6347 6348 if (hasDeletedOverridenMethods && !MD->isDeleted()) { 6349 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted); 6350 } 6351 if (hasNonDeletedOverridenMethods && MD->isDeleted()) { 6352 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted); 6353 } 6354 6355 return AddedAny; 6356 } 6357 6358 namespace { 6359 // Struct for holding all of the extra arguments needed by 6360 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. 6361 struct ActOnFDArgs { 6362 Scope *S; 6363 Declarator &D; 6364 MultiTemplateParamsArg TemplateParamLists; 6365 bool AddToScope; 6366 }; 6367 } 6368 6369 namespace { 6370 6371 // Callback to only accept typo corrections that have a non-zero edit distance. 6372 // Also only accept corrections that have the same parent decl. 6373 class DifferentNameValidatorCCC : public CorrectionCandidateCallback { 6374 public: 6375 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, 6376 CXXRecordDecl *Parent) 6377 : Context(Context), OriginalFD(TypoFD), 6378 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} 6379 6380 bool ValidateCandidate(const TypoCorrection &candidate) override { 6381 if (candidate.getEditDistance() == 0) 6382 return false; 6383 6384 SmallVector<unsigned, 1> MismatchedParams; 6385 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), 6386 CDeclEnd = candidate.end(); 6387 CDecl != CDeclEnd; ++CDecl) { 6388 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 6389 6390 if (FD && !FD->hasBody() && 6391 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { 6392 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 6393 CXXRecordDecl *Parent = MD->getParent(); 6394 if (Parent && Parent->getCanonicalDecl() == ExpectedParent) 6395 return true; 6396 } else if (!ExpectedParent) { 6397 return true; 6398 } 6399 } 6400 } 6401 6402 return false; 6403 } 6404 6405 private: 6406 ASTContext &Context; 6407 FunctionDecl *OriginalFD; 6408 CXXRecordDecl *ExpectedParent; 6409 }; 6410 6411 } 6412 6413 /// \brief Generate diagnostics for an invalid function redeclaration. 6414 /// 6415 /// This routine handles generating the diagnostic messages for an invalid 6416 /// function redeclaration, including finding possible similar declarations 6417 /// or performing typo correction if there are no previous declarations with 6418 /// the same name. 6419 /// 6420 /// Returns a NamedDecl iff typo correction was performed and substituting in 6421 /// the new declaration name does not cause new errors. 6422 static NamedDecl *DiagnoseInvalidRedeclaration( 6423 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, 6424 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { 6425 DeclarationName Name = NewFD->getDeclName(); 6426 DeclContext *NewDC = NewFD->getDeclContext(); 6427 SmallVector<unsigned, 1> MismatchedParams; 6428 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; 6429 TypoCorrection Correction; 6430 bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); 6431 unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend 6432 : diag::err_member_decl_does_not_match; 6433 LookupResult Prev(SemaRef, Name, NewFD->getLocation(), 6434 IsLocalFriend ? Sema::LookupLocalFriendName 6435 : Sema::LookupOrdinaryName, 6436 Sema::ForRedeclaration); 6437 6438 NewFD->setInvalidDecl(); 6439 if (IsLocalFriend) 6440 SemaRef.LookupName(Prev, S); 6441 else 6442 SemaRef.LookupQualifiedName(Prev, NewDC); 6443 assert(!Prev.isAmbiguous() && 6444 "Cannot have an ambiguity in previous-declaration lookup"); 6445 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 6446 if (!Prev.empty()) { 6447 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); 6448 Func != FuncEnd; ++Func) { 6449 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); 6450 if (FD && 6451 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 6452 // Add 1 to the index so that 0 can mean the mismatch didn't 6453 // involve a parameter 6454 unsigned ParamNum = 6455 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; 6456 NearMatches.push_back(std::make_pair(FD, ParamNum)); 6457 } 6458 } 6459 // If the qualified name lookup yielded nothing, try typo correction 6460 } else if ((Correction = SemaRef.CorrectTypo( 6461 Prev.getLookupNameInfo(), Prev.getLookupKind(), S, 6462 &ExtraArgs.D.getCXXScopeSpec(), 6463 llvm::make_unique<DifferentNameValidatorCCC>( 6464 SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr), 6465 Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) { 6466 // Set up everything for the call to ActOnFunctionDeclarator 6467 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), 6468 ExtraArgs.D.getIdentifierLoc()); 6469 Previous.clear(); 6470 Previous.setLookupName(Correction.getCorrection()); 6471 for (TypoCorrection::decl_iterator CDecl = Correction.begin(), 6472 CDeclEnd = Correction.end(); 6473 CDecl != CDeclEnd; ++CDecl) { 6474 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 6475 if (FD && !FD->hasBody() && 6476 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 6477 Previous.addDecl(FD); 6478 } 6479 } 6480 bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); 6481 6482 NamedDecl *Result; 6483 // Retry building the function declaration with the new previous 6484 // declarations, and with errors suppressed. 6485 { 6486 // Trap errors. 6487 Sema::SFINAETrap Trap(SemaRef); 6488 6489 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the 6490 // pieces need to verify the typo-corrected C++ declaration and hopefully 6491 // eliminate the need for the parameter pack ExtraArgs. 6492 Result = SemaRef.ActOnFunctionDeclarator( 6493 ExtraArgs.S, ExtraArgs.D, 6494 Correction.getCorrectionDecl()->getDeclContext(), 6495 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, 6496 ExtraArgs.AddToScope); 6497 6498 if (Trap.hasErrorOccurred()) 6499 Result = nullptr; 6500 } 6501 6502 if (Result) { 6503 // Determine which correction we picked. 6504 Decl *Canonical = Result->getCanonicalDecl(); 6505 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6506 I != E; ++I) 6507 if ((*I)->getCanonicalDecl() == Canonical) 6508 Correction.setCorrectionDecl(*I); 6509 6510 SemaRef.diagnoseTypo( 6511 Correction, 6512 SemaRef.PDiag(IsLocalFriend 6513 ? diag::err_no_matching_local_friend_suggest 6514 : diag::err_member_decl_does_not_match_suggest) 6515 << Name << NewDC << IsDefinition); 6516 return Result; 6517 } 6518 6519 // Pretend the typo correction never occurred 6520 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), 6521 ExtraArgs.D.getIdentifierLoc()); 6522 ExtraArgs.D.setRedeclaration(wasRedeclaration); 6523 Previous.clear(); 6524 Previous.setLookupName(Name); 6525 } 6526 6527 SemaRef.Diag(NewFD->getLocation(), DiagMsg) 6528 << Name << NewDC << IsDefinition << NewFD->getLocation(); 6529 6530 bool NewFDisConst = false; 6531 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) 6532 NewFDisConst = NewMD->isConst(); 6533 6534 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator 6535 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); 6536 NearMatch != NearMatchEnd; ++NearMatch) { 6537 FunctionDecl *FD = NearMatch->first; 6538 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 6539 bool FDisConst = MD && MD->isConst(); 6540 bool IsMember = MD || !IsLocalFriend; 6541 6542 // FIXME: These notes are poorly worded for the local friend case. 6543 if (unsigned Idx = NearMatch->second) { 6544 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); 6545 SourceLocation Loc = FDParam->getTypeSpecStartLoc(); 6546 if (Loc.isInvalid()) Loc = FD->getLocation(); 6547 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match 6548 : diag::note_local_decl_close_param_match) 6549 << Idx << FDParam->getType() 6550 << NewFD->getParamDecl(Idx - 1)->getType(); 6551 } else if (FDisConst != NewFDisConst) { 6552 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) 6553 << NewFDisConst << FD->getSourceRange().getEnd(); 6554 } else 6555 SemaRef.Diag(FD->getLocation(), 6556 IsMember ? diag::note_member_def_close_match 6557 : diag::note_local_decl_close_match); 6558 } 6559 return nullptr; 6560 } 6561 6562 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { 6563 switch (D.getDeclSpec().getStorageClassSpec()) { 6564 default: llvm_unreachable("Unknown storage class!"); 6565 case DeclSpec::SCS_auto: 6566 case DeclSpec::SCS_register: 6567 case DeclSpec::SCS_mutable: 6568 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6569 diag::err_typecheck_sclass_func); 6570 D.setInvalidType(); 6571 break; 6572 case DeclSpec::SCS_unspecified: break; 6573 case DeclSpec::SCS_extern: 6574 if (D.getDeclSpec().isExternInLinkageSpec()) 6575 return SC_None; 6576 return SC_Extern; 6577 case DeclSpec::SCS_static: { 6578 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { 6579 // C99 6.7.1p5: 6580 // The declaration of an identifier for a function that has 6581 // block scope shall have no explicit storage-class specifier 6582 // other than extern 6583 // See also (C++ [dcl.stc]p4). 6584 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6585 diag::err_static_block_func); 6586 break; 6587 } else 6588 return SC_Static; 6589 } 6590 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 6591 } 6592 6593 // No explicit storage class has already been returned 6594 return SC_None; 6595 } 6596 6597 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, 6598 DeclContext *DC, QualType &R, 6599 TypeSourceInfo *TInfo, 6600 StorageClass SC, 6601 bool &IsVirtualOkay) { 6602 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); 6603 DeclarationName Name = NameInfo.getName(); 6604 6605 FunctionDecl *NewFD = nullptr; 6606 bool isInline = D.getDeclSpec().isInlineSpecified(); 6607 6608 if (!SemaRef.getLangOpts().CPlusPlus) { 6609 // Determine whether the function was written with a 6610 // prototype. This true when: 6611 // - there is a prototype in the declarator, or 6612 // - the type R of the function is some kind of typedef or other reference 6613 // to a type name (which eventually refers to a function type). 6614 bool HasPrototype = 6615 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || 6616 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType()); 6617 6618 NewFD = FunctionDecl::Create(SemaRef.Context, DC, 6619 D.getLocStart(), NameInfo, R, 6620 TInfo, SC, isInline, 6621 HasPrototype, false); 6622 if (D.isInvalidType()) 6623 NewFD->setInvalidDecl(); 6624 6625 return NewFD; 6626 } 6627 6628 bool isExplicit = D.getDeclSpec().isExplicitSpecified(); 6629 bool isConstexpr = D.getDeclSpec().isConstexprSpecified(); 6630 6631 // Check that the return type is not an abstract class type. 6632 // For record types, this is done by the AbstractClassUsageDiagnoser once 6633 // the class has been completely parsed. 6634 if (!DC->isRecord() && 6635 SemaRef.RequireNonAbstractType( 6636 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(), 6637 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) 6638 D.setInvalidType(); 6639 6640 if (Name.getNameKind() == DeclarationName::CXXConstructorName) { 6641 // This is a C++ constructor declaration. 6642 assert(DC->isRecord() && 6643 "Constructors can only be declared in a member context"); 6644 6645 R = SemaRef.CheckConstructorDeclarator(D, R, SC); 6646 return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC), 6647 D.getLocStart(), NameInfo, 6648 R, TInfo, isExplicit, isInline, 6649 /*isImplicitlyDeclared=*/false, 6650 isConstexpr); 6651 6652 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 6653 // This is a C++ destructor declaration. 6654 if (DC->isRecord()) { 6655 R = SemaRef.CheckDestructorDeclarator(D, R, SC); 6656 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 6657 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( 6658 SemaRef.Context, Record, 6659 D.getLocStart(), 6660 NameInfo, R, TInfo, isInline, 6661 /*isImplicitlyDeclared=*/false); 6662 6663 // If the class is complete, then we now create the implicit exception 6664 // specification. If the class is incomplete or dependent, we can't do 6665 // it yet. 6666 if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() && 6667 Record->getDefinition() && !Record->isBeingDefined() && 6668 R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) { 6669 SemaRef.AdjustDestructorExceptionSpec(Record, NewDD); 6670 } 6671 6672 IsVirtualOkay = true; 6673 return NewDD; 6674 6675 } else { 6676 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); 6677 D.setInvalidType(); 6678 6679 // Create a FunctionDecl to satisfy the function definition parsing 6680 // code path. 6681 return FunctionDecl::Create(SemaRef.Context, DC, 6682 D.getLocStart(), 6683 D.getIdentifierLoc(), Name, R, TInfo, 6684 SC, isInline, 6685 /*hasPrototype=*/true, isConstexpr); 6686 } 6687 6688 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { 6689 if (!DC->isRecord()) { 6690 SemaRef.Diag(D.getIdentifierLoc(), 6691 diag::err_conv_function_not_member); 6692 return nullptr; 6693 } 6694 6695 SemaRef.CheckConversionDeclarator(D, R, SC); 6696 IsVirtualOkay = true; 6697 return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC), 6698 D.getLocStart(), NameInfo, 6699 R, TInfo, isInline, isExplicit, 6700 isConstexpr, SourceLocation()); 6701 6702 } else if (DC->isRecord()) { 6703 // If the name of the function is the same as the name of the record, 6704 // then this must be an invalid constructor that has a return type. 6705 // (The parser checks for a return type and makes the declarator a 6706 // constructor if it has no return type). 6707 if (Name.getAsIdentifierInfo() && 6708 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ 6709 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) 6710 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 6711 << SourceRange(D.getIdentifierLoc()); 6712 return nullptr; 6713 } 6714 6715 // This is a C++ method declaration. 6716 CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context, 6717 cast<CXXRecordDecl>(DC), 6718 D.getLocStart(), NameInfo, R, 6719 TInfo, SC, isInline, 6720 isConstexpr, SourceLocation()); 6721 IsVirtualOkay = !Ret->isStatic(); 6722 return Ret; 6723 } else { 6724 bool isFriend = 6725 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); 6726 if (!isFriend && SemaRef.CurContext->isRecord()) 6727 return nullptr; 6728 6729 // Determine whether the function was written with a 6730 // prototype. This true when: 6731 // - we're in C++ (where every function has a prototype), 6732 return FunctionDecl::Create(SemaRef.Context, DC, 6733 D.getLocStart(), 6734 NameInfo, R, TInfo, SC, isInline, 6735 true/*HasPrototype*/, isConstexpr); 6736 } 6737 } 6738 6739 enum OpenCLParamType { 6740 ValidKernelParam, 6741 PtrPtrKernelParam, 6742 PtrKernelParam, 6743 PrivatePtrKernelParam, 6744 InvalidKernelParam, 6745 RecordKernelParam 6746 }; 6747 6748 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) { 6749 if (PT->isPointerType()) { 6750 QualType PointeeType = PT->getPointeeType(); 6751 if (PointeeType->isPointerType()) 6752 return PtrPtrKernelParam; 6753 return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam 6754 : PtrKernelParam; 6755 } 6756 6757 // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can 6758 // be used as builtin types. 6759 6760 if (PT->isImageType()) 6761 return PtrKernelParam; 6762 6763 if (PT->isBooleanType()) 6764 return InvalidKernelParam; 6765 6766 if (PT->isEventT()) 6767 return InvalidKernelParam; 6768 6769 if (PT->isHalfType()) 6770 return InvalidKernelParam; 6771 6772 if (PT->isRecordType()) 6773 return RecordKernelParam; 6774 6775 return ValidKernelParam; 6776 } 6777 6778 static void checkIsValidOpenCLKernelParameter( 6779 Sema &S, 6780 Declarator &D, 6781 ParmVarDecl *Param, 6782 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { 6783 QualType PT = Param->getType(); 6784 6785 // Cache the valid types we encounter to avoid rechecking structs that are 6786 // used again 6787 if (ValidTypes.count(PT.getTypePtr())) 6788 return; 6789 6790 switch (getOpenCLKernelParameterType(PT)) { 6791 case PtrPtrKernelParam: 6792 // OpenCL v1.2 s6.9.a: 6793 // A kernel function argument cannot be declared as a 6794 // pointer to a pointer type. 6795 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); 6796 D.setInvalidType(); 6797 return; 6798 6799 case PrivatePtrKernelParam: 6800 // OpenCL v1.2 s6.9.a: 6801 // A kernel function argument cannot be declared as a 6802 // pointer to the private address space. 6803 S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param); 6804 D.setInvalidType(); 6805 return; 6806 6807 // OpenCL v1.2 s6.9.k: 6808 // Arguments to kernel functions in a program cannot be declared with the 6809 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 6810 // uintptr_t or a struct and/or union that contain fields declared to be 6811 // one of these built-in scalar types. 6812 6813 case InvalidKernelParam: 6814 // OpenCL v1.2 s6.8 n: 6815 // A kernel function argument cannot be declared 6816 // of event_t type. 6817 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 6818 D.setInvalidType(); 6819 return; 6820 6821 case PtrKernelParam: 6822 case ValidKernelParam: 6823 ValidTypes.insert(PT.getTypePtr()); 6824 return; 6825 6826 case RecordKernelParam: 6827 break; 6828 } 6829 6830 // Track nested structs we will inspect 6831 SmallVector<const Decl *, 4> VisitStack; 6832 6833 // Track where we are in the nested structs. Items will migrate from 6834 // VisitStack to HistoryStack as we do the DFS for bad field. 6835 SmallVector<const FieldDecl *, 4> HistoryStack; 6836 HistoryStack.push_back(nullptr); 6837 6838 const RecordDecl *PD = PT->castAs<RecordType>()->getDecl(); 6839 VisitStack.push_back(PD); 6840 6841 assert(VisitStack.back() && "First decl null?"); 6842 6843 do { 6844 const Decl *Next = VisitStack.pop_back_val(); 6845 if (!Next) { 6846 assert(!HistoryStack.empty()); 6847 // Found a marker, we have gone up a level 6848 if (const FieldDecl *Hist = HistoryStack.pop_back_val()) 6849 ValidTypes.insert(Hist->getType().getTypePtr()); 6850 6851 continue; 6852 } 6853 6854 // Adds everything except the original parameter declaration (which is not a 6855 // field itself) to the history stack. 6856 const RecordDecl *RD; 6857 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { 6858 HistoryStack.push_back(Field); 6859 RD = Field->getType()->castAs<RecordType>()->getDecl(); 6860 } else { 6861 RD = cast<RecordDecl>(Next); 6862 } 6863 6864 // Add a null marker so we know when we've gone back up a level 6865 VisitStack.push_back(nullptr); 6866 6867 for (const auto *FD : RD->fields()) { 6868 QualType QT = FD->getType(); 6869 6870 if (ValidTypes.count(QT.getTypePtr())) 6871 continue; 6872 6873 OpenCLParamType ParamType = getOpenCLKernelParameterType(QT); 6874 if (ParamType == ValidKernelParam) 6875 continue; 6876 6877 if (ParamType == RecordKernelParam) { 6878 VisitStack.push_back(FD); 6879 continue; 6880 } 6881 6882 // OpenCL v1.2 s6.9.p: 6883 // Arguments to kernel functions that are declared to be a struct or union 6884 // do not allow OpenCL objects to be passed as elements of the struct or 6885 // union. 6886 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || 6887 ParamType == PrivatePtrKernelParam) { 6888 S.Diag(Param->getLocation(), 6889 diag::err_record_with_pointers_kernel_param) 6890 << PT->isUnionType() 6891 << PT; 6892 } else { 6893 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 6894 } 6895 6896 S.Diag(PD->getLocation(), diag::note_within_field_of_type) 6897 << PD->getDeclName(); 6898 6899 // We have an error, now let's go back up through history and show where 6900 // the offending field came from 6901 for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1, 6902 E = HistoryStack.end(); I != E; ++I) { 6903 const FieldDecl *OuterField = *I; 6904 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) 6905 << OuterField->getType(); 6906 } 6907 6908 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) 6909 << QT->isPointerType() 6910 << QT; 6911 D.setInvalidType(); 6912 return; 6913 } 6914 } while (!VisitStack.empty()); 6915 } 6916 6917 NamedDecl* 6918 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, 6919 TypeSourceInfo *TInfo, LookupResult &Previous, 6920 MultiTemplateParamsArg TemplateParamLists, 6921 bool &AddToScope) { 6922 QualType R = TInfo->getType(); 6923 6924 assert(R.getTypePtr()->isFunctionType()); 6925 6926 // TODO: consider using NameInfo for diagnostic. 6927 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6928 DeclarationName Name = NameInfo.getName(); 6929 StorageClass SC = getFunctionStorageClass(*this, D); 6930 6931 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 6932 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 6933 diag::err_invalid_thread) 6934 << DeclSpec::getSpecifierName(TSCS); 6935 6936 if (D.isFirstDeclarationOfMember()) 6937 adjustMemberFunctionCC(R, D.isStaticMember()); 6938 6939 bool isFriend = false; 6940 FunctionTemplateDecl *FunctionTemplate = nullptr; 6941 bool isExplicitSpecialization = false; 6942 bool isFunctionTemplateSpecialization = false; 6943 6944 bool isDependentClassScopeExplicitSpecialization = false; 6945 bool HasExplicitTemplateArgs = false; 6946 TemplateArgumentListInfo TemplateArgs; 6947 6948 bool isVirtualOkay = false; 6949 6950 DeclContext *OriginalDC = DC; 6951 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); 6952 6953 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, 6954 isVirtualOkay); 6955 if (!NewFD) return nullptr; 6956 6957 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) 6958 NewFD->setTopLevelDeclInObjCContainer(); 6959 6960 // Set the lexical context. If this is a function-scope declaration, or has a 6961 // C++ scope specifier, or is the object of a friend declaration, the lexical 6962 // context will be different from the semantic context. 6963 NewFD->setLexicalDeclContext(CurContext); 6964 6965 if (IsLocalExternDecl) 6966 NewFD->setLocalExternDecl(); 6967 6968 if (getLangOpts().CPlusPlus) { 6969 bool isInline = D.getDeclSpec().isInlineSpecified(); 6970 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 6971 bool isExplicit = D.getDeclSpec().isExplicitSpecified(); 6972 bool isConstexpr = D.getDeclSpec().isConstexprSpecified(); 6973 isFriend = D.getDeclSpec().isFriendSpecified(); 6974 if (isFriend && !isInline && D.isFunctionDefinition()) { 6975 // C++ [class.friend]p5 6976 // A function can be defined in a friend declaration of a 6977 // class . . . . Such a function is implicitly inline. 6978 NewFD->setImplicitlyInline(); 6979 } 6980 6981 // If this is a method defined in an __interface, and is not a constructor 6982 // or an overloaded operator, then set the pure flag (isVirtual will already 6983 // return true). 6984 if (const CXXRecordDecl *Parent = 6985 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { 6986 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) 6987 NewFD->setPure(true); 6988 } 6989 6990 SetNestedNameSpecifier(NewFD, D); 6991 isExplicitSpecialization = false; 6992 isFunctionTemplateSpecialization = false; 6993 if (D.isInvalidType()) 6994 NewFD->setInvalidDecl(); 6995 6996 // Match up the template parameter lists with the scope specifier, then 6997 // determine whether we have a template or a template specialization. 6998 bool Invalid = false; 6999 if (TemplateParameterList *TemplateParams = 7000 MatchTemplateParametersToScopeSpecifier( 7001 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(), 7002 D.getCXXScopeSpec(), 7003 D.getName().getKind() == UnqualifiedId::IK_TemplateId 7004 ? D.getName().TemplateId 7005 : nullptr, 7006 TemplateParamLists, isFriend, isExplicitSpecialization, 7007 Invalid)) { 7008 if (TemplateParams->size() > 0) { 7009 // This is a function template 7010 7011 // Check that we can declare a template here. 7012 if (CheckTemplateDeclScope(S, TemplateParams)) 7013 return nullptr; 7014 7015 // A destructor cannot be a template. 7016 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 7017 Diag(NewFD->getLocation(), diag::err_destructor_template); 7018 return nullptr; 7019 } 7020 7021 // If we're adding a template to a dependent context, we may need to 7022 // rebuilding some of the types used within the template parameter list, 7023 // now that we know what the current instantiation is. 7024 if (DC->isDependentContext()) { 7025 ContextRAII SavedContext(*this, DC); 7026 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 7027 Invalid = true; 7028 } 7029 7030 7031 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, 7032 NewFD->getLocation(), 7033 Name, TemplateParams, 7034 NewFD); 7035 FunctionTemplate->setLexicalDeclContext(CurContext); 7036 NewFD->setDescribedFunctionTemplate(FunctionTemplate); 7037 7038 // For source fidelity, store the other template param lists. 7039 if (TemplateParamLists.size() > 1) { 7040 NewFD->setTemplateParameterListsInfo(Context, 7041 TemplateParamLists.size() - 1, 7042 TemplateParamLists.data()); 7043 } 7044 } else { 7045 // This is a function template specialization. 7046 isFunctionTemplateSpecialization = true; 7047 // For source fidelity, store all the template param lists. 7048 if (TemplateParamLists.size() > 0) 7049 NewFD->setTemplateParameterListsInfo(Context, 7050 TemplateParamLists.size(), 7051 TemplateParamLists.data()); 7052 7053 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". 7054 if (isFriend) { 7055 // We want to remove the "template<>", found here. 7056 SourceRange RemoveRange = TemplateParams->getSourceRange(); 7057 7058 // If we remove the template<> and the name is not a 7059 // template-id, we're actually silently creating a problem: 7060 // the friend declaration will refer to an untemplated decl, 7061 // and clearly the user wants a template specialization. So 7062 // we need to insert '<>' after the name. 7063 SourceLocation InsertLoc; 7064 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) { 7065 InsertLoc = D.getName().getSourceRange().getEnd(); 7066 InsertLoc = getLocForEndOfToken(InsertLoc); 7067 } 7068 7069 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) 7070 << Name << RemoveRange 7071 << FixItHint::CreateRemoval(RemoveRange) 7072 << FixItHint::CreateInsertion(InsertLoc, "<>"); 7073 } 7074 } 7075 } 7076 else { 7077 // All template param lists were matched against the scope specifier: 7078 // this is NOT (an explicit specialization of) a template. 7079 if (TemplateParamLists.size() > 0) 7080 // For source fidelity, store all the template param lists. 7081 NewFD->setTemplateParameterListsInfo(Context, 7082 TemplateParamLists.size(), 7083 TemplateParamLists.data()); 7084 } 7085 7086 if (Invalid) { 7087 NewFD->setInvalidDecl(); 7088 if (FunctionTemplate) 7089 FunctionTemplate->setInvalidDecl(); 7090 } 7091 7092 // C++ [dcl.fct.spec]p5: 7093 // The virtual specifier shall only be used in declarations of 7094 // nonstatic class member functions that appear within a 7095 // member-specification of a class declaration; see 10.3. 7096 // 7097 if (isVirtual && !NewFD->isInvalidDecl()) { 7098 if (!isVirtualOkay) { 7099 Diag(D.getDeclSpec().getVirtualSpecLoc(), 7100 diag::err_virtual_non_function); 7101 } else if (!CurContext->isRecord()) { 7102 // 'virtual' was specified outside of the class. 7103 Diag(D.getDeclSpec().getVirtualSpecLoc(), 7104 diag::err_virtual_out_of_class) 7105 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 7106 } else if (NewFD->getDescribedFunctionTemplate()) { 7107 // C++ [temp.mem]p3: 7108 // A member function template shall not be virtual. 7109 Diag(D.getDeclSpec().getVirtualSpecLoc(), 7110 diag::err_virtual_member_function_template) 7111 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 7112 } else { 7113 // Okay: Add virtual to the method. 7114 NewFD->setVirtualAsWritten(true); 7115 } 7116 7117 if (getLangOpts().CPlusPlus14 && 7118 NewFD->getReturnType()->isUndeducedType()) 7119 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); 7120 } 7121 7122 if (getLangOpts().CPlusPlus14 && 7123 (NewFD->isDependentContext() || 7124 (isFriend && CurContext->isDependentContext())) && 7125 NewFD->getReturnType()->isUndeducedType()) { 7126 // If the function template is referenced directly (for instance, as a 7127 // member of the current instantiation), pretend it has a dependent type. 7128 // This is not really justified by the standard, but is the only sane 7129 // thing to do. 7130 // FIXME: For a friend function, we have not marked the function as being 7131 // a friend yet, so 'isDependentContext' on the FD doesn't work. 7132 const FunctionProtoType *FPT = 7133 NewFD->getType()->castAs<FunctionProtoType>(); 7134 QualType Result = 7135 SubstAutoType(FPT->getReturnType(), Context.DependentTy); 7136 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), 7137 FPT->getExtProtoInfo())); 7138 } 7139 7140 // C++ [dcl.fct.spec]p3: 7141 // The inline specifier shall not appear on a block scope function 7142 // declaration. 7143 if (isInline && !NewFD->isInvalidDecl()) { 7144 if (CurContext->isFunctionOrMethod()) { 7145 // 'inline' is not allowed on block scope function declaration. 7146 Diag(D.getDeclSpec().getInlineSpecLoc(), 7147 diag::err_inline_declaration_block_scope) << Name 7148 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 7149 } 7150 } 7151 7152 // C++ [dcl.fct.spec]p6: 7153 // The explicit specifier shall be used only in the declaration of a 7154 // constructor or conversion function within its class definition; 7155 // see 12.3.1 and 12.3.2. 7156 if (isExplicit && !NewFD->isInvalidDecl()) { 7157 if (!CurContext->isRecord()) { 7158 // 'explicit' was specified outside of the class. 7159 Diag(D.getDeclSpec().getExplicitSpecLoc(), 7160 diag::err_explicit_out_of_class) 7161 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); 7162 } else if (!isa<CXXConstructorDecl>(NewFD) && 7163 !isa<CXXConversionDecl>(NewFD)) { 7164 // 'explicit' was specified on a function that wasn't a constructor 7165 // or conversion function. 7166 Diag(D.getDeclSpec().getExplicitSpecLoc(), 7167 diag::err_explicit_non_ctor_or_conv_function) 7168 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); 7169 } 7170 } 7171 7172 if (isConstexpr) { 7173 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors 7174 // are implicitly inline. 7175 NewFD->setImplicitlyInline(); 7176 7177 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to 7178 // be either constructors or to return a literal type. Therefore, 7179 // destructors cannot be declared constexpr. 7180 if (isa<CXXDestructorDecl>(NewFD)) 7181 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor); 7182 } 7183 7184 // If __module_private__ was specified, mark the function accordingly. 7185 if (D.getDeclSpec().isModulePrivateSpecified()) { 7186 if (isFunctionTemplateSpecialization) { 7187 SourceLocation ModulePrivateLoc 7188 = D.getDeclSpec().getModulePrivateSpecLoc(); 7189 Diag(ModulePrivateLoc, diag::err_module_private_specialization) 7190 << 0 7191 << FixItHint::CreateRemoval(ModulePrivateLoc); 7192 } else { 7193 NewFD->setModulePrivate(); 7194 if (FunctionTemplate) 7195 FunctionTemplate->setModulePrivate(); 7196 } 7197 } 7198 7199 if (isFriend) { 7200 if (FunctionTemplate) { 7201 FunctionTemplate->setObjectOfFriendDecl(); 7202 FunctionTemplate->setAccess(AS_public); 7203 } 7204 NewFD->setObjectOfFriendDecl(); 7205 NewFD->setAccess(AS_public); 7206 } 7207 7208 // If a function is defined as defaulted or deleted, mark it as such now. 7209 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function 7210 // definition kind to FDK_Definition. 7211 switch (D.getFunctionDefinitionKind()) { 7212 case FDK_Declaration: 7213 case FDK_Definition: 7214 break; 7215 7216 case FDK_Defaulted: 7217 NewFD->setDefaulted(); 7218 break; 7219 7220 case FDK_Deleted: 7221 NewFD->setDeletedAsWritten(); 7222 break; 7223 } 7224 7225 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && 7226 D.isFunctionDefinition()) { 7227 // C++ [class.mfct]p2: 7228 // A member function may be defined (8.4) in its class definition, in 7229 // which case it is an inline member function (7.1.2) 7230 NewFD->setImplicitlyInline(); 7231 } 7232 7233 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && 7234 !CurContext->isRecord()) { 7235 // C++ [class.static]p1: 7236 // A data or function member of a class may be declared static 7237 // in a class definition, in which case it is a static member of 7238 // the class. 7239 7240 // Complain about the 'static' specifier if it's on an out-of-line 7241 // member function definition. 7242 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7243 diag::err_static_out_of_line) 7244 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 7245 } 7246 7247 // C++11 [except.spec]p15: 7248 // A deallocation function with no exception-specification is treated 7249 // as if it were specified with noexcept(true). 7250 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); 7251 if ((Name.getCXXOverloadedOperator() == OO_Delete || 7252 Name.getCXXOverloadedOperator() == OO_Array_Delete) && 7253 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) 7254 NewFD->setType(Context.getFunctionType( 7255 FPT->getReturnType(), FPT->getParamTypes(), 7256 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); 7257 } 7258 7259 // Filter out previous declarations that don't match the scope. 7260 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), 7261 D.getCXXScopeSpec().isNotEmpty() || 7262 isExplicitSpecialization || 7263 isFunctionTemplateSpecialization); 7264 7265 // Handle GNU asm-label extension (encoded as an attribute). 7266 if (Expr *E = (Expr*) D.getAsmLabel()) { 7267 // The parser guarantees this is a string. 7268 StringLiteral *SE = cast<StringLiteral>(E); 7269 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context, 7270 SE->getString(), 0)); 7271 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 7272 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 7273 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); 7274 if (I != ExtnameUndeclaredIdentifiers.end()) { 7275 NewFD->addAttr(I->second); 7276 ExtnameUndeclaredIdentifiers.erase(I); 7277 } 7278 } 7279 7280 // Copy the parameter declarations from the declarator D to the function 7281 // declaration NewFD, if they are available. First scavenge them into Params. 7282 SmallVector<ParmVarDecl*, 16> Params; 7283 if (D.isFunctionDeclarator()) { 7284 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 7285 7286 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs 7287 // function that takes no arguments, not a function that takes a 7288 // single void argument. 7289 // We let through "const void" here because Sema::GetTypeForDeclarator 7290 // already checks for that case. 7291 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { 7292 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { 7293 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 7294 assert(Param->getDeclContext() != NewFD && "Was set before ?"); 7295 Param->setDeclContext(NewFD); 7296 Params.push_back(Param); 7297 7298 if (Param->isInvalidDecl()) 7299 NewFD->setInvalidDecl(); 7300 } 7301 } 7302 7303 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { 7304 // When we're declaring a function with a typedef, typeof, etc as in the 7305 // following example, we'll need to synthesize (unnamed) 7306 // parameters for use in the declaration. 7307 // 7308 // @code 7309 // typedef void fn(int); 7310 // fn f; 7311 // @endcode 7312 7313 // Synthesize a parameter for each argument type. 7314 for (const auto &AI : FT->param_types()) { 7315 ParmVarDecl *Param = 7316 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); 7317 Param->setScopeInfo(0, Params.size()); 7318 Params.push_back(Param); 7319 } 7320 } else { 7321 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && 7322 "Should not need args for typedef of non-prototype fn"); 7323 } 7324 7325 // Finally, we know we have the right number of parameters, install them. 7326 NewFD->setParams(Params); 7327 7328 // Find all anonymous symbols defined during the declaration of this function 7329 // and add to NewFD. This lets us track decls such 'enum Y' in: 7330 // 7331 // void f(enum Y {AA} x) {} 7332 // 7333 // which would otherwise incorrectly end up in the translation unit scope. 