1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements C++ semantic analysis for scope specifiers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclTemplate.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/NestedNameSpecifier.h" 20 #include "clang/Basic/PartialDiagnostic.h" 21 #include "clang/Sema/DeclSpec.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/Template.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 using namespace clang; 27 28 /// \brief Find the current instantiation that associated with the given type. 29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T, 30 DeclContext *CurContext) { 31 if (T.isNull()) 32 return nullptr; 33 34 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr(); 35 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { 36 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 37 if (!Record->isDependentContext() || 38 Record->isCurrentInstantiation(CurContext)) 39 return Record; 40 41 return nullptr; 42 } else if (isa<InjectedClassNameType>(Ty)) 43 return cast<InjectedClassNameType>(Ty)->getDecl(); 44 else 45 return nullptr; 46 } 47 48 /// \brief Compute the DeclContext that is associated with the given type. 49 /// 50 /// \param T the type for which we are attempting to find a DeclContext. 51 /// 52 /// \returns the declaration context represented by the type T, 53 /// or NULL if the declaration context cannot be computed (e.g., because it is 54 /// dependent and not the current instantiation). 55 DeclContext *Sema::computeDeclContext(QualType T) { 56 if (!T->isDependentType()) 57 if (const TagType *Tag = T->getAs<TagType>()) 58 return Tag->getDecl(); 59 60 return ::getCurrentInstantiationOf(T, CurContext); 61 } 62 63 /// \brief Compute the DeclContext that is associated with the given 64 /// scope specifier. 65 /// 66 /// \param SS the C++ scope specifier as it appears in the source 67 /// 68 /// \param EnteringContext when true, we will be entering the context of 69 /// this scope specifier, so we can retrieve the declaration context of a 70 /// class template or class template partial specialization even if it is 71 /// not the current instantiation. 72 /// 73 /// \returns the declaration context represented by the scope specifier @p SS, 74 /// or NULL if the declaration context cannot be computed (e.g., because it is 75 /// dependent and not the current instantiation). 76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS, 77 bool EnteringContext) { 78 if (!SS.isSet() || SS.isInvalid()) 79 return nullptr; 80 81 NestedNameSpecifier *NNS = SS.getScopeRep(); 82 if (NNS->isDependent()) { 83 // If this nested-name-specifier refers to the current 84 // instantiation, return its DeclContext. 85 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS)) 86 return Record; 87 88 if (EnteringContext) { 89 const Type *NNSType = NNS->getAsType(); 90 if (!NNSType) { 91 return nullptr; 92 } 93 94 // Look through type alias templates, per C++0x [temp.dep.type]p1. 95 NNSType = Context.getCanonicalType(NNSType); 96 if (const TemplateSpecializationType *SpecType 97 = NNSType->getAs<TemplateSpecializationType>()) { 98 // We are entering the context of the nested name specifier, so try to 99 // match the nested name specifier to either a primary class template 100 // or a class template partial specialization. 101 if (ClassTemplateDecl *ClassTemplate 102 = dyn_cast_or_null<ClassTemplateDecl>( 103 SpecType->getTemplateName().getAsTemplateDecl())) { 104 QualType ContextType 105 = Context.getCanonicalType(QualType(SpecType, 0)); 106 107 // If the type of the nested name specifier is the same as the 108 // injected class name of the named class template, we're entering 109 // into that class template definition. 110 QualType Injected 111 = ClassTemplate->getInjectedClassNameSpecialization(); 112 if (Context.hasSameType(Injected, ContextType)) 113 return ClassTemplate->getTemplatedDecl(); 114 115 // If the type of the nested name specifier is the same as the 116 // type of one of the class template's class template partial 117 // specializations, we're entering into the definition of that 118 // class template partial specialization. 119 if (ClassTemplatePartialSpecializationDecl *PartialSpec 120 = ClassTemplate->findPartialSpecialization(ContextType)) 121 return PartialSpec; 122 } 123 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) { 124 // The nested name specifier refers to a member of a class template. 