1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 78 llvm::Module &M, const llvm::DataLayout &TD, 79 DiagnosticsEngine &diags, 80 CoverageSourceInfo *CoverageInfo) 81 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 82 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 83 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 84 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 85 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 86 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 87 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 88 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 89 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 90 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 91 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 92 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 93 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 FloatTy = llvm::Type::getFloatTy(LLVMContext); 103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 105 PointerAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 109 Int8PtrTy = Int8Ty->getPointerTo(0); 110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 111 112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext()); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || 134 CodeGenOpts.EmitGcovNotes) 135 DebugInfo = new CGDebugInfo(*this); 136 137 Block.GlobalUniqueCount = 0; 138 139 if (C.getLangOpts().ObjCAutoRefCount) 140 ARCData = new ARCEntrypoints(); 141 RRData = new RREntrypoints(); 142 143 if (!CodeGenOpts.InstrProfileInput.empty()) { 144 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 145 CodeGenOpts.InstrProfileInput, PGOReader)) { 146 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 147 "Could not read profile: %0"); 148 getDiags().Report(DiagID) << EC.message(); 149 } 150 } 151 152 // If coverage mapping generation is enabled, create the 153 // CoverageMappingModuleGen object. 154 if (CodeGenOpts.CoverageMapping) 155 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 156 } 157 158 CodeGenModule::~CodeGenModule() { 159 delete ObjCRuntime; 160 delete OpenCLRuntime; 161 delete OpenMPRuntime; 162 delete CUDARuntime; 163 delete TheTargetCodeGenInfo; 164 delete TBAA; 165 delete DebugInfo; 166 delete ARCData; 167 delete RRData; 168 } 169 170 void CodeGenModule::createObjCRuntime() { 171 // This is just isGNUFamily(), but we want to force implementors of 172 // new ABIs to decide how best to do this. 173 switch (LangOpts.ObjCRuntime.getKind()) { 174 case ObjCRuntime::GNUstep: 175 case ObjCRuntime::GCC: 176 case ObjCRuntime::ObjFW: 177 ObjCRuntime = CreateGNUObjCRuntime(*this); 178 return; 179 180 case ObjCRuntime::FragileMacOSX: 181 case ObjCRuntime::MacOSX: 182 case ObjCRuntime::iOS: 183 ObjCRuntime = CreateMacObjCRuntime(*this); 184 return; 185 } 186 llvm_unreachable("bad runtime kind"); 187 } 188 189 void CodeGenModule::createOpenCLRuntime() { 190 OpenCLRuntime = new CGOpenCLRuntime(*this); 191 } 192 193 void CodeGenModule::createOpenMPRuntime() { 194 OpenMPRuntime = new CGOpenMPRuntime(*this); 195 } 196 197 void CodeGenModule::createCUDARuntime() { 198 CUDARuntime = CreateNVCUDARuntime(*this); 199 } 200 201 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 202 Replacements[Name] = C; 203 } 204 205 void CodeGenModule::applyReplacements() { 206 for (ReplacementsTy::iterator I = Replacements.begin(), 207 E = Replacements.end(); 208 I != E; ++I) { 209 StringRef MangledName = I->first(); 210 llvm::Constant *Replacement = I->second; 211 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 212 if (!Entry) 213 continue; 214 auto *OldF = cast<llvm::Function>(Entry); 215 auto *NewF = dyn_cast<llvm::Function>(Replacement); 216 if (!NewF) { 217 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 218 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 219 } else { 220 auto *CE = cast<llvm::ConstantExpr>(Replacement); 221 assert(CE->getOpcode() == llvm::Instruction::BitCast || 222 CE->getOpcode() == llvm::Instruction::GetElementPtr); 223 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 224 } 225 } 226 227 // Replace old with new, but keep the old order. 228 OldF->replaceAllUsesWith(Replacement); 229 if (NewF) { 230 NewF->removeFromParent(); 231 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 232 } 233 OldF->eraseFromParent(); 234 } 235 } 236 237 // This is only used in aliases that we created and we know they have a 238 // linear structure. 239 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 240 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 241 const llvm::Constant *C = &GA; 242 for (;;) { 243 C = C->stripPointerCasts(); 244 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 245 return GO; 246 // stripPointerCasts will not walk over weak aliases. 247 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 248 if (!GA2) 249 return nullptr; 250 if (!Visited.insert(GA2).second) 251 return nullptr; 252 C = GA2->getAliasee(); 253 } 254 } 255 256 void CodeGenModule::checkAliases() { 257 // Check if the constructed aliases are well formed. It is really unfortunate 258 // that we have to do this in CodeGen, but we only construct mangled names 259 // and aliases during codegen. 260 bool Error = false; 261 DiagnosticsEngine &Diags = getDiags(); 262 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 263 E = Aliases.end(); I != E; ++I) { 264 const GlobalDecl &GD = *I; 265 const auto *D = cast<ValueDecl>(GD.getDecl()); 266 const AliasAttr *AA = D->getAttr<AliasAttr>(); 267 StringRef MangledName = getMangledName(GD); 268 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 269 auto *Alias = cast<llvm::GlobalAlias>(Entry); 270 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 271 if (!GV) { 272 Error = true; 273 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 274 } else if (GV->isDeclaration()) { 275 Error = true; 276 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 277 } 278 279 llvm::Constant *Aliasee = Alias->getAliasee(); 280 llvm::GlobalValue *AliaseeGV; 281 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 282 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 283 else 284 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 285 286 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 287 StringRef AliasSection = SA->getName(); 288 if (AliasSection != AliaseeGV->getSection()) 289 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 290 << AliasSection; 291 } 292 293 // We have to handle alias to weak aliases in here. LLVM itself disallows 294 // this since the object semantics would not match the IL one. For 295 // compatibility with gcc we implement it by just pointing the alias 296 // to its aliasee's aliasee. We also warn, since the user is probably 297 // expecting the link to be weak. 298 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 299 if (GA->mayBeOverridden()) { 300 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 301 << GV->getName() << GA->getName(); 302 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 303 GA->getAliasee(), Alias->getType()); 304 Alias->setAliasee(Aliasee); 305 } 306 } 307 } 308 if (!Error) 309 return; 310 311 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 312 E = Aliases.end(); I != E; ++I) { 313 const GlobalDecl &GD = *I; 314 StringRef MangledName = getMangledName(GD); 315 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 316 auto *Alias = cast<llvm::GlobalAlias>(Entry); 317 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 318 Alias->eraseFromParent(); 319 } 320 } 321 322 void CodeGenModule::clear() { 323 DeferredDeclsToEmit.clear(); 324 } 325 326 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 327 StringRef MainFile) { 328 if (!hasDiagnostics()) 329 return; 330 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 331 if (MainFile.empty()) 332 MainFile = "<stdin>"; 333 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 334 } else 335 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 336 << Mismatched; 337 } 338 339 void CodeGenModule::Release() { 340 EmitDeferred(); 341 applyReplacements(); 342 checkAliases(); 343 EmitCXXGlobalInitFunc(); 344 EmitCXXGlobalDtorFunc(); 345 EmitCXXThreadLocalInitFunc(); 346 if (ObjCRuntime) 347 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 348 AddGlobalCtor(ObjCInitFunction); 349 if (PGOReader && PGOStats.hasDiagnostics()) 350 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 351 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 352 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 353 EmitGlobalAnnotations(); 354 EmitStaticExternCAliases(); 355 EmitDeferredUnusedCoverageMappings(); 356 if (CoverageMapping) 357 CoverageMapping->emit(); 358 emitLLVMUsed(); 359 360 if (CodeGenOpts.Autolink && 361 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 362 EmitModuleLinkOptions(); 363 } 364 if (CodeGenOpts.DwarfVersion) 365 // We actually want the latest version when there are conflicts. 366 // We can change from Warning to Latest if such mode is supported. 367 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 368 CodeGenOpts.DwarfVersion); 369 if (DebugInfo) 370 // We support a single version in the linked module. The LLVM 371 // parser will drop debug info with a different version number 372 // (and warn about it, too). 373 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 374 llvm::DEBUG_METADATA_VERSION); 375 376 // We need to record the widths of enums and wchar_t, so that we can generate 377 // the correct build attributes in the ARM backend. 378 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 379 if ( Arch == llvm::Triple::arm 380 || Arch == llvm::Triple::armeb 381 || Arch == llvm::Triple::thumb 382 || Arch == llvm::Triple::thumbeb) { 383 // Width of wchar_t in bytes 384 uint64_t WCharWidth = 385 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 386 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 387 388 // The minimum width of an enum in bytes 389 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 390 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 391 } 392 393 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 394 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 395 switch (PLevel) { 396 case 0: break; 397 case 1: PL = llvm::PICLevel::Small; break; 398 case 2: PL = llvm::PICLevel::Large; break; 399 default: llvm_unreachable("Invalid PIC Level"); 400 } 401 402 getModule().setPICLevel(PL); 403 } 404 405 SimplifyPersonality(); 406 407 if (getCodeGenOpts().EmitDeclMetadata) 408 EmitDeclMetadata(); 409 410 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 411 EmitCoverageFile(); 412 413 if (DebugInfo) 414 DebugInfo->finalize(); 415 416 EmitVersionIdentMetadata(); 417 418 EmitTargetMetadata(); 419 } 420 421 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 422 // Make sure that this type is translated. 423 Types.UpdateCompletedType(TD); 424 } 425 426 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 427 if (!TBAA) 428 return nullptr; 429 return TBAA->getTBAAInfo(QTy); 430 } 431 432 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 433 if (!TBAA) 434 return nullptr; 435 return TBAA->getTBAAInfoForVTablePtr(); 436 } 437 438 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 439 if (!TBAA) 440 return nullptr; 441 return TBAA->getTBAAStructInfo(QTy); 442 } 443 444 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 445 if (!TBAA) 446 return nullptr; 447 return TBAA->getTBAAStructTypeInfo(QTy); 448 } 449 450 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 451 llvm::MDNode *AccessN, 452 uint64_t O) { 453 if (!TBAA) 454 return nullptr; 455 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 456 } 457 458 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 459 /// and struct-path aware TBAA, the tag has the same format: 460 /// base type, access type and offset. 