7334 NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope); 7335 DeclsInPrototypeScope.clear(); 7336 7337 if (D.getDeclSpec().isNoreturnSpecified()) 7338 NewFD->addAttr( 7339 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(), 7340 Context, 0)); 7341 7342 // Functions returning a variably modified type violate C99 6.7.5.2p2 7343 // because all functions have linkage. 7344 if (!NewFD->isInvalidDecl() && 7345 NewFD->getReturnType()->isVariablyModifiedType()) { 7346 Diag(NewFD->getLocation(), diag::err_vm_func_decl); 7347 NewFD->setInvalidDecl(); 7348 } 7349 7350 if (D.isFunctionDefinition() && CodeSegStack.CurrentValue && 7351 !NewFD->hasAttr<SectionAttr>()) { 7352 NewFD->addAttr( 7353 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate, 7354 CodeSegStack.CurrentValue->getString(), 7355 CodeSegStack.CurrentPragmaLocation)); 7356 if (UnifySection(CodeSegStack.CurrentValue->getString(), 7357 ASTContext::PSF_Implicit | ASTContext::PSF_Execute | 7358 ASTContext::PSF_Read, 7359 NewFD)) 7360 NewFD->dropAttr<SectionAttr>(); 7361 } 7362 7363 // Handle attributes. 7364 ProcessDeclAttributes(S, NewFD, D); 7365 7366 QualType RetType = NewFD->getReturnType(); 7367 const CXXRecordDecl *Ret = RetType->isRecordType() ? 7368 RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl(); 7369 if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() && 7370 Ret && Ret->hasAttr<WarnUnusedResultAttr>()) { 7371 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 7372 // Attach WarnUnusedResult to functions returning types with that attribute. 7373 // Don't apply the attribute to that type's own non-static member functions 7374 // (to avoid warning on things like assignment operators) 7375 if (!MD || MD->getParent() != Ret) 7376 NewFD->addAttr(WarnUnusedResultAttr::CreateImplicit(Context)); 7377 } 7378 7379 if (getLangOpts().OpenCL) { 7380 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return 7381 // type declaration will generate a compilation error. 7382 unsigned AddressSpace = RetType.getAddressSpace(); 7383 if (AddressSpace == LangAS::opencl_local || 7384 AddressSpace == LangAS::opencl_global || 7385 AddressSpace == LangAS::opencl_constant) { 7386 Diag(NewFD->getLocation(), 7387 diag::err_opencl_return_value_with_address_space); 7388 NewFD->setInvalidDecl(); 7389 } 7390 } 7391 7392 if (!getLangOpts().CPlusPlus) { 7393 // Perform semantic checking on the function declaration. 7394 bool isExplicitSpecialization=false; 7395 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 7396 CheckMain(NewFD, D.getDeclSpec()); 7397 7398 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 7399 CheckMSVCRTEntryPoint(NewFD); 7400 7401 if (!NewFD->isInvalidDecl()) 7402 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 7403 isExplicitSpecialization)); 7404 else if (!Previous.empty()) 7405 // Make graceful recovery from an invalid redeclaration. 7406 D.setRedeclaration(true); 7407 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 7408 Previous.getResultKind() != LookupResult::FoundOverloaded) && 7409 "previous declaration set still overloaded"); 7410 7411 // Diagnose no-prototype function declarations with calling conventions that 7412 // don't support variadic calls. Only do this in C and do it after merging 7413 // possibly prototyped redeclarations. 7414 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); 7415 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { 7416 CallingConv CC = FT->getExtInfo().getCC(); 7417 if (!supportsVariadicCall(CC)) { 7418 // Windows system headers sometimes accidentally use stdcall without 7419 // (void) parameters, so we relax this to a warning. 7420 int DiagID = 7421 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; 7422 Diag(NewFD->getLocation(), DiagID) 7423 << FunctionType::getNameForCallConv(CC); 7424 } 7425 } 7426 } else { 7427 // C++11 [replacement.functions]p3: 7428 // The program's definitions shall not be specified as inline. 7429 // 7430 // N.B. We diagnose declarations instead of definitions per LWG issue 2340. 7431 // 7432 // Suppress the diagnostic if the function is __attribute__((used)), since 7433 // that forces an external definition to be emitted. 7434 if (D.getDeclSpec().isInlineSpecified() && 7435 NewFD->isReplaceableGlobalAllocationFunction() && 7436 !NewFD->hasAttr<UsedAttr>()) 7437 Diag(D.getDeclSpec().getInlineSpecLoc(), 7438 diag::ext_operator_new_delete_declared_inline) 7439 << NewFD->getDeclName(); 7440 7441 // If the declarator is a template-id, translate the parser's template 7442 // argument list into our AST format. 7443 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 7444 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 7445 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 7446 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 7447 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7448 TemplateId->NumArgs); 7449 translateTemplateArguments(TemplateArgsPtr, 7450 TemplateArgs); 7451 7452 HasExplicitTemplateArgs = true; 7453 7454 if (NewFD->isInvalidDecl()) { 7455 HasExplicitTemplateArgs = false; 7456 } else if (FunctionTemplate) { 7457 // Function template with explicit template arguments. 7458 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) 7459 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); 7460 7461 HasExplicitTemplateArgs = false; 7462 } else { 7463 assert((isFunctionTemplateSpecialization || 7464 D.getDeclSpec().isFriendSpecified()) && 7465 "should have a 'template<>' for this decl"); 7466 // "friend void foo<>(int);" is an implicit specialization decl. 7467 isFunctionTemplateSpecialization = true; 7468 } 7469 } else if (isFriend && isFunctionTemplateSpecialization) { 7470 // This combination is only possible in a recovery case; the user 7471 // wrote something like: 7472 // template <> friend void foo(int); 7473 // which we're recovering from as if the user had written: 7474 // friend void foo<>(int); 7475 // Go ahead and fake up a template id. 7476 HasExplicitTemplateArgs = true; 7477 TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); 7478 TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); 7479 } 7480 7481 // If it's a friend (and only if it's a friend), it's possible 7482 // that either the specialized function type or the specialized 7483 // template is dependent, and therefore matching will fail. In 7484 // this case, don't check the specialization yet. 7485 bool InstantiationDependent = false; 7486 if (isFunctionTemplateSpecialization && isFriend && 7487 (NewFD->getType()->isDependentType() || DC->isDependentContext() || 7488 TemplateSpecializationType::anyDependentTemplateArguments( 7489 TemplateArgs.getArgumentArray(), TemplateArgs.size(), 7490 InstantiationDependent))) { 7491 assert(HasExplicitTemplateArgs && 7492 "friend function specialization without template args"); 7493 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, 7494 Previous)) 7495 NewFD->setInvalidDecl(); 7496 } else if (isFunctionTemplateSpecialization) { 7497 if (CurContext->isDependentContext() && CurContext->isRecord() 7498 && !isFriend) { 7499 isDependentClassScopeExplicitSpecialization = true; 7500 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 7501 diag::ext_function_specialization_in_class : 7502 diag::err_function_specialization_in_class) 7503 << NewFD->getDeclName(); 7504 } else if (CheckFunctionTemplateSpecialization(NewFD, 7505 (HasExplicitTemplateArgs ? &TemplateArgs 7506 : nullptr), 7507 Previous)) 7508 NewFD->setInvalidDecl(); 7509 7510 // C++ [dcl.stc]p1: 7511 // A storage-class-specifier shall not be specified in an explicit 7512 // specialization (14.7.3) 7513 FunctionTemplateSpecializationInfo *Info = 7514 NewFD->getTemplateSpecializationInfo(); 7515 if (Info && SC != SC_None) { 7516 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) 7517 Diag(NewFD->getLocation(), 7518 diag::err_explicit_specialization_inconsistent_storage_class) 7519 << SC 7520 << FixItHint::CreateRemoval( 7521 D.getDeclSpec().getStorageClassSpecLoc()); 7522 7523 else 7524 Diag(NewFD->getLocation(), 7525 diag::ext_explicit_specialization_storage_class) 7526 << FixItHint::CreateRemoval( 7527 D.getDeclSpec().getStorageClassSpecLoc()); 7528 } 7529 7530 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) { 7531 if (CheckMemberSpecialization(NewFD, Previous)) 7532 NewFD->setInvalidDecl(); 7533 } 7534 7535 // Perform semantic checking on the function declaration. 7536 if (!isDependentClassScopeExplicitSpecialization) { 7537 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 7538 CheckMain(NewFD, D.getDeclSpec()); 7539 7540 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 7541 CheckMSVCRTEntryPoint(NewFD); 7542 7543 if (!NewFD->isInvalidDecl()) 7544 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 7545 isExplicitSpecialization)); 7546 } 7547 7548 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 7549 Previous.getResultKind() != LookupResult::FoundOverloaded) && 7550 "previous declaration set still overloaded"); 7551 7552 NamedDecl *PrincipalDecl = (FunctionTemplate 7553 ? cast<NamedDecl>(FunctionTemplate) 7554 : NewFD); 7555 7556 if (isFriend && D.isRedeclaration()) { 7557 AccessSpecifier Access = AS_public; 7558 if (!NewFD->isInvalidDecl()) 7559 Access = NewFD->getPreviousDecl()->getAccess(); 7560 7561 NewFD->setAccess(Access); 7562 if (FunctionTemplate) FunctionTemplate->setAccess(Access); 7563 } 7564 7565 if (NewFD->isOverloadedOperator() && !DC->isRecord() && 7566 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 7567 PrincipalDecl->setNonMemberOperator(); 7568 7569 // If we have a function template, check the template parameter 7570 // list. This will check and merge default template arguments. 7571 if (FunctionTemplate) { 7572 FunctionTemplateDecl *PrevTemplate = 7573 FunctionTemplate->getPreviousDecl(); 7574 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), 7575 PrevTemplate ? PrevTemplate->getTemplateParameters() 7576 : nullptr, 7577 D.getDeclSpec().isFriendSpecified() 7578 ? (D.isFunctionDefinition() 7579 ? TPC_FriendFunctionTemplateDefinition 7580 : TPC_FriendFunctionTemplate) 7581 : (D.getCXXScopeSpec().isSet() && 7582 DC && DC->isRecord() && 7583 DC->isDependentContext()) 7584 ? TPC_ClassTemplateMember 7585 : TPC_FunctionTemplate); 7586 } 7587 7588 if (NewFD->isInvalidDecl()) { 7589 // Ignore all the rest of this. 7590 } else if (!D.isRedeclaration()) { 7591 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, 7592 AddToScope }; 7593 // Fake up an access specifier if it's supposed to be a class member. 7594 if (isa<CXXRecordDecl>(NewFD->getDeclContext())) 7595 NewFD->setAccess(AS_public); 7596 7597 // Qualified decls generally require a previous declaration. 7598 if (D.getCXXScopeSpec().isSet()) { 7599 // ...with the major exception of templated-scope or 7600 // dependent-scope friend declarations. 7601 7602 // TODO: we currently also suppress this check in dependent 7603 // contexts because (1) the parameter depth will be off when 7604 // matching friend templates and (2) we might actually be 7605 // selecting a friend based on a dependent factor. But there 7606 // are situations where these conditions don't apply and we 7607 // can actually do this check immediately. 7608 if (isFriend && 7609 (TemplateParamLists.size() || 7610 D.getCXXScopeSpec().getScopeRep()->isDependent() || 7611 CurContext->isDependentContext())) { 7612 // ignore these 7613 } else { 7614 // The user tried to provide an out-of-line definition for a 7615 // function that is a member of a class or namespace, but there 7616 // was no such member function declared (C++ [class.mfct]p2, 7617 // C++ [namespace.memdef]p2). For example: 7618 // 7619 // class X { 7620 // void f() const; 7621 // }; 7622 // 7623 // void X::f() { } // ill-formed 7624 // 7625 // Complain about this problem, and attempt to suggest close 7626 // matches (e.g., those that differ only in cv-qualifiers and 7627 // whether the parameter types are references). 7628 7629 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 7630 *this, Previous, NewFD, ExtraArgs, false, nullptr)) { 7631 AddToScope = ExtraArgs.AddToScope; 7632 return Result; 7633 } 7634 } 7635 7636 // Unqualified local friend declarations are required to resolve 7637 // to something. 7638 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { 7639 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 7640 *this, Previous, NewFD, ExtraArgs, true, S)) { 7641 AddToScope = ExtraArgs.AddToScope; 7642 return Result; 7643 } 7644 } 7645 7646 } else if (!D.isFunctionDefinition() && 7647 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && 7648 !isFriend && !isFunctionTemplateSpecialization && 7649 !isExplicitSpecialization) { 7650 // An out-of-line member function declaration must also be a 7651 // definition (C++ [class.mfct]p2). 7652 // Note that this is not the case for explicit specializations of 7653 // function templates or member functions of class templates, per 7654 // C++ [temp.expl.spec]p2. We also allow these declarations as an 7655 // extension for compatibility with old SWIG code which likes to 7656 // generate them. 7657 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) 7658 << D.getCXXScopeSpec().getRange(); 7659 } 7660 } 7661 7662 ProcessPragmaWeak(S, NewFD); 7663 checkAttributesAfterMerging(*this, *NewFD); 7664 7665 AddKnownFunctionAttributes(NewFD); 7666 7667 if (NewFD->hasAttr<OverloadableAttr>() && 7668 !NewFD->getType()->getAs<FunctionProtoType>()) { 7669 Diag(NewFD->getLocation(), 7670 diag::err_attribute_overloadable_no_prototype) 7671 << NewFD; 7672 7673 // Turn this into a variadic function with no parameters. 7674 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); 7675 FunctionProtoType::ExtProtoInfo EPI( 7676 Context.getDefaultCallingConvention(true, false)); 7677 EPI.Variadic = true; 7678 EPI.ExtInfo = FT->getExtInfo(); 7679 7680 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); 7681 NewFD->setType(R); 7682 } 7683 7684 // If there's a #pragma GCC visibility in scope, and this isn't a class 7685 // member, set the visibility of this function. 7686 if (!DC->isRecord() && NewFD->isExternallyVisible()) 7687 AddPushedVisibilityAttribute(NewFD); 7688 7689 // If there's a #pragma clang arc_cf_code_audited in scope, consider 7690 // marking the function. 7691 AddCFAuditedAttribute(NewFD); 7692 7693 // If this is a function definition, check if we have to apply optnone due to 7694 // a pragma. 7695 if(D.isFunctionDefinition()) 7696 AddRangeBasedOptnone(NewFD); 7697 7698 // If this is the first declaration of an extern C variable, update 7699 // the map of such variables. 7700 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && 7701 isIncompleteDeclExternC(*this, NewFD)) 7702 RegisterLocallyScopedExternCDecl(NewFD, S); 7703 7704 // Set this FunctionDecl's range up to the right paren. 7705 NewFD->setRangeEnd(D.getSourceRange().getEnd()); 7706 7707 if (D.isRedeclaration() && !Previous.empty()) { 7708 checkDLLAttributeRedeclaration( 7709 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD, 7710 isExplicitSpecialization || isFunctionTemplateSpecialization); 7711 } 7712 7713 if (getLangOpts().CPlusPlus) { 7714 if (FunctionTemplate) { 7715 if (NewFD->isInvalidDecl()) 7716 FunctionTemplate->setInvalidDecl(); 7717 return FunctionTemplate; 7718 } 7719 } 7720 7721 if (NewFD->hasAttr<OpenCLKernelAttr>()) { 7722 // OpenCL v1.2 s6.8 static is invalid for kernel functions. 7723 if ((getLangOpts().OpenCLVersion >= 120) 7724 && (SC == SC_Static)) { 7725 Diag(D.getIdentifierLoc(), diag::err_static_kernel); 7726 D.setInvalidType(); 7727 } 7728 7729 // OpenCL v1.2, s6.9 -- Kernels can only have return type void. 7730 if (!NewFD->getReturnType()->isVoidType()) { 7731 SourceRange RTRange = NewFD->getReturnTypeSourceRange(); 7732 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) 7733 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 7734 : FixItHint()); 7735 D.setInvalidType(); 7736 } 7737 7738 llvm::SmallPtrSet<const Type *, 16> ValidTypes; 7739 for (auto Param : NewFD->params()) 7740 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); 7741 } 7742 7743 MarkUnusedFileScopedDecl(NewFD); 7744 7745 if (getLangOpts().CUDA) 7746 if (IdentifierInfo *II = NewFD->getIdentifier()) 7747 if (!NewFD->isInvalidDecl() && 7748 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 7749 if (II->isStr("cudaConfigureCall")) { 7750 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType()) 7751 Diag(NewFD->getLocation(), diag::err_config_scalar_return); 7752 7753 Context.setcudaConfigureCallDecl(NewFD); 7754 } 7755 } 7756 7757 // Here we have an function template explicit specialization at class scope. 7758 // The actually specialization will be postponed to template instatiation 7759 // time via the ClassScopeFunctionSpecializationDecl node. 7760 if (isDependentClassScopeExplicitSpecialization) { 7761 ClassScopeFunctionSpecializationDecl *NewSpec = 7762 ClassScopeFunctionSpecializationDecl::Create( 7763 Context, CurContext, SourceLocation(), 7764 cast<CXXMethodDecl>(NewFD), 7765 HasExplicitTemplateArgs, TemplateArgs); 7766 CurContext->addDecl(NewSpec); 7767 AddToScope = false; 7768 } 7769 7770 return NewFD; 7771 } 7772 7773 /// \brief Perform semantic checking of a new function declaration. 7774 /// 7775 /// Performs semantic analysis of the new function declaration 7776 /// NewFD. This routine performs all semantic checking that does not 7777 /// require the actual declarator involved in the declaration, and is 7778 /// used both for the declaration of functions as they are parsed 7779 /// (called via ActOnDeclarator) and for the declaration of functions 7780 /// that have been instantiated via C++ template instantiation (called 7781 /// via InstantiateDecl). 7782 /// 7783 /// \param IsExplicitSpecialization whether this new function declaration is 7784 /// an explicit specialization of the previous declaration. 7785 /// 7786 /// This sets NewFD->isInvalidDecl() to true if there was an error. 7787 /// 7788 /// \returns true if the function declaration is a redeclaration. 7789 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, 7790 LookupResult &Previous, 7791 bool IsExplicitSpecialization) { 7792 assert(!NewFD->getReturnType()->isVariablyModifiedType() && 7793 "Variably modified return types are not handled here"); 7794 7795 // Determine whether the type of this function should be merged with 7796 // a previous visible declaration. This never happens for functions in C++, 7797 // and always happens in C if the previous declaration was visible. 7798 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && 7799 !Previous.isShadowed(); 7800 7801 // Filter out any non-conflicting previous declarations. 7802 filterNonConflictingPreviousDecls(Context, NewFD, Previous); 7803 7804 bool Redeclaration = false; 7805 NamedDecl *OldDecl = nullptr; 7806 7807 // Merge or overload the declaration with an existing declaration of 7808 // the same name, if appropriate. 7809 if (!Previous.empty()) { 7810 // Determine whether NewFD is an overload of PrevDecl or 7811 // a declaration that requires merging. If it's an overload, 7812 // there's no more work to do here; we'll just add the new 7813 // function to the scope. 7814 if (!AllowOverloadingOfFunction(Previous, Context)) { 7815 NamedDecl *Candidate = Previous.getFoundDecl(); 7816 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { 7817 Redeclaration = true; 7818 OldDecl = Candidate; 7819 } 7820 } else { 7821 switch (CheckOverload(S, NewFD, Previous, OldDecl, 7822 /*NewIsUsingDecl*/ false)) { 7823 case Ovl_Match: 7824 Redeclaration = true; 7825 break; 7826 7827 case Ovl_NonFunction: 7828 Redeclaration = true; 7829 break; 7830 7831 case Ovl_Overload: 7832 Redeclaration = false; 7833 break; 7834 } 7835 7836 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) { 7837 // If a function name is overloadable in C, then every function 7838 // with that name must be marked "overloadable". 7839 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) 7840 << Redeclaration << NewFD; 7841 NamedDecl *OverloadedDecl = nullptr; 7842 if (Redeclaration) 7843 OverloadedDecl = OldDecl; 7844 else if (!Previous.empty()) 7845 OverloadedDecl = Previous.getRepresentativeDecl(); 7846 if (OverloadedDecl) 7847 Diag(OverloadedDecl->getLocation(), 7848 diag::note_attribute_overloadable_prev_overload); 7849 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 7850 } 7851 } 7852 } 7853 7854 // Check for a previous extern "C" declaration with this name. 7855 if (!Redeclaration && 7856 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { 7857 filterNonConflictingPreviousDecls(Context, NewFD, Previous); 7858 if (!Previous.empty()) { 7859 // This is an extern "C" declaration with the same name as a previous 7860 // declaration, and thus redeclares that entity... 7861 Redeclaration = true; 7862 OldDecl = Previous.getFoundDecl(); 7863 MergeTypeWithPrevious = false; 7864 7865 // ... except in the presence of __attribute__((overloadable)). 7866 if (OldDecl->hasAttr<OverloadableAttr>()) { 7867 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) { 7868 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) 7869 << Redeclaration << NewFD; 7870 Diag(Previous.getFoundDecl()->getLocation(), 7871 diag::note_attribute_overloadable_prev_overload); 7872 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 7873 } 7874 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { 7875 Redeclaration = false; 7876 OldDecl = nullptr; 7877 } 7878 } 7879 } 7880 } 7881 7882 // C++11 [dcl.constexpr]p8: 7883 // A constexpr specifier for a non-static member function that is not 7884 // a constructor declares that member function to be const. 7885 // 7886 // This needs to be delayed until we know whether this is an out-of-line 7887 // definition of a static member function. 7888 // 7889 // This rule is not present in C++1y, so we produce a backwards 7890 // compatibility warning whenever it happens in C++11. 7891 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 7892 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && 7893 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && 7894 (MD->getTypeQualifiers() & Qualifiers::Const) == 0) { 7895 CXXMethodDecl *OldMD = nullptr; 7896 if (OldDecl) 7897 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); 7898 if (!OldMD || !OldMD->isStatic()) { 7899 const FunctionProtoType *FPT = 7900 MD->getType()->castAs<FunctionProtoType>(); 7901 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 7902 EPI.TypeQuals |= Qualifiers::Const; 7903 MD->setType(Context.getFunctionType(FPT->getReturnType(), 7904 FPT->getParamTypes(), EPI)); 7905 7906 // Warn that we did this, if we're not performing template instantiation. 7907 // In that case, we'll have warned already when the template was defined. 7908 if (ActiveTemplateInstantiations.empty()) { 7909 SourceLocation AddConstLoc; 7910 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() 7911 .IgnoreParens().getAs<FunctionTypeLoc>()) 7912 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); 7913 7914 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) 7915 << FixItHint::CreateInsertion(AddConstLoc, " const"); 7916 } 7917 } 7918 } 7919 7920 if (Redeclaration) { 7921 // NewFD and OldDecl represent declarations that need to be 7922 // merged. 7923 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { 7924 NewFD->setInvalidDecl(); 7925 return Redeclaration; 7926 } 7927 7928 Previous.clear(); 7929 Previous.addDecl(OldDecl); 7930 7931 if (FunctionTemplateDecl *OldTemplateDecl 7932 = dyn_cast<FunctionTemplateDecl>(OldDecl)) { 7933 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl()); 7934 FunctionTemplateDecl *NewTemplateDecl 7935 = NewFD->getDescribedFunctionTemplate(); 7936 assert(NewTemplateDecl && "Template/non-template mismatch"); 7937 if (CXXMethodDecl *Method 7938 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) { 7939 Method->setAccess(OldTemplateDecl->getAccess()); 7940 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); 7941 } 7942 7943 // If this is an explicit specialization of a member that is a function 7944 // template, mark it as a member specialization. 7945 if (IsExplicitSpecialization && 7946 NewTemplateDecl->getInstantiatedFromMemberTemplate()) { 7947 NewTemplateDecl->setMemberSpecialization(); 7948 assert(OldTemplateDecl->isMemberSpecialization()); 7949 } 7950 7951 } else { 7952 // This needs to happen first so that 'inline' propagates. 7953 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl)); 7954 7955 if (isa<CXXMethodDecl>(NewFD)) { 7956 // A valid redeclaration of a C++ method must be out-of-line, 7957 // but (unfortunately) it's not necessarily a definition 7958 // because of templates, which means that the previous 7959 // declaration is not necessarily from the class definition. 7960 7961 // For just setting the access, that doesn't matter. 7962 CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl); 7963 NewFD->setAccess(oldMethod->getAccess()); 7964 7965 // Update the key-function state if necessary for this ABI. 7966 if (NewFD->isInlined() && 7967 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 7968 // setNonKeyFunction needs to work with the original 7969 // declaration from the class definition, and isVirtual() is 7970 // just faster in that case, so map back to that now. 7971 oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl()); 7972 if (oldMethod->isVirtual()) { 7973 Context.setNonKeyFunction(oldMethod); 7974 } 7975 } 7976 } 7977 } 7978 } 7979 7980 // Semantic checking for this function declaration (in isolation). 7981 7982 if (getLangOpts().CPlusPlus) { 7983 // C++-specific checks. 7984 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { 7985 CheckConstructor(Constructor); 7986 } else if (CXXDestructorDecl *Destructor = 7987 dyn_cast<CXXDestructorDecl>(NewFD)) { 7988 CXXRecordDecl *Record = Destructor->getParent(); 7989 QualType ClassType = Context.getTypeDeclType(Record); 7990 7991 // FIXME: Shouldn't we be able to perform this check even when the class 7992 // type is dependent? Both gcc and edg can handle that. 7993 if (!ClassType->isDependentType()) { 7994 DeclarationName Name 7995 = Context.DeclarationNames.getCXXDestructorName( 7996 Context.getCanonicalType(ClassType)); 7997 if (NewFD->getDeclName() != Name) { 7998 Diag(NewFD->getLocation(), diag::err_destructor_name); 7999 NewFD->setInvalidDecl(); 8000 return Redeclaration; 8001 } 8002 } 8003 } else if (CXXConversionDecl *Conversion 8004 = dyn_cast<CXXConversionDecl>(NewFD)) { 8005 ActOnConversionDeclarator(Conversion); 8006 } 8007 8008 // Find any virtual functions that this function overrides. 8009 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { 8010 if (!Method->isFunctionTemplateSpecialization() && 8011 !Method->getDescribedFunctionTemplate() && 8012 Method->isCanonicalDecl()) { 8013 if (AddOverriddenMethods(Method->getParent(), Method)) { 8014 // If the function was marked as "static", we have a problem. 8015 if (NewFD->getStorageClass() == SC_Static) { 8016 ReportOverrides(*this, diag::err_static_overrides_virtual, Method); 8017 } 8018 } 8019 } 8020 8021 if (Method->isStatic()) 8022 checkThisInStaticMemberFunctionType(Method); 8023 } 8024 8025 // Extra checking for C++ overloaded operators (C++ [over.oper]). 8026 if (NewFD->isOverloadedOperator() && 8027 CheckOverloadedOperatorDeclaration(NewFD)) { 8028 NewFD->setInvalidDecl(); 8029 return Redeclaration; 8030 } 8031 8032 // Extra checking for C++0x literal operators (C++0x [over.literal]). 8033 if (NewFD->getLiteralIdentifier() && 8034 CheckLiteralOperatorDeclaration(NewFD)) { 8035 NewFD->setInvalidDecl(); 8036 return Redeclaration; 8037 } 8038 8039 // In C++, check default arguments now that we have merged decls. Unless 8040 // the lexical context is the class, because in this case this is done 8041 // during delayed parsing anyway. 8042 if (!CurContext->isRecord()) 8043 CheckCXXDefaultArguments(NewFD); 8044 8045 // If this function declares a builtin function, check the type of this 8046 // declaration against the expected type for the builtin. 8047 if (unsigned BuiltinID = NewFD->getBuiltinID()) { 8048 ASTContext::GetBuiltinTypeError Error; 8049 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier()); 8050 QualType T = Context.GetBuiltinType(BuiltinID, Error); 8051 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) { 8052 // The type of this function differs from the type of the builtin, 8053 // so forget about the builtin entirely. 8054 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents); 8055 } 8056 } 8057 8058 // If this function is declared as being extern "C", then check to see if 8059 // the function returns a UDT (class, struct, or union type) that is not C 8060 // compatible, and if it does, warn the user. 8061 // But, issue any diagnostic on the first declaration only. 8062 if (Previous.empty() && NewFD->isExternC()) { 8063 QualType R = NewFD->getReturnType(); 8064 if (R->isIncompleteType() && !R->isVoidType()) 8065 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) 8066 << NewFD << R; 8067 else if (!R.isPODType(Context) && !R->isVoidType() && 8068 !R->isObjCObjectPointerType()) 8069 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; 8070 } 8071 } 8072 return Redeclaration; 8073 } 8074 8075 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { 8076 // C++11 [basic.start.main]p3: 8077 // A program that [...] declares main to be inline, static or 8078 // constexpr is ill-formed. 8079 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall 8080 // appear in a declaration of main. 8081 // static main is not an error under C99, but we should warn about it. 8082 // We accept _Noreturn main as an extension. 8083 if (FD->getStorageClass() == SC_Static) 8084 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus 8085 ? diag::err_static_main : diag::warn_static_main) 8086 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 8087 if (FD->isInlineSpecified()) 8088 Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 8089 << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); 8090 if (DS.isNoreturnSpecified()) { 8091 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); 8092 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); 8093 Diag(NoreturnLoc, diag::ext_noreturn_main); 8094 Diag(NoreturnLoc, diag::note_main_remove_noreturn) 8095 << FixItHint::CreateRemoval(NoreturnRange); 8096 } 8097 if (FD->isConstexpr()) { 8098 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) 8099 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); 8100 FD->setConstexpr(false); 8101 } 8102 8103 if (getLangOpts().OpenCL) { 8104 Diag(FD->getLocation(), diag::err_opencl_no_main) 8105 << FD->hasAttr<OpenCLKernelAttr>(); 8106 FD->setInvalidDecl(); 8107 return; 8108 } 8109 8110 QualType T = FD->getType(); 8111 assert(T->isFunctionType() && "function decl is not of function type"); 8112 const FunctionType* FT = T->castAs<FunctionType>(); 8113 8114 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { 8115 // In C with GNU extensions we allow main() to have non-integer return 8116 // type, but we should warn about the extension, and we disable the 8117 // implicit-return-zero rule. 8118 8119 // GCC in C mode accepts qualified 'int'. 8120 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) 8121 FD->setHasImplicitReturnZero(true); 8122 else { 8123 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); 8124 SourceRange RTRange = FD->getReturnTypeSourceRange(); 8125 if (RTRange.isValid()) 8126 Diag(RTRange.getBegin(), diag::note_main_change_return_type) 8127 << FixItHint::CreateReplacement(RTRange, "int"); 8128 } 8129 } else { 8130 // In C and C++, main magically returns 0 if you fall off the end; 8131 // set the flag which tells us that. 8132 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. 8133 8134 // All the standards say that main() should return 'int'. 8135 if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) 8136 FD->setHasImplicitReturnZero(true); 8137 else { 8138 // Otherwise, this is just a flat-out error. 8139 SourceRange RTRange = FD->getReturnTypeSourceRange(); 8140 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) 8141 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") 8142 : FixItHint()); 8143 FD->setInvalidDecl(true); 8144 } 8145 } 8146 8147 // Treat protoless main() as nullary. 8148 if (isa<FunctionNoProtoType>(FT)) return; 8149 8150 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); 8151 unsigned nparams = FTP->getNumParams(); 8152 assert(FD->getNumParams() == nparams); 8153 8154 bool HasExtraParameters = (nparams > 3); 8155 8156 // Darwin passes an undocumented fourth argument of type char**. If 8157 // other platforms start sprouting these, the logic below will start 8158 // getting shifty. 8159 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) 8160 HasExtraParameters = false; 8161 8162 if (HasExtraParameters) { 8163 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; 8164 FD->setInvalidDecl(true); 8165 nparams = 3; 8166 } 8167 8168 // FIXME: a lot of the following diagnostics would be improved 8169 // if we had some location information about types. 8170 8171 QualType CharPP = 8172 Context.getPointerType(Context.getPointerType(Context.CharTy)); 8173 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; 8174 8175 for (unsigned i = 0; i < nparams; ++i) { 8176 QualType AT = FTP->getParamType(i); 8177 8178 bool mismatch = true; 8179 8180 if (Context.hasSameUnqualifiedType(AT, Expected[i])) 8181 mismatch = false; 8182 else if (Expected[i] == CharPP) { 8183 // As an extension, the following forms are okay: 8184 // char const ** 8185 // char const * const * 8186 // char * const * 8187 8188 QualifierCollector qs; 8189 const PointerType* PT; 8190 if ((PT = qs.strip(AT)->getAs<PointerType>()) && 8191 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && 8192 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), 8193 Context.CharTy)) { 8194 qs.removeConst(); 8195 mismatch = !qs.empty(); 8196 } 8197 } 8198 8199 if (mismatch) { 8200 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; 8201 // TODO: suggest replacing given type with expected type 8202 FD->setInvalidDecl(true); 8203 } 8204 } 8205 8206 if (nparams == 1 && !FD->isInvalidDecl()) { 8207 Diag(FD->getLocation(), diag::warn_main_one_arg); 8208 } 8209 8210 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 8211 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 8212 FD->setInvalidDecl(); 8213 } 8214 } 8215 8216 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { 8217 QualType T = FD->getType(); 8218 assert(T->isFunctionType() && "function decl is not of function type"); 8219 const FunctionType *FT = T->castAs<FunctionType>(); 8220 8221 // Set an implicit return of 'zero' if the function can return some integral, 8222 // enumeration, pointer or nullptr type. 8223 if (FT->getReturnType()->isIntegralOrEnumerationType() || 8224 FT->getReturnType()->isAnyPointerType() || 8225 FT->getReturnType()->isNullPtrType()) 8226 // DllMain is exempt because a return value of zero means it failed. 8227 if (FD->getName() != "DllMain") 8228 FD->setHasImplicitReturnZero(true); 8229 8230 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 8231 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 8232 FD->setInvalidDecl(); 8233 } 8234 } 8235 8236 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { 8237 // FIXME: Need strict checking. In C89, we need to check for 8238 // any assignment, increment, decrement, function-calls, or 8239 // commas outside of a sizeof. In C99, it's the same list, 8240 // except that the aforementioned are allowed in unevaluated 8241 // expressions. Everything else falls under the 8242 // "may accept other forms of constant expressions" exception. 