125 return RecordT->getDecl(); 126 } 127 } 128 129 return nullptr; 130 } 131 132 switch (NNS->getKind()) { 133 case NestedNameSpecifier::Identifier: 134 llvm_unreachable("Dependent nested-name-specifier has no DeclContext"); 135 136 case NestedNameSpecifier::Namespace: 137 return NNS->getAsNamespace(); 138 139 case NestedNameSpecifier::NamespaceAlias: 140 return NNS->getAsNamespaceAlias()->getNamespace(); 141 142 case NestedNameSpecifier::TypeSpec: 143 case NestedNameSpecifier::TypeSpecWithTemplate: { 144 const TagType *Tag = NNS->getAsType()->getAs<TagType>(); 145 assert(Tag && "Non-tag type in nested-name-specifier"); 146 return Tag->getDecl(); 147 } 148 149 case NestedNameSpecifier::Global: 150 return Context.getTranslationUnitDecl(); 151 152 case NestedNameSpecifier::Super: 153 return NNS->getAsRecordDecl(); 154 } 155 156 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 157 } 158 159 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) { 160 if (!SS.isSet() || SS.isInvalid()) 161 return false; 162 163 return SS.getScopeRep()->isDependent(); 164 } 165 166 /// \brief If the given nested name specifier refers to the current 167 /// instantiation, return the declaration that corresponds to that 168 /// current instantiation (C++0x [temp.dep.type]p1). 169 /// 170 /// \param NNS a dependent nested name specifier. 171 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) { 172 assert(getLangOpts().CPlusPlus && "Only callable in C++"); 173 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed"); 174 175 if (!NNS->getAsType()) 176 return nullptr; 177 178 QualType T = QualType(NNS->getAsType(), 0); 179 return ::getCurrentInstantiationOf(T, CurContext); 180 } 181 182 /// \brief Require that the context specified by SS be complete. 183 /// 184 /// If SS refers to a type, this routine checks whether the type is 185 /// complete enough (or can be made complete enough) for name lookup 186 /// into the DeclContext. A type that is not yet completed can be 187 /// considered "complete enough" if it is a class/struct/union/enum 188 /// that is currently being defined. Or, if we have a type that names 189 /// a class template specialization that is not a complete type, we 190 /// will attempt to instantiate that class template. 191 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS, 192 DeclContext *DC) { 193 assert(DC && "given null context"); 194 195 TagDecl *tag = dyn_cast<TagDecl>(DC); 196 197 // If this is a dependent type, then we consider it complete. 198 if (!tag || tag->isDependentContext()) 199 return false; 200 201 // If we're currently defining this type, then lookup into the 202 // type is okay: don't complain that it isn't complete yet. 203 QualType type = Context.getTypeDeclType(tag); 204 const TagType *tagType = type->getAs<TagType>(); 205 if (tagType && tagType->isBeingDefined()) 206 return false; 207 208 SourceLocation loc = SS.getLastQualifierNameLoc(); 209 if (loc.isInvalid()) loc = SS.getRange().getBegin(); 210 211 // The type must be complete. 212 if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec, 213 SS.getRange())) { 214 SS.SetInvalid(SS.getRange()); 215 return true; 216 } 217 218 // Fixed enum types are complete, but they aren't valid as scopes 219 // until we see a definition, so awkwardly pull out this special 220 // case. 221 const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType); 222 if (!enumType || enumType->getDecl()->isCompleteDefinition()) 223 return false; 224 225 // Try to instantiate the definition, if this is a specialization of an 226 // enumeration temploid. 227 EnumDecl *ED = enumType->getDecl(); 228 if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) { 229 MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo(); 230 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) { 231 if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED), 232 TSK_ImplicitInstantiation)) { 233 SS.SetInvalid(SS.getRange()); 234 return true; 235 } 236 return false; 237 } 238 } 239 240 Diag(loc, diag::err_incomplete_nested_name_spec) 241 << type << SS.getRange(); 242 SS.SetInvalid(SS.getRange()); 243 return true; 244 } 245 246 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, 247 CXXScopeSpec &SS) { 248 SS.MakeGlobal(Context, CCLoc); 249 return false; 250 } 251 252 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc, 253 SourceLocation ColonColonLoc, 254 CXXScopeSpec &SS) { 255 CXXRecordDecl *RD = nullptr; 256 for (Scope *S = getCurScope(); S; S = S->getParent()) { 257 if (S->isFunctionScope()) { 258 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity())) 259 RD = MD->getParent(); 260 break; 261 } 262 if (S->isClassScope()) { 263 RD = cast<CXXRecordDecl>(S->getEntity()); 264 break; 265 } 266 } 267 268 if (!RD) { 269 Diag(SuperLoc, diag::err_invalid_super_scope); 270 return true; 271 } else if (RD->isLambda()) { 272 Diag(SuperLoc, diag::err_super_in_lambda_unsupported); 273 return true; 274 } else if (RD->getNumBases() == 0) { 275 Diag(SuperLoc, diag::err_no_base_classes) << RD->getName(); 276 return true; 277 } 278 279 SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc); 280 return false; 281 } 282 283 /// \brief Determines whether the given declaration is an valid acceptable 284 /// result for name lookup of a nested-name-specifier. 