xref: /minix3/external/bsd/llvm/dist/clang/lib/Sema/SemaChecking.cpp (revision ebfedea0ce5bbe81e252ddf32d732e40fb633fae)
1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements extra semantic analysis beyond what is enforced
11 //  by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Analysis/Analyses/FormatString.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/ADT/SmallBitVector.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/Support/ConvertUTF.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <limits>
41 using namespace clang;
42 using namespace sema;
43 
44 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                     unsigned ByteNo) const {
46   return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                                PP.getLangOpts(), PP.getTargetInfo());
48 }
49 
50 /// Checks that a call expression's argument count is the desired number.
51 /// This is useful when doing custom type-checking.  Returns true on error.
52 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53   unsigned argCount = call->getNumArgs();
54   if (argCount == desiredArgCount) return false;
55 
56   if (argCount < desiredArgCount)
57     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58         << 0 /*function call*/ << desiredArgCount << argCount
59         << call->getSourceRange();
60 
61   // Highlight all the excess arguments.
62   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                     call->getArg(argCount - 1)->getLocEnd());
64 
65   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66     << 0 /*function call*/ << desiredArgCount << argCount
67     << call->getArg(1)->getSourceRange();
68 }
69 
70 /// Check that the first argument to __builtin_annotation is an integer
71 /// and the second argument is a non-wide string literal.
72 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73   if (checkArgCount(S, TheCall, 2))
74     return true;
75 
76   // First argument should be an integer.
77   Expr *ValArg = TheCall->getArg(0);
78   QualType Ty = ValArg->getType();
79   if (!Ty->isIntegerType()) {
80     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81       << ValArg->getSourceRange();
82     return true;
83   }
84 
85   // Second argument should be a constant string.
86   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88   if (!Literal || !Literal->isAscii()) {
89     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90       << StrArg->getSourceRange();
91     return true;
92   }
93 
94   TheCall->setType(Ty);
95   return false;
96 }
97 
98 /// Check that the argument to __builtin_addressof is a glvalue, and set the
99 /// result type to the corresponding pointer type.
100 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101   if (checkArgCount(S, TheCall, 1))
102     return true;
103 
104   ExprResult Arg(S.Owned(TheCall->getArg(0)));
105   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106   if (ResultType.isNull())
107     return true;
108 
109   TheCall->setArg(0, Arg.take());
110   TheCall->setType(ResultType);
111   return false;
112 }
113 
114 ExprResult
115 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
116   ExprResult TheCallResult(Owned(TheCall));
117 
118   // Find out if any arguments are required to be integer constant expressions.
119   unsigned ICEArguments = 0;
120   ASTContext::GetBuiltinTypeError Error;
121   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
122   if (Error != ASTContext::GE_None)
123     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
124 
125   // If any arguments are required to be ICE's, check and diagnose.
126   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
127     // Skip arguments not required to be ICE's.
128     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
129 
130     llvm::APSInt Result;
131     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
132       return true;
133     ICEArguments &= ~(1 << ArgNo);
134   }
135 
136   switch (BuiltinID) {
137   case Builtin::BI__builtin___CFStringMakeConstantString:
138     assert(TheCall->getNumArgs() == 1 &&
139            "Wrong # arguments to builtin CFStringMakeConstantString");
140     if (CheckObjCString(TheCall->getArg(0)))
141       return ExprError();
142     break;
143   case Builtin::BI__builtin_stdarg_start:
144   case Builtin::BI__builtin_va_start:
145     if (SemaBuiltinVAStart(TheCall))
146       return ExprError();
147     break;
148   case Builtin::BI__builtin_isgreater:
149   case Builtin::BI__builtin_isgreaterequal:
150   case Builtin::BI__builtin_isless:
151   case Builtin::BI__builtin_islessequal:
152   case Builtin::BI__builtin_islessgreater:
153   case Builtin::BI__builtin_isunordered:
154     if (SemaBuiltinUnorderedCompare(TheCall))
155       return ExprError();
156     break;
157   case Builtin::BI__builtin_fpclassify:
158     if (SemaBuiltinFPClassification(TheCall, 6))
159       return ExprError();
160     break;
161   case Builtin::BI__builtin_isfinite:
162   case Builtin::BI__builtin_isinf:
163   case Builtin::BI__builtin_isinf_sign:
164   case Builtin::BI__builtin_isnan:
165   case Builtin::BI__builtin_isnormal:
166     if (SemaBuiltinFPClassification(TheCall, 1))
167       return ExprError();
168     break;
169   case Builtin::BI__builtin_shufflevector:
170     return SemaBuiltinShuffleVector(TheCall);
171     // TheCall will be freed by the smart pointer here, but that's fine, since
172     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
173   case Builtin::BI__builtin_prefetch:
174     if (SemaBuiltinPrefetch(TheCall))
175       return ExprError();
176     break;
177   case Builtin::BI__builtin_object_size:
178     if (SemaBuiltinObjectSize(TheCall))
179       return ExprError();
180     break;
181   case Builtin::BI__builtin_longjmp:
182     if (SemaBuiltinLongjmp(TheCall))
183       return ExprError();
184     break;
185 
186   case Builtin::BI__builtin_classify_type:
187     if (checkArgCount(*this, TheCall, 1)) return true;
188     TheCall->setType(Context.IntTy);
189     break;
190   case Builtin::BI__builtin_constant_p:
191     if (checkArgCount(*this, TheCall, 1)) return true;
192     TheCall->setType(Context.IntTy);
193     break;
194   case Builtin::BI__sync_fetch_and_add:
195   case Builtin::BI__sync_fetch_and_add_1:
196   case Builtin::BI__sync_fetch_and_add_2:
197   case Builtin::BI__sync_fetch_and_add_4:
198   case Builtin::BI__sync_fetch_and_add_8:
199   case Builtin::BI__sync_fetch_and_add_16:
200   case Builtin::BI__sync_fetch_and_sub:
201   case Builtin::BI__sync_fetch_and_sub_1:
202   case Builtin::BI__sync_fetch_and_sub_2:
203   case Builtin::BI__sync_fetch_and_sub_4:
204   case Builtin::BI__sync_fetch_and_sub_8:
205   case Builtin::BI__sync_fetch_and_sub_16:
206   case Builtin::BI__sync_fetch_and_or:
207   case Builtin::BI__sync_fetch_and_or_1:
208   case Builtin::BI__sync_fetch_and_or_2:
209   case Builtin::BI__sync_fetch_and_or_4:
210   case Builtin::BI__sync_fetch_and_or_8:
211   case Builtin::BI__sync_fetch_and_or_16:
212   case Builtin::BI__sync_fetch_and_and:
213   case Builtin::BI__sync_fetch_and_and_1:
214   case Builtin::BI__sync_fetch_and_and_2:
215   case Builtin::BI__sync_fetch_and_and_4:
216   case Builtin::BI__sync_fetch_and_and_8:
217   case Builtin::BI__sync_fetch_and_and_16:
218   case Builtin::BI__sync_fetch_and_xor:
219   case Builtin::BI__sync_fetch_and_xor_1:
220   case Builtin::BI__sync_fetch_and_xor_2:
221   case Builtin::BI__sync_fetch_and_xor_4:
222   case Builtin::BI__sync_fetch_and_xor_8:
223   case Builtin::BI__sync_fetch_and_xor_16:
224   case Builtin::BI__sync_add_and_fetch:
225   case Builtin::BI__sync_add_and_fetch_1:
226   case Builtin::BI__sync_add_and_fetch_2:
227   case Builtin::BI__sync_add_and_fetch_4:
228   case Builtin::BI__sync_add_and_fetch_8:
229   case Builtin::BI__sync_add_and_fetch_16:
230   case Builtin::BI__sync_sub_and_fetch:
231   case Builtin::BI__sync_sub_and_fetch_1:
232   case Builtin::BI__sync_sub_and_fetch_2:
233   case Builtin::BI__sync_sub_and_fetch_4:
234   case Builtin::BI__sync_sub_and_fetch_8:
235   case Builtin::BI__sync_sub_and_fetch_16:
236   case Builtin::BI__sync_and_and_fetch:
237   case Builtin::BI__sync_and_and_fetch_1:
238   case Builtin::BI__sync_and_and_fetch_2:
239   case Builtin::BI__sync_and_and_fetch_4:
240   case Builtin::BI__sync_and_and_fetch_8:
241   case Builtin::BI__sync_and_and_fetch_16:
242   case Builtin::BI__sync_or_and_fetch:
243   case Builtin::BI__sync_or_and_fetch_1:
244   case Builtin::BI__sync_or_and_fetch_2:
245   case Builtin::BI__sync_or_and_fetch_4:
246   case Builtin::BI__sync_or_and_fetch_8:
247   case Builtin::BI__sync_or_and_fetch_16:
248   case Builtin::BI__sync_xor_and_fetch:
249   case Builtin::BI__sync_xor_and_fetch_1:
250   case Builtin::BI__sync_xor_and_fetch_2:
251   case Builtin::BI__sync_xor_and_fetch_4:
252   case Builtin::BI__sync_xor_and_fetch_8:
253   case Builtin::BI__sync_xor_and_fetch_16:
254   case Builtin::BI__sync_val_compare_and_swap:
255   case Builtin::BI__sync_val_compare_and_swap_1:
256   case Builtin::BI__sync_val_compare_and_swap_2:
257   case Builtin::BI__sync_val_compare_and_swap_4:
258   case Builtin::BI__sync_val_compare_and_swap_8:
259   case Builtin::BI__sync_val_compare_and_swap_16:
260   case Builtin::BI__sync_bool_compare_and_swap:
261   case Builtin::BI__sync_bool_compare_and_swap_1:
262   case Builtin::BI__sync_bool_compare_and_swap_2:
263   case Builtin::BI__sync_bool_compare_and_swap_4:
264   case Builtin::BI__sync_bool_compare_and_swap_8:
265   case Builtin::BI__sync_bool_compare_and_swap_16:
266   case Builtin::BI__sync_lock_test_and_set:
267   case Builtin::BI__sync_lock_test_and_set_1:
268   case Builtin::BI__sync_lock_test_and_set_2:
269   case Builtin::BI__sync_lock_test_and_set_4:
270   case Builtin::BI__sync_lock_test_and_set_8:
271   case Builtin::BI__sync_lock_test_and_set_16:
272   case Builtin::BI__sync_lock_release:
273   case Builtin::BI__sync_lock_release_1:
274   case Builtin::BI__sync_lock_release_2:
275   case Builtin::BI__sync_lock_release_4:
276   case Builtin::BI__sync_lock_release_8:
277   case Builtin::BI__sync_lock_release_16:
278   case Builtin::BI__sync_swap:
279   case Builtin::BI__sync_swap_1:
280   case Builtin::BI__sync_swap_2:
281   case Builtin::BI__sync_swap_4:
282   case Builtin::BI__sync_swap_8:
283   case Builtin::BI__sync_swap_16:
284     return SemaBuiltinAtomicOverloaded(TheCallResult);
285 #define BUILTIN(ID, TYPE, ATTRS)
286 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
287   case Builtin::BI##ID: \
288     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
289 #include "clang/Basic/Builtins.def"
290   case Builtin::BI__builtin_annotation:
291     if (SemaBuiltinAnnotation(*this, TheCall))
292       return ExprError();
293     break;
294   case Builtin::BI__builtin_addressof:
295     if (SemaBuiltinAddressof(*this, TheCall))
296       return ExprError();
297     break;
298   }
299 
300   // Since the target specific builtins for each arch overlap, only check those
301   // of the arch we are compiling for.
302   if (BuiltinID >= Builtin::FirstTSBuiltin) {
303     switch (Context.getTargetInfo().getTriple().getArch()) {
304       case llvm::Triple::arm:
305       case llvm::Triple::thumb:
306         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
307           return ExprError();
308         break;
309       case llvm::Triple::aarch64:
310         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
311           return ExprError();
312         break;
313       case llvm::Triple::mips:
314       case llvm::Triple::mipsel:
315       case llvm::Triple::mips64:
316       case llvm::Triple::mips64el:
317         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
318           return ExprError();
319         break;
320       default:
321         break;
322     }
323   }
324 
325   return TheCallResult;
326 }
327 
328 // Get the valid immediate range for the specified NEON type code.
329 static unsigned RFT(unsigned t, bool shift = false) {
330   NeonTypeFlags Type(t);
331   int IsQuad = Type.isQuad();
332   switch (Type.getEltType()) {
333   case NeonTypeFlags::Int8:
334   case NeonTypeFlags::Poly8:
335     return shift ? 7 : (8 << IsQuad) - 1;
336   case NeonTypeFlags::Int16:
337   case NeonTypeFlags::Poly16:
338     return shift ? 15 : (4 << IsQuad) - 1;
339   case NeonTypeFlags::Int32:
340     return shift ? 31 : (2 << IsQuad) - 1;
341   case NeonTypeFlags::Int64:
342   case NeonTypeFlags::Poly64:
343     return shift ? 63 : (1 << IsQuad) - 1;
344   case NeonTypeFlags::Float16:
345     assert(!shift && "cannot shift float types!");
346     return (4 << IsQuad) - 1;
347   case NeonTypeFlags::Float32:
348     assert(!shift && "cannot shift float types!");
349     return (2 << IsQuad) - 1;
350   case NeonTypeFlags::Float64:
351     assert(!shift && "cannot shift float types!");
352     return (1 << IsQuad) - 1;
353   }
354   llvm_unreachable("Invalid NeonTypeFlag!");
355 }
356 
357 /// getNeonEltType - Return the QualType corresponding to the elements of
358 /// the vector type specified by the NeonTypeFlags.  This is used to check
359 /// the pointer arguments for Neon load/store intrinsics.
360 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
361                                bool IsAArch64) {
362   switch (Flags.getEltType()) {
363   case NeonTypeFlags::Int8:
364     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
365   case NeonTypeFlags::Int16:
366     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
367   case NeonTypeFlags::Int32:
368     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
369   case NeonTypeFlags::Int64:
370     return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
371   case NeonTypeFlags::Poly8:
372     return IsAArch64 ? Context.UnsignedCharTy : Context.SignedCharTy;
373   case NeonTypeFlags::Poly16:
374     return IsAArch64 ? Context.UnsignedShortTy : Context.ShortTy;
375   case NeonTypeFlags::Poly64:
376     return Context.UnsignedLongLongTy;
377   case NeonTypeFlags::Float16:
378     return Context.HalfTy;
379   case NeonTypeFlags::Float32:
380     return Context.FloatTy;
381   case NeonTypeFlags::Float64:
382     return Context.DoubleTy;
383   }
384   llvm_unreachable("Invalid NeonTypeFlag!");
385 }
386 
387 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
388                                            CallExpr *TheCall) {
389 
390   llvm::APSInt Result;
391 
392   uint64_t mask = 0;
393   unsigned TV = 0;
394   int PtrArgNum = -1;
395   bool HasConstPtr = false;
396   switch (BuiltinID) {
397 #define GET_NEON_AARCH64_OVERLOAD_CHECK
398 #include "clang/Basic/arm_neon.inc"
399 #undef GET_NEON_AARCH64_OVERLOAD_CHECK
400   }
401 
402   // For NEON intrinsics which are overloaded on vector element type, validate
403   // the immediate which specifies which variant to emit.
404   unsigned ImmArg = TheCall->getNumArgs() - 1;
405   if (mask) {
406     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
407       return true;
408 
409     TV = Result.getLimitedValue(64);
410     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
411       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
412              << TheCall->getArg(ImmArg)->getSourceRange();
413   }
414 
415   if (PtrArgNum >= 0) {
416     // Check that pointer arguments have the specified type.
417     Expr *Arg = TheCall->getArg(PtrArgNum);
418     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
419       Arg = ICE->getSubExpr();
420     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
421     QualType RHSTy = RHS.get()->getType();
422     QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context, true);
423     if (HasConstPtr)
424       EltTy = EltTy.withConst();
425     QualType LHSTy = Context.getPointerType(EltTy);
426     AssignConvertType ConvTy;
427     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
428     if (RHS.isInvalid())
429       return true;
430     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
431                                  RHS.get(), AA_Assigning))
432       return true;
433   }
434 
435   // For NEON intrinsics which take an immediate value as part of the
436   // instruction, range check them here.
437   unsigned i = 0, l = 0, u = 0;
438   switch (BuiltinID) {
439   default:
440     return false;
441 #define GET_NEON_AARCH64_IMMEDIATE_CHECK
442 #include "clang/Basic/arm_neon.inc"
443 #undef GET_NEON_AARCH64_IMMEDIATE_CHECK
444   }
445   ;
446 
447   // We can't check the value of a dependent argument.
448   if (TheCall->getArg(i)->isTypeDependent() ||
449       TheCall->getArg(i)->isValueDependent())
450     return false;
451 
452   // Check that the immediate argument is actually a constant.
453   if (SemaBuiltinConstantArg(TheCall, i, Result))
454     return true;
455 
456   // Range check against the upper/lower values for this isntruction.
457   unsigned Val = Result.getZExtValue();
458   if (Val < l || Val > (u + l))
459     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
460            << l << u + l << TheCall->getArg(i)->getSourceRange();
461 
462   return false;
463 }
464 
465 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall) {
466   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
467           BuiltinID == ARM::BI__builtin_arm_strex) &&
468          "unexpected ARM builtin");
469   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex;
470 
471   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
472 
473   // Ensure that we have the proper number of arguments.
474   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
475     return true;
476 
477   // Inspect the pointer argument of the atomic builtin.  This should always be
478   // a pointer type, whose element is an integral scalar or pointer type.
479   // Because it is a pointer type, we don't have to worry about any implicit
480   // casts here.
481   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
482   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
483   if (PointerArgRes.isInvalid())
484     return true;
485   PointerArg = PointerArgRes.take();
486 
487   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
488   if (!pointerType) {
489     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
490       << PointerArg->getType() << PointerArg->getSourceRange();
491     return true;
492   }
493 
494   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
495   // task is to insert the appropriate casts into the AST. First work out just
496   // what the appropriate type is.
497   QualType ValType = pointerType->getPointeeType();
498   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
499   if (IsLdrex)
500     AddrType.addConst();
501 
502   // Issue a warning if the cast is dodgy.
503   CastKind CastNeeded = CK_NoOp;
504   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
505     CastNeeded = CK_BitCast;
506     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
507       << PointerArg->getType()
508       << Context.getPointerType(AddrType)
509       << AA_Passing << PointerArg->getSourceRange();
510   }
511 
512   // Finally, do the cast and replace the argument with the corrected version.
513   AddrType = Context.getPointerType(AddrType);
514   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
515   if (PointerArgRes.isInvalid())
516     return true;
517   PointerArg = PointerArgRes.take();
518 
519   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
520 
521   // In general, we allow ints, floats and pointers to be loaded and stored.
522   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
523       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
524     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
525       << PointerArg->getType() << PointerArg->getSourceRange();
526     return true;
527   }
528 
529   // But ARM doesn't have instructions to deal with 128-bit versions.
530   if (Context.getTypeSize(ValType) > 64) {
531     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
532       << PointerArg->getType() << PointerArg->getSourceRange();
533     return true;
534   }
535 
536   switch (ValType.getObjCLifetime()) {
537   case Qualifiers::OCL_None:
538   case Qualifiers::OCL_ExplicitNone:
539     // okay
540     break;
541 
542   case Qualifiers::OCL_Weak:
543   case Qualifiers::OCL_Strong:
544   case Qualifiers::OCL_Autoreleasing:
545     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
546       << ValType << PointerArg->getSourceRange();
547     return true;
548   }
549 
550 
551   if (IsLdrex) {
552     TheCall->setType(ValType);
553     return false;
554   }
555 
556   // Initialize the argument to be stored.
557   ExprResult ValArg = TheCall->getArg(0);
558   InitializedEntity Entity = InitializedEntity::InitializeParameter(
559       Context, ValType, /*consume*/ false);
560   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
561   if (ValArg.isInvalid())
562     return true;
563   TheCall->setArg(0, ValArg.get());
564 
565   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
566   // but the custom checker bypasses all default analysis.
567   TheCall->setType(Context.IntTy);
568   return false;
569 }
570 
571 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
572   llvm::APSInt Result;
573 
574   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
575       BuiltinID == ARM::BI__builtin_arm_strex) {
576     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall);
577   }
578 
579   uint64_t mask = 0;
580   unsigned TV = 0;
581   int PtrArgNum = -1;
582   bool HasConstPtr = false;
583   switch (BuiltinID) {
584 #define GET_NEON_OVERLOAD_CHECK
585 #include "clang/Basic/arm_neon.inc"
586 #undef GET_NEON_OVERLOAD_CHECK
587   }
588 
589   // For NEON intrinsics which are overloaded on vector element type, validate
590   // the immediate which specifies which variant to emit.
591   unsigned ImmArg = TheCall->getNumArgs()-1;
592   if (mask) {
593     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
594       return true;
595 
596     TV = Result.getLimitedValue(64);
597     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
598       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
599         << TheCall->getArg(ImmArg)->getSourceRange();
600   }
601 
602   if (PtrArgNum >= 0) {
603     // Check that pointer arguments have the specified type.
604     Expr *Arg = TheCall->getArg(PtrArgNum);
605     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
606       Arg = ICE->getSubExpr();
607     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
608     QualType RHSTy = RHS.get()->getType();
609     QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context, false);
610     if (HasConstPtr)
611       EltTy = EltTy.withConst();
612     QualType LHSTy = Context.getPointerType(EltTy);
613     AssignConvertType ConvTy;
614     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
615     if (RHS.isInvalid())
616       return true;
617     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
618                                  RHS.get(), AA_Assigning))
619       return true;
620   }
621 
622   // For NEON intrinsics which take an immediate value as part of the
623   // instruction, range check them here.
624   unsigned i = 0, l = 0, u = 0;
625   switch (BuiltinID) {
626   default: return false;
627   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
628   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
629   case ARM::BI__builtin_arm_vcvtr_f:
630   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
631   case ARM::BI__builtin_arm_dmb:
632   case ARM::BI__builtin_arm_dsb: l = 0; u = 15; break;
633 #define GET_NEON_IMMEDIATE_CHECK
634 #include "clang/Basic/arm_neon.inc"
635 #undef GET_NEON_IMMEDIATE_CHECK
636   };
637 
638   // We can't check the value of a dependent argument.
639   if (TheCall->getArg(i)->isTypeDependent() ||
640       TheCall->getArg(i)->isValueDependent())
641     return false;
642 
643   // Check that the immediate argument is actually a constant.
644   if (SemaBuiltinConstantArg(TheCall, i, Result))
645     return true;
646 
647   // Range check against the upper/lower values for this isntruction.
648   unsigned Val = Result.getZExtValue();
649   if (Val < l || Val > (u + l))
650     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
651       << l << u+l << TheCall->getArg(i)->getSourceRange();
652 
653   // FIXME: VFP Intrinsics should error if VFP not present.
654   return false;
655 }
656 
657 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
658   unsigned i = 0, l = 0, u = 0;
659   switch (BuiltinID) {
660   default: return false;
661   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
662   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
663   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
664   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
665   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
666   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
667   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
668   };
669 
670   // We can't check the value of a dependent argument.
671   if (TheCall->getArg(i)->isTypeDependent() ||
672       TheCall->getArg(i)->isValueDependent())
673     return false;
674 
675   // Check that the immediate argument is actually a constant.
676   llvm::APSInt Result;
677   if (SemaBuiltinConstantArg(TheCall, i, Result))
678     return true;
679 
680   // Range check against the upper/lower values for this instruction.
681   unsigned Val = Result.getZExtValue();
682   if (Val < l || Val > u)
683     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
684       << l << u << TheCall->getArg(i)->getSourceRange();
685 
686   return false;
687 }
688 
689 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
690 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
691 /// Returns true when the format fits the function and the FormatStringInfo has
692 /// been populated.
693 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
694                                FormatStringInfo *FSI) {
695   FSI->HasVAListArg = Format->getFirstArg() == 0;
696   FSI->FormatIdx = Format->getFormatIdx() - 1;
697   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
698 
699   // The way the format attribute works in GCC, the implicit this argument
700   // of member functions is counted. However, it doesn't appear in our own
701   // lists, so decrement format_idx in that case.
702   if (IsCXXMember) {
703     if(FSI->FormatIdx == 0)
704       return false;
705     --FSI->FormatIdx;
706     if (FSI->FirstDataArg != 0)
707       --FSI->FirstDataArg;
708   }
709   return true;
710 }
711 
712 /// Handles the checks for format strings, non-POD arguments to vararg
713 /// functions, and NULL arguments passed to non-NULL parameters.
714 void Sema::checkCall(NamedDecl *FDecl,
715                      ArrayRef<const Expr *> Args,
716                      unsigned NumProtoArgs,
717                      bool IsMemberFunction,
718                      SourceLocation Loc,
719                      SourceRange Range,
720                      VariadicCallType CallType) {
721   // FIXME: We should check as much as we can in the template definition.
722   if (CurContext->isDependentContext())
723     return;
724 
725   // Printf and scanf checking.
726   llvm::SmallBitVector CheckedVarArgs;
727   if (FDecl) {
728     for (specific_attr_iterator<FormatAttr>
729              I = FDecl->specific_attr_begin<FormatAttr>(),
730              E = FDecl->specific_attr_end<FormatAttr>();
731          I != E; ++I) {
732       // Only create vector if there are format attributes.
733       CheckedVarArgs.resize(Args.size());
734 
735       CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range,
736                            CheckedVarArgs);
737     }
738   }
739 
740   // Refuse POD arguments that weren't caught by the format string
741   // checks above.
742   if (CallType != VariadicDoesNotApply) {
743     for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
744       // Args[ArgIdx] can be null in malformed code.
745       if (const Expr *Arg = Args[ArgIdx]) {
746         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
747           checkVariadicArgument(Arg, CallType);
748       }
749     }
750   }
751 
752   if (FDecl) {
753     for (specific_attr_iterator<NonNullAttr>
754            I = FDecl->specific_attr_begin<NonNullAttr>(),
755            E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
756       CheckNonNullArguments(*I, Args.data(), Loc);
757 
758     // Type safety checking.
759     for (specific_attr_iterator<ArgumentWithTypeTagAttr>
760            i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
761            e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>();
762          i != e; ++i) {
763       CheckArgumentWithTypeTag(*i, Args.data());
764     }
765   }
766 }
767 
768 /// CheckConstructorCall - Check a constructor call for correctness and safety
769 /// properties not enforced by the C type system.
770 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
771                                 ArrayRef<const Expr *> Args,
772                                 const FunctionProtoType *Proto,
773                                 SourceLocation Loc) {
774   VariadicCallType CallType =
775     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
776   checkCall(FDecl, Args, Proto->getNumArgs(),
777             /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
778 }
779 
780 /// CheckFunctionCall - Check a direct function call for various correctness
781 /// and safety properties not strictly enforced by the C type system.
782 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
783                              const FunctionProtoType *Proto) {
784   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
785                               isa<CXXMethodDecl>(FDecl);
786   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
787                           IsMemberOperatorCall;
788   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
789                                                   TheCall->getCallee());
790   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
791   Expr** Args = TheCall->getArgs();
792   unsigned NumArgs = TheCall->getNumArgs();
793   if (IsMemberOperatorCall) {
794     // If this is a call to a member operator, hide the first argument
795     // from checkCall.
796     // FIXME: Our choice of AST representation here is less than ideal.
797     ++Args;
798     --NumArgs;
799   }
800   checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
801             NumProtoArgs,
802             IsMemberFunction, TheCall->getRParenLoc(),
803             TheCall->getCallee()->getSourceRange(), CallType);
804 
805   IdentifierInfo *FnInfo = FDecl->getIdentifier();
806   // None of the checks below are needed for functions that don't have
807   // simple names (e.g., C++ conversion functions).
808   if (!FnInfo)
809     return false;
810 
811   unsigned CMId = FDecl->getMemoryFunctionKind();
812   if (CMId == 0)
813     return false;
814 
815   // Handle memory setting and copying functions.
816   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
817     CheckStrlcpycatArguments(TheCall, FnInfo);
818   else if (CMId == Builtin::BIstrncat)
819     CheckStrncatArguments(TheCall, FnInfo);
820   else
821     CheckMemaccessArguments(TheCall, CMId, FnInfo);
822 
823   return false;
824 }
825 
826 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
827                                ArrayRef<const Expr *> Args) {
828   VariadicCallType CallType =
829       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
830 
831   checkCall(Method, Args, Method->param_size(),
832             /*IsMemberFunction=*/false,
833             lbrac, Method->getSourceRange(), CallType);
834 
835   return false;
836 }
837 
838 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
839                             const FunctionProtoType *Proto) {
840   const VarDecl *V = dyn_cast<VarDecl>(NDecl);
841   if (!V)
842     return false;
843 
844   QualType Ty = V->getType();
845   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
846     return false;
847 
848   VariadicCallType CallType;
849   if (!Proto || !Proto->isVariadic()) {
850     CallType = VariadicDoesNotApply;
851   } else if (Ty->isBlockPointerType()) {
852     CallType = VariadicBlock;
853   } else { // Ty->isFunctionPointerType()
854     CallType = VariadicFunction;
855   }
856   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
857 
858   checkCall(NDecl,
859             llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
860                                              TheCall->getNumArgs()),
861             NumProtoArgs, /*IsMemberFunction=*/false,
862             TheCall->getRParenLoc(),
863             TheCall->getCallee()->getSourceRange(), CallType);
864 
865   return false;
866 }
867 
868 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
869 /// such as function pointers returned from functions.
870 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
871   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/0, Proto,
872                                                   TheCall->getCallee());
873   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
874 
875   checkCall(/*FDecl=*/0,
876             llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
877                                              TheCall->getNumArgs()),
878             NumProtoArgs, /*IsMemberFunction=*/false,
879             TheCall->getRParenLoc(),
880             TheCall->getCallee()->getSourceRange(), CallType);
881 
882   return false;
883 }
884 
885 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
886                                          AtomicExpr::AtomicOp Op) {
887   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
888   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
889 
890   // All these operations take one of the following forms:
891   enum {
892     // C    __c11_atomic_init(A *, C)
893     Init,
894     // C    __c11_atomic_load(A *, int)
895     Load,
896     // void __atomic_load(A *, CP, int)
897     Copy,
898     // C    __c11_atomic_add(A *, M, int)
899     Arithmetic,
900     // C    __atomic_exchange_n(A *, CP, int)
901     Xchg,
902     // void __atomic_exchange(A *, C *, CP, int)
903     GNUXchg,
904     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
905     C11CmpXchg,
906     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
907     GNUCmpXchg
908   } Form = Init;
909   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
910   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
911   // where:
912   //   C is an appropriate type,
913   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
914   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
915   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
916   //   the int parameters are for orderings.