461 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 462 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 463 llvm::MDNode *TBAAInfo, 464 bool ConvertTypeToTag) { 465 if (ConvertTypeToTag && TBAA) 466 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 467 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 468 else 469 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 470 } 471 472 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 473 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 474 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 475 } 476 477 /// ErrorUnsupported - Print out an error that codegen doesn't support the 478 /// specified stmt yet. 479 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 480 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 481 "cannot compile this %0 yet"); 482 std::string Msg = Type; 483 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 484 << Msg << S->getSourceRange(); 485 } 486 487 /// ErrorUnsupported - Print out an error that codegen doesn't support the 488 /// specified decl yet. 489 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 490 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 491 "cannot compile this %0 yet"); 492 std::string Msg = Type; 493 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 494 } 495 496 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 497 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 498 } 499 500 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 501 const NamedDecl *D) const { 502 // Internal definitions always have default visibility. 503 if (GV->hasLocalLinkage()) { 504 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 505 return; 506 } 507 508 // Set visibility for definitions. 509 LinkageInfo LV = D->getLinkageAndVisibility(); 510 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 511 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 512 } 513 514 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 515 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 516 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 517 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 518 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 519 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 520 } 521 522 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 523 CodeGenOptions::TLSModel M) { 524 switch (M) { 525 case CodeGenOptions::GeneralDynamicTLSModel: 526 return llvm::GlobalVariable::GeneralDynamicTLSModel; 527 case CodeGenOptions::LocalDynamicTLSModel: 528 return llvm::GlobalVariable::LocalDynamicTLSModel; 529 case CodeGenOptions::InitialExecTLSModel: 530 return llvm::GlobalVariable::InitialExecTLSModel; 531 case CodeGenOptions::LocalExecTLSModel: 532 return llvm::GlobalVariable::LocalExecTLSModel; 533 } 534 llvm_unreachable("Invalid TLS model!"); 535 } 536 537 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 538 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 539 540 llvm::GlobalValue::ThreadLocalMode TLM; 541 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 542 543 // Override the TLS model if it is explicitly specified. 544 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 545 TLM = GetLLVMTLSModel(Attr->getModel()); 546 } 547 548 GV->setThreadLocalMode(TLM); 549 } 550 551 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 552 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 553 if (!FoundStr.empty()) 554 return FoundStr; 555 556 const auto *ND = cast<NamedDecl>(GD.getDecl()); 557 SmallString<256> Buffer; 558 StringRef Str; 559 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 560 llvm::raw_svector_ostream Out(Buffer); 561 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 562 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 563 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 564 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 565 else 566 getCXXABI().getMangleContext().mangleName(ND, Out); 567 Str = Out.str(); 568 } else { 569 IdentifierInfo *II = ND->getIdentifier(); 570 assert(II && "Attempt to mangle unnamed decl."); 571 Str = II->getName(); 572 } 573 574 // Keep the first result in the case of a mangling collision. 575 auto Result = Manglings.insert(std::make_pair(Str, GD)); 576 return FoundStr = Result.first->first(); 577 } 578 579 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 580 const BlockDecl *BD) { 581 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 582 const Decl *D = GD.getDecl(); 583 584 SmallString<256> Buffer; 585 llvm::raw_svector_ostream Out(Buffer); 586 if (!D) 587 MangleCtx.mangleGlobalBlock(BD, 588 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 589 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 590 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 591 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 592 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 593 else 594 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 595 596 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 597 return Result.first->first(); 598 } 599 600 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 601 return getModule().getNamedValue(Name); 602 } 603 604 /// AddGlobalCtor - Add a function to the list that will be called before 605 /// main() runs. 606 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 607 llvm::Constant *AssociatedData) { 608 // FIXME: Type coercion of void()* types. 609 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 610 } 611 612 /// AddGlobalDtor - Add a function to the list that will be called 613 /// when the module is unloaded. 614 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 615 // FIXME: Type coercion of void()* types. 616 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 617 } 618 619 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 620 // Ctor function type is void()*. 621 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 622 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 623 624 // Get the type of a ctor entry, { i32, void ()*, i8* }. 625 llvm::StructType *CtorStructTy = llvm::StructType::get( 626 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 627 628 // Construct the constructor and destructor arrays. 629 SmallVector<llvm::Constant*, 8> Ctors; 630 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 631 llvm::Constant *S[] = { 632 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 633 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 634 (I->AssociatedData 635 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 636 : llvm::Constant::getNullValue(VoidPtrTy)) 637 }; 638 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 639 } 640 641 if (!Ctors.empty()) { 642 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 643 new llvm::GlobalVariable(TheModule, AT, false, 644 llvm::GlobalValue::AppendingLinkage, 645 llvm::ConstantArray::get(AT, Ctors), 646 GlobalName); 647 } 648 } 649 650 llvm::GlobalValue::LinkageTypes 651 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 652 const auto *D = cast<FunctionDecl>(GD.getDecl()); 653 654 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 655 656 if (isa<CXXDestructorDecl>(D) && 657 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 658 GD.getDtorType())) { 659 // Destructor variants in the Microsoft C++ ABI are always internal or 660 // linkonce_odr thunks emitted on an as-needed basis. 661 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 662 : llvm::GlobalValue::LinkOnceODRLinkage; 663 } 664 665 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 666 } 667 668 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 669 llvm::Function *F) { 670 setNonAliasAttributes(D, F); 671 } 672 673 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 674 const CGFunctionInfo &Info, 675 llvm::Function *F) { 676 unsigned CallingConv; 677 AttributeListType AttributeList; 678 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 679 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 680 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 681 } 682 683 /// Determines whether the language options require us to model 684 /// unwind exceptions. We treat -fexceptions as mandating this 685 /// except under the fragile ObjC ABI with only ObjC exceptions 686 /// enabled. This means, for example, that C with -fexceptions 687 /// enables this. 688 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 689 // If exceptions are completely disabled, obviously this is false. 690 if (!LangOpts.Exceptions) return false; 691 692 // If C++ exceptions are enabled, this is true. 693 if (LangOpts.CXXExceptions) return true; 694 695 // If ObjC exceptions are enabled, this depends on the ABI. 696 if (LangOpts.ObjCExceptions) { 697 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 698 } 699 700 return true; 701 } 702 703 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 704 llvm::Function *F) { 705 llvm::AttrBuilder B; 706 707 if (CodeGenOpts.UnwindTables) 708 B.addAttribute(llvm::Attribute::UWTable); 709 710 if (!hasUnwindExceptions(LangOpts)) 711 B.addAttribute(llvm::Attribute::NoUnwind); 712 713 if (D->hasAttr<NakedAttr>()) { 714 // Naked implies noinline: we should not be inlining such functions. 715 B.addAttribute(llvm::Attribute::Naked); 716 B.addAttribute(llvm::Attribute::NoInline); 717 } else if (D->hasAttr<NoDuplicateAttr>()) { 718 B.addAttribute(llvm::Attribute::NoDuplicate); 719 } else if (D->hasAttr<NoInlineAttr>()) { 720 B.addAttribute(llvm::Attribute::NoInline); 721 } else if (D->hasAttr<AlwaysInlineAttr>() && 722 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 723 llvm::Attribute::NoInline)) { 724 // (noinline wins over always_inline, and we can't specify both in IR) 725 B.addAttribute(llvm::Attribute::AlwaysInline); 726 } 727 728 if (D->hasAttr<ColdAttr>()) { 729 if (!D->hasAttr<OptimizeNoneAttr>()) 730 B.addAttribute(llvm::Attribute::OptimizeForSize); 731 B.addAttribute(llvm::Attribute::Cold); 732 } 733 734 if (D->hasAttr<MinSizeAttr>()) 735 B.addAttribute(llvm::Attribute::MinSize); 736 737 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 738 B.addAttribute(llvm::Attribute::StackProtect); 739 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 740 B.addAttribute(llvm::Attribute::StackProtectStrong); 741 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 742 B.addAttribute(llvm::Attribute::StackProtectReq); 743 744 // Add sanitizer attributes if function is not blacklisted. 745 if (!isInSanitizerBlacklist(F, D->getLocation())) { 746 // When AddressSanitizer is enabled, set SanitizeAddress attribute 747 // unless __attribute__((no_sanitize_address)) is used. 748 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 749 !D->hasAttr<NoSanitizeAddressAttr>()) 750 B.addAttribute(llvm::Attribute::SanitizeAddress); 751 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 752 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 753 !D->hasAttr<NoSanitizeThreadAttr>()) 754 B.addAttribute(llvm::Attribute::SanitizeThread); 755 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 756 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 757 !D->hasAttr<NoSanitizeMemoryAttr>()) 758 B.addAttribute(llvm::Attribute::SanitizeMemory); 759 } 760 761 F->addAttributes(llvm::AttributeSet::FunctionIndex, 762 llvm::AttributeSet::get( 763 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 764 765 if (D->hasAttr<OptimizeNoneAttr>()) { 766 // OptimizeNone implies noinline; we should not be inlining such functions. 