285 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) { 286 if (!SD) 287 return false; 288 289 // Namespace and namespace aliases are fine. 290 if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD)) 291 return true; 292 293 if (!isa<TypeDecl>(SD)) 294 return false; 295 296 // Determine whether we have a class (or, in C++11, an enum) or 297 // a typedef thereof. If so, build the nested-name-specifier. 298 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); 299 if (T->isDependentType()) 300 return true; 301 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) { 302 if (TD->getUnderlyingType()->isRecordType() || 303 (Context.getLangOpts().CPlusPlus11 && 304 TD->getUnderlyingType()->isEnumeralType())) 305 return true; 306 } else if (isa<RecordDecl>(SD) || 307 (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD))) 308 return true; 309 310 return false; 311 } 312 313 /// \brief If the given nested-name-specifier begins with a bare identifier 314 /// (e.g., Base::), perform name lookup for that identifier as a 315 /// nested-name-specifier within the given scope, and return the result of that 316 /// name lookup. 317 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) { 318 if (!S || !NNS) 319 return nullptr; 320 321 while (NNS->getPrefix()) 322 NNS = NNS->getPrefix(); 323 324 if (NNS->getKind() != NestedNameSpecifier::Identifier) 325 return nullptr; 326 327 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(), 328 LookupNestedNameSpecifierName); 329 LookupName(Found, S); 330 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet"); 331 332 if (!Found.isSingleResult()) 333 return nullptr; 334 335 NamedDecl *Result = Found.getFoundDecl(); 336 if (isAcceptableNestedNameSpecifier(Result)) 337 return Result; 338 339 return nullptr; 340 } 341 342 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, 343 SourceLocation IdLoc, 344 IdentifierInfo &II, 345 ParsedType ObjectTypePtr) { 346 QualType ObjectType = GetTypeFromParser(ObjectTypePtr); 347 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName); 348 349 // Determine where to perform name lookup 350 DeclContext *LookupCtx = nullptr; 351 bool isDependent = false; 352 if (!ObjectType.isNull()) { 353 // This nested-name-specifier occurs in a member access expression, e.g., 354 // x->B::f, and we are looking into the type of the object. 355 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 356 LookupCtx = computeDeclContext(ObjectType); 357 isDependent = ObjectType->isDependentType(); 358 } else if (SS.isSet()) { 359 // This nested-name-specifier occurs after another nested-name-specifier, 360 // so long into the context associated with the prior nested-name-specifier. 361 LookupCtx = computeDeclContext(SS, false); 362 isDependent = isDependentScopeSpecifier(SS); 363 Found.setContextRange(SS.getRange()); 364 } 365 366 if (LookupCtx) { 367 // Perform "qualified" name lookup into the declaration context we 368 // computed, which is either the type of the base of a member access 369 // expression or the declaration context associated with a prior 370 // nested-name-specifier. 371 372 // The declaration context must be complete. 373 if (!LookupCtx->isDependentContext() && 374 RequireCompleteDeclContext(SS, LookupCtx)) 375 return false; 376 377 LookupQualifiedName(Found, LookupCtx); 378 } else if (isDependent) { 379 return false; 380 } else { 381 LookupName(Found, S); 382 } 383 Found.suppressDiagnostics(); 384 385 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>()) 386 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 387 388 return false; 389 } 390 391 namespace { 392 393 // Callback to only accept typo corrections that can be a valid C++ member 394 // intializer: either a non-static field member or a base class. 395 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback { 396 public: 397 explicit NestedNameSpecifierValidatorCCC(Sema &SRef) 398 : SRef(SRef) {} 399 400 bool ValidateCandidate(const TypoCorrection &candidate) override { 401 return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl()); 402 } 403 404 private: 405 Sema &SRef; 406 }; 407 408 } 409 410 /// \brief Build a new nested-name-specifier for "identifier::", as described 411 /// by ActOnCXXNestedNameSpecifier. 412 /// 413 /// \param S Scope in which the nested-name-specifier occurs. 414 /// \param Identifier Identifier in the sequence "identifier" "::". 415 /// \param IdentifierLoc Location of the \p Identifier. 416 /// \param CCLoc Location of "::" following Identifier. 417 /// \param ObjectType Type of postfix expression if the nested-name-specifier 418 /// occurs in construct like: <tt>ptr->nns::f</tt>. 