917 
918   assert(AtomicExpr::AO__c11_atomic_init == 0 &&
919          AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
920          && "need to update code for modified C11 atomics");
921   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
922                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
923   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
924              Op == AtomicExpr::AO__atomic_store_n ||
925              Op == AtomicExpr::AO__atomic_exchange_n ||
926              Op == AtomicExpr::AO__atomic_compare_exchange_n;
927   bool IsAddSub = false;
928 
929   switch (Op) {
930   case AtomicExpr::AO__c11_atomic_init:
931     Form = Init;
932     break;
933 
934   case AtomicExpr::AO__c11_atomic_load:
935   case AtomicExpr::AO__atomic_load_n:
936     Form = Load;
937     break;
938 
939   case AtomicExpr::AO__c11_atomic_store:
940   case AtomicExpr::AO__atomic_load:
941   case AtomicExpr::AO__atomic_store:
942   case AtomicExpr::AO__atomic_store_n:
943     Form = Copy;
944     break;
945 
946   case AtomicExpr::AO__c11_atomic_fetch_add:
947   case AtomicExpr::AO__c11_atomic_fetch_sub:
948   case AtomicExpr::AO__atomic_fetch_add:
949   case AtomicExpr::AO__atomic_fetch_sub:
950   case AtomicExpr::AO__atomic_add_fetch:
951   case AtomicExpr::AO__atomic_sub_fetch:
952     IsAddSub = true;
953     // Fall through.
954   case AtomicExpr::AO__c11_atomic_fetch_and:
955   case AtomicExpr::AO__c11_atomic_fetch_or:
956   case AtomicExpr::AO__c11_atomic_fetch_xor:
957   case AtomicExpr::AO__atomic_fetch_and:
958   case AtomicExpr::AO__atomic_fetch_or:
959   case AtomicExpr::AO__atomic_fetch_xor:
960   case AtomicExpr::AO__atomic_fetch_nand:
961   case AtomicExpr::AO__atomic_and_fetch:
962   case AtomicExpr::AO__atomic_or_fetch:
963   case AtomicExpr::AO__atomic_xor_fetch:
964   case AtomicExpr::AO__atomic_nand_fetch:
965     Form = Arithmetic;
966     break;
967 
968   case AtomicExpr::AO__c11_atomic_exchange:
969   case AtomicExpr::AO__atomic_exchange_n:
970     Form = Xchg;
971     break;
972 
973   case AtomicExpr::AO__atomic_exchange:
974     Form = GNUXchg;
975     break;
976 
977   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
978   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
979     Form = C11CmpXchg;
980     break;
981 
982   case AtomicExpr::AO__atomic_compare_exchange:
983   case AtomicExpr::AO__atomic_compare_exchange_n:
984     Form = GNUCmpXchg;
985     break;
986   }
987 
988   // Check we have the right number of arguments.
989   if (TheCall->getNumArgs() < NumArgs[Form]) {
990     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
991       << 0 << NumArgs[Form] << TheCall->getNumArgs()
992       << TheCall->getCallee()->getSourceRange();
993     return ExprError();
994   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
995     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
996          diag::err_typecheck_call_too_many_args)
997       << 0 << NumArgs[Form] << TheCall->getNumArgs()
998       << TheCall->getCallee()->getSourceRange();
999     return ExprError();
1000   }
1001 
1002   // Inspect the first argument of the atomic operation.
1003   Expr *Ptr = TheCall->getArg(0);
1004   Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
1005   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
1006   if (!pointerType) {
1007     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1008       << Ptr->getType() << Ptr->getSourceRange();
1009     return ExprError();
1010   }
1011 
1012   // For a __c11 builtin, this should be a pointer to an _Atomic type.
1013   QualType AtomTy = pointerType->getPointeeType(); // 'A'
1014   QualType ValType = AtomTy; // 'C'
1015   if (IsC11) {
1016     if (!AtomTy->isAtomicType()) {
1017       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1018         << Ptr->getType() << Ptr->getSourceRange();
1019       return ExprError();
1020     }
1021     if (AtomTy.isConstQualified()) {
1022       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1023         << Ptr->getType() << Ptr->getSourceRange();
1024       return ExprError();
1025     }
1026     ValType = AtomTy->getAs<AtomicType>()->getValueType();
1027   }
1028 
1029   // For an arithmetic operation, the implied arithmetic must be well-formed.
1030   if (Form == Arithmetic) {
1031     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1032     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1033       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1034         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1035       return ExprError();
1036     }
1037     if (!IsAddSub && !ValType->isIntegerType()) {
1038       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1039         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1040       return ExprError();
1041     }
1042   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1043     // For __atomic_*_n operations, the value type must be a scalar integral or
1044     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1045     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1046       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1047     return ExprError();
1048   }
1049 
1050   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
1051       !AtomTy->isScalarType()) {
1052     // For GNU atomics, require a trivially-copyable type. This is not part of
1053     // the GNU atomics specification, but we enforce it for sanity.
1054     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1055       << Ptr->getType() << Ptr->getSourceRange();
1056     return ExprError();
1057   }
1058 
1059   // FIXME: For any builtin other than a load, the ValType must not be
1060   // const-qualified.
1061 
1062   switch (ValType.getObjCLifetime()) {
1063   case Qualifiers::OCL_None:
1064   case Qualifiers::OCL_ExplicitNone:
1065     // okay
1066     break;
1067 
1068   case Qualifiers::OCL_Weak:
1069   case Qualifiers::OCL_Strong:
1070   case Qualifiers::OCL_Autoreleasing:
1071     // FIXME: Can this happen? By this point, ValType should be known
1072     // to be trivially copyable.
1073     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1074       << ValType << Ptr->getSourceRange();
1075     return ExprError();
1076   }
1077 
1078   QualType ResultType = ValType;
1079   if (Form == Copy || Form == GNUXchg || Form == Init)
1080     ResultType = Context.VoidTy;
1081   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1082     ResultType = Context.BoolTy;
1083 
1084   // The type of a parameter passed 'by value'. In the GNU atomics, such
1085   // arguments are actually passed as pointers.
1086   QualType ByValType = ValType; // 'CP'
1087   if (!IsC11 && !IsN)
1088     ByValType = Ptr->getType();
1089 
1090   // The first argument --- the pointer --- has a fixed type; we
1091   // deduce the types of the rest of the arguments accordingly.  Walk
1092   // the remaining arguments, converting them to the deduced value type.
1093   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1094     QualType Ty;
1095     if (i < NumVals[Form] + 1) {
1096       switch (i) {
1097       case 1:
1098         // The second argument is the non-atomic operand. For arithmetic, this
1099         // is always passed by value, and for a compare_exchange it is always
1100         // passed by address. For the rest, GNU uses by-address and C11 uses
1101         // by-value.
1102         assert(Form != Load);
1103         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1104           Ty = ValType;
1105         else if (Form == Copy || Form == Xchg)
1106           Ty = ByValType;
1107         else if (Form == Arithmetic)
1108           Ty = Context.getPointerDiffType();
1109         else
1110           Ty = Context.getPointerType(ValType.getUnqualifiedType());
1111         break;
1112       case 2:
1113         // The third argument to compare_exchange / GNU exchange is a
1114         // (pointer to a) desired value.
1115         Ty = ByValType;
1116         break;
1117       case 3:
1118         // The fourth argument to GNU compare_exchange is a 'weak' flag.
1119         Ty = Context.BoolTy;
1120         break;
1121       }
1122     } else {
1123       // The order(s) are always converted to int.
1124       Ty = Context.IntTy;
1125     }
1126 
1127     InitializedEntity Entity =
1128         InitializedEntity::InitializeParameter(Context, Ty, false);
1129     ExprResult Arg = TheCall->getArg(i);
1130     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1131     if (Arg.isInvalid())
1132       return true;
1133     TheCall->setArg(i, Arg.get());
1134   }
1135 
1136   // Permute the arguments into a 'consistent' order.
1137   SmallVector<Expr*, 5> SubExprs;
1138   SubExprs.push_back(Ptr);
1139   switch (Form) {
1140   case Init:
1141     // Note, AtomicExpr::getVal1() has a special case for this atomic.
1142     SubExprs.push_back(TheCall->getArg(1)); // Val1
1143     break;
1144   case Load:
1145     SubExprs.push_back(TheCall->getArg(1)); // Order
1146     break;
1147   case Copy:
1148   case Arithmetic:
1149   case Xchg:
1150     SubExprs.push_back(TheCall->getArg(2)); // Order
1151     SubExprs.push_back(TheCall->getArg(1)); // Val1
1152     break;
1153   case GNUXchg:
1154     // Note, AtomicExpr::getVal2() has a special case for this atomic.
1155     SubExprs.push_back(TheCall->getArg(3)); // Order
1156     SubExprs.push_back(TheCall->getArg(1)); // Val1
1157     SubExprs.push_back(TheCall->getArg(2)); // Val2
1158     break;
1159   case C11CmpXchg:
1160     SubExprs.push_back(TheCall->getArg(3)); // Order
1161     SubExprs.push_back(TheCall->getArg(1)); // Val1
1162     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1163     SubExprs.push_back(TheCall->getArg(2)); // Val2
1164     break;
1165   case GNUCmpXchg:
1166     SubExprs.push_back(TheCall->getArg(4)); // Order
1167     SubExprs.push_back(TheCall->getArg(1)); // Val1
1168     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1169     SubExprs.push_back(TheCall->getArg(2)); // Val2
1170     SubExprs.push_back(TheCall->getArg(3)); // Weak
1171     break;
1172   }
1173 
1174   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1175                                             SubExprs, ResultType, Op,
1176                                             TheCall->getRParenLoc());
1177 
1178   if ((Op == AtomicExpr::AO__c11_atomic_load ||
1179        (Op == AtomicExpr::AO__c11_atomic_store)) &&
1180       Context.AtomicUsesUnsupportedLibcall(AE))
1181     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1182     ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1183 
1184   return Owned(AE);
1185 }
1186 
1187 
1188 /// checkBuiltinArgument - Given a call to a builtin function, perform
1189 /// normal type-checking on the given argument, updating the call in
1190 /// place.  This is useful when a builtin function requires custom
1191 /// type-checking for some of its arguments but not necessarily all of
1192 /// them.
1193 ///
1194 /// Returns true on error.
1195 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1196   FunctionDecl *Fn = E->getDirectCallee();
1197   assert(Fn && "builtin call without direct callee!");
1198 
1199   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1200   InitializedEntity Entity =
1201     InitializedEntity::InitializeParameter(S.Context, Param);
1202 
1203   ExprResult Arg = E->getArg(0);
1204   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1205   if (Arg.isInvalid())
1206     return true;
1207 
1208   E->setArg(ArgIndex, Arg.take());
1209   return false;
1210 }
1211 
1212 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
1213 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
1214 /// type of its first argument.  The main ActOnCallExpr routines have already
1215 /// promoted the types of arguments because all of these calls are prototyped as
1216 /// void(...).
1217 ///
1218 /// This function goes through and does final semantic checking for these
1219 /// builtins,
1220 ExprResult
1221 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1222   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1223   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1224   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1225 
1226   // Ensure that we have at least one argument to do type inference from.
1227   if (TheCall->getNumArgs() < 1) {
1228     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1229       << 0 << 1 << TheCall->getNumArgs()
1230       << TheCall->getCallee()->getSourceRange();
1231     return ExprError();
1232   }
1233 
1234   // Inspect the first argument of the atomic builtin.  This should always be
1235   // a pointer type, whose element is an integral scalar or pointer type.
1236   // Because it is a pointer type, we don't have to worry about any implicit
1237   // casts here.
1238   // FIXME: We don't allow floating point scalars as input.
1239   Expr *FirstArg = TheCall->getArg(0);
1240   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1241   if (FirstArgResult.isInvalid())
1242     return ExprError();
1243   FirstArg = FirstArgResult.take();
1244   TheCall->setArg(0, FirstArg);
1245 
1246   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1247   if (!pointerType) {
1248     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1249       << FirstArg->getType() << FirstArg->getSourceRange();
1250     return ExprError();
1251   }
1252 
1253   QualType ValType = pointerType->getPointeeType();
1254   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1255       !ValType->isBlockPointerType()) {
1256     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1257       << FirstArg->getType() << FirstArg->getSourceRange();
1258     return ExprError();
1259   }
1260 
1261   switch (ValType.getObjCLifetime()) {
1262   case Qualifiers::OCL_None:
1263   case Qualifiers::OCL_ExplicitNone:
1264     // okay
1265     break;
1266 
1267   case Qualifiers::OCL_Weak:
1268   case Qualifiers::OCL_Strong:
1269   case Qualifiers::OCL_Autoreleasing:
1270     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1271       << ValType << FirstArg->getSourceRange();
1272     return ExprError();
1273   }
1274 
1275   // Strip any qualifiers off ValType.
1276   ValType = ValType.getUnqualifiedType();
1277 
1278   // The majority of builtins return a value, but a few have special return
1279   // types, so allow them to override appropriately below.
1280   QualType ResultType = ValType;
1281 
1282   // We need to figure out which concrete builtin this maps onto.  For example,
1283   // __sync_fetch_and_add with a 2 byte object turns into
1284   // __sync_fetch_and_add_2.
1285 #define BUILTIN_ROW(x) \
1286   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1287     Builtin::BI##x##_8, Builtin::BI##x##_16 }
1288 
1289   static const unsigned BuiltinIndices[][5] = {
1290     BUILTIN_ROW(__sync_fetch_and_add),
1291     BUILTIN_ROW(__sync_fetch_and_sub),
1292     BUILTIN_ROW(__sync_fetch_and_or),
1293     BUILTIN_ROW(__sync_fetch_and_and),
1294     BUILTIN_ROW(__sync_fetch_and_xor),
1295 
1296     BUILTIN_ROW(__sync_add_and_fetch),
1297     BUILTIN_ROW(__sync_sub_and_fetch),
1298     BUILTIN_ROW(__sync_and_and_fetch),
1299     BUILTIN_ROW(__sync_or_and_fetch),
1300     BUILTIN_ROW(__sync_xor_and_fetch),
1301 
1302     BUILTIN_ROW(__sync_val_compare_and_swap),
1303     BUILTIN_ROW(__sync_bool_compare_and_swap),
1304     BUILTIN_ROW(__sync_lock_test_and_set),
1305     BUILTIN_ROW(__sync_lock_release),
1306     BUILTIN_ROW(__sync_swap)
1307   };
1308 #undef BUILTIN_ROW
1309 
1310   // Determine the index of the size.
1311   unsigned SizeIndex;
1312   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1313   case 1: SizeIndex = 0; break;
1314   case 2: SizeIndex = 1; break;
1315   case 4: SizeIndex = 2; break;
1316   case 8: SizeIndex = 3; break;
1317   case 16: SizeIndex = 4; break;
1318   default:
1319     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1320       << FirstArg->getType() << FirstArg->getSourceRange();
1321     return ExprError();
1322   }
1323 
1324   // Each of these builtins has one pointer argument, followed by some number of
1325   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1326   // that we ignore.  Find out which row of BuiltinIndices to read from as well
1327   // as the number of fixed args.
1328   unsigned BuiltinID = FDecl->getBuiltinID();
1329   unsigned BuiltinIndex, NumFixed = 1;
1330   switch (BuiltinID) {
1331   default: llvm_unreachable("Unknown overloaded atomic builtin!");
1332   case Builtin::BI__sync_fetch_and_add:
1333   case Builtin::BI__sync_fetch_and_add_1:
1334   case Builtin::BI__sync_fetch_and_add_2:
1335   case Builtin::BI__sync_fetch_and_add_4:
1336   case Builtin::BI__sync_fetch_and_add_8:
1337   case Builtin::BI__sync_fetch_and_add_16:
1338     BuiltinIndex = 0;
1339     break;
1340 
1341   case Builtin::BI__sync_fetch_and_sub:
1342   case Builtin::BI__sync_fetch_and_sub_1:
1343   case Builtin::BI__sync_fetch_and_sub_2:
1344   case Builtin::BI__sync_fetch_and_sub_4:
1345   case Builtin::BI__sync_fetch_and_sub_8:
1346   case Builtin::BI__sync_fetch_and_sub_16:
1347     BuiltinIndex = 1;
1348     break;
1349 
1350   case Builtin::BI__sync_fetch_and_or:
1351   case Builtin::BI__sync_fetch_and_or_1:
1352   case Builtin::BI__sync_fetch_and_or_2:
1353   case Builtin::BI__sync_fetch_and_or_4:
1354   case Builtin::BI__sync_fetch_and_or_8:
1355   case Builtin::BI__sync_fetch_and_or_16:
1356     BuiltinIndex = 2;
1357     break;
1358 
1359   case Builtin::BI__sync_fetch_and_and:
1360   case Builtin::BI__sync_fetch_and_and_1:
1361   case Builtin::BI__sync_fetch_and_and_2:
1362   case Builtin::BI__sync_fetch_and_and_4:
1363   case Builtin::BI__sync_fetch_and_and_8:
1364   case Builtin::BI__sync_fetch_and_and_16:
1365     BuiltinIndex = 3;
1366     break;
1367 
1368   case Builtin::BI__sync_fetch_and_xor:
1369   case Builtin::BI__sync_fetch_and_xor_1:
1370   case Builtin::BI__sync_fetch_and_xor_2:
1371   case Builtin::BI__sync_fetch_and_xor_4:
1372   case Builtin::BI__sync_fetch_and_xor_8:
1373   case Builtin::BI__sync_fetch_and_xor_16:
1374     BuiltinIndex = 4;
1375     break;
1376 
1377   case Builtin::BI__sync_add_and_fetch:
1378   case Builtin::BI__sync_add_and_fetch_1:
1379   case Builtin::BI__sync_add_and_fetch_2:
1380   case Builtin::BI__sync_add_and_fetch_4:
1381   case Builtin::BI__sync_add_and_fetch_8:
1382   case Builtin::BI__sync_add_and_fetch_16:
1383     BuiltinIndex = 5;
1384     break;
1385 
1386   case Builtin::BI__sync_sub_and_fetch:
1387   case Builtin::BI__sync_sub_and_fetch_1:
1388   case Builtin::BI__sync_sub_and_fetch_2:
1389   case Builtin::BI__sync_sub_and_fetch_4:
1390   case Builtin::BI__sync_sub_and_fetch_8:
1391   case Builtin::BI__sync_sub_and_fetch_16:
1392     BuiltinIndex = 6;
1393     break;
1394 
1395   case Builtin::BI__sync_and_and_fetch:
1396   case Builtin::BI__sync_and_and_fetch_1:
1397   case Builtin::BI__sync_and_and_fetch_2:
1398   case Builtin::BI__sync_and_and_fetch_4:
1399   case Builtin::BI__sync_and_and_fetch_8:
1400   case Builtin::BI__sync_and_and_fetch_16:
1401     BuiltinIndex = 7;
1402     break;
1403 
1404   case Builtin::BI__sync_or_and_fetch:
1405   case Builtin::BI__sync_or_and_fetch_1:
1406   case Builtin::BI__sync_or_and_fetch_2:
1407   case Builtin::BI__sync_or_and_fetch_4:
1408   case Builtin::BI__sync_or_and_fetch_8:
1409   case Builtin::BI__sync_or_and_fetch_16:
1410     BuiltinIndex = 8;
1411     break;
1412 
1413   case Builtin::BI__sync_xor_and_fetch:
1414   case Builtin::BI__sync_xor_and_fetch_1:
1415   case Builtin::BI__sync_xor_and_fetch_2:
1416   case Builtin::BI__sync_xor_and_fetch_4:
1417   case Builtin::BI__sync_xor_and_fetch_8:
1418   case Builtin::BI__sync_xor_and_fetch_16:
1419     BuiltinIndex = 9;
1420     break;
1421 
1422   case Builtin::BI__sync_val_compare_and_swap:
1423   case Builtin::BI__sync_val_compare_and_swap_1:
1424   case Builtin::BI__sync_val_compare_and_swap_2:
1425   case Builtin::BI__sync_val_compare_and_swap_4:
1426   case Builtin::BI__sync_val_compare_and_swap_8:
1427   case Builtin::BI__sync_val_compare_and_swap_16:
1428     BuiltinIndex = 10;
1429     NumFixed = 2;
1430     break;
1431 
1432   case Builtin::BI__sync_bool_compare_and_swap:
1433   case Builtin::BI__sync_bool_compare_and_swap_1:
1434   case Builtin::BI__sync_bool_compare_and_swap_2:
1435   case Builtin::BI__sync_bool_compare_and_swap_4:
1436   case Builtin::BI__sync_bool_compare_and_swap_8:
1437   case Builtin::BI__sync_bool_compare_and_swap_16:
1438     BuiltinIndex = 11;
1439     NumFixed = 2;
1440     ResultType = Context.BoolTy;
1441     break;
1442 
1443   case Builtin::BI__sync_lock_test_and_set:
1444   case Builtin::BI__sync_lock_test_and_set_1:
1445   case Builtin::BI__sync_lock_test_and_set_2:
1446   case Builtin::BI__sync_lock_test_and_set_4:
1447   case Builtin::BI__sync_lock_test_and_set_8:
1448   case Builtin::BI__sync_lock_test_and_set_16:
1449     BuiltinIndex = 12;
1450     break;
1451 
1452   case Builtin::BI__sync_lock_release:
1453   case Builtin::BI__sync_lock_release_1:
1454   case Builtin::BI__sync_lock_release_2:
1455   case Builtin::BI__sync_lock_release_4:
1456   case Builtin::BI__sync_lock_release_8:
1457   case Builtin::BI__sync_lock_release_16:
1458     BuiltinIndex = 13;
1459     NumFixed = 0;
1460     ResultType = Context.VoidTy;
1461     break;
1462 
1463   case Builtin::BI__sync_swap:
1464   case Builtin::BI__sync_swap_1:
1465   case Builtin::BI__sync_swap_2:
1466   case Builtin::BI__sync_swap_4:
1467   case Builtin::BI__sync_swap_8:
1468   case Builtin::BI__sync_swap_16:
1469     BuiltinIndex = 14;
1470     break;
1471   }
1472 
1473   // Now that we know how many fixed arguments we expect, first check that we
1474   // have at least that many.
1475   if (TheCall->getNumArgs() < 1+NumFixed) {
1476     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1477       << 0 << 1+NumFixed << TheCall->getNumArgs()
1478       << TheCall->getCallee()->getSourceRange();
1479     return ExprError();
1480   }
1481 
1482   // Get the decl for the concrete builtin from this, we can tell what the
1483   // concrete integer type we should convert to is.
1484   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1485   const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1486   FunctionDecl *NewBuiltinDecl;
1487   if (NewBuiltinID == BuiltinID)
1488     NewBuiltinDecl = FDecl;
1489   else {
1490     // Perform builtin lookup to avoid redeclaring it.
1491     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1492     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1493     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1494     assert(Res.getFoundDecl());
1495     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1496     if (NewBuiltinDecl == 0)
1497       return ExprError();
1498   }
1499 
1500   // The first argument --- the pointer --- has a fixed type; we
1501   // deduce the types of the rest of the arguments accordingly.  Walk
1502   // the remaining arguments, converting them to the deduced value type.
1503   for (unsigned i = 0; i != NumFixed; ++i) {
1504     ExprResult Arg = TheCall->getArg(i+1);
1505 
1506     // GCC does an implicit conversion to the pointer or integer ValType.  This
1507     // can fail in some cases (1i -> int**), check for this error case now.
1508     // Initialize the argument.
1509     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1510                                                    ValType, /*consume*/ false);
1511     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1512     if (Arg.isInvalid())
1513       return ExprError();
1514 
1515     // Okay, we have something that *can* be converted to the right type.  Check
1516     // to see if there is a potentially weird extension going on here.  This can
1517     // happen when you do an atomic operation on something like an char* and
1518     // pass in 42.  The 42 gets converted to char.  This is even more strange
1519     // for things like 45.123 -> char, etc.
1520     // FIXME: Do this check.
1521     TheCall->setArg(i+1, Arg.take());
1522   }
1523 
1524   ASTContext& Context = this->getASTContext();
1525 
1526   // Create a new DeclRefExpr to refer to the new decl.
1527   DeclRefExpr* NewDRE = DeclRefExpr::Create(
1528       Context,
1529       DRE->getQualifierLoc(),
1530       SourceLocation(),
1531       NewBuiltinDecl,
1532       /*enclosing*/ false,
1533       DRE->getLocation(),
1534       Context.BuiltinFnTy,
1535       DRE->getValueKind());
1536 
1537   // Set the callee in the CallExpr.
1538   // FIXME: This loses syntactic information.
1539   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1540   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1541                                               CK_BuiltinFnToFnPtr);
1542   TheCall->setCallee(PromotedCall.take());
1543 
1544   // Change the result type of the call to match the original value type. This
1545   // is arbitrary, but the codegen for these builtins ins design to handle it
1546   // gracefully.
1547   TheCall->setType(ResultType);
1548 
1549   return TheCallResult;
1550 }
1551 
1552 /// CheckObjCString - Checks that the argument to the builtin
1553 /// CFString constructor is correct
1554 /// Note: It might also make sense to do the UTF-16 conversion here (would
1555 /// simplify the backend).
1556 bool Sema::CheckObjCString(Expr *Arg) {
1557   Arg = Arg->IgnoreParenCasts();
1558   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1559 
1560   if (!Literal || !Literal->isAscii()) {
1561     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1562       << Arg->getSourceRange();
1563     return true;
1564   }
1565 
1566   if (Literal->containsNonAsciiOrNull()) {
1567     StringRef String = Literal->getString();
1568     unsigned NumBytes = String.size();
1569     SmallVector<UTF16, 128> ToBuf(NumBytes);
1570     const UTF8 *FromPtr = (const UTF8 *)String.data();
1571     UTF16 *ToPtr = &ToBuf[0];
1572 
1573     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1574                                                  &ToPtr, ToPtr + NumBytes,
1575                                                  strictConversion);
1576     // Check for conversion failure.
1577     if (Result != conversionOK)
1578       Diag(Arg->getLocStart(),
1579            diag::warn_cfstring_truncated) << Arg->getSourceRange();
1580   }
1581   return false;
1582 }
1583 
1584 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1585 /// Emit an error and return true on failure, return false on success.
1586 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1587   Expr *Fn = TheCall->getCallee();
1588   if (TheCall->getNumArgs() > 2) {
1589     Diag(TheCall->getArg(2)->getLocStart(),
1590          diag::err_typecheck_call_too_many_args)
1591       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1592       << Fn->getSourceRange()
1593       << SourceRange(TheCall->getArg(2)->getLocStart(),
1594                      (*(TheCall->arg_end()-1))->getLocEnd());
1595     return true;
1596   }
1597 
1598   if (TheCall->getNumArgs() < 2) {
1599     return Diag(TheCall->getLocEnd(),
1600       diag::err_typecheck_call_too_few_args_at_least)
1601       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1602   }
1603 
1604   // Type-check the first argument normally.
1605   if (checkBuiltinArgument(*this, TheCall, 0))
1606     return true;
1607 
1608   // Determine whether the current function is variadic or not.
1609   BlockScopeInfo *CurBlock = getCurBlock();
1610   bool isVariadic;
1611   if (CurBlock)
1612     isVariadic = CurBlock->TheDecl->isVariadic();
1613   else if (FunctionDecl *FD = getCurFunctionDecl())
1614     isVariadic = FD->isVariadic();
1615   else
1616     isVariadic = getCurMethodDecl()->isVariadic();
1617 
1618   if (!isVariadic) {
1619     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1620     return true;
1621   }
1622 
1623   // Verify that the second argument to the builtin is the last argument of the
1624   // current function or method.
1625   bool SecondArgIsLastNamedArgument = false;
1626   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1627 
1628   // These are valid if SecondArgIsLastNamedArgument is false after the next
1629   // block.
1630   QualType Type;
1631   SourceLocation ParamLoc;
1632 
1633   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1634     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1635       // FIXME: This isn't correct for methods (results in bogus warning).
1636       // Get the last formal in the current function.
1637       const ParmVarDecl *LastArg;
1638       if (CurBlock)
1639         LastArg = *(CurBlock->TheDecl->param_end()-1);
1640       else if (FunctionDecl *FD = getCurFunctionDecl())
1641         LastArg = *(FD->param_end()-1);
1642       else
1643         LastArg = *(getCurMethodDecl()->param_end()-1);
1644       SecondArgIsLastNamedArgument = PV == LastArg;
1645 
1646       Type = PV->getType();
1647       ParamLoc = PV->getLocation();
1648     }
1649   }
1650 
1651   if (!SecondArgIsLastNamedArgument)
1652     Diag(TheCall->getArg(1)->getLocStart(),
1653          diag::warn_second_parameter_of_va_start_not_last_named_argument);
1654   else if (Type->isReferenceType()) {
1655     Diag(Arg->getLocStart(),
1656          diag::warn_va_start_of_reference_type_is_undefined);
1657     Diag(ParamLoc, diag::note_parameter_type) << Type;
1658   }
1659 
1660   TheCall->setType(Context.VoidTy);
1661   return false;
1662 }
1663 
1664 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1665 /// friends.  This is declared to take (...), so we have to check everything.
1666 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1667   if (TheCall->getNumArgs() < 2)
1668     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1669       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1670   if (TheCall->getNumArgs() > 2)
1671     return Diag(TheCall->getArg(2)->getLocStart(),
1672                 diag::err_typecheck_call_too_many_args)
1673       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1674       << SourceRange(TheCall->getArg(2)->getLocStart(),
1675                      (*(TheCall->arg_end()-1))->getLocEnd());
1676 
1677   ExprResult OrigArg0 = TheCall->getArg(0);
1678   ExprResult OrigArg1 = TheCall->getArg(1);
1679 
1680   // Do standard promotions between the two arguments, returning their common
1681   // type.
1682   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1683   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1684     return true;
1685 
1686   // Make sure any conversions are pushed back into the call; this is
1687   // type safe since unordered compare builtins are declared as "_Bool
1688   // foo(...)".
1689   TheCall->setArg(0, OrigArg0.get());
1690   TheCall->setArg(1, OrigArg1.get());
1691 
1692   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1693     return false;
1694 
1695   // If the common type isn't a real floating type, then the arguments were
1696   // invalid for this operation.
1697   if (Res.isNull() || !Res->isRealFloatingType())
1698     return Diag(OrigArg0.get()->getLocStart(),
1699                 diag::err_typecheck_call_invalid_ordered_compare)
1700       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1701       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1702 
1703   return false;
1704 }
1705 
1706 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1707 /// __builtin_isnan and friends.  This is declared to take (...), so we have
1708 /// to check everything. We expect the last argument to be a floating point
1709 /// value.
1710 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1711   if (TheCall->getNumArgs() < NumArgs)
1712     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1713       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1714   if (TheCall->getNumArgs() > NumArgs)
1715     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1716                 diag::err_typecheck_call_too_many_args)
1717       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1718       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1719                      (*(TheCall->arg_end()-1))->getLocEnd());
1720 
1721   Expr *OrigArg = TheCall->getArg(NumArgs-1);
1722 
1723   if (OrigArg->isTypeDependent())
1724     return false;
1725 
1726   // This operation requires a non-_Complex floating-point number.
1727   if (!OrigArg->getType()->isRealFloatingType())
1728     return Diag(OrigArg->getLocStart(),
1729                 diag::err_typecheck_call_invalid_unary_fp)
1730       << OrigArg->getType() << OrigArg->getSourceRange();
1731 
1732   // If this is an implicit conversion from float -> double, remove it.
1733   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1734     Expr *CastArg = Cast->getSubExpr();
1735     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1736       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1737              "promotion from float to double is the only expected cast here");
1738       Cast->setSubExpr(0);
1739       TheCall->setArg(NumArgs-1, CastArg);
1740     }
1741   }
1742 
1743   return false;
1744 }
1745 
1746 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1747 // This is declared to take (...), so we have to check everything.