8243 // (We never end up here for C++, so the constant expression 8244 // rules there don't matter.) 8245 const Expr *Culprit; 8246 if (Init->isConstantInitializer(Context, false, &Culprit)) 8247 return false; 8248 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) 8249 << Culprit->getSourceRange(); 8250 return true; 8251 } 8252 8253 namespace { 8254 // Visits an initialization expression to see if OrigDecl is evaluated in 8255 // its own initialization and throws a warning if it does. 8256 class SelfReferenceChecker 8257 : public EvaluatedExprVisitor<SelfReferenceChecker> { 8258 Sema &S; 8259 Decl *OrigDecl; 8260 bool isRecordType; 8261 bool isPODType; 8262 bool isReferenceType; 8263 8264 bool isInitList; 8265 llvm::SmallVector<unsigned, 4> InitFieldIndex; 8266 public: 8267 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; 8268 8269 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), 8270 S(S), OrigDecl(OrigDecl) { 8271 isPODType = false; 8272 isRecordType = false; 8273 isReferenceType = false; 8274 isInitList = false; 8275 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { 8276 isPODType = VD->getType().isPODType(S.Context); 8277 isRecordType = VD->getType()->isRecordType(); 8278 isReferenceType = VD->getType()->isReferenceType(); 8279 } 8280 } 8281 8282 // For most expressions, just call the visitor. For initializer lists, 8283 // track the index of the field being initialized since fields are 8284 // initialized in order allowing use of previously initialized fields. 8285 void CheckExpr(Expr *E) { 8286 InitListExpr *InitList = dyn_cast<InitListExpr>(E); 8287 if (!InitList) { 8288 Visit(E); 8289 return; 8290 } 8291 8292 // Track and increment the index here. 8293 isInitList = true; 8294 InitFieldIndex.push_back(0); 8295 for (auto Child : InitList->children()) { 8296 CheckExpr(cast<Expr>(Child)); 8297 ++InitFieldIndex.back(); 8298 } 8299 InitFieldIndex.pop_back(); 8300 } 8301 8302 // Returns true if MemberExpr is checked and no futher checking is needed. 8303 // Returns false if additional checking is required. 8304 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { 8305 llvm::SmallVector<FieldDecl*, 4> Fields; 8306 Expr *Base = E; 8307 bool ReferenceField = false; 8308 8309 // Get the field memebers used. 8310 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 8311 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 8312 if (!FD) 8313 return false; 8314 Fields.push_back(FD); 8315 if (FD->getType()->isReferenceType()) 8316 ReferenceField = true; 8317 Base = ME->getBase()->IgnoreParenImpCasts(); 8318 } 8319 8320 // Keep checking only if the base Decl is the same. 8321 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); 8322 if (!DRE || DRE->getDecl() != OrigDecl) 8323 return false; 8324 8325 // A reference field can be bound to an unininitialized field. 8326 if (CheckReference && !ReferenceField) 8327 return true; 8328 8329 // Convert FieldDecls to their index number. 8330 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 8331 for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) { 8332 UsedFieldIndex.push_back((*I)->getFieldIndex()); 8333 } 8334 8335 // See if a warning is needed by checking the first difference in index 8336 // numbers. If field being used has index less than the field being 8337 // initialized, then the use is safe. 8338 for (auto UsedIter = UsedFieldIndex.begin(), 8339 UsedEnd = UsedFieldIndex.end(), 8340 OrigIter = InitFieldIndex.begin(), 8341 OrigEnd = InitFieldIndex.end(); 8342 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 8343 if (*UsedIter < *OrigIter) 8344 return true; 8345 if (*UsedIter > *OrigIter) 8346 break; 8347 } 8348 8349 // TODO: Add a different warning which will print the field names. 8350 HandleDeclRefExpr(DRE); 8351 return true; 8352 } 8353 8354 // For most expressions, the cast is directly above the DeclRefExpr. 8355 // For conditional operators, the cast can be outside the conditional 8356 // operator if both expressions are DeclRefExpr's. 8357 void HandleValue(Expr *E) { 8358 E = E->IgnoreParens(); 8359 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { 8360 HandleDeclRefExpr(DRE); 8361 return; 8362 } 8363 8364 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8365 Visit(CO->getCond()); 8366 HandleValue(CO->getTrueExpr()); 8367 HandleValue(CO->getFalseExpr()); 8368 return; 8369 } 8370 8371 if (BinaryConditionalOperator *BCO = 8372 dyn_cast<BinaryConditionalOperator>(E)) { 8373 Visit(BCO->getCond()); 8374 HandleValue(BCO->getFalseExpr()); 8375 return; 8376 } 8377 8378 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 8379 HandleValue(OVE->getSourceExpr()); 8380 return; 8381 } 8382 8383 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 8384 if (BO->getOpcode() == BO_Comma) { 8385 Visit(BO->getLHS()); 8386 HandleValue(BO->getRHS()); 8387 return; 8388 } 8389 } 8390 8391 if (isa<MemberExpr>(E)) { 8392 if (isInitList) { 8393 if (CheckInitListMemberExpr(cast<MemberExpr>(E), 8394 false /*CheckReference*/)) 8395 return; 8396 } 8397 8398 Expr *Base = E->IgnoreParenImpCasts(); 8399 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 8400 // Check for static member variables and don't warn on them. 8401 if (!isa<FieldDecl>(ME->getMemberDecl())) 8402 return; 8403 Base = ME->getBase()->IgnoreParenImpCasts(); 8404 } 8405 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) 8406 HandleDeclRefExpr(DRE); 8407 return; 8408 } 8409 8410 Visit(E); 8411 } 8412 8413 // Reference types not handled in HandleValue are handled here since all 8414 // uses of references are bad, not just r-value uses. 8415 void VisitDeclRefExpr(DeclRefExpr *E) { 8416 if (isReferenceType) 8417 HandleDeclRefExpr(E); 8418 } 8419 8420 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 8421 if (E->getCastKind() == CK_LValueToRValue) { 8422 HandleValue(E->getSubExpr()); 8423 return; 8424 } 8425 8426 Inherited::VisitImplicitCastExpr(E); 8427 } 8428 8429 void VisitMemberExpr(MemberExpr *E) { 8430 if (isInitList) { 8431 if (CheckInitListMemberExpr(E, true /*CheckReference*/)) 8432 return; 8433 } 8434 8435 // Don't warn on arrays since they can be treated as pointers. 8436 if (E->getType()->canDecayToPointerType()) return; 8437 8438 // Warn when a non-static method call is followed by non-static member 8439 // field accesses, which is followed by a DeclRefExpr. 8440 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); 8441 bool Warn = (MD && !MD->isStatic()); 8442 Expr *Base = E->getBase()->IgnoreParenImpCasts(); 8443 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 8444 if (!isa<FieldDecl>(ME->getMemberDecl())) 8445 Warn = false; 8446 Base = ME->getBase()->IgnoreParenImpCasts(); 8447 } 8448 8449 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 8450 if (Warn) 8451 HandleDeclRefExpr(DRE); 8452 return; 8453 } 8454 8455 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. 8456 // Visit that expression. 8457 Visit(Base); 8458 } 8459 8460 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 8461 Expr *Callee = E->getCallee(); 8462 8463 if (isa<UnresolvedLookupExpr>(Callee)) 8464 return Inherited::VisitCXXOperatorCallExpr(E); 8465 8466 Visit(Callee); 8467 for (auto Arg: E->arguments()) 8468 HandleValue(Arg->IgnoreParenImpCasts()); 8469 } 8470 8471 void VisitUnaryOperator(UnaryOperator *E) { 8472 // For POD record types, addresses of its own members are well-defined. 8473 if (E->getOpcode() == UO_AddrOf && isRecordType && 8474 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { 8475 if (!isPODType) 8476 HandleValue(E->getSubExpr()); 8477 return; 8478 } 8479 8480 if (E->isIncrementDecrementOp()) { 8481 HandleValue(E->getSubExpr()); 8482 return; 8483 } 8484 8485 Inherited::VisitUnaryOperator(E); 8486 } 8487 8488 void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; } 8489 8490 void VisitCXXConstructExpr(CXXConstructExpr *E) { 8491 if (E->getConstructor()->isCopyConstructor()) { 8492 Expr *ArgExpr = E->getArg(0); 8493 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 8494 if (ILE->getNumInits() == 1) 8495 ArgExpr = ILE->getInit(0); 8496 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 8497 if (ICE->getCastKind() == CK_NoOp) 8498 ArgExpr = ICE->getSubExpr(); 8499 HandleValue(ArgExpr); 8500 return; 8501 } 8502 Inherited::VisitCXXConstructExpr(E); 8503 } 8504 8505 void VisitCallExpr(CallExpr *E) { 8506 // Treat std::move as a use. 8507 if (E->getNumArgs() == 1) { 8508 if (FunctionDecl *FD = E->getDirectCallee()) { 8509 if (FD->isInStdNamespace() && FD->getIdentifier() && 8510 FD->getIdentifier()->isStr("move")) { 8511 HandleValue(E->getArg(0)); 8512 return; 8513 } 8514 } 8515 } 8516 8517 Inherited::VisitCallExpr(E); 8518 } 8519 8520 void VisitBinaryOperator(BinaryOperator *E) { 8521 if (E->isCompoundAssignmentOp()) { 8522 HandleValue(E->getLHS()); 8523 Visit(E->getRHS()); 8524 return; 8525 } 8526 8527 Inherited::VisitBinaryOperator(E); 8528 } 8529 8530 // A custom visitor for BinaryConditionalOperator is needed because the 8531 // regular visitor would check the condition and true expression separately 8532 // but both point to the same place giving duplicate diagnostics. 8533 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 8534 Visit(E->getCond()); 8535 Visit(E->getFalseExpr()); 8536 } 8537 8538 void HandleDeclRefExpr(DeclRefExpr *DRE) { 8539 Decl* ReferenceDecl = DRE->getDecl(); 8540 if (OrigDecl != ReferenceDecl) return; 8541 unsigned diag; 8542 if (isReferenceType) { 8543 diag = diag::warn_uninit_self_reference_in_reference_init; 8544 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { 8545 diag = diag::warn_static_self_reference_in_init; 8546 } else { 8547 diag = diag::warn_uninit_self_reference_in_init; 8548 } 8549 8550 S.DiagRuntimeBehavior(DRE->getLocStart(), DRE, 8551 S.PDiag(diag) 8552 << DRE->getNameInfo().getName() 8553 << OrigDecl->getLocation() 8554 << DRE->getSourceRange()); 8555 } 8556 }; 8557 8558 /// CheckSelfReference - Warns if OrigDecl is used in expression E. 8559 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, 8560 bool DirectInit) { 8561 // Parameters arguments are occassionially constructed with itself, 8562 // for instance, in recursive functions. Skip them. 8563 if (isa<ParmVarDecl>(OrigDecl)) 8564 return; 8565 8566 E = E->IgnoreParens(); 8567 8568 // Skip checking T a = a where T is not a record or reference type. 8569 // Doing so is a way to silence uninitialized warnings. 8570 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) 8571 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 8572 if (ICE->getCastKind() == CK_LValueToRValue) 8573 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) 8574 if (DRE->getDecl() == OrigDecl) 8575 return; 8576 8577 SelfReferenceChecker(S, OrigDecl).CheckExpr(E); 8578 } 8579 } 8580 8581 /// AddInitializerToDecl - Adds the initializer Init to the 8582 /// declaration dcl. If DirectInit is true, this is C++ direct 8583 /// initialization rather than copy initialization. 8584 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, 8585 bool DirectInit, bool TypeMayContainAuto) { 8586 // If there is no declaration, there was an error parsing it. Just ignore 8587 // the initializer. 8588 if (!RealDecl || RealDecl->isInvalidDecl()) { 8589 CorrectDelayedTyposInExpr(Init); 8590 return; 8591 } 8592 8593 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { 8594 // With declarators parsed the way they are, the parser cannot 8595 // distinguish between a normal initializer and a pure-specifier. 8596 // Thus this grotesque test. 8597 IntegerLiteral *IL; 8598 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 && 8599 Context.getCanonicalType(IL->getType()) == Context.IntTy) 8600 CheckPureMethod(Method, Init->getSourceRange()); 8601 else { 8602 Diag(Method->getLocation(), diag::err_member_function_initialization) 8603 << Method->getDeclName() << Init->getSourceRange(); 8604 Method->setInvalidDecl(); 8605 } 8606 return; 8607 } 8608 8609 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); 8610 if (!VDecl) { 8611 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); 8612 Diag(RealDecl->getLocation(), diag::err_illegal_initializer); 8613 RealDecl->setInvalidDecl(); 8614 return; 8615 } 8616 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 8617 8618 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. 8619 if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) { 8620 Expr *DeduceInit = Init; 8621 // Initializer could be a C++ direct-initializer. Deduction only works if it 8622 // contains exactly one expression. 8623 if (CXXDirectInit) { 8624 if (CXXDirectInit->getNumExprs() == 0) { 8625 // It isn't possible to write this directly, but it is possible to 8626 // end up in this situation with "auto x(some_pack...);" 8627 Diag(CXXDirectInit->getLocStart(), 8628 VDecl->isInitCapture() ? diag::err_init_capture_no_expression 8629 : diag::err_auto_var_init_no_expression) 8630 << VDecl->getDeclName() << VDecl->getType() 8631 << VDecl->getSourceRange(); 8632 RealDecl->setInvalidDecl(); 8633 return; 8634 } else if (CXXDirectInit->getNumExprs() > 1) { 8635 Diag(CXXDirectInit->getExpr(1)->getLocStart(), 8636 VDecl->isInitCapture() 8637 ? diag::err_init_capture_multiple_expressions 8638 : diag::err_auto_var_init_multiple_expressions) 8639 << VDecl->getDeclName() << VDecl->getType() 8640 << VDecl->getSourceRange(); 8641 RealDecl->setInvalidDecl(); 8642 return; 8643 } else { 8644 DeduceInit = CXXDirectInit->getExpr(0); 8645 if (isa<InitListExpr>(DeduceInit)) 8646 Diag(CXXDirectInit->getLocStart(), 8647 diag::err_auto_var_init_paren_braces) 8648 << VDecl->getDeclName() << VDecl->getType() 8649 << VDecl->getSourceRange(); 8650 } 8651 } 8652 8653 // Expressions default to 'id' when we're in a debugger. 8654 bool DefaultedToAuto = false; 8655 if (getLangOpts().DebuggerCastResultToId && 8656 Init->getType() == Context.UnknownAnyTy) { 8657 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 8658 if (Result.isInvalid()) { 8659 VDecl->setInvalidDecl(); 8660 return; 8661 } 8662 Init = Result.get(); 8663 DefaultedToAuto = true; 8664 } 8665 8666 QualType DeducedType; 8667 if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) == 8668 DAR_Failed) 8669 DiagnoseAutoDeductionFailure(VDecl, DeduceInit); 8670 if (DeducedType.isNull()) { 8671 RealDecl->setInvalidDecl(); 8672 return; 8673 } 8674 VDecl->setType(DeducedType); 8675 assert(VDecl->isLinkageValid()); 8676 8677 // In ARC, infer lifetime. 8678 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) 8679 VDecl->setInvalidDecl(); 8680 8681 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using 8682 // 'id' instead of a specific object type prevents most of our usual checks. 8683 // We only want to warn outside of template instantiations, though: 8684 // inside a template, the 'id' could have come from a parameter. 8685 if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto && 8686 DeducedType->isObjCIdType()) { 8687 SourceLocation Loc = 8688 VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 8689 Diag(Loc, diag::warn_auto_var_is_id) 8690 << VDecl->getDeclName() << DeduceInit->getSourceRange(); 8691 } 8692 8693 // If this is a redeclaration, check that the type we just deduced matches 8694 // the previously declared type. 8695 if (VarDecl *Old = VDecl->getPreviousDecl()) { 8696 // We never need to merge the type, because we cannot form an incomplete 8697 // array of auto, nor deduce such a type. 8698 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false); 8699 } 8700 8701 // Check the deduced type is valid for a variable declaration. 8702 CheckVariableDeclarationType(VDecl); 8703 if (VDecl->isInvalidDecl()) 8704 return; 8705 8706 // If all looks well, warn if this is a case that will change meaning when 8707 // we implement N3922. 8708 if (DirectInit && !CXXDirectInit && isa<InitListExpr>(Init)) { 8709 Diag(Init->getLocStart(), 8710 diag::warn_auto_var_direct_list_init) 8711 << FixItHint::CreateInsertion(Init->getLocStart(), "="); 8712 } 8713 } 8714 8715 // dllimport cannot be used on variable definitions. 8716 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { 8717 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); 8718 VDecl->setInvalidDecl(); 8719 return; 8720 } 8721 8722 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { 8723 // C99 6.7.8p5. C++ has no such restriction, but that is a defect. 8724 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); 8725 VDecl->setInvalidDecl(); 8726 return; 8727 } 8728 8729 if (!VDecl->getType()->isDependentType()) { 8730 // A definition must end up with a complete type, which means it must be 8731 // complete with the restriction that an array type might be completed by 8732 // the initializer; note that later code assumes this restriction. 8733 QualType BaseDeclType = VDecl->getType(); 8734 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) 8735 BaseDeclType = Array->getElementType(); 8736 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, 8737 diag::err_typecheck_decl_incomplete_type)) { 8738 RealDecl->setInvalidDecl(); 8739 return; 8740 } 8741 8742 // The variable can not have an abstract class type. 8743 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), 8744 diag::err_abstract_type_in_decl, 8745 AbstractVariableType)) 8746 VDecl->setInvalidDecl(); 8747 } 8748 8749 const VarDecl *Def; 8750 if ((Def = VDecl->getDefinition()) && Def != VDecl) { 8751 Diag(VDecl->getLocation(), diag::err_redefinition) 8752 << VDecl->getDeclName(); 8753 Diag(Def->getLocation(), diag::note_previous_definition); 8754 VDecl->setInvalidDecl(); 8755 return; 8756 } 8757 8758 const VarDecl *PrevInit = nullptr; 8759 if (getLangOpts().CPlusPlus) { 8760 // C++ [class.static.data]p4 8761 // If a static data member is of const integral or const 8762 // enumeration type, its declaration in the class definition can 8763 // specify a constant-initializer which shall be an integral 8764 // constant expression (5.19). In that case, the member can appear 8765 // in integral constant expressions. The member shall still be 8766 // defined in a namespace scope if it is used in the program and the 8767 // namespace scope definition shall not contain an initializer. 8768 // 8769 // We already performed a redefinition check above, but for static 8770 // data members we also need to check whether there was an in-class 8771 // declaration with an initializer. 8772 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { 8773 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) 8774 << VDecl->getDeclName(); 8775 Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0; 8776 return; 8777 } 8778 8779 if (VDecl->hasLocalStorage()) 8780 getCurFunction()->setHasBranchProtectedScope(); 8781 8782 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { 8783 VDecl->setInvalidDecl(); 8784 return; 8785 } 8786 } 8787 8788 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside 8789 // a kernel function cannot be initialized." 8790 if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) { 8791 Diag(VDecl->getLocation(), diag::err_local_cant_init); 8792 VDecl->setInvalidDecl(); 8793 return; 8794 } 8795 8796 // Get the decls type and save a reference for later, since 8797 // CheckInitializerTypes may change it. 8798 QualType DclT = VDecl->getType(), SavT = DclT; 8799 8800 // Expressions default to 'id' when we're in a debugger 8801 // and we are assigning it to a variable of Objective-C pointer type. 8802 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && 8803 Init->getType() == Context.UnknownAnyTy) { 8804 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 8805 if (Result.isInvalid()) { 8806 VDecl->setInvalidDecl(); 8807 return; 8808 } 8809 Init = Result.get(); 8810 } 8811 8812 // Perform the initialization. 8813 if (!VDecl->isInvalidDecl()) { 8814 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 8815 InitializationKind Kind 8816 = DirectInit ? 8817 CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(), 8818 Init->getLocStart(), 8819 Init->getLocEnd()) 8820 : InitializationKind::CreateDirectList( 8821 VDecl->getLocation()) 8822 : InitializationKind::CreateCopy(VDecl->getLocation(), 8823 Init->getLocStart()); 8824 8825 MultiExprArg Args = Init; 8826 if (CXXDirectInit) 8827 Args = MultiExprArg(CXXDirectInit->getExprs(), 8828 CXXDirectInit->getNumExprs()); 8829 8830 // Try to correct any TypoExprs in the initialization arguments. 8831 for (size_t Idx = 0; Idx < Args.size(); ++Idx) { 8832 ExprResult Res = 8833 CorrectDelayedTyposInExpr(Args[Idx], [this, Entity, Kind](Expr *E) { 8834 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); 8835 return Init.Failed() ? ExprError() : E; 8836 }); 8837 if (Res.isInvalid()) { 8838 VDecl->setInvalidDecl(); 8839 } else if (Res.get() != Args[Idx]) { 8840 Args[Idx] = Res.get(); 8841 } 8842 } 8843 if (VDecl->isInvalidDecl()) 8844 return; 8845 8846 InitializationSequence InitSeq(*this, Entity, Kind, Args); 8847 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 8848 if (Result.isInvalid()) { 8849 VDecl->setInvalidDecl(); 8850 return; 8851 } 8852 8853 Init = Result.getAs<Expr>(); 8854 } 8855 8856 // Check for self-references within variable initializers. 8857 // Variables declared within a function/method body (except for references) 8858 // are handled by a dataflow analysis. 8859 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || 8860 VDecl->getType()->isReferenceType()) { 8861 CheckSelfReference(*this, RealDecl, Init, DirectInit); 8862 } 8863 8864 // If the type changed, it means we had an incomplete type that was 8865 // completed by the initializer. For example: 8866 // int ary[] = { 1, 3, 5 }; 8867 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. 8868 if (!VDecl->isInvalidDecl() && (DclT != SavT)) 8869 VDecl->setType(DclT); 8870 8871 if (!VDecl->isInvalidDecl()) { 8872 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); 8873 8874 if (VDecl->hasAttr<BlocksAttr>()) 8875 checkRetainCycles(VDecl, Init); 8876 8877 // It is safe to assign a weak reference into a strong variable. 8878 // Although this code can still have problems: 8879 // id x = self.weakProp; 8880 // id y = self.weakProp; 8881 // we do not warn to warn spuriously when 'x' and 'y' are on separate 8882 // paths through the function. This should be revisited if 8883 // -Wrepeated-use-of-weak is made flow-sensitive. 8884 if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong && 8885 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, 8886 Init->getLocStart())) 8887 getCurFunction()->markSafeWeakUse(Init); 8888 } 8889 8890 // The initialization is usually a full-expression. 8891 // 8892 // FIXME: If this is a braced initialization of an aggregate, it is not 8893 // an expression, and each individual field initializer is a separate 8894 // full-expression. For instance, in: 8895 // 8896 // struct Temp { ~Temp(); }; 8897 // struct S { S(Temp); }; 8898 // struct T { S a, b; } t = { Temp(), Temp() } 8899 // 8900 // we should destroy the first Temp before constructing the second. 8901 ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(), 8902 false, 8903 VDecl->isConstexpr()); 8904 if (Result.isInvalid()) { 8905 VDecl->setInvalidDecl(); 8906 return; 8907 } 8908 Init = Result.get(); 8909 8910 // Attach the initializer to the decl. 8911 VDecl->setInit(Init); 8912 8913 if (VDecl->isLocalVarDecl()) { 8914 // C99 6.7.8p4: All the expressions in an initializer for an object that has 8915 // static storage duration shall be constant expressions or string literals. 8916 // C++ does not have this restriction. 8917 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) { 8918 const Expr *Culprit; 8919 if (VDecl->getStorageClass() == SC_Static) 8920 CheckForConstantInitializer(Init, DclT); 8921 // C89 is stricter than C99 for non-static aggregate types. 8922 // C89 6.5.7p3: All the expressions [...] in an initializer list 8923 // for an object that has aggregate or union type shall be 8924 // constant expressions. 8925 else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && 8926 isa<InitListExpr>(Init) && 8927 !Init->isConstantInitializer(Context, false, &Culprit)) 8928 Diag(Culprit->getExprLoc(), 8929 diag::ext_aggregate_init_not_constant) 8930 << Culprit->getSourceRange(); 8931 } 8932 } else if (VDecl->isStaticDataMember() && 8933 VDecl->getLexicalDeclContext()->isRecord()) { 8934 // This is an in-class initialization for a static data member, e.g., 8935 // 8936 // struct S { 8937 // static const int value = 17; 8938 // }; 8939 8940 // C++ [class.mem]p4: 8941 // A member-declarator can contain a constant-initializer only 8942 // if it declares a static member (9.4) of const integral or 8943 // const enumeration type, see 9.4.2. 8944 // 8945 // C++11 [class.static.data]p3: 8946 // If a non-volatile const static data member is of integral or 8947 // enumeration type, its declaration in the class definition can 8948 // specify a brace-or-equal-initializer in which every initalizer-clause 8949 // that is an assignment-expression is a constant expression. A static 8950 // data member of literal type can be declared in the class definition 8951 // with the constexpr specifier; if so, its declaration shall specify a 8952 // brace-or-equal-initializer in which every initializer-clause that is 8953 // an assignment-expression is a constant expression. 8954 8955 // Do nothing on dependent types. 8956 if (DclT->isDependentType()) { 8957 8958 // Allow any 'static constexpr' members, whether or not they are of literal 8959 // type. We separately check that every constexpr variable is of literal 8960 // type. 8961 } else if (VDecl->isConstexpr()) { 8962 8963 // Require constness. 8964 } else if (!DclT.isConstQualified()) { 8965 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) 8966 << Init->getSourceRange(); 8967 VDecl->setInvalidDecl(); 8968 8969 // We allow integer constant expressions in all cases. 8970 } else if (DclT->isIntegralOrEnumerationType()) { 8971 // Check whether the expression is a constant expression. 8972 SourceLocation Loc; 8973 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) 8974 // In C++11, a non-constexpr const static data member with an 8975 // in-class initializer cannot be volatile. 8976 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); 8977 else if (Init->isValueDependent()) 8978 ; // Nothing to check. 8979 else if (Init->isIntegerConstantExpr(Context, &Loc)) 8980 ; // Ok, it's an ICE! 8981 else if (Init->isEvaluatable(Context)) { 8982 // If we can constant fold the initializer through heroics, accept it, 8983 // but report this as a use of an extension for -pedantic. 8984 Diag(Loc, diag::ext_in_class_initializer_non_constant) 8985 << Init->getSourceRange(); 8986 } else { 8987 // Otherwise, this is some crazy unknown case. Report the issue at the 8988 // location provided by the isIntegerConstantExpr failed check. 8989 Diag(Loc, diag::err_in_class_initializer_non_constant) 8990 << Init->getSourceRange(); 8991 VDecl->setInvalidDecl(); 8992 } 8993 8994 // We allow foldable floating-point constants as an extension. 8995 } else if (DclT->isFloatingType()) { // also permits complex, which is ok 8996 // In C++98, this is a GNU extension. In C++11, it is not, but we support 8997 // it anyway and provide a fixit to add the 'constexpr'. 8998 if (getLangOpts().CPlusPlus11) { 8999 Diag(VDecl->getLocation(), 9000 diag::ext_in_class_initializer_float_type_cxx11) 9001 << DclT << Init->getSourceRange(); 9002 Diag(VDecl->getLocStart(), 9003 diag::note_in_class_initializer_float_type_cxx11) 9004 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr "); 9005 } else { 9006 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) 9007 << DclT << Init->getSourceRange(); 9008 9009 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { 9010 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) 9011 << Init->getSourceRange(); 9012 VDecl->setInvalidDecl(); 9013 } 9014 } 9015 9016 // Suggest adding 'constexpr' in C++11 for literal types. 9017 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { 9018 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) 9019 << DclT << Init->getSourceRange() 9020 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr "); 9021 VDecl->setConstexpr(true); 9022 9023 } else { 9024 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) 9025 << DclT << Init->getSourceRange(); 9026 VDecl->setInvalidDecl(); 9027 } 9028 } else if (VDecl->isFileVarDecl()) { 9029 if (VDecl->getStorageClass() == SC_Extern && 9030 (!getLangOpts().CPlusPlus || 9031 !(Context.getBaseElementType(VDecl->getType()).isConstQualified() || 9032 VDecl->isExternC())) && 9033 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) 9034 Diag(VDecl->getLocation(), diag::warn_extern_init); 9035 9036 // C99 6.7.8p4. All file scoped initializers need to be constant. 9037 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) 9038 CheckForConstantInitializer(Init, DclT); 9039 } 9040 9041 // We will represent direct-initialization similarly to copy-initialization: 9042 // int x(1); -as-> int x = 1; 9043 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); 9044 // 9045 // Clients that want to distinguish between the two forms, can check for 9046 // direct initializer using VarDecl::getInitStyle(). 9047 // A major benefit is that clients that don't particularly care about which 9048 // exactly form was it (like the CodeGen) can handle both cases without 9049 // special case code. 9050 9051 // C++ 8.5p11: 9052 // The form of initialization (using parentheses or '=') is generally 9053 // insignificant, but does matter when the entity being initialized has a 9054 // class type. 9055 if (CXXDirectInit) { 9056 assert(DirectInit && "Call-style initializer must be direct init."); 9057 VDecl->setInitStyle(VarDecl::CallInit); 9058 } else if (DirectInit) { 9059 // This must be list-initialization. No other way is direct-initialization. 9060 VDecl->setInitStyle(VarDecl::ListInit); 9061 } 9062 9063 CheckCompleteVariableDeclaration(VDecl); 9064 } 9065 9066 /// ActOnInitializerError - Given that there was an error parsing an 9067 /// initializer for the given declaration, try to return to some form 9068 /// of sanity. 9069 void Sema::ActOnInitializerError(Decl *D) { 9070 // Our main concern here is re-establishing invariants like "a 9071 // variable's type is either dependent or complete". 9072 if (!D || D->isInvalidDecl()) return; 9073 9074 VarDecl *VD = dyn_cast<VarDecl>(D); 9075 if (!VD) return; 9076 9077 // Auto types are meaningless if we can't make sense of the initializer. 9078 if (ParsingInitForAutoVars.count(D)) { 9079 D->setInvalidDecl(); 9080 return; 9081 } 9082 9083 QualType Ty = VD->getType(); 9084 if (Ty->isDependentType()) return; 9085 9086 // Require a complete type. 9087 if (RequireCompleteType(VD->getLocation(), 9088 Context.getBaseElementType(Ty), 9089 diag::err_typecheck_decl_incomplete_type)) { 9090 VD->setInvalidDecl(); 9091 return; 9092 } 9093 9094 // Require a non-abstract type. 9095 if (RequireNonAbstractType(VD->getLocation(), Ty, 9096 diag::err_abstract_type_in_decl, 9097 AbstractVariableType)) { 9098 VD->setInvalidDecl(); 9099 return; 9100 } 9101 9102 // Don't bother complaining about constructors or destructors, 9103 // though. 9104 } 9105 9106 void Sema::ActOnUninitializedDecl(Decl *RealDecl, 9107 bool TypeMayContainAuto) { 9108 // If there is no declaration, there was an error parsing it. Just ignore it. 9109 if (!RealDecl) 9110 return; 9111 9112 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { 9113 QualType Type = Var->getType(); 9114 9115 // C++11 [dcl.spec.auto]p3 9116 if (TypeMayContainAuto && Type->getContainedAutoType()) { 9117 Diag(Var->getLocation(), diag::err_auto_var_requires_init) 9118 << Var->getDeclName() << Type; 9119 Var->setInvalidDecl(); 9120 return; 9121 } 9122 9123 // C++11 [class.static.data]p3: A static data member can be declared with 9124 // the constexpr specifier; if so, its declaration shall specify 9125 // a brace-or-equal-initializer. 9126 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to 9127 // the definition of a variable [...] or the declaration of a static data 9128 // member. 9129 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) { 9130 if (Var->isStaticDataMember()) 9131 Diag(Var->getLocation(), 9132 diag::err_constexpr_static_mem_var_requires_init) 9133 << Var->getDeclName(); 9134 else 9135 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); 9136 Var->setInvalidDecl(); 9137 return; 9138 } 9139 9140 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must 9141 // be initialized. 9142 if (!Var->isInvalidDecl() && 9143 Var->getType().getAddressSpace() == LangAS::opencl_constant && 9144 Var->getStorageClass() != SC_Extern && !Var->getInit()) { 9145 Diag(Var->getLocation(), diag::err_opencl_constant_no_init); 9146 Var->setInvalidDecl(); 9147 return; 9148 } 9149 9150 switch (Var->isThisDeclarationADefinition()) { 9151 case VarDecl::Definition: 9152 if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) 9153 break; 9154 9155 // We have an out-of-line definition of a static data member 9156 // that has an in-class initializer, so we type-check this like 9157 // a declaration. 9158 // 9159 // Fall through 9160 9161 case VarDecl::DeclarationOnly: 9162 // It's only a declaration. 9163 9164 // Block scope. C99 6.7p7: If an identifier for an object is 9165 // declared with no linkage (C99 6.2.2p6), the type for the 9166 // object shall be complete. 9167 if (!Type->isDependentType() && Var->isLocalVarDecl() && 9168 !Var->hasLinkage() && !Var->isInvalidDecl() && 9169 RequireCompleteType(Var->getLocation(), Type, 9170 diag::err_typecheck_decl_incomplete_type)) 9171 Var->setInvalidDecl(); 9172 9173 // Make sure that the type is not abstract. 9174 if (!Type->isDependentType() && !Var->isInvalidDecl() && 9175 RequireNonAbstractType(Var->getLocation(), Type, 9176 diag::err_abstract_type_in_decl, 9177 AbstractVariableType)) 9178 Var->setInvalidDecl(); 9179 if (!Type->isDependentType() && !Var->isInvalidDecl() && 9180 Var->getStorageClass() == SC_PrivateExtern) { 9181 Diag(Var->getLocation(), diag::warn_private_extern); 9182 Diag(Var->getLocation(), diag::note_private_extern); 9183 } 9184 9185 return; 9186 9187 case VarDecl::TentativeDefinition: 9188 // File scope. C99 6.9.2p2: A declaration of an identifier for an 9189 // object that has file scope without an initializer, and without a 9190 // storage-class specifier or with the storage-class specifier "static", 9191 // constitutes a tentative definition. Note: A tentative definition with 9192 // external linkage is valid (C99 6.2.2p5). 9193 if (!Var->isInvalidDecl()) { 9194 if (const IncompleteArrayType *ArrayT 9195 = Context.getAsIncompleteArrayType(Type)) { 9196 if (RequireCompleteType(Var->getLocation(), 9197 ArrayT->getElementType(), 9198 diag::err_illegal_decl_array_incomplete_type)) 9199 Var->setInvalidDecl(); 9200 } else if (Var->getStorageClass() == SC_Static) { 9201 // C99 6.9.2p3: If the declaration of an identifier for an object is 9202 // a tentative definition and has internal linkage (C99 6.2.2p3), the 9203 // declared type shall not be an incomplete type. 9204 // NOTE: code such as the following 9205 // static struct s; 9206 // struct s { int a; }; 9207 // is accepted by gcc. Hence here we issue a warning instead of 9208 // an error and we do not invalidate the static declaration. 9209 // NOTE: to avoid multiple warnings, only check the first declaration. 