767 F->addFnAttr(llvm::Attribute::OptimizeNone); 768 F->addFnAttr(llvm::Attribute::NoInline); 769 770 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 771 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 772 "OptimizeNone and OptimizeForSize on same function!"); 773 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 774 "OptimizeNone and MinSize on same function!"); 775 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 776 "OptimizeNone and AlwaysInline on same function!"); 777 778 // Attribute 'inlinehint' has no effect on 'optnone' functions. 779 // Explicitly remove it from the set of function attributes. 780 F->removeFnAttr(llvm::Attribute::InlineHint); 781 } 782 783 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 784 F->setUnnamedAddr(true); 785 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 786 if (MD->isVirtual()) 787 F->setUnnamedAddr(true); 788 789 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 790 if (alignment) 791 F->setAlignment(alignment); 792 793 // C++ ABI requires 2-byte alignment for member functions. 794 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 795 F->setAlignment(2); 796 } 797 798 void CodeGenModule::SetCommonAttributes(const Decl *D, 799 llvm::GlobalValue *GV) { 800 if (const auto *ND = dyn_cast<NamedDecl>(D)) 801 setGlobalVisibility(GV, ND); 802 else 803 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 804 805 if (D->hasAttr<UsedAttr>()) 806 addUsedGlobal(GV); 807 } 808 809 void CodeGenModule::setAliasAttributes(const Decl *D, 810 llvm::GlobalValue *GV) { 811 SetCommonAttributes(D, GV); 812 813 // Process the dllexport attribute based on whether the original definition 814 // (not necessarily the aliasee) was exported. 815 if (D->hasAttr<DLLExportAttr>()) 816 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 817 } 818 819 void CodeGenModule::setNonAliasAttributes(const Decl *D, 820 llvm::GlobalObject *GO) { 821 SetCommonAttributes(D, GO); 822 823 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 824 GO->setSection(SA->getName()); 825 826 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 827 } 828 829 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 830 llvm::Function *F, 831 const CGFunctionInfo &FI) { 832 SetLLVMFunctionAttributes(D, FI, F); 833 SetLLVMFunctionAttributesForDefinition(D, F); 834 835 F->setLinkage(llvm::Function::InternalLinkage); 836 837 setNonAliasAttributes(D, F); 838 } 839 840 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 841 const NamedDecl *ND) { 842 // Set linkage and visibility in case we never see a definition. 843 LinkageInfo LV = ND->getLinkageAndVisibility(); 844 if (LV.getLinkage() != ExternalLinkage) { 845 // Don't set internal linkage on declarations. 846 } else { 847 if (ND->hasAttr<DLLImportAttr>()) { 848 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 849 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 850 } else if (ND->hasAttr<DLLExportAttr>()) { 851 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 852 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 853 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 854 // "extern_weak" is overloaded in LLVM; we probably should have 855 // separate linkage types for this. 856 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 857 } 858 859 // Set visibility on a declaration only if it's explicit. 860 if (LV.isVisibilityExplicit()) 861 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 862 } 863 } 864 865 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 866 bool IsIncompleteFunction, 867 bool IsThunk) { 868 if (unsigned IID = F->getIntrinsicID()) { 869 // If this is an intrinsic function, set the function's attributes 870 // to the intrinsic's attributes. 871 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 872 (llvm::Intrinsic::ID)IID)); 873 return; 874 } 875 876 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 877 878 if (!IsIncompleteFunction) 879 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 880 881 // Add the Returned attribute for "this", except for iOS 5 and earlier 882 // where substantial code, including the libstdc++ dylib, was compiled with 883 // GCC and does not actually return "this". 884 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 885 !(getTarget().getTriple().isiOS() && 886 getTarget().getTriple().isOSVersionLT(6))) { 887 assert(!F->arg_empty() && 888 F->arg_begin()->getType() 889 ->canLosslesslyBitCastTo(F->getReturnType()) && 890 "unexpected this return"); 891 F->addAttribute(1, llvm::Attribute::Returned); 892 } 893 894 // Only a few attributes are set on declarations; these may later be 895 // overridden by a definition. 896 897 setLinkageAndVisibilityForGV(F, FD); 898 899 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 900 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 901 // Don't dllexport/import destructor thunks. 902 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 903 } 904 } 905 906 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 907 F->setSection(SA->getName()); 908 909 // A replaceable global allocation function does not act like a builtin by 910 // default, only if it is invoked by a new-expression or delete-expression. 911 if (FD->isReplaceableGlobalAllocationFunction()) 912 F->addAttribute(llvm::AttributeSet::FunctionIndex, 913 llvm::Attribute::NoBuiltin); 914 } 915 916 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 917 assert(!GV->isDeclaration() && 918 "Only globals with definition can force usage."); 919 LLVMUsed.push_back(GV); 920 } 921 922 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 923 assert(!GV->isDeclaration() && 924 "Only globals with definition can force usage."); 925 LLVMCompilerUsed.push_back(GV); 926 } 927 928 static void emitUsed(CodeGenModule &CGM, StringRef Name, 929 std::vector<llvm::WeakVH> &List) { 930 // Don't create llvm.used if there is no need. 931 if (List.empty()) 932 return; 933 934 // Convert List to what ConstantArray needs. 935 SmallVector<llvm::Constant*, 8> UsedArray; 936 UsedArray.resize(List.size()); 937 for (unsigned i = 0, e = List.size(); i != e; ++i) { 938 UsedArray[i] = 939 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 940 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 941 } 942 943 if (UsedArray.empty()) 944 return; 945 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 946 947 auto *GV = new llvm::GlobalVariable( 948 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 949 llvm::ConstantArray::get(ATy, UsedArray), Name); 950 951 GV->setSection("llvm.metadata"); 952 } 953 954 void CodeGenModule::emitLLVMUsed() { 955 emitUsed(*this, "llvm.used", LLVMUsed); 956 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 957 } 958 959 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 960 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 961 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 962 } 963 964 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 965 llvm::SmallString<32> Opt; 966 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 967 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 968 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 969 } 970 971 void CodeGenModule::AddDependentLib(StringRef Lib) { 972 llvm::SmallString<24> Opt; 973 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 974 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 975 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 976 } 977 978 /// \brief Add link options implied by the given module, including modules 979 /// it depends on, using a postorder walk. 980 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 981 SmallVectorImpl<llvm::Metadata *> &Metadata, 982 llvm::SmallPtrSet<Module *, 16> &Visited) { 983 // Import this module's parent. 984 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 985 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 986 } 987 988 // Import this module's dependencies. 989 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 990 if (Visited.insert(Mod->Imports[I - 1]).second) 991 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 992 } 993 994 // Add linker options to link against the libraries/frameworks 995 // described by this module. 996 llvm::LLVMContext &Context = CGM.getLLVMContext(); 997 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 998 // Link against a framework. Frameworks are currently Darwin only, so we 999 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1000 if (Mod->LinkLibraries[I-1].IsFramework) { 1001 llvm::Metadata *Args[2] = { 1002 llvm::MDString::get(Context, "-framework"), 1003 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1004 1005 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1006 continue; 1007 } 1008 1009 // Link against a library. 1010 llvm::SmallString<24> Opt; 1011 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1012 Mod->LinkLibraries[I-1].Library, Opt); 1013 auto *OptString = llvm::MDString::get(Context, Opt); 1014 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1015 } 1016 } 1017 1018 void CodeGenModule::EmitModuleLinkOptions() { 1019 // Collect the set of all of the modules we want to visit to emit link 1020 // options, which is essentially the imported modules and all of their 1021 // non-explicit child modules. 1022 llvm::SetVector<clang::Module *> LinkModules; 1023 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1024 SmallVector<clang::Module *, 16> Stack; 1025 1026 // Seed the stack with imported modules. 1027 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1028 MEnd = ImportedModules.end(); 1029 M != MEnd; ++M) { 1030 if (Visited.insert(*M).second) 1031 Stack.push_back(*M); 1032 } 1033 1034 // Find all of the modules to import, making a little effort to prune 1035 // non-leaf modules. 1036 while (!Stack.empty()) { 1037 clang::Module *Mod = Stack.pop_back_val(); 1038 1039 bool AnyChildren = false; 1040 1041 // Visit the submodules of this module. 1042 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1043 SubEnd = Mod->submodule_end(); 1044 Sub != SubEnd; ++Sub) { 1045 // Skip explicit children; they need to be explicitly imported to be 1046 // linked against. 1047 if ((*Sub)->IsExplicit) 1048 continue; 1049 1050 if (Visited.insert(*Sub).second) { 1051 Stack.push_back(*Sub); 1052 AnyChildren = true; 1053 } 1054 } 1055 1056 // We didn't find any children, so add this module to the list of 1057 // modules to link against. 1058 if (!AnyChildren) { 1059 LinkModules.insert(Mod); 1060 } 1061 } 1062 1063 // Add link options for all of the imported modules in reverse topological 1064 // order. We don't do anything to try to order import link flags with respect 1065 // to linker options inserted by things like #pragma comment(). 