1748 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1749   if (TheCall->getNumArgs() < 2)
1750     return ExprError(Diag(TheCall->getLocEnd(),
1751                           diag::err_typecheck_call_too_few_args_at_least)
1752                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1753                      << TheCall->getSourceRange());
1754 
1755   // Determine which of the following types of shufflevector we're checking:
1756   // 1) unary, vector mask: (lhs, mask)
1757   // 2) binary, vector mask: (lhs, rhs, mask)
1758   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1759   QualType resType = TheCall->getArg(0)->getType();
1760   unsigned numElements = 0;
1761 
1762   if (!TheCall->getArg(0)->isTypeDependent() &&
1763       !TheCall->getArg(1)->isTypeDependent()) {
1764     QualType LHSType = TheCall->getArg(0)->getType();
1765     QualType RHSType = TheCall->getArg(1)->getType();
1766 
1767     if (!LHSType->isVectorType() || !RHSType->isVectorType())
1768       return ExprError(Diag(TheCall->getLocStart(),
1769                             diag::err_shufflevector_non_vector)
1770                        << SourceRange(TheCall->getArg(0)->getLocStart(),
1771                                       TheCall->getArg(1)->getLocEnd()));
1772 
1773     numElements = LHSType->getAs<VectorType>()->getNumElements();
1774     unsigned numResElements = TheCall->getNumArgs() - 2;
1775 
1776     // Check to see if we have a call with 2 vector arguments, the unary shuffle
1777     // with mask.  If so, verify that RHS is an integer vector type with the
1778     // same number of elts as lhs.
1779     if (TheCall->getNumArgs() == 2) {
1780       if (!RHSType->hasIntegerRepresentation() ||
1781           RHSType->getAs<VectorType>()->getNumElements() != numElements)
1782         return ExprError(Diag(TheCall->getLocStart(),
1783                               diag::err_shufflevector_incompatible_vector)
1784                          << SourceRange(TheCall->getArg(1)->getLocStart(),
1785                                         TheCall->getArg(1)->getLocEnd()));
1786     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1787       return ExprError(Diag(TheCall->getLocStart(),
1788                             diag::err_shufflevector_incompatible_vector)
1789                        << SourceRange(TheCall->getArg(0)->getLocStart(),
1790                                       TheCall->getArg(1)->getLocEnd()));
1791     } else if (numElements != numResElements) {
1792       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1793       resType = Context.getVectorType(eltType, numResElements,
1794                                       VectorType::GenericVector);
1795     }
1796   }
1797 
1798   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1799     if (TheCall->getArg(i)->isTypeDependent() ||
1800         TheCall->getArg(i)->isValueDependent())
1801       continue;
1802 
1803     llvm::APSInt Result(32);
1804     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1805       return ExprError(Diag(TheCall->getLocStart(),
1806                             diag::err_shufflevector_nonconstant_argument)
1807                        << TheCall->getArg(i)->getSourceRange());
1808 
1809     // Allow -1 which will be translated to undef in the IR.
1810     if (Result.isSigned() && Result.isAllOnesValue())
1811       continue;
1812 
1813     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1814       return ExprError(Diag(TheCall->getLocStart(),
1815                             diag::err_shufflevector_argument_too_large)
1816                        << TheCall->getArg(i)->getSourceRange());
1817   }
1818 
1819   SmallVector<Expr*, 32> exprs;
1820 
1821   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1822     exprs.push_back(TheCall->getArg(i));
1823     TheCall->setArg(i, 0);
1824   }
1825 
1826   return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1827                                             TheCall->getCallee()->getLocStart(),
1828                                             TheCall->getRParenLoc()));
1829 }
1830 
1831 /// SemaConvertVectorExpr - Handle __builtin_convertvector
1832 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
1833                                        SourceLocation BuiltinLoc,
1834                                        SourceLocation RParenLoc) {
1835   ExprValueKind VK = VK_RValue;
1836   ExprObjectKind OK = OK_Ordinary;
1837   QualType DstTy = TInfo->getType();
1838   QualType SrcTy = E->getType();
1839 
1840   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
1841     return ExprError(Diag(BuiltinLoc,
1842                           diag::err_convertvector_non_vector)
1843                      << E->getSourceRange());
1844   if (!DstTy->isVectorType() && !DstTy->isDependentType())
1845     return ExprError(Diag(BuiltinLoc,
1846                           diag::err_convertvector_non_vector_type));
1847 
1848   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
1849     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
1850     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
1851     if (SrcElts != DstElts)
1852       return ExprError(Diag(BuiltinLoc,
1853                             diag::err_convertvector_incompatible_vector)
1854                        << E->getSourceRange());
1855   }
1856 
1857   return Owned(new (Context) ConvertVectorExpr(E, TInfo, DstTy, VK, OK,
1858                BuiltinLoc, RParenLoc));
1859 
1860 }
1861 
1862 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1863 // This is declared to take (const void*, ...) and can take two
1864 // optional constant int args.
1865 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1866   unsigned NumArgs = TheCall->getNumArgs();
1867 
1868   if (NumArgs > 3)
1869     return Diag(TheCall->getLocEnd(),
1870              diag::err_typecheck_call_too_many_args_at_most)
1871              << 0 /*function call*/ << 3 << NumArgs
1872              << TheCall->getSourceRange();
1873 
1874   // Argument 0 is checked for us and the remaining arguments must be
1875   // constant integers.
1876   for (unsigned i = 1; i != NumArgs; ++i) {
1877     Expr *Arg = TheCall->getArg(i);
1878 
1879     // We can't check the value of a dependent argument.
1880     if (Arg->isTypeDependent() || Arg->isValueDependent())
1881       continue;
1882 
1883     llvm::APSInt Result;
1884     if (SemaBuiltinConstantArg(TheCall, i, Result))
1885       return true;
1886 
1887     // FIXME: gcc issues a warning and rewrites these to 0. These
1888     // seems especially odd for the third argument since the default
1889     // is 3.
1890     if (i == 1) {
1891       if (Result.getLimitedValue() > 1)
1892         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1893              << "0" << "1" << Arg->getSourceRange();
1894     } else {
1895       if (Result.getLimitedValue() > 3)
1896         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1897             << "0" << "3" << Arg->getSourceRange();
1898     }
1899   }
1900 
1901   return false;
1902 }
1903 
1904 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1905 /// TheCall is a constant expression.
1906 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1907                                   llvm::APSInt &Result) {
1908   Expr *Arg = TheCall->getArg(ArgNum);
1909   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1910   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1911 
1912   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1913 
1914   if (!Arg->isIntegerConstantExpr(Result, Context))
1915     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1916                 << FDecl->getDeclName() <<  Arg->getSourceRange();
1917 
1918   return false;
1919 }
1920 
1921 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1922 /// int type). This simply type checks that type is one of the defined
1923 /// constants (0-3).
1924 // For compatibility check 0-3, llvm only handles 0 and 2.
1925 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1926   llvm::APSInt Result;
1927 
1928   // We can't check the value of a dependent argument.
1929   if (TheCall->getArg(1)->isTypeDependent() ||
1930       TheCall->getArg(1)->isValueDependent())
1931     return false;
1932 
1933   // Check constant-ness first.
1934   if (SemaBuiltinConstantArg(TheCall, 1, Result))
1935     return true;
1936 
1937   Expr *Arg = TheCall->getArg(1);
1938   if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1939     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1940              << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1941   }
1942 
1943   return false;
1944 }
1945 
1946 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1947 /// This checks that val is a constant 1.
1948 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1949   Expr *Arg = TheCall->getArg(1);
1950   llvm::APSInt Result;
1951 
1952   // TODO: This is less than ideal. Overload this to take a value.
1953   if (SemaBuiltinConstantArg(TheCall, 1, Result))
1954     return true;
1955 
1956   if (Result != 1)
1957     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1958              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1959 
1960   return false;
1961 }
1962 
1963 namespace {
1964 enum StringLiteralCheckType {
1965   SLCT_NotALiteral,
1966   SLCT_UncheckedLiteral,
1967   SLCT_CheckedLiteral
1968 };
1969 }
1970 
1971 // Determine if an expression is a string literal or constant string.
1972 // If this function returns false on the arguments to a function expecting a
1973 // format string, we will usually need to emit a warning.
1974 // True string literals are then checked by CheckFormatString.
1975 static StringLiteralCheckType
1976 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
1977                       bool HasVAListArg, unsigned format_idx,
1978                       unsigned firstDataArg, Sema::FormatStringType Type,
1979                       Sema::VariadicCallType CallType, bool InFunctionCall,
1980                       llvm::SmallBitVector &CheckedVarArgs) {
1981  tryAgain:
1982   if (E->isTypeDependent() || E->isValueDependent())
1983     return SLCT_NotALiteral;
1984 
1985   E = E->IgnoreParenCasts();
1986 
1987   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
1988     // Technically -Wformat-nonliteral does not warn about this case.
1989     // The behavior of printf and friends in this case is implementation
1990     // dependent.  Ideally if the format string cannot be null then
1991     // it should have a 'nonnull' attribute in the function prototype.
1992     return SLCT_UncheckedLiteral;
1993 
1994   switch (E->getStmtClass()) {
1995   case Stmt::BinaryConditionalOperatorClass:
1996   case Stmt::ConditionalOperatorClass: {
1997     // The expression is a literal if both sub-expressions were, and it was
1998     // completely checked only if both sub-expressions were checked.
1999     const AbstractConditionalOperator *C =
2000         cast<AbstractConditionalOperator>(E);
2001     StringLiteralCheckType Left =
2002         checkFormatStringExpr(S, C->getTrueExpr(), Args,
2003                               HasVAListArg, format_idx, firstDataArg,
2004                               Type, CallType, InFunctionCall, CheckedVarArgs);
2005     if (Left == SLCT_NotALiteral)
2006       return SLCT_NotALiteral;
2007     StringLiteralCheckType Right =
2008         checkFormatStringExpr(S, C->getFalseExpr(), Args,
2009                               HasVAListArg, format_idx, firstDataArg,
2010                               Type, CallType, InFunctionCall, CheckedVarArgs);
2011     return Left < Right ? Left : Right;
2012   }
2013 
2014   case Stmt::ImplicitCastExprClass: {
2015     E = cast<ImplicitCastExpr>(E)->getSubExpr();
2016     goto tryAgain;
2017   }
2018 
2019   case Stmt::OpaqueValueExprClass:
2020     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
2021       E = src;
2022       goto tryAgain;
2023     }
2024     return SLCT_NotALiteral;
2025 
2026   case Stmt::PredefinedExprClass:
2027     // While __func__, etc., are technically not string literals, they
2028     // cannot contain format specifiers and thus are not a security
2029     // liability.
2030     return SLCT_UncheckedLiteral;
2031 
2032   case Stmt::DeclRefExprClass: {
2033     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
2034 
2035     // As an exception, do not flag errors for variables binding to
2036     // const string literals.
2037     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
2038       bool isConstant = false;
2039       QualType T = DR->getType();
2040 
2041       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
2042         isConstant = AT->getElementType().isConstant(S.Context);
2043       } else if (const PointerType *PT = T->getAs<PointerType>()) {
2044         isConstant = T.isConstant(S.Context) &&
2045                      PT->getPointeeType().isConstant(S.Context);
2046       } else if (T->isObjCObjectPointerType()) {
2047         // In ObjC, there is usually no "const ObjectPointer" type,
2048         // so don't check if the pointee type is constant.
2049         isConstant = T.isConstant(S.Context);
2050       }
2051 
2052       if (isConstant) {
2053         if (const Expr *Init = VD->getAnyInitializer()) {
2054           // Look through initializers like const char c[] = { "foo" }
2055           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2056             if (InitList->isStringLiteralInit())
2057               Init = InitList->getInit(0)->IgnoreParenImpCasts();
2058           }
2059           return checkFormatStringExpr(S, Init, Args,
2060                                        HasVAListArg, format_idx,
2061                                        firstDataArg, Type, CallType,
2062                                        /*InFunctionCall*/false, CheckedVarArgs);
2063         }
2064       }
2065 
2066       // For vprintf* functions (i.e., HasVAListArg==true), we add a
2067       // special check to see if the format string is a function parameter
2068       // of the function calling the printf function.  If the function
2069       // has an attribute indicating it is a printf-like function, then we
2070       // should suppress warnings concerning non-literals being used in a call
2071       // to a vprintf function.  For example:
2072       //
2073       // void
2074       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2075       //      va_list ap;
2076       //      va_start(ap, fmt);
2077       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
2078       //      ...
2079       // }
2080       if (HasVAListArg) {
2081         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2082           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2083             int PVIndex = PV->getFunctionScopeIndex() + 1;
2084             for (specific_attr_iterator<FormatAttr>
2085                  i = ND->specific_attr_begin<FormatAttr>(),
2086                  e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
2087               FormatAttr *PVFormat = *i;
2088               // adjust for implicit parameter
2089               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2090                 if (MD->isInstance())
2091                   ++PVIndex;
2092               // We also check if the formats are compatible.
2093               // We can't pass a 'scanf' string to a 'printf' function.
2094               if (PVIndex == PVFormat->getFormatIdx() &&
2095                   Type == S.GetFormatStringType(PVFormat))
2096                 return SLCT_UncheckedLiteral;
2097             }
2098           }
2099         }
2100       }
2101     }
2102 
2103     return SLCT_NotALiteral;
2104   }
2105 
2106   case Stmt::CallExprClass:
2107   case Stmt::CXXMemberCallExprClass: {
2108     const CallExpr *CE = cast<CallExpr>(E);
2109     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2110       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2111         unsigned ArgIndex = FA->getFormatIdx();
2112         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2113           if (MD->isInstance())
2114             --ArgIndex;
2115         const Expr *Arg = CE->getArg(ArgIndex - 1);
2116 
2117         return checkFormatStringExpr(S, Arg, Args,
2118                                      HasVAListArg, format_idx, firstDataArg,
2119                                      Type, CallType, InFunctionCall,
2120                                      CheckedVarArgs);
2121       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2122         unsigned BuiltinID = FD->getBuiltinID();
2123         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2124             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2125           const Expr *Arg = CE->getArg(0);
2126           return checkFormatStringExpr(S, Arg, Args,
2127                                        HasVAListArg, format_idx,
2128                                        firstDataArg, Type, CallType,
2129                                        InFunctionCall, CheckedVarArgs);
2130         }
2131       }
2132     }
2133 
2134     return SLCT_NotALiteral;
2135   }
2136 
2137   case Stmt::ObjCMessageExprClass: {
2138     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(E);
2139     if (const ObjCMethodDecl *MDecl = ME->getMethodDecl()) {
2140       if (const NamedDecl *ND = dyn_cast<NamedDecl>(MDecl)) {
2141         if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2142           unsigned ArgIndex = FA->getFormatIdx();
2143           if (ArgIndex <= ME->getNumArgs()) {
2144             const Expr *Arg = ME->getArg(ArgIndex-1);
2145             return checkFormatStringExpr(S, Arg, Args,
2146                                          HasVAListArg, format_idx,
2147                                          firstDataArg, Type, CallType,
2148                                          InFunctionCall, CheckedVarArgs);
2149           }
2150         }
2151       }
2152     }
2153 
2154     return SLCT_NotALiteral;
2155   }
2156 
2157   case Stmt::ObjCStringLiteralClass:
2158   case Stmt::StringLiteralClass: {
2159     const StringLiteral *StrE = NULL;
2160 
2161     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2162       StrE = ObjCFExpr->getString();
2163     else
2164       StrE = cast<StringLiteral>(E);
2165 
2166     if (StrE) {
2167       S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2168                           Type, InFunctionCall, CallType, CheckedVarArgs);
2169       return SLCT_CheckedLiteral;
2170     }
2171 
2172     return SLCT_NotALiteral;
2173   }
2174 
2175   default:
2176     return SLCT_NotALiteral;
2177   }
2178 }
2179 
2180 void
2181 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
2182                             const Expr * const *ExprArgs,
2183                             SourceLocation CallSiteLoc) {
2184   for (NonNullAttr::args_iterator i = NonNull->args_begin(),
2185                                   e = NonNull->args_end();
2186        i != e; ++i) {
2187     const Expr *ArgExpr = ExprArgs[*i];
2188 
2189     // As a special case, transparent unions initialized with zero are
2190     // considered null for the purposes of the nonnull attribute.
2191     if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
2192       if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
2193         if (const CompoundLiteralExpr *CLE =
2194             dyn_cast<CompoundLiteralExpr>(ArgExpr))
2195           if (const InitListExpr *ILE =
2196               dyn_cast<InitListExpr>(CLE->getInitializer()))
2197             ArgExpr = ILE->getInit(0);
2198     }
2199 
2200     bool Result;
2201     if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
2202       Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
2203   }
2204 }
2205 
2206 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2207   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
2208   .Case("scanf", FST_Scanf)
2209   .Cases("printf", "printf0", FST_Printf)
2210   .Cases("NSString", "CFString", FST_NSString)
2211   .Case("strftime", FST_Strftime)
2212   .Case("strfmon", FST_Strfmon)
2213   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2214   .Default(FST_Unknown);
2215 }
2216 
2217 /// CheckFormatArguments - Check calls to printf and scanf (and similar
2218 /// functions) for correct use of format strings.
2219 /// Returns true if a format string has been fully checked.
2220 bool Sema::CheckFormatArguments(const FormatAttr *Format,
2221                                 ArrayRef<const Expr *> Args,
2222                                 bool IsCXXMember,
2223                                 VariadicCallType CallType,
2224                                 SourceLocation Loc, SourceRange Range,
2225                                 llvm::SmallBitVector &CheckedVarArgs) {
2226   FormatStringInfo FSI;
2227   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2228     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2229                                 FSI.FirstDataArg, GetFormatStringType(Format),
2230                                 CallType, Loc, Range, CheckedVarArgs);
2231   return false;
2232 }
2233 
2234 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2235                                 bool HasVAListArg, unsigned format_idx,
2236                                 unsigned firstDataArg, FormatStringType Type,
2237                                 VariadicCallType CallType,
2238                                 SourceLocation Loc, SourceRange Range,
2239                                 llvm::SmallBitVector &CheckedVarArgs) {
2240   // CHECK: printf/scanf-like function is called with no format string.
2241   if (format_idx >= Args.size()) {
2242     Diag(Loc, diag::warn_missing_format_string) << Range;
2243     return false;
2244   }
2245 
2246   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2247 
2248   // CHECK: format string is not a string literal.
2249   //
2250   // Dynamically generated format strings are difficult to
2251   // automatically vet at compile time.  Requiring that format strings
2252   // are string literals: (1) permits the checking of format strings by
2253   // the compiler and thereby (2) can practically remove the source of
2254   // many format string exploits.
2255 
2256   // Format string can be either ObjC string (e.g. @"%d") or
2257   // C string (e.g. "%d")
2258   // ObjC string uses the same format specifiers as C string, so we can use
2259   // the same format string checking logic for both ObjC and C strings.
2260   StringLiteralCheckType CT =
2261       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2262                             format_idx, firstDataArg, Type, CallType,
2263                             /*IsFunctionCall*/true, CheckedVarArgs);
2264   if (CT != SLCT_NotALiteral)
2265     // Literal format string found, check done!
2266     return CT == SLCT_CheckedLiteral;
2267 
2268   // Strftime is particular as it always uses a single 'time' argument,
2269   // so it is safe to pass a non-literal string.
2270   if (Type == FST_Strftime)
2271     return false;
2272 
2273   // Do not emit diag when the string param is a macro expansion and the
2274   // format is either NSString or CFString. This is a hack to prevent
2275   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2276   // which are usually used in place of NS and CF string literals.
2277   if (Type == FST_NSString &&
2278       SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2279     return false;
2280 
2281   // If there are no arguments specified, warn with -Wformat-security, otherwise
2282   // warn only with -Wformat-nonliteral.
2283   if (Args.size() == firstDataArg)
2284     Diag(Args[format_idx]->getLocStart(),
2285          diag::warn_format_nonliteral_noargs)
2286       << OrigFormatExpr->getSourceRange();
2287   else
2288     Diag(Args[format_idx]->getLocStart(),
2289          diag::warn_format_nonliteral)
2290            << OrigFormatExpr->getSourceRange();
2291   return false;
2292 }
2293 
2294 namespace {
2295 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2296 protected:
2297   Sema &S;
2298   const StringLiteral *FExpr;
2299   const Expr *OrigFormatExpr;
2300   const unsigned FirstDataArg;
2301   const unsigned NumDataArgs;
2302   const char *Beg; // Start of format string.
2303   const bool HasVAListArg;
2304   ArrayRef<const Expr *> Args;
2305   unsigned FormatIdx;
2306   llvm::SmallBitVector CoveredArgs;
2307   bool usesPositionalArgs;
2308   bool atFirstArg;
2309   bool inFunctionCall;
2310   Sema::VariadicCallType CallType;
2311   llvm::SmallBitVector &CheckedVarArgs;
2312 public:
2313   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2314                      const Expr *origFormatExpr, unsigned firstDataArg,
2315                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
2316                      ArrayRef<const Expr *> Args,
2317                      unsigned formatIdx, bool inFunctionCall,
2318                      Sema::VariadicCallType callType,
2319                      llvm::SmallBitVector &CheckedVarArgs)
2320     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2321       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2322       Beg(beg), HasVAListArg(hasVAListArg),
2323       Args(Args), FormatIdx(formatIdx),
2324       usesPositionalArgs(false), atFirstArg(true),
2325       inFunctionCall(inFunctionCall), CallType(callType),
2326       CheckedVarArgs(CheckedVarArgs) {
2327     CoveredArgs.resize(numDataArgs);
2328     CoveredArgs.reset();
2329   }
2330 
2331   void DoneProcessing();
2332 
2333   void HandleIncompleteSpecifier(const char *startSpecifier,
2334                                  unsigned specifierLen);
2335 
2336   void HandleInvalidLengthModifier(
2337       const analyze_format_string::FormatSpecifier &FS,
2338       const analyze_format_string::ConversionSpecifier &CS,
2339       const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
2340 
2341   void HandleNonStandardLengthModifier(
2342       const analyze_format_string::FormatSpecifier &FS,
2343       const char *startSpecifier, unsigned specifierLen);
2344 
2345   void HandleNonStandardConversionSpecifier(
2346       const analyze_format_string::ConversionSpecifier &CS,
2347       const char *startSpecifier, unsigned specifierLen);
2348 
2349   virtual void HandlePosition(const char *startPos, unsigned posLen);
2350 
2351   virtual void HandleInvalidPosition(const char *startSpecifier,
2352                                      unsigned specifierLen,
2353                                      analyze_format_string::PositionContext p);
2354 
2355   virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2356 
2357   void HandleNullChar(const char *nullCharacter);
2358 
2359   template <typename Range>
2360   static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2361                                    const Expr *ArgumentExpr,
2362                                    PartialDiagnostic PDiag,
2363                                    SourceLocation StringLoc,
2364                                    bool IsStringLocation, Range StringRange,
2365                                    ArrayRef<FixItHint> Fixit = None);
2366 
2367 protected:
2368   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2369                                         const char *startSpec,
2370                                         unsigned specifierLen,
2371                                         const char *csStart, unsigned csLen);
2372 
2373   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2374                                          const char *startSpec,
2375                                          unsigned specifierLen);
2376 
2377   SourceRange getFormatStringRange();
2378   CharSourceRange getSpecifierRange(const char *startSpecifier,
2379                                     unsigned specifierLen);
2380   SourceLocation getLocationOfByte(const char *x);
2381 
2382   const Expr *getDataArg(unsigned i) const;
2383 
2384   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2385                     const analyze_format_string::ConversionSpecifier &CS,
2386                     const char *startSpecifier, unsigned specifierLen,
2387                     unsigned argIndex);
2388 
2389   template <typename Range>
2390   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2391                             bool IsStringLocation, Range StringRange,
2392                             ArrayRef<FixItHint> Fixit = None);
2393 
2394   void CheckPositionalAndNonpositionalArgs(
2395       const analyze_format_string::FormatSpecifier *FS);
2396 };
2397 }
2398 
2399 SourceRange CheckFormatHandler::getFormatStringRange() {
2400   return OrigFormatExpr->getSourceRange();
2401 }
2402 
2403 CharSourceRange CheckFormatHandler::
2404 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2405   SourceLocation Start = getLocationOfByte(startSpecifier);
2406   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2407 
2408   // Advance the end SourceLocation by one due to half-open ranges.
2409   End = End.getLocWithOffset(1);
2410 
2411   return CharSourceRange::getCharRange(Start, End);
2412 }
2413 
2414 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2415   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2416 }
2417 
2418 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2419                                                    unsigned specifierLen){
2420   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2421                        getLocationOfByte(startSpecifier),
2422                        /*IsStringLocation*/true,
2423                        getSpecifierRange(startSpecifier, specifierLen));
2424 }
2425 
2426 void CheckFormatHandler::HandleInvalidLengthModifier(
2427     const analyze_format_string::FormatSpecifier &FS,
2428     const analyze_format_string::ConversionSpecifier &CS,
2429     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2430   using namespace analyze_format_string;
2431 
2432   const LengthModifier &LM = FS.getLengthModifier();
2433   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2434 
2435   // See if we know how to fix this length modifier.
2436   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2437   if (FixedLM) {
2438     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2439                          getLocationOfByte(LM.getStart()),
2440                          /*IsStringLocation*/true,
2441                          getSpecifierRange(startSpecifier, specifierLen));
2442 
2443     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2444       << FixedLM->toString()
2445       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2446 
2447   } else {
2448     FixItHint Hint;
2449     if (DiagID == diag::warn_format_nonsensical_length)
2450       Hint = FixItHint::CreateRemoval(LMRange);
2451 
2452     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2453                          getLocationOfByte(LM.getStart()),
2454                          /*IsStringLocation*/true,
2455                          getSpecifierRange(startSpecifier, specifierLen),
2456                          Hint);
2457   }
2458 }
2459 
2460 void CheckFormatHandler::HandleNonStandardLengthModifier(
2461     const analyze_format_string::FormatSpecifier &FS,
2462     const char *startSpecifier, unsigned specifierLen) {
2463   using namespace analyze_format_string;
2464 
2465   const LengthModifier &LM = FS.getLengthModifier();
2466   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2467 
2468   // See if we know how to fix this length modifier.
2469   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2470   if (FixedLM) {
2471     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2472                            << LM.toString() << 0,
2473                          getLocationOfByte(LM.getStart()),
2474                          /*IsStringLocation*/true,
2475                          getSpecifierRange(startSpecifier, specifierLen));
2476 
2477     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2478       << FixedLM->toString()
2479       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2480 
2481   } else {
2482     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2483                            << LM.toString() << 0,
2484                          getLocationOfByte(LM.getStart()),
2485                          /*IsStringLocation*/true,
2486                          getSpecifierRange(startSpecifier, specifierLen));
2487   }
2488 }
2489 
2490 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2491     const analyze_format_string::ConversionSpecifier &CS,
2492     const char *startSpecifier, unsigned specifierLen) {
2493   using namespace analyze_format_string;
2494 
2495   // See if we know how to fix this conversion specifier.
2496   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2497   if (FixedCS) {
2498     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2499                           << CS.toString() << /*conversion specifier*/1,
2500                          getLocationOfByte(CS.getStart()),
2501                          /*IsStringLocation*/true,
2502                          getSpecifierRange(startSpecifier, specifierLen));
2503 
2504     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2505     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2506       << FixedCS->toString()
2507       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2508   } else {
2509     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2510                           << CS.toString() << /*conversion specifier*/1,
2511                          getLocationOfByte(CS.getStart()),
2512                          /*IsStringLocation*/true,
2513                          getSpecifierRange(startSpecifier, specifierLen));
2514   }
2515 }
2516 
2517 void CheckFormatHandler::HandlePosition(const char *startPos,
2518                                         unsigned posLen) {
2519   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2520                                getLocationOfByte(startPos),
2521                                /*IsStringLocation*/true,
2522                                getSpecifierRange(startPos, posLen));
2523 }
2524 
2525 void
2526 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2527                                      analyze_format_string::PositionContext p) {
2528   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2529                          << (unsigned) p,
2530                        getLocationOfByte(startPos), /*IsStringLocation*/true,
2531                        getSpecifierRange(startPos, posLen));
2532 }
2533 
2534 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2535                                             unsigned posLen) {
2536   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2537                                getLocationOfByte(startPos),
2538                                /*IsStringLocation*/true,
2539                                getSpecifierRange(startPos, posLen));
2540 }
2541 
2542 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2543   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2544     // The presence of a null character is likely an error.
2545     EmitFormatDiagnostic(
2546       S.PDiag(diag::warn_printf_format_string_contains_null_char),
2547       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2548       getFormatStringRange());
2549   }
2550 }
2551 
2552 // Note that this may return NULL if there was an error parsing or building
2553 // one of the argument expressions.
2554 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2555   return Args[FirstDataArg + i];
2556 }
2557 
2558 void CheckFormatHandler::DoneProcessing() {
2559     // Does the number of data arguments exceed the number of
2560     // format conversions in the format string?
2561   if (!HasVAListArg) {
2562       // Find any arguments that weren't covered.
2563     CoveredArgs.flip();
2564     signed notCoveredArg = CoveredArgs.find_first();
2565     if (notCoveredArg >= 0) {
2566       assert((unsigned)notCoveredArg < NumDataArgs);
2567       if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2568         SourceLocation Loc = E->getLocStart();
2569         if (!S.getSourceManager().isInSystemMacro(Loc)) {
2570           EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2571                                Loc, /*IsStringLocation*/false,
2572                                getFormatStringRange());
2573         }
2574       }
2575     }
2576   }
2577 }
2578 
2579 bool
2580 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2581                                                      SourceLocation Loc,
2582                                                      const char *startSpec,
2583                                                      unsigned specifierLen,
2584                                                      const char *csStart,
2585                                                      unsigned csLen) {
2586 
2587   bool keepGoing = true;
2588   if (argIndex < NumDataArgs) {
2589     // Consider the argument coverered, even though the specifier doesn't
2590     // make sense.
2591     CoveredArgs.set(argIndex);
2592   }
2593   else {
2594     // If argIndex exceeds the number of data arguments we
2595     // don't issue a warning because that is just a cascade of warnings (and
2596     // they may have intended '%%' anyway). We don't want to continue processing
2597     // the format string after this point, however, as we will like just get
2598     // gibberish when trying to match arguments.
2599     keepGoing = false;
2600   }
2601 
2602   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2603                          << StringRef(csStart, csLen),
2604                        Loc, /*IsStringLocation*/true,
2605                        getSpecifierRange(startSpec, specifierLen));
2606 
2607   return keepGoing;
2608 }
2609 
2610 void
2611 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2612                                                       const char *startSpec,
2613                                                       unsigned specifierLen) {
2614   EmitFormatDiagnostic(
2615     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2616     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2617 }
2618 
2619 bool
2620 CheckFormatHandler::CheckNumArgs(
2621   const analyze_format_string::FormatSpecifier &FS,
2622   const analyze_format_string::ConversionSpecifier &CS,
2623   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2624 
2625   if (argIndex >= NumDataArgs) {
2626     PartialDiagnostic PDiag = FS.usesPositionalArg()
2627       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2628            << (argIndex+1) << NumDataArgs)
2629       : S.PDiag(diag::warn_printf_insufficient_data_args);
2630     EmitFormatDiagnostic(
2631       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2632       getSpecifierRange(startSpecifier, specifierLen));
2633     return false;
2634   }
2635   return true;
2636 }
2637 
2638 template<typename Range>
2639 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2640                                               SourceLocation Loc,
2641                                               bool IsStringLocation,
2642                                               Range StringRange,
2643                                               ArrayRef<FixItHint> FixIt) {
2644   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2645                        Loc, IsStringLocation, StringRange, FixIt);
2646 }
2647 
2648 /// \brief If the format string is not within the funcion call, emit a note
2649 /// so that the function call and string are in diagnostic messages.