419 /// \param EnteringContext If true, enter the context specified by the 420 /// nested-name-specifier. 421 /// \param SS Optional nested name specifier preceding the identifier. 422 /// \param ScopeLookupResult Provides the result of name lookup within the 423 /// scope of the nested-name-specifier that was computed at template 424 /// definition time. 425 /// \param ErrorRecoveryLookup Specifies if the method is called to improve 426 /// error recovery and what kind of recovery is performed. 427 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':' 428 /// are allowed. The bool value pointed by this parameter is set to 429 /// 'true' if the identifier is treated as if it was followed by ':', 430 /// not '::'. 431 /// 432 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in 433 /// that it contains an extra parameter \p ScopeLookupResult, which provides 434 /// the result of name lookup within the scope of the nested-name-specifier 435 /// that was computed at template definition time. 436 /// 437 /// If ErrorRecoveryLookup is true, then this call is used to improve error 438 /// recovery. This means that it should not emit diagnostics, it should 439 /// just return true on failure. It also means it should only return a valid 440 /// scope if it *knows* that the result is correct. It should not return in a 441 /// dependent context, for example. Nor will it extend \p SS with the scope 442 /// specifier. 443 bool Sema::BuildCXXNestedNameSpecifier(Scope *S, 444 IdentifierInfo &Identifier, 445 SourceLocation IdentifierLoc, 446 SourceLocation CCLoc, 447 QualType ObjectType, 448 bool EnteringContext, 449 CXXScopeSpec &SS, 450 NamedDecl *ScopeLookupResult, 451 bool ErrorRecoveryLookup, 452 bool *IsCorrectedToColon) { 453 LookupResult Found(*this, &Identifier, IdentifierLoc, 454 LookupNestedNameSpecifierName); 455 456 // Determine where to perform name lookup 457 DeclContext *LookupCtx = nullptr; 458 bool isDependent = false; 459 if (IsCorrectedToColon) 460 *IsCorrectedToColon = false; 461 if (!ObjectType.isNull()) { 462 // This nested-name-specifier occurs in a member access expression, e.g., 463 // x->B::f, and we are looking into the type of the object. 464 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 465 LookupCtx = computeDeclContext(ObjectType); 466 isDependent = ObjectType->isDependentType(); 467 } else if (SS.isSet()) { 468 // This nested-name-specifier occurs after another nested-name-specifier, 469 // so look into the context associated with the prior nested-name-specifier. 470 LookupCtx = computeDeclContext(SS, EnteringContext); 471 isDependent = isDependentScopeSpecifier(SS); 472 Found.setContextRange(SS.getRange()); 473 } 474 475 bool ObjectTypeSearchedInScope = false; 476 if (LookupCtx) { 477 // Perform "qualified" name lookup into the declaration context we 478 // computed, which is either the type of the base of a member access 479 // expression or the declaration context associated with a prior 480 // nested-name-specifier. 481 482 // The declaration context must be complete. 483 if (!LookupCtx->isDependentContext() && 484 RequireCompleteDeclContext(SS, LookupCtx)) 485 return true; 486 487 LookupQualifiedName(Found, LookupCtx); 488 489 if (!ObjectType.isNull() && Found.empty()) { 490 // C++ [basic.lookup.classref]p4: 491 // If the id-expression in a class member access is a qualified-id of 492 // the form 493 // 494 // class-name-or-namespace-name::... 495 // 496 // the class-name-or-namespace-name following the . or -> operator is 497 // looked up both in the context of the entire postfix-expression and in 498 // the scope of the class of the object expression. If the name is found 499 // only in the scope of the class of the object expression, the name 500 // shall refer to a class-name. If the name is found only in the 501 // context of the entire postfix-expression, the name shall refer to a 502 // class-name or namespace-name. [...] 503 // 504 // Qualified name lookup into a class will not find a namespace-name, 505 // so we do not need to diagnose that case specifically. However, 506 // this qualified name lookup may find nothing. In that case, perform 507 // unqualified name lookup in the given scope (if available) or 508 // reconstruct the result from when name lookup was performed at template 509 // definition time. 510 if (S) 511 LookupName(Found, S); 512 else if (ScopeLookupResult) 513 Found.addDecl(ScopeLookupResult); 514 515 ObjectTypeSearchedInScope = true; 516 } 517 } else if (!isDependent) { 518 // Perform unqualified name lookup in the current scope. 519 LookupName(Found, S); 520 } 521 522 // If we performed lookup into a dependent context and did not find anything, 523 // that's fine: just build a dependent nested-name-specifier. 524 if (Found.empty() && isDependent && 525 !