1066 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1067 Visited.clear(); 1068 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1069 MEnd = LinkModules.end(); 1070 M != MEnd; ++M) { 1071 if (Visited.insert(*M).second) 1072 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1073 } 1074 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1075 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1076 1077 // Add the linker options metadata flag. 1078 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1079 llvm::MDNode::get(getLLVMContext(), 1080 LinkerOptionsMetadata)); 1081 } 1082 1083 void CodeGenModule::EmitDeferred() { 1084 // Emit code for any potentially referenced deferred decls. Since a 1085 // previously unused static decl may become used during the generation of code 1086 // for a static function, iterate until no changes are made. 1087 1088 while (true) { 1089 if (!DeferredVTables.empty()) { 1090 EmitDeferredVTables(); 1091 1092 // Emitting a v-table doesn't directly cause more v-tables to 1093 // become deferred, although it can cause functions to be 1094 // emitted that then need those v-tables. 1095 assert(DeferredVTables.empty()); 1096 } 1097 1098 // Stop if we're out of both deferred v-tables and deferred declarations. 1099 if (DeferredDeclsToEmit.empty()) break; 1100 1101 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1102 GlobalDecl D = G.GD; 1103 llvm::GlobalValue *GV = G.GV; 1104 DeferredDeclsToEmit.pop_back(); 1105 1106 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1107 if (!GV) 1108 GV = GetGlobalValue(getMangledName(D)); 1109 1110 1111 // Check to see if we've already emitted this. This is necessary 1112 // for a couple of reasons: first, decls can end up in the 1113 // deferred-decls queue multiple times, and second, decls can end 1114 // up with definitions in unusual ways (e.g. by an extern inline 1115 // function acquiring a strong function redefinition). Just 1116 // ignore these cases. 1117 if (GV && !GV->isDeclaration()) 1118 continue; 1119 1120 // Otherwise, emit the definition and move on to the next one. 1121 EmitGlobalDefinition(D, GV); 1122 } 1123 } 1124 1125 void CodeGenModule::EmitGlobalAnnotations() { 1126 if (Annotations.empty()) 1127 return; 1128 1129 // Create a new global variable for the ConstantStruct in the Module. 1130 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1131 Annotations[0]->getType(), Annotations.size()), Annotations); 1132 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1133 llvm::GlobalValue::AppendingLinkage, 1134 Array, "llvm.global.annotations"); 1135 gv->setSection(AnnotationSection); 1136 } 1137 1138 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1139 llvm::Constant *&AStr = AnnotationStrings[Str]; 1140 if (AStr) 1141 return AStr; 1142 1143 // Not found yet, create a new global. 1144 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1145 auto *gv = 1146 new llvm::GlobalVariable(getModule(), s->getType(), true, 1147 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1148 gv->setSection(AnnotationSection); 1149 gv->setUnnamedAddr(true); 1150 AStr = gv; 1151 return gv; 1152 } 1153 1154 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1155 SourceManager &SM = getContext().getSourceManager(); 1156 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1157 if (PLoc.isValid()) 1158 return EmitAnnotationString(PLoc.getFilename()); 1159 return EmitAnnotationString(SM.getBufferName(Loc)); 1160 } 1161 1162 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1163 SourceManager &SM = getContext().getSourceManager(); 1164 PresumedLoc PLoc = SM.getPresumedLoc(L); 1165 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1166 SM.getExpansionLineNumber(L); 1167 return llvm::ConstantInt::get(Int32Ty, LineNo); 1168 } 1169 1170 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1171 const AnnotateAttr *AA, 1172 SourceLocation L) { 1173 // Get the globals for file name, annotation, and the line number. 1174 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1175 *UnitGV = EmitAnnotationUnit(L), 1176 *LineNoCst = EmitAnnotationLineNo(L); 1177 1178 // Create the ConstantStruct for the global annotation. 1179 llvm::Constant *Fields[4] = { 1180 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1181 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1182 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1183 LineNoCst 1184 }; 1185 return llvm::ConstantStruct::getAnon(Fields); 1186 } 1187 1188 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1189 llvm::GlobalValue *GV) { 1190 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1191 // Get the struct elements for these annotations. 1192 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1193 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1194 } 1195 1196 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1197 SourceLocation Loc) const { 1198 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1199 // Blacklist by function name. 1200 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1201 return true; 1202 // Blacklist by location. 1203 if (!Loc.isInvalid()) 1204 return SanitizerBL.isBlacklistedLocation(Loc); 1205 // If location is unknown, this may be a compiler-generated function. Assume 1206 // it's located in the main file. 1207 auto &SM = Context.getSourceManager(); 1208 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1209 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1210 } 1211 return false; 1212 } 1213 1214 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1215 SourceLocation Loc, QualType Ty, 1216 StringRef Category) const { 1217 // For now globals can be blacklisted only in ASan. 1218 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1219 return false; 1220 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1221 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1222 return true; 1223 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1224 return true; 1225 // Check global type. 1226 if (!Ty.isNull()) { 1227 // Drill down the array types: if global variable of a fixed type is 1228 // blacklisted, we also don't instrument arrays of them. 1229 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1230 Ty = AT->getElementType(); 1231 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1232 // We allow to blacklist only record types (classes, structs etc.) 1233 if (Ty->isRecordType()) { 1234 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1235 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1236 return true; 1237 } 1238 } 1239 return false; 1240 } 1241 1242 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1243 // Never defer when EmitAllDecls is specified. 1244 if (LangOpts.EmitAllDecls) 1245 return true; 1246 1247 return getContext().DeclMustBeEmitted(Global); 1248 } 1249 1250 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1251 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1252 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1253 // Implicit template instantiations may change linkage if they are later 1254 // explicitly instantiated, so they should not be emitted eagerly. 1255 return false; 1256 1257 return true; 1258 } 1259 1260 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1261 const CXXUuidofExpr* E) { 1262 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1263 // well-formed. 1264 StringRef Uuid = E->getUuidAsStringRef(Context); 1265 std::string Name = "_GUID_" + Uuid.lower(); 1266 std::replace(Name.begin(), Name.end(), '-', '_'); 1267 1268 // Look for an existing global. 1269 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1270 return GV; 1271 1272 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1273 assert(Init && "failed to initialize as constant"); 1274 1275 auto *GV = new llvm::GlobalVariable( 1276 getModule(), Init->getType(), 1277 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1278 return GV; 1279 } 1280 1281 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1282 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1283 assert(AA && "No alias?"); 1284 1285 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1286 1287 // See if there is already something with the target's name in the module. 1288 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1289 if (Entry) { 1290 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1291 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1292 } 1293 1294 llvm::Constant *Aliasee; 1295 if (isa<llvm::FunctionType>(DeclTy)) 1296 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1297 GlobalDecl(cast<FunctionDecl>(VD)), 1298 /*ForVTable=*/false); 1299 else 1300 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1301 llvm::PointerType::getUnqual(DeclTy), 1302 nullptr); 1303 1304 auto *F = cast<llvm::GlobalValue>(Aliasee); 1305 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1306 WeakRefReferences.insert(F); 1307 1308 return Aliasee; 1309 } 1310 1311 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1312 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1313 1314 // Weak references don't produce any output by themselves. 1315 if (Global->hasAttr<WeakRefAttr>()) 1316 return; 1317 1318 // If this is an alias definition (which otherwise looks like a declaration) 1319 // emit it now. 1320 if (Global->hasAttr<AliasAttr>()) 1321 return EmitAliasDefinition(GD); 1322 1323 // If this is CUDA, be selective about which declarations we emit. 1324 if (LangOpts.CUDA) { 1325 if (CodeGenOpts.CUDAIsDevice) { 1326 if (!Global->hasAttr<CUDADeviceAttr>() && 1327 !Global->hasAttr<CUDAGlobalAttr>() && 1328 !Global->hasAttr<CUDAConstantAttr>() && 1329 !Global->hasAttr<CUDASharedAttr>()) 1330 return; 1331 } else { 1332 if (!Global->hasAttr<CUDAHostAttr>() && ( 1333 Global->hasAttr<CUDADeviceAttr>() || 1334 Global->hasAttr<CUDAConstantAttr>() || 1335 Global->hasAttr<CUDASharedAttr>())) 1336 return; 1337 } 1338 } 1339 1340 // Ignore declarations, they will be emitted on their first use. 1341 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1342 // Forward declarations are emitted lazily on first use. 1343 if (!FD->doesThisDeclarationHaveABody()) { 1344 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1345 return; 1346 1347 StringRef MangledName = getMangledName(GD); 1348 1349 // Compute the function info and LLVM type. 1350 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1351 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1352 1353 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1354 /*DontDefer=*/false); 1355 return; 1356 } 1357 } else { 1358 const auto *VD = cast<VarDecl>(Global); 1359 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1360 1361 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1362 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1363 return; 1364 } 1365 1366 // Defer code generation to first use when possible, e.g. if this is an inline 1367 // function. If the global must always be emitted, do it eagerly if possible 1368 // to benefit from cache locality. 1369 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1370 // Emit the definition if it can't be deferred. 1371 EmitGlobalDefinition(GD); 1372 return; 1373 } 1374 1375 // If we're deferring emission of a C++ variable with an 1376 // initializer, remember the order in which it appeared in the file. 1377 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1378 cast<VarDecl>(Global)->hasInit()) { 1379 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1380 CXXGlobalInits.push_back(nullptr); 1381 } 1382 1383 StringRef MangledName = getMangledName(GD); 1384 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1385 // The value has already been used and should therefore be emitted. 1386 addDeferredDeclToEmit(GV, GD); 1387 } else if (MustBeEmitted(Global)) { 1388 // The value must be emitted, but cannot be emitted eagerly. 