2650 ///
2651 /// \param InFunctionCall if true, the format string is within the function
2652 /// call and only one diagnostic message will be produced.  Otherwise, an
2653 /// extra note will be emitted pointing to location of the format string.
2654 ///
2655 /// \param ArgumentExpr the expression that is passed as the format string
2656 /// argument in the function call.  Used for getting locations when two
2657 /// diagnostics are emitted.
2658 ///
2659 /// \param PDiag the callee should already have provided any strings for the
2660 /// diagnostic message.  This function only adds locations and fixits
2661 /// to diagnostics.
2662 ///
2663 /// \param Loc primary location for diagnostic.  If two diagnostics are
2664 /// required, one will be at Loc and a new SourceLocation will be created for
2665 /// the other one.
2666 ///
2667 /// \param IsStringLocation if true, Loc points to the format string should be
2668 /// used for the note.  Otherwise, Loc points to the argument list and will
2669 /// be used with PDiag.
2670 ///
2671 /// \param StringRange some or all of the string to highlight.  This is
2672 /// templated so it can accept either a CharSourceRange or a SourceRange.
2673 ///
2674 /// \param FixIt optional fix it hint for the format string.
2675 template<typename Range>
2676 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2677                                               const Expr *ArgumentExpr,
2678                                               PartialDiagnostic PDiag,
2679                                               SourceLocation Loc,
2680                                               bool IsStringLocation,
2681                                               Range StringRange,
2682                                               ArrayRef<FixItHint> FixIt) {
2683   if (InFunctionCall) {
2684     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2685     D << StringRange;
2686     for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2687          I != E; ++I) {
2688       D << *I;
2689     }
2690   } else {
2691     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2692       << ArgumentExpr->getSourceRange();
2693 
2694     const Sema::SemaDiagnosticBuilder &Note =
2695       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2696              diag::note_format_string_defined);
2697 
2698     Note << StringRange;
2699     for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2700          I != E; ++I) {
2701       Note << *I;
2702     }
2703   }
2704 }
2705 
2706 //===--- CHECK: Printf format string checking ------------------------------===//
2707 
2708 namespace {
2709 class CheckPrintfHandler : public CheckFormatHandler {
2710   bool ObjCContext;
2711 public:
2712   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2713                      const Expr *origFormatExpr, unsigned firstDataArg,
2714                      unsigned numDataArgs, bool isObjC,
2715                      const char *beg, bool hasVAListArg,
2716                      ArrayRef<const Expr *> Args,
2717                      unsigned formatIdx, bool inFunctionCall,
2718                      Sema::VariadicCallType CallType,
2719                      llvm::SmallBitVector &CheckedVarArgs)
2720     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2721                          numDataArgs, beg, hasVAListArg, Args,
2722                          formatIdx, inFunctionCall, CallType, CheckedVarArgs),
2723       ObjCContext(isObjC)
2724   {}
2725 
2726 
2727   bool HandleInvalidPrintfConversionSpecifier(
2728                                       const analyze_printf::PrintfSpecifier &FS,
2729                                       const char *startSpecifier,
2730                                       unsigned specifierLen);
2731 
2732   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2733                              const char *startSpecifier,
2734                              unsigned specifierLen);
2735   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2736                        const char *StartSpecifier,
2737                        unsigned SpecifierLen,
2738                        const Expr *E);
2739 
2740   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2741                     const char *startSpecifier, unsigned specifierLen);
2742   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2743                            const analyze_printf::OptionalAmount &Amt,
2744                            unsigned type,
2745                            const char *startSpecifier, unsigned specifierLen);
2746   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2747                   const analyze_printf::OptionalFlag &flag,
2748                   const char *startSpecifier, unsigned specifierLen);
2749   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2750                          const analyze_printf::OptionalFlag &ignoredFlag,
2751                          const analyze_printf::OptionalFlag &flag,
2752                          const char *startSpecifier, unsigned specifierLen);
2753   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2754                            const Expr *E, const CharSourceRange &CSR);
2755 
2756 };
2757 }
2758 
2759 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2760                                       const analyze_printf::PrintfSpecifier &FS,
2761                                       const char *startSpecifier,
2762                                       unsigned specifierLen) {
2763   const analyze_printf::PrintfConversionSpecifier &CS =
2764     FS.getConversionSpecifier();
2765 
2766   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2767                                           getLocationOfByte(CS.getStart()),
2768                                           startSpecifier, specifierLen,
2769                                           CS.getStart(), CS.getLength());
2770 }
2771 
2772 bool CheckPrintfHandler::HandleAmount(
2773                                const analyze_format_string::OptionalAmount &Amt,
2774                                unsigned k, const char *startSpecifier,
2775                                unsigned specifierLen) {
2776 
2777   if (Amt.hasDataArgument()) {
2778     if (!HasVAListArg) {
2779       unsigned argIndex = Amt.getArgIndex();
2780       if (argIndex >= NumDataArgs) {
2781         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2782                                << k,
2783                              getLocationOfByte(Amt.getStart()),
2784                              /*IsStringLocation*/true,
2785                              getSpecifierRange(startSpecifier, specifierLen));
2786         // Don't do any more checking.  We will just emit
2787         // spurious errors.
2788         return false;
2789       }
2790 
2791       // Type check the data argument.  It should be an 'int'.
2792       // Although not in conformance with C99, we also allow the argument to be
2793       // an 'unsigned int' as that is a reasonably safe case.  GCC also
2794       // doesn't emit a warning for that case.
2795       CoveredArgs.set(argIndex);
2796       const Expr *Arg = getDataArg(argIndex);
2797       if (!Arg)
2798         return false;
2799 
2800       QualType T = Arg->getType();
2801 
2802       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2803       assert(AT.isValid());
2804 
2805       if (!AT.matchesType(S.Context, T)) {
2806         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2807                                << k << AT.getRepresentativeTypeName(S.Context)
2808                                << T << Arg->getSourceRange(),
2809                              getLocationOfByte(Amt.getStart()),
2810                              /*IsStringLocation*/true,
2811                              getSpecifierRange(startSpecifier, specifierLen));
2812         // Don't do any more checking.  We will just emit
2813         // spurious errors.
2814         return false;
2815       }
2816     }
2817   }
2818   return true;
2819 }
2820 
2821 void CheckPrintfHandler::HandleInvalidAmount(
2822                                       const analyze_printf::PrintfSpecifier &FS,
2823                                       const analyze_printf::OptionalAmount &Amt,
2824                                       unsigned type,
2825                                       const char *startSpecifier,
2826                                       unsigned specifierLen) {
2827   const analyze_printf::PrintfConversionSpecifier &CS =
2828     FS.getConversionSpecifier();
2829 
2830   FixItHint fixit =
2831     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2832       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2833                                  Amt.getConstantLength()))
2834       : FixItHint();
2835 
2836   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2837                          << type << CS.toString(),
2838                        getLocationOfByte(Amt.getStart()),
2839                        /*IsStringLocation*/true,
2840                        getSpecifierRange(startSpecifier, specifierLen),
2841                        fixit);
2842 }
2843 
2844 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2845                                     const analyze_printf::OptionalFlag &flag,
2846                                     const char *startSpecifier,
2847                                     unsigned specifierLen) {
2848   // Warn about pointless flag with a fixit removal.
2849   const analyze_printf::PrintfConversionSpecifier &CS =
2850     FS.getConversionSpecifier();
2851   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2852                          << flag.toString() << CS.toString(),
2853                        getLocationOfByte(flag.getPosition()),
2854                        /*IsStringLocation*/true,
2855                        getSpecifierRange(startSpecifier, specifierLen),
2856                        FixItHint::CreateRemoval(
2857                          getSpecifierRange(flag.getPosition(), 1)));
2858 }
2859 
2860 void CheckPrintfHandler::HandleIgnoredFlag(
2861                                 const analyze_printf::PrintfSpecifier &FS,
2862                                 const analyze_printf::OptionalFlag &ignoredFlag,
2863                                 const analyze_printf::OptionalFlag &flag,
2864                                 const char *startSpecifier,
2865                                 unsigned specifierLen) {
2866   // Warn about ignored flag with a fixit removal.
2867   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2868                          << ignoredFlag.toString() << flag.toString(),
2869                        getLocationOfByte(ignoredFlag.getPosition()),
2870                        /*IsStringLocation*/true,
2871                        getSpecifierRange(startSpecifier, specifierLen),
2872                        FixItHint::CreateRemoval(
2873                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
2874 }
2875 
2876 // Determines if the specified is a C++ class or struct containing
2877 // a member with the specified name and kind (e.g. a CXXMethodDecl named
2878 // "c_str()").
2879 template<typename MemberKind>
2880 static llvm::SmallPtrSet<MemberKind*, 1>
2881 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2882   const RecordType *RT = Ty->getAs<RecordType>();
2883   llvm::SmallPtrSet<MemberKind*, 1> Results;
2884 
2885   if (!RT)
2886     return Results;
2887   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2888   if (!RD)
2889     return Results;
2890 
2891   LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2892                  Sema::LookupMemberName);
2893 
2894   // We just need to include all members of the right kind turned up by the
2895   // filter, at this point.
2896   if (S.LookupQualifiedName(R, RT->getDecl()))
2897     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2898       NamedDecl *decl = (*I)->getUnderlyingDecl();
2899       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2900         Results.insert(FK);
2901     }
2902   return Results;
2903 }
2904 
2905 // Check if a (w)string was passed when a (w)char* was needed, and offer a
2906 // better diagnostic if so. AT is assumed to be valid.
2907 // Returns true when a c_str() conversion method is found.
2908 bool CheckPrintfHandler::checkForCStrMembers(
2909     const analyze_printf::ArgType &AT, const Expr *E,
2910     const CharSourceRange &CSR) {
2911   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2912 
2913   MethodSet Results =
2914       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2915 
2916   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2917        MI != ME; ++MI) {
2918     const CXXMethodDecl *Method = *MI;
2919     if (Method->getNumParams() == 0 &&
2920           AT.matchesType(S.Context, Method->getResultType())) {
2921       // FIXME: Suggest parens if the expression needs them.
2922       SourceLocation EndLoc =
2923           S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2924       S.Diag(E->getLocStart(), diag::note_printf_c_str)
2925           << "c_str()"
2926           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2927       return true;
2928     }
2929   }
2930 
2931   return false;
2932 }
2933 
2934 bool
2935 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2936                                             &FS,
2937                                           const char *startSpecifier,
2938                                           unsigned specifierLen) {
2939 
2940   using namespace analyze_format_string;
2941   using namespace analyze_printf;
2942   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2943 
2944   if (FS.consumesDataArgument()) {
2945     if (atFirstArg) {
2946         atFirstArg = false;
2947         usesPositionalArgs = FS.usesPositionalArg();
2948     }
2949     else if (usesPositionalArgs != FS.usesPositionalArg()) {
2950       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2951                                         startSpecifier, specifierLen);
2952       return false;
2953     }
2954   }
2955 
2956   // First check if the field width, precision, and conversion specifier
2957   // have matching data arguments.
2958   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2959                     startSpecifier, specifierLen)) {
2960     return false;
2961   }
2962 
2963   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2964                     startSpecifier, specifierLen)) {
2965     return false;
2966   }
2967 
2968   if (!CS.consumesDataArgument()) {
2969     // FIXME: Technically specifying a precision or field width here
2970     // makes no sense.  Worth issuing a warning at some point.
2971     return true;
2972   }
2973 
2974   // Consume the argument.
2975   unsigned argIndex = FS.getArgIndex();
2976   if (argIndex < NumDataArgs) {
2977     // The check to see if the argIndex is valid will come later.
2978     // We set the bit here because we may exit early from this
2979     // function if we encounter some other error.
2980     CoveredArgs.set(argIndex);
2981   }
2982 
2983   // Check for using an Objective-C specific conversion specifier
2984   // in a non-ObjC literal.
2985   if (!ObjCContext && CS.isObjCArg()) {
2986     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2987                                                   specifierLen);
2988   }
2989 
2990   // Check for invalid use of field width
2991   if (!FS.hasValidFieldWidth()) {
2992     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2993         startSpecifier, specifierLen);
2994   }
2995 
2996   // Check for invalid use of precision
2997   if (!FS.hasValidPrecision()) {
2998     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2999         startSpecifier, specifierLen);
3000   }
3001 
3002   // Check each flag does not conflict with any other component.
3003   if (!FS.hasValidThousandsGroupingPrefix())
3004     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
3005   if (!FS.hasValidLeadingZeros())
3006     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
3007   if (!FS.hasValidPlusPrefix())
3008     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
3009   if (!FS.hasValidSpacePrefix())
3010     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
3011   if (!FS.hasValidAlternativeForm())
3012     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
3013   if (!FS.hasValidLeftJustified())
3014     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
3015 
3016   // Check that flags are not ignored by another flag
3017   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
3018     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
3019         startSpecifier, specifierLen);
3020   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
3021     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
3022             startSpecifier, specifierLen);
3023 
3024   // Check the length modifier is valid with the given conversion specifier.
3025   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3026     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3027                                 diag::warn_format_nonsensical_length);
3028   else if (!FS.hasStandardLengthModifier())
3029     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3030   else if (!FS.hasStandardLengthConversionCombination())
3031     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3032                                 diag::warn_format_non_standard_conversion_spec);
3033 
3034   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3035     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3036 
3037   // The remaining checks depend on the data arguments.
3038   if (HasVAListArg)
3039     return true;
3040 
3041   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3042     return false;
3043 
3044   const Expr *Arg = getDataArg(argIndex);
3045   if (!Arg)
3046     return true;
3047 
3048   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
3049 }
3050 
3051 static bool requiresParensToAddCast(const Expr *E) {
3052   // FIXME: We should have a general way to reason about operator
3053   // precedence and whether parens are actually needed here.
3054   // Take care of a few common cases where they aren't.
3055   const Expr *Inside = E->IgnoreImpCasts();
3056   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
3057     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
3058 
3059   switch (Inside->getStmtClass()) {
3060   case Stmt::ArraySubscriptExprClass:
3061   case Stmt::CallExprClass:
3062   case Stmt::CharacterLiteralClass:
3063   case Stmt::CXXBoolLiteralExprClass:
3064   case Stmt::DeclRefExprClass:
3065   case Stmt::FloatingLiteralClass:
3066   case Stmt::IntegerLiteralClass:
3067   case Stmt::MemberExprClass:
3068   case Stmt::ObjCArrayLiteralClass:
3069   case Stmt::ObjCBoolLiteralExprClass:
3070   case Stmt::ObjCBoxedExprClass:
3071   case Stmt::ObjCDictionaryLiteralClass:
3072   case Stmt::ObjCEncodeExprClass:
3073   case Stmt::ObjCIvarRefExprClass:
3074   case Stmt::ObjCMessageExprClass:
3075   case Stmt::ObjCPropertyRefExprClass:
3076   case Stmt::ObjCStringLiteralClass:
3077   case Stmt::ObjCSubscriptRefExprClass:
3078   case Stmt::ParenExprClass:
3079   case Stmt::StringLiteralClass:
3080   case Stmt::UnaryOperatorClass:
3081     return false;
3082   default:
3083     return true;
3084   }
3085 }
3086 
3087 bool
3088 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3089                                     const char *StartSpecifier,
3090                                     unsigned SpecifierLen,
3091                                     const Expr *E) {
3092   using namespace analyze_format_string;
3093   using namespace analyze_printf;
3094   // Now type check the data expression that matches the
3095   // format specifier.
3096   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3097                                                     ObjCContext);
3098   if (!AT.isValid())
3099     return true;
3100 
3101   QualType ExprTy = E->getType();
3102   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3103     ExprTy = TET->getUnderlyingExpr()->getType();
3104   }
3105 
3106   if (AT.matchesType(S.Context, ExprTy))
3107     return true;
3108 
3109   // Look through argument promotions for our error message's reported type.
3110   // This includes the integral and floating promotions, but excludes array
3111   // and function pointer decay; seeing that an argument intended to be a
3112   // string has type 'char [6]' is probably more confusing than 'char *'.
3113   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3114     if (ICE->getCastKind() == CK_IntegralCast ||
3115         ICE->getCastKind() == CK_FloatingCast) {
3116       E = ICE->getSubExpr();
3117       ExprTy = E->getType();
3118 
3119       // Check if we didn't match because of an implicit cast from a 'char'
3120       // or 'short' to an 'int'.  This is done because printf is a varargs
3121       // function.
3122       if (ICE->getType() == S.Context.IntTy ||
3123           ICE->getType() == S.Context.UnsignedIntTy) {
3124         // All further checking is done on the subexpression.
3125         if (AT.matchesType(S.Context, ExprTy))
3126           return true;
3127       }
3128     }
3129   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3130     // Special case for 'a', which has type 'int' in C.
3131     // Note, however, that we do /not/ want to treat multibyte constants like
3132     // 'MooV' as characters! This form is deprecated but still exists.
3133     if (ExprTy == S.Context.IntTy)
3134       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3135         ExprTy = S.Context.CharTy;
3136   }
3137 
3138   // %C in an Objective-C context prints a unichar, not a wchar_t.
3139   // If the argument is an integer of some kind, believe the %C and suggest
3140   // a cast instead of changing the conversion specifier.
3141   QualType IntendedTy = ExprTy;
3142   if (ObjCContext &&
3143       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3144     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3145         !ExprTy->isCharType()) {
3146       // 'unichar' is defined as a typedef of unsigned short, but we should
3147       // prefer using the typedef if it is visible.
3148       IntendedTy = S.Context.UnsignedShortTy;
3149 
3150       // While we are here, check if the value is an IntegerLiteral that happens
3151       // to be within the valid range.
3152       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
3153         const llvm::APInt &V = IL->getValue();
3154         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
3155           return true;
3156       }
3157 
3158       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3159                           Sema::LookupOrdinaryName);
3160       if (S.LookupName(Result, S.getCurScope())) {
3161         NamedDecl *ND = Result.getFoundDecl();
3162         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3163           if (TD->getUnderlyingType() == IntendedTy)
3164             IntendedTy = S.Context.getTypedefType(TD);
3165       }
3166     }
3167   }
3168 
3169   // Special-case some of Darwin's platform-independence types by suggesting
3170   // casts to primitive types that are known to be large enough.
3171   bool ShouldNotPrintDirectly = false;
3172   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3173     // Use a 'while' to peel off layers of typedefs.
3174     QualType TyTy = IntendedTy;
3175     while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3176       StringRef Name = UserTy->getDecl()->getName();
3177       QualType CastTy = llvm::StringSwitch<QualType>(Name)
3178         .Case("NSInteger", S.Context.LongTy)
3179         .Case("NSUInteger", S.Context.UnsignedLongTy)
3180         .Case("SInt32", S.Context.IntTy)
3181         .Case("UInt32", S.Context.UnsignedIntTy)
3182         .Default(QualType());
3183 
3184       if (!CastTy.isNull()) {
3185         ShouldNotPrintDirectly = true;
3186         IntendedTy = CastTy;
3187         break;
3188       }
3189       TyTy = UserTy->desugar();
3190     }
3191   }
3192 
3193   // We may be able to offer a FixItHint if it is a supported type.
3194   PrintfSpecifier fixedFS = FS;
3195   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3196                                  S.Context, ObjCContext);
3197 
3198   if (success) {
3199     // Get the fix string from the fixed format specifier
3200     SmallString<16> buf;
3201     llvm::raw_svector_ostream os(buf);
3202     fixedFS.toString(os);
3203 
3204     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3205 
3206     if (IntendedTy == ExprTy) {
3207       // In this case, the specifier is wrong and should be changed to match
3208       // the argument.
3209       EmitFormatDiagnostic(
3210         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3211           << AT.getRepresentativeTypeName(S.Context) << IntendedTy
3212           << E->getSourceRange(),
3213         E->getLocStart(),
3214         /*IsStringLocation*/false,
3215         SpecRange,
3216         FixItHint::CreateReplacement(SpecRange, os.str()));
3217 
3218     } else {
3219       // The canonical type for formatting this value is different from the
3220       // actual type of the expression. (This occurs, for example, with Darwin's
3221       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3222       // should be printed as 'long' for 64-bit compatibility.)
3223       // Rather than emitting a normal format/argument mismatch, we want to
3224       // add a cast to the recommended type (and correct the format string
3225       // if necessary).
3226       SmallString<16> CastBuf;
3227       llvm::raw_svector_ostream CastFix(CastBuf);
3228       CastFix << "(";
3229       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3230       CastFix << ")";
3231 
3232       SmallVector<FixItHint,4> Hints;
3233       if (!AT.matchesType(S.Context, IntendedTy))
3234         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3235 
3236       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3237         // If there's already a cast present, just replace it.
3238         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3239         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3240 
3241       } else if (!requiresParensToAddCast(E)) {
3242         // If the expression has high enough precedence,
3243         // just write the C-style cast.
3244         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3245                                                    CastFix.str()));
3246       } else {
3247         // Otherwise, add parens around the expression as well as the cast.
3248         CastFix << "(";
3249         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3250                                                    CastFix.str()));
3251 
3252         SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
3253         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3254       }
3255 
3256       if (ShouldNotPrintDirectly) {
3257         // The expression has a type that should not be printed directly.
3258         // We extract the name from the typedef because we don't want to show
3259         // the underlying type in the diagnostic.
3260         StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
3261 
3262         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3263                                << Name << IntendedTy
3264                                << E->getSourceRange(),
3265                              E->getLocStart(), /*IsStringLocation=*/false,
3266                              SpecRange, Hints);
3267       } else {
3268         // In this case, the expression could be printed using a different
3269         // specifier, but we've decided that the specifier is probably correct
3270         // and we should cast instead. Just use the normal warning message.
3271         EmitFormatDiagnostic(
3272           S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3273             << AT.getRepresentativeTypeName(S.Context) << ExprTy
3274             << E->getSourceRange(),
3275           E->getLocStart(), /*IsStringLocation*/false,
3276           SpecRange, Hints);
3277       }
3278     }
3279   } else {
3280     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3281                                                    SpecifierLen);
3282     // Since the warning for passing non-POD types to variadic functions
3283     // was deferred until now, we emit a warning for non-POD
3284     // arguments here.
3285     switch (S.isValidVarArgType(ExprTy)) {
3286     case Sema::VAK_Valid:
3287     case Sema::VAK_ValidInCXX11:
3288       EmitFormatDiagnostic(
3289         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3290           << AT.getRepresentativeTypeName(S.Context) << ExprTy
3291           << CSR
3292           << E->getSourceRange(),
3293         E->getLocStart(), /*IsStringLocation*/false, CSR);
3294       break;
3295 
3296     case Sema::VAK_Undefined:
3297       EmitFormatDiagnostic(
3298         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3299           << S.getLangOpts().CPlusPlus11
3300           << ExprTy
3301           << CallType
3302           << AT.getRepresentativeTypeName(S.Context)
3303           << CSR
3304           << E->getSourceRange(),
3305         E->getLocStart(), /*IsStringLocation*/false, CSR);
3306       checkForCStrMembers(AT, E, CSR);
3307       break;
3308 
3309     case Sema::VAK_Invalid:
3310       if (ExprTy->isObjCObjectType())
3311         EmitFormatDiagnostic(
3312           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3313             << S.getLangOpts().CPlusPlus11
3314             << ExprTy
3315             << CallType
3316             << AT.getRepresentativeTypeName(S.Context)
3317             << CSR
3318             << E->getSourceRange(),
3319           E->getLocStart(), /*IsStringLocation*/false, CSR);
3320       else
3321         // FIXME: If this is an initializer list, suggest removing the braces
3322         // or inserting a cast to the target type.
3323         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3324           << isa<InitListExpr>(E) << ExprTy << CallType
3325           << AT.getRepresentativeTypeName(S.Context)
3326           << E->getSourceRange();
3327       break;
3328     }
3329 
3330     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
3331            "format string specifier index out of range");
3332     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
3333   }
3334 
3335   return true;
3336 }
3337 
3338 //===--- CHECK: Scanf format string checking ------------------------------===//
3339 
3340 namespace {
3341 class CheckScanfHandler : public CheckFormatHandler {
3342 public:
3343   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3344                     const Expr *origFormatExpr, unsigned firstDataArg,
3345                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
3346                     ArrayRef<const Expr *> Args,
3347                     unsigned formatIdx, bool inFunctionCall,
3348                     Sema::VariadicCallType CallType,
3349                     llvm::SmallBitVector &CheckedVarArgs)
3350     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3351                          numDataArgs, beg, hasVAListArg,
3352                          Args, formatIdx, inFunctionCall, CallType,
3353                          CheckedVarArgs)
3354   {}
3355 
3356   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3357                             const char *startSpecifier,
3358                             unsigned specifierLen);
3359 
3360   bool HandleInvalidScanfConversionSpecifier(
3361           const analyze_scanf::ScanfSpecifier &FS,
3362           const char *startSpecifier,
3363           unsigned specifierLen);
3364 
3365   void HandleIncompleteScanList(const char *start, const char *end);
3366 };
3367 }
3368 
3369 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3370                                                  const char *end) {
3371   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3372                        getLocationOfByte(end), /*IsStringLocation*/true,
3373                        getSpecifierRange(start, end - start));
3374 }
3375 
3376 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3377                                         const analyze_scanf::ScanfSpecifier &FS,
3378                                         const char *startSpecifier,
3379                                         unsigned specifierLen) {
3380 
3381   const analyze_scanf::ScanfConversionSpecifier &CS =
3382     FS.getConversionSpecifier();
3383 
3384   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3385                                           getLocationOfByte(CS.getStart()),
3386                                           startSpecifier, specifierLen,
3387                                           CS.getStart(), CS.getLength());
3388 }
3389 
3390 bool CheckScanfHandler::HandleScanfSpecifier(
3391                                        const analyze_scanf::ScanfSpecifier &FS,
3392                                        const char *startSpecifier,
3393                                        unsigned specifierLen) {
3394 
3395   using namespace analyze_scanf;
3396   using namespace analyze_format_string;
3397 
3398   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3399 
3400   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3401   // be used to decide if we are using positional arguments consistently.
3402   if (FS.consumesDataArgument()) {
3403     if (atFirstArg) {
3404       atFirstArg = false;
3405       usesPositionalArgs = FS.usesPositionalArg();
3406     }
3407     else if (usesPositionalArgs != FS.usesPositionalArg()) {
3408       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3409                                         startSpecifier, specifierLen);
3410       return false;
3411     }
3412   }
3413 
3414   // Check if the field with is non-zero.
3415   const OptionalAmount &Amt = FS.getFieldWidth();
3416   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3417     if (Amt.getConstantAmount() == 0) {
3418       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3419                                                    Amt.getConstantLength());
3420       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3421                            getLocationOfByte(Amt.getStart()),
3422                            /*IsStringLocation*/true, R,
3423                            FixItHint::CreateRemoval(R));
3424     }
3425   }
3426 
3427   if (!FS.consumesDataArgument()) {
3428     // FIXME: Technically specifying a precision or field width here
3429     // makes no sense.  Worth issuing a warning at some point.
3430     return true;
3431   }
3432 
3433   // Consume the argument.
3434   unsigned argIndex = FS.getArgIndex();
3435   if (argIndex < NumDataArgs) {
3436       // The check to see if the argIndex is valid will come later.
3437       // We set the bit here because we may exit early from this
3438       // function if we encounter some other error.
3439     CoveredArgs.set(argIndex);
3440   }
3441 
3442   // Check the length modifier is valid with the given conversion specifier.
3443   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3444     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3445                                 diag::warn_format_nonsensical_length);
3446   else if (!FS.hasStandardLengthModifier())
3447     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3448   else if (!FS.hasStandardLengthConversionCombination())
3449     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3450                                 diag::warn_format_non_standard_conversion_spec);
3451 
3452   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3453     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3454 
3455   // The remaining checks depend on the data arguments.
3456   if (HasVAListArg)
3457     return true;
3458 
3459   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3460     return false;
3461 
3462   // Check that the argument type matches the format specifier.
3463   const Expr *Ex = getDataArg(argIndex);
3464   if (!Ex)
3465     return true;
3466 
3467   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3468   if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3469     ScanfSpecifier fixedFS = FS;
3470     bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3471                                    S.Context);
3472 
3473     if (success) {
3474       // Get the fix string from the fixed format specifier.
3475       SmallString<128> buf;
3476       llvm::raw_svector_ostream os(buf);
3477       fixedFS.toString(os);
3478 
3479       EmitFormatDiagnostic(
3480         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3481           << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3482           << Ex->getSourceRange(),
3483         Ex->getLocStart(),
3484         /*IsStringLocation*/false,
3485         getSpecifierRange(startSpecifier, specifierLen),
3486         FixItHint::CreateReplacement(
3487           getSpecifierRange(startSpecifier, specifierLen),
3488           os.str()));
3489     } else {
3490       EmitFormatDiagnostic(
3491         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3492           << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3493           << Ex->getSourceRange(),
3494         Ex->getLocStart(),
3495         /*IsStringLocation*/false,
3496         getSpecifierRange(startSpecifier, specifierLen));
3497     }
3498   }
3499 
3500   return true;
3501 }
3502 
3503 void Sema::CheckFormatString(const StringLiteral *FExpr,
3504                              const Expr *OrigFormatExpr,
3505                              ArrayRef<const Expr *> Args,
3506                              bool HasVAListArg, unsigned format_idx,
3507                              unsigned firstDataArg, FormatStringType Type,
3508                              bool inFunctionCall, VariadicCallType CallType,
3509                              llvm::SmallBitVector &CheckedVarArgs) {
3510 
3511   // CHECK: is the format string a wide literal?
3512   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3513     CheckFormatHandler::EmitFormatDiagnostic(
3514       *this, inFunctionCall, Args[format_idx],
3515       PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3516       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3517     return;
3518   }
3519 
3520   // Str - The format string.  NOTE: this is NOT null-terminated!
3521   StringRef StrRef = FExpr->getString();
3522   const char *Str = StrRef.data();
3523   unsigned StrLen = StrRef.size();
3524   const unsigned numDataArgs = Args.size() - firstDataArg;
3525 
3526   // CHECK: empty format string?