(LookupCtx && LookupCtx->isRecord() && 526 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 527 !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) { 528 // Don't speculate if we're just trying to improve error recovery. 529 if (ErrorRecoveryLookup) 530 return true; 531 532 // We were not able to compute the declaration context for a dependent 533 // base object type or prior nested-name-specifier, so this 534 // nested-name-specifier refers to an unknown specialization. Just build 535 // a dependent nested-name-specifier. 536 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc); 537 return false; 538 } 539 540 // FIXME: Deal with ambiguities cleanly. 541 542 if (Found.empty() && !ErrorRecoveryLookup) { 543 // If identifier is not found as class-name-or-namespace-name, but is found 544 // as other entity, don't look for typos. 545 LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName); 546 if (LookupCtx) 547 LookupQualifiedName(R, LookupCtx); 548 else if (S && !isDependent) 549 LookupName(R, S); 550 if (!R.empty()) { 551 // The identifier is found in ordinary lookup. If correction to colon is 552 // allowed, suggest replacement to ':'. 553 if (IsCorrectedToColon) { 554 *IsCorrectedToColon = true; 555 Diag(CCLoc, diag::err_nested_name_spec_is_not_class) 556 << &Identifier << getLangOpts().CPlusPlus 557 << FixItHint::CreateReplacement(CCLoc, ":"); 558 if (NamedDecl *ND = R.getAsSingle<NamedDecl>()) 559 Diag(ND->getLocation(), diag::note_declared_at); 560 return true; 561 } 562 // Replacement '::' -> ':' is not allowed, just issue respective error. 563 Diag(R.getNameLoc(), diag::err_expected_class_or_namespace) 564 << &Identifier << getLangOpts().CPlusPlus; 565 if (NamedDecl *ND = R.getAsSingle<NamedDecl>()) 566 Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier; 567 return true; 568 } 569 } 570 571 if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) { 572 // We haven't found anything, and we're not recovering from a 573 // different kind of error, so look for typos. 574 DeclarationName Name = Found.getLookupName(); 575 Found.clear(); 576 if (TypoCorrection Corrected = CorrectTypo( 577 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, 578 llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this), 579 CTK_ErrorRecovery, LookupCtx, EnteringContext)) { 580 if (LookupCtx) { 581 bool DroppedSpecifier = 582 Corrected.WillReplaceSpecifier() && 583 Name.getAsString() == Corrected.getAsString(getLangOpts()); 584 if (DroppedSpecifier) 585 SS.clear(); 586 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 587 << Name << LookupCtx << DroppedSpecifier 588 << SS.getRange()); 589 } else 590 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest) 591 << Name); 592 593 if (NamedDecl *ND = Corrected.getCorrectionDecl()) 594 Found.addDecl(ND); 595 Found.setLookupName(Corrected.getCorrection()); 596 } else { 597 Found.setLookupName(&Identifier); 598 } 599 } 600 601 NamedDecl *SD = Found.getAsSingle<NamedDecl>(); 602 if (isAcceptableNestedNameSpecifier(SD)) { 603 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope && 604 !getLangOpts().CPlusPlus11) { 605 // C++03 [basic.lookup.classref]p4: 606 // [...] If the name is found in both contexts, the 607 // class-name-or-namespace-name shall refer to the same entity. 608 // 609 // We already found the name in the scope of the object. Now, look 610 // into the current scope (the scope of the postfix-expression) to 611 // see if we can find the same name there. As above, if there is no 612 // scope, reconstruct the result from the template instantiation itself. 613 // 614 // Note that C++11 does *not* perform this redundant lookup. 615 NamedDecl *OuterDecl; 616 if (S) { 617 LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, 618 LookupNestedNameSpecifierName); 619 LookupName(FoundOuter, S); 620 OuterDecl = FoundOuter.getAsSingle<NamedDecl>(); 621 } else 622 OuterDecl = ScopeLookupResult; 623 624 if (isAcceptableNestedNameSpecifier(OuterDecl) && 625 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() && 626 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) || 627 !Context.hasSameType( 628 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)), 629 Context.getTypeDeclType(cast<TypeDecl>(SD))))) { 630 if (ErrorRecoveryLookup) 631 return true; 632 633 Diag(IdentifierLoc, 634 diag::err_nested_name_member_ref_lookup_ambiguous) 635 << &Identifier; 636 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type) 637 << ObjectType; 638 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope); 639 640 // Fall through so that we'll pick the name we found in the object 641 // type, since that's probably what the user wanted anyway. 