1389 assert(!MayBeEmittedEagerly(Global)); 1390 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1391 } else { 1392 // Otherwise, remember that we saw a deferred decl with this name. The 1393 // first use of the mangled name will cause it to move into 1394 // DeferredDeclsToEmit. 1395 DeferredDecls[MangledName] = GD; 1396 } 1397 } 1398 1399 namespace { 1400 struct FunctionIsDirectlyRecursive : 1401 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1402 const StringRef Name; 1403 const Builtin::Context &BI; 1404 bool Result; 1405 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1406 Name(N), BI(C), Result(false) { 1407 } 1408 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1409 1410 bool TraverseCallExpr(CallExpr *E) { 1411 const FunctionDecl *FD = E->getDirectCallee(); 1412 if (!FD) 1413 return true; 1414 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1415 if (Attr && Name == Attr->getLabel()) { 1416 Result = true; 1417 return false; 1418 } 1419 unsigned BuiltinID = FD->getBuiltinID(); 1420 if (!BuiltinID) 1421 return true; 1422 StringRef BuiltinName = BI.GetName(BuiltinID); 1423 if (BuiltinName.startswith("__builtin_") && 1424 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1425 Result = true; 1426 return false; 1427 } 1428 return true; 1429 } 1430 }; 1431 } 1432 1433 // isTriviallyRecursive - Check if this function calls another 1434 // decl that, because of the asm attribute or the other decl being a builtin, 1435 // ends up pointing to itself. 1436 bool 1437 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1438 StringRef Name; 1439 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1440 // asm labels are a special kind of mangling we have to support. 1441 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1442 if (!Attr) 1443 return false; 1444 Name = Attr->getLabel(); 1445 } else { 1446 Name = FD->getName(); 1447 } 1448 1449 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1450 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1451 return Walker.Result; 1452 } 1453 1454 bool 1455 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1456 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1457 return true; 1458 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1459 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1460 return false; 1461 // PR9614. Avoid cases where the source code is lying to us. An available 1462 // externally function should have an equivalent function somewhere else, 1463 // but a function that calls itself is clearly not equivalent to the real 1464 // implementation. 1465 // This happens in glibc's btowc and in some configure checks. 1466 return !isTriviallyRecursive(F); 1467 } 1468 1469 /// If the type for the method's class was generated by 1470 /// CGDebugInfo::createContextChain(), the cache contains only a 1471 /// limited DIType without any declarations. Since EmitFunctionStart() 1472 /// needs to find the canonical declaration for each method, we need 1473 /// to construct the complete type prior to emitting the method. 1474 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1475 if (!D->isInstance()) 1476 return; 1477 1478 if (CGDebugInfo *DI = getModuleDebugInfo()) 1479 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1480 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1481 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1482 } 1483 } 1484 1485 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1486 const auto *D = cast<ValueDecl>(GD.getDecl()); 1487 1488 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1489 Context.getSourceManager(), 1490 "Generating code for declaration"); 1491 1492 if (isa<FunctionDecl>(D)) { 1493 // At -O0, don't generate IR for functions with available_externally 1494 // linkage. 1495 if (!shouldEmitFunction(GD)) 1496 return; 1497 1498 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1499 CompleteDIClassType(Method); 1500 // Make sure to emit the definition(s) before we emit the thunks. 1501 // This is necessary for the generation of certain thunks. 1502 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1503 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1504 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1505 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1506 else 1507 EmitGlobalFunctionDefinition(GD, GV); 1508 1509 if (Method->isVirtual()) 1510 getVTables().EmitThunks(GD); 1511 1512 return; 1513 } 1514 1515 return EmitGlobalFunctionDefinition(GD, GV); 1516 } 1517 1518 if (const auto *VD = dyn_cast<VarDecl>(D)) 1519 return EmitGlobalVarDefinition(VD); 1520 1521 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1522 } 1523 1524 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1525 /// module, create and return an llvm Function with the specified type. If there 1526 /// is something in the module with the specified name, return it potentially 1527 /// bitcasted to the right type. 1528 /// 1529 /// If D is non-null, it specifies a decl that correspond to this. This is used 1530 /// to set the attributes on the function when it is first created. 1531 llvm::Constant * 1532 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1533 llvm::Type *Ty, 1534 GlobalDecl GD, bool ForVTable, 1535 bool DontDefer, bool IsThunk, 1536 llvm::AttributeSet ExtraAttrs) { 1537 const Decl *D = GD.getDecl(); 1538 1539 // Lookup the entry, lazily creating it if necessary. 1540 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1541 if (Entry) { 1542 if (WeakRefReferences.erase(Entry)) { 1543 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1544 if (FD && !FD->hasAttr<WeakAttr>()) 1545 Entry->setLinkage(llvm::Function::ExternalLinkage); 1546 } 1547 1548 // Handle dropped DLL attributes. 1549 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1550 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1551 1552 if (Entry->getType()->getElementType() == Ty) 1553 return Entry; 1554 1555 // Make sure the result is of the correct type. 1556 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1557 } 1558 1559 // This function doesn't have a complete type (for example, the return 1560 // type is an incomplete struct). Use a fake type instead, and make 1561 // sure not to try to set attributes. 1562 bool IsIncompleteFunction = false; 1563 1564 llvm::FunctionType *FTy; 1565 if (isa<llvm::FunctionType>(Ty)) { 1566 FTy = cast<llvm::FunctionType>(Ty); 1567 } else { 1568 FTy = llvm::FunctionType::get(VoidTy, false); 1569 IsIncompleteFunction = true; 1570 } 1571 1572 llvm::Function *F = llvm::Function::Create(FTy, 1573 llvm::Function::ExternalLinkage, 1574 MangledName, &getModule()); 1575 assert(F->getName() == MangledName && "name was uniqued!"); 1576 if (D) 1577 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1578 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1579 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1580 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1581 llvm::AttributeSet::get(VMContext, 1582 llvm::AttributeSet::FunctionIndex, 1583 B)); 1584 } 1585 1586 if (!DontDefer) { 1587 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1588 // each other bottoming out with the base dtor. Therefore we emit non-base 1589 // dtors on usage, even if there is no dtor definition in the TU. 1590 if (D && isa<CXXDestructorDecl>(D) && 1591 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1592 GD.getDtorType())) 1593 addDeferredDeclToEmit(F, GD); 1594 1595 // This is the first use or definition of a mangled name. If there is a 1596 // deferred decl with this name, remember that we need to emit it at the end 1597 // of the file. 1598 auto DDI = DeferredDecls.find(MangledName); 1599 if (DDI != DeferredDecls.end()) { 1600 // Move the potentially referenced deferred decl to the 1601 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1602 // don't need it anymore). 1603 addDeferredDeclToEmit(F, DDI->second); 1604 DeferredDecls.erase(DDI); 1605 1606 // Otherwise, if this is a sized deallocation function, emit a weak 1607 // definition 1608 // for it at the end of the translation unit. 1609 } else if (D && cast<FunctionDecl>(D) 1610 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1611 addDeferredDeclToEmit(F, GD); 1612 1613 // Otherwise, there are cases we have to worry about where we're 1614 // using a declaration for which we must emit a definition but where 1615 // we might not find a top-level definition: 1616 // - member functions defined inline in their classes 1617 // - friend functions defined inline in some class 1618 // - special member functions with implicit definitions 1619 // If we ever change our AST traversal to walk into class methods, 1620 // this will be unnecessary. 1621 // 1622 // We also don't emit a definition for a function if it's going to be an 1623 // entry in a vtable, unless it's already marked as used. 1624 } else if (getLangOpts().CPlusPlus && D) { 1625 // Look for a declaration that's lexically in a record. 1626 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1627 FD = FD->getPreviousDecl()) { 1628 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1629 if (FD->doesThisDeclarationHaveABody()) { 1630 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1631 break; 1632 } 1633 } 1634 } 1635 } 1636 } 1637 1638 // Make sure the result is of the requested type. 1639 if (!IsIncompleteFunction) { 1640 assert(F->getType()->getElementType() == Ty); 1641 return F; 1642 } 1643 1644 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1645 return llvm::ConstantExpr::getBitCast(F, PTy); 1646 } 1647 1648 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1649 /// non-null, then this function will use the specified type if it has to 1650 /// create it (this occurs when we see a definition of the function). 1651 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1652 llvm::Type *Ty, 1653 bool ForVTable, 1654 bool DontDefer) { 1655 // If there was no specific requested type, just convert it now. 1656 if (!Ty) 1657 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1658 1659 StringRef MangledName = getMangledName(GD); 1660 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1661 } 1662 1663 /// CreateRuntimeFunction - Create a new runtime function with the specified 1664 /// type and name. 1665 llvm::Constant * 1666 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1667 StringRef Name, 1668 llvm::AttributeSet ExtraAttrs) { 1669 llvm::Constant *C = 1670 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1671 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1672 if (auto *F = dyn_cast<llvm::Function>(C)) 1673 if (F->empty()) 1674 F->setCallingConv(getRuntimeCC()); 1675 return C; 1676 } 1677 1678 /// CreateBuiltinFunction - Create a new builtin function with the specified 1679 /// type and name. 1680 llvm::Constant * 1681 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1682 StringRef Name, 1683 llvm::AttributeSet ExtraAttrs) { 1684 llvm::Constant *C = 1685 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1686 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1687 if (auto *F = dyn_cast<llvm::Function>(C)) 1688 if (F->empty()) 1689 F->setCallingConv(getBuiltinCC()); 1690 return C; 1691 } 1692 1693 /// isTypeConstant - Determine whether an object of this type can be emitted 1694 /// as a constant. 1695 /// 1696 /// If ExcludeCtor is true, the duration when the object's constructor runs 1697 /// will not be considered. The caller will need to verify that the object is 1698 /// not written to during its construction. 