3527   if (StrLen == 0 && numDataArgs > 0) {
3528     CheckFormatHandler::EmitFormatDiagnostic(
3529       *this, inFunctionCall, Args[format_idx],
3530       PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3531       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3532     return;
3533   }
3534 
3535   if (Type == FST_Printf || Type == FST_NSString) {
3536     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3537                          numDataArgs, (Type == FST_NSString),
3538                          Str, HasVAListArg, Args, format_idx,
3539                          inFunctionCall, CallType, CheckedVarArgs);
3540 
3541     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3542                                                   getLangOpts(),
3543                                                   Context.getTargetInfo()))
3544       H.DoneProcessing();
3545   } else if (Type == FST_Scanf) {
3546     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3547                         Str, HasVAListArg, Args, format_idx,
3548                         inFunctionCall, CallType, CheckedVarArgs);
3549 
3550     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3551                                                  getLangOpts(),
3552                                                  Context.getTargetInfo()))
3553       H.DoneProcessing();
3554   } // TODO: handle other formats
3555 }
3556 
3557 //===--- CHECK: Standard memory functions ---------------------------------===//
3558 
3559 /// \brief Determine whether the given type is a dynamic class type (e.g.,
3560 /// whether it has a vtable).
3561 static bool isDynamicClassType(QualType T) {
3562   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3563     if (CXXRecordDecl *Definition = Record->getDefinition())
3564       if (Definition->isDynamicClass())
3565         return true;
3566 
3567   return false;
3568 }
3569 
3570 /// \brief If E is a sizeof expression, returns its argument expression,
3571 /// otherwise returns NULL.
3572 static const Expr *getSizeOfExprArg(const Expr* E) {
3573   if (const UnaryExprOrTypeTraitExpr *SizeOf =
3574       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3575     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3576       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3577 
3578   return 0;
3579 }
3580 
3581 /// \brief If E is a sizeof expression, returns its argument type.
3582 static QualType getSizeOfArgType(const Expr* E) {
3583   if (const UnaryExprOrTypeTraitExpr *SizeOf =
3584       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3585     if (SizeOf->getKind() == clang::UETT_SizeOf)
3586       return SizeOf->getTypeOfArgument();
3587 
3588   return QualType();
3589 }
3590 
3591 /// \brief Check for dangerous or invalid arguments to memset().
3592 ///
3593 /// This issues warnings on known problematic, dangerous or unspecified
3594 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3595 /// function calls.
3596 ///
3597 /// \param Call The call expression to diagnose.
3598 void Sema::CheckMemaccessArguments(const CallExpr *Call,
3599                                    unsigned BId,
3600                                    IdentifierInfo *FnName) {
3601   assert(BId != 0);
3602 
3603   // It is possible to have a non-standard definition of memset.  Validate
3604   // we have enough arguments, and if not, abort further checking.
3605   unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3606   if (Call->getNumArgs() < ExpectedNumArgs)
3607     return;
3608 
3609   unsigned LastArg = (BId == Builtin::BImemset ||
3610                       BId == Builtin::BIstrndup ? 1 : 2);
3611   unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3612   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3613 
3614   // We have special checking when the length is a sizeof expression.
3615   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3616   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3617   llvm::FoldingSetNodeID SizeOfArgID;
3618 
3619   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3620     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3621     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3622 
3623     QualType DestTy = Dest->getType();
3624     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3625       QualType PointeeTy = DestPtrTy->getPointeeType();
3626 
3627       // Never warn about void type pointers. This can be used to suppress
3628       // false positives.
3629       if (PointeeTy->isVoidType())
3630         continue;
3631 
3632       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3633       // actually comparing the expressions for equality. Because computing the
3634       // expression IDs can be expensive, we only do this if the diagnostic is
3635       // enabled.
3636       if (SizeOfArg &&
3637           Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3638                                    SizeOfArg->getExprLoc())) {
3639         // We only compute IDs for expressions if the warning is enabled, and
3640         // cache the sizeof arg's ID.
3641         if (SizeOfArgID == llvm::FoldingSetNodeID())
3642           SizeOfArg->Profile(SizeOfArgID, Context, true);
3643         llvm::FoldingSetNodeID DestID;
3644         Dest->Profile(DestID, Context, true);
3645         if (DestID == SizeOfArgID) {
3646           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3647           //       over sizeof(src) as well.
3648           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3649           StringRef ReadableName = FnName->getName();
3650 
3651           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3652             if (UnaryOp->getOpcode() == UO_AddrOf)
3653               ActionIdx = 1; // If its an address-of operator, just remove it.
3654           if (!PointeeTy->isIncompleteType() &&
3655               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3656             ActionIdx = 2; // If the pointee's size is sizeof(char),
3657                            // suggest an explicit length.
3658 
3659           // If the function is defined as a builtin macro, do not show macro
3660           // expansion.
3661           SourceLocation SL = SizeOfArg->getExprLoc();
3662           SourceRange DSR = Dest->getSourceRange();
3663           SourceRange SSR = SizeOfArg->getSourceRange();
3664           SourceManager &SM  = PP.getSourceManager();
3665 
3666           if (SM.isMacroArgExpansion(SL)) {
3667             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3668             SL = SM.getSpellingLoc(SL);
3669             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3670                              SM.getSpellingLoc(DSR.getEnd()));
3671             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3672                              SM.getSpellingLoc(SSR.getEnd()));
3673           }
3674 
3675           DiagRuntimeBehavior(SL, SizeOfArg,
3676                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3677                                 << ReadableName
3678                                 << PointeeTy
3679                                 << DestTy
3680                                 << DSR
3681                                 << SSR);
3682           DiagRuntimeBehavior(SL, SizeOfArg,
3683                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3684                                 << ActionIdx
3685                                 << SSR);
3686 
3687           break;
3688         }
3689       }
3690 
3691       // Also check for cases where the sizeof argument is the exact same
3692       // type as the memory argument, and where it points to a user-defined
3693       // record type.
3694       if (SizeOfArgTy != QualType()) {
3695         if (PointeeTy->isRecordType() &&
3696             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3697           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3698                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
3699                                 << FnName << SizeOfArgTy << ArgIdx
3700                                 << PointeeTy << Dest->getSourceRange()
3701                                 << LenExpr->getSourceRange());
3702           break;
3703         }
3704       }
3705 
3706       // Always complain about dynamic classes.
3707       if (isDynamicClassType(PointeeTy)) {
3708 
3709         unsigned OperationType = 0;
3710         // "overwritten" if we're warning about the destination for any call
3711         // but memcmp; otherwise a verb appropriate to the call.
3712         if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3713           if (BId == Builtin::BImemcpy)
3714             OperationType = 1;
3715           else if(BId == Builtin::BImemmove)
3716             OperationType = 2;
3717           else if (BId == Builtin::BImemcmp)
3718             OperationType = 3;
3719         }
3720 
3721         DiagRuntimeBehavior(
3722           Dest->getExprLoc(), Dest,
3723           PDiag(diag::warn_dyn_class_memaccess)
3724             << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3725             << FnName << PointeeTy
3726             << OperationType
3727             << Call->getCallee()->getSourceRange());
3728       } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3729                BId != Builtin::BImemset)
3730         DiagRuntimeBehavior(
3731           Dest->getExprLoc(), Dest,
3732           PDiag(diag::warn_arc_object_memaccess)
3733             << ArgIdx << FnName << PointeeTy
3734             << Call->getCallee()->getSourceRange());
3735       else
3736         continue;
3737 
3738       DiagRuntimeBehavior(
3739         Dest->getExprLoc(), Dest,
3740         PDiag(diag::note_bad_memaccess_silence)
3741           << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3742       break;
3743     }
3744   }
3745 }
3746 
3747 // A little helper routine: ignore addition and subtraction of integer literals.
3748 // This intentionally does not ignore all integer constant expressions because
3749 // we don't want to remove sizeof().
3750 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3751   Ex = Ex->IgnoreParenCasts();
3752 
3753   for (;;) {
3754     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3755     if (!BO || !BO->isAdditiveOp())
3756       break;
3757 
3758     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3759     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3760 
3761     if (isa<IntegerLiteral>(RHS))
3762       Ex = LHS;
3763     else if (isa<IntegerLiteral>(LHS))
3764       Ex = RHS;
3765     else
3766       break;
3767   }
3768 
3769   return Ex;
3770 }
3771 
3772 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3773                                                       ASTContext &Context) {
3774   // Only handle constant-sized or VLAs, but not flexible members.
3775   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3776     // Only issue the FIXIT for arrays of size > 1.
3777     if (CAT->getSize().getSExtValue() <= 1)
3778       return false;
3779   } else if (!Ty->isVariableArrayType()) {
3780     return false;
3781   }
3782   return true;
3783 }
3784 
3785 // Warn if the user has made the 'size' argument to strlcpy or strlcat
3786 // be the size of the source, instead of the destination.
3787 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3788                                     IdentifierInfo *FnName) {
3789 
3790   // Don't crash if the user has the wrong number of arguments
3791   if (Call->getNumArgs() != 3)
3792     return;
3793 
3794   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3795   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3796   const Expr *CompareWithSrc = NULL;
3797 
3798   // Look for 'strlcpy(dst, x, sizeof(x))'
3799   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3800     CompareWithSrc = Ex;
3801   else {
3802     // Look for 'strlcpy(dst, x, strlen(x))'
3803     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3804       if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3805           && SizeCall->getNumArgs() == 1)
3806         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3807     }
3808   }
3809 
3810   if (!CompareWithSrc)
3811     return;
3812 
3813   // Determine if the argument to sizeof/strlen is equal to the source
3814   // argument.  In principle there's all kinds of things you could do
3815   // here, for instance creating an == expression and evaluating it with
3816   // EvaluateAsBooleanCondition, but this uses a more direct technique:
3817   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3818   if (!SrcArgDRE)
3819     return;
3820 
3821   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3822   if (!CompareWithSrcDRE ||
3823       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3824     return;
3825 
3826   const Expr *OriginalSizeArg = Call->getArg(2);
3827   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3828     << OriginalSizeArg->getSourceRange() << FnName;
3829 
3830   // Output a FIXIT hint if the destination is an array (rather than a
3831   // pointer to an array).  This could be enhanced to handle some
3832   // pointers if we know the actual size, like if DstArg is 'array+2'
3833   // we could say 'sizeof(array)-2'.
3834   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3835   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3836     return;
3837 
3838   SmallString<128> sizeString;
3839   llvm::raw_svector_ostream OS(sizeString);
3840   OS << "sizeof(";
3841   DstArg->printPretty(OS, 0, getPrintingPolicy());
3842   OS << ")";
3843 
3844   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3845     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3846                                     OS.str());
3847 }
3848 
3849 /// Check if two expressions refer to the same declaration.
3850 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3851   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3852     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3853       return D1->getDecl() == D2->getDecl();
3854   return false;
3855 }
3856 
3857 static const Expr *getStrlenExprArg(const Expr *E) {
3858   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3859     const FunctionDecl *FD = CE->getDirectCallee();
3860     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3861       return 0;
3862     return CE->getArg(0)->IgnoreParenCasts();
3863   }
3864   return 0;
3865 }
3866 
3867 // Warn on anti-patterns as the 'size' argument to strncat.
3868 // The correct size argument should look like following:
3869 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3870 void Sema::CheckStrncatArguments(const CallExpr *CE,
3871                                  IdentifierInfo *FnName) {
3872   // Don't crash if the user has the wrong number of arguments.
3873   if (CE->getNumArgs() < 3)
3874     return;
3875   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3876   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3877   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3878 
3879   // Identify common expressions, which are wrongly used as the size argument
3880   // to strncat and may lead to buffer overflows.
3881   unsigned PatternType = 0;
3882   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3883     // - sizeof(dst)
3884     if (referToTheSameDecl(SizeOfArg, DstArg))
3885       PatternType = 1;
3886     // - sizeof(src)
3887     else if (referToTheSameDecl(SizeOfArg, SrcArg))
3888       PatternType = 2;
3889   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3890     if (BE->getOpcode() == BO_Sub) {
3891       const Expr *L = BE->getLHS()->IgnoreParenCasts();
3892       const Expr *R = BE->getRHS()->IgnoreParenCasts();
3893       // - sizeof(dst) - strlen(dst)
3894       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3895           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3896         PatternType = 1;
3897       // - sizeof(src) - (anything)
3898       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3899         PatternType = 2;
3900     }
3901   }
3902 
3903   if (PatternType == 0)
3904     return;
3905 
3906   // Generate the diagnostic.
3907   SourceLocation SL = LenArg->getLocStart();
3908   SourceRange SR = LenArg->getSourceRange();
3909   SourceManager &SM  = PP.getSourceManager();
3910 
3911   // If the function is defined as a builtin macro, do not show macro expansion.
3912   if (SM.isMacroArgExpansion(SL)) {
3913     SL = SM.getSpellingLoc(SL);
3914     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3915                      SM.getSpellingLoc(SR.getEnd()));
3916   }
3917 
3918   // Check if the destination is an array (rather than a pointer to an array).
3919   QualType DstTy = DstArg->getType();
3920   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3921                                                                     Context);
3922   if (!isKnownSizeArray) {
3923     if (PatternType == 1)
3924       Diag(SL, diag::warn_strncat_wrong_size) << SR;
3925     else
3926       Diag(SL, diag::warn_strncat_src_size) << SR;
3927     return;
3928   }
3929 
3930   if (PatternType == 1)
3931     Diag(SL, diag::warn_strncat_large_size) << SR;
3932   else
3933     Diag(SL, diag::warn_strncat_src_size) << SR;
3934 
3935   SmallString<128> sizeString;
3936   llvm::raw_svector_ostream OS(sizeString);
3937   OS << "sizeof(";
3938   DstArg->printPretty(OS, 0, getPrintingPolicy());
3939   OS << ") - ";
3940   OS << "strlen(";
3941   DstArg->printPretty(OS, 0, getPrintingPolicy());
3942   OS << ") - 1";
3943 
3944   Diag(SL, diag::note_strncat_wrong_size)
3945     << FixItHint::CreateReplacement(SR, OS.str());
3946 }
3947 
3948 //===--- CHECK: Return Address of Stack Variable --------------------------===//
3949 
3950 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3951                      Decl *ParentDecl);
3952 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3953                       Decl *ParentDecl);
3954 
3955 /// CheckReturnStackAddr - Check if a return statement returns the address
3956 ///   of a stack variable.
3957 void
3958 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3959                            SourceLocation ReturnLoc) {
3960 
3961   Expr *stackE = 0;
3962   SmallVector<DeclRefExpr *, 8> refVars;
3963 
3964   // Perform checking for returned stack addresses, local blocks,
3965   // label addresses or references to temporaries.
3966   if (lhsType->isPointerType() ||
3967       (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3968     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3969   } else if (lhsType->isReferenceType()) {
3970     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3971   }
3972 
3973   if (stackE == 0)
3974     return; // Nothing suspicious was found.
3975 
3976   SourceLocation diagLoc;
3977   SourceRange diagRange;
3978   if (refVars.empty()) {
3979     diagLoc = stackE->getLocStart();
3980     diagRange = stackE->getSourceRange();
3981   } else {
3982     // We followed through a reference variable. 'stackE' contains the
3983     // problematic expression but we will warn at the return statement pointing
3984     // at the reference variable. We will later display the "trail" of
3985     // reference variables using notes.
3986     diagLoc = refVars[0]->getLocStart();
3987     diagRange = refVars[0]->getSourceRange();
3988   }
3989 
3990   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3991     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3992                                              : diag::warn_ret_stack_addr)
3993      << DR->getDecl()->getDeclName() << diagRange;
3994   } else if (isa<BlockExpr>(stackE)) { // local block.
3995     Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3996   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3997     Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3998   } else { // local temporary.
3999     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
4000                                              : diag::warn_ret_local_temp_addr)
4001      << diagRange;
4002   }
4003 
4004   // Display the "trail" of reference variables that we followed until we
4005   // found the problematic expression using notes.
4006   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
4007     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
4008     // If this var binds to another reference var, show the range of the next
4009     // var, otherwise the var binds to the problematic expression, in which case
4010     // show the range of the expression.
4011     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
4012                                   : stackE->getSourceRange();
4013     Diag(VD->getLocation(), diag::note_ref_var_local_bind)
4014       << VD->getDeclName() << range;
4015   }
4016 }
4017 
4018 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
4019 ///  check if the expression in a return statement evaluates to an address
4020 ///  to a location on the stack, a local block, an address of a label, or a
4021 ///  reference to local temporary. The recursion is used to traverse the
4022 ///  AST of the return expression, with recursion backtracking when we
4023 ///  encounter a subexpression that (1) clearly does not lead to one of the
4024 ///  above problematic expressions (2) is something we cannot determine leads to
4025 ///  a problematic expression based on such local checking.
4026 ///
4027 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
4028 ///  the expression that they point to. Such variables are added to the
4029 ///  'refVars' vector so that we know what the reference variable "trail" was.
4030 ///
4031 ///  EvalAddr processes expressions that are pointers that are used as
4032 ///  references (and not L-values).  EvalVal handles all other values.
4033 ///  At the base case of the recursion is a check for the above problematic
4034 ///  expressions.
4035 ///
4036 ///  This implementation handles:
4037 ///
4038 ///   * pointer-to-pointer casts
4039 ///   * implicit conversions from array references to pointers
4040 ///   * taking the address of fields
4041 ///   * arbitrary interplay between "&" and "*" operators
4042 ///   * pointer arithmetic from an address of a stack variable
4043 ///   * taking the address of an array element where the array is on the stack
4044 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4045                       Decl *ParentDecl) {
4046   if (E->isTypeDependent())
4047     return NULL;
4048 
4049   // We should only be called for evaluating pointer expressions.
4050   assert((E->getType()->isAnyPointerType() ||
4051           E->getType()->isBlockPointerType() ||
4052           E->getType()->isObjCQualifiedIdType()) &&
4053          "EvalAddr only works on pointers");
4054 
4055   E = E->IgnoreParens();
4056 
4057   // Our "symbolic interpreter" is just a dispatch off the currently
4058   // viewed AST node.  We then recursively traverse the AST by calling
4059   // EvalAddr and EvalVal appropriately.
4060   switch (E->getStmtClass()) {
4061   case Stmt::DeclRefExprClass: {
4062     DeclRefExpr *DR = cast<DeclRefExpr>(E);
4063 
4064     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
4065       // If this is a reference variable, follow through to the expression that
4066       // it points to.
4067       if (V->hasLocalStorage() &&
4068           V->getType()->isReferenceType() && V->hasInit()) {
4069         // Add the reference variable to the "trail".
4070         refVars.push_back(DR);
4071         return EvalAddr(V->getInit(), refVars, ParentDecl);
4072       }
4073 
4074     return NULL;
4075   }
4076 
4077   case Stmt::UnaryOperatorClass: {
4078     // The only unary operator that make sense to handle here
4079     // is AddrOf.  All others don't make sense as pointers.
4080     UnaryOperator *U = cast<UnaryOperator>(E);
4081 
4082     if (U->getOpcode() == UO_AddrOf)
4083       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
4084     else
4085       return NULL;
4086   }
4087 
4088   case Stmt::BinaryOperatorClass: {
4089     // Handle pointer arithmetic.  All other binary operators are not valid
4090     // in this context.
4091     BinaryOperator *B = cast<BinaryOperator>(E);
4092     BinaryOperatorKind op = B->getOpcode();
4093 
4094     if (op != BO_Add && op != BO_Sub)
4095       return NULL;
4096 
4097     Expr *Base = B->getLHS();
4098 
4099     // Determine which argument is the real pointer base.  It could be
4100     // the RHS argument instead of the LHS.
4101     if (!Base->getType()->isPointerType()) Base = B->getRHS();
4102 
4103     assert (Base->getType()->isPointerType());
4104     return EvalAddr(Base, refVars, ParentDecl);
4105   }
4106 
4107   // For conditional operators we need to see if either the LHS or RHS are
4108   // valid DeclRefExpr*s.  If one of them is valid, we return it.
4109   case Stmt::ConditionalOperatorClass: {
4110     ConditionalOperator *C = cast<ConditionalOperator>(E);
4111 
4112     // Handle the GNU extension for missing LHS.
4113     if (Expr *lhsExpr = C->getLHS()) {
4114     // In C++, we can have a throw-expression, which has 'void' type.
4115       if (!lhsExpr->getType()->isVoidType())
4116         if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
4117           return LHS;
4118     }
4119 
4120     // In C++, we can have a throw-expression, which has 'void' type.
4121     if (C->getRHS()->getType()->isVoidType())
4122       return NULL;
4123 
4124     return EvalAddr(C->getRHS(), refVars, ParentDecl);
4125   }
4126 
4127   case Stmt::BlockExprClass:
4128     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
4129       return E; // local block.
4130     return NULL;
4131 
4132   case Stmt::AddrLabelExprClass:
4133     return E; // address of label.
4134 
4135   case Stmt::ExprWithCleanupsClass:
4136     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
4137                     ParentDecl);
4138 
4139   // For casts, we need to handle conversions from arrays to
4140   // pointer values, and pointer-to-pointer conversions.
4141   case Stmt::ImplicitCastExprClass:
4142   case Stmt::CStyleCastExprClass:
4143   case Stmt::CXXFunctionalCastExprClass:
4144   case Stmt::ObjCBridgedCastExprClass:
4145   case Stmt::CXXStaticCastExprClass:
4146   case Stmt::CXXDynamicCastExprClass:
4147   case Stmt::CXXConstCastExprClass:
4148   case Stmt::CXXReinterpretCastExprClass: {
4149     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
4150     switch (cast<CastExpr>(E)->getCastKind()) {
4151     case CK_BitCast:
4152     case CK_LValueToRValue:
4153     case CK_NoOp:
4154     case CK_BaseToDerived:
4155     case CK_DerivedToBase:
4156     case CK_UncheckedDerivedToBase:
4157     case CK_Dynamic:
4158     case CK_CPointerToObjCPointerCast:
4159     case CK_BlockPointerToObjCPointerCast:
4160     case CK_AnyPointerToBlockPointerCast:
4161       return EvalAddr(SubExpr, refVars, ParentDecl);
4162 
4163     case CK_ArrayToPointerDecay:
4164       return EvalVal(SubExpr, refVars, ParentDecl);
4165 
4166     default:
4167       return 0;
4168     }
4169   }
4170 
4171   case Stmt::MaterializeTemporaryExprClass:
4172     if (Expr *Result = EvalAddr(
4173                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4174                                 refVars, ParentDecl))
4175       return Result;
4176 
4177     return E;
4178 
4179   // Everything else: we simply don't reason about them.
4180   default:
4181     return NULL;
4182   }
4183 }
4184 
4185 
4186 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
4187 ///   See the comments for EvalAddr for more details.
4188 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4189                      Decl *ParentDecl) {
4190 do {
4191   // We should only be called for evaluating non-pointer expressions, or
4192   // expressions with a pointer type that are not used as references but instead
4193   // are l-values (e.g., DeclRefExpr with a pointer type).
4194 
4195   // Our "symbolic interpreter" is just a dispatch off the currently
4196   // viewed AST node.  We then recursively traverse the AST by calling
4197   // EvalAddr and EvalVal appropriately.
4198 
4199   E = E->IgnoreParens();
4200   switch (E->getStmtClass()) {
4201   case Stmt::ImplicitCastExprClass: {
4202     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
4203     if (IE->getValueKind() == VK_LValue) {
4204       E = IE->getSubExpr();
4205       continue;
4206     }
4207     return NULL;
4208   }
4209 
4210   case Stmt::ExprWithCleanupsClass:
4211     return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
4212 
4213   case Stmt::DeclRefExprClass: {
4214     // When we hit a DeclRefExpr we are looking at code that refers to a
4215     // variable's name. If it's not a reference variable we check if it has
4216     // local storage within the function, and if so, return the expression.
4217     DeclRefExpr *DR = cast<DeclRefExpr>(E);
4218 
4219     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
4220       // Check if it refers to itself, e.g. "int& i = i;".
4221       if (V == ParentDecl)
4222         return DR;
4223 
4224       if (V->hasLocalStorage()) {
4225         if (!V->getType()->isReferenceType())
4226           return DR;
4227 
4228         // Reference variable, follow through to the expression that
4229         // it points to.
4230         if (V->hasInit()) {
4231           // Add the reference variable to the "trail".
4232           refVars.push_back(DR);
4233           return EvalVal(V->getInit(), refVars, V);
4234         }
4235       }
4236     }
4237 
4238     return NULL;
4239   }
4240 
4241   case Stmt::UnaryOperatorClass: {
4242     // The only unary operator that make sense to handle here
4243     // is Deref.  All others don't resolve to a "name."  This includes
4244     // handling all sorts of rvalues passed to a unary operator.
4245     UnaryOperator *U = cast<UnaryOperator>(E);
4246 
4247     if (U->getOpcode() == UO_Deref)
4248       return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
4249 
4250     return NULL;
4251   }
4252 
4253   case Stmt::ArraySubscriptExprClass: {
4254     // Array subscripts are potential references to data on the stack.  We
4255     // retrieve the DeclRefExpr* for the array variable if it indeed
4256     // has local storage.
4257     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
4258   }
4259 
4260   case Stmt::ConditionalOperatorClass: {
4261     // For conditional operators we need to see if either the LHS or RHS are
4262     // non-NULL Expr's.  If one is non-NULL, we return it.
4263     ConditionalOperator *C = cast<ConditionalOperator>(E);
4264 
4265     // Handle the GNU extension for missing LHS.
4266     if (Expr *lhsExpr = C->getLHS())
4267       if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
4268         return LHS;
4269 
4270     return EvalVal(C->getRHS(), refVars, ParentDecl);
4271   }
4272 
4273   // Accesses to members are potential references to data on the stack.
4274   case Stmt::MemberExprClass: {
4275     MemberExpr *M = cast<MemberExpr>(E);
4276 
4277     // Check for indirect access.  We only want direct field accesses.
4278     if (M->isArrow())
4279       return NULL;
4280 
4281     // Check whether the member type is itself a reference, in which case
4282     // we're not going to refer to the member, but to what the member refers to.
4283     if (M->getMemberDecl()->getType()->isReferenceType())
4284       return NULL;
4285 
4286     return EvalVal(M->getBase(), refVars, ParentDecl);
4287   }
4288 
4289   case Stmt::MaterializeTemporaryExprClass:
4290     if (Expr *Result = EvalVal(
4291                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4292                                refVars, ParentDecl))
4293       return Result;
4294 
4295     return E;
4296 
4297   default:
4298     // Check that we don't return or take the address of a reference to a
4299     // temporary. This is only useful in C++.
4300     if (!E->isTypeDependent() && E->isRValue())
4301       return E;
4302 
4303     // Everything else: we simply don't reason about them.
4304     return NULL;
4305   }
4306 } while (true);
4307 }
4308 
4309 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
4310 
4311 /// Check for comparisons of floating point operands using != and ==.
4312 /// Issue a warning if these are no self-comparisons, as they are not likely
4313 /// to do what the programmer intended.
4314 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
4315   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
4316   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
4317 
4318   // Special case: check for x == x (which is OK).
4319   // Do not emit warnings for such cases.
4320   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
4321     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
4322       if (DRL->getDecl() == DRR->getDecl())
4323         return;
4324 
4325 
4326   // Special case: check for comparisons against literals that can be exactly
4327   //  represented by APFloat.  In such cases, do not emit a warning.  This
4328   //  is a heuristic: often comparison against such literals are used to
4329   //  detect if a value in a variable has not changed.  This clearly can
4330   //  lead to false negatives.
4331   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
4332     if (FLL->isExact())
4333       return;
4334   } else
4335     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
4336       if (FLR->isExact())
4337         return;
4338 
4339   // Check for comparisons with builtin types.
4340   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
4341     if (CL->isBuiltinCall())
4342       return;
4343 
4344   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
4345     if (CR->isBuiltinCall())
4346       return;
4347 
4348   // Emit the diagnostic.
4349   Diag(Loc, diag::warn_floatingpoint_eq)
4350     << LHS->getSourceRange() << RHS->getSourceRange();
4351 }
4352 
4353 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
4354 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
4355 
4356 namespace {
4357 
4358 /// Structure recording the 'active' range of an integer-valued
4359 /// expression.
4360 struct IntRange {
4361   /// The number of bits active in the int.
4362   unsigned Width;
4363 
4364   /// True if the int is known not to have negative values.
4365   bool NonNegative;
4366 
4367   IntRange(unsigned Width, bool NonNegative)
4368     : Width(Width), NonNegative(NonNegative)
4369   {}
4370 
4371   /// Returns the range of the bool type.
4372   static IntRange forBoolType() {
4373     return IntRange(1, true);
4374   }
4375 
4376   /// Returns the range of an opaque value of the given integral type.
4377   static IntRange forValueOfType(ASTContext &C, QualType T) {
4378     return forValueOfCanonicalType(C,
4379                           T->getCanonicalTypeInternal().getTypePtr());
4380   }
4381 
4382   /// Returns the range of an opaque value of a canonical integral type.
4383   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
4384     assert(T->isCanonicalUnqualified());
4385 
4386     if (const VectorType *VT = dyn_cast<VectorType>(T))
4387       T = VT->getElementType().getTypePtr();
4388     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4389       T = CT->getElementType().getTypePtr();
4390 
4391     // For enum types, use the known bit width of the enumerators.
4392     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4393       EnumDecl *Enum = ET->getDecl();
4394       if (!Enum->isCompleteDefinition())
4395         return IntRange(C.getIntWidth(QualType(T, 0)), false);
4396 
4397       unsigned NumPositive = Enum->getNumPositiveBits();
4398       unsigned NumNegative = Enum->getNumNegativeBits();
4399 
4400       if (NumNegative == 0)
4401         return IntRange(NumPositive, true/*NonNegative*/);
4402       else
4403         return IntRange(std::max(NumPositive + 1, NumNegative),
4404                         false/*NonNegative*/);
4405     }
4406 
4407     const BuiltinType *BT = cast<BuiltinType>(T);
4408     assert(BT->isInteger());
4409 
4410     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4411   }
4412 
4413   /// Returns the "target" range of a canonical integral type, i.e.
4414   /// the range of values expressible in the type.
4415   ///
4416   /// This matches forValueOfCanonicalType except that enums have the
4417   /// full range of their type, not the range of their enumerators.
4418   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4419     assert(T->isCanonicalUnqualified());
4420 
4421     if (const VectorType *VT = dyn_cast<VectorType>(T))
4422       T = VT->getElementType().getTypePtr();
4423     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4424       T = CT->getElementType().getTypePtr();
4425     if (const EnumType *ET = dyn_cast<EnumType>(T))
4426       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4427 
4428     const BuiltinType *BT = cast<BuiltinType>(T);
4429     assert(BT->isInteger());
4430 
4431     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4432   }
4433 
4434   /// Returns the supremum of two ranges: i.e. their conservative merge.
4435   static IntRange join(IntRange L, IntRange R) {
4436     return IntRange(std::max(L.Width, R.Width),
4437                     L.NonNegative && R.NonNegative);
4438   }
4439 
4440   /// Returns the infinum of two ranges: i.e. their aggressive merge.
4441   static IntRange meet(IntRange L, IntRange R) {
4442     return IntRange(std::min(L.Width, R.Width),
4443                     L.NonNegative || R.NonNegative);
4444   }
4445 };
4446 
4447 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4448                               unsigned MaxWidth) {
4449   if (value.isSigned() && value.isNegative())
4450     return IntRange(value.getMinSignedBits(), false);
4451 
4452   if (value.getBitWidth() > MaxWidth)
4453     value = value.trunc(MaxWidth);
4454 
4455   // isNonNegative() just checks the sign bit without considering
4456   // signedness.