9210 if (Var->isFirstDecl()) 9211 RequireCompleteType(Var->getLocation(), Type, 9212 diag::ext_typecheck_decl_incomplete_type); 9213 } 9214 } 9215 9216 // Record the tentative definition; we're done. 9217 if (!Var->isInvalidDecl()) 9218 TentativeDefinitions.push_back(Var); 9219 return; 9220 } 9221 9222 // Provide a specific diagnostic for uninitialized variable 9223 // definitions with incomplete array type. 9224 if (Type->isIncompleteArrayType()) { 9225 Diag(Var->getLocation(), 9226 diag::err_typecheck_incomplete_array_needs_initializer); 9227 Var->setInvalidDecl(); 9228 return; 9229 } 9230 9231 // Provide a specific diagnostic for uninitialized variable 9232 // definitions with reference type. 9233 if (Type->isReferenceType()) { 9234 Diag(Var->getLocation(), diag::err_reference_var_requires_init) 9235 << Var->getDeclName() 9236 << SourceRange(Var->getLocation(), Var->getLocation()); 9237 Var->setInvalidDecl(); 9238 return; 9239 } 9240 9241 // Do not attempt to type-check the default initializer for a 9242 // variable with dependent type. 9243 if (Type->isDependentType()) 9244 return; 9245 9246 if (Var->isInvalidDecl()) 9247 return; 9248 9249 if (!Var->hasAttr<AliasAttr>()) { 9250 if (RequireCompleteType(Var->getLocation(), 9251 Context.getBaseElementType(Type), 9252 diag::err_typecheck_decl_incomplete_type)) { 9253 Var->setInvalidDecl(); 9254 return; 9255 } 9256 } 9257 9258 // The variable can not have an abstract class type. 9259 if (RequireNonAbstractType(Var->getLocation(), Type, 9260 diag::err_abstract_type_in_decl, 9261 AbstractVariableType)) { 9262 Var->setInvalidDecl(); 9263 return; 9264 } 9265 9266 // Check for jumps past the implicit initializer. C++0x 9267 // clarifies that this applies to a "variable with automatic 9268 // storage duration", not a "local variable". 9269 // C++11 [stmt.dcl]p3 9270 // A program that jumps from a point where a variable with automatic 9271 // storage duration is not in scope to a point where it is in scope is 9272 // ill-formed unless the variable has scalar type, class type with a 9273 // trivial default constructor and a trivial destructor, a cv-qualified 9274 // version of one of these types, or an array of one of the preceding 9275 // types and is declared without an initializer. 9276 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { 9277 if (const RecordType *Record 9278 = Context.getBaseElementType(Type)->getAs<RecordType>()) { 9279 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); 9280 // Mark the function for further checking even if the looser rules of 9281 // C++11 do not require such checks, so that we can diagnose 9282 // incompatibilities with C++98. 9283 if (!CXXRecord->isPOD()) 9284 getCurFunction()->setHasBranchProtectedScope(); 9285 } 9286 } 9287 9288 // C++03 [dcl.init]p9: 9289 // If no initializer is specified for an object, and the 9290 // object is of (possibly cv-qualified) non-POD class type (or 9291 // array thereof), the object shall be default-initialized; if 9292 // the object is of const-qualified type, the underlying class 9293 // type shall have a user-declared default 9294 // constructor. Otherwise, if no initializer is specified for 9295 // a non- static object, the object and its subobjects, if 9296 // any, have an indeterminate initial value); if the object 9297 // or any of its subobjects are of const-qualified type, the 9298 // program is ill-formed. 9299 // C++0x [dcl.init]p11: 9300 // If no initializer is specified for an object, the object is 9301 // default-initialized; [...]. 9302 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); 9303 InitializationKind Kind 9304 = InitializationKind::CreateDefault(Var->getLocation()); 9305 9306 InitializationSequence InitSeq(*this, Entity, Kind, None); 9307 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); 9308 if (Init.isInvalid()) 9309 Var->setInvalidDecl(); 9310 else if (Init.get()) { 9311 Var->setInit(MaybeCreateExprWithCleanups(Init.get())); 9312 // This is important for template substitution. 9313 Var->setInitStyle(VarDecl::CallInit); 9314 } 9315 9316 CheckCompleteVariableDeclaration(Var); 9317 } 9318 } 9319 9320 void Sema::ActOnCXXForRangeDecl(Decl *D) { 9321 VarDecl *VD = dyn_cast<VarDecl>(D); 9322 if (!VD) { 9323 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); 9324 D->setInvalidDecl(); 9325 return; 9326 } 9327 9328 VD->setCXXForRangeDecl(true); 9329 9330 // for-range-declaration cannot be given a storage class specifier. 9331 int Error = -1; 9332 switch (VD->getStorageClass()) { 9333 case SC_None: 9334 break; 9335 case SC_Extern: 9336 Error = 0; 9337 break; 9338 case SC_Static: 9339 Error = 1; 9340 break; 9341 case SC_PrivateExtern: 9342 Error = 2; 9343 break; 9344 case SC_Auto: 9345 Error = 3; 9346 break; 9347 case SC_Register: 9348 Error = 4; 9349 break; 9350 case SC_OpenCLWorkGroupLocal: 9351 llvm_unreachable("Unexpected storage class"); 9352 } 9353 if (VD->isConstexpr()) 9354 Error = 5; 9355 if (Error != -1) { 9356 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) 9357 << VD->getDeclName() << Error; 9358 D->setInvalidDecl(); 9359 } 9360 } 9361 9362 StmtResult 9363 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, 9364 IdentifierInfo *Ident, 9365 ParsedAttributes &Attrs, 9366 SourceLocation AttrEnd) { 9367 // C++1y [stmt.iter]p1: 9368 // A range-based for statement of the form 9369 // for ( for-range-identifier : for-range-initializer ) statement 9370 // is equivalent to 9371 // for ( auto&& for-range-identifier : for-range-initializer ) statement 9372 DeclSpec DS(Attrs.getPool().getFactory()); 9373 9374 const char *PrevSpec; 9375 unsigned DiagID; 9376 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, 9377 getPrintingPolicy()); 9378 9379 Declarator D(DS, Declarator::ForContext); 9380 D.SetIdentifier(Ident, IdentLoc); 9381 D.takeAttributes(Attrs, AttrEnd); 9382 9383 ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory()); 9384 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false), 9385 EmptyAttrs, IdentLoc); 9386 Decl *Var = ActOnDeclarator(S, D); 9387 cast<VarDecl>(Var)->setCXXForRangeDecl(true); 9388 FinalizeDeclaration(Var); 9389 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, 9390 AttrEnd.isValid() ? AttrEnd : IdentLoc); 9391 } 9392 9393 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { 9394 if (var->isInvalidDecl()) return; 9395 9396 // In ARC, don't allow jumps past the implicit initialization of a 9397 // local retaining variable. 9398 if (getLangOpts().ObjCAutoRefCount && 9399 var->hasLocalStorage()) { 9400 switch (var->getType().getObjCLifetime()) { 9401 case Qualifiers::OCL_None: 9402 case Qualifiers::OCL_ExplicitNone: 9403 case Qualifiers::OCL_Autoreleasing: 9404 break; 9405 9406 case Qualifiers::OCL_Weak: 9407 case Qualifiers::OCL_Strong: 9408 getCurFunction()->setHasBranchProtectedScope(); 9409 break; 9410 } 9411 } 9412 9413 // Warn about externally-visible variables being defined without a 9414 // prior declaration. We only want to do this for global 9415 // declarations, but we also specifically need to avoid doing it for 9416 // class members because the linkage of an anonymous class can 9417 // change if it's later given a typedef name. 9418 if (var->isThisDeclarationADefinition() && 9419 var->getDeclContext()->getRedeclContext()->isFileContext() && 9420 var->isExternallyVisible() && var->hasLinkage() && 9421 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, 9422 var->getLocation())) { 9423 // Find a previous declaration that's not a definition. 9424 VarDecl *prev = var->getPreviousDecl(); 9425 while (prev && prev->isThisDeclarationADefinition()) 9426 prev = prev->getPreviousDecl(); 9427 9428 if (!prev) 9429 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; 9430 } 9431 9432 if (var->getTLSKind() == VarDecl::TLS_Static) { 9433 const Expr *Culprit; 9434 if (var->getType().isDestructedType()) { 9435 // GNU C++98 edits for __thread, [basic.start.term]p3: 9436 // The type of an object with thread storage duration shall not 9437 // have a non-trivial destructor. 9438 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); 9439 if (getLangOpts().CPlusPlus11) 9440 Diag(var->getLocation(), diag::note_use_thread_local); 9441 } else if (getLangOpts().CPlusPlus && var->hasInit() && 9442 !var->getInit()->isConstantInitializer( 9443 Context, var->getType()->isReferenceType(), &Culprit)) { 9444 // GNU C++98 edits for __thread, [basic.start.init]p4: 9445 // An object of thread storage duration shall not require dynamic 9446 // initialization. 9447 // FIXME: Need strict checking here. 9448 Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init) 9449 << Culprit->getSourceRange(); 9450 if (getLangOpts().CPlusPlus11) 9451 Diag(var->getLocation(), diag::note_use_thread_local); 9452 } 9453 9454 } 9455 9456 if (var->isThisDeclarationADefinition() && 9457 ActiveTemplateInstantiations.empty()) { 9458 PragmaStack<StringLiteral *> *Stack = nullptr; 9459 int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read; 9460 if (var->getType().isConstQualified()) 9461 Stack = &ConstSegStack; 9462 else if (!var->getInit()) { 9463 Stack = &BSSSegStack; 9464 SectionFlags |= ASTContext::PSF_Write; 9465 } else { 9466 Stack = &DataSegStack; 9467 SectionFlags |= ASTContext::PSF_Write; 9468 } 9469 if (!var->hasAttr<SectionAttr>() && Stack->CurrentValue) 9470 var->addAttr( 9471 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate, 9472 Stack->CurrentValue->getString(), 9473 Stack->CurrentPragmaLocation)); 9474 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) 9475 if (UnifySection(SA->getName(), SectionFlags, var)) 9476 var->dropAttr<SectionAttr>(); 9477 9478 // Apply the init_seg attribute if this has an initializer. If the 9479 // initializer turns out to not be dynamic, we'll end up ignoring this 9480 // attribute. 9481 if (CurInitSeg && var->getInit()) 9482 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), 9483 CurInitSegLoc)); 9484 } 9485 9486 // All the following checks are C++ only. 9487 if (!getLangOpts().CPlusPlus) return; 9488 9489 QualType type = var->getType(); 9490 if (type->isDependentType()) return; 9491 9492 // __block variables might require us to capture a copy-initializer. 9493 if (var->hasAttr<BlocksAttr>()) { 9494 // It's currently invalid to ever have a __block variable with an 9495 // array type; should we diagnose that here? 9496 9497 // Regardless, we don't want to ignore array nesting when 9498 // constructing this copy. 9499 if (type->isStructureOrClassType()) { 9500 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated); 9501 SourceLocation poi = var->getLocation(); 9502 Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi); 9503 ExprResult result 9504 = PerformMoveOrCopyInitialization( 9505 InitializedEntity::InitializeBlock(poi, type, false), 9506 var, var->getType(), varRef, /*AllowNRVO=*/true); 9507 if (!result.isInvalid()) { 9508 result = MaybeCreateExprWithCleanups(result); 9509 Expr *init = result.getAs<Expr>(); 9510 Context.setBlockVarCopyInits(var, init); 9511 } 9512 } 9513 } 9514 9515 Expr *Init = var->getInit(); 9516 bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal(); 9517 QualType baseType = Context.getBaseElementType(type); 9518 9519 if (!var->getDeclContext()->isDependentContext() && 9520 Init && !Init->isValueDependent()) { 9521 if (IsGlobal && !var->isConstexpr() && 9522 !getDiagnostics().isIgnored(diag::warn_global_constructor, 9523 var->getLocation())) { 9524 // Warn about globals which don't have a constant initializer. Don't 9525 // warn about globals with a non-trivial destructor because we already 9526 // warned about them. 9527 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); 9528 if (!(RD && !RD->hasTrivialDestructor()) && 9529 !Init->isConstantInitializer(Context, baseType->isReferenceType())) 9530 Diag(var->getLocation(), diag::warn_global_constructor) 9531 << Init->getSourceRange(); 9532 } 9533 9534 if (var->isConstexpr()) { 9535 SmallVector<PartialDiagnosticAt, 8> Notes; 9536 if (!var->evaluateValue(Notes) || !var->isInitICE()) { 9537 SourceLocation DiagLoc = var->getLocation(); 9538 // If the note doesn't add any useful information other than a source 9539 // location, fold it into the primary diagnostic. 9540 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 9541 diag::note_invalid_subexpr_in_const_expr) { 9542 DiagLoc = Notes[0].first; 9543 Notes.clear(); 9544 } 9545 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) 9546 << var << Init->getSourceRange(); 9547 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 9548 Diag(Notes[I].first, Notes[I].second); 9549 } 9550 } else if (var->isUsableInConstantExpressions(Context)) { 9551 // Check whether the initializer of a const variable of integral or 9552 // enumeration type is an ICE now, since we can't tell whether it was 9553 // initialized by a constant expression if we check later. 9554 var->checkInitIsICE(); 9555 } 9556 } 9557 9558 // Require the destructor. 9559 if (const RecordType *recordType = baseType->getAs<RecordType>()) 9560 FinalizeVarWithDestructor(var, recordType); 9561 } 9562 9563 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform 9564 /// any semantic actions necessary after any initializer has been attached. 9565 void 9566 Sema::FinalizeDeclaration(Decl *ThisDecl) { 9567 // Note that we are no longer parsing the initializer for this declaration. 9568 ParsingInitForAutoVars.erase(ThisDecl); 9569 9570 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); 9571 if (!VD) 9572 return; 9573 9574 checkAttributesAfterMerging(*this, *VD); 9575 9576 // Static locals inherit dll attributes from their function. 9577 if (VD->isStaticLocal()) { 9578 if (FunctionDecl *FD = 9579 dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) { 9580 if (Attr *A = getDLLAttr(FD)) { 9581 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); 9582 NewAttr->setInherited(true); 9583 VD->addAttr(NewAttr); 9584 } 9585 } 9586 } 9587 9588 // Grab the dllimport or dllexport attribute off of the VarDecl. 9589 const InheritableAttr *DLLAttr = getDLLAttr(VD); 9590 9591 // Imported static data members cannot be defined out-of-line. 9592 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { 9593 if (VD->isStaticDataMember() && VD->isOutOfLine() && 9594 VD->isThisDeclarationADefinition()) { 9595 // We allow definitions of dllimport class template static data members 9596 // with a warning. 9597 CXXRecordDecl *Context = 9598 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); 9599 bool IsClassTemplateMember = 9600 isa<ClassTemplatePartialSpecializationDecl>(Context) || 9601 Context->getDescribedClassTemplate(); 9602 9603 Diag(VD->getLocation(), 9604 IsClassTemplateMember 9605 ? diag::warn_attribute_dllimport_static_field_definition 9606 : diag::err_attribute_dllimport_static_field_definition); 9607 Diag(IA->getLocation(), diag::note_attribute); 9608 if (!IsClassTemplateMember) 9609 VD->setInvalidDecl(); 9610 } 9611 } 9612 9613 // dllimport/dllexport variables cannot be thread local, their TLS index 9614 // isn't exported with the variable. 9615 if (DLLAttr && VD->getTLSKind()) { 9616 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD 9617 << DLLAttr; 9618 VD->setInvalidDecl(); 9619 } 9620 9621 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { 9622 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 9623 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr; 9624 VD->dropAttr<UsedAttr>(); 9625 } 9626 } 9627 9628 if (!VD->isInvalidDecl() && 9629 VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) { 9630 if (const VarDecl *Def = VD->getDefinition()) { 9631 if (Def->hasAttr<AliasAttr>()) { 9632 Diag(VD->getLocation(), diag::err_tentative_after_alias) 9633 << VD->getDeclName(); 9634 Diag(Def->getLocation(), diag::note_previous_definition); 9635 VD->setInvalidDecl(); 9636 } 9637 } 9638 } 9639 9640 const DeclContext *DC = VD->getDeclContext(); 9641 // If there's a #pragma GCC visibility in scope, and this isn't a class 9642 // member, set the visibility of this variable. 9643 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) 9644 AddPushedVisibilityAttribute(VD); 9645 9646 // FIXME: Warn on unused templates. 9647 if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() && 9648 !isa<VarTemplatePartialSpecializationDecl>(VD)) 9649 MarkUnusedFileScopedDecl(VD); 9650 9651 // Now we have parsed the initializer and can update the table of magic 9652 // tag values. 9653 if (!VD->hasAttr<TypeTagForDatatypeAttr>() || 9654 !VD->getType()->isIntegralOrEnumerationType()) 9655 return; 9656 9657 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { 9658 const Expr *MagicValueExpr = VD->getInit(); 9659 if (!MagicValueExpr) { 9660 continue; 9661 } 9662 llvm::APSInt MagicValueInt; 9663 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) { 9664 Diag(I->getRange().getBegin(), 9665 diag::err_type_tag_for_datatype_not_ice) 9666 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 9667 continue; 9668 } 9669 if (MagicValueInt.getActiveBits() > 64) { 9670 Diag(I->getRange().getBegin(), 9671 diag::err_type_tag_for_datatype_too_large) 9672 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 9673 continue; 9674 } 9675 uint64_t MagicValue = MagicValueInt.getZExtValue(); 9676 RegisterTypeTagForDatatype(I->getArgumentKind(), 9677 MagicValue, 9678 I->getMatchingCType(), 9679 I->getLayoutCompatible(), 9680 I->getMustBeNull()); 9681 } 9682 } 9683 9684 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, 9685 ArrayRef<Decl *> Group) { 9686 SmallVector<Decl*, 8> Decls; 9687 9688 if (DS.isTypeSpecOwned()) 9689 Decls.push_back(DS.getRepAsDecl()); 9690 9691 DeclaratorDecl *FirstDeclaratorInGroup = nullptr; 9692 for (unsigned i = 0, e = Group.size(); i != e; ++i) 9693 if (Decl *D = Group[i]) { 9694 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) 9695 if (!FirstDeclaratorInGroup) 9696 FirstDeclaratorInGroup = DD; 9697 Decls.push_back(D); 9698 } 9699 9700 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { 9701 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { 9702 HandleTagNumbering(*this, Tag, S); 9703 if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl()) 9704 Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup); 9705 } 9706 } 9707 9708 return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType()); 9709 } 9710 9711 /// BuildDeclaratorGroup - convert a list of declarations into a declaration 9712 /// group, performing any necessary semantic checking. 9713 Sema::DeclGroupPtrTy 9714 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group, 9715 bool TypeMayContainAuto) { 9716 // C++0x [dcl.spec.auto]p7: 9717 // If the type deduced for the template parameter U is not the same in each 9718 // deduction, the program is ill-formed. 9719 // FIXME: When initializer-list support is added, a distinction is needed 9720 // between the deduced type U and the deduced type which 'auto' stands for. 9721 // auto a = 0, b = { 1, 2, 3 }; 9722 // is legal because the deduced type U is 'int' in both cases. 9723 if (TypeMayContainAuto && Group.size() > 1) { 9724 QualType Deduced; 9725 CanQualType DeducedCanon; 9726 VarDecl *DeducedDecl = nullptr; 9727 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 9728 if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) { 9729 AutoType *AT = D->getType()->getContainedAutoType(); 9730 // Don't reissue diagnostics when instantiating a template. 9731 if (AT && D->isInvalidDecl()) 9732 break; 9733 QualType U = AT ? AT->getDeducedType() : QualType(); 9734 if (!U.isNull()) { 9735 CanQualType UCanon = Context.getCanonicalType(U); 9736 if (Deduced.isNull()) { 9737 Deduced = U; 9738 DeducedCanon = UCanon; 9739 DeducedDecl = D; 9740 } else if (DeducedCanon != UCanon) { 9741 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 9742 diag::err_auto_different_deductions) 9743 << (AT->isDecltypeAuto() ? 1 : 0) 9744 << Deduced << DeducedDecl->getDeclName() 9745 << U << D->getDeclName() 9746 << DeducedDecl->getInit()->getSourceRange() 9747 << D->getInit()->getSourceRange(); 9748 D->setInvalidDecl(); 9749 break; 9750 } 9751 } 9752 } 9753 } 9754 } 9755 9756 ActOnDocumentableDecls(Group); 9757 9758 return DeclGroupPtrTy::make( 9759 DeclGroupRef::Create(Context, Group.data(), Group.size())); 9760 } 9761 9762 void Sema::ActOnDocumentableDecl(Decl *D) { 9763 ActOnDocumentableDecls(D); 9764 } 9765 9766 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { 9767 // Don't parse the comment if Doxygen diagnostics are ignored. 9768 if (Group.empty() || !Group[0]) 9769 return; 9770 9771 if (Diags.isIgnored(diag::warn_doc_param_not_found, Group[0]->getLocation())) 9772 return; 9773 9774 if (Group.size() >= 2) { 9775 // This is a decl group. Normally it will contain only declarations 9776 // produced from declarator list. But in case we have any definitions or 9777 // additional declaration references: 9778 // 'typedef struct S {} S;' 9779 // 'typedef struct S *S;' 9780 // 'struct S *pS;' 9781 // FinalizeDeclaratorGroup adds these as separate declarations. 9782 Decl *MaybeTagDecl = Group[0]; 9783 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { 9784 Group = Group.slice(1); 9785 } 9786 } 9787 9788 // See if there are any new comments that are not attached to a decl. 9789 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments(); 9790 if (!Comments.empty() && 9791 !Comments.back()->isAttached()) { 9792 // There is at least one comment that not attached to a decl. 9793 // Maybe it should be attached to one of these decls? 9794 // 9795 // Note that this way we pick up not only comments that precede the 9796 // declaration, but also comments that *follow* the declaration -- thanks to 9797 // the lookahead in the lexer: we've consumed the semicolon and looked 9798 // ahead through comments. 9799 for (unsigned i = 0, e = Group.size(); i != e; ++i) 9800 Context.getCommentForDecl(Group[i], &PP); 9801 } 9802 } 9803 9804 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() 9805 /// to introduce parameters into function prototype scope. 9806 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { 9807 const DeclSpec &DS = D.getDeclSpec(); 9808 9809 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. 9810 9811 // C++03 [dcl.stc]p2 also permits 'auto'. 9812 StorageClass SC = SC_None; 9813 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 9814 SC = SC_Register; 9815 } else if (getLangOpts().CPlusPlus && 9816 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 9817 SC = SC_Auto; 9818 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 9819 Diag(DS.getStorageClassSpecLoc(), 9820 diag::err_invalid_storage_class_in_func_decl); 9821 D.getMutableDeclSpec().ClearStorageClassSpecs(); 9822 } 9823 9824 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 9825 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) 9826 << DeclSpec::getSpecifierName(TSCS); 9827 if (DS.isConstexprSpecified()) 9828 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) 9829 << 0; 9830 9831 DiagnoseFunctionSpecifiers(DS); 9832 9833 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 9834 QualType parmDeclType = TInfo->getType(); 9835 9836 if (getLangOpts().CPlusPlus) { 9837 // Check that there are no default arguments inside the type of this 9838 // parameter. 9839 CheckExtraCXXDefaultArguments(D); 9840 9841 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 9842 if (D.getCXXScopeSpec().isSet()) { 9843 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) 9844 << D.getCXXScopeSpec().getRange(); 9845 D.getCXXScopeSpec().clear(); 9846 } 9847 } 9848 9849 // Ensure we have a valid name 9850 IdentifierInfo *II = nullptr; 9851 if (D.hasName()) { 9852 II = D.getIdentifier(); 9853 if (!II) { 9854 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) 9855 << GetNameForDeclarator(D).getName(); 9856 D.setInvalidType(true); 9857 } 9858 } 9859 9860 // Check for redeclaration of parameters, e.g. int foo(int x, int x); 9861 if (II) { 9862 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, 9863 ForRedeclaration); 9864 LookupName(R, S); 9865 if (R.isSingleResult()) { 9866 NamedDecl *PrevDecl = R.getFoundDecl(); 9867 if (PrevDecl->isTemplateParameter()) { 9868 // Maybe we will complain about the shadowed template parameter. 9869 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 9870 // Just pretend that we didn't see the previous declaration. 9871 PrevDecl = nullptr; 9872 } else if (S->isDeclScope(PrevDecl)) { 9873 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; 9874 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 9875 9876 // Recover by removing the name 9877 II = nullptr; 9878 D.SetIdentifier(nullptr, D.getIdentifierLoc()); 9879 D.setInvalidType(true); 9880 } 9881 } 9882 } 9883 9884 // Temporarily put parameter variables in the translation unit, not 9885 // the enclosing context. This prevents them from accidentally 9886 // looking like class members in C++. 9887 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(), 9888 D.getLocStart(), 9889 D.getIdentifierLoc(), II, 9890 parmDeclType, TInfo, 9891 SC); 9892 9893 if (D.isInvalidType()) 9894 New->setInvalidDecl(); 9895 9896 assert(S->isFunctionPrototypeScope()); 9897 assert(S->getFunctionPrototypeDepth() >= 1); 9898 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, 9899 S->getNextFunctionPrototypeIndex()); 9900 9901 // Add the parameter declaration into this scope. 9902 S->AddDecl(New); 9903 if (II) 9904 IdResolver.AddDecl(New); 9905 9906 ProcessDeclAttributes(S, New, D); 9907 9908 if (D.getDeclSpec().isModulePrivateSpecified()) 9909 Diag(New->getLocation(), diag::err_module_private_local) 9910 << 1 << New->getDeclName() 9911 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 9912 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 9913 9914 if (New->hasAttr<BlocksAttr>()) { 9915 Diag(New->getLocation(), diag::err_block_on_nonlocal); 9916 } 9917 return New; 9918 } 9919 9920 /// \brief Synthesizes a variable for a parameter arising from a 9921 /// typedef. 9922 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, 9923 SourceLocation Loc, 9924 QualType T) { 9925 /* FIXME: setting StartLoc == Loc. 9926 Would it be worth to modify callers so as to provide proper source 9927 location for the unnamed parameters, embedding the parameter's type? */ 9928 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, 9929 T, Context.getTrivialTypeSourceInfo(T, Loc), 9930 SC_None, nullptr); 9931 Param->setImplicit(); 9932 return Param; 9933 } 9934 9935 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param, 9936 ParmVarDecl * const *ParamEnd) { 9937 // Don't diagnose unused-parameter errors in template instantiations; we 9938 // will already have done so in the template itself. 9939 if (!ActiveTemplateInstantiations.empty()) 9940 return; 9941 9942 for (; Param != ParamEnd; ++Param) { 9943 if (!(*Param)->isReferenced() && (*Param)->getDeclName() && 9944 !(*Param)->hasAttr<UnusedAttr>()) { 9945 Diag((*Param)->getLocation(), diag::warn_unused_parameter) 9946 << (*Param)->getDeclName(); 9947 } 9948 } 9949 } 9950 9951 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param, 9952 ParmVarDecl * const *ParamEnd, 9953 QualType ReturnTy, 9954 NamedDecl *D) { 9955 if (LangOpts.NumLargeByValueCopy == 0) // No check. 9956 return; 9957 9958 // Warn if the return value is pass-by-value and larger than the specified 9959 // threshold. 9960 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { 9961 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); 9962 if (Size > LangOpts.NumLargeByValueCopy) 9963 Diag(D->getLocation(), diag::warn_return_value_size) 9964 << D->getDeclName() << Size; 9965 } 9966 9967 // Warn if any parameter is pass-by-value and larger than the specified 9968 // threshold. 9969 for (; Param != ParamEnd; ++Param) { 9970 QualType T = (*Param)->getType(); 9971 if (T->isDependentType() || !T.isPODType(Context)) 9972 continue; 9973 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 9974 if (Size > LangOpts.NumLargeByValueCopy) 9975 Diag((*Param)->getLocation(), diag::warn_parameter_size) 9976 << (*Param)->getDeclName() << Size; 9977 } 9978 } 9979 9980 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, 9981 SourceLocation NameLoc, IdentifierInfo *Name, 9982 QualType T, TypeSourceInfo *TSInfo, 9983 StorageClass SC) { 9984 // In ARC, infer a lifetime qualifier for appropriate parameter types. 9985 if (getLangOpts().ObjCAutoRefCount && 9986 T.getObjCLifetime() == Qualifiers::OCL_None && 9987 T->isObjCLifetimeType()) { 9988 9989 Qualifiers::ObjCLifetime lifetime; 9990 9991 // Special cases for arrays: 9992 // - if it's const, use __unsafe_unretained 9993 // - otherwise, it's an error 9994 if (T->isArrayType()) { 9995 if (!T.isConstQualified()) { 9996 DelayedDiagnostics.add( 9997 sema::DelayedDiagnostic::makeForbiddenType( 9998 NameLoc, diag::err_arc_array_param_no_ownership, T, false)); 9999 } 10000 lifetime = Qualifiers::OCL_ExplicitNone; 10001 } else { 10002 lifetime = T->getObjCARCImplicitLifetime(); 10003 } 10004 T = Context.getLifetimeQualifiedType(T, lifetime); 10005 } 10006 10007 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, 10008 Context.getAdjustedParameterType(T), 10009 TSInfo, SC, nullptr); 10010 10011 // Parameters can not be abstract class types. 10012 // For record types, this is done by the AbstractClassUsageDiagnoser once 10013 // the class has been completely parsed. 10014 if (!CurContext->isRecord() && 10015 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, 10016 AbstractParamType)) 10017 New->setInvalidDecl(); 10018 10019 // Parameter declarators cannot be interface types. All ObjC objects are 10020 // passed by reference. 10021 if (T->isObjCObjectType()) { 10022 SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd(); 10023 Diag(NameLoc, 10024 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T 10025 << FixItHint::CreateInsertion(TypeEndLoc, "*"); 10026 T = Context.getObjCObjectPointerType(T); 10027 New->setType(T); 10028 } 10029 10030 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 10031 // duration shall not be qualified by an address-space qualifier." 10032 // Since all parameters have automatic store duration, they can not have 10033 // an address space. 10034 if (T.getAddressSpace() != 0) { 10035 // OpenCL allows function arguments declared to be an array of a type 10036 // to be qualified with an address space. 10037 if (!(getLangOpts().OpenCL && T->isArrayType())) { 10038 Diag(NameLoc, diag::err_arg_with_address_space); 10039 New->setInvalidDecl(); 10040 } 10041 } 10042 10043 return New; 10044 } 10045 10046 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, 10047 SourceLocation LocAfterDecls) { 10048 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10049 10050 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' 10051 // for a K&R function. 10052 if (!FTI.hasPrototype) { 10053 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { 10054 --i; 10055 if (FTI.Params[i].Param == nullptr) { 10056 SmallString<256> Code; 10057 llvm::raw_svector_ostream(Code) 10058 << " int " << FTI.Params[i].Ident->getName() << ";\n"; 10059 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) 10060 << FTI.Params[i].Ident 10061 << FixItHint::CreateInsertion(LocAfterDecls, Code.str()); 10062 10063 // Implicitly declare the argument as type 'int' for lack of a better 10064 // type. 10065 AttributeFactory attrs; 10066 DeclSpec DS(attrs); 10067 const char* PrevSpec; // unused 10068 unsigned DiagID; // unused 10069 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, 10070 DiagID, Context.getPrintingPolicy()); 10071 // Use the identifier location for the type source range. 10072 DS.SetRangeStart(FTI.Params[i].IdentLoc); 10073 DS.SetRangeEnd(FTI.Params[i].IdentLoc); 10074 Declarator ParamD(DS, Declarator::KNRTypeListContext); 10075 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); 10076 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); 10077 } 10078 } 10079 } 10080 } 10081 10082 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { 10083 assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); 10084 assert(D.isFunctionDeclarator() && "Not a function declarator!"); 10085 Scope *ParentScope = FnBodyScope->getParent(); 10086 10087 D.setFunctionDefinitionKind(FDK_Definition); 10088 Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg()); 10089 return ActOnStartOfFunctionDef(FnBodyScope, DP); 10090 } 10091 10092 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) { 10093 Consumer.HandleInlineMethodDefinition(D); 10094 } 10095 10096 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, 10097 const FunctionDecl*& PossibleZeroParamPrototype) { 10098 // Don't warn about invalid declarations. 10099 if (FD->isInvalidDecl()) 10100 return false; 10101 10102 // Or declarations that aren't global. 10103 if (!FD->isGlobal()) 10104 return false; 10105 10106 // Don't warn about C++ member functions. 10107 if (isa<CXXMethodDecl>(FD)) 10108 return false; 10109 10110 // Don't warn about 'main'. 10111 if (FD->isMain()) 10112 return false; 10113 10114 // Don't warn about inline functions. 10115 if (FD->isInlined()) 10116 return false; 10117 10118 // Don't warn about function templates. 10119 if (FD->getDescribedFunctionTemplate()) 10120 return false; 10121 10122 // Don't warn about function template specializations. 10123 if (FD->isFunctionTemplateSpecialization()) 10124 return false; 10125 10126 // Don't warn for OpenCL kernels. 10127 if (FD->hasAttr<OpenCLKernelAttr>()) 10128 return false; 10129 10130 bool MissingPrototype = true; 10131 for (const FunctionDecl *Prev = FD->getPreviousDecl(); 10132 Prev; Prev = Prev->getPreviousDecl()) { 10133 // Ignore any declarations that occur in function or method 10134 // scope, because they aren't visible from the header. 10135 if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) 10136 continue; 10137 10138 MissingPrototype = !Prev->getType()->isFunctionProtoType(); 10139 if (FD->getNumParams() == 0) 10140 PossibleZeroParamPrototype = Prev; 10141 break; 10142 } 10143 10144 return MissingPrototype; 10145 } 10146 10147 void 10148 Sema::CheckForFunctionRedefinition(FunctionDecl *FD, 10149 const FunctionDecl *EffectiveDefinition) { 10150 // Don't complain if we're in GNU89 mode and the previous definition 10151 // was an extern inline function. 10152 const FunctionDecl *Definition = EffectiveDefinition; 10153 if (!Definition) 10154 if (!FD->isDefined(Definition)) 10155 return; 10156 10157 if (canRedefineFunction(Definition, getLangOpts())) 10158 return; 10159 10160 if (getLangOpts().GNUMode && Definition->isInlineSpecified() && 10161 Definition->getStorageClass() == SC_Extern) 10162 Diag(FD->getLocation(), diag::err_redefinition_extern_inline) 10163 << FD->getDeclName() << getLangOpts().CPlusPlus; 10164 else 10165 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); 10166 10167 Diag(Definition->getLocation(), diag::note_previous_definition); 10168 FD->setInvalidDecl(); 10169 } 10170 10171 10172 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, 10173 Sema &S) { 10174 CXXRecordDecl *const LambdaClass = CallOperator->getParent(); 10175 10176 LambdaScopeInfo *LSI = S.PushLambdaScope(); 10177 LSI->CallOperator = CallOperator; 10178 LSI->Lambda = LambdaClass; 10179 LSI->ReturnType = CallOperator->getReturnType(); 10180 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); 10181 10182 if (LCD == LCD_None) 10183 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; 10184 else if (LCD == LCD_ByCopy) 10185 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; 10186 else if (LCD == LCD_ByRef) 10187 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; 10188 DeclarationNameInfo DNI = CallOperator->getNameInfo(); 10189 10190 LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); 10191 LSI->Mutable = !CallOperator->isConst(); 10192 10193 // Add the captures to the LSI so they can be noted as already 10194 // captured within tryCaptureVar. 