1699 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1700 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1701 return false; 1702 1703 if (Context.getLangOpts().CPlusPlus) { 1704 if (const CXXRecordDecl *Record 1705 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1706 return ExcludeCtor && !Record->hasMutableFields() && 1707 Record->hasTrivialDestructor(); 1708 } 1709 1710 return true; 1711 } 1712 1713 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1714 /// create and return an llvm GlobalVariable with the specified type. If there 1715 /// is something in the module with the specified name, return it potentially 1716 /// bitcasted to the right type. 1717 /// 1718 /// If D is non-null, it specifies a decl that correspond to this. This is used 1719 /// to set the attributes on the global when it is first created. 1720 llvm::Constant * 1721 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1722 llvm::PointerType *Ty, 1723 const VarDecl *D) { 1724 // Lookup the entry, lazily creating it if necessary. 1725 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1726 if (Entry) { 1727 if (WeakRefReferences.erase(Entry)) { 1728 if (D && !D->hasAttr<WeakAttr>()) 1729 Entry->setLinkage(llvm::Function::ExternalLinkage); 1730 } 1731 1732 // Handle dropped DLL attributes. 1733 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1734 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1735 1736 if (Entry->getType() == Ty) 1737 return Entry; 1738 1739 // Make sure the result is of the correct type. 1740 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1741 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1742 1743 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1744 } 1745 1746 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1747 auto *GV = new llvm::GlobalVariable( 1748 getModule(), Ty->getElementType(), false, 1749 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1750 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1751 1752 // This is the first use or definition of a mangled name. If there is a 1753 // deferred decl with this name, remember that we need to emit it at the end 1754 // of the file. 1755 auto DDI = DeferredDecls.find(MangledName); 1756 if (DDI != DeferredDecls.end()) { 1757 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1758 // list, and remove it from DeferredDecls (since we don't need it anymore). 1759 addDeferredDeclToEmit(GV, DDI->second); 1760 DeferredDecls.erase(DDI); 1761 } 1762 1763 // Handle things which are present even on external declarations. 1764 if (D) { 1765 // FIXME: This code is overly simple and should be merged with other global 1766 // handling. 1767 GV->setConstant(isTypeConstant(D->getType(), false)); 1768 1769 setLinkageAndVisibilityForGV(GV, D); 1770 1771 if (D->getTLSKind()) { 1772 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1773 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1774 setTLSMode(GV, *D); 1775 } 1776 1777 // If required by the ABI, treat declarations of static data members with 1778 // inline initializers as definitions. 1779 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1780 EmitGlobalVarDefinition(D); 1781 } 1782 1783 // Handle XCore specific ABI requirements. 1784 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1785 D->getLanguageLinkage() == CLanguageLinkage && 1786 D->getType().isConstant(Context) && 1787 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1788 GV->setSection(".cp.rodata"); 1789 } 1790 1791 if (AddrSpace != Ty->getAddressSpace()) 1792 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1793 1794 return GV; 1795 } 1796 1797 1798 llvm::GlobalVariable * 1799 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1800 llvm::Type *Ty, 1801 llvm::GlobalValue::LinkageTypes Linkage) { 1802 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1803 llvm::GlobalVariable *OldGV = nullptr; 1804 1805 if (GV) { 1806 // Check if the variable has the right type. 1807 if (GV->getType()->getElementType() == Ty) 1808 return GV; 1809 1810 // Because C++ name mangling, the only way we can end up with an already 1811 // existing global with the same name is if it has been declared extern "C". 1812 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1813 OldGV = GV; 1814 } 1815 1816 // Create a new variable. 1817 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1818 Linkage, nullptr, Name); 1819 1820 if (OldGV) { 1821 // Replace occurrences of the old variable if needed. 1822 GV->takeName(OldGV); 1823 1824 if (!OldGV->use_empty()) { 1825 llvm::Constant *NewPtrForOldDecl = 1826 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1827 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1828 } 1829 1830 OldGV->eraseFromParent(); 1831 } 1832 1833 return GV; 1834 } 1835 1836 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1837 /// given global variable. If Ty is non-null and if the global doesn't exist, 1838 /// then it will be created with the specified type instead of whatever the 1839 /// normal requested type would be. 1840 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1841 llvm::Type *Ty) { 1842 assert(D->hasGlobalStorage() && "Not a global variable"); 1843 QualType ASTTy = D->getType(); 1844 if (!Ty) 1845 Ty = getTypes().ConvertTypeForMem(ASTTy); 1846 1847 llvm::PointerType *PTy = 1848 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1849 1850 StringRef MangledName = getMangledName(D); 1851 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1852 } 1853 1854 /// CreateRuntimeVariable - Create a new runtime global variable with the 1855 /// specified type and name. 1856 llvm::Constant * 1857 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1858 StringRef Name) { 1859 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1860 } 1861 1862 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1863 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1864 1865 if (!MustBeEmitted(D)) { 1866 // If we have not seen a reference to this variable yet, place it 1867 // into the deferred declarations table to be emitted if needed 1868 // later. 1869 StringRef MangledName = getMangledName(D); 1870 if (!GetGlobalValue(MangledName)) { 1871 DeferredDecls[MangledName] = D; 1872 return; 1873 } 1874 } 1875 1876 // The tentative definition is the only definition. 1877 EmitGlobalVarDefinition(D); 1878 } 1879 1880 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1881 return Context.toCharUnitsFromBits( 1882 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1883 } 1884 1885 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1886 unsigned AddrSpace) { 1887 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1888 if (D->hasAttr<CUDAConstantAttr>()) 1889 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1890 else if (D->hasAttr<CUDASharedAttr>()) 1891 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1892 else 1893 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1894 } 1895 1896 return AddrSpace; 1897 } 1898 1899 template<typename SomeDecl> 1900 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1901 llvm::GlobalValue *GV) { 1902 if (!getLangOpts().CPlusPlus) 1903 return; 1904 1905 // Must have 'used' attribute, or else inline assembly can't rely on 1906 // the name existing. 1907 if (!D->template hasAttr<UsedAttr>()) 1908 return; 1909 1910 // Must have internal linkage and an ordinary name. 1911 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1912 return; 1913 1914 // Must be in an extern "C" context. Entities declared directly within 1915 // a record are not extern "C" even if the record is in such a context. 1916 const SomeDecl *First = D->getFirstDecl(); 1917 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1918 return; 1919 1920 // OK, this is an internal linkage entity inside an extern "C" linkage 1921 // specification. Make a note of that so we can give it the "expected" 1922 // mangled name if nothing else is using that name. 1923 std::pair<StaticExternCMap::iterator, bool> R = 1924 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1925 1926 // If we have multiple internal linkage entities with the same name 1927 // in extern "C" regions, none of them gets that name. 1928 if (!R.second) 1929 R.first->second = nullptr; 1930 } 1931 1932 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1933 llvm::Constant *Init = nullptr; 1934 QualType ASTTy = D->getType(); 1935 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1936 bool NeedsGlobalCtor = false; 1937 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1938 1939 const VarDecl *InitDecl; 1940 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1941 1942 if (!InitExpr) { 1943 // This is a tentative definition; tentative definitions are 1944 // implicitly initialized with { 0 }. 1945 // 1946 // Note that tentative definitions are only emitted at the end of 1947 // a translation unit, so they should never have incomplete 1948 // type. In addition, EmitTentativeDefinition makes sure that we 1949 // never attempt to emit a tentative definition if a real one 1950 // exists. A use may still exists, however, so we still may need 1951 // to do a RAUW. 1952 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1953 Init = EmitNullConstant(D->getType()); 1954 } else { 1955 initializedGlobalDecl = GlobalDecl(D); 1956 Init = EmitConstantInit(*InitDecl); 1957 1958 if (!Init) { 1959 QualType T = InitExpr->getType(); 1960 if (D->getType()->isReferenceType()) 1961 T = D->getType(); 1962 1963 if (getLangOpts().CPlusPlus) { 1964 Init = EmitNullConstant(T); 1965 NeedsGlobalCtor = true; 1966 } else { 1967 ErrorUnsupported(D, "static initializer"); 1968 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1969 } 1970 } else { 1971 // We don't need an initializer, so remove the entry for the delayed 1972 // initializer position (just in case this entry was delayed) if we 1973 // also don't need to register a destructor. 1974 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1975 DelayedCXXInitPosition.erase(D); 1976 } 1977 } 1978 1979 llvm::Type* InitType = Init->getType(); 1980 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1981 1982 // Strip off a bitcast if we got one back. 1983 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1984 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1985 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1986 // All zero index gep. 1987 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1988 Entry = CE->getOperand(0); 1989 } 1990 1991 // Entry is now either a Function or GlobalVariable. 1992 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1993 1994 // We have a definition after a declaration with the wrong type. 1995 // We must make a new GlobalVariable* and update everything that used OldGV 1996 // (a declaration or tentative definition) with the new GlobalVariable* 1997 // (which will be a definition). 1998 // 1999 // This happens if there is a prototype for a global (e.g. 2000 // "extern int x[];") and then a definition of a different type (e.g. 2001 // "int x[10];"). This also happens when an initializer has a different type 2002 // from the type of the global (this happens with unions). 