4457   return IntRange(value.getActiveBits(), true);
4458 }
4459 
4460 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4461                               unsigned MaxWidth) {
4462   if (result.isInt())
4463     return GetValueRange(C, result.getInt(), MaxWidth);
4464 
4465   if (result.isVector()) {
4466     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4467     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4468       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4469       R = IntRange::join(R, El);
4470     }
4471     return R;
4472   }
4473 
4474   if (result.isComplexInt()) {
4475     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4476     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4477     return IntRange::join(R, I);
4478   }
4479 
4480   // This can happen with lossless casts to intptr_t of "based" lvalues.
4481   // Assume it might use arbitrary bits.
4482   // FIXME: The only reason we need to pass the type in here is to get
4483   // the sign right on this one case.  It would be nice if APValue
4484   // preserved this.
4485   assert(result.isLValue() || result.isAddrLabelDiff());
4486   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4487 }
4488 
4489 static QualType GetExprType(Expr *E) {
4490   QualType Ty = E->getType();
4491   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
4492     Ty = AtomicRHS->getValueType();
4493   return Ty;
4494 }
4495 
4496 /// Pseudo-evaluate the given integer expression, estimating the
4497 /// range of values it might take.
4498 ///
4499 /// \param MaxWidth - the width to which the value will be truncated
4500 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4501   E = E->IgnoreParens();
4502 
4503   // Try a full evaluation first.
4504   Expr::EvalResult result;
4505   if (E->EvaluateAsRValue(result, C))
4506     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
4507 
4508   // I think we only want to look through implicit casts here; if the
4509   // user has an explicit widening cast, we should treat the value as
4510   // being of the new, wider type.
4511   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4512     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4513       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4514 
4515     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
4516 
4517     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4518 
4519     // Assume that non-integer casts can span the full range of the type.
4520     if (!isIntegerCast)
4521       return OutputTypeRange;
4522 
4523     IntRange SubRange
4524       = GetExprRange(C, CE->getSubExpr(),
4525                      std::min(MaxWidth, OutputTypeRange.Width));
4526 
4527     // Bail out if the subexpr's range is as wide as the cast type.
4528     if (SubRange.Width >= OutputTypeRange.Width)
4529       return OutputTypeRange;
4530 
4531     // Otherwise, we take the smaller width, and we're non-negative if
4532     // either the output type or the subexpr is.
4533     return IntRange(SubRange.Width,
4534                     SubRange.NonNegative || OutputTypeRange.NonNegative);
4535   }
4536 
4537   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4538     // If we can fold the condition, just take that operand.
4539     bool CondResult;
4540     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4541       return GetExprRange(C, CondResult ? CO->getTrueExpr()
4542                                         : CO->getFalseExpr(),
4543                           MaxWidth);
4544 
4545     // Otherwise, conservatively merge.
4546     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4547     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4548     return IntRange::join(L, R);
4549   }
4550 
4551   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4552     switch (BO->getOpcode()) {
4553 
4554     // Boolean-valued operations are single-bit and positive.
4555     case BO_LAnd:
4556     case BO_LOr:
4557     case BO_LT:
4558     case BO_GT:
4559     case BO_LE:
4560     case BO_GE:
4561     case BO_EQ:
4562     case BO_NE:
4563       return IntRange::forBoolType();
4564 
4565     // The type of the assignments is the type of the LHS, so the RHS
4566     // is not necessarily the same type.
4567     case BO_MulAssign:
4568     case BO_DivAssign:
4569     case BO_RemAssign:
4570     case BO_AddAssign:
4571     case BO_SubAssign:
4572     case BO_XorAssign:
4573     case BO_OrAssign:
4574       // TODO: bitfields?
4575       return IntRange::forValueOfType(C, GetExprType(E));
4576 
4577     // Simple assignments just pass through the RHS, which will have
4578     // been coerced to the LHS type.
4579     case BO_Assign:
4580       // TODO: bitfields?
4581       return GetExprRange(C, BO->getRHS(), MaxWidth);
4582 
4583     // Operations with opaque sources are black-listed.
4584     case BO_PtrMemD:
4585     case BO_PtrMemI:
4586       return IntRange::forValueOfType(C, GetExprType(E));
4587 
4588     // Bitwise-and uses the *infinum* of the two source ranges.
4589     case BO_And:
4590     case BO_AndAssign:
4591       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4592                             GetExprRange(C, BO->getRHS(), MaxWidth));
4593 
4594     // Left shift gets black-listed based on a judgement call.
4595     case BO_Shl:
4596       // ...except that we want to treat '1 << (blah)' as logically
4597       // positive.  It's an important idiom.
4598       if (IntegerLiteral *I
4599             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4600         if (I->getValue() == 1) {
4601           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
4602           return IntRange(R.Width, /*NonNegative*/ true);
4603         }
4604       }
4605       // fallthrough
4606 
4607     case BO_ShlAssign:
4608       return IntRange::forValueOfType(C, GetExprType(E));
4609 
4610     // Right shift by a constant can narrow its left argument.
4611     case BO_Shr:
4612     case BO_ShrAssign: {
4613       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4614 
4615       // If the shift amount is a positive constant, drop the width by
4616       // that much.
4617       llvm::APSInt shift;
4618       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4619           shift.isNonNegative()) {
4620         unsigned zext = shift.getZExtValue();
4621         if (zext >= L.Width)
4622           L.Width = (L.NonNegative ? 0 : 1);
4623         else
4624           L.Width -= zext;
4625       }
4626 
4627       return L;
4628     }
4629 
4630     // Comma acts as its right operand.
4631     case BO_Comma:
4632       return GetExprRange(C, BO->getRHS(), MaxWidth);
4633 
4634     // Black-list pointer subtractions.
4635     case BO_Sub:
4636       if (BO->getLHS()->getType()->isPointerType())
4637         return IntRange::forValueOfType(C, GetExprType(E));
4638       break;
4639 
4640     // The width of a division result is mostly determined by the size
4641     // of the LHS.
4642     case BO_Div: {
4643       // Don't 'pre-truncate' the operands.
4644       unsigned opWidth = C.getIntWidth(GetExprType(E));
4645       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4646 
4647       // If the divisor is constant, use that.
4648       llvm::APSInt divisor;
4649       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4650         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4651         if (log2 >= L.Width)
4652           L.Width = (L.NonNegative ? 0 : 1);
4653         else
4654           L.Width = std::min(L.Width - log2, MaxWidth);
4655         return L;
4656       }
4657 
4658       // Otherwise, just use the LHS's width.
4659       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4660       return IntRange(L.Width, L.NonNegative && R.NonNegative);
4661     }
4662 
4663     // The result of a remainder can't be larger than the result of
4664     // either side.
4665     case BO_Rem: {
4666       // Don't 'pre-truncate' the operands.
4667       unsigned opWidth = C.getIntWidth(GetExprType(E));
4668       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4669       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4670 
4671       IntRange meet = IntRange::meet(L, R);
4672       meet.Width = std::min(meet.Width, MaxWidth);
4673       return meet;
4674     }
4675 
4676     // The default behavior is okay for these.
4677     case BO_Mul:
4678     case BO_Add:
4679     case BO_Xor:
4680     case BO_Or:
4681       break;
4682     }
4683 
4684     // The default case is to treat the operation as if it were closed
4685     // on the narrowest type that encompasses both operands.
4686     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4687     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4688     return IntRange::join(L, R);
4689   }
4690 
4691   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4692     switch (UO->getOpcode()) {
4693     // Boolean-valued operations are white-listed.
4694     case UO_LNot:
4695       return IntRange::forBoolType();
4696 
4697     // Operations with opaque sources are black-listed.
4698     case UO_Deref:
4699     case UO_AddrOf: // should be impossible
4700       return IntRange::forValueOfType(C, GetExprType(E));
4701 
4702     default:
4703       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4704     }
4705   }
4706 
4707   if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
4708     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
4709 
4710   if (FieldDecl *BitField = E->getSourceBitField())
4711     return IntRange(BitField->getBitWidthValue(C),
4712                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
4713 
4714   return IntRange::forValueOfType(C, GetExprType(E));
4715 }
4716 
4717 static IntRange GetExprRange(ASTContext &C, Expr *E) {
4718   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
4719 }
4720 
4721 /// Checks whether the given value, which currently has the given
4722 /// source semantics, has the same value when coerced through the
4723 /// target semantics.
4724 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4725                                  const llvm::fltSemantics &Src,
4726                                  const llvm::fltSemantics &Tgt) {
4727   llvm::APFloat truncated = value;
4728 
4729   bool ignored;
4730   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4731   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4732 
4733   return truncated.bitwiseIsEqual(value);
4734 }
4735 
4736 /// Checks whether the given value, which currently has the given
4737 /// source semantics, has the same value when coerced through the
4738 /// target semantics.
4739 ///
4740 /// The value might be a vector of floats (or a complex number).
4741 static bool IsSameFloatAfterCast(const APValue &value,
4742                                  const llvm::fltSemantics &Src,
4743                                  const llvm::fltSemantics &Tgt) {
4744   if (value.isFloat())
4745     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4746 
4747   if (value.isVector()) {
4748     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4749       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4750         return false;
4751     return true;
4752   }
4753 
4754   assert(value.isComplexFloat());
4755   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4756           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4757 }
4758 
4759 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4760 
4761 static bool IsZero(Sema &S, Expr *E) {
4762   // Suppress cases where we are comparing against an enum constant.
4763   if (const DeclRefExpr *DR =
4764       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4765     if (isa<EnumConstantDecl>(DR->getDecl()))
4766       return false;
4767 
4768   // Suppress cases where the '0' value is expanded from a macro.
4769   if (E->getLocStart().isMacroID())
4770     return false;
4771 
4772   llvm::APSInt Value;
4773   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4774 }
4775 
4776 static bool HasEnumType(Expr *E) {
4777   // Strip off implicit integral promotions.
4778   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4779     if (ICE->getCastKind() != CK_IntegralCast &&
4780         ICE->getCastKind() != CK_NoOp)
4781       break;
4782     E = ICE->getSubExpr();
4783   }
4784 
4785   return E->getType()->isEnumeralType();
4786 }
4787 
4788 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4789   // Disable warning in template instantiations.
4790   if (!S.ActiveTemplateInstantiations.empty())
4791     return;
4792 
4793   BinaryOperatorKind op = E->getOpcode();
4794   if (E->isValueDependent())
4795     return;
4796 
4797   if (op == BO_LT && IsZero(S, E->getRHS())) {
4798     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4799       << "< 0" << "false" << HasEnumType(E->getLHS())
4800       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4801   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4802     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4803       << ">= 0" << "true" << HasEnumType(E->getLHS())
4804       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4805   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4806     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4807       << "0 >" << "false" << HasEnumType(E->getRHS())
4808       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4809   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4810     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4811       << "0 <=" << "true" << HasEnumType(E->getRHS())
4812       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4813   }
4814 }
4815 
4816 static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4817                                          Expr *Constant, Expr *Other,
4818                                          llvm::APSInt Value,
4819                                          bool RhsConstant) {
4820   // Disable warning in template instantiations.
4821   if (!S.ActiveTemplateInstantiations.empty())
4822     return;
4823 
4824   // 0 values are handled later by CheckTrivialUnsignedComparison().
4825   if (Value == 0)
4826     return;
4827 
4828   BinaryOperatorKind op = E->getOpcode();
4829   QualType OtherT = Other->getType();
4830   QualType ConstantT = Constant->getType();
4831   QualType CommonT = E->getLHS()->getType();
4832   if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4833     return;
4834   assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4835          && "comparison with non-integer type");
4836 
4837   bool ConstantSigned = ConstantT->isSignedIntegerType();
4838   bool CommonSigned = CommonT->isSignedIntegerType();
4839 
4840   bool EqualityOnly = false;
4841 
4842   // TODO: Investigate using GetExprRange() to get tighter bounds on
4843   // on the bit ranges.
4844   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4845   unsigned OtherWidth = OtherRange.Width;
4846 
4847   if (CommonSigned) {
4848     // The common type is signed, therefore no signed to unsigned conversion.
4849     if (!OtherRange.NonNegative) {
4850       // Check that the constant is representable in type OtherT.
4851       if (ConstantSigned) {
4852         if (OtherWidth >= Value.getMinSignedBits())
4853           return;
4854       } else { // !ConstantSigned
4855         if (OtherWidth >= Value.getActiveBits() + 1)
4856           return;
4857       }
4858     } else { // !OtherSigned
4859       // Check that the constant is representable in type OtherT.
4860       // Negative values are out of range.
4861       if (ConstantSigned) {
4862         if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4863           return;
4864       } else { // !ConstantSigned
4865         if (OtherWidth >= Value.getActiveBits())
4866           return;
4867       }
4868     }
4869   } else {  // !CommonSigned
4870     if (OtherRange.NonNegative) {
4871       if (OtherWidth >= Value.getActiveBits())
4872         return;
4873     } else if (!OtherRange.NonNegative && !ConstantSigned) {
4874       // Check to see if the constant is representable in OtherT.
4875       if (OtherWidth > Value.getActiveBits())
4876         return;
4877       // Check to see if the constant is equivalent to a negative value
4878       // cast to CommonT.
4879       if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4880           Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4881         return;
4882       // The constant value rests between values that OtherT can represent after
4883       // conversion.  Relational comparison still works, but equality
4884       // comparisons will be tautological.
4885       EqualityOnly = true;
4886     } else { // OtherSigned && ConstantSigned
4887       assert(0 && "Two signed types converted to unsigned types.");
4888     }
4889   }
4890 
4891   bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4892 
4893   bool IsTrue = true;
4894   if (op == BO_EQ || op == BO_NE) {
4895     IsTrue = op == BO_NE;
4896   } else if (EqualityOnly) {
4897     return;
4898   } else if (RhsConstant) {
4899     if (op == BO_GT || op == BO_GE)
4900       IsTrue = !PositiveConstant;
4901     else // op == BO_LT || op == BO_LE
4902       IsTrue = PositiveConstant;
4903   } else {
4904     if (op == BO_LT || op == BO_LE)
4905       IsTrue = !PositiveConstant;
4906     else // op == BO_GT || op == BO_GE
4907       IsTrue = PositiveConstant;
4908   }
4909 
4910   // If this is a comparison to an enum constant, include that
4911   // constant in the diagnostic.
4912   const EnumConstantDecl *ED = 0;
4913   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4914     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4915 
4916   SmallString<64> PrettySourceValue;
4917   llvm::raw_svector_ostream OS(PrettySourceValue);
4918   if (ED)
4919     OS << '\'' << *ED << "' (" << Value << ")";
4920   else
4921     OS << Value;
4922 
4923   S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4924       << OS.str() << OtherT << IsTrue
4925       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4926 }
4927 
4928 /// Analyze the operands of the given comparison.  Implements the
4929 /// fallback case from AnalyzeComparison.
4930 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4931   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4932   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4933 }
4934 
4935 /// \brief Implements -Wsign-compare.
4936 ///
4937 /// \param E the binary operator to check for warnings
4938 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4939   // The type the comparison is being performed in.
4940   QualType T = E->getLHS()->getType();
4941   assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4942          && "comparison with mismatched types");
4943   if (E->isValueDependent())
4944     return AnalyzeImpConvsInComparison(S, E);
4945 
4946   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4947   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4948 
4949   bool IsComparisonConstant = false;
4950 
4951   // Check whether an integer constant comparison results in a value
4952   // of 'true' or 'false'.
4953   if (T->isIntegralType(S.Context)) {
4954     llvm::APSInt RHSValue;
4955     bool IsRHSIntegralLiteral =
4956       RHS->isIntegerConstantExpr(RHSValue, S.Context);
4957     llvm::APSInt LHSValue;
4958     bool IsLHSIntegralLiteral =
4959       LHS->isIntegerConstantExpr(LHSValue, S.Context);
4960     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4961         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4962     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4963       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4964     else
4965       IsComparisonConstant =
4966         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4967   } else if (!T->hasUnsignedIntegerRepresentation())
4968       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4969 
4970   // We don't do anything special if this isn't an unsigned integral
4971   // comparison:  we're only interested in integral comparisons, and
4972   // signed comparisons only happen in cases we don't care to warn about.
4973   //
4974   // We also don't care about value-dependent expressions or expressions
4975   // whose result is a constant.
4976   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4977     return AnalyzeImpConvsInComparison(S, E);
4978 
4979   // Check to see if one of the (unmodified) operands is of different
4980   // signedness.
4981   Expr *signedOperand, *unsignedOperand;
4982   if (LHS->getType()->hasSignedIntegerRepresentation()) {
4983     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4984            "unsigned comparison between two signed integer expressions?");
4985     signedOperand = LHS;
4986     unsignedOperand = RHS;
4987   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4988     signedOperand = RHS;
4989     unsignedOperand = LHS;
4990   } else {
4991     CheckTrivialUnsignedComparison(S, E);
4992     return AnalyzeImpConvsInComparison(S, E);
4993   }
4994 
4995   // Otherwise, calculate the effective range of the signed operand.
4996   IntRange signedRange = GetExprRange(S.Context, signedOperand);
4997 
4998   // Go ahead and analyze implicit conversions in the operands.  Note
4999   // that we skip the implicit conversions on both sides.
5000   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
5001   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
5002 
5003   // If the signed range is non-negative, -Wsign-compare won't fire,
5004   // but we should still check for comparisons which are always true
5005   // or false.
5006   if (signedRange.NonNegative)
5007     return CheckTrivialUnsignedComparison(S, E);
5008 
5009   // For (in)equality comparisons, if the unsigned operand is a
5010   // constant which cannot collide with a overflowed signed operand,
5011   // then reinterpreting the signed operand as unsigned will not
5012   // change the result of the comparison.
5013   if (E->isEqualityOp()) {
5014     unsigned comparisonWidth = S.Context.getIntWidth(T);
5015     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
5016 
5017     // We should never be unable to prove that the unsigned operand is
5018     // non-negative.
5019     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
5020 
5021     if (unsignedRange.Width < comparisonWidth)
5022       return;
5023   }
5024 
5025   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
5026     S.PDiag(diag::warn_mixed_sign_comparison)
5027       << LHS->getType() << RHS->getType()
5028       << LHS->getSourceRange() << RHS->getSourceRange());
5029 }
5030 
5031 /// Analyzes an attempt to assign the given value to a bitfield.
5032 ///
5033 /// Returns true if there was something fishy about the attempt.
5034 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
5035                                       SourceLocation InitLoc) {
5036   assert(Bitfield->isBitField());
5037   if (Bitfield->isInvalidDecl())
5038     return false;
5039 
5040   // White-list bool bitfields.
5041   if (Bitfield->getType()->isBooleanType())
5042     return false;
5043 
5044   // Ignore value- or type-dependent expressions.
5045   if (Bitfield->getBitWidth()->isValueDependent() ||
5046       Bitfield->getBitWidth()->isTypeDependent() ||
5047       Init->isValueDependent() ||
5048       Init->isTypeDependent())
5049     return false;
5050 
5051   Expr *OriginalInit = Init->IgnoreParenImpCasts();
5052 
5053   llvm::APSInt Value;
5054   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
5055     return false;
5056 
5057   unsigned OriginalWidth = Value.getBitWidth();
5058   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
5059 
5060   if (OriginalWidth <= FieldWidth)
5061     return false;
5062 
5063   // Compute the value which the bitfield will contain.
5064   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
5065   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
5066 
5067   // Check whether the stored value is equal to the original value.
5068   TruncatedValue = TruncatedValue.extend(OriginalWidth);
5069   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
5070     return false;
5071 
5072   // Special-case bitfields of width 1: booleans are naturally 0/1, and
5073   // therefore don't strictly fit into a signed bitfield of width 1.
5074   if (FieldWidth == 1 && Value == 1)
5075     return false;
5076 
5077   std::string PrettyValue = Value.toString(10);
5078   std::string PrettyTrunc = TruncatedValue.toString(10);
5079 
5080   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
5081     << PrettyValue << PrettyTrunc << OriginalInit->getType()
5082     << Init->getSourceRange();
5083 
5084   return true;
5085 }
5086 
5087 /// Analyze the given simple or compound assignment for warning-worthy
5088 /// operations.
5089 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
5090   // Just recurse on the LHS.
5091   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
5092 
5093   // We want to recurse on the RHS as normal unless we're assigning to
5094   // a bitfield.
5095   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
5096     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
5097                                   E->getOperatorLoc())) {
5098       // Recurse, ignoring any implicit conversions on the RHS.
5099       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
5100                                         E->getOperatorLoc());
5101     }
5102   }
5103 
5104   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
5105 }
5106 
5107 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5108 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
5109                             SourceLocation CContext, unsigned diag,
5110                             bool pruneControlFlow = false) {
5111   if (pruneControlFlow) {
5112     S.DiagRuntimeBehavior(E->getExprLoc(), E,
5113                           S.PDiag(diag)
5114                             << SourceType << T << E->getSourceRange()
5115                             << SourceRange(CContext));
5116     return;
5117   }
5118   S.Diag(E->getExprLoc(), diag)
5119     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
5120 }
5121 
5122 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
5123 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
5124                             SourceLocation CContext, unsigned diag,
5125                             bool pruneControlFlow = false) {
5126   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
5127 }
5128 
5129 /// Diagnose an implicit cast from a literal expression. Does not warn when the
5130 /// cast wouldn't lose information.
5131 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
5132                                     SourceLocation CContext) {
5133   // Try to convert the literal exactly to an integer. If we can, don't warn.
5134   bool isExact = false;
5135   const llvm::APFloat &Value = FL->getValue();
5136   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
5137                             T->hasUnsignedIntegerRepresentation());
5138   if (Value.convertToInteger(IntegerValue,
5139                              llvm::APFloat::rmTowardZero, &isExact)
5140       == llvm::APFloat::opOK && isExact)
5141     return;
5142 
5143   // FIXME: Force the precision of the source value down so we don't print
5144   // digits which are usually useless (we don't really care here if we
5145   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
5146   // would automatically print the shortest representation, but it's a bit
5147   // tricky to implement.
5148   SmallString<16> PrettySourceValue;
5149   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
5150   precision = (precision * 59 + 195) / 196;
5151   Value.toString(PrettySourceValue, precision);
5152 
5153   SmallString<16> PrettyTargetValue;
5154   if (T->isSpecificBuiltinType(BuiltinType::Bool))
5155     PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
5156   else
5157     IntegerValue.toString(PrettyTargetValue);
5158 
5159   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
5160     << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
5161     << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
5162 }
5163 
5164 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
5165   if (!Range.Width) return "0";
5166 
5167   llvm::APSInt ValueInRange = Value;
5168   ValueInRange.setIsSigned(!Range.NonNegative);
5169   ValueInRange = ValueInRange.trunc(Range.Width);
5170   return ValueInRange.toString(10);
5171 }
5172 
5173 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
5174   if (!isa<ImplicitCastExpr>(Ex))
5175     return false;
5176 
5177   Expr *InnerE = Ex->IgnoreParenImpCasts();
5178   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
5179   const Type *Source =
5180     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5181   if (Target->isDependentType())
5182     return false;
5183 
5184   const BuiltinType *FloatCandidateBT =
5185     dyn_cast<BuiltinType>(ToBool ? Source : Target);
5186   const Type *BoolCandidateType = ToBool ? Target : Source;
5187 
5188   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
5189           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
5190 }
5191 
5192 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
5193                                       SourceLocation CC) {
5194   unsigned NumArgs = TheCall->getNumArgs();
5195   for (unsigned i = 0; i < NumArgs; ++i) {
5196     Expr *CurrA = TheCall->getArg(i);
5197     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
5198       continue;
5199 
5200     bool IsSwapped = ((i > 0) &&
5201         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
5202     IsSwapped |= ((i < (NumArgs - 1)) &&
5203         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
5204     if (IsSwapped) {
5205       // Warn on this floating-point to bool conversion.
5206       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
5207                       CurrA->getType(), CC,
5208                       diag::warn_impcast_floating_point_to_bool);
5209     }
5210   }
5211 }
5212 
5213 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
5214                              SourceLocation CC, bool *ICContext = 0) {
5215   if (E->isTypeDependent() || E->isValueDependent()) return;
5216 
5217   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
5218   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
5219   if (Source == Target) return;
5220   if (Target->isDependentType()) return;
5221 
5222   // If the conversion context location is invalid don't complain. We also
5223   // don't want to emit a warning if the issue occurs from the expansion of
5224   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
5225   // delay this check as long as possible. Once we detect we are in that
5226   // scenario, we just return.
5227   if (CC.isInvalid())
5228     return;
5229 
5230   // Diagnose implicit casts to bool.
5231   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
5232     if (isa<StringLiteral>(E))
5233       // Warn on string literal to bool.  Checks for string literals in logical
5234       // expressions, for instances, assert(0 && "error here"), is prevented
5235       // by a check in AnalyzeImplicitConversions().
5236       return DiagnoseImpCast(S, E, T, CC,
5237                              diag::warn_impcast_string_literal_to_bool);
5238     if (Source->isFunctionType()) {
5239       // Warn on function to bool. Checks free functions and static member
5240       // functions. Weakly imported functions are excluded from the check,
5241       // since it's common to test their value to check whether the linker
5242       // found a definition for them.
5243       ValueDecl *D = 0;
5244       if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
5245         D = R->getDecl();
5246       } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
5247         D = M->getMemberDecl();
5248       }
5249 
5250       if (D && !D->isWeak()) {
5251         if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
5252           S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
5253             << F << E->getSourceRange() << SourceRange(CC);
5254           S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
5255             << FixItHint::CreateInsertion(E->getExprLoc(), "&");
5256           QualType ReturnType;
5257           UnresolvedSet<4> NonTemplateOverloads;
5258           S.tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
5259           if (!ReturnType.isNull()
5260               && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
5261             S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
5262               << FixItHint::CreateInsertion(
5263                  S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
5264           return;
5265         }
5266       }
5267     }
5268   }
5269 
5270   // Strip vector types.
5271   if (isa<VectorType>(Source)) {
5272     if (!isa<VectorType>(Target)) {
5273       if (S.SourceMgr.isInSystemMacro(CC))
5274         return;
5275       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
5276     }
5277 
5278     // If the vector cast is cast between two vectors of the same size, it is
5279     // a bitcast, not a conversion.
5280     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
5281       return;
5282 
5283     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
5284     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
5285   }
5286 
5287   // Strip complex types.
5288   if (isa<ComplexType>(Source)) {
5289     if (!isa<ComplexType>(Target)) {
5290       if (S.SourceMgr.isInSystemMacro(CC))
5291         return;
5292 
5293       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
5294     }
5295 
5296     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
5297     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
5298   }
5299 
5300   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
5301   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
5302 
5303   // If the source is floating point...
5304   if (SourceBT && SourceBT->isFloatingPoint()) {
5305     // ...and the target is floating point...
5306     if (TargetBT && TargetBT->isFloatingPoint()) {
5307       // ...then warn if we're dropping FP rank.
5308 
5309       // Builtin FP kinds are ordered by increasing FP rank.
5310       if (SourceBT->getKind() > TargetBT->getKind()) {
5311         // Don't warn about float constants that are precisely
5312         // representable in the target type.
5313         Expr::EvalResult result;
5314         if (E->EvaluateAsRValue(result, S.Context)) {
5315           // Value might be a float, a float vector, or a float complex.
5316           if (IsSameFloatAfterCast(result.Val,
5317                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
5318                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
5319             return;
5320         }
5321 
5322         if (S.SourceMgr.isInSystemMacro(CC))
5323           return;
5324 
5325         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
5326       }
5327       return;
5328     }
5329 
5330     // If the target is integral, always warn.
5331     if (TargetBT && TargetBT->isInteger()) {
5332       if (S.SourceMgr.isInSystemMacro(CC))
5333         return;
5334 
5335       Expr *InnerE = E->IgnoreParenImpCasts();
5336       // We also want to warn on, e.g., "int i = -1.234"
5337       if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
5338         if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
5339           InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
5340 
5341       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
5342         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
5343       } else {
5344         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
5345       }
5346     }
5347 
5348     // If the target is bool, warn if expr is a function or method call.
5349     if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
5350         isa<CallExpr>(E)) {
5351       // Check last argument of function call to see if it is an
5352       // implicit cast from a type matching the type the result
5353       // is being cast to.
5354       CallExpr *CEx = cast<CallExpr>(E);
5355       unsigned NumArgs = CEx->getNumArgs();
5356       if (NumArgs > 0) {
5357         Expr *LastA = CEx->getArg(NumArgs - 1);
5358         Expr *InnerE = LastA->IgnoreParenImpCasts();
5359         const Type *InnerType =
5360           S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5361         if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
5362           // Warn on this floating-point to bool conversion
5363           DiagnoseImpCast(S, E, T, CC,
5364                           diag::warn_impcast_floating_point_to_bool);
5365         }
5366       }
5367     }
5368     return;
5369   }
5370 
5371   if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
5372            == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
5373       && !Target->isBlockPointerType() && !Target->isMemberPointerType()
5374       && Target->isScalarType() && !Target->isNullPtrType()) {
5375     SourceLocation Loc = E->getSourceRange().getBegin();
5376     if (Loc.isMacroID())
5377       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
5378     if (!Loc.isMacroID() || CC.isMacroID())
5379       S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
5380           << T << clang::SourceRange(CC)
5381           << FixItHint::CreateReplacement(Loc,
5382                                           S.getFixItZeroLiteralForType(T, Loc));
5383   }
5384 
5385   if (!Source->isIntegerType() || !Target->isIntegerType())
5386     return;
5387 
5388   // TODO: remove this early return once the false positives for constant->bool
5389   // in templates, macros, etc, are reduced or removed.
5390   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
5391     return;
5392 
5393   IntRange SourceRange = GetExprRange(S.Context, E);
5394   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
5395 
5396   if (SourceRange.Width > TargetRange.Width) {
5397     // If the source is a constant, use a default-on diagnostic.
5398     // TODO: this should happen for bitfield stores, too.
5399     llvm::APSInt Value(32);
5400     if (E->isIntegerConstantExpr(Value, S.Context)) {
5401       if (S.SourceMgr.isInSystemMacro(CC))
5402         return;
5403 
5404       std::string PrettySourceValue = Value.toString(10);
5405       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
5406 
5407       S.DiagRuntimeBehavior(E->getExprLoc(), E,
5408         S.PDiag(diag::warn_impcast_integer_precision_constant)
5409             << PrettySourceValue << PrettyTargetValue
5410             << E->getType() << T << E->getSourceRange()
5411             << clang::SourceRange(CC));
5412       return;
5413     }
5414 
5415     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5416     if (S.SourceMgr.isInSystemMacro(CC))
5417       return;
5418 
5419     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5420       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5421                              /* pruneControlFlow */ true);
5422     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5423   }
5424 
5425   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5426       (!TargetRange.NonNegative && SourceRange.NonNegative &&
5427        SourceRange.Width == TargetRange.Width)) {
5428 
5429     if (S.SourceMgr.isInSystemMacro(CC))
5430       return;
5431 
5432     unsigned DiagID = diag::warn_impcast_integer_sign;
5433 
5434     // Traditionally, gcc has warned about this under -Wsign-compare.
5435     // We also want to warn about it in -Wconversion.
5436     // So if -Wconversion is off, use a completely identical diagnostic
5437     // in the sign-compare group.
5438     // The conditional-checking code will
5439     if (ICContext) {
5440       DiagID = diag::warn_impcast_integer_sign_conditional;
5441       *ICContext = true;
5442     }
5443 
5444     return DiagnoseImpCast(S, E, T, CC, DiagID);
5445   }
5446 
5447   // Diagnose conversions between different enumeration types.