10195 auto I = LambdaClass->field_begin(); 10196 for (const auto &C : LambdaClass->captures()) { 10197 if (C.capturesVariable()) { 10198 VarDecl *VD = C.getCapturedVar(); 10199 if (VD->isInitCapture()) 10200 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); 10201 QualType CaptureType = VD->getType(); 10202 const bool ByRef = C.getCaptureKind() == LCK_ByRef; 10203 LSI->addCapture(VD, /*IsBlock*/false, ByRef, 10204 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), 10205 /*EllipsisLoc*/C.isPackExpansion() 10206 ? C.getEllipsisLoc() : SourceLocation(), 10207 CaptureType, /*Expr*/ nullptr); 10208 10209 } else if (C.capturesThis()) { 10210 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), 10211 S.getCurrentThisType(), /*Expr*/ nullptr); 10212 } else { 10213 LSI->addVLATypeCapture(C.getLocation(), I->getType()); 10214 } 10215 ++I; 10216 } 10217 } 10218 10219 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) { 10220 // Clear the last template instantiation error context. 10221 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation(); 10222 10223 if (!D) 10224 return D; 10225 FunctionDecl *FD = nullptr; 10226 10227 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) 10228 FD = FunTmpl->getTemplatedDecl(); 10229 else 10230 FD = cast<FunctionDecl>(D); 10231 // If we are instantiating a generic lambda call operator, push 10232 // a LambdaScopeInfo onto the function stack. But use the information 10233 // that's already been calculated (ActOnLambdaExpr) to prime the current 10234 // LambdaScopeInfo. 10235 // When the template operator is being specialized, the LambdaScopeInfo, 10236 // has to be properly restored so that tryCaptureVariable doesn't try 10237 // and capture any new variables. In addition when calculating potential 10238 // captures during transformation of nested lambdas, it is necessary to 10239 // have the LSI properly restored. 10240 if (isGenericLambdaCallOperatorSpecialization(FD)) { 10241 assert(ActiveTemplateInstantiations.size() && 10242 "There should be an active template instantiation on the stack " 10243 "when instantiating a generic lambda!"); 10244 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); 10245 } 10246 else 10247 // Enter a new function scope 10248 PushFunctionScope(); 10249 10250 // See if this is a redefinition. 10251 if (!FD->isLateTemplateParsed()) 10252 CheckForFunctionRedefinition(FD); 10253 10254 // Builtin functions cannot be defined. 10255 if (unsigned BuiltinID = FD->getBuiltinID()) { 10256 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 10257 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { 10258 Diag(FD->getLocation(), diag::err_builtin_definition) << FD; 10259 FD->setInvalidDecl(); 10260 } 10261 } 10262 10263 // The return type of a function definition must be complete 10264 // (C99 6.9.1p3, C++ [dcl.fct]p6). 10265 QualType ResultType = FD->getReturnType(); 10266 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 10267 !FD->isInvalidDecl() && 10268 RequireCompleteType(FD->getLocation(), ResultType, 10269 diag::err_func_def_incomplete_result)) 10270 FD->setInvalidDecl(); 10271 10272 // GNU warning -Wmissing-prototypes: 10273 // Warn if a global function is defined without a previous 10274 // prototype declaration. This warning is issued even if the 10275 // definition itself provides a prototype. The aim is to detect 10276 // global functions that fail to be declared in header files. 10277 const FunctionDecl *PossibleZeroParamPrototype = nullptr; 10278 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) { 10279 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; 10280 10281 if (PossibleZeroParamPrototype) { 10282 // We found a declaration that is not a prototype, 10283 // but that could be a zero-parameter prototype 10284 if (TypeSourceInfo *TI = 10285 PossibleZeroParamPrototype->getTypeSourceInfo()) { 10286 TypeLoc TL = TI->getTypeLoc(); 10287 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) 10288 Diag(PossibleZeroParamPrototype->getLocation(), 10289 diag::note_declaration_not_a_prototype) 10290 << PossibleZeroParamPrototype 10291 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void"); 10292 } 10293 } 10294 } 10295 10296 if (FnBodyScope) 10297 PushDeclContext(FnBodyScope, FD); 10298 10299 // Check the validity of our function parameters 10300 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(), 10301 /*CheckParameterNames=*/true); 10302 10303 // Introduce our parameters into the function scope 10304 for (auto Param : FD->params()) { 10305 Param->setOwningFunction(FD); 10306 10307 // If this has an identifier, add it to the scope stack. 10308 if (Param->getIdentifier() && FnBodyScope) { 10309 CheckShadow(FnBodyScope, Param); 10310 10311 PushOnScopeChains(Param, FnBodyScope); 10312 } 10313 } 10314 10315 // If we had any tags defined in the function prototype, 10316 // introduce them into the function scope. 10317 if (FnBodyScope) { 10318 for (ArrayRef<NamedDecl *>::iterator 10319 I = FD->getDeclsInPrototypeScope().begin(), 10320 E = FD->getDeclsInPrototypeScope().end(); 10321 I != E; ++I) { 10322 NamedDecl *D = *I; 10323 10324 // Some of these decls (like enums) may have been pinned to the translation unit 10325 // for lack of a real context earlier. If so, remove from the translation unit 10326 // and reattach to the current context. 10327 if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) { 10328 // Is the decl actually in the context? 10329 for (const auto *DI : Context.getTranslationUnitDecl()->decls()) { 10330 if (DI == D) { 10331 Context.getTranslationUnitDecl()->removeDecl(D); 10332 break; 10333 } 10334 } 10335 // Either way, reassign the lexical decl context to our FunctionDecl. 10336 D->setLexicalDeclContext(CurContext); 10337 } 10338 10339 // If the decl has a non-null name, make accessible in the current scope. 10340 if (!D->getName().empty()) 10341 PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false); 10342 10343 // Similarly, dive into enums and fish their constants out, making them 10344 // accessible in this scope. 10345 if (auto *ED = dyn_cast<EnumDecl>(D)) { 10346 for (auto *EI : ED->enumerators()) 10347 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); 10348 } 10349 } 10350 } 10351 10352 // Ensure that the function's exception specification is instantiated. 10353 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) 10354 ResolveExceptionSpec(D->getLocation(), FPT); 10355 10356 // dllimport cannot be applied to non-inline function definitions. 10357 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && 10358 !FD->isTemplateInstantiation()) { 10359 assert(!FD->hasAttr<DLLExportAttr>()); 10360 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); 10361 FD->setInvalidDecl(); 10362 return D; 10363 } 10364 // We want to attach documentation to original Decl (which might be 10365 // a function template). 10366 ActOnDocumentableDecl(D); 10367 if (getCurLexicalContext()->isObjCContainer() && 10368 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && 10369 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) 10370 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); 10371 10372 return D; 10373 } 10374 10375 /// \brief Given the set of return statements within a function body, 10376 /// compute the variables that are subject to the named return value 10377 /// optimization. 10378 /// 10379 /// Each of the variables that is subject to the named return value 10380 /// optimization will be marked as NRVO variables in the AST, and any 10381 /// return statement that has a marked NRVO variable as its NRVO candidate can 10382 /// use the named return value optimization. 10383 /// 10384 /// This function applies a very simplistic algorithm for NRVO: if every return 10385 /// statement in the scope of a variable has the same NRVO candidate, that 10386 /// candidate is an NRVO variable. 10387 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { 10388 ReturnStmt **Returns = Scope->Returns.data(); 10389 10390 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { 10391 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { 10392 if (!NRVOCandidate->isNRVOVariable()) 10393 Returns[I]->setNRVOCandidate(nullptr); 10394 } 10395 } 10396 } 10397 10398 bool Sema::canDelayFunctionBody(const Declarator &D) { 10399 // We can't delay parsing the body of a constexpr function template (yet). 10400 if (D.getDeclSpec().isConstexprSpecified()) 10401 return false; 10402 10403 // We can't delay parsing the body of a function template with a deduced 10404 // return type (yet). 10405 if (D.getDeclSpec().containsPlaceholderType()) { 10406 // If the placeholder introduces a non-deduced trailing return type, 10407 // we can still delay parsing it. 10408 if (D.getNumTypeObjects()) { 10409 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); 10410 if (Outer.Kind == DeclaratorChunk::Function && 10411 Outer.Fun.hasTrailingReturnType()) { 10412 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); 10413 return Ty.isNull() || !Ty->isUndeducedType(); 10414 } 10415 } 10416 return false; 10417 } 10418 10419 return true; 10420 } 10421 10422 bool Sema::canSkipFunctionBody(Decl *D) { 10423 // We cannot skip the body of a function (or function template) which is 10424 // constexpr, since we may need to evaluate its body in order to parse the 10425 // rest of the file. 10426 // We cannot skip the body of a function with an undeduced return type, 10427 // because any callers of that function need to know the type. 10428 if (const FunctionDecl *FD = D->getAsFunction()) 10429 if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType()) 10430 return false; 10431 return Consumer.shouldSkipFunctionBody(D); 10432 } 10433 10434 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { 10435 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl)) 10436 FD->setHasSkippedBody(); 10437 else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl)) 10438 MD->setHasSkippedBody(); 10439 return ActOnFinishFunctionBody(Decl, nullptr); 10440 } 10441 10442 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { 10443 return ActOnFinishFunctionBody(D, BodyArg, false); 10444 } 10445 10446 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, 10447 bool IsInstantiation) { 10448 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; 10449 10450 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); 10451 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; 10452 10453 if (FD) { 10454 FD->setBody(Body); 10455 10456 if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body && 10457 !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) { 10458 // If the function has a deduced result type but contains no 'return' 10459 // statements, the result type as written must be exactly 'auto', and 10460 // the deduced result type is 'void'. 10461 if (!FD->getReturnType()->getAs<AutoType>()) { 10462 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) 10463 << FD->getReturnType(); 10464 FD->setInvalidDecl(); 10465 } else { 10466 // Substitute 'void' for the 'auto' in the type. 10467 TypeLoc ResultType = getReturnTypeLoc(FD); 10468 Context.adjustDeducedFunctionResultType( 10469 FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); 10470 } 10471 } 10472 10473 // The only way to be included in UndefinedButUsed is if there is an 10474 // ODR use before the definition. Avoid the expensive map lookup if this 10475 // is the first declaration. 10476 if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) { 10477 if (!FD->isExternallyVisible()) 10478 UndefinedButUsed.erase(FD); 10479 else if (FD->isInlined() && 10480 (LangOpts.CPlusPlus || !LangOpts.GNUInline) && 10481 (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>())) 10482 UndefinedButUsed.erase(FD); 10483 } 10484 10485 // If the function implicitly returns zero (like 'main') or is naked, 10486 // don't complain about missing return statements. 10487 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) 10488 WP.disableCheckFallThrough(); 10489 10490 // MSVC permits the use of pure specifier (=0) on function definition, 10491 // defined at class scope, warn about this non-standard construct. 10492 if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl()) 10493 Diag(FD->getLocation(), diag::ext_pure_function_definition); 10494 10495 if (!FD->isInvalidDecl()) { 10496 // Don't diagnose unused parameters of defaulted or deleted functions. 10497 if (Body) 10498 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end()); 10499 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(), 10500 FD->getReturnType(), FD); 10501 10502 // If this is a structor, we need a vtable. 10503 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) 10504 MarkVTableUsed(FD->getLocation(), Constructor->getParent()); 10505 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD)) 10506 MarkVTableUsed(FD->getLocation(), Destructor->getParent()); 10507 10508 // Try to apply the named return value optimization. We have to check 10509 // if we can do this here because lambdas keep return statements around 10510 // to deduce an implicit return type. 10511 if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() && 10512 !FD->isDependentContext()) 10513 computeNRVO(Body, getCurFunction()); 10514 } 10515 10516 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && 10517 "Function parsing confused"); 10518 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { 10519 assert(MD == getCurMethodDecl() && "Method parsing confused"); 10520 MD->setBody(Body); 10521 if (!MD->isInvalidDecl()) { 10522 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end()); 10523 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(), 10524 MD->getReturnType(), MD); 10525 10526 if (Body) 10527 computeNRVO(Body, getCurFunction()); 10528 } 10529 if (getCurFunction()->ObjCShouldCallSuper) { 10530 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call) 10531 << MD->getSelector().getAsString(); 10532 getCurFunction()->ObjCShouldCallSuper = false; 10533 } 10534 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) { 10535 const ObjCMethodDecl *InitMethod = nullptr; 10536 bool isDesignated = 10537 MD->isDesignatedInitializerForTheInterface(&InitMethod); 10538 assert(isDesignated && InitMethod); 10539 (void)isDesignated; 10540 10541 auto superIsNSObject = [&](const ObjCMethodDecl *MD) { 10542 auto IFace = MD->getClassInterface(); 10543 if (!IFace) 10544 return false; 10545 auto SuperD = IFace->getSuperClass(); 10546 if (!SuperD) 10547 return false; 10548 return SuperD->getIdentifier() == 10549 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 10550 }; 10551 // Don't issue this warning for unavailable inits or direct subclasses 10552 // of NSObject. 10553 if (!MD->isUnavailable() && !superIsNSObject(MD)) { 10554 Diag(MD->getLocation(), 10555 diag::warn_objc_designated_init_missing_super_call); 10556 Diag(InitMethod->getLocation(), 10557 diag::note_objc_designated_init_marked_here); 10558 } 10559 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false; 10560 } 10561 if (getCurFunction()->ObjCWarnForNoInitDelegation) { 10562 // Don't issue this warning for unavaialable inits. 10563 if (!MD->isUnavailable()) 10564 Diag(MD->getLocation(), diag::warn_objc_secondary_init_missing_init_call); 10565 getCurFunction()->ObjCWarnForNoInitDelegation = false; 10566 } 10567 } else { 10568 return nullptr; 10569 } 10570 10571 assert(!getCurFunction()->ObjCShouldCallSuper && 10572 "This should only be set for ObjC methods, which should have been " 10573 "handled in the block above."); 10574 10575 // Verify and clean out per-function state. 10576 if (Body) { 10577 // C++ constructors that have function-try-blocks can't have return 10578 // statements in the handlers of that block. (C++ [except.handle]p14) 10579 // Verify this. 10580 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) 10581 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); 10582 10583 // Verify that gotos and switch cases don't jump into scopes illegally. 10584 if (getCurFunction()->NeedsScopeChecking() && 10585 !PP.isCodeCompletionEnabled()) 10586 DiagnoseInvalidJumps(Body); 10587 10588 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { 10589 if (!Destructor->getParent()->isDependentType()) 10590 CheckDestructor(Destructor); 10591 10592 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 10593 Destructor->getParent()); 10594 } 10595 10596 // If any errors have occurred, clear out any temporaries that may have 10597 // been leftover. This ensures that these temporaries won't be picked up for 10598 // deletion in some later function. 10599 if (getDiagnostics().hasErrorOccurred() || 10600 getDiagnostics().getSuppressAllDiagnostics()) { 10601 DiscardCleanupsInEvaluationContext(); 10602 } 10603 if (!getDiagnostics().hasUncompilableErrorOccurred() && 10604 !isa<FunctionTemplateDecl>(dcl)) { 10605 // Since the body is valid, issue any analysis-based warnings that are 10606 // enabled. 10607 ActivePolicy = &WP; 10608 } 10609 10610 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && 10611 (!CheckConstexprFunctionDecl(FD) || 10612 !CheckConstexprFunctionBody(FD, Body))) 10613 FD->setInvalidDecl(); 10614 10615 if (FD && FD->hasAttr<NakedAttr>()) { 10616 for (const Stmt *S : Body->children()) { 10617 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { 10618 Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function); 10619 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 10620 FD->setInvalidDecl(); 10621 break; 10622 } 10623 } 10624 } 10625 10626 assert(ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects 10627 && "Leftover temporaries in function"); 10628 assert(!ExprNeedsCleanups && "Unaccounted cleanups in function"); 10629 assert(MaybeODRUseExprs.empty() && 10630 "Leftover expressions for odr-use checking"); 10631 } 10632 10633 if (!IsInstantiation) 10634 PopDeclContext(); 10635 10636 PopFunctionScopeInfo(ActivePolicy, dcl); 10637 // If any errors have occurred, clear out any temporaries that may have 10638 // been leftover. This ensures that these temporaries won't be picked up for 10639 // deletion in some later function. 10640 if (getDiagnostics().hasErrorOccurred()) { 10641 DiscardCleanupsInEvaluationContext(); 10642 } 10643 10644 return dcl; 10645 } 10646 10647 10648 /// When we finish delayed parsing of an attribute, we must attach it to the 10649 /// relevant Decl. 10650 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, 10651 ParsedAttributes &Attrs) { 10652 // Always attach attributes to the underlying decl. 10653 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 10654 D = TD->getTemplatedDecl(); 10655 ProcessDeclAttributeList(S, D, Attrs.getList()); 10656 10657 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) 10658 if (Method->isStatic()) 10659 checkThisInStaticMemberFunctionAttributes(Method); 10660 } 10661 10662 10663 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function 10664 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). 10665 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, 10666 IdentifierInfo &II, Scope *S) { 10667 // Before we produce a declaration for an implicitly defined 10668 // function, see whether there was a locally-scoped declaration of 10669 // this name as a function or variable. If so, use that 10670 // (non-visible) declaration, and complain about it. 10671 if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) { 10672 Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev; 10673 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); 10674 return ExternCPrev; 10675 } 10676 10677 // Extension in C99. Legal in C90, but warn about it. 10678 unsigned diag_id; 10679 if (II.getName().startswith("__builtin_")) 10680 diag_id = diag::warn_builtin_unknown; 10681 else if (getLangOpts().C99) 10682 diag_id = diag::ext_implicit_function_decl; 10683 else 10684 diag_id = diag::warn_implicit_function_decl; 10685 Diag(Loc, diag_id) << &II; 10686 10687 // Because typo correction is expensive, only do it if the implicit 10688 // function declaration is going to be treated as an error. 10689 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { 10690 TypoCorrection Corrected; 10691 if (S && 10692 (Corrected = CorrectTypo( 10693 DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr, 10694 llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError))) 10695 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), 10696 /*ErrorRecovery*/false); 10697 } 10698 10699 // Set a Declarator for the implicit definition: int foo(); 10700 const char *Dummy; 10701 AttributeFactory attrFactory; 10702 DeclSpec DS(attrFactory); 10703 unsigned DiagID; 10704 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, 10705 Context.getPrintingPolicy()); 10706 (void)Error; // Silence warning. 10707 assert(!Error && "Error setting up implicit decl!"); 10708 SourceLocation NoLoc; 10709 Declarator D(DS, Declarator::BlockContext); 10710 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, 10711 /*IsAmbiguous=*/false, 10712 /*LParenLoc=*/NoLoc, 10713 /*Params=*/nullptr, 10714 /*NumParams=*/0, 10715 /*EllipsisLoc=*/NoLoc, 10716 /*RParenLoc=*/NoLoc, 10717 /*TypeQuals=*/0, 10718 /*RefQualifierIsLvalueRef=*/true, 10719 /*RefQualifierLoc=*/NoLoc, 10720 /*ConstQualifierLoc=*/NoLoc, 10721 /*VolatileQualifierLoc=*/NoLoc, 10722 /*RestrictQualifierLoc=*/NoLoc, 10723 /*MutableLoc=*/NoLoc, 10724 EST_None, 10725 /*ESpecLoc=*/NoLoc, 10726 /*Exceptions=*/nullptr, 10727 /*ExceptionRanges=*/nullptr, 10728 /*NumExceptions=*/0, 10729 /*NoexceptExpr=*/nullptr, 10730 /*ExceptionSpecTokens=*/nullptr, 10731 Loc, Loc, D), 10732 DS.getAttributes(), 10733 SourceLocation()); 10734 D.SetIdentifier(&II, Loc); 10735 10736 // Insert this function into translation-unit scope. 10737 10738 DeclContext *PrevDC = CurContext; 10739 CurContext = Context.getTranslationUnitDecl(); 10740 10741 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D)); 10742 FD->setImplicit(); 10743 10744 CurContext = PrevDC; 10745 10746 AddKnownFunctionAttributes(FD); 10747 10748 return FD; 10749 } 10750 10751 /// \brief Adds any function attributes that we know a priori based on 10752 /// the declaration of this function. 10753 /// 10754 /// These attributes can apply both to implicitly-declared builtins 10755 /// (like __builtin___printf_chk) or to library-declared functions 10756 /// like NSLog or printf. 10757 /// 10758 /// We need to check for duplicate attributes both here and where user-written 10759 /// attributes are applied to declarations. 10760 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { 10761 if (FD->isInvalidDecl()) 10762 return; 10763 10764 // If this is a built-in function, map its builtin attributes to 10765 // actual attributes. 10766 if (unsigned BuiltinID = FD->getBuiltinID()) { 10767 // Handle printf-formatting attributes. 10768 unsigned FormatIdx; 10769 bool HasVAListArg; 10770 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { 10771 if (!FD->hasAttr<FormatAttr>()) { 10772 const char *fmt = "printf"; 10773 unsigned int NumParams = FD->getNumParams(); 10774 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) 10775 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) 10776 fmt = "NSString"; 10777 FD->addAttr(FormatAttr::CreateImplicit(Context, 10778 &Context.Idents.get(fmt), 10779 FormatIdx+1, 10780 HasVAListArg ? 0 : FormatIdx+2, 10781 FD->getLocation())); 10782 } 10783 } 10784 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, 10785 HasVAListArg)) { 10786 if (!FD->hasAttr<FormatAttr>()) 10787 FD->addAttr(FormatAttr::CreateImplicit(Context, 10788 &Context.Idents.get("scanf"), 10789 FormatIdx+1, 10790 HasVAListArg ? 0 : FormatIdx+2, 10791 FD->getLocation())); 10792 } 10793 10794 // Mark const if we don't care about errno and that is the only 10795 // thing preventing the function from being const. This allows 10796 // IRgen to use LLVM intrinsics for such functions. 10797 if (!getLangOpts().MathErrno && 10798 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) { 10799 if (!FD->hasAttr<ConstAttr>()) 10800 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 10801 } 10802 10803 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && 10804 !FD->hasAttr<ReturnsTwiceAttr>()) 10805 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, 10806 FD->getLocation())); 10807 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) 10808 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 10809 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) 10810 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 10811 } 10812 10813 IdentifierInfo *Name = FD->getIdentifier(); 10814 if (!Name) 10815 return; 10816 if ((!getLangOpts().CPlusPlus && 10817 FD->getDeclContext()->isTranslationUnit()) || 10818 (isa<LinkageSpecDecl>(FD->getDeclContext()) && 10819 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == 10820 LinkageSpecDecl::lang_c)) { 10821 // Okay: this could be a libc/libm/Objective-C function we know 10822 // about. 10823 } else 10824 return; 10825 10826 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { 10827 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be 10828 // target-specific builtins, perhaps? 10829 if (!FD->hasAttr<FormatAttr>()) 10830 FD->addAttr(FormatAttr::CreateImplicit(Context, 10831 &Context.Idents.get("printf"), 2, 10832 Name->isStr("vasprintf") ? 0 : 3, 10833 FD->getLocation())); 10834 } 10835 10836 if (Name->isStr("__CFStringMakeConstantString")) { 10837 // We already have a __builtin___CFStringMakeConstantString, 10838 // but builds that use -fno-constant-cfstrings don't go through that. 10839 if (!FD->hasAttr<FormatArgAttr>()) 10840 FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1, 10841 FD->getLocation())); 10842 } 10843 } 10844 10845 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, 10846 TypeSourceInfo *TInfo) { 10847 assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); 10848 assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); 10849 10850 if (!TInfo) { 10851 assert(D.isInvalidType() && "no declarator info for valid type"); 10852 TInfo = Context.getTrivialTypeSourceInfo(T); 10853 } 10854 10855 // Scope manipulation handled by caller. 10856 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, 10857 D.getLocStart(), 10858 D.getIdentifierLoc(), 10859 D.getIdentifier(), 10860 TInfo); 10861 10862 // Bail out immediately if we have an invalid declaration. 10863 if (D.isInvalidType()) { 10864 NewTD->setInvalidDecl(); 10865 return NewTD; 10866 } 10867 10868 if (D.getDeclSpec().isModulePrivateSpecified()) { 10869 if (CurContext->isFunctionOrMethod()) 10870 Diag(NewTD->getLocation(), diag::err_module_private_local) 10871 << 2 << NewTD->getDeclName() 10872 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 10873 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 10874 else 10875 NewTD->setModulePrivate(); 10876 } 10877 10878 // C++ [dcl.typedef]p8: 10879 // If the typedef declaration defines an unnamed class (or 10880 // enum), the first typedef-name declared by the declaration 10881 // to be that class type (or enum type) is used to denote the 10882 // class type (or enum type) for linkage purposes only. 10883 // We need to check whether the type was declared in the declaration. 10884 switch (D.getDeclSpec().getTypeSpecType()) { 10885 case TST_enum: 10886 case TST_struct: 10887 case TST_interface: 10888 case TST_union: 10889 case TST_class: { 10890 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); 10891 10892 // Do nothing if the tag is not anonymous or already has an 10893 // associated typedef (from an earlier typedef in this decl group). 10894 if (tagFromDeclSpec->getIdentifier()) break; 10895 if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break; 10896 10897 // A well-formed anonymous tag must always be a TUK_Definition. 10898 assert(tagFromDeclSpec->isThisDeclarationADefinition()); 10899 10900 // The type must match the tag exactly; no qualifiers allowed. 10901 if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec))) 10902 break; 10903 10904 // If we've already computed linkage for the anonymous tag, then 10905 // adding a typedef name for the anonymous decl can change that 10906 // linkage, which might be a serious problem. Diagnose this as 10907 // unsupported and ignore the typedef name. TODO: we should 10908 // pursue this as a language defect and establish a formal rule 10909 // for how to handle it. 10910 if (tagFromDeclSpec->hasLinkageBeenComputed()) { 10911 Diag(D.getIdentifierLoc(), diag::err_typedef_changes_linkage); 10912 10913 SourceLocation tagLoc = D.getDeclSpec().getTypeSpecTypeLoc(); 10914 tagLoc = getLocForEndOfToken(tagLoc); 10915 10916 llvm::SmallString<40> textToInsert; 10917 textToInsert += ' '; 10918 textToInsert += D.getIdentifier()->getName(); 10919 Diag(tagLoc, diag::note_typedef_changes_linkage) 10920 << FixItHint::CreateInsertion(tagLoc, textToInsert); 10921 break; 10922 } 10923 10924 // Otherwise, set this is the anon-decl typedef for the tag. 10925 tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); 10926 break; 10927 } 10928 10929 default: 10930 break; 10931 } 10932 10933 return NewTD; 10934 } 10935 10936 10937 /// \brief Check that this is a valid underlying type for an enum declaration. 10938 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { 10939 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 10940 QualType T = TI->getType(); 10941 10942 if (T->isDependentType()) 10943 return false; 10944 10945 if (const BuiltinType *BT = T->getAs<BuiltinType>()) 10946 if (BT->isInteger()) 10947 return false; 10948 10949 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; 10950 return true; 10951 } 10952 10953 /// Check whether this is a valid redeclaration of a previous enumeration. 10954 /// \return true if the redeclaration was invalid. 10955 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, 10956 QualType EnumUnderlyingTy, 10957 const EnumDecl *Prev) { 10958 bool IsFixed = !EnumUnderlyingTy.isNull(); 10959 10960 if (IsScoped != Prev->isScoped()) { 10961 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) 10962 << Prev->isScoped(); 10963 Diag(Prev->getLocation(), diag::note_previous_declaration); 10964 return true; 10965 } 10966 10967 if (IsFixed && Prev->isFixed()) { 10968 if (!EnumUnderlyingTy->isDependentType() && 10969 !Prev->getIntegerType()->isDependentType() && 10970 !Context.hasSameUnqualifiedType(EnumUnderlyingTy, 10971 Prev->getIntegerType())) { 10972 // TODO: Highlight the underlying type of the redeclaration. 10973 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) 10974 << EnumUnderlyingTy << Prev->getIntegerType(); 10975 Diag(Prev->getLocation(), diag::note_previous_declaration) 10976 << Prev->getIntegerTypeRange(); 10977 return true; 10978 } 10979 } else if (IsFixed != Prev->isFixed()) { 10980 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) 10981 << Prev->isFixed(); 10982 Diag(Prev->getLocation(), diag::note_previous_declaration); 10983 return true; 10984 } 10985 10986 return false; 10987 } 10988 10989 /// \brief Get diagnostic %select index for tag kind for 10990 /// redeclaration diagnostic message. 10991 /// WARNING: Indexes apply to particular diagnostics only! 10992 /// 10993 /// \returns diagnostic %select index. 10994 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { 10995 switch (Tag) { 10996 case TTK_Struct: return 0; 10997 case TTK_Interface: return 1; 10998 case TTK_Class: return 2; 10999 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); 11000 } 11001 } 11002 11003 /// \brief Determine if tag kind is a class-key compatible with 11004 /// class for redeclaration (class, struct, or __interface). 11005 /// 11006 /// \returns true iff the tag kind is compatible. 11007 static bool isClassCompatTagKind(TagTypeKind Tag) 11008 { 11009 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; 11010 } 11011 11012 /// \brief Determine whether a tag with a given kind is acceptable 11013 /// as a redeclaration of the given tag declaration. 11014 /// 11015 /// \returns true if the new tag kind is acceptable, false otherwise. 11016 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, 11017 TagTypeKind NewTag, bool isDefinition, 11018 SourceLocation NewTagLoc, 11019 const IdentifierInfo &Name) { 11020 // C++ [dcl.type.elab]p3: 11021 // The class-key or enum keyword present in the 11022 // elaborated-type-specifier shall agree in kind with the 11023 // declaration to which the name in the elaborated-type-specifier 11024 // refers. This rule also applies to the form of 11025 // elaborated-type-specifier that declares a class-name or 11026 // friend class since it can be construed as referring to the 11027 // definition of the class. Thus, in any 11028 // elaborated-type-specifier, the enum keyword shall be used to 11029 // refer to an enumeration (7.2), the union class-key shall be 11030 // used to refer to a union (clause 9), and either the class or 11031 // struct class-key shall be used to refer to a class (clause 9) 11032 // declared using the class or struct class-key. 11033 TagTypeKind OldTag = Previous->getTagKind(); 11034 if (!isDefinition || !isClassCompatTagKind(NewTag)) 11035 if (OldTag == NewTag) 11036 return true; 11037 11038 if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) { 11039 // Warn about the struct/class tag mismatch. 11040 bool isTemplate = false; 11041 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) 11042 isTemplate = Record->getDescribedClassTemplate(); 11043 11044 if (!ActiveTemplateInstantiations.empty()) { 11045 // In a template instantiation, do not offer fix-its for tag mismatches 11046 // since they usually mess up the template instead of fixing the problem. 11047 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 11048 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name 11049 << getRedeclDiagFromTagKind(OldTag); 11050 return true; 11051 } 11052 11053 if (isDefinition) { 11054 // On definitions, check previous tags and issue a fix-it for each 11055 // one that doesn't match the current tag. 11056 if (Previous->getDefinition()) { 11057 // Don't suggest fix-its for redefinitions. 11058 return true; 11059 } 11060 11061 bool previousMismatch = false; 11062 for (auto I : Previous->redecls()) { 11063 if (I->getTagKind() != NewTag) { 11064 if (!previousMismatch) { 11065 previousMismatch = true; 11066 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) 11067 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name 11068 << getRedeclDiagFromTagKind(I->getTagKind()); 11069 } 11070 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) 11071 << getRedeclDiagFromTagKind(NewTag) 11072 << FixItHint::CreateReplacement(I->getInnerLocStart(), 11073 TypeWithKeyword::getTagTypeKindName(NewTag)); 11074 } 11075 } 11076 return true; 11077 } 11078 11079 // Check for a previous definition. If current tag and definition 11080 // are same type, do nothing. If no definition, but disagree with 11081 // with previous tag type, give a warning, but no fix-it. 11082 const TagDecl *Redecl = Previous->getDefinition() ? 11083 Previous->getDefinition() : Previous; 11084 if (Redecl->getTagKind() == NewTag) { 11085 return true; 11086 } 11087 11088 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 11089 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name 11090 << getRedeclDiagFromTagKind(OldTag); 11091 Diag(Redecl->getLocation(), diag::note_previous_use); 11092 11093 // If there is a previous definition, suggest a fix-it. 11094 if (Previous->getDefinition()) { 11095 Diag(NewTagLoc, diag::note_struct_class_suggestion) 11096 << getRedeclDiagFromTagKind(Redecl->getTagKind()) 11097 << FixItHint::CreateReplacement(SourceRange(NewTagLoc), 11098 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); 11099 } 11100 11101 return true; 11102 } 11103 return false; 11104 } 11105 11106 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name 11107 /// from an outer enclosing namespace or file scope inside a friend declaration. 