2003 if (!GV || 2004 GV->getType()->getElementType() != InitType || 2005 GV->getType()->getAddressSpace() != 2006 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2007 2008 // Move the old entry aside so that we'll create a new one. 2009 Entry->setName(StringRef()); 2010 2011 // Make a new global with the correct type, this is now guaranteed to work. 2012 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2013 2014 // Replace all uses of the old global with the new global 2015 llvm::Constant *NewPtrForOldDecl = 2016 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2017 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2018 2019 // Erase the old global, since it is no longer used. 2020 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2021 } 2022 2023 MaybeHandleStaticInExternC(D, GV); 2024 2025 if (D->hasAttr<AnnotateAttr>()) 2026 AddGlobalAnnotations(D, GV); 2027 2028 GV->setInitializer(Init); 2029 2030 // If it is safe to mark the global 'constant', do so now. 2031 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2032 isTypeConstant(D->getType(), true)); 2033 2034 // If it is in a read-only section, mark it 'constant'. 2035 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2036 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2037 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2038 GV->setConstant(true); 2039 } 2040 2041 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2042 2043 // Set the llvm linkage type as appropriate. 2044 llvm::GlobalValue::LinkageTypes Linkage = 2045 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2046 2047 // On Darwin, the backing variable for a C++11 thread_local variable always 2048 // has internal linkage; all accesses should just be calls to the 2049 // Itanium-specified entry point, which has the normal linkage of the 2050 // variable. 2051 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2052 Context.getTargetInfo().getTriple().isMacOSX()) 2053 Linkage = llvm::GlobalValue::InternalLinkage; 2054 2055 GV->setLinkage(Linkage); 2056 if (D->hasAttr<DLLImportAttr>()) 2057 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2058 else if (D->hasAttr<DLLExportAttr>()) 2059 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2060 else 2061 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2062 2063 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2064 // common vars aren't constant even if declared const. 2065 GV->setConstant(false); 2066 2067 setNonAliasAttributes(D, GV); 2068 2069 if (D->getTLSKind() && !GV->isThreadLocal()) { 2070 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2071 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2072 setTLSMode(GV, *D); 2073 } 2074 2075 // Emit the initializer function if necessary. 2076 if (NeedsGlobalCtor || NeedsGlobalDtor) 2077 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2078 2079 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2080 2081 // Emit global variable debug information. 2082 if (CGDebugInfo *DI = getModuleDebugInfo()) 2083 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2084 DI->EmitGlobalVariable(GV, D); 2085 } 2086 2087 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2088 const VarDecl *D, bool NoCommon) { 2089 // Don't give variables common linkage if -fno-common was specified unless it 2090 // was overridden by a NoCommon attribute. 2091 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2092 return true; 2093 2094 // C11 6.9.2/2: 2095 // A declaration of an identifier for an object that has file scope without 2096 // an initializer, and without a storage-class specifier or with the 2097 // storage-class specifier static, constitutes a tentative definition. 2098 if (D->getInit() || D->hasExternalStorage()) 2099 return true; 2100 2101 // A variable cannot be both common and exist in a section. 2102 if (D->hasAttr<SectionAttr>()) 2103 return true; 2104 2105 // Thread local vars aren't considered common linkage. 2106 if (D->getTLSKind()) 2107 return true; 2108 2109 // Tentative definitions marked with WeakImportAttr are true definitions. 2110 if (D->hasAttr<WeakImportAttr>()) 2111 return true; 2112 2113 // Declarations with a required alignment do not have common linakge in MSVC 2114 // mode. 2115 if (Context.getLangOpts().MSVCCompat && 2116 (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>())) 2117 return true; 2118 2119 return false; 2120 } 2121 2122 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2123 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2124 if (Linkage == GVA_Internal) 2125 return llvm::Function::InternalLinkage; 2126 2127 if (D->hasAttr<WeakAttr>()) { 2128 if (IsConstantVariable) 2129 return llvm::GlobalVariable::WeakODRLinkage; 2130 else 2131 return llvm::GlobalVariable::WeakAnyLinkage; 2132 } 2133 2134 // We are guaranteed to have a strong definition somewhere else, 2135 // so we can use available_externally linkage. 2136 if (Linkage == GVA_AvailableExternally) 2137 return llvm::Function::AvailableExternallyLinkage; 2138 2139 // Note that Apple's kernel linker doesn't support symbol 2140 // coalescing, so we need to avoid linkonce and weak linkages there. 2141 // Normally, this means we just map to internal, but for explicit 2142 // instantiations we'll map to external. 2143 2144 // In C++, the compiler has to emit a definition in every translation unit 2145 // that references the function. We should use linkonce_odr because 2146 // a) if all references in this translation unit are optimized away, we 2147 // don't need to codegen it. b) if the function persists, it needs to be 2148 // merged with other definitions. c) C++ has the ODR, so we know the 2149 // definition is dependable. 2150 if (Linkage == GVA_DiscardableODR) 2151 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2152 : llvm::Function::InternalLinkage; 2153 2154 // An explicit instantiation of a template has weak linkage, since 2155 // explicit instantiations can occur in multiple translation units 2156 // and must all be equivalent. However, we are not allowed to 2157 // throw away these explicit instantiations. 2158 if (Linkage == GVA_StrongODR) 2159 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2160 : llvm::Function::ExternalLinkage; 2161 2162 // C++ doesn't have tentative definitions and thus cannot have common 2163 // linkage. 2164 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2165 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2166 CodeGenOpts.NoCommon)) 2167 return llvm::GlobalVariable::CommonLinkage; 2168 2169 // selectany symbols are externally visible, so use weak instead of 2170 // linkonce. MSVC optimizes away references to const selectany globals, so 2171 // all definitions should be the same and ODR linkage should be used. 2172 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2173 if (D->hasAttr<SelectAnyAttr>()) 2174 return llvm::GlobalVariable::WeakODRLinkage; 2175 2176 // Otherwise, we have strong external linkage. 2177 assert(Linkage == GVA_StrongExternal); 2178 return llvm::GlobalVariable::ExternalLinkage; 2179 } 2180 2181 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2182 const VarDecl *VD, bool IsConstant) { 2183 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2184 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2185 } 2186 2187 /// Replace the uses of a function that was declared with a non-proto type. 2188 /// We want to silently drop extra arguments from call sites 2189 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2190 llvm::Function *newFn) { 2191 // Fast path. 2192 if (old->use_empty()) return; 2193 2194 llvm::Type *newRetTy = newFn->getReturnType(); 2195 SmallVector<llvm::Value*, 4> newArgs; 2196 2197 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2198 ui != ue; ) { 2199 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2200 llvm::User *user = use->getUser(); 2201 2202 // Recognize and replace uses of bitcasts. Most calls to 2203 // unprototyped functions will use bitcasts. 2204 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2205 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2206 replaceUsesOfNonProtoConstant(bitcast, newFn); 2207 continue; 2208 } 2209 2210 // Recognize calls to the function. 2211 llvm::CallSite callSite(user); 2212 if (!callSite) continue; 2213 if (!callSite.isCallee(&*use)) continue; 2214 2215 // If the return types don't match exactly, then we can't 2216 // transform this call unless it's dead. 2217 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2218 continue; 2219 2220 // Get the call site's attribute list. 2221 SmallVector<llvm::AttributeSet, 8> newAttrs; 2222 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2223 2224 // Collect any return attributes from the call. 2225 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2226 newAttrs.push_back( 2227 llvm::AttributeSet::get(newFn->getContext(), 2228 oldAttrs.getRetAttributes())); 2229 2230 // If the function was passed too few arguments, don't transform. 2231 unsigned newNumArgs = newFn->arg_size(); 2232 if (callSite.arg_size() < newNumArgs) continue; 2233 2234 // If extra arguments were passed, we silently drop them. 2235 // If any of the types mismatch, we don't transform. 2236 unsigned argNo = 0; 2237 bool dontTransform = false; 2238 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2239 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2240 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2241 dontTransform = true; 2242 break; 2243 } 2244 2245 // Add any parameter attributes. 2246 if (oldAttrs.hasAttributes(argNo + 1)) 2247 newAttrs. 2248 push_back(llvm:: 2249 AttributeSet::get(newFn->getContext(), 2250 oldAttrs.getParamAttributes(argNo + 1))); 2251 } 2252 if (dontTransform) 2253 continue; 2254 2255 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2256 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2257 oldAttrs.getFnAttributes())); 2258 2259 // Okay, we can transform this. Create the new call instruction and copy 2260 // over the required information. 2261 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2262 2263 llvm::CallSite newCall; 2264 if (callSite.isCall()) { 2265 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2266 callSite.getInstruction()); 2267 } else { 2268 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2269 newCall = llvm::InvokeInst::Create(newFn, 2270 oldInvoke->getNormalDest(), 2271 oldInvoke->getUnwindDest(), 2272 newArgs, "", 2273 callSite.getInstruction()); 2274 } 2275 newArgs.clear(); // for the next iteration 2276 2277 if (!newCall->getType()->isVoidTy()) 2278 newCall->takeName(callSite.getInstruction()); 2279 newCall.setAttributes( 2280 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2281 newCall.setCallingConv(callSite.getCallingConv()); 2282 2283 // Finally, remove the old call, replacing any uses with the new one. 2284 if (!callSite->use_empty()) 2285 callSite->replaceAllUsesWith(newCall.getInstruction()); 2286 2287 // Copy debug location attached to CI. 2288 if (!callSite->getDebugLoc().isUnknown()) 2289 newCall->setDebugLoc(callSite->getDebugLoc()); 2290 callSite->eraseFromParent(); 2291 } 2292 } 2293 2294 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2295 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2296 /// existing call uses of the old function in the module, this adjusts them to 2297 /// call the new function directly. 2298 /// 2299 /// This is not just a cleanup: the always_inline pass requires direct calls to 2300 /// functions to be able to inline them. If there is a bitcast in the way, it 2301 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2302 /// run at -O0. 