5448   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5449   // type, to give us better diagnostics.
5450   QualType SourceType = E->getType();
5451   if (!S.getLangOpts().CPlusPlus) {
5452     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5453       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5454         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5455         SourceType = S.Context.getTypeDeclType(Enum);
5456         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5457       }
5458   }
5459 
5460   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5461     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5462       if (SourceEnum->getDecl()->hasNameForLinkage() &&
5463           TargetEnum->getDecl()->hasNameForLinkage() &&
5464           SourceEnum != TargetEnum) {
5465         if (S.SourceMgr.isInSystemMacro(CC))
5466           return;
5467 
5468         return DiagnoseImpCast(S, E, SourceType, T, CC,
5469                                diag::warn_impcast_different_enum_types);
5470       }
5471 
5472   return;
5473 }
5474 
5475 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5476                               SourceLocation CC, QualType T);
5477 
5478 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5479                              SourceLocation CC, bool &ICContext) {
5480   E = E->IgnoreParenImpCasts();
5481 
5482   if (isa<ConditionalOperator>(E))
5483     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5484 
5485   AnalyzeImplicitConversions(S, E, CC);
5486   if (E->getType() != T)
5487     return CheckImplicitConversion(S, E, T, CC, &ICContext);
5488   return;
5489 }
5490 
5491 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5492                               SourceLocation CC, QualType T) {
5493   AnalyzeImplicitConversions(S, E->getCond(), CC);
5494 
5495   bool Suspicious = false;
5496   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5497   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5498 
5499   // If -Wconversion would have warned about either of the candidates
5500   // for a signedness conversion to the context type...
5501   if (!Suspicious) return;
5502 
5503   // ...but it's currently ignored...
5504   if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5505                                  CC))
5506     return;
5507 
5508   // ...then check whether it would have warned about either of the
5509   // candidates for a signedness conversion to the condition type.
5510   if (E->getType() == T) return;
5511 
5512   Suspicious = false;
5513   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5514                           E->getType(), CC, &Suspicious);
5515   if (!Suspicious)
5516     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5517                             E->getType(), CC, &Suspicious);
5518 }
5519 
5520 /// AnalyzeImplicitConversions - Find and report any interesting
5521 /// implicit conversions in the given expression.  There are a couple
5522 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
5523 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5524   QualType T = OrigE->getType();
5525   Expr *E = OrigE->IgnoreParenImpCasts();
5526 
5527   if (E->isTypeDependent() || E->isValueDependent())
5528     return;
5529 
5530   // For conditional operators, we analyze the arguments as if they
5531   // were being fed directly into the output.
5532   if (isa<ConditionalOperator>(E)) {
5533     ConditionalOperator *CO = cast<ConditionalOperator>(E);
5534     CheckConditionalOperator(S, CO, CC, T);
5535     return;
5536   }
5537 
5538   // Check implicit argument conversions for function calls.
5539   if (CallExpr *Call = dyn_cast<CallExpr>(E))
5540     CheckImplicitArgumentConversions(S, Call, CC);
5541 
5542   // Go ahead and check any implicit conversions we might have skipped.
5543   // The non-canonical typecheck is just an optimization;
5544   // CheckImplicitConversion will filter out dead implicit conversions.
5545   if (E->getType() != T)
5546     CheckImplicitConversion(S, E, T, CC);
5547 
5548   // Now continue drilling into this expression.
5549 
5550   if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
5551     if (POE->getResultExpr())
5552       E = POE->getResultExpr();
5553   }
5554 
5555   if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5556     return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
5557 
5558   // Skip past explicit casts.
5559   if (isa<ExplicitCastExpr>(E)) {
5560     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5561     return AnalyzeImplicitConversions(S, E, CC);
5562   }
5563 
5564   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5565     // Do a somewhat different check with comparison operators.
5566     if (BO->isComparisonOp())
5567       return AnalyzeComparison(S, BO);
5568 
5569     // And with simple assignments.
5570     if (BO->getOpcode() == BO_Assign)
5571       return AnalyzeAssignment(S, BO);
5572   }
5573 
5574   // These break the otherwise-useful invariant below.  Fortunately,
5575   // we don't really need to recurse into them, because any internal
5576   // expressions should have been analyzed already when they were
5577   // built into statements.
5578   if (isa<StmtExpr>(E)) return;
5579 
5580   // Don't descend into unevaluated contexts.
5581   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5582 
5583   // Now just recurse over the expression's children.
5584   CC = E->getExprLoc();
5585   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5586   bool IsLogicalOperator = BO && BO->isLogicalOp();
5587   for (Stmt::child_range I = E->children(); I; ++I) {
5588     Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5589     if (!ChildExpr)
5590       continue;
5591 
5592     if (IsLogicalOperator &&
5593         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5594       // Ignore checking string literals that are in logical operators.
5595       continue;
5596     AnalyzeImplicitConversions(S, ChildExpr, CC);
5597   }
5598 }
5599 
5600 } // end anonymous namespace
5601 
5602 /// Diagnoses "dangerous" implicit conversions within the given
5603 /// expression (which is a full expression).  Implements -Wconversion
5604 /// and -Wsign-compare.
5605 ///
5606 /// \param CC the "context" location of the implicit conversion, i.e.
5607 ///   the most location of the syntactic entity requiring the implicit
5608 ///   conversion
5609 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5610   // Don't diagnose in unevaluated contexts.
5611   if (isUnevaluatedContext())
5612     return;
5613 
5614   // Don't diagnose for value- or type-dependent expressions.
5615   if (E->isTypeDependent() || E->isValueDependent())
5616     return;
5617 
5618   // Check for array bounds violations in cases where the check isn't triggered
5619   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5620   // ArraySubscriptExpr is on the RHS of a variable initialization.
5621   CheckArrayAccess(E);
5622 
5623   // This is not the right CC for (e.g.) a variable initialization.
5624   AnalyzeImplicitConversions(*this, E, CC);
5625 }
5626 
5627 /// Diagnose when expression is an integer constant expression and its evaluation
5628 /// results in integer overflow
5629 void Sema::CheckForIntOverflow (Expr *E) {
5630   if (isa<BinaryOperator>(E->IgnoreParens()))
5631     E->EvaluateForOverflow(Context);
5632 }
5633 
5634 namespace {
5635 /// \brief Visitor for expressions which looks for unsequenced operations on the
5636 /// same object.
5637 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5638   typedef EvaluatedExprVisitor<SequenceChecker> Base;
5639 
5640   /// \brief A tree of sequenced regions within an expression. Two regions are
5641   /// unsequenced if one is an ancestor or a descendent of the other. When we
5642   /// finish processing an expression with sequencing, such as a comma
5643   /// expression, we fold its tree nodes into its parent, since they are
5644   /// unsequenced with respect to nodes we will visit later.
5645   class SequenceTree {
5646     struct Value {
5647       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5648       unsigned Parent : 31;
5649       bool Merged : 1;
5650     };
5651     SmallVector<Value, 8> Values;
5652 
5653   public:
5654     /// \brief A region within an expression which may be sequenced with respect
5655     /// to some other region.
5656     class Seq {
5657       explicit Seq(unsigned N) : Index(N) {}
5658       unsigned Index;
5659       friend class SequenceTree;
5660     public:
5661       Seq() : Index(0) {}
5662     };
5663 
5664     SequenceTree() { Values.push_back(Value(0)); }
5665     Seq root() const { return Seq(0); }
5666 
5667     /// \brief Create a new sequence of operations, which is an unsequenced
5668     /// subset of \p Parent. This sequence of operations is sequenced with
5669     /// respect to other children of \p Parent.
5670     Seq allocate(Seq Parent) {
5671       Values.push_back(Value(Parent.Index));
5672       return Seq(Values.size() - 1);
5673     }
5674 
5675     /// \brief Merge a sequence of operations into its parent.
5676     void merge(Seq S) {
5677       Values[S.Index].Merged = true;
5678     }
5679 
5680     /// \brief Determine whether two operations are unsequenced. This operation
5681     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5682     /// should have been merged into its parent as appropriate.
5683     bool isUnsequenced(Seq Cur, Seq Old) {
5684       unsigned C = representative(Cur.Index);
5685       unsigned Target = representative(Old.Index);
5686       while (C >= Target) {
5687         if (C == Target)
5688           return true;
5689         C = Values[C].Parent;
5690       }
5691       return false;
5692     }
5693 
5694   private:
5695     /// \brief Pick a representative for a sequence.
5696     unsigned representative(unsigned K) {
5697       if (Values[K].Merged)
5698         // Perform path compression as we go.
5699         return Values[K].Parent = representative(Values[K].Parent);
5700       return K;
5701     }
5702   };
5703 
5704   /// An object for which we can track unsequenced uses.
5705   typedef NamedDecl *Object;
5706 
5707   /// Different flavors of object usage which we track. We only track the
5708   /// least-sequenced usage of each kind.
5709   enum UsageKind {
5710     /// A read of an object. Multiple unsequenced reads are OK.
5711     UK_Use,
5712     /// A modification of an object which is sequenced before the value
5713     /// computation of the expression, such as ++n in C++.
5714     UK_ModAsValue,
5715     /// A modification of an object which is not sequenced before the value
5716     /// computation of the expression, such as n++.
5717     UK_ModAsSideEffect,
5718 
5719     UK_Count = UK_ModAsSideEffect + 1
5720   };
5721 
5722   struct Usage {
5723     Usage() : Use(0), Seq() {}
5724     Expr *Use;
5725     SequenceTree::Seq Seq;
5726   };
5727 
5728   struct UsageInfo {
5729     UsageInfo() : Diagnosed(false) {}
5730     Usage Uses[UK_Count];
5731     /// Have we issued a diagnostic for this variable already?
5732     bool Diagnosed;
5733   };
5734   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5735 
5736   Sema &SemaRef;
5737   /// Sequenced regions within the expression.
5738   SequenceTree Tree;
5739   /// Declaration modifications and references which we have seen.
5740   UsageInfoMap UsageMap;
5741   /// The region we are currently within.
5742   SequenceTree::Seq Region;
5743   /// Filled in with declarations which were modified as a side-effect
5744   /// (that is, post-increment operations).
5745   SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5746   /// Expressions to check later. We defer checking these to reduce
5747   /// stack usage.
5748   SmallVectorImpl<Expr *> &WorkList;
5749 
5750   /// RAII object wrapping the visitation of a sequenced subexpression of an
5751   /// expression. At the end of this process, the side-effects of the evaluation
5752   /// become sequenced with respect to the value computation of the result, so
5753   /// we downgrade any UK_ModAsSideEffect within the evaluation to
5754   /// UK_ModAsValue.
5755   struct SequencedSubexpression {
5756     SequencedSubexpression(SequenceChecker &Self)
5757       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5758       Self.ModAsSideEffect = &ModAsSideEffect;
5759     }
5760     ~SequencedSubexpression() {
5761       for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5762         UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5763         U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5764         Self.addUsage(U, ModAsSideEffect[I].first,
5765                       ModAsSideEffect[I].second.Use, UK_ModAsValue);
5766       }
5767       Self.ModAsSideEffect = OldModAsSideEffect;
5768     }
5769 
5770     SequenceChecker &Self;
5771     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5772     SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5773   };
5774 
5775   /// RAII object wrapping the visitation of a subexpression which we might
5776   /// choose to evaluate as a constant. If any subexpression is evaluated and
5777   /// found to be non-constant, this allows us to suppress the evaluation of
5778   /// the outer expression.
5779   class EvaluationTracker {
5780   public:
5781     EvaluationTracker(SequenceChecker &Self)
5782         : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
5783       Self.EvalTracker = this;
5784     }
5785     ~EvaluationTracker() {
5786       Self.EvalTracker = Prev;
5787       if (Prev)
5788         Prev->EvalOK &= EvalOK;
5789     }
5790 
5791     bool evaluate(const Expr *E, bool &Result) {
5792       if (!EvalOK || E->isValueDependent())
5793         return false;
5794       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
5795       return EvalOK;
5796     }
5797 
5798   private:
5799     SequenceChecker &Self;
5800     EvaluationTracker *Prev;
5801     bool EvalOK;
5802   } *EvalTracker;
5803 
5804   /// \brief Find the object which is produced by the specified expression,
5805   /// if any.
5806   Object getObject(Expr *E, bool Mod) const {
5807     E = E->IgnoreParenCasts();
5808     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5809       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5810         return getObject(UO->getSubExpr(), Mod);
5811     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5812       if (BO->getOpcode() == BO_Comma)
5813         return getObject(BO->getRHS(), Mod);
5814       if (Mod && BO->isAssignmentOp())
5815         return getObject(BO->getLHS(), Mod);
5816     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5817       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5818       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5819         return ME->getMemberDecl();
5820     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5821       // FIXME: If this is a reference, map through to its value.
5822       return DRE->getDecl();
5823     return 0;
5824   }
5825 
5826   /// \brief Note that an object was modified or used by an expression.
5827   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5828     Usage &U = UI.Uses[UK];
5829     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5830       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5831         ModAsSideEffect->push_back(std::make_pair(O, U));
5832       U.Use = Ref;
5833       U.Seq = Region;
5834     }
5835   }
5836   /// \brief Check whether a modification or use conflicts with a prior usage.
5837   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5838                   bool IsModMod) {
5839     if (UI.Diagnosed)
5840       return;
5841 
5842     const Usage &U = UI.Uses[OtherKind];
5843     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5844       return;
5845 
5846     Expr *Mod = U.Use;
5847     Expr *ModOrUse = Ref;
5848     if (OtherKind == UK_Use)
5849       std::swap(Mod, ModOrUse);
5850 
5851     SemaRef.Diag(Mod->getExprLoc(),
5852                  IsModMod ? diag::warn_unsequenced_mod_mod
5853                           : diag::warn_unsequenced_mod_use)
5854       << O << SourceRange(ModOrUse->getExprLoc());
5855     UI.Diagnosed = true;
5856   }
5857 
5858   void notePreUse(Object O, Expr *Use) {
5859     UsageInfo &U = UsageMap[O];
5860     // Uses conflict with other modifications.
5861     checkUsage(O, U, Use, UK_ModAsValue, false);
5862   }
5863   void notePostUse(Object O, Expr *Use) {
5864     UsageInfo &U = UsageMap[O];
5865     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5866     addUsage(U, O, Use, UK_Use);
5867   }
5868 
5869   void notePreMod(Object O, Expr *Mod) {
5870     UsageInfo &U = UsageMap[O];
5871     // Modifications conflict with other modifications and with uses.
5872     checkUsage(O, U, Mod, UK_ModAsValue, true);
5873     checkUsage(O, U, Mod, UK_Use, false);
5874   }
5875   void notePostMod(Object O, Expr *Use, UsageKind UK) {
5876     UsageInfo &U = UsageMap[O];
5877     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5878     addUsage(U, O, Use, UK);
5879   }
5880 
5881 public:
5882   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
5883       : Base(S.Context), SemaRef(S), Region(Tree.root()), ModAsSideEffect(0),
5884         WorkList(WorkList), EvalTracker(0) {
5885     Visit(E);
5886   }
5887 
5888   void VisitStmt(Stmt *S) {
5889     // Skip all statements which aren't expressions for now.
5890   }
5891 
5892   void VisitExpr(Expr *E) {
5893     // By default, just recurse to evaluated subexpressions.
5894     Base::VisitStmt(E);
5895   }
5896 
5897   void VisitCastExpr(CastExpr *E) {
5898     Object O = Object();
5899     if (E->getCastKind() == CK_LValueToRValue)
5900       O = getObject(E->getSubExpr(), false);
5901 
5902     if (O)
5903       notePreUse(O, E);
5904     VisitExpr(E);
5905     if (O)
5906       notePostUse(O, E);
5907   }
5908 
5909   void VisitBinComma(BinaryOperator *BO) {
5910     // C++11 [expr.comma]p1:
5911     //   Every value computation and side effect associated with the left
5912     //   expression is sequenced before every value computation and side
5913     //   effect associated with the right expression.
5914     SequenceTree::Seq LHS = Tree.allocate(Region);
5915     SequenceTree::Seq RHS = Tree.allocate(Region);
5916     SequenceTree::Seq OldRegion = Region;
5917 
5918     {
5919       SequencedSubexpression SeqLHS(*this);
5920       Region = LHS;
5921       Visit(BO->getLHS());
5922     }
5923 
5924     Region = RHS;
5925     Visit(BO->getRHS());
5926 
5927     Region = OldRegion;
5928 
5929     // Forget that LHS and RHS are sequenced. They are both unsequenced
5930     // with respect to other stuff.
5931     Tree.merge(LHS);
5932     Tree.merge(RHS);
5933   }
5934 
5935   void VisitBinAssign(BinaryOperator *BO) {
5936     // The modification is sequenced after the value computation of the LHS
5937     // and RHS, so check it before inspecting the operands and update the
5938     // map afterwards.
5939     Object O = getObject(BO->getLHS(), true);
5940     if (!O)
5941       return VisitExpr(BO);
5942 
5943     notePreMod(O, BO);
5944 
5945     // C++11 [expr.ass]p7:
5946     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5947     //   only once.
5948     //
5949     // Therefore, for a compound assignment operator, O is considered used
5950     // everywhere except within the evaluation of E1 itself.
5951     if (isa<CompoundAssignOperator>(BO))
5952       notePreUse(O, BO);
5953 
5954     Visit(BO->getLHS());
5955 
5956     if (isa<CompoundAssignOperator>(BO))
5957       notePostUse(O, BO);
5958 
5959     Visit(BO->getRHS());
5960 
5961     // C++11 [expr.ass]p1:
5962     //   the assignment is sequenced [...] before the value computation of the
5963     //   assignment expression.
5964     // C11 6.5.16/3 has no such rule.
5965     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5966                                                        : UK_ModAsSideEffect);
5967   }
5968   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5969     VisitBinAssign(CAO);
5970   }
5971 
5972   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5973   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5974   void VisitUnaryPreIncDec(UnaryOperator *UO) {
5975     Object O = getObject(UO->getSubExpr(), true);
5976     if (!O)
5977       return VisitExpr(UO);
5978 
5979     notePreMod(O, UO);
5980     Visit(UO->getSubExpr());
5981     // C++11 [expr.pre.incr]p1:
5982     //   the expression ++x is equivalent to x+=1
5983     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5984                                                        : UK_ModAsSideEffect);
5985   }
5986 
5987   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5988   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5989   void VisitUnaryPostIncDec(UnaryOperator *UO) {
5990     Object O = getObject(UO->getSubExpr(), true);
5991     if (!O)
5992       return VisitExpr(UO);
5993 
5994     notePreMod(O, UO);
5995     Visit(UO->getSubExpr());
5996     notePostMod(O, UO, UK_ModAsSideEffect);
5997   }
5998 
5999   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
6000   void VisitBinLOr(BinaryOperator *BO) {
6001     // The side-effects of the LHS of an '&&' are sequenced before the
6002     // value computation of the RHS, and hence before the value computation
6003     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
6004     // as if they were unconditionally sequenced.
6005     EvaluationTracker Eval(*this);
6006     {
6007       SequencedSubexpression Sequenced(*this);
6008       Visit(BO->getLHS());
6009     }
6010 
6011     bool Result;
6012     if (Eval.evaluate(BO->getLHS(), Result)) {
6013       if (!Result)
6014         Visit(BO->getRHS());
6015     } else {
6016       // Check for unsequenced operations in the RHS, treating it as an
6017       // entirely separate evaluation.
6018       //
6019       // FIXME: If there are operations in the RHS which are unsequenced
6020       // with respect to operations outside the RHS, and those operations
6021       // are unconditionally evaluated, diagnose them.
6022       WorkList.push_back(BO->getRHS());
6023     }
6024   }
6025   void VisitBinLAnd(BinaryOperator *BO) {
6026     EvaluationTracker Eval(*this);
6027     {
6028       SequencedSubexpression Sequenced(*this);
6029       Visit(BO->getLHS());
6030     }
6031 
6032     bool Result;
6033     if (Eval.evaluate(BO->getLHS(), Result)) {
6034       if (Result)
6035         Visit(BO->getRHS());
6036     } else {
6037       WorkList.push_back(BO->getRHS());
6038     }
6039   }
6040 
6041   // Only visit the condition, unless we can be sure which subexpression will
6042   // be chosen.
6043   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
6044     EvaluationTracker Eval(*this);
6045     {
6046       SequencedSubexpression Sequenced(*this);
6047       Visit(CO->getCond());
6048     }
6049 
6050     bool Result;
6051     if (Eval.evaluate(CO->getCond(), Result))
6052       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
6053     else {
6054       WorkList.push_back(CO->getTrueExpr());
6055       WorkList.push_back(CO->getFalseExpr());
6056     }
6057   }
6058 
6059   void VisitCallExpr(CallExpr *CE) {
6060     // C++11 [intro.execution]p15:
6061     //   When calling a function [...], every value computation and side effect
6062     //   associated with any argument expression, or with the postfix expression
6063     //   designating the called function, is sequenced before execution of every
6064     //   expression or statement in the body of the function [and thus before
6065     //   the value computation of its result].
6066     SequencedSubexpression Sequenced(*this);
6067     Base::VisitCallExpr(CE);
6068 
6069     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
6070   }
6071 
6072   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
6073     // This is a call, so all subexpressions are sequenced before the result.
6074     SequencedSubexpression Sequenced(*this);
6075 
6076     if (!CCE->isListInitialization())
6077       return VisitExpr(CCE);
6078 
6079     // In C++11, list initializations are sequenced.
6080     SmallVector<SequenceTree::Seq, 32> Elts;
6081     SequenceTree::Seq Parent = Region;
6082     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
6083                                         E = CCE->arg_end();
6084          I != E; ++I) {
6085       Region = Tree.allocate(Parent);
6086       Elts.push_back(Region);
6087       Visit(*I);
6088     }
6089 
6090     // Forget that the initializers are sequenced.
6091     Region = Parent;
6092     for (unsigned I = 0; I < Elts.size(); ++I)
6093       Tree.merge(Elts[I]);
6094   }
6095 
6096   void VisitInitListExpr(InitListExpr *ILE) {
6097     if (!SemaRef.getLangOpts().CPlusPlus11)
6098       return VisitExpr(ILE);
6099 
6100     // In C++11, list initializations are sequenced.
6101     SmallVector<SequenceTree::Seq, 32> Elts;
6102     SequenceTree::Seq Parent = Region;
6103     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
6104       Expr *E = ILE->getInit(I);
6105       if (!E) continue;
6106       Region = Tree.allocate(Parent);
6107       Elts.push_back(Region);
6108       Visit(E);
6109     }
6110 
6111     // Forget that the initializers are sequenced.
6112     Region = Parent;
6113     for (unsigned I = 0; I < Elts.size(); ++I)
6114       Tree.merge(Elts[I]);
6115   }
6116 };
6117 }
6118 
6119 void Sema::CheckUnsequencedOperations(Expr *E) {
6120   SmallVector<Expr *, 8> WorkList;
6121   WorkList.push_back(E);
6122   while (!WorkList.empty()) {
6123     Expr *Item = WorkList.pop_back_val();
6124     SequenceChecker(*this, Item, WorkList);
6125   }
6126 }
6127 
6128 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
6129                               bool IsConstexpr) {
6130   CheckImplicitConversions(E, CheckLoc);
6131   CheckUnsequencedOperations(E);
6132   if (!IsConstexpr && !E->isValueDependent())
6133     CheckForIntOverflow(E);
6134 }
6135 
6136 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
6137                                        FieldDecl *BitField,
6138                                        Expr *Init) {
6139   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
6140 }
6141 
6142 /// CheckParmsForFunctionDef - Check that the parameters of the given
6143 /// function are appropriate for the definition of a function. This
6144 /// takes care of any checks that cannot be performed on the
6145 /// declaration itself, e.g., that the types of each of the function
6146 /// parameters are complete.
6147 bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
6148                                     ParmVarDecl *const *PEnd,
6149                                     bool CheckParameterNames) {
6150   bool HasInvalidParm = false;
6151   for (; P != PEnd; ++P) {
6152     ParmVarDecl *Param = *P;
6153 
6154     // C99 6.7.5.3p4: the parameters in a parameter type list in a
6155     // function declarator that is part of a function definition of
6156     // that function shall not have incomplete type.
6157     //
6158     // This is also C++ [dcl.fct]p6.
6159     if (!Param->isInvalidDecl() &&
6160         RequireCompleteType(Param->getLocation(), Param->getType(),
6161                             diag::err_typecheck_decl_incomplete_type)) {
6162       Param->setInvalidDecl();
6163       HasInvalidParm = true;
6164     }
6165 
6166     // C99 6.9.1p5: If the declarator includes a parameter type list, the
6167     // declaration of each parameter shall include an identifier.
6168     if (CheckParameterNames &&
6169         Param->getIdentifier() == 0 &&
6170         !Param->isImplicit() &&
6171         !getLangOpts().CPlusPlus)
6172       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6173 
6174     // C99 6.7.5.3p12:
6175     //   If the function declarator is not part of a definition of that
6176     //   function, parameters may have incomplete type and may use the [*]
6177     //   notation in their sequences of declarator specifiers to specify
6178     //   variable length array types.
6179     QualType PType = Param->getOriginalType();
6180     while (const ArrayType *AT = Context.getAsArrayType(PType)) {
6181       if (AT->getSizeModifier() == ArrayType::Star) {
6182         // FIXME: This diagnostic should point the '[*]' if source-location
6183         // information is added for it.
6184         Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
6185         break;
6186       }
6187       PType= AT->getElementType();
6188     }
6189 
6190     // MSVC destroys objects passed by value in the callee.  Therefore a
6191     // function definition which takes such a parameter must be able to call the
6192     // object's destructor.
6193     if (getLangOpts().CPlusPlus &&
6194         Context.getTargetInfo().getCXXABI().isArgumentDestroyedByCallee()) {
6195       if (const RecordType *RT = Param->getType()->getAs<RecordType>())
6196         FinalizeVarWithDestructor(Param, RT);
6197     }
6198   }
6199 
6200   return HasInvalidParm;
6201 }
6202 
6203 /// CheckCastAlign - Implements -Wcast-align, which warns when a
6204 /// pointer cast increases the alignment requirements.
6205 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
6206   // This is actually a lot of work to potentially be doing on every
6207   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
6208   if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
6209                                           TRange.getBegin())
6210         == DiagnosticsEngine::Ignored)
6211     return;
6212 
6213   // Ignore dependent types.
6214   if (T->isDependentType() || Op->getType()->isDependentType())
6215     return;
6216 
6217   // Require that the destination be a pointer type.
6218   const PointerType *DestPtr = T->getAs<PointerType>();
6219   if (!DestPtr) return;
6220 
6221   // If the destination has alignment 1, we're done.
6222   QualType DestPointee = DestPtr->getPointeeType();
6223   if (DestPointee->isIncompleteType()) return;
6224   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
6225   if (DestAlign.isOne()) return;
6226 
6227   // Require that the source be a pointer type.
6228   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
6229   if (!SrcPtr) return;
6230   QualType SrcPointee = SrcPtr->getPointeeType();
6231 
6232   // Whitelist casts from cv void*.  We already implicitly
6233   // whitelisted casts to cv void*, since they have alignment 1.
6234   // Also whitelist casts involving incomplete types, which implicitly
6235   // includes 'void'.
6236   if (SrcPointee->isIncompleteType()) return;
6237 
6238   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
6239   if (SrcAlign >= DestAlign) return;
6240 
6241   Diag(TRange.getBegin(), diag::warn_cast_align)
6242     << Op->getType() << T
6243     << static_cast<unsigned>(SrcAlign.getQuantity())
6244     << static_cast<unsigned>(DestAlign.getQuantity())
6245     << TRange << Op->getSourceRange();
6246 }
6247 
6248 static const Type* getElementType(const Expr *BaseExpr) {
6249   const Type* EltType = BaseExpr->getType().getTypePtr();
6250   if (EltType->isAnyPointerType())
6251     return EltType->getPointeeType().getTypePtr();
6252   else if (EltType->isArrayType())
6253     return EltType->getBaseElementTypeUnsafe();
6254   return EltType;
6255 }
6256 
6257 /// \brief Check whether this array fits the idiom of a size-one tail padded
6258 /// array member of a struct.
6259 ///
6260 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
6261 /// commonly used to emulate flexible arrays in C89 code.
6262 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
6263                                     const NamedDecl *ND) {
6264   if (Size != 1 || !ND) return false;
6265 
6266   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
6267   if (!FD) return false;
6268 
6269   // Don't consider sizes resulting from macro expansions or template argument
6270   // substitution to form C89 tail-padded arrays.
6271 
6272   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
6273   while (TInfo) {
6274     TypeLoc TL = TInfo->getTypeLoc();
6275     // Look through typedefs.
6276     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
6277       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
6278       TInfo = TDL->getTypeSourceInfo();
6279       continue;
6280     }
6281     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
6282       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
6283       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
6284         return false;
6285     }
6286     break;
6287   }
6288 
6289   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
6290   if (!RD) return false;
6291   if (RD->isUnion()) return false;
6292   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6293     if (!CRD->isStandardLayout()) return false;
6294   }
6295 
6296   // See if this is the last field decl in the record.
6297   const Decl *D = FD;
6298   while ((D = D->getNextDeclInContext()))
6299     if (isa<FieldDecl>(D))
6300       return false;
6301   return true;
6302 }
6303 
6304 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
6305                             const ArraySubscriptExpr *ASE,
6306                             bool AllowOnePastEnd, bool IndexNegated) {
6307   IndexExpr = IndexExpr->IgnoreParenImpCasts();
6308   if (IndexExpr->isValueDependent())
6309     return;
6310 
6311   const Type *EffectiveType = getElementType(BaseExpr);
6312   BaseExpr = BaseExpr->IgnoreParenCasts();
6313   const ConstantArrayType *ArrayTy =
6314     Context.getAsConstantArrayType(BaseExpr->getType());
6315   if (!ArrayTy)
6316     return;
6317 
6318   llvm::APSInt index;
6319   if (!IndexExpr->EvaluateAsInt(index, Context))
6320     return;
6321   if (IndexNegated)
6322     index = -index;
6323 
6324   const NamedDecl *ND = NULL;
6325   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6326     ND = dyn_cast<NamedDecl>(DRE->getDecl());
6327   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6328     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6329 
6330   if (index.isUnsigned() || !index.isNegative()) {
6331     llvm::APInt size = ArrayTy->getSize();
6332     if (!size.isStrictlyPositive())
6333       return;
6334 
6335     const Type* BaseType = getElementType(BaseExpr);
6336     if (BaseType != EffectiveType) {
6337       // Make sure we're comparing apples to apples when comparing index to size
6338       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
6339       uint64_t array_typesize = Context.getTypeSize(BaseType);
6340       // Handle ptrarith_typesize being zero, such as when casting to void*
6341       if (!ptrarith_typesize) ptrarith_typesize = 1;
6342       if (ptrarith_typesize != array_typesize) {
6343         // There's a cast to a different size type involved
6344         uint64_t ratio = array_typesize / ptrarith_typesize;
6345         // TODO: Be smarter about handling cases where array_typesize is not a
6346         // multiple of ptrarith_typesize
6347         if (ptrarith_typesize * ratio == array_typesize)
6348           size *= llvm::APInt(size.getBitWidth(), ratio);
6349       }
6350     }
6351 
6352     if (size.getBitWidth() > index.getBitWidth())
6353       index = index.zext(size.getBitWidth());
6354     else if (size.getBitWidth() < index.getBitWidth())
6355       size = size.zext(index.getBitWidth());
6356 
6357     // For array subscripting the index must be less than size, but for pointer
6358     // arithmetic also allow the index (offset) to be equal to size since
6359     // computing the next address after the end of the array is legal and
6360     // commonly done e.g. in C++ iterators and range-based for loops.