642 } 643 } 644 645 if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD)) 646 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 647 648 // If we're just performing this lookup for error-recovery purposes, 649 // don't extend the nested-name-specifier. Just return now. 650 if (ErrorRecoveryLookup) 651 return false; 652 653 // The use of a nested name specifier may trigger deprecation warnings. 654 DiagnoseUseOfDecl(SD, CCLoc); 655 656 657 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) { 658 SS.Extend(Context, Namespace, IdentifierLoc, CCLoc); 659 return false; 660 } 661 662 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) { 663 SS.Extend(Context, Alias, IdentifierLoc, CCLoc); 664 return false; 665 } 666 667 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); 668 TypeLocBuilder TLB; 669 if (isa<InjectedClassNameType>(T)) { 670 InjectedClassNameTypeLoc InjectedTL 671 = TLB.push<InjectedClassNameTypeLoc>(T); 672 InjectedTL.setNameLoc(IdentifierLoc); 673 } else if (isa<RecordType>(T)) { 674 RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T); 675 RecordTL.setNameLoc(IdentifierLoc); 676 } else if (isa<TypedefType>(T)) { 677 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T); 678 TypedefTL.setNameLoc(IdentifierLoc); 679 } else if (isa<EnumType>(T)) { 680 EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T); 681 EnumTL.setNameLoc(IdentifierLoc); 682 } else if (isa<TemplateTypeParmType>(T)) { 683 TemplateTypeParmTypeLoc TemplateTypeTL 684 = TLB.push<TemplateTypeParmTypeLoc>(T); 685 TemplateTypeTL.setNameLoc(IdentifierLoc); 686 } else if (isa<UnresolvedUsingType>(T)) { 687 UnresolvedUsingTypeLoc UnresolvedTL 688 = TLB.push<UnresolvedUsingTypeLoc>(T); 689 UnresolvedTL.setNameLoc(IdentifierLoc); 690 } else if (isa<SubstTemplateTypeParmType>(T)) { 691 SubstTemplateTypeParmTypeLoc TL 692 = TLB.push<SubstTemplateTypeParmTypeLoc>(T); 693 TL.setNameLoc(IdentifierLoc); 694 } else if (isa<SubstTemplateTypeParmPackType>(T)) { 695 SubstTemplateTypeParmPackTypeLoc TL 696 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T); 697 TL.setNameLoc(IdentifierLoc); 698 } else { 699 llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier"); 700 } 701 702 if (T->isEnumeralType()) 703 Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec); 704 705 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T), 706 CCLoc); 707 return false; 708 } 709 710 // Otherwise, we have an error case. If we don't want diagnostics, just 711 // return an error now. 712 if (ErrorRecoveryLookup) 713 return true; 714 715 // If we didn't find anything during our lookup, try again with 716 // ordinary name lookup, which can help us produce better error 717 // messages. 718 if (Found.empty()) { 719 Found.clear(LookupOrdinaryName); 720 LookupName(Found, S); 721 } 722 723 // In Microsoft mode, if we are within a templated function and we can't 724 // resolve Identifier, then extend the SS with Identifier. This will have 725 // the effect of resolving Identifier during template instantiation. 726 // The goal is to be able to resolve a function call whose 727 // nested-name-specifier is located inside a dependent base class. 728 // Example: 729 // 730 // class C { 731 // public: 732 // static void foo2() { } 733 // }; 734 // template <class T> class A { public: typedef C D; }; 735 // 736 // template <class T> class B : public A<T> { 737 // public: 738 // void foo() { D::foo2(); } 739 // }; 740 if (getLangOpts().MSVCCompat) { 741 DeclContext *DC = LookupCtx ? LookupCtx : CurContext; 742 if (DC->isDependentContext() && DC->isFunctionOrMethod()) { 743 CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent()); 744 if (ContainingClass && ContainingClass->hasAnyDependentBases()) { 745 Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base) 746 << &Identifier << ContainingClass; 747 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc); 748 return false; 749 } 750 } 751 } 752 753 if (!Found.empty()) { 754 if (TypeDecl *TD = Found.getAsSingle<TypeDecl>()) 755 Diag(IdentifierLoc, diag::err_expected_class_or_namespace) 756 << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus; 757 else { 758 Diag(IdentifierLoc, diag::err_expected_class_or_namespace) 759 << &Identifier << getLangOpts().CPlusPlus; 760 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>()) 761 Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier; 762 } 763 } else if (SS.isSet()) 764 Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx 765 << SS.getRange(); 766 else 767 Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier; 768 769 return true; 770 } 771 772 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, 773 IdentifierInfo &Identifier, 774 SourceLocation IdentifierLoc, 775 SourceLocation CCLoc, 776 ParsedType ObjectType, 777 bool EnteringContext, 778 CXXScopeSpec &SS, 779 bool ErrorRecoveryLookup, 780 bool *IsCorrectedToColon) { 781 if (SS.isInvalid()) 