11108 /// This should provide the commented out code in the following snippet: 11109 /// namespace N { 11110 /// struct X; 11111 /// namespace M { 11112 /// struct Y { friend struct /*N::*/ X; }; 11113 /// } 11114 /// } 11115 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, 11116 SourceLocation NameLoc) { 11117 // While the decl is in a namespace, do repeated lookup of that name and see 11118 // if we get the same namespace back. If we do not, continue until 11119 // translation unit scope, at which point we have a fully qualified NNS. 11120 SmallVector<IdentifierInfo *, 4> Namespaces; 11121 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 11122 for (; !DC->isTranslationUnit(); DC = DC->getParent()) { 11123 // This tag should be declared in a namespace, which can only be enclosed by 11124 // other namespaces. Bail if there's an anonymous namespace in the chain. 11125 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); 11126 if (!Namespace || Namespace->isAnonymousNamespace()) 11127 return FixItHint(); 11128 IdentifierInfo *II = Namespace->getIdentifier(); 11129 Namespaces.push_back(II); 11130 NamedDecl *Lookup = SemaRef.LookupSingleName( 11131 S, II, NameLoc, Sema::LookupNestedNameSpecifierName); 11132 if (Lookup == Namespace) 11133 break; 11134 } 11135 11136 // Once we have all the namespaces, reverse them to go outermost first, and 11137 // build an NNS. 11138 SmallString<64> Insertion; 11139 llvm::raw_svector_ostream OS(Insertion); 11140 if (DC->isTranslationUnit()) 11141 OS << "::"; 11142 std::reverse(Namespaces.begin(), Namespaces.end()); 11143 for (auto *II : Namespaces) 11144 OS << II->getName() << "::"; 11145 OS.flush(); 11146 return FixItHint::CreateInsertion(NameLoc, Insertion); 11147 } 11148 11149 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the 11150 /// former case, Name will be non-null. In the later case, Name will be null. 11151 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a 11152 /// reference/declaration/definition of a tag. 11153 /// 11154 /// IsTypeSpecifier is true if this is a type-specifier (or 11155 /// trailing-type-specifier) other than one in an alias-declaration. 11156 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 11157 SourceLocation KWLoc, CXXScopeSpec &SS, 11158 IdentifierInfo *Name, SourceLocation NameLoc, 11159 AttributeList *Attr, AccessSpecifier AS, 11160 SourceLocation ModulePrivateLoc, 11161 MultiTemplateParamsArg TemplateParameterLists, 11162 bool &OwnedDecl, bool &IsDependent, 11163 SourceLocation ScopedEnumKWLoc, 11164 bool ScopedEnumUsesClassTag, 11165 TypeResult UnderlyingType, 11166 bool IsTypeSpecifier) { 11167 // If this is not a definition, it must have a name. 11168 IdentifierInfo *OrigName = Name; 11169 assert((Name != nullptr || TUK == TUK_Definition) && 11170 "Nameless record must be a definition!"); 11171 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); 11172 11173 OwnedDecl = false; 11174 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 11175 bool ScopedEnum = ScopedEnumKWLoc.isValid(); 11176 11177 // FIXME: Check explicit specializations more carefully. 11178 bool isExplicitSpecialization = false; 11179 bool Invalid = false; 11180 11181 // We only need to do this matching if we have template parameters 11182 // or a scope specifier, which also conveniently avoids this work 11183 // for non-C++ cases. 11184 if (TemplateParameterLists.size() > 0 || 11185 (SS.isNotEmpty() && TUK != TUK_Reference)) { 11186 if (TemplateParameterList *TemplateParams = 11187 MatchTemplateParametersToScopeSpecifier( 11188 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, 11189 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) { 11190 if (Kind == TTK_Enum) { 11191 Diag(KWLoc, diag::err_enum_template); 11192 return nullptr; 11193 } 11194 11195 if (TemplateParams->size() > 0) { 11196 // This is a declaration or definition of a class template (which may 11197 // be a member of another template). 11198 11199 if (Invalid) 11200 return nullptr; 11201 11202 OwnedDecl = false; 11203 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc, 11204 SS, Name, NameLoc, Attr, 11205 TemplateParams, AS, 11206 ModulePrivateLoc, 11207 /*FriendLoc*/SourceLocation(), 11208 TemplateParameterLists.size()-1, 11209 TemplateParameterLists.data()); 11210 return Result.get(); 11211 } else { 11212 // The "template<>" header is extraneous. 11213 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 11214 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 11215 isExplicitSpecialization = true; 11216 } 11217 } 11218 } 11219 11220 // Figure out the underlying type if this a enum declaration. We need to do 11221 // this early, because it's needed to detect if this is an incompatible 11222 // redeclaration. 11223 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; 11224 11225 if (Kind == TTK_Enum) { 11226 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) 11227 // No underlying type explicitly specified, or we failed to parse the 11228 // type, default to int. 11229 EnumUnderlying = Context.IntTy.getTypePtr(); 11230 else if (UnderlyingType.get()) { 11231 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an 11232 // integral type; any cv-qualification is ignored. 11233 TypeSourceInfo *TI = nullptr; 11234 GetTypeFromParser(UnderlyingType.get(), &TI); 11235 EnumUnderlying = TI; 11236 11237 if (CheckEnumUnderlyingType(TI)) 11238 // Recover by falling back to int. 11239 EnumUnderlying = Context.IntTy.getTypePtr(); 11240 11241 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, 11242 UPPC_FixedUnderlyingType)) 11243 EnumUnderlying = Context.IntTy.getTypePtr(); 11244 11245 } else if (getLangOpts().MSVCCompat) 11246 // Microsoft enums are always of int type. 11247 EnumUnderlying = Context.IntTy.getTypePtr(); 11248 } 11249 11250 DeclContext *SearchDC = CurContext; 11251 DeclContext *DC = CurContext; 11252 bool isStdBadAlloc = false; 11253 11254 RedeclarationKind Redecl = ForRedeclaration; 11255 if (TUK == TUK_Friend || TUK == TUK_Reference) 11256 Redecl = NotForRedeclaration; 11257 11258 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); 11259 if (Name && SS.isNotEmpty()) { 11260 // We have a nested-name tag ('struct foo::bar'). 11261 11262 // Check for invalid 'foo::'. 11263 if (SS.isInvalid()) { 11264 Name = nullptr; 11265 goto CreateNewDecl; 11266 } 11267 11268 // If this is a friend or a reference to a class in a dependent 11269 // context, don't try to make a decl for it. 11270 if (TUK == TUK_Friend || TUK == TUK_Reference) { 11271 DC = computeDeclContext(SS, false); 11272 if (!DC) { 11273 IsDependent = true; 11274 return nullptr; 11275 } 11276 } else { 11277 DC = computeDeclContext(SS, true); 11278 if (!DC) { 11279 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) 11280 << SS.getRange(); 11281 return nullptr; 11282 } 11283 } 11284 11285 if (RequireCompleteDeclContext(SS, DC)) 11286 return nullptr; 11287 11288 SearchDC = DC; 11289 // Look-up name inside 'foo::'. 11290 LookupQualifiedName(Previous, DC); 11291 11292 if (Previous.isAmbiguous()) 11293 return nullptr; 11294 11295 if (Previous.empty()) { 11296 // Name lookup did not find anything. However, if the 11297 // nested-name-specifier refers to the current instantiation, 11298 // and that current instantiation has any dependent base 11299 // classes, we might find something at instantiation time: treat 11300 // this as a dependent elaborated-type-specifier. 11301 // But this only makes any sense for reference-like lookups. 11302 if (Previous.wasNotFoundInCurrentInstantiation() && 11303 (TUK == TUK_Reference || TUK == TUK_Friend)) { 11304 IsDependent = true; 11305 return nullptr; 11306 } 11307 11308 // A tag 'foo::bar' must already exist. 11309 Diag(NameLoc, diag::err_not_tag_in_scope) 11310 << Kind << Name << DC << SS.getRange(); 11311 Name = nullptr; 11312 Invalid = true; 11313 goto CreateNewDecl; 11314 } 11315 } else if (Name) { 11316 // If this is a named struct, check to see if there was a previous forward 11317 // declaration or definition. 11318 // FIXME: We're looking into outer scopes here, even when we 11319 // shouldn't be. Doing so can result in ambiguities that we 11320 // shouldn't be diagnosing. 11321 LookupName(Previous, S); 11322 11323 // When declaring or defining a tag, ignore ambiguities introduced 11324 // by types using'ed into this scope. 11325 if (Previous.isAmbiguous() && 11326 (TUK == TUK_Definition || TUK == TUK_Declaration)) { 11327 LookupResult::Filter F = Previous.makeFilter(); 11328 while (F.hasNext()) { 11329 NamedDecl *ND = F.next(); 11330 if (ND->getDeclContext()->getRedeclContext() != SearchDC) 11331 F.erase(); 11332 } 11333 F.done(); 11334 } 11335 11336 // C++11 [namespace.memdef]p3: 11337 // If the name in a friend declaration is neither qualified nor 11338 // a template-id and the declaration is a function or an 11339 // elaborated-type-specifier, the lookup to determine whether 11340 // the entity has been previously declared shall not consider 11341 // any scopes outside the innermost enclosing namespace. 11342 // 11343 // MSVC doesn't implement the above rule for types, so a friend tag 11344 // declaration may be a redeclaration of a type declared in an enclosing 11345 // scope. They do implement this rule for friend functions. 11346 // 11347 // Does it matter that this should be by scope instead of by 11348 // semantic context? 11349 if (!Previous.empty() && TUK == TUK_Friend) { 11350 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); 11351 LookupResult::Filter F = Previous.makeFilter(); 11352 bool FriendSawTagOutsideEnclosingNamespace = false; 11353 while (F.hasNext()) { 11354 NamedDecl *ND = F.next(); 11355 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 11356 if (DC->isFileContext() && 11357 !EnclosingNS->Encloses(ND->getDeclContext())) { 11358 if (getLangOpts().MSVCCompat) 11359 FriendSawTagOutsideEnclosingNamespace = true; 11360 else 11361 F.erase(); 11362 } 11363 } 11364 F.done(); 11365 11366 // Diagnose this MSVC extension in the easy case where lookup would have 11367 // unambiguously found something outside the enclosing namespace. 11368 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { 11369 NamedDecl *ND = Previous.getFoundDecl(); 11370 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) 11371 << createFriendTagNNSFixIt(*this, ND, S, NameLoc); 11372 } 11373 } 11374 11375 // Note: there used to be some attempt at recovery here. 11376 if (Previous.isAmbiguous()) 11377 return nullptr; 11378 11379 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { 11380 // FIXME: This makes sure that we ignore the contexts associated 11381 // with C structs, unions, and enums when looking for a matching 11382 // tag declaration or definition. See the similar lookup tweak 11383 // in Sema::LookupName; is there a better way to deal with this? 11384 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) 11385 SearchDC = SearchDC->getParent(); 11386 } 11387 } 11388 11389 if (Previous.isSingleResult() && 11390 Previous.getFoundDecl()->isTemplateParameter()) { 11391 // Maybe we will complain about the shadowed template parameter. 11392 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); 11393 // Just pretend that we didn't see the previous declaration. 11394 Previous.clear(); 11395 } 11396 11397 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && 11398 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) { 11399 // This is a declaration of or a reference to "std::bad_alloc". 11400 isStdBadAlloc = true; 11401 11402 if (Previous.empty() && StdBadAlloc) { 11403 // std::bad_alloc has been implicitly declared (but made invisible to 11404 // name lookup). Fill in this implicit declaration as the previous 11405 // declaration, so that the declarations get chained appropriately. 11406 Previous.addDecl(getStdBadAlloc()); 11407 } 11408 } 11409 11410 // If we didn't find a previous declaration, and this is a reference 11411 // (or friend reference), move to the correct scope. In C++, we 11412 // also need to do a redeclaration lookup there, just in case 11413 // there's a shadow friend decl. 11414 if (Name && Previous.empty() && 11415 (TUK == TUK_Reference || TUK == TUK_Friend)) { 11416 if (Invalid) goto CreateNewDecl; 11417 assert(SS.isEmpty()); 11418 11419 if (TUK == TUK_Reference) { 11420 // C++ [basic.scope.pdecl]p5: 11421 // -- for an elaborated-type-specifier of the form 11422 // 11423 // class-key identifier 11424 // 11425 // if the elaborated-type-specifier is used in the 11426 // decl-specifier-seq or parameter-declaration-clause of a 11427 // function defined in namespace scope, the identifier is 11428 // declared as a class-name in the namespace that contains 11429 // the declaration; otherwise, except as a friend 11430 // declaration, the identifier is declared in the smallest 11431 // non-class, non-function-prototype scope that contains the 11432 // declaration. 11433 // 11434 // C99 6.7.2.3p8 has a similar (but not identical!) provision for 11435 // C structs and unions. 11436 // 11437 // It is an error in C++ to declare (rather than define) an enum 11438 // type, including via an elaborated type specifier. We'll 11439 // diagnose that later; for now, declare the enum in the same 11440 // scope as we would have picked for any other tag type. 11441 // 11442 // GNU C also supports this behavior as part of its incomplete 11443 // enum types extension, while GNU C++ does not. 11444 // 11445 // Find the context where we'll be declaring the tag. 11446 // FIXME: We would like to maintain the current DeclContext as the 11447 // lexical context, 11448 while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod()) 11449 SearchDC = SearchDC->getParent(); 11450 11451 // Find the scope where we'll be declaring the tag. 11452 while (S->isClassScope() || 11453 (getLangOpts().CPlusPlus && 11454 S->isFunctionPrototypeScope()) || 11455 ((S->getFlags() & Scope::DeclScope) == 0) || 11456 (S->getEntity() && S->getEntity()->isTransparentContext())) 11457 S = S->getParent(); 11458 } else { 11459 assert(TUK == TUK_Friend); 11460 // C++ [namespace.memdef]p3: 11461 // If a friend declaration in a non-local class first declares a 11462 // class or function, the friend class or function is a member of 11463 // the innermost enclosing namespace. 11464 SearchDC = SearchDC->getEnclosingNamespaceContext(); 11465 } 11466 11467 // In C++, we need to do a redeclaration lookup to properly 11468 // diagnose some problems. 11469 if (getLangOpts().CPlusPlus) { 11470 Previous.setRedeclarationKind(ForRedeclaration); 11471 LookupQualifiedName(Previous, SearchDC); 11472 } 11473 } 11474 11475 if (!Previous.empty()) { 11476 NamedDecl *PrevDecl = Previous.getFoundDecl(); 11477 NamedDecl *DirectPrevDecl = 11478 getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl; 11479 11480 // It's okay to have a tag decl in the same scope as a typedef 11481 // which hides a tag decl in the same scope. Finding this 11482 // insanity with a redeclaration lookup can only actually happen 11483 // in C++. 11484 // 11485 // This is also okay for elaborated-type-specifiers, which is 11486 // technically forbidden by the current standard but which is 11487 // okay according to the likely resolution of an open issue; 11488 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 11489 if (getLangOpts().CPlusPlus) { 11490 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { 11491 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { 11492 TagDecl *Tag = TT->getDecl(); 11493 if (Tag->getDeclName() == Name && 11494 Tag->getDeclContext()->getRedeclContext() 11495 ->Equals(TD->getDeclContext()->getRedeclContext())) { 11496 PrevDecl = Tag; 11497 Previous.clear(); 11498 Previous.addDecl(Tag); 11499 Previous.resolveKind(); 11500 } 11501 } 11502 } 11503 } 11504 11505 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { 11506 // If this is a use of a previous tag, or if the tag is already declared 11507 // in the same scope (so that the definition/declaration completes or 11508 // rementions the tag), reuse the decl. 11509 if (TUK == TUK_Reference || TUK == TUK_Friend || 11510 isDeclInScope(DirectPrevDecl, SearchDC, S, 11511 SS.isNotEmpty() || isExplicitSpecialization)) { 11512 // Make sure that this wasn't declared as an enum and now used as a 11513 // struct or something similar. 11514 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, 11515 TUK == TUK_Definition, KWLoc, 11516 *Name)) { 11517 bool SafeToContinue 11518 = (PrevTagDecl->getTagKind() != TTK_Enum && 11519 Kind != TTK_Enum); 11520 if (SafeToContinue) 11521 Diag(KWLoc, diag::err_use_with_wrong_tag) 11522 << Name 11523 << FixItHint::CreateReplacement(SourceRange(KWLoc), 11524 PrevTagDecl->getKindName()); 11525 else 11526 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; 11527 Diag(PrevTagDecl->getLocation(), diag::note_previous_use); 11528 11529 if (SafeToContinue) 11530 Kind = PrevTagDecl->getTagKind(); 11531 else { 11532 // Recover by making this an anonymous redefinition. 11533 Name = nullptr; 11534 Previous.clear(); 11535 Invalid = true; 11536 } 11537 } 11538 11539 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { 11540 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); 11541 11542 // If this is an elaborated-type-specifier for a scoped enumeration, 11543 // the 'class' keyword is not necessary and not permitted. 11544 if (TUK == TUK_Reference || TUK == TUK_Friend) { 11545 if (ScopedEnum) 11546 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference) 11547 << PrevEnum->isScoped() 11548 << FixItHint::CreateRemoval(ScopedEnumKWLoc); 11549 return PrevTagDecl; 11550 } 11551 11552 QualType EnumUnderlyingTy; 11553 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 11554 EnumUnderlyingTy = TI->getType().getUnqualifiedType(); 11555 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) 11556 EnumUnderlyingTy = QualType(T, 0); 11557 11558 // All conflicts with previous declarations are recovered by 11559 // returning the previous declaration, unless this is a definition, 11560 // in which case we want the caller to bail out. 11561 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, 11562 ScopedEnum, EnumUnderlyingTy, PrevEnum)) 11563 return TUK == TUK_Declaration ? PrevTagDecl : nullptr; 11564 } 11565 11566 // C++11 [class.mem]p1: 11567 // A member shall not be declared twice in the member-specification, 11568 // except that a nested class or member class template can be declared 11569 // and then later defined. 11570 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && 11571 S->isDeclScope(PrevDecl)) { 11572 Diag(NameLoc, diag::ext_member_redeclared); 11573 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); 11574 } 11575 11576 if (!Invalid) { 11577 // If this is a use, just return the declaration we found, unless 11578 // we have attributes. 11579 11580 // FIXME: In the future, return a variant or some other clue 11581 // for the consumer of this Decl to know it doesn't own it. 11582 // For our current ASTs this shouldn't be a problem, but will 11583 // need to be changed with DeclGroups. 11584 if (!Attr && 11585 ((TUK == TUK_Reference && 11586 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt)) 11587 || TUK == TUK_Friend)) 11588 return PrevTagDecl; 11589 11590 // Diagnose attempts to redefine a tag. 11591 if (TUK == TUK_Definition) { 11592 if (TagDecl *Def = PrevTagDecl->getDefinition()) { 11593 // If we're defining a specialization and the previous definition 11594 // is from an implicit instantiation, don't emit an error 11595 // here; we'll catch this in the general case below. 11596 bool IsExplicitSpecializationAfterInstantiation = false; 11597 if (isExplicitSpecialization) { 11598 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) 11599 IsExplicitSpecializationAfterInstantiation = 11600 RD->getTemplateSpecializationKind() != 11601 TSK_ExplicitSpecialization; 11602 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) 11603 IsExplicitSpecializationAfterInstantiation = 11604 ED->getTemplateSpecializationKind() != 11605 TSK_ExplicitSpecialization; 11606 } 11607 11608 if (!IsExplicitSpecializationAfterInstantiation) { 11609 // A redeclaration in function prototype scope in C isn't 11610 // visible elsewhere, so merely issue a warning. 11611 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) 11612 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; 11613 else 11614 Diag(NameLoc, diag::err_redefinition) << Name; 11615 Diag(Def->getLocation(), diag::note_previous_definition); 11616 // If this is a redefinition, recover by making this 11617 // struct be anonymous, which will make any later 11618 // references get the previous definition. 11619 Name = nullptr; 11620 Previous.clear(); 11621 Invalid = true; 11622 } 11623 } else { 11624 // If the type is currently being defined, complain 11625 // about a nested redefinition. 11626 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); 11627 if (TD->isBeingDefined()) { 11628 Diag(NameLoc, diag::err_nested_redefinition) << Name; 11629 Diag(PrevTagDecl->getLocation(), 11630 diag::note_previous_definition); 11631 Name = nullptr; 11632 Previous.clear(); 11633 Invalid = true; 11634 } 11635 } 11636 11637 // Okay, this is definition of a previously declared or referenced 11638 // tag. We're going to create a new Decl for it. 11639 } 11640 11641 // Okay, we're going to make a redeclaration. If this is some kind 11642 // of reference, make sure we build the redeclaration in the same DC 11643 // as the original, and ignore the current access specifier. 11644 if (TUK == TUK_Friend || TUK == TUK_Reference) { 11645 SearchDC = PrevTagDecl->getDeclContext(); 11646 AS = AS_none; 11647 } 11648 } 11649 // If we get here we have (another) forward declaration or we 11650 // have a definition. Just create a new decl. 11651 11652 } else { 11653 // If we get here, this is a definition of a new tag type in a nested 11654 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a 11655 // new decl/type. We set PrevDecl to NULL so that the entities 11656 // have distinct types. 11657 Previous.clear(); 11658 } 11659 // If we get here, we're going to create a new Decl. If PrevDecl 11660 // is non-NULL, it's a definition of the tag declared by 11661 // PrevDecl. If it's NULL, we have a new definition. 11662 11663 11664 // Otherwise, PrevDecl is not a tag, but was found with tag 11665 // lookup. This is only actually possible in C++, where a few 11666 // things like templates still live in the tag namespace. 11667 } else { 11668 // Use a better diagnostic if an elaborated-type-specifier 11669 // found the wrong kind of type on the first 11670 // (non-redeclaration) lookup. 11671 if ((TUK == TUK_Reference || TUK == TUK_Friend) && 11672 !Previous.isForRedeclaration()) { 11673 unsigned Kind = 0; 11674 if (isa<TypedefDecl>(PrevDecl)) Kind = 1; 11675 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2; 11676 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3; 11677 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind; 11678 Diag(PrevDecl->getLocation(), diag::note_declared_at); 11679 Invalid = true; 11680 11681 // Otherwise, only diagnose if the declaration is in scope. 11682 } else if (!isDeclInScope(PrevDecl, SearchDC, S, 11683 SS.isNotEmpty() || isExplicitSpecialization)) { 11684 // do nothing 11685 11686 // Diagnose implicit declarations introduced by elaborated types. 11687 } else if (TUK == TUK_Reference || TUK == TUK_Friend) { 11688 unsigned Kind = 0; 11689 if (isa<TypedefDecl>(PrevDecl)) Kind = 1; 11690 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2; 11691 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3; 11692 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind; 11693 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 11694 Invalid = true; 11695 11696 // Otherwise it's a declaration. Call out a particularly common 11697 // case here. 11698 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { 11699 unsigned Kind = 0; 11700 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; 11701 Diag(NameLoc, diag::err_tag_definition_of_typedef) 11702 << Name << Kind << TND->getUnderlyingType(); 11703 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 11704 Invalid = true; 11705 11706 // Otherwise, diagnose. 11707 } else { 11708 // The tag name clashes with something else in the target scope, 11709 // issue an error and recover by making this tag be anonymous. 11710 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 11711 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11712 Name = nullptr; 11713 Invalid = true; 11714 } 11715 11716 // The existing declaration isn't relevant to us; we're in a 11717 // new scope, so clear out the previous declaration. 11718 Previous.clear(); 11719 } 11720 } 11721 11722 CreateNewDecl: 11723 11724 TagDecl *PrevDecl = nullptr; 11725 if (Previous.isSingleResult()) 11726 PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); 11727 11728 // If there is an identifier, use the location of the identifier as the 11729 // location of the decl, otherwise use the location of the struct/union 11730 // keyword. 11731 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 11732 11733 // Otherwise, create a new declaration. If there is a previous 11734 // declaration of the same entity, the two will be linked via 11735 // PrevDecl. 11736 TagDecl *New; 11737 11738 bool IsForwardReference = false; 11739 if (Kind == TTK_Enum) { 11740 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 11741 // enum X { A, B, C } D; D should chain to X. 11742 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, 11743 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, 11744 ScopedEnumUsesClassTag, !EnumUnderlying.isNull()); 11745 // If this is an undefined enum, warn. 11746 if (TUK != TUK_Definition && !Invalid) { 11747 TagDecl *Def; 11748 if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) && 11749 cast<EnumDecl>(New)->isFixed()) { 11750 // C++0x: 7.2p2: opaque-enum-declaration. 11751 // Conflicts are diagnosed above. Do nothing. 11752 } 11753 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { 11754 Diag(Loc, diag::ext_forward_ref_enum_def) 11755 << New; 11756 Diag(Def->getLocation(), diag::note_previous_definition); 11757 } else { 11758 unsigned DiagID = diag::ext_forward_ref_enum; 11759 if (getLangOpts().MSVCCompat) 11760 DiagID = diag::ext_ms_forward_ref_enum; 11761 else if (getLangOpts().CPlusPlus) 11762 DiagID = diag::err_forward_ref_enum; 11763 Diag(Loc, DiagID); 11764 11765 // If this is a forward-declared reference to an enumeration, make a 11766 // note of it; we won't actually be introducing the declaration into 11767 // the declaration context. 11768 if (TUK == TUK_Reference) 11769 IsForwardReference = true; 11770 } 11771 } 11772 11773 if (EnumUnderlying) { 11774 EnumDecl *ED = cast<EnumDecl>(New); 11775 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 11776 ED->setIntegerTypeSourceInfo(TI); 11777 else 11778 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); 11779 ED->setPromotionType(ED->getIntegerType()); 11780 } 11781 11782 } else { 11783 // struct/union/class 11784 11785 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 11786 // struct X { int A; } D; D should chain to X. 11787 if (getLangOpts().CPlusPlus) { 11788 // FIXME: Look for a way to use RecordDecl for simple structs. 11789 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 11790 cast_or_null<CXXRecordDecl>(PrevDecl)); 11791 11792 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) 11793 StdBadAlloc = cast<CXXRecordDecl>(New); 11794 } else 11795 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 11796 cast_or_null<RecordDecl>(PrevDecl)); 11797 } 11798 11799 // C++11 [dcl.type]p3: 11800 // A type-specifier-seq shall not define a class or enumeration [...]. 11801 if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) { 11802 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) 11803 << Context.getTagDeclType(New); 11804 Invalid = true; 11805 } 11806 11807 // Maybe add qualifier info. 11808 if (SS.isNotEmpty()) { 11809 if (SS.isSet()) { 11810 // If this is either a declaration or a definition, check the 11811 // nested-name-specifier against the current context. We don't do this 11812 // for explicit specializations, because they have similar checking 11813 // (with more specific diagnostics) in the call to 11814 // CheckMemberSpecialization, below. 11815 if (!isExplicitSpecialization && 11816 (TUK == TUK_Definition || TUK == TUK_Declaration) && 11817 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc)) 11818 Invalid = true; 11819 11820 New->setQualifierInfo(SS.getWithLocInContext(Context)); 11821 if (TemplateParameterLists.size() > 0) { 11822 New->setTemplateParameterListsInfo(Context, 11823 TemplateParameterLists.size(), 11824 TemplateParameterLists.data()); 11825 } 11826 } 11827 else 11828 Invalid = true; 11829 } 11830 11831 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 11832 // Add alignment attributes if necessary; these attributes are checked when 11833 // the ASTContext lays out the structure. 11834 // 11835 // It is important for implementing the correct semantics that this 11836 // happen here (in act on tag decl). The #pragma pack stack is 11837 // maintained as a result of parser callbacks which can occur at 11838 // many points during the parsing of a struct declaration (because 11839 // the #pragma tokens are effectively skipped over during the 11840 // parsing of the struct). 11841 if (TUK == TUK_Definition) { 11842 AddAlignmentAttributesForRecord(RD); 11843 AddMsStructLayoutForRecord(RD); 11844 } 11845 } 11846 11847 if (ModulePrivateLoc.isValid()) { 11848 if (isExplicitSpecialization) 11849 Diag(New->getLocation(), diag::err_module_private_specialization) 11850 << 2 11851 << FixItHint::CreateRemoval(ModulePrivateLoc); 11852 // __module_private__ does not apply to local classes. However, we only 11853 // diagnose this as an error when the declaration specifiers are 11854 // freestanding. Here, we just ignore the __module_private__. 11855 else if (!SearchDC->isFunctionOrMethod()) 11856 New->setModulePrivate(); 11857 } 11858 11859 // If this is a specialization of a member class (of a class template), 11860 // check the specialization. 11861 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous)) 11862 Invalid = true; 11863 11864 // If we're declaring or defining a tag in function prototype scope in C, 11865 // note that this type can only be used within the function and add it to 11866 // the list of decls to inject into the function definition scope. 11867 if ((Name || Kind == TTK_Enum) && 11868 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { 11869 if (getLangOpts().CPlusPlus) { 11870 // C++ [dcl.fct]p6: 11871 // Types shall not be defined in return or parameter types. 11872 if (TUK == TUK_Definition && !IsTypeSpecifier) { 11873 Diag(Loc, diag::err_type_defined_in_param_type) 11874 << Name; 11875 Invalid = true; 11876 } 11877 } else { 11878 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); 11879 } 11880 DeclsInPrototypeScope.push_back(New); 11881 } 11882 11883 if (Invalid) 11884 New->setInvalidDecl(); 11885 11886 if (Attr) 11887 ProcessDeclAttributeList(S, New, Attr); 11888 11889 // Set the lexical context. If the tag has a C++ scope specifier, the 11890 // lexical context will be different from the semantic context. 11891 New->setLexicalDeclContext(CurContext); 11892 11893 // Mark this as a friend decl if applicable. 11894 // In Microsoft mode, a friend declaration also acts as a forward 11895 // declaration so we always pass true to setObjectOfFriendDecl to make 11896 // the tag name visible. 11897 if (TUK == TUK_Friend) 11898 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); 11899 11900 // Set the access specifier. 11901 if (!Invalid && SearchDC->isRecord()) 11902 SetMemberAccessSpecifier(New, PrevDecl, AS); 11903 11904 if (TUK == TUK_Definition) 11905 New->startDefinition(); 11906 11907 // If this has an identifier, add it to the scope stack. 11908 if (TUK == TUK_Friend) { 11909 // We might be replacing an existing declaration in the lookup tables; 11910 // if so, borrow its access specifier. 11911 if (PrevDecl) 11912 New->setAccess(PrevDecl->getAccess()); 11913 11914 DeclContext *DC = New->getDeclContext()->getRedeclContext(); 11915 DC->makeDeclVisibleInContext(New); 11916 if (Name) // can be null along some error paths 11917 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 11918 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); 11919 } else if (Name) { 11920 S = getNonFieldDeclScope(S); 11921 PushOnScopeChains(New, S, !IsForwardReference); 11922 if (IsForwardReference) 11923 SearchDC->makeDeclVisibleInContext(New); 11924 11925 } else { 11926 CurContext->addDecl(New); 11927 } 11928 11929 // If this is the C FILE type, notify the AST context. 11930 if (IdentifierInfo *II = New->getIdentifier()) 11931 if (!New->isInvalidDecl() && 11932 New->getDeclContext()->getRedeclContext()->isTranslationUnit() && 11933 II->isStr("FILE")) 11934 Context.setFILEDecl(New); 11935 11936 if (PrevDecl) 11937 mergeDeclAttributes(New, PrevDecl); 11938 11939 // If there's a #pragma GCC visibility in scope, set the visibility of this 11940 // record. 11941 AddPushedVisibilityAttribute(New); 11942 11943 OwnedDecl = true; 11944 // In C++, don't return an invalid declaration. We can't recover well from 11945 // the cases where we make the type anonymous. 11946 return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New; 11947 } 11948 11949 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { 11950 AdjustDeclIfTemplate(TagD); 11951 TagDecl *Tag = cast<TagDecl>(TagD); 11952 11953 // Enter the tag context. 11954 PushDeclContext(S, Tag); 11955 11956 ActOnDocumentableDecl(TagD); 11957 11958 // If there's a #pragma GCC visibility in scope, set the visibility of this 11959 // record. 11960 AddPushedVisibilityAttribute(Tag); 11961 } 11962 11963 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { 11964 assert(isa<ObjCContainerDecl>(IDecl) && 11965 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); 11966 DeclContext *OCD = cast<DeclContext>(IDecl); 11967 assert(getContainingDC(OCD) == CurContext && 11968 "The next DeclContext should be lexically contained in the current one."); 11969 CurContext = OCD; 11970 return IDecl; 11971 } 11972 11973 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, 11974 SourceLocation FinalLoc, 11975 bool IsFinalSpelledSealed, 11976 SourceLocation LBraceLoc) { 11977 AdjustDeclIfTemplate(TagD); 11978 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); 11979 11980 FieldCollector->StartClass(); 11981 11982 if (!Record->getIdentifier()) 11983 return; 11984 11985 if (FinalLoc.isValid()) 11986 Record->addAttr(new (Context) 11987 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed)); 11988 11989 // C++ [class]p2: 11990 // [...] The class-name is also inserted into the scope of the 11991 // class itself; this is known as the injected-class-name. For 11992 // purposes of access checking, the injected-class-name is treated 11993 // as if it were a public member name. 11994 CXXRecordDecl *InjectedClassName 11995 = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext, 11996 Record->getLocStart(), Record->getLocation(), 11997 Record->getIdentifier(), 11998 /*PrevDecl=*/nullptr, 11999 /*DelayTypeCreation=*/true); 12000 Context.getTypeDeclType(InjectedClassName, Record); 12001 InjectedClassName->setImplicit(); 12002 InjectedClassName->setAccess(AS_public); 12003 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) 12004 InjectedClassName->setDescribedClassTemplate(Template); 12005 PushOnScopeChains(InjectedClassName, S); 12006 assert(InjectedClassName->isInjectedClassName() && 12007 "Broken injected-class-name"); 12008 } 12009 12010 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, 12011 SourceLocation RBraceLoc) { 12012 AdjustDeclIfTemplate(TagD); 12013 TagDecl *Tag = cast<TagDecl>(TagD); 12014 Tag->setRBraceLoc(RBraceLoc); 12015 12016 // Make sure we "complete" the definition even it is invalid. 