6361     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
6362       return;
6363 
6364     // Also don't warn for arrays of size 1 which are members of some
6365     // structure. These are often used to approximate flexible arrays in C89
6366     // code.
6367     if (IsTailPaddedMemberArray(*this, size, ND))
6368       return;
6369 
6370     // Suppress the warning if the subscript expression (as identified by the
6371     // ']' location) and the index expression are both from macro expansions
6372     // within a system header.
6373     if (ASE) {
6374       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
6375           ASE->getRBracketLoc());
6376       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
6377         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
6378             IndexExpr->getLocStart());
6379         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
6380           return;
6381       }
6382     }
6383 
6384     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
6385     if (ASE)
6386       DiagID = diag::warn_array_index_exceeds_bounds;
6387 
6388     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6389                         PDiag(DiagID) << index.toString(10, true)
6390                           << size.toString(10, true)
6391                           << (unsigned)size.getLimitedValue(~0U)
6392                           << IndexExpr->getSourceRange());
6393   } else {
6394     unsigned DiagID = diag::warn_array_index_precedes_bounds;
6395     if (!ASE) {
6396       DiagID = diag::warn_ptr_arith_precedes_bounds;
6397       if (index.isNegative()) index = -index;
6398     }
6399 
6400     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6401                         PDiag(DiagID) << index.toString(10, true)
6402                           << IndexExpr->getSourceRange());
6403   }
6404 
6405   if (!ND) {
6406     // Try harder to find a NamedDecl to point at in the note.
6407     while (const ArraySubscriptExpr *ASE =
6408            dyn_cast<ArraySubscriptExpr>(BaseExpr))
6409       BaseExpr = ASE->getBase()->IgnoreParenCasts();
6410     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6411       ND = dyn_cast<NamedDecl>(DRE->getDecl());
6412     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6413       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6414   }
6415 
6416   if (ND)
6417     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
6418                         PDiag(diag::note_array_index_out_of_bounds)
6419                           << ND->getDeclName());
6420 }
6421 
6422 void Sema::CheckArrayAccess(const Expr *expr) {
6423   int AllowOnePastEnd = 0;
6424   while (expr) {
6425     expr = expr->IgnoreParenImpCasts();
6426     switch (expr->getStmtClass()) {
6427       case Stmt::ArraySubscriptExprClass: {
6428         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
6429         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
6430                          AllowOnePastEnd > 0);
6431         return;
6432       }
6433       case Stmt::UnaryOperatorClass: {
6434         // Only unwrap the * and & unary operators
6435         const UnaryOperator *UO = cast<UnaryOperator>(expr);
6436         expr = UO->getSubExpr();
6437         switch (UO->getOpcode()) {
6438           case UO_AddrOf:
6439             AllowOnePastEnd++;
6440             break;
6441           case UO_Deref:
6442             AllowOnePastEnd--;
6443             break;
6444           default:
6445             return;
6446         }
6447         break;
6448       }
6449       case Stmt::ConditionalOperatorClass: {
6450         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
6451         if (const Expr *lhs = cond->getLHS())
6452           CheckArrayAccess(lhs);
6453         if (const Expr *rhs = cond->getRHS())
6454           CheckArrayAccess(rhs);
6455         return;
6456       }
6457       default:
6458         return;
6459     }
6460   }
6461 }
6462 
6463 //===--- CHECK: Objective-C retain cycles ----------------------------------//
6464 
6465 namespace {
6466   struct RetainCycleOwner {
6467     RetainCycleOwner() : Variable(0), Indirect(false) {}
6468     VarDecl *Variable;
6469     SourceRange Range;
6470     SourceLocation Loc;
6471     bool Indirect;
6472 
6473     void setLocsFrom(Expr *e) {
6474       Loc = e->getExprLoc();
6475       Range = e->getSourceRange();
6476     }
6477   };
6478 }
6479 
6480 /// Consider whether capturing the given variable can possibly lead to
6481 /// a retain cycle.
6482 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
6483   // In ARC, it's captured strongly iff the variable has __strong
6484   // lifetime.  In MRR, it's captured strongly if the variable is
6485   // __block and has an appropriate type.
6486   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6487     return false;
6488 
6489   owner.Variable = var;
6490   if (ref)
6491     owner.setLocsFrom(ref);
6492   return true;
6493 }
6494 
6495 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6496   while (true) {
6497     e = e->IgnoreParens();
6498     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6499       switch (cast->getCastKind()) {
6500       case CK_BitCast:
6501       case CK_LValueBitCast:
6502       case CK_LValueToRValue:
6503       case CK_ARCReclaimReturnedObject:
6504         e = cast->getSubExpr();
6505         continue;
6506 
6507       default:
6508         return false;
6509       }
6510     }
6511 
6512     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6513       ObjCIvarDecl *ivar = ref->getDecl();
6514       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6515         return false;
6516 
6517       // Try to find a retain cycle in the base.
6518       if (!findRetainCycleOwner(S, ref->getBase(), owner))
6519         return false;
6520 
6521       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6522       owner.Indirect = true;
6523       return true;
6524     }
6525 
6526     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6527       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6528       if (!var) return false;
6529       return considerVariable(var, ref, owner);
6530     }
6531 
6532     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6533       if (member->isArrow()) return false;
6534 
6535       // Don't count this as an indirect ownership.
6536       e = member->getBase();
6537       continue;
6538     }
6539 
6540     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6541       // Only pay attention to pseudo-objects on property references.
6542       ObjCPropertyRefExpr *pre
6543         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6544                                               ->IgnoreParens());
6545       if (!pre) return false;
6546       if (pre->isImplicitProperty()) return false;
6547       ObjCPropertyDecl *property = pre->getExplicitProperty();
6548       if (!property->isRetaining() &&
6549           !(property->getPropertyIvarDecl() &&
6550             property->getPropertyIvarDecl()->getType()
6551               .getObjCLifetime() == Qualifiers::OCL_Strong))
6552           return false;
6553 
6554       owner.Indirect = true;
6555       if (pre->isSuperReceiver()) {
6556         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6557         if (!owner.Variable)
6558           return false;
6559         owner.Loc = pre->getLocation();
6560         owner.Range = pre->getSourceRange();
6561         return true;
6562       }
6563       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6564                               ->getSourceExpr());
6565       continue;
6566     }
6567 
6568     // Array ivars?
6569 
6570     return false;
6571   }
6572 }
6573 
6574 namespace {
6575   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6576     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6577       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6578         Variable(variable), Capturer(0) {}
6579 
6580     VarDecl *Variable;
6581     Expr *Capturer;
6582 
6583     void VisitDeclRefExpr(DeclRefExpr *ref) {
6584       if (ref->getDecl() == Variable && !Capturer)
6585         Capturer = ref;
6586     }
6587 
6588     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6589       if (Capturer) return;
6590       Visit(ref->getBase());
6591       if (Capturer && ref->isFreeIvar())
6592         Capturer = ref;
6593     }
6594 
6595     void VisitBlockExpr(BlockExpr *block) {
6596       // Look inside nested blocks
6597       if (block->getBlockDecl()->capturesVariable(Variable))
6598         Visit(block->getBlockDecl()->getBody());
6599     }
6600 
6601     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6602       if (Capturer) return;
6603       if (OVE->getSourceExpr())
6604         Visit(OVE->getSourceExpr());
6605     }
6606   };
6607 }
6608 
6609 /// Check whether the given argument is a block which captures a
6610 /// variable.
6611 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6612   assert(owner.Variable && owner.Loc.isValid());
6613 
6614   e = e->IgnoreParenCasts();
6615 
6616   // Look through [^{...} copy] and Block_copy(^{...}).
6617   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6618     Selector Cmd = ME->getSelector();
6619     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6620       e = ME->getInstanceReceiver();
6621       if (!e)
6622         return 0;
6623       e = e->IgnoreParenCasts();
6624     }
6625   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6626     if (CE->getNumArgs() == 1) {
6627       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6628       if (Fn) {
6629         const IdentifierInfo *FnI = Fn->getIdentifier();
6630         if (FnI && FnI->isStr("_Block_copy")) {
6631           e = CE->getArg(0)->IgnoreParenCasts();
6632         }
6633       }
6634     }
6635   }
6636 
6637   BlockExpr *block = dyn_cast<BlockExpr>(e);
6638   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6639     return 0;
6640 
6641   FindCaptureVisitor visitor(S.Context, owner.Variable);
6642   visitor.Visit(block->getBlockDecl()->getBody());
6643   return visitor.Capturer;
6644 }
6645 
6646 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6647                                 RetainCycleOwner &owner) {
6648   assert(capturer);
6649   assert(owner.Variable && owner.Loc.isValid());
6650 
6651   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6652     << owner.Variable << capturer->getSourceRange();
6653   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6654     << owner.Indirect << owner.Range;
6655 }
6656 
6657 /// Check for a keyword selector that starts with the word 'add' or
6658 /// 'set'.
6659 static bool isSetterLikeSelector(Selector sel) {
6660   if (sel.isUnarySelector()) return false;
6661 
6662   StringRef str = sel.getNameForSlot(0);
6663   while (!str.empty() && str.front() == '_') str = str.substr(1);
6664   if (str.startswith("set"))
6665     str = str.substr(3);
6666   else if (str.startswith("add")) {
6667     // Specially whitelist 'addOperationWithBlock:'.
6668     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6669       return false;
6670     str = str.substr(3);
6671   }
6672   else
6673     return false;
6674 
6675   if (str.empty()) return true;
6676   return !isLowercase(str.front());
6677 }
6678 
6679 /// Check a message send to see if it's likely to cause a retain cycle.
6680 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6681   // Only check instance methods whose selector looks like a setter.
6682   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6683     return;
6684 
6685   // Try to find a variable that the receiver is strongly owned by.
6686   RetainCycleOwner owner;
6687   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6688     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6689       return;
6690   } else {
6691     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6692     owner.Variable = getCurMethodDecl()->getSelfDecl();
6693     owner.Loc = msg->getSuperLoc();
6694     owner.Range = msg->getSuperLoc();
6695   }
6696 
6697   // Check whether the receiver is captured by any of the arguments.
6698   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6699     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6700       return diagnoseRetainCycle(*this, capturer, owner);
6701 }
6702 
6703 /// Check a property assign to see if it's likely to cause a retain cycle.
6704 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6705   RetainCycleOwner owner;
6706   if (!findRetainCycleOwner(*this, receiver, owner))
6707     return;
6708 
6709   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6710     diagnoseRetainCycle(*this, capturer, owner);
6711 }
6712 
6713 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6714   RetainCycleOwner Owner;
6715   if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6716     return;
6717 
6718   // Because we don't have an expression for the variable, we have to set the
6719   // location explicitly here.
6720   Owner.Loc = Var->getLocation();
6721   Owner.Range = Var->getSourceRange();
6722 
6723   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6724     diagnoseRetainCycle(*this, Capturer, Owner);
6725 }
6726 
6727 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6728                                      Expr *RHS, bool isProperty) {
6729   // Check if RHS is an Objective-C object literal, which also can get
6730   // immediately zapped in a weak reference.  Note that we explicitly
6731   // allow ObjCStringLiterals, since those are designed to never really die.
6732   RHS = RHS->IgnoreParenImpCasts();
6733 
6734   // This enum needs to match with the 'select' in
6735   // warn_objc_arc_literal_assign (off-by-1).
6736   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6737   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6738     return false;
6739 
6740   S.Diag(Loc, diag::warn_arc_literal_assign)
6741     << (unsigned) Kind
6742     << (isProperty ? 0 : 1)
6743     << RHS->getSourceRange();
6744 
6745   return true;
6746 }
6747 
6748 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6749                                     Qualifiers::ObjCLifetime LT,
6750                                     Expr *RHS, bool isProperty) {
6751   // Strip off any implicit cast added to get to the one ARC-specific.
6752   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6753     if (cast->getCastKind() == CK_ARCConsumeObject) {
6754       S.Diag(Loc, diag::warn_arc_retained_assign)
6755         << (LT == Qualifiers::OCL_ExplicitNone)
6756         << (isProperty ? 0 : 1)
6757         << RHS->getSourceRange();
6758       return true;
6759     }
6760     RHS = cast->getSubExpr();
6761   }
6762 
6763   if (LT == Qualifiers::OCL_Weak &&
6764       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6765     return true;
6766 
6767   return false;
6768 }
6769 
6770 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6771                               QualType LHS, Expr *RHS) {
6772   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6773 
6774   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6775     return false;
6776 
6777   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6778     return true;
6779 
6780   return false;
6781 }
6782 
6783 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6784                               Expr *LHS, Expr *RHS) {
6785   QualType LHSType;
6786   // PropertyRef on LHS type need be directly obtained from
6787   // its declaration as it has a PsuedoType.
6788   ObjCPropertyRefExpr *PRE
6789     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6790   if (PRE && !PRE->isImplicitProperty()) {
6791     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6792     if (PD)
6793       LHSType = PD->getType();
6794   }
6795 
6796   if (LHSType.isNull())
6797     LHSType = LHS->getType();
6798 
6799   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6800 
6801   if (LT == Qualifiers::OCL_Weak) {
6802     DiagnosticsEngine::Level Level =
6803       Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6804     if (Level != DiagnosticsEngine::Ignored)
6805       getCurFunction()->markSafeWeakUse(LHS);
6806   }
6807 
6808   if (checkUnsafeAssigns(Loc, LHSType, RHS))
6809     return;
6810 
6811   // FIXME. Check for other life times.
6812   if (LT != Qualifiers::OCL_None)
6813     return;
6814 
6815   if (PRE) {
6816     if (PRE->isImplicitProperty())
6817       return;
6818     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6819     if (!PD)
6820       return;
6821 
6822     unsigned Attributes = PD->getPropertyAttributes();
6823     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6824       // when 'assign' attribute was not explicitly specified
6825       // by user, ignore it and rely on property type itself
6826       // for lifetime info.
6827       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6828       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6829           LHSType->isObjCRetainableType())
6830         return;
6831 
6832       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6833         if (cast->getCastKind() == CK_ARCConsumeObject) {
6834           Diag(Loc, diag::warn_arc_retained_property_assign)
6835           << RHS->getSourceRange();
6836           return;
6837         }
6838         RHS = cast->getSubExpr();
6839       }
6840     }
6841     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6842       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6843         return;
6844     }
6845   }
6846 }
6847 
6848 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6849 
6850 namespace {
6851 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6852                                  SourceLocation StmtLoc,
6853                                  const NullStmt *Body) {
6854   // Do not warn if the body is a macro that expands to nothing, e.g:
6855   //
6856   // #define CALL(x)
6857   // if (condition)
6858   //   CALL(0);
6859   //
6860   if (Body->hasLeadingEmptyMacro())
6861     return false;
6862 
6863   // Get line numbers of statement and body.
6864   bool StmtLineInvalid;
6865   unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6866                                                       &StmtLineInvalid);
6867   if (StmtLineInvalid)
6868     return false;
6869 
6870   bool BodyLineInvalid;
6871   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6872                                                       &BodyLineInvalid);
6873   if (BodyLineInvalid)
6874     return false;
6875 
6876   // Warn if null statement and body are on the same line.
6877   if (StmtLine != BodyLine)
6878     return false;
6879 
6880   return true;
6881 }
6882 } // Unnamed namespace
6883 
6884 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6885                                  const Stmt *Body,
6886                                  unsigned DiagID) {
6887   // Since this is a syntactic check, don't emit diagnostic for template
6888   // instantiations, this just adds noise.
6889   if (CurrentInstantiationScope)
6890     return;
6891 
6892   // The body should be a null statement.
6893   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6894   if (!NBody)
6895     return;
6896 
6897   // Do the usual checks.
6898   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6899     return;
6900 
6901   Diag(NBody->getSemiLoc(), DiagID);
6902   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6903 }
6904 
6905 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6906                                  const Stmt *PossibleBody) {
6907   assert(!CurrentInstantiationScope); // Ensured by caller
6908 
6909   SourceLocation StmtLoc;
6910   const Stmt *Body;
6911   unsigned DiagID;
6912   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6913     StmtLoc = FS->getRParenLoc();
6914     Body = FS->getBody();
6915     DiagID = diag::warn_empty_for_body;
6916   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6917     StmtLoc = WS->getCond()->getSourceRange().getEnd();
6918     Body = WS->getBody();
6919     DiagID = diag::warn_empty_while_body;
6920   } else
6921     return; // Neither `for' nor `while'.
6922 
6923   // The body should be a null statement.
6924   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6925   if (!NBody)
6926     return;
6927 
6928   // Skip expensive checks if diagnostic is disabled.
6929   if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6930           DiagnosticsEngine::Ignored)
6931     return;
6932 
6933   // Do the usual checks.
6934   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6935     return;
6936 
6937   // `for(...);' and `while(...);' are popular idioms, so in order to keep
6938   // noise level low, emit diagnostics only if for/while is followed by a
6939   // CompoundStmt, e.g.:
6940   //    for (int i = 0; i < n; i++);
6941   //    {
6942   //      a(i);
6943   //    }
6944   // or if for/while is followed by a statement with more indentation
6945   // than for/while itself:
6946   //    for (int i = 0; i < n; i++);
6947   //      a(i);
6948   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6949   if (!ProbableTypo) {
6950     bool BodyColInvalid;
6951     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6952                              PossibleBody->getLocStart(),
6953                              &BodyColInvalid);
6954     if (BodyColInvalid)
6955       return;
6956 
6957     bool StmtColInvalid;
6958     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6959                              S->getLocStart(),
6960                              &StmtColInvalid);
6961     if (StmtColInvalid)
6962       return;
6963 
6964     if (BodyCol > StmtCol)
6965       ProbableTypo = true;
6966   }
6967 
6968   if (ProbableTypo) {
6969     Diag(NBody->getSemiLoc(), DiagID);
6970     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6971   }
6972 }
6973 
6974 //===--- Layout compatibility ----------------------------------------------//
6975 
6976 namespace {
6977 
6978 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6979 
6980 /// \brief Check if two enumeration types are layout-compatible.
6981 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6982   // C++11 [dcl.enum] p8:
6983   // Two enumeration types are layout-compatible if they have the same
6984   // underlying type.
6985   return ED1->isComplete() && ED2->isComplete() &&
6986          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6987 }
6988 
6989 /// \brief Check if two fields are layout-compatible.
6990 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6991   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6992     return false;
6993 
6994   if (Field1->isBitField() != Field2->isBitField())
6995     return false;
6996 
6997   if (Field1->isBitField()) {
6998     // Make sure that the bit-fields are the same length.
6999     unsigned Bits1 = Field1->getBitWidthValue(C);
7000     unsigned Bits2 = Field2->getBitWidthValue(C);
7001 
7002     if (Bits1 != Bits2)
7003       return false;
7004   }
7005 
7006   return true;
7007 }
7008 
7009 /// \brief Check if two standard-layout structs are layout-compatible.
7010 /// (C++11 [class.mem] p17)
7011 bool isLayoutCompatibleStruct(ASTContext &C,
7012                               RecordDecl *RD1,
7013                               RecordDecl *RD2) {
7014   // If both records are C++ classes, check that base classes match.
7015   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
7016     // If one of records is a CXXRecordDecl we are in C++ mode,
7017     // thus the other one is a CXXRecordDecl, too.
7018     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
7019     // Check number of base classes.
7020     if (D1CXX->getNumBases() != D2CXX->getNumBases())
7021       return false;
7022 
7023     // Check the base classes.
7024     for (CXXRecordDecl::base_class_const_iterator
7025                Base1 = D1CXX->bases_begin(),
7026            BaseEnd1 = D1CXX->bases_end(),
7027               Base2 = D2CXX->bases_begin();
7028          Base1 != BaseEnd1;
7029          ++Base1, ++Base2) {
7030       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
7031         return false;
7032     }
7033   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
7034     // If only RD2 is a C++ class, it should have zero base classes.
7035     if (D2CXX->getNumBases() > 0)
7036       return false;
7037   }
7038 
7039   // Check the fields.
7040   RecordDecl::field_iterator Field2 = RD2->field_begin(),
7041                              Field2End = RD2->field_end(),
7042                              Field1 = RD1->field_begin(),
7043                              Field1End = RD1->field_end();
7044   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
7045     if (!isLayoutCompatible(C, *Field1, *Field2))
7046       return false;
7047   }
7048   if (Field1 != Field1End || Field2 != Field2End)
7049     return false;
7050 
7051   return true;
7052 }
7053 
7054 /// \brief Check if two standard-layout unions are layout-compatible.
7055 /// (C++11 [class.mem] p18)
7056 bool isLayoutCompatibleUnion(ASTContext &C,
7057                              RecordDecl *RD1,
7058                              RecordDecl *RD2) {
7059   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
7060   for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
7061                                   Field2End = RD2->field_end();
7062        Field2 != Field2End; ++Field2) {
7063     UnmatchedFields.insert(*Field2);
7064   }
7065 
7066   for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
7067                                   Field1End = RD1->field_end();
7068        Field1 != Field1End; ++Field1) {
7069     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
7070         I = UnmatchedFields.begin(),
7071         E = UnmatchedFields.end();
7072 
7073     for ( ; I != E; ++I) {
7074       if (isLayoutCompatible(C, *Field1, *I)) {
7075         bool Result = UnmatchedFields.erase(*I);
7076         (void) Result;
7077         assert(Result);
7078         break;
7079       }
7080     }
7081     if (I == E)
7082       return false;
7083   }
7084 
7085   return UnmatchedFields.empty();
7086 }
7087 
7088 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
7089   if (RD1->isUnion() != RD2->isUnion())
7090     return false;
7091 
7092   if (RD1->isUnion())
7093     return isLayoutCompatibleUnion(C, RD1, RD2);
7094   else
7095     return isLayoutCompatibleStruct(C, RD1, RD2);
7096 }
7097 
7098 /// \brief Check if two types are layout-compatible in C++11 sense.
7099 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
7100   if (T1.isNull() || T2.isNull())
7101     return false;
7102 
7103   // C++11 [basic.types] p11:
7104   // If two types T1 and T2 are the same type, then T1 and T2 are
7105   // layout-compatible types.
7106   if (C.hasSameType(T1, T2))
7107     return true;
7108 
7109   T1 = T1.getCanonicalType().getUnqualifiedType();
7110   T2 = T2.getCanonicalType().getUnqualifiedType();
7111 
7112   const Type::TypeClass TC1 = T1->getTypeClass();
7113   const Type::TypeClass TC2 = T2->getTypeClass();
7114 
7115   if (TC1 != TC2)
7116     return false;
7117 
7118   if (TC1 == Type::Enum) {
7119     return isLayoutCompatible(C,
7120                               cast<EnumType>(T1)->getDecl(),
7121                               cast<EnumType>(T2)->getDecl());
7122   } else if (TC1 == Type::Record) {
7123     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
7124       return false;
7125 
7126     return isLayoutCompatible(C,
7127                               cast<RecordType>(T1)->getDecl(),
7128                               cast<RecordType>(T2)->getDecl());
7129   }
7130 
7131   return false;
7132 }
7133 }
7134 
7135 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
7136 
7137 namespace {
7138 /// \brief Given a type tag expression find the type tag itself.
7139 ///
7140 /// \param TypeExpr Type tag expression, as it appears in user's code.
7141 ///
7142 /// \param VD Declaration of an identifier that appears in a type tag.
7143 ///
7144 /// \param MagicValue Type tag magic value.
7145 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
7146                      const ValueDecl **VD, uint64_t *MagicValue) {
7147   while(true) {
7148     if (!TypeExpr)
7149       return false;
7150 
7151     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
7152 
7153     switch (TypeExpr->getStmtClass()) {
7154     case Stmt::UnaryOperatorClass: {
7155       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
7156       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
7157         TypeExpr = UO->getSubExpr();
7158         continue;
7159       }
7160       return false;
7161     }
7162 
7163     case Stmt::DeclRefExprClass: {
7164       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
7165       *VD = DRE->getDecl();
7166       return true;
7167     }
7168 
7169     case Stmt::IntegerLiteralClass: {
7170       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
7171       llvm::APInt MagicValueAPInt = IL->getValue();
7172       if (MagicValueAPInt.getActiveBits() <= 64) {
7173         *MagicValue = MagicValueAPInt.getZExtValue();
7174         return true;
7175       } else
7176         return false;
7177     }
7178 
7179     case Stmt::BinaryConditionalOperatorClass:
7180     case Stmt::ConditionalOperatorClass: {
7181       const AbstractConditionalOperator *ACO =
7182           cast<AbstractConditionalOperator>(TypeExpr);
7183       bool Result;
7184       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
7185         if (Result)
7186           TypeExpr = ACO->getTrueExpr();
7187         else
7188           TypeExpr = ACO->getFalseExpr();
7189         continue;
7190       }
7191       return false;
7192     }
7193 
7194     case Stmt::BinaryOperatorClass: {
7195       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
7196       if (BO->getOpcode() == BO_Comma) {
7197         TypeExpr = BO->getRHS();
7198         continue;
7199       }
7200       return false;
7201     }
7202 
7203     default:
7204       return false;
7205     }
7206   }
7207 }
7208 
7209 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
7210 ///
7211 /// \param TypeExpr Expression that specifies a type tag.
7212 ///
7213 /// \param MagicValues Registered magic values.
7214 ///
7215 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
7216 ///        kind.
7217 ///
7218 /// \param TypeInfo Information about the corresponding C type.
7219 ///
7220 /// \returns true if the corresponding C type was found.
7221 bool GetMatchingCType(
7222         const IdentifierInfo *ArgumentKind,
7223         const Expr *TypeExpr, const ASTContext &Ctx,
7224         const llvm::DenseMap<Sema::TypeTagMagicValue,
7225                              Sema::TypeTagData> *MagicValues,
7226         bool &FoundWrongKind,
7227         Sema::TypeTagData &TypeInfo) {
7228   FoundWrongKind = false;
7229 
7230   // Variable declaration that has type_tag_for_datatype attribute.
7231   const ValueDecl *VD = NULL;
7232 
7233   uint64_t MagicValue;
7234 
7235   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
7236     return false;
7237 
7238   if (VD) {
7239     for (specific_attr_iterator<TypeTagForDatatypeAttr>
7240              I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
7241              E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
7242          I != E; ++I) {
7243       if (I->getArgumentKind() != ArgumentKind) {
7244         FoundWrongKind = true;
7245         return false;
7246       }
7247       TypeInfo.Type = I->getMatchingCType();
7248       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
7249       TypeInfo.MustBeNull = I->getMustBeNull();
7250       return true;
7251     }
7252     return false;
7253   }
7254 
7255   if (!MagicValues)
7256     return false;
7257 
7258   llvm::DenseMap<Sema::TypeTagMagicValue,
7259                  Sema::TypeTagData>::const_iterator I =
7260       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
7261   if (I == MagicValues->end())
7262     return false;
7263 
7264   TypeInfo = I->second;
7265   return true;
7266 }
7267 } // unnamed namespace
7268 
7269 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
7270                                       uint64_t MagicValue, QualType Type,
7271                                       bool LayoutCompatible,
7272                                       bool MustBeNull) {
7273   if (!TypeTagForDatatypeMagicValues)
7274     TypeTagForDatatypeMagicValues.reset(
7275         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
7276 
7277   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
7278   (*TypeTagForDatatypeMagicValues)[Magic] =
7279       TypeTagData(Type, LayoutCompatible, MustBeNull);
7280 }
7281 
7282 namespace {
7283 bool IsSameCharType(QualType T1, QualType T2) {
7284   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
7285   if (!BT1)
7286     return false;
7287 
7288   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
7289   if (!BT2)
7290     return false;
7291 
7292   BuiltinType::Kind T1Kind = BT1->getKind();
7293   BuiltinType::Kind T2Kind = BT2->getKind();
7294 
7295   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
7296          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
7297          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
7298          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
7299 }
7300 } // unnamed namespace
7301 
7302 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
7303                                     const Expr * const *ExprArgs) {
7304   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
7305   bool IsPointerAttr = Attr->getIsPointer();
7306 
7307   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
7308   bool FoundWrongKind;
7309   TypeTagData TypeInfo;
7310   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
7311                         TypeTagForDatatypeMagicValues.get(),
7312                         FoundWrongKind, TypeInfo)) {
7313     if (FoundWrongKind)
7314       Diag(TypeTagExpr->getExprLoc(),
7315            diag::warn_type_tag_for_datatype_wrong_kind)
7316         << TypeTagExpr->getSourceRange();
7317     return;
7318   }
7319 
7320   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
7321   if (IsPointerAttr) {
7322     // Skip implicit cast of pointer to `void *' (as a function argument).
7323     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
7324       if (ICE->getType()->isVoidPointerType() &&
7325           ICE->getCastKind() == CK_BitCast)
7326         ArgumentExpr = ICE->getSubExpr();
7327   }
7328   QualType ArgumentType = ArgumentExpr->getType();
7329 
7330   // Passing a `void*' pointer shouldn't trigger a warning.
7331   if (IsPointerAttr && ArgumentType->isVoidPointerType())
7332     return;
7333 
7334   if (TypeInfo.MustBeNull) {
7335     // Type tag with matching void type requires a null pointer.
7336     if (!ArgumentExpr->isNullPointerConstant(Context,
7337                                              Expr::NPC_ValueDependentIsNotNull)) {
7338       Diag(ArgumentExpr->getExprLoc(),
7339            diag::warn_type_safety_null_pointer_required)
7340           << ArgumentKind->getName()
7341           << ArgumentExpr->getSourceRange()
7342           << TypeTagExpr->getSourceRange();
7343     }
7344     return;
7345   }
7346 
7347   QualType RequiredType = TypeInfo.Type;
7348   if (IsPointerAttr)
7349     RequiredType = Context.getPointerType(RequiredType);
7350 
7351   bool mismatch = false;
7352   if (!TypeInfo.LayoutCompatible) {
7353     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
7354 
7355     // C++11 [basic.fundamental] p1:
7356     // Plain char, signed char, and unsigned char are three distinct types.
7357     //
7358     // But we treat plain `char' as equivalent to `signed char' or `unsigned
7359     // char' depending on the current char signedness mode.
7360     if (mismatch)
7361       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
7362                                            RequiredType->getPointeeType())) ||
7363           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
7364         mismatch = false;
7365   } else
7366     if (IsPointerAttr)
7367       mismatch = !isLayoutCompatible(Context,
7368                                      ArgumentType->getPointeeType(),
7369                                      RequiredType->getPointeeType());
7370     else
7371       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
7372 
7373   if (mismatch)
7374     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
7375         << ArgumentType << ArgumentKind->getName()
7376         << TypeInfo.LayoutCompatible << RequiredType
7377         << ArgumentExpr->getSourceRange()
7378         << TypeTagExpr->getSourceRange();
7379 }
7380