782 return true; 783 784 return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc, 785 GetTypeFromParser(ObjectType), 786 EnteringContext, SS, 787 /*ScopeLookupResult=*/nullptr, false, 788 IsCorrectedToColon); 789 } 790 791 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, 792 const DeclSpec &DS, 793 SourceLocation ColonColonLoc) { 794 if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error) 795 return true; 796 797 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype); 798 799 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 800 if (!T->isDependentType() && !T->getAs<TagType>()) { 801 Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace) 802 << T << getLangOpts().CPlusPlus; 803 return true; 804 } 805 806 TypeLocBuilder TLB; 807 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 808 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 809 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T), 810 ColonColonLoc); 811 return false; 812 } 813 814 /// IsInvalidUnlessNestedName - This method is used for error recovery 815 /// purposes to determine whether the specified identifier is only valid as 816 /// a nested name specifier, for example a namespace name. It is 817 /// conservatively correct to always return false from this method. 818 /// 819 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier. 820 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, 821 IdentifierInfo &Identifier, 822 SourceLocation IdentifierLoc, 823 SourceLocation ColonLoc, 824 ParsedType ObjectType, 825 bool EnteringContext) { 826 if (SS.isInvalid()) 827 return false; 828 829 return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc, 830 GetTypeFromParser(ObjectType), 831 EnteringContext, SS, 832 /*ScopeLookupResult=*/nullptr, true); 833 } 834 835 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, 836 CXXScopeSpec &SS, 837 SourceLocation TemplateKWLoc, 838 TemplateTy Template, 839 SourceLocation TemplateNameLoc, 840 SourceLocation LAngleLoc, 841 ASTTemplateArgsPtr TemplateArgsIn, 842 SourceLocation RAngleLoc, 843 SourceLocation CCLoc, 844 bool EnteringContext) { 845 if (SS.isInvalid()) 846 return true; 847 848 // Translate the parser's template argument list in our AST format. 849 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 850 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 851 852 DependentTemplateName *DTN = Template.get().getAsDependentTemplateName(); 853 if (DTN && DTN->isIdentifier()) { 854 // Handle a dependent template specialization for which we cannot resolve 855 // the template name. 856 assert(DTN->getQualifier() == SS.getScopeRep()); 857 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 858 DTN->getQualifier(), 859 DTN->getIdentifier(), 860 TemplateArgs); 861 862 // Create source-location information for this type. 863 TypeLocBuilder Builder; 864 DependentTemplateSpecializationTypeLoc SpecTL 865 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 866 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 867 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 868 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 869 SpecTL.setTemplateNameLoc(TemplateNameLoc); 870 SpecTL.setLAngleLoc(LAngleLoc); 871 SpecTL.setRAngleLoc(RAngleLoc); 872 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 873 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 874 875 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T), 876 CCLoc); 877 return false; 878 } 879 880 TemplateDecl *TD = Template.get().getAsTemplateDecl(); 881 if (Template.get().getAsOverloadedTemplate() || DTN || 882 isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) { 883 SourceRange R(TemplateNameLoc, RAngleLoc); 884 if (SS.getRange().isValid()) 885 R.setBegin(SS.getRange().getBegin()); 886 887 Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier) 888 << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R; 889 NoteAllFoundTemplates(Template.get()); 890 return true; 891 } 892 893 // We were able to resolve the template name to an actual template. 894 // Build an appropriate nested-name-specifier. 895 QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc, 896 TemplateArgs); 897 if (T.isNull()) 898 return true; 899 900 // Alias template specializations can produce types which are not valid 901 // nested name specifiers. 