12017 if (Tag->isBeingDefined()) { 12018 assert(Tag->isInvalidDecl() && "We should already have completed it"); 12019 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 12020 RD->completeDefinition(); 12021 } 12022 12023 if (isa<CXXRecordDecl>(Tag)) 12024 FieldCollector->FinishClass(); 12025 12026 // Exit this scope of this tag's definition. 12027 PopDeclContext(); 12028 12029 if (getCurLexicalContext()->isObjCContainer() && 12030 Tag->getDeclContext()->isFileContext()) 12031 Tag->setTopLevelDeclInObjCContainer(); 12032 12033 // Notify the consumer that we've defined a tag. 12034 if (!Tag->isInvalidDecl()) 12035 Consumer.HandleTagDeclDefinition(Tag); 12036 } 12037 12038 void Sema::ActOnObjCContainerFinishDefinition() { 12039 // Exit this scope of this interface definition. 12040 PopDeclContext(); 12041 } 12042 12043 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { 12044 assert(DC == CurContext && "Mismatch of container contexts"); 12045 OriginalLexicalContext = DC; 12046 ActOnObjCContainerFinishDefinition(); 12047 } 12048 12049 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { 12050 ActOnObjCContainerStartDefinition(cast<Decl>(DC)); 12051 OriginalLexicalContext = nullptr; 12052 } 12053 12054 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { 12055 AdjustDeclIfTemplate(TagD); 12056 TagDecl *Tag = cast<TagDecl>(TagD); 12057 Tag->setInvalidDecl(); 12058 12059 // Make sure we "complete" the definition even it is invalid. 12060 if (Tag->isBeingDefined()) { 12061 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 12062 RD->completeDefinition(); 12063 } 12064 12065 // We're undoing ActOnTagStartDefinition here, not 12066 // ActOnStartCXXMemberDeclarations, so we don't have to mess with 12067 // the FieldCollector. 12068 12069 PopDeclContext(); 12070 } 12071 12072 // Note that FieldName may be null for anonymous bitfields. 12073 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, 12074 IdentifierInfo *FieldName, 12075 QualType FieldTy, bool IsMsStruct, 12076 Expr *BitWidth, bool *ZeroWidth) { 12077 // Default to true; that shouldn't confuse checks for emptiness 12078 if (ZeroWidth) 12079 *ZeroWidth = true; 12080 12081 // C99 6.7.2.1p4 - verify the field type. 12082 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 12083 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { 12084 // Handle incomplete types with specific error. 12085 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete)) 12086 return ExprError(); 12087 if (FieldName) 12088 return Diag(FieldLoc, diag::err_not_integral_type_bitfield) 12089 << FieldName << FieldTy << BitWidth->getSourceRange(); 12090 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) 12091 << FieldTy << BitWidth->getSourceRange(); 12092 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), 12093 UPPC_BitFieldWidth)) 12094 return ExprError(); 12095 12096 // If the bit-width is type- or value-dependent, don't try to check 12097 // it now. 12098 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) 12099 return BitWidth; 12100 12101 llvm::APSInt Value; 12102 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value); 12103 if (ICE.isInvalid()) 12104 return ICE; 12105 BitWidth = ICE.get(); 12106 12107 if (Value != 0 && ZeroWidth) 12108 *ZeroWidth = false; 12109 12110 // Zero-width bitfield is ok for anonymous field. 12111 if (Value == 0 && FieldName) 12112 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; 12113 12114 if (Value.isSigned() && Value.isNegative()) { 12115 if (FieldName) 12116 return Diag(FieldLoc, diag::err_bitfield_has_negative_width) 12117 << FieldName << Value.toString(10); 12118 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) 12119 << Value.toString(10); 12120 } 12121 12122 if (!FieldTy->isDependentType()) { 12123 uint64_t TypeSize = Context.getTypeSize(FieldTy); 12124 if (Value.getZExtValue() > TypeSize) { 12125 if (!getLangOpts().CPlusPlus || IsMsStruct || 12126 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 12127 if (FieldName) 12128 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size) 12129 << FieldName << (unsigned)Value.getZExtValue() 12130 << (unsigned)TypeSize; 12131 12132 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size) 12133 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; 12134 } 12135 12136 if (FieldName) 12137 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size) 12138 << FieldName << (unsigned)Value.getZExtValue() 12139 << (unsigned)TypeSize; 12140 else 12141 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size) 12142 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; 12143 } 12144 } 12145 12146 return BitWidth; 12147 } 12148 12149 /// ActOnField - Each field of a C struct/union is passed into this in order 12150 /// to create a FieldDecl object for it. 12151 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, 12152 Declarator &D, Expr *BitfieldWidth) { 12153 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), 12154 DeclStart, D, static_cast<Expr*>(BitfieldWidth), 12155 /*InitStyle=*/ICIS_NoInit, AS_public); 12156 return Res; 12157 } 12158 12159 /// HandleField - Analyze a field of a C struct or a C++ data member. 12160 /// 12161 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, 12162 SourceLocation DeclStart, 12163 Declarator &D, Expr *BitWidth, 12164 InClassInitStyle InitStyle, 12165 AccessSpecifier AS) { 12166 IdentifierInfo *II = D.getIdentifier(); 12167 SourceLocation Loc = DeclStart; 12168 if (II) Loc = D.getIdentifierLoc(); 12169 12170 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 12171 QualType T = TInfo->getType(); 12172 if (getLangOpts().CPlusPlus) { 12173 CheckExtraCXXDefaultArguments(D); 12174 12175 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 12176 UPPC_DataMemberType)) { 12177 D.setInvalidType(); 12178 T = Context.IntTy; 12179 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 12180 } 12181 } 12182 12183 // TR 18037 does not allow fields to be declared with address spaces. 12184 if (T.getQualifiers().hasAddressSpace()) { 12185 Diag(Loc, diag::err_field_with_address_space); 12186 D.setInvalidType(); 12187 } 12188 12189 // OpenCL 1.2 spec, s6.9 r: 12190 // The event type cannot be used to declare a structure or union field. 12191 if (LangOpts.OpenCL && T->isEventT()) { 12192 Diag(Loc, diag::err_event_t_struct_field); 12193 D.setInvalidType(); 12194 } 12195 12196 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 12197 12198 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 12199 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 12200 diag::err_invalid_thread) 12201 << DeclSpec::getSpecifierName(TSCS); 12202 12203 // Check to see if this name was declared as a member previously 12204 NamedDecl *PrevDecl = nullptr; 12205 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration); 12206 LookupName(Previous, S); 12207 switch (Previous.getResultKind()) { 12208 case LookupResult::Found: 12209 case LookupResult::FoundUnresolvedValue: 12210 PrevDecl = Previous.getAsSingle<NamedDecl>(); 12211 break; 12212 12213 case LookupResult::FoundOverloaded: 12214 PrevDecl = Previous.getRepresentativeDecl(); 12215 break; 12216 12217 case LookupResult::NotFound: 12218 case LookupResult::NotFoundInCurrentInstantiation: 12219 case LookupResult::Ambiguous: 12220 break; 12221 } 12222 Previous.suppressDiagnostics(); 12223 12224 if (PrevDecl && PrevDecl->isTemplateParameter()) { 12225 // Maybe we will complain about the shadowed template parameter. 12226 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 12227 // Just pretend that we didn't see the previous declaration. 12228 PrevDecl = nullptr; 12229 } 12230 12231 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 12232 PrevDecl = nullptr; 12233 12234 bool Mutable 12235 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); 12236 SourceLocation TSSL = D.getLocStart(); 12237 FieldDecl *NewFD 12238 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, 12239 TSSL, AS, PrevDecl, &D); 12240 12241 if (NewFD->isInvalidDecl()) 12242 Record->setInvalidDecl(); 12243 12244 if (D.getDeclSpec().isModulePrivateSpecified()) 12245 NewFD->setModulePrivate(); 12246 12247 if (NewFD->isInvalidDecl() && PrevDecl) { 12248 // Don't introduce NewFD into scope; there's already something 12249 // with the same name in the same scope. 12250 } else if (II) { 12251 PushOnScopeChains(NewFD, S); 12252 } else 12253 Record->addDecl(NewFD); 12254 12255 return NewFD; 12256 } 12257 12258 /// \brief Build a new FieldDecl and check its well-formedness. 12259 /// 12260 /// This routine builds a new FieldDecl given the fields name, type, 12261 /// record, etc. \p PrevDecl should refer to any previous declaration 12262 /// with the same name and in the same scope as the field to be 12263 /// created. 12264 /// 12265 /// \returns a new FieldDecl. 12266 /// 12267 /// \todo The Declarator argument is a hack. It will be removed once 12268 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, 12269 TypeSourceInfo *TInfo, 12270 RecordDecl *Record, SourceLocation Loc, 12271 bool Mutable, Expr *BitWidth, 12272 InClassInitStyle InitStyle, 12273 SourceLocation TSSL, 12274 AccessSpecifier AS, NamedDecl *PrevDecl, 12275 Declarator *D) { 12276 IdentifierInfo *II = Name.getAsIdentifierInfo(); 12277 bool InvalidDecl = false; 12278 if (D) InvalidDecl = D->isInvalidType(); 12279 12280 // If we receive a broken type, recover by assuming 'int' and 12281 // marking this declaration as invalid. 12282 if (T.isNull()) { 12283 InvalidDecl = true; 12284 T = Context.IntTy; 12285 } 12286 12287 QualType EltTy = Context.getBaseElementType(T); 12288 if (!EltTy->isDependentType()) { 12289 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) { 12290 // Fields of incomplete type force their record to be invalid. 12291 Record->setInvalidDecl(); 12292 InvalidDecl = true; 12293 } else { 12294 NamedDecl *Def; 12295 EltTy->isIncompleteType(&Def); 12296 if (Def && Def->isInvalidDecl()) { 12297 Record->setInvalidDecl(); 12298 InvalidDecl = true; 12299 } 12300 } 12301 } 12302 12303 // OpenCL v1.2 s6.9.c: bitfields are not supported. 12304 if (BitWidth && getLangOpts().OpenCL) { 12305 Diag(Loc, diag::err_opencl_bitfields); 12306 InvalidDecl = true; 12307 } 12308 12309 // C99 6.7.2.1p8: A member of a structure or union may have any type other 12310 // than a variably modified type. 12311 if (!InvalidDecl && T->isVariablyModifiedType()) { 12312 bool SizeIsNegative; 12313 llvm::APSInt Oversized; 12314 12315 TypeSourceInfo *FixedTInfo = 12316 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 12317 SizeIsNegative, 12318 Oversized); 12319 if (FixedTInfo) { 12320 Diag(Loc, diag::warn_illegal_constant_array_size); 12321 TInfo = FixedTInfo; 12322 T = FixedTInfo->getType(); 12323 } else { 12324 if (SizeIsNegative) 12325 Diag(Loc, diag::err_typecheck_negative_array_size); 12326 else if (Oversized.getBoolValue()) 12327 Diag(Loc, diag::err_array_too_large) 12328 << Oversized.toString(10); 12329 else 12330 Diag(Loc, diag::err_typecheck_field_variable_size); 12331 InvalidDecl = true; 12332 } 12333 } 12334 12335 // Fields can not have abstract class types 12336 if (!InvalidDecl && RequireNonAbstractType(Loc, T, 12337 diag::err_abstract_type_in_decl, 12338 AbstractFieldType)) 12339 InvalidDecl = true; 12340 12341 bool ZeroWidth = false; 12342 // If this is declared as a bit-field, check the bit-field. 12343 if (!InvalidDecl && BitWidth) { 12344 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, 12345 &ZeroWidth).get(); 12346 if (!BitWidth) { 12347 InvalidDecl = true; 12348 BitWidth = nullptr; 12349 ZeroWidth = false; 12350 } 12351 } 12352 12353 // Check that 'mutable' is consistent with the type of the declaration. 12354 if (!InvalidDecl && Mutable) { 12355 unsigned DiagID = 0; 12356 if (T->isReferenceType()) 12357 DiagID = diag::err_mutable_reference; 12358 else if (T.isConstQualified()) 12359 DiagID = diag::err_mutable_const; 12360 12361 if (DiagID) { 12362 SourceLocation ErrLoc = Loc; 12363 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) 12364 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); 12365 Diag(ErrLoc, DiagID); 12366 Mutable = false; 12367 InvalidDecl = true; 12368 } 12369 } 12370 12371 // C++11 [class.union]p8 (DR1460): 12372 // At most one variant member of a union may have a 12373 // brace-or-equal-initializer. 12374 if (InitStyle != ICIS_NoInit) 12375 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); 12376 12377 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, 12378 BitWidth, Mutable, InitStyle); 12379 if (InvalidDecl) 12380 NewFD->setInvalidDecl(); 12381 12382 if (PrevDecl && !isa<TagDecl>(PrevDecl)) { 12383 Diag(Loc, diag::err_duplicate_member) << II; 12384 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 12385 NewFD->setInvalidDecl(); 12386 } 12387 12388 if (!InvalidDecl && getLangOpts().CPlusPlus) { 12389 if (Record->isUnion()) { 12390 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 12391 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); 12392 if (RDecl->getDefinition()) { 12393 // C++ [class.union]p1: An object of a class with a non-trivial 12394 // constructor, a non-trivial copy constructor, a non-trivial 12395 // destructor, or a non-trivial copy assignment operator 12396 // cannot be a member of a union, nor can an array of such 12397 // objects. 12398 if (CheckNontrivialField(NewFD)) 12399 NewFD->setInvalidDecl(); 12400 } 12401 } 12402 12403 // C++ [class.union]p1: If a union contains a member of reference type, 12404 // the program is ill-formed, except when compiling with MSVC extensions 12405 // enabled. 12406 if (EltTy->isReferenceType()) { 12407 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 12408 diag::ext_union_member_of_reference_type : 12409 diag::err_union_member_of_reference_type) 12410 << NewFD->getDeclName() << EltTy; 12411 if (!getLangOpts().MicrosoftExt) 12412 NewFD->setInvalidDecl(); 12413 } 12414 } 12415 } 12416 12417 // FIXME: We need to pass in the attributes given an AST 12418 // representation, not a parser representation. 12419 if (D) { 12420 // FIXME: The current scope is almost... but not entirely... correct here. 12421 ProcessDeclAttributes(getCurScope(), NewFD, *D); 12422 12423 if (NewFD->hasAttrs()) 12424 CheckAlignasUnderalignment(NewFD); 12425 } 12426 12427 // In auto-retain/release, infer strong retension for fields of 12428 // retainable type. 12429 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) 12430 NewFD->setInvalidDecl(); 12431 12432 if (T.isObjCGCWeak()) 12433 Diag(Loc, diag::warn_attribute_weak_on_field); 12434 12435 NewFD->setAccess(AS); 12436 return NewFD; 12437 } 12438 12439 bool Sema::CheckNontrivialField(FieldDecl *FD) { 12440 assert(FD); 12441 assert(getLangOpts().CPlusPlus && "valid check only for C++"); 12442 12443 if (FD->isInvalidDecl() || FD->getType()->isDependentType()) 12444 return false; 12445 12446 QualType EltTy = Context.getBaseElementType(FD->getType()); 12447 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 12448 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); 12449 if (RDecl->getDefinition()) { 12450 // We check for copy constructors before constructors 12451 // because otherwise we'll never get complaints about 12452 // copy constructors. 12453 12454 CXXSpecialMember member = CXXInvalid; 12455 // We're required to check for any non-trivial constructors. Since the 12456 // implicit default constructor is suppressed if there are any 12457 // user-declared constructors, we just need to check that there is a 12458 // trivial default constructor and a trivial copy constructor. (We don't 12459 // worry about move constructors here, since this is a C++98 check.) 12460 if (RDecl->hasNonTrivialCopyConstructor()) 12461 member = CXXCopyConstructor; 12462 else if (!RDecl->hasTrivialDefaultConstructor()) 12463 member = CXXDefaultConstructor; 12464 else if (RDecl->hasNonTrivialCopyAssignment()) 12465 member = CXXCopyAssignment; 12466 else if (RDecl->hasNonTrivialDestructor()) 12467 member = CXXDestructor; 12468 12469 if (member != CXXInvalid) { 12470 if (!getLangOpts().CPlusPlus11 && 12471 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { 12472 // Objective-C++ ARC: it is an error to have a non-trivial field of 12473 // a union. However, system headers in Objective-C programs 12474 // occasionally have Objective-C lifetime objects within unions, 12475 // and rather than cause the program to fail, we make those 12476 // members unavailable. 12477 SourceLocation Loc = FD->getLocation(); 12478 if (getSourceManager().isInSystemHeader(Loc)) { 12479 if (!FD->hasAttr<UnavailableAttr>()) 12480 FD->addAttr(UnavailableAttr::CreateImplicit(Context, 12481 "this system field has retaining ownership", 12482 Loc)); 12483 return false; 12484 } 12485 } 12486 12487 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? 12488 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : 12489 diag::err_illegal_union_or_anon_struct_member) 12490 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member; 12491 DiagnoseNontrivial(RDecl, member); 12492 return !getLangOpts().CPlusPlus11; 12493 } 12494 } 12495 } 12496 12497 return false; 12498 } 12499 12500 /// TranslateIvarVisibility - Translate visibility from a token ID to an 12501 /// AST enum value. 12502 static ObjCIvarDecl::AccessControl 12503 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { 12504 switch (ivarVisibility) { 12505 default: llvm_unreachable("Unknown visitibility kind"); 12506 case tok::objc_private: return ObjCIvarDecl::Private; 12507 case tok::objc_public: return ObjCIvarDecl::Public; 12508 case tok::objc_protected: return ObjCIvarDecl::Protected; 12509 case tok::objc_package: return ObjCIvarDecl::Package; 12510 } 12511 } 12512 12513 /// ActOnIvar - Each ivar field of an objective-c class is passed into this 12514 /// in order to create an IvarDecl object for it. 12515 Decl *Sema::ActOnIvar(Scope *S, 12516 SourceLocation DeclStart, 12517 Declarator &D, Expr *BitfieldWidth, 12518 tok::ObjCKeywordKind Visibility) { 12519 12520 IdentifierInfo *II = D.getIdentifier(); 12521 Expr *BitWidth = (Expr*)BitfieldWidth; 12522 SourceLocation Loc = DeclStart; 12523 if (II) Loc = D.getIdentifierLoc(); 12524 12525 // FIXME: Unnamed fields can be handled in various different ways, for 12526 // example, unnamed unions inject all members into the struct namespace! 12527 12528 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 12529 QualType T = TInfo->getType(); 12530 12531 if (BitWidth) { 12532 // 6.7.2.1p3, 6.7.2.1p4 12533 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); 12534 if (!BitWidth) 12535 D.setInvalidType(); 12536 } else { 12537 // Not a bitfield. 12538 12539 // validate II. 12540 12541 } 12542 if (T->isReferenceType()) { 12543 Diag(Loc, diag::err_ivar_reference_type); 12544 D.setInvalidType(); 12545 } 12546 // C99 6.7.2.1p8: A member of a structure or union may have any type other 12547 // than a variably modified type. 12548 else if (T->isVariablyModifiedType()) { 12549 Diag(Loc, diag::err_typecheck_ivar_variable_size); 12550 D.setInvalidType(); 12551 } 12552 12553 // Get the visibility (access control) for this ivar. 12554 ObjCIvarDecl::AccessControl ac = 12555 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) 12556 : ObjCIvarDecl::None; 12557 // Must set ivar's DeclContext to its enclosing interface. 12558 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); 12559 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) 12560 return nullptr; 12561 ObjCContainerDecl *EnclosingContext; 12562 if (ObjCImplementationDecl *IMPDecl = 12563 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 12564 if (LangOpts.ObjCRuntime.isFragile()) { 12565 // Case of ivar declared in an implementation. Context is that of its class. 12566 EnclosingContext = IMPDecl->getClassInterface(); 12567 assert(EnclosingContext && "Implementation has no class interface!"); 12568 } 12569 else 12570 EnclosingContext = EnclosingDecl; 12571 } else { 12572 if (ObjCCategoryDecl *CDecl = 12573 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 12574 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { 12575 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); 12576 return nullptr; 12577 } 12578 } 12579 EnclosingContext = EnclosingDecl; 12580 } 12581 12582 // Construct the decl. 12583 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, 12584 DeclStart, Loc, II, T, 12585 TInfo, ac, (Expr *)BitfieldWidth); 12586 12587 if (II) { 12588 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, 12589 ForRedeclaration); 12590 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) 12591 && !isa<TagDecl>(PrevDecl)) { 12592 Diag(Loc, diag::err_duplicate_member) << II; 12593 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 12594 NewID->setInvalidDecl(); 12595 } 12596 } 12597 12598 // Process attributes attached to the ivar. 12599 ProcessDeclAttributes(S, NewID, D); 12600 12601 if (D.isInvalidType()) 12602 NewID->setInvalidDecl(); 12603 12604 // In ARC, infer 'retaining' for ivars of retainable type. 12605 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) 12606 NewID->setInvalidDecl(); 12607 12608 if (D.getDeclSpec().isModulePrivateSpecified()) 12609 NewID->setModulePrivate(); 12610 12611 if (II) { 12612 // FIXME: When interfaces are DeclContexts, we'll need to add 12613 // these to the interface. 12614 S->AddDecl(NewID); 12615 IdResolver.AddDecl(NewID); 12616 } 12617 12618 if (LangOpts.ObjCRuntime.isNonFragile() && 12619 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) 12620 Diag(Loc, diag::warn_ivars_in_interface); 12621 12622 return NewID; 12623 } 12624 12625 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 12626 /// class and class extensions. For every class \@interface and class 12627 /// extension \@interface, if the last ivar is a bitfield of any type, 12628 /// then add an implicit `char :0` ivar to the end of that interface. 12629 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, 12630 SmallVectorImpl<Decl *> &AllIvarDecls) { 12631 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) 12632 return; 12633 12634 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; 12635 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); 12636 12637 if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0) 12638 return; 12639 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); 12640 if (!ID) { 12641 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { 12642 if (!CD->IsClassExtension()) 12643 return; 12644 } 12645 // No need to add this to end of @implementation. 12646 else 12647 return; 12648 } 12649 // All conditions are met. Add a new bitfield to the tail end of ivars. 12650 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); 12651 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); 12652 12653 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), 12654 DeclLoc, DeclLoc, nullptr, 12655 Context.CharTy, 12656 Context.getTrivialTypeSourceInfo(Context.CharTy, 12657 DeclLoc), 12658 ObjCIvarDecl::Private, BW, 12659 true); 12660 AllIvarDecls.push_back(Ivar); 12661 } 12662 12663 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, 12664 ArrayRef<Decl *> Fields, SourceLocation LBrac, 12665 SourceLocation RBrac, AttributeList *Attr) { 12666 assert(EnclosingDecl && "missing record or interface decl"); 12667 12668 // If this is an Objective-C @implementation or category and we have 12669 // new fields here we should reset the layout of the interface since 12670 // it will now change. 12671 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { 12672 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); 12673 switch (DC->getKind()) { 12674 default: break; 12675 case Decl::ObjCCategory: 12676 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); 12677 break; 12678 case Decl::ObjCImplementation: 12679 Context. 12680 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); 12681 break; 12682 } 12683 } 12684 12685 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); 12686 12687 // Start counting up the number of named members; make sure to include 12688 // members of anonymous structs and unions in the total. 12689 unsigned NumNamedMembers = 0; 12690 if (Record) { 12691 for (const auto *I : Record->decls()) { 12692 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 12693 if (IFD->getDeclName()) 12694 ++NumNamedMembers; 12695 } 12696 } 12697 12698 // Verify that all the fields are okay. 12699 SmallVector<FieldDecl*, 32> RecFields; 12700 12701 bool ARCErrReported = false; 12702 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); 12703 i != end; ++i) { 12704 FieldDecl *FD = cast<FieldDecl>(*i); 12705 12706 // Get the type for the field. 12707 const Type *FDTy = FD->getType().getTypePtr(); 12708 12709 if (!FD->isAnonymousStructOrUnion()) { 12710 // Remember all fields written by the user. 12711 RecFields.push_back(FD); 12712 } 12713 12714 // If the field is already invalid for some reason, don't emit more 12715 // diagnostics about it. 12716 if (FD->isInvalidDecl()) { 12717 EnclosingDecl->setInvalidDecl(); 12718 continue; 12719 } 12720 12721 // C99 6.7.2.1p2: 12722 // A structure or union shall not contain a member with 12723 // incomplete or function type (hence, a structure shall not 12724 // contain an instance of itself, but may contain a pointer to 12725 // an instance of itself), except that the last member of a 12726 // structure with more than one named member may have incomplete 12727 // array type; such a structure (and any union containing, 12728 // possibly recursively, a member that is such a structure) 12729 // shall not be a member of a structure or an element of an 12730 // array. 12731 if (FDTy->isFunctionType()) { 12732 // Field declared as a function. 12733 Diag(FD->getLocation(), diag::err_field_declared_as_function) 12734 << FD->getDeclName(); 12735 FD->setInvalidDecl(); 12736 EnclosingDecl->setInvalidDecl(); 12737 continue; 12738 } else if (FDTy->isIncompleteArrayType() && Record && 12739 ((i + 1 == Fields.end() && !Record->isUnion()) || 12740 ((getLangOpts().MicrosoftExt || 12741 getLangOpts().CPlusPlus) && 12742 (i + 1 == Fields.end() || Record->isUnion())))) { 12743 // Flexible array member. 12744 // Microsoft and g++ is more permissive regarding flexible array. 12745 // It will accept flexible array in union and also 12746 // as the sole element of a struct/class. 12747 unsigned DiagID = 0; 12748 if (Record->isUnion()) 12749 DiagID = getLangOpts().MicrosoftExt 12750 ? diag::ext_flexible_array_union_ms 12751 : getLangOpts().CPlusPlus 12752 ? diag::ext_flexible_array_union_gnu 12753 : diag::err_flexible_array_union; 12754 else if (Fields.size() == 1) 12755 DiagID = getLangOpts().MicrosoftExt 12756 ? diag::ext_flexible_array_empty_aggregate_ms 12757 : getLangOpts().CPlusPlus 12758 ? diag::ext_flexible_array_empty_aggregate_gnu 12759 : NumNamedMembers < 1 12760 ? diag::err_flexible_array_empty_aggregate 12761 : 0; 12762 12763 if (DiagID) 12764 Diag(FD->getLocation(), DiagID) << FD->getDeclName() 12765 << Record->getTagKind(); 12766 // While the layout of types that contain virtual bases is not specified 12767 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place 12768 // virtual bases after the derived members. This would make a flexible 12769 // array member declared at the end of an object not adjacent to the end 12770 // of the type. 12771 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) 12772 if (RD->getNumVBases() != 0) 12773 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) 12774 << FD->getDeclName() << Record->getTagKind(); 12775 if (!getLangOpts().C99) 12776 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) 12777 << FD->getDeclName() << Record->getTagKind(); 12778 12779 // If the element type has a non-trivial destructor, we would not 12780 // implicitly destroy the elements, so disallow it for now. 12781 // 12782 // FIXME: GCC allows this. We should probably either implicitly delete 12783 // the destructor of the containing class, or just allow this. 12784 QualType BaseElem = Context.getBaseElementType(FD->getType()); 12785 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { 12786 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) 12787 << FD->getDeclName() << FD->getType(); 12788 FD->setInvalidDecl(); 12789 EnclosingDecl->setInvalidDecl(); 12790 continue; 12791 } 12792 // Okay, we have a legal flexible array member at the end of the struct. 12793 Record->setHasFlexibleArrayMember(true); 12794 } else if (!FDTy->isDependentType() && 12795 RequireCompleteType(FD->getLocation(), FD->getType(), 12796 diag::err_field_incomplete)) { 12797 // Incomplete type 12798 FD->setInvalidDecl(); 12799 EnclosingDecl->setInvalidDecl(); 12800 continue; 12801 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { 12802 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { 12803 // A type which contains a flexible array member is considered to be a 12804 // flexible array member. 12805 Record->setHasFlexibleArrayMember(true); 12806 if (!Record->isUnion()) { 12807 // If this is a struct/class and this is not the last element, reject 12808 // it. Note that GCC supports variable sized arrays in the middle of 12809 // structures. 12810 if (i + 1 != Fields.end()) 12811 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) 12812 << FD->getDeclName() << FD->getType(); 12813 else { 12814 // We support flexible arrays at the end of structs in 12815 // other structs as an extension. 12816 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) 12817 << FD->getDeclName(); 12818 } 12819 } 12820 } 12821 if (isa<ObjCContainerDecl>(EnclosingDecl) && 12822 RequireNonAbstractType(FD->getLocation(), FD->getType(), 12823 diag::err_abstract_type_in_decl, 12824 AbstractIvarType)) { 12825 // Ivars can not have abstract class types 12826 FD->setInvalidDecl(); 12827 } 12828 if (Record && FDTTy->getDecl()->hasObjectMember()) 12829 Record->setHasObjectMember(true); 12830 if (Record && FDTTy->getDecl()->hasVolatileMember()) 12831 Record->setHasVolatileMember(true); 12832 } else if (FDTy->isObjCObjectType()) { 12833 /// A field cannot be an Objective-c object 12834 Diag(FD->getLocation(), diag::err_statically_allocated_object) 12835 << FixItHint::CreateInsertion(FD->getLocation(), "*"); 12836 QualType T = Context.getObjCObjectPointerType(FD->getType()); 12837 FD->setType(T); 12838 } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported && 12839 (!getLangOpts().CPlusPlus || Record->isUnion())) { 12840 // It's an error in ARC if a field has lifetime. 12841 // We don't want to report this in a system header, though, 12842 // so we just make the field unavailable. 12843 // FIXME: that's really not sufficient; we need to make the type 12844 // itself invalid to, say, initialize or copy. 12845 QualType T = FD->getType(); 12846 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime(); 12847 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) { 12848 SourceLocation loc = FD->getLocation(); 12849 if (getSourceManager().isInSystemHeader(loc)) { 12850 if (!FD->hasAttr<UnavailableAttr>()) { 12851 FD->addAttr(UnavailableAttr::CreateImplicit(Context, 12852 "this system field has retaining ownership", 12853 loc)); 12854 } 12855 } else { 12856 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag) 12857 << T->isBlockPointerType() << Record->getTagKind(); 12858 } 12859 ARCErrReported = true; 12860 } 12861 } else if (getLangOpts().ObjC1 && 12862 getLangOpts().getGC() != LangOptions::NonGC && 12863 Record && !Record->hasObjectMember()) { 12864 if (FD->getType()->isObjCObjectPointerType() || 12865 FD->getType().isObjCGCStrong()) 12866 Record->setHasObjectMember(true); 12867 else if (Context.getAsArrayType(FD->getType())) { 12868 QualType BaseType = Context.getBaseElementType(FD->getType()); 12869 if (BaseType->isRecordType() && 12870 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()) 12871 Record->setHasObjectMember(true); 12872 else if (BaseType->isObjCObjectPointerType() || 12873 BaseType.isObjCGCStrong()) 12874 Record->setHasObjectMember(true); 12875 } 12876 } 12877 if (Record && FD->getType().isVolatileQualified()) 12878 Record->setHasVolatileMember(true); 12879 // Keep track of the number of named members. 12880 if (FD->getIdentifier()) 12881 ++NumNamedMembers; 12882 } 12883 12884 // Okay, we successfully defined 'Record'. 12885 if (Record) { 12886 bool Completed = false; 12887 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) { 12888 if (!CXXRecord->isInvalidDecl()) { 12889 // Set access bits correctly on the directly-declared conversions. 12890 for (CXXRecordDecl::conversion_iterator 12891 I = CXXRecord->conversion_begin(), 12892 E = CXXRecord->conversion_end(); I != E; ++I) 12893 I.setAccess((*I)->getAccess()); 12894 12895 if (!CXXRecord->isDependentType()) { 12896 if (CXXRecord->hasUserDeclaredDestructor()) { 12897 // Adjust user-defined destructor exception spec. 12898 if (getLangOpts().CPlusPlus11) 12899 AdjustDestructorExceptionSpec(CXXRecord, 12900 CXXRecord->getDestructor()); 12901 } 12902 12903 // Add any implicitly-declared members to this class. 12904 AddImplicitlyDeclaredMembersToClass(CXXRecord); 12905 12906 // If we have virtual base classes, we may end up finding multiple 12907 // final overriders for a given virtual function. Check for this 12908 // problem now. 12909 if (CXXRecord->getNumVBases()) { 12910 CXXFinalOverriderMap FinalOverriders; 12911 CXXRecord->getFinalOverriders(FinalOverriders); 12912 12913 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 12914 MEnd = FinalOverriders.end(); 12915 M != MEnd; ++M) { 12916 for (OverridingMethods::iterator SO = M->second.begin(), 12917 SOEnd = M->second.end(); 12918 SO != SOEnd; ++SO) { 12919 assert(SO->second.size() > 0 && 12920 "Virtual function without overridding functions?"); 12921 if (SO->second.size() == 1) 12922 continue; 12923 12924 // C++ [class.virtual]p2: 12925 // In a derived class, if a virtual member function of a base 12926 // class subobject has more than one final overrider the 12927 // program is ill-formed. 12928 Diag(Record->getLocation(), diag::err_multiple_final_overriders) 12929 << (const NamedDecl *)M->first << Record; 12930 Diag(M->first->getLocation(), 12931 diag::note_overridden_virtual_function); 12932 for (OverridingMethods::overriding_iterator 12933 OM = SO->second.begin(), 12934 OMEnd = SO->second.end(); 12935 OM != OMEnd; ++OM) 12936 Diag(OM->Method->getLocation(), diag::note_final_overrider) 12937 << (const NamedDecl *)M->first << OM->Method->getParent(); 12938 12939 Record->setInvalidDecl(); 12940 } 12941 } 12942 CXXRecord->completeDefinition(&FinalOverriders); 12943 Completed = true; 12944 } 12945 } 12946 } 12947 } 12948 12949 if (!Completed) 12950 Record->completeDefinition(); 12951 12952 if (Record->hasAttrs()) { 12953 CheckAlignasUnderalignment(Record); 12954 12955 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) 12956 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), 12957 IA->getRange(), IA->getBestCase(), 12958 IA->getSemanticSpelling()); 12959 } 12960 12961 // Check if the structure/union declaration is a type that can have zero 12962 // size in C. For C this is a language extension, for C++ it may cause 12963 // compatibility problems. 