902 if (!T->isDependentType() && !T->getAs<TagType>()) { 903 Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T; 904 NoteAllFoundTemplates(Template.get()); 905 return true; 906 } 907 908 // Provide source-location information for the template specialization type. 909 TypeLocBuilder Builder; 910 TemplateSpecializationTypeLoc SpecTL 911 = Builder.push<TemplateSpecializationTypeLoc>(T); 912 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 913 SpecTL.setTemplateNameLoc(TemplateNameLoc); 914 SpecTL.setLAngleLoc(LAngleLoc); 915 SpecTL.setRAngleLoc(RAngleLoc); 916 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 917 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 918 919 920 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T), 921 CCLoc); 922 return false; 923 } 924 925 namespace { 926 /// \brief A structure that stores a nested-name-specifier annotation, 927 /// including both the nested-name-specifier 928 struct NestedNameSpecifierAnnotation { 929 NestedNameSpecifier *NNS; 930 }; 931 } 932 933 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) { 934 if (SS.isEmpty() || SS.isInvalid()) 935 return nullptr; 936 937 void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) + 938 SS.location_size()), 939 llvm::alignOf<NestedNameSpecifierAnnotation>()); 940 NestedNameSpecifierAnnotation *Annotation 941 = new (Mem) NestedNameSpecifierAnnotation; 942 Annotation->NNS = SS.getScopeRep(); 943 memcpy(Annotation + 1, SS.location_data(), SS.location_size()); 944 return Annotation; 945 } 946 947 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr, 948 SourceRange AnnotationRange, 949 CXXScopeSpec &SS) { 950 if (!AnnotationPtr) { 951 SS.SetInvalid(AnnotationRange); 952 return; 953 } 954 955 NestedNameSpecifierAnnotation *Annotation 956 = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr); 957 SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1)); 958 } 959 960 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { 961 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); 962 963 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 964 965 // There are only two places a well-formed program may qualify a 966 // declarator: first, when defining a namespace or class member 967 // out-of-line, and second, when naming an explicitly-qualified 968 // friend function. The latter case is governed by 969 // C++03 [basic.lookup.unqual]p10: 970 // In a friend declaration naming a member function, a name used 971 // in the function declarator and not part of a template-argument 972 // in a template-id is first looked up in the scope of the member 973 // function's class. If it is not found, or if the name is part of 974 // a template-argument in a template-id, the look up is as 975 // described for unqualified names in the definition of the class 976 // granting friendship. 977 // i.e. we don't push a scope unless it's a class member. 978 979 switch (Qualifier->getKind()) { 980 case NestedNameSpecifier::Global: 981 case NestedNameSpecifier::Namespace: 982 case NestedNameSpecifier::NamespaceAlias: 983 // These are always namespace scopes. We never want to enter a 984 // namespace scope from anything but a file context. 985 return CurContext->getRedeclContext()->isFileContext(); 986 987 case NestedNameSpecifier::Identifier: 988 case NestedNameSpecifier::TypeSpec: 989 case NestedNameSpecifier::TypeSpecWithTemplate: 990 case NestedNameSpecifier::Super: 991 // These are never namespace scopes. 992 return true; 993 } 994 995 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 996 } 997 998 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global 999 /// scope or nested-name-specifier) is parsed, part of a declarator-id. 1000 /// After this method is called, according to [C++ 3.4.3p3], names should be 1001 /// looked up in the declarator-id's scope, until the declarator is parsed and 1002 /// ActOnCXXExitDeclaratorScope is called. 1003 /// The 'SS' should be a non-empty valid CXXScopeSpec. 1004 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) { 1005 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); 1006 1007 if (SS.isInvalid()) return true; 1008 1009 DeclContext *DC = computeDeclContext(SS, true); 1010 if (!DC) return true; 1011 1012 // Before we enter a declarator's context, we need to make sure that 1013 // it is a complete declaration context. 1014 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC)) 1015 return true; 1016 1017 EnterDeclaratorContext(S, DC); 1018 1019 // Rebuild the nested name specifier for the new scope. 1020 if (DC->isDependentContext()) 1021 RebuildNestedNameSpecifierInCurrentInstantiation(SS); 1022 1023 return false; 1024 } 1025 1026 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously 1027 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same 1028 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. 1029 /// Used to indicate that names should revert to being looked up in the 1030 /// defining scope. 1031 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { 1032 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); 1033 if (SS.isInvalid()) 1034 return; 1035 assert(!SS.isInvalid() && computeDeclContext(SS, true) && 1036 "exiting declarator scope we never really entered"); 1037 ExitDeclaratorContext(S); 1038 } 1039