12964 bool CheckForZeroSize; 12965 if (!getLangOpts().CPlusPlus) { 12966 CheckForZeroSize = true; 12967 } else { 12968 // For C++ filter out types that cannot be referenced in C code. 12969 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); 12970 CheckForZeroSize = 12971 CXXRecord->getLexicalDeclContext()->isExternCContext() && 12972 !CXXRecord->isDependentType() && 12973 CXXRecord->isCLike(); 12974 } 12975 if (CheckForZeroSize) { 12976 bool ZeroSize = true; 12977 bool IsEmpty = true; 12978 unsigned NonBitFields = 0; 12979 for (RecordDecl::field_iterator I = Record->field_begin(), 12980 E = Record->field_end(); 12981 (NonBitFields == 0 || ZeroSize) && I != E; ++I) { 12982 IsEmpty = false; 12983 if (I->isUnnamedBitfield()) { 12984 if (I->getBitWidthValue(Context) > 0) 12985 ZeroSize = false; 12986 } else { 12987 ++NonBitFields; 12988 QualType FieldType = I->getType(); 12989 if (FieldType->isIncompleteType() || 12990 !Context.getTypeSizeInChars(FieldType).isZero()) 12991 ZeroSize = false; 12992 } 12993 } 12994 12995 // Empty structs are an extension in C (C99 6.7.2.1p7). They are 12996 // allowed in C++, but warn if its declaration is inside 12997 // extern "C" block. 12998 if (ZeroSize) { 12999 Diag(RecLoc, getLangOpts().CPlusPlus ? 13000 diag::warn_zero_size_struct_union_in_extern_c : 13001 diag::warn_zero_size_struct_union_compat) 13002 << IsEmpty << Record->isUnion() << (NonBitFields > 1); 13003 } 13004 13005 // Structs without named members are extension in C (C99 6.7.2.1p7), 13006 // but are accepted by GCC. 13007 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { 13008 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : 13009 diag::ext_no_named_members_in_struct_union) 13010 << Record->isUnion(); 13011 } 13012 } 13013 } else { 13014 ObjCIvarDecl **ClsFields = 13015 reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); 13016 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { 13017 ID->setEndOfDefinitionLoc(RBrac); 13018 // Add ivar's to class's DeclContext. 13019 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 13020 ClsFields[i]->setLexicalDeclContext(ID); 13021 ID->addDecl(ClsFields[i]); 13022 } 13023 // Must enforce the rule that ivars in the base classes may not be 13024 // duplicates. 13025 if (ID->getSuperClass()) 13026 DiagnoseDuplicateIvars(ID, ID->getSuperClass()); 13027 } else if (ObjCImplementationDecl *IMPDecl = 13028 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 13029 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); 13030 for (unsigned I = 0, N = RecFields.size(); I != N; ++I) 13031 // Ivar declared in @implementation never belongs to the implementation. 13032 // Only it is in implementation's lexical context. 13033 ClsFields[I]->setLexicalDeclContext(IMPDecl); 13034 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); 13035 IMPDecl->setIvarLBraceLoc(LBrac); 13036 IMPDecl->setIvarRBraceLoc(RBrac); 13037 } else if (ObjCCategoryDecl *CDecl = 13038 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 13039 // case of ivars in class extension; all other cases have been 13040 // reported as errors elsewhere. 13041 // FIXME. Class extension does not have a LocEnd field. 13042 // CDecl->setLocEnd(RBrac); 13043 // Add ivar's to class extension's DeclContext. 13044 // Diagnose redeclaration of private ivars. 13045 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); 13046 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 13047 if (IDecl) { 13048 if (const ObjCIvarDecl *ClsIvar = 13049 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { 13050 Diag(ClsFields[i]->getLocation(), 13051 diag::err_duplicate_ivar_declaration); 13052 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 13053 continue; 13054 } 13055 for (const auto *Ext : IDecl->known_extensions()) { 13056 if (const ObjCIvarDecl *ClsExtIvar 13057 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { 13058 Diag(ClsFields[i]->getLocation(), 13059 diag::err_duplicate_ivar_declaration); 13060 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 13061 continue; 13062 } 13063 } 13064 } 13065 ClsFields[i]->setLexicalDeclContext(CDecl); 13066 CDecl->addDecl(ClsFields[i]); 13067 } 13068 CDecl->setIvarLBraceLoc(LBrac); 13069 CDecl->setIvarRBraceLoc(RBrac); 13070 } 13071 } 13072 13073 if (Attr) 13074 ProcessDeclAttributeList(S, Record, Attr); 13075 } 13076 13077 /// \brief Determine whether the given integral value is representable within 13078 /// the given type T. 13079 static bool isRepresentableIntegerValue(ASTContext &Context, 13080 llvm::APSInt &Value, 13081 QualType T) { 13082 assert(T->isIntegralType(Context) && "Integral type required!"); 13083 unsigned BitWidth = Context.getIntWidth(T); 13084 13085 if (Value.isUnsigned() || Value.isNonNegative()) { 13086 if (T->isSignedIntegerOrEnumerationType()) 13087 --BitWidth; 13088 return Value.getActiveBits() <= BitWidth; 13089 } 13090 return Value.getMinSignedBits() <= BitWidth; 13091 } 13092 13093 // \brief Given an integral type, return the next larger integral type 13094 // (or a NULL type of no such type exists). 13095 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { 13096 // FIXME: Int128/UInt128 support, which also needs to be introduced into 13097 // enum checking below. 13098 assert(T->isIntegralType(Context) && "Integral type required!"); 13099 const unsigned NumTypes = 4; 13100 QualType SignedIntegralTypes[NumTypes] = { 13101 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy 13102 }; 13103 QualType UnsignedIntegralTypes[NumTypes] = { 13104 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 13105 Context.UnsignedLongLongTy 13106 }; 13107 13108 unsigned BitWidth = Context.getTypeSize(T); 13109 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes 13110 : UnsignedIntegralTypes; 13111 for (unsigned I = 0; I != NumTypes; ++I) 13112 if (Context.getTypeSize(Types[I]) > BitWidth) 13113 return Types[I]; 13114 13115 return QualType(); 13116 } 13117 13118 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, 13119 EnumConstantDecl *LastEnumConst, 13120 SourceLocation IdLoc, 13121 IdentifierInfo *Id, 13122 Expr *Val) { 13123 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 13124 llvm::APSInt EnumVal(IntWidth); 13125 QualType EltTy; 13126 13127 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) 13128 Val = nullptr; 13129 13130 if (Val) 13131 Val = DefaultLvalueConversion(Val).get(); 13132 13133 if (Val) { 13134 if (Enum->isDependentType() || Val->isTypeDependent()) 13135 EltTy = Context.DependentTy; 13136 else { 13137 SourceLocation ExpLoc; 13138 if (getLangOpts().CPlusPlus11 && Enum->isFixed() && 13139 !getLangOpts().MSVCCompat) { 13140 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the 13141 // constant-expression in the enumerator-definition shall be a converted 13142 // constant expression of the underlying type. 13143 EltTy = Enum->getIntegerType(); 13144 ExprResult Converted = 13145 CheckConvertedConstantExpression(Val, EltTy, EnumVal, 13146 CCEK_Enumerator); 13147 if (Converted.isInvalid()) 13148 Val = nullptr; 13149 else 13150 Val = Converted.get(); 13151 } else if (!Val->isValueDependent() && 13152 !(Val = VerifyIntegerConstantExpression(Val, 13153 &EnumVal).get())) { 13154 // C99 6.7.2.2p2: Make sure we have an integer constant expression. 13155 } else { 13156 if (Enum->isFixed()) { 13157 EltTy = Enum->getIntegerType(); 13158 13159 // In Obj-C and Microsoft mode, require the enumeration value to be 13160 // representable in the underlying type of the enumeration. In C++11, 13161 // we perform a non-narrowing conversion as part of converted constant 13162 // expression checking. 13163 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 13164 if (getLangOpts().MSVCCompat) { 13165 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; 13166 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get(); 13167 } else 13168 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; 13169 } else 13170 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get(); 13171 } else if (getLangOpts().CPlusPlus) { 13172 // C++11 [dcl.enum]p5: 13173 // If the underlying type is not fixed, the type of each enumerator 13174 // is the type of its initializing value: 13175 // - If an initializer is specified for an enumerator, the 13176 // initializing value has the same type as the expression. 13177 EltTy = Val->getType(); 13178 } else { 13179 // C99 6.7.2.2p2: 13180 // The expression that defines the value of an enumeration constant 13181 // shall be an integer constant expression that has a value 13182 // representable as an int. 13183 13184 // Complain if the value is not representable in an int. 13185 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) 13186 Diag(IdLoc, diag::ext_enum_value_not_int) 13187 << EnumVal.toString(10) << Val->getSourceRange() 13188 << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); 13189 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { 13190 // Force the type of the expression to 'int'. 13191 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); 13192 } 13193 EltTy = Val->getType(); 13194 } 13195 } 13196 } 13197 } 13198 13199 if (!Val) { 13200 if (Enum->isDependentType()) 13201 EltTy = Context.DependentTy; 13202 else if (!LastEnumConst) { 13203 // C++0x [dcl.enum]p5: 13204 // If the underlying type is not fixed, the type of each enumerator 13205 // is the type of its initializing value: 13206 // - If no initializer is specified for the first enumerator, the 13207 // initializing value has an unspecified integral type. 13208 // 13209 // GCC uses 'int' for its unspecified integral type, as does 13210 // C99 6.7.2.2p3. 13211 if (Enum->isFixed()) { 13212 EltTy = Enum->getIntegerType(); 13213 } 13214 else { 13215 EltTy = Context.IntTy; 13216 } 13217 } else { 13218 // Assign the last value + 1. 13219 EnumVal = LastEnumConst->getInitVal(); 13220 ++EnumVal; 13221 EltTy = LastEnumConst->getType(); 13222 13223 // Check for overflow on increment. 13224 if (EnumVal < LastEnumConst->getInitVal()) { 13225 // C++0x [dcl.enum]p5: 13226 // If the underlying type is not fixed, the type of each enumerator 13227 // is the type of its initializing value: 13228 // 13229 // - Otherwise the type of the initializing value is the same as 13230 // the type of the initializing value of the preceding enumerator 13231 // unless the incremented value is not representable in that type, 13232 // in which case the type is an unspecified integral type 13233 // sufficient to contain the incremented value. If no such type 13234 // exists, the program is ill-formed. 13235 QualType T = getNextLargerIntegralType(Context, EltTy); 13236 if (T.isNull() || Enum->isFixed()) { 13237 // There is no integral type larger enough to represent this 13238 // value. Complain, then allow the value to wrap around. 13239 EnumVal = LastEnumConst->getInitVal(); 13240 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); 13241 ++EnumVal; 13242 if (Enum->isFixed()) 13243 // When the underlying type is fixed, this is ill-formed. 13244 Diag(IdLoc, diag::err_enumerator_wrapped) 13245 << EnumVal.toString(10) 13246 << EltTy; 13247 else 13248 Diag(IdLoc, diag::ext_enumerator_increment_too_large) 13249 << EnumVal.toString(10); 13250 } else { 13251 EltTy = T; 13252 } 13253 13254 // Retrieve the last enumerator's value, extent that type to the 13255 // type that is supposed to be large enough to represent the incremented 13256 // value, then increment. 13257 EnumVal = LastEnumConst->getInitVal(); 13258 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 13259 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); 13260 ++EnumVal; 13261 13262 // If we're not in C++, diagnose the overflow of enumerator values, 13263 // which in C99 means that the enumerator value is not representable in 13264 // an int (C99 6.7.2.2p2). However, we support GCC's extension that 13265 // permits enumerator values that are representable in some larger 13266 // integral type. 13267 if (!getLangOpts().CPlusPlus && !T.isNull()) 13268 Diag(IdLoc, diag::warn_enum_value_overflow); 13269 } else if (!getLangOpts().CPlusPlus && 13270 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 13271 // Enforce C99 6.7.2.2p2 even when we compute the next value. 13272 Diag(IdLoc, diag::ext_enum_value_not_int) 13273 << EnumVal.toString(10) << 1; 13274 } 13275 } 13276 } 13277 13278 if (!EltTy->isDependentType()) { 13279 // Make the enumerator value match the signedness and size of the 13280 // enumerator's type. 13281 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); 13282 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 13283 } 13284 13285 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, 13286 Val, EnumVal); 13287 } 13288 13289 13290 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, 13291 SourceLocation IdLoc, IdentifierInfo *Id, 13292 AttributeList *Attr, 13293 SourceLocation EqualLoc, Expr *Val) { 13294 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); 13295 EnumConstantDecl *LastEnumConst = 13296 cast_or_null<EnumConstantDecl>(lastEnumConst); 13297 13298 // The scope passed in may not be a decl scope. Zip up the scope tree until 13299 // we find one that is. 13300 S = getNonFieldDeclScope(S); 13301 13302 // Verify that there isn't already something declared with this name in this 13303 // scope. 13304 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName, 13305 ForRedeclaration); 13306 if (PrevDecl && PrevDecl->isTemplateParameter()) { 13307 // Maybe we will complain about the shadowed template parameter. 13308 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); 13309 // Just pretend that we didn't see the previous declaration. 13310 PrevDecl = nullptr; 13311 } 13312 13313 if (PrevDecl) { 13314 // When in C++, we may get a TagDecl with the same name; in this case the 13315 // enum constant will 'hide' the tag. 13316 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && 13317 "Received TagDecl when not in C++!"); 13318 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { 13319 if (isa<EnumConstantDecl>(PrevDecl)) 13320 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; 13321 else 13322 Diag(IdLoc, diag::err_redefinition) << Id; 13323 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 13324 return nullptr; 13325 } 13326 } 13327 13328 // C++ [class.mem]p15: 13329 // If T is the name of a class, then each of the following shall have a name 13330 // different from T: 13331 // - every enumerator of every member of class T that is an unscoped 13332 // enumerated type 13333 if (CXXRecordDecl *Record 13334 = dyn_cast<CXXRecordDecl>( 13335 TheEnumDecl->getDeclContext()->getRedeclContext())) 13336 if (!TheEnumDecl->isScoped() && 13337 Record->getIdentifier() && Record->getIdentifier() == Id) 13338 Diag(IdLoc, diag::err_member_name_of_class) << Id; 13339 13340 EnumConstantDecl *New = 13341 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); 13342 13343 if (New) { 13344 // Process attributes. 13345 if (Attr) ProcessDeclAttributeList(S, New, Attr); 13346 13347 // Register this decl in the current scope stack. 13348 New->setAccess(TheEnumDecl->getAccess()); 13349 PushOnScopeChains(New, S); 13350 } 13351 13352 ActOnDocumentableDecl(New); 13353 13354 return New; 13355 } 13356 13357 // Returns true when the enum initial expression does not trigger the 13358 // duplicate enum warning. A few common cases are exempted as follows: 13359 // Element2 = Element1 13360 // Element2 = Element1 + 1 13361 // Element2 = Element1 - 1 13362 // Where Element2 and Element1 are from the same enum. 13363 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { 13364 Expr *InitExpr = ECD->getInitExpr(); 13365 if (!InitExpr) 13366 return true; 13367 InitExpr = InitExpr->IgnoreImpCasts(); 13368 13369 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { 13370 if (!BO->isAdditiveOp()) 13371 return true; 13372 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); 13373 if (!IL) 13374 return true; 13375 if (IL->getValue() != 1) 13376 return true; 13377 13378 InitExpr = BO->getLHS(); 13379 } 13380 13381 // This checks if the elements are from the same enum. 13382 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); 13383 if (!DRE) 13384 return true; 13385 13386 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); 13387 if (!EnumConstant) 13388 return true; 13389 13390 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != 13391 Enum) 13392 return true; 13393 13394 return false; 13395 } 13396 13397 struct DupKey { 13398 int64_t val; 13399 bool isTombstoneOrEmptyKey; 13400 DupKey(int64_t val, bool isTombstoneOrEmptyKey) 13401 : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {} 13402 }; 13403 13404 static DupKey GetDupKey(const llvm::APSInt& Val) { 13405 return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(), 13406 false); 13407 } 13408 13409 struct DenseMapInfoDupKey { 13410 static DupKey getEmptyKey() { return DupKey(0, true); } 13411 static DupKey getTombstoneKey() { return DupKey(1, true); } 13412 static unsigned getHashValue(const DupKey Key) { 13413 return (unsigned)(Key.val * 37); 13414 } 13415 static bool isEqual(const DupKey& LHS, const DupKey& RHS) { 13416 return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey && 13417 LHS.val == RHS.val; 13418 } 13419 }; 13420 13421 // Emits a warning when an element is implicitly set a value that 13422 // a previous element has already been set to. 13423 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, 13424 EnumDecl *Enum, 13425 QualType EnumType) { 13426 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) 13427 return; 13428 // Avoid anonymous enums 13429 if (!Enum->getIdentifier()) 13430 return; 13431 13432 // Only check for small enums. 13433 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) 13434 return; 13435 13436 typedef SmallVector<EnumConstantDecl *, 3> ECDVector; 13437 typedef SmallVector<ECDVector *, 3> DuplicatesVector; 13438 13439 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; 13440 typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey> 13441 ValueToVectorMap; 13442 13443 DuplicatesVector DupVector; 13444 ValueToVectorMap EnumMap; 13445 13446 // Populate the EnumMap with all values represented by enum constants without 13447 // an initialier. 13448 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13449 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]); 13450 13451 // Null EnumConstantDecl means a previous diagnostic has been emitted for 13452 // this constant. Skip this enum since it may be ill-formed. 13453 if (!ECD) { 13454 return; 13455 } 13456 13457 if (ECD->getInitExpr()) 13458 continue; 13459 13460 DupKey Key = GetDupKey(ECD->getInitVal()); 13461 DeclOrVector &Entry = EnumMap[Key]; 13462 13463 // First time encountering this value. 13464 if (Entry.isNull()) 13465 Entry = ECD; 13466 } 13467 13468 // Create vectors for any values that has duplicates. 13469 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13470 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]); 13471 if (!ValidDuplicateEnum(ECD, Enum)) 13472 continue; 13473 13474 DupKey Key = GetDupKey(ECD->getInitVal()); 13475 13476 DeclOrVector& Entry = EnumMap[Key]; 13477 if (Entry.isNull()) 13478 continue; 13479 13480 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { 13481 // Ensure constants are different. 13482 if (D == ECD) 13483 continue; 13484 13485 // Create new vector and push values onto it. 13486 ECDVector *Vec = new ECDVector(); 13487 Vec->push_back(D); 13488 Vec->push_back(ECD); 13489 13490 // Update entry to point to the duplicates vector. 13491 Entry = Vec; 13492 13493 // Store the vector somewhere we can consult later for quick emission of 13494 // diagnostics. 13495 DupVector.push_back(Vec); 13496 continue; 13497 } 13498 13499 ECDVector *Vec = Entry.get<ECDVector*>(); 13500 // Make sure constants are not added more than once. 13501 if (*Vec->begin() == ECD) 13502 continue; 13503 13504 Vec->push_back(ECD); 13505 } 13506 13507 // Emit diagnostics. 13508 for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(), 13509 DupVectorEnd = DupVector.end(); 13510 DupVectorIter != DupVectorEnd; ++DupVectorIter) { 13511 ECDVector *Vec = *DupVectorIter; 13512 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); 13513 13514 // Emit warning for one enum constant. 13515 ECDVector::iterator I = Vec->begin(); 13516 S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values) 13517 << (*I)->getName() << (*I)->getInitVal().toString(10) 13518 << (*I)->getSourceRange(); 13519 ++I; 13520 13521 // Emit one note for each of the remaining enum constants with 13522 // the same value. 13523 for (ECDVector::iterator E = Vec->end(); I != E; ++I) 13524 S.Diag((*I)->getLocation(), diag::note_duplicate_element) 13525 << (*I)->getName() << (*I)->getInitVal().toString(10) 13526 << (*I)->getSourceRange(); 13527 delete Vec; 13528 } 13529 } 13530 13531 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc, 13532 SourceLocation RBraceLoc, Decl *EnumDeclX, 13533 ArrayRef<Decl *> Elements, 13534 Scope *S, AttributeList *Attr) { 13535 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); 13536 QualType EnumType = Context.getTypeDeclType(Enum); 13537 13538 if (Attr) 13539 ProcessDeclAttributeList(S, Enum, Attr); 13540 13541 if (Enum->isDependentType()) { 13542 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13543 EnumConstantDecl *ECD = 13544 cast_or_null<EnumConstantDecl>(Elements[i]); 13545 if (!ECD) continue; 13546 13547 ECD->setType(EnumType); 13548 } 13549 13550 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); 13551 return; 13552 } 13553 13554 // TODO: If the result value doesn't fit in an int, it must be a long or long 13555 // long value. ISO C does not support this, but GCC does as an extension, 13556 // emit a warning. 13557 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 13558 unsigned CharWidth = Context.getTargetInfo().getCharWidth(); 13559 unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); 13560 13561 // Verify that all the values are okay, compute the size of the values, and 13562 // reverse the list. 13563 unsigned NumNegativeBits = 0; 13564 unsigned NumPositiveBits = 0; 13565 13566 // Keep track of whether all elements have type int. 13567 bool AllElementsInt = true; 13568 13569 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13570 EnumConstantDecl *ECD = 13571 cast_or_null<EnumConstantDecl>(Elements[i]); 13572 if (!ECD) continue; // Already issued a diagnostic. 13573 13574 const llvm::APSInt &InitVal = ECD->getInitVal(); 13575 13576 // Keep track of the size of positive and negative values. 13577 if (InitVal.isUnsigned() || InitVal.isNonNegative()) 13578 NumPositiveBits = std::max(NumPositiveBits, 13579 (unsigned)InitVal.getActiveBits()); 13580 else 13581 NumNegativeBits = std::max(NumNegativeBits, 13582 (unsigned)InitVal.getMinSignedBits()); 13583 13584 // Keep track of whether every enum element has type int (very commmon). 13585 if (AllElementsInt) 13586 AllElementsInt = ECD->getType() == Context.IntTy; 13587 } 13588 13589 // Figure out the type that should be used for this enum. 13590 QualType BestType; 13591 unsigned BestWidth; 13592 13593 // C++0x N3000 [conv.prom]p3: 13594 // An rvalue of an unscoped enumeration type whose underlying 13595 // type is not fixed can be converted to an rvalue of the first 13596 // of the following types that can represent all the values of 13597 // the enumeration: int, unsigned int, long int, unsigned long 13598 // int, long long int, or unsigned long long int. 13599 // C99 6.4.4.3p2: 13600 // An identifier declared as an enumeration constant has type int. 13601 // The C99 rule is modified by a gcc extension 13602 QualType BestPromotionType; 13603 13604 bool Packed = Enum->hasAttr<PackedAttr>(); 13605 // -fshort-enums is the equivalent to specifying the packed attribute on all 13606 // enum definitions. 13607 if (LangOpts.ShortEnums) 13608 Packed = true; 13609 13610 if (Enum->isFixed()) { 13611 BestType = Enum->getIntegerType(); 13612 if (BestType->isPromotableIntegerType()) 13613 BestPromotionType = Context.getPromotedIntegerType(BestType); 13614 else 13615 BestPromotionType = BestType; 13616 // We don't need to set BestWidth, because BestType is going to be the type 13617 // of the enumerators, but we do anyway because otherwise some compilers 13618 // warn that it might be used uninitialized. 13619 BestWidth = CharWidth; 13620 } 13621 else if (NumNegativeBits) { 13622 // If there is a negative value, figure out the smallest integer type (of 13623 // int/long/longlong) that fits. 13624 // If it's packed, check also if it fits a char or a short. 13625 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { 13626 BestType = Context.SignedCharTy; 13627 BestWidth = CharWidth; 13628 } else if (Packed && NumNegativeBits <= ShortWidth && 13629 NumPositiveBits < ShortWidth) { 13630 BestType = Context.ShortTy; 13631 BestWidth = ShortWidth; 13632 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { 13633 BestType = Context.IntTy; 13634 BestWidth = IntWidth; 13635 } else { 13636 BestWidth = Context.getTargetInfo().getLongWidth(); 13637 13638 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { 13639 BestType = Context.LongTy; 13640 } else { 13641 BestWidth = Context.getTargetInfo().getLongLongWidth(); 13642 13643 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) 13644 Diag(Enum->getLocation(), diag::ext_enum_too_large); 13645 BestType = Context.LongLongTy; 13646 } 13647 } 13648 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); 13649 } else { 13650 // If there is no negative value, figure out the smallest type that fits 13651 // all of the enumerator values. 13652 // If it's packed, check also if it fits a char or a short. 13653 if (Packed && NumPositiveBits <= CharWidth) { 13654 BestType = Context.UnsignedCharTy; 13655 BestPromotionType = Context.IntTy; 13656 BestWidth = CharWidth; 13657 } else if (Packed && NumPositiveBits <= ShortWidth) { 13658 BestType = Context.UnsignedShortTy; 13659 BestPromotionType = Context.IntTy; 13660 BestWidth = ShortWidth; 13661 } else if (NumPositiveBits <= IntWidth) { 13662 BestType = Context.UnsignedIntTy; 13663 BestWidth = IntWidth; 13664 BestPromotionType 13665 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 13666 ? Context.UnsignedIntTy : Context.IntTy; 13667 } else if (NumPositiveBits <= 13668 (BestWidth = Context.getTargetInfo().getLongWidth())) { 13669 BestType = Context.UnsignedLongTy; 13670 BestPromotionType 13671 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 13672 ? Context.UnsignedLongTy : Context.LongTy; 13673 } else { 13674 BestWidth = Context.getTargetInfo().getLongLongWidth(); 13675 assert(NumPositiveBits <= BestWidth && 13676 "How could an initializer get larger than ULL?"); 13677 BestType = Context.UnsignedLongLongTy; 13678 BestPromotionType 13679 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 13680 ? Context.UnsignedLongLongTy : Context.LongLongTy; 13681 } 13682 } 13683 13684 // Loop over all of the enumerator constants, changing their types to match 13685 // the type of the enum if needed. 13686 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13687 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]); 13688 if (!ECD) continue; // Already issued a diagnostic. 13689 13690 // Standard C says the enumerators have int type, but we allow, as an 13691 // extension, the enumerators to be larger than int size. If each 13692 // enumerator value fits in an int, type it as an int, otherwise type it the 13693 // same as the enumerator decl itself. This means that in "enum { X = 1U }" 13694 // that X has type 'int', not 'unsigned'. 13695 13696 // Determine whether the value fits into an int. 13697 llvm::APSInt InitVal = ECD->getInitVal(); 13698 13699 // If it fits into an integer type, force it. Otherwise force it to match 13700 // the enum decl type. 13701 QualType NewTy; 13702 unsigned NewWidth; 13703 bool NewSign; 13704 if (!getLangOpts().CPlusPlus && 13705 !Enum->isFixed() && 13706 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { 13707 NewTy = Context.IntTy; 13708 NewWidth = IntWidth; 13709 NewSign = true; 13710 } else if (ECD->getType() == BestType) { 13711 // Already the right type! 13712 if (getLangOpts().CPlusPlus) 13713 // C++ [dcl.enum]p4: Following the closing brace of an 13714 // enum-specifier, each enumerator has the type of its 13715 // enumeration. 13716 ECD->setType(EnumType); 13717 continue; 13718 } else { 13719 NewTy = BestType; 13720 NewWidth = BestWidth; 13721 NewSign = BestType->isSignedIntegerOrEnumerationType(); 13722 } 13723 13724 // Adjust the APSInt value. 13725 InitVal = InitVal.extOrTrunc(NewWidth); 13726 InitVal.setIsSigned(NewSign); 13727 ECD->setInitVal(InitVal); 13728 13729 // Adjust the Expr initializer and type. 13730 if (ECD->getInitExpr() && 13731 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) 13732 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, 13733 CK_IntegralCast, 13734 ECD->getInitExpr(), 13735 /*base paths*/ nullptr, 13736 VK_RValue)); 13737 if (getLangOpts().CPlusPlus) 13738 // C++ [dcl.enum]p4: Following the closing brace of an 13739 // enum-specifier, each enumerator has the type of its 13740 // enumeration. 13741 ECD->setType(EnumType); 13742 else 13743 ECD->setType(NewTy); 13744 } 13745 13746 Enum->completeDefinition(BestType, BestPromotionType, 13747 NumPositiveBits, NumNegativeBits); 13748 13749 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); 13750 13751 // Now that the enum type is defined, ensure it's not been underaligned. 13752 if (Enum->hasAttrs()) 13753 CheckAlignasUnderalignment(Enum); 13754 } 13755 13756 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, 13757 SourceLocation StartLoc, 13758 SourceLocation EndLoc) { 13759 StringLiteral *AsmString = cast<StringLiteral>(expr); 13760 13761 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, 13762 AsmString, StartLoc, 13763 EndLoc); 13764 CurContext->addDecl(New); 13765 return New; 13766 } 13767 13768 static void checkModuleImportContext(Sema &S, Module *M, 13769 SourceLocation ImportLoc, 13770 DeclContext *DC) { 13771 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 13772 switch (LSD->getLanguage()) { 13773 case LinkageSpecDecl::lang_c: 13774 if (!M->IsExternC) { 13775 S.Diag(ImportLoc, diag::err_module_import_in_extern_c) 13776 << M->getFullModuleName(); 13777 S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c); 13778 return; 13779 } 13780 break; 13781 case LinkageSpecDecl::lang_cxx: 13782 break; 13783 } 13784 DC = LSD->getParent(); 13785 } 13786 13787 while (isa<LinkageSpecDecl>(DC)) 13788 DC = DC->getParent(); 13789 if (!isa<TranslationUnitDecl>(DC)) { 13790 S.Diag(ImportLoc, diag::err_module_import_not_at_top_level) 13791 << M->getFullModuleName() << DC; 13792 S.Diag(cast<Decl>(DC)->getLocStart(), 13793 diag::note_module_import_not_at_top_level) 13794 << DC; 13795 } 13796 } 13797 13798 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc, 13799 SourceLocation ImportLoc, 13800 ModuleIdPath Path) { 13801 Module *Mod = 13802 getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible, 13803 /*IsIncludeDirective=*/false); 13804 if (!Mod) 13805 return true; 13806 13807 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 13808 13809 // FIXME: we should support importing a submodule within a different submodule 13810 // of the same top-level module. Until we do, make it an error rather than 13811 // silently ignoring the import. 13812 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule) 13813 Diag(ImportLoc, diag::err_module_self_import) 13814 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 13815 else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule) 13816 Diag(ImportLoc, diag::err_module_import_in_implementation) 13817 << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule; 13818 13819 SmallVector<SourceLocation, 2> IdentifierLocs; 13820 Module *ModCheck = Mod; 13821 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 13822 // If we've run out of module parents, just drop the remaining identifiers. 13823 // We need the length to be consistent. 13824 if (!ModCheck) 13825 break; 13826 ModCheck = ModCheck->Parent; 13827 13828 IdentifierLocs.push_back(Path[I].second); 13829 } 13830 13831 ImportDecl *Import = ImportDecl::Create(Context, 13832 Context.getTranslationUnitDecl(), 13833 AtLoc.isValid()? AtLoc : ImportLoc, 13834 Mod, IdentifierLocs); 13835 Context.getTranslationUnitDecl()->addDecl(Import); 13836 return Import; 13837 } 13838 13839 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 13840 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext); 13841 13842 // FIXME: Should we synthesize an ImportDecl here? 13843 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc, 13844 /*Complain=*/true); 13845 } 13846 13847 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 13848 Module *Mod) { 13849 // Bail if we're not allowed to implicitly import a module here. 13850 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery) 13851 return; 13852 13853 // Create the implicit import declaration. 13854 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 13855 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 13856 Loc, Mod, Loc); 13857 TU->addDecl(ImportD); 13858 Consumer.HandleImplicitImportDecl(ImportD); 13859 13860 // Make the module visible. 13861 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc, 13862 /*Complain=*/false); 13863 } 13864 13865 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, 13866 IdentifierInfo* AliasName, 13867 SourceLocation PragmaLoc, 13868 SourceLocation NameLoc, 13869 SourceLocation AliasNameLoc) { 13870 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, 13871 LookupOrdinaryName); 13872 AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context, 13873 AliasName->getName(), 0); 13874 13875 if (PrevDecl) 13876 PrevDecl->addAttr(Attr); 13877 else 13878 (void)ExtnameUndeclaredIdentifiers.insert( 13879 std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr)); 13880 } 13881 13882 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, 13883 SourceLocation PragmaLoc, 13884 SourceLocation NameLoc) { 13885 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); 13886 13887 if (PrevDecl) { 13888 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc)); 13889 } else { 13890 (void)WeakUndeclaredIdentifiers.insert( 13891 std::pair<IdentifierInfo*,WeakInfo> 13892 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); 13893 } 13894 } 13895 13896 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, 13897 IdentifierInfo* AliasName, 13898 SourceLocation PragmaLoc, 13899 SourceLocation NameLoc, 13900 SourceLocation AliasNameLoc) { 13901 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, 13902 LookupOrdinaryName); 13903 WeakInfo W = WeakInfo(Name, NameLoc); 13904 13905 if (PrevDecl) { 13906 if (!PrevDecl->hasAttr<AliasAttr>()) 13907 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) 13908 DeclApplyPragmaWeak(TUScope, ND, W); 13909 } else { 13910 (void)WeakUndeclaredIdentifiers.insert( 13911 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); 13912 } 13913 } 13914 13915 Decl *Sema::getObjCDeclContext() const { 13916 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); 13917 } 13918 13919 AvailabilityResult Sema::getCurContextAvailability() const { 13920 const Decl *D = cast<Decl>(getCurObjCLexicalContext()); 13921 // If we are within an Objective-C method, we should consult 13922 // both the availability of the method as well as the 13923 // enclosing class. If the class is (say) deprecated, 13924 // the entire method is considered deprecated from the 13925 // purpose of checking if the current context is deprecated. 13926 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { 13927 AvailabilityResult R = MD->getAvailability(); 13928 if (R != AR_Available) 13929 return R; 13930 D = MD->getClassInterface(); 13931 } 13932 // If we are within an Objective-c @implementation, it 13933 // gets the same availability context as the @interface. 13934 else if (const ObjCImplementationDecl *ID = 13935 dyn_cast<ObjCImplementationDecl>(D)) { 13936 D = ID->getClassInterface(); 13937 } 13938 // Recover from user error. 13939 return D ? D->getAvailability() : AR_Available; 13940 } 13941