2303 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2304 llvm::Function *NewFn) { 2305 // If we're redefining a global as a function, don't transform it. 2306 if (!isa<llvm::Function>(Old)) return; 2307 2308 replaceUsesOfNonProtoConstant(Old, NewFn); 2309 } 2310 2311 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2312 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2313 // If we have a definition, this might be a deferred decl. If the 2314 // instantiation is explicit, make sure we emit it at the end. 2315 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2316 GetAddrOfGlobalVar(VD); 2317 2318 EmitTopLevelDecl(VD); 2319 } 2320 2321 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2322 llvm::GlobalValue *GV) { 2323 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2324 2325 // Compute the function info and LLVM type. 2326 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2327 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2328 2329 // Get or create the prototype for the function. 2330 if (!GV) { 2331 llvm::Constant *C = 2332 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2333 2334 // Strip off a bitcast if we got one back. 2335 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2336 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2337 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2338 } else { 2339 GV = cast<llvm::GlobalValue>(C); 2340 } 2341 } 2342 2343 if (!GV->isDeclaration()) { 2344 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2345 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2346 if (auto *Prev = OldGD.getDecl()) 2347 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2348 return; 2349 } 2350 2351 if (GV->getType()->getElementType() != Ty) { 2352 // If the types mismatch then we have to rewrite the definition. 2353 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2354 2355 // F is the Function* for the one with the wrong type, we must make a new 2356 // Function* and update everything that used F (a declaration) with the new 2357 // Function* (which will be a definition). 2358 // 2359 // This happens if there is a prototype for a function 2360 // (e.g. "int f()") and then a definition of a different type 2361 // (e.g. "int f(int x)"). Move the old function aside so that it 2362 // doesn't interfere with GetAddrOfFunction. 2363 GV->setName(StringRef()); 2364 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2365 2366 // This might be an implementation of a function without a 2367 // prototype, in which case, try to do special replacement of 2368 // calls which match the new prototype. The really key thing here 2369 // is that we also potentially drop arguments from the call site 2370 // so as to make a direct call, which makes the inliner happier 2371 // and suppresses a number of optimizer warnings (!) about 2372 // dropping arguments. 2373 if (!GV->use_empty()) { 2374 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2375 GV->removeDeadConstantUsers(); 2376 } 2377 2378 // Replace uses of F with the Function we will endow with a body. 2379 if (!GV->use_empty()) { 2380 llvm::Constant *NewPtrForOldDecl = 2381 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2382 GV->replaceAllUsesWith(NewPtrForOldDecl); 2383 } 2384 2385 // Ok, delete the old function now, which is dead. 2386 GV->eraseFromParent(); 2387 2388 GV = NewFn; 2389 } 2390 2391 // We need to set linkage and visibility on the function before 2392 // generating code for it because various parts of IR generation 2393 // want to propagate this information down (e.g. to local static 2394 // declarations). 2395 auto *Fn = cast<llvm::Function>(GV); 2396 setFunctionLinkage(GD, Fn); 2397 if (D->hasAttr<DLLImportAttr>()) 2398 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2399 else if (D->hasAttr<DLLExportAttr>()) 2400 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2401 else 2402 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2403 2404 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2405 setGlobalVisibility(Fn, D); 2406 2407 MaybeHandleStaticInExternC(D, Fn); 2408 2409 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2410 2411 setFunctionDefinitionAttributes(D, Fn); 2412 SetLLVMFunctionAttributesForDefinition(D, Fn); 2413 2414 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2415 AddGlobalCtor(Fn, CA->getPriority()); 2416 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2417 AddGlobalDtor(Fn, DA->getPriority()); 2418 if (D->hasAttr<AnnotateAttr>()) 2419 AddGlobalAnnotations(D, Fn); 2420 } 2421 2422 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2423 const auto *D = cast<ValueDecl>(GD.getDecl()); 2424 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2425 assert(AA && "Not an alias?"); 2426 2427 StringRef MangledName = getMangledName(GD); 2428 2429 // If there is a definition in the module, then it wins over the alias. 2430 // This is dubious, but allow it to be safe. Just ignore the alias. 2431 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2432 if (Entry && !Entry->isDeclaration()) 2433 return; 2434 2435 Aliases.push_back(GD); 2436 2437 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2438 2439 // Create a reference to the named value. This ensures that it is emitted 2440 // if a deferred decl. 2441 llvm::Constant *Aliasee; 2442 if (isa<llvm::FunctionType>(DeclTy)) 2443 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2444 /*ForVTable=*/false); 2445 else 2446 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2447 llvm::PointerType::getUnqual(DeclTy), 2448 /*D=*/nullptr); 2449 2450 // Create the new alias itself, but don't set a name yet. 2451 auto *GA = llvm::GlobalAlias::create( 2452 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2453 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2454 2455 if (Entry) { 2456 if (GA->getAliasee() == Entry) { 2457 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2458 return; 2459 } 2460 2461 assert(Entry->isDeclaration()); 2462 2463 // If there is a declaration in the module, then we had an extern followed 2464 // by the alias, as in: 2465 // extern int test6(); 2466 // ... 2467 // int test6() __attribute__((alias("test7"))); 2468 // 2469 // Remove it and replace uses of it with the alias. 2470 GA->takeName(Entry); 2471 2472 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2473 Entry->getType())); 2474 Entry->eraseFromParent(); 2475 } else { 2476 GA->setName(MangledName); 2477 } 2478 2479 // Set attributes which are particular to an alias; this is a 2480 // specialization of the attributes which may be set on a global 2481 // variable/function. 2482 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2483 D->isWeakImported()) { 2484 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2485 } 2486 2487 if (const auto *VD = dyn_cast<VarDecl>(D)) 2488 if (VD->getTLSKind()) 2489 setTLSMode(GA, *VD); 2490 2491 setAliasAttributes(D, GA); 2492 } 2493 2494 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2495 ArrayRef<llvm::Type*> Tys) { 2496 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2497 Tys); 2498 } 2499 2500 static llvm::StringMapEntry<llvm::Constant*> & 2501 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2502 const StringLiteral *Literal, 2503 bool TargetIsLSB, 2504 bool &IsUTF16, 2505 unsigned &StringLength) { 2506 StringRef String = Literal->getString(); 2507 unsigned NumBytes = String.size(); 2508 2509 // Check for simple case. 2510 if (!Literal->containsNonAsciiOrNull()) { 2511 StringLength = NumBytes; 2512 return *Map.insert(std::make_pair(String, nullptr)).first; 2513 } 2514 2515 // Otherwise, convert the UTF8 literals into a string of shorts. 2516 IsUTF16 = true; 2517 2518 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2519 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2520 UTF16 *ToPtr = &ToBuf[0]; 2521 2522 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2523 &ToPtr, ToPtr + NumBytes, 2524 strictConversion); 2525 2526 // ConvertUTF8toUTF16 returns the length in ToPtr. 2527 StringLength = ToPtr - &ToBuf[0]; 2528 2529 // Add an explicit null. 2530 *ToPtr = 0; 2531 return *Map.insert(std::make_pair( 2532 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2533 (StringLength + 1) * 2), 2534 nullptr)).first; 2535 } 2536 2537 static llvm::StringMapEntry<llvm::Constant*> & 2538 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2539 const StringLiteral *Literal, 2540 unsigned &StringLength) { 2541 StringRef String = Literal->getString(); 2542 StringLength = String.size(); 2543 return *Map.insert(std::make_pair(String, nullptr)).first; 2544 } 2545 2546 llvm::Constant * 2547 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2548 unsigned StringLength = 0; 2549 bool isUTF16 = false; 2550 llvm::StringMapEntry<llvm::Constant*> &Entry = 2551 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2552 getDataLayout().isLittleEndian(), 2553 isUTF16, StringLength); 2554 2555 if (auto *C = Entry.second) 2556 return C; 2557 2558 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2559 llvm::Constant *Zeros[] = { Zero, Zero }; 2560 llvm::Value *V; 2561 2562 // If we don't already have it, get __CFConstantStringClassReference. 2563 if (!CFConstantStringClassRef) { 2564 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2565 Ty = llvm::ArrayType::get(Ty, 0); 2566 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2567 "__CFConstantStringClassReference"); 2568 // Decay array -> ptr 2569 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2570 CFConstantStringClassRef = V; 2571 } 2572 else 2573 V = CFConstantStringClassRef; 2574 2575 QualType CFTy = getContext().getCFConstantStringType(); 2576 2577 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2578 2579 llvm::Constant *Fields[4]; 2580 2581 // Class pointer. 2582 Fields[0] = cast<llvm::ConstantExpr>(V); 2583 2584 // Flags. 2585 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2586 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2587 llvm::ConstantInt::get(Ty, 0x07C8); 2588 2589 // String pointer. 2590 llvm::Constant *C = nullptr; 2591 if (isUTF16) { 2592 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2593 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2594 Entry.first().size() / 2); 2595 C = llvm::ConstantDataArray::get(VMContext, Arr); 2596 } else { 2597 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2598 } 2599 2600 // Note: -fwritable-strings doesn't make the backing store strings of 2601 // CFStrings writable. (See <rdar://problem/10657500>) 2602 auto *GV = 2603 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2604 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2605 GV->setUnnamedAddr(true); 2606 // Don't enforce the target's minimum global alignment, since the only use 2607 // of the string is via this class initializer. 2608 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2609 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2610 // that changes the section it ends in, which surprises ld64. 2611 if (isUTF16) { 2612 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2613 GV->setAlignment(Align.getQuantity()); 2614 GV->setSection("__TEXT,__ustring"); 2615 } else { 2616 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2617 GV->setAlignment(Align.getQuantity()); 2618 GV->setSection("__TEXT,__cstring,cstring_literals"); 2619 } 2620 2621 // String. 2622 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2623 2624 if (isUTF16) 2625 // Cast the UTF16 string to the correct type. 2626 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2627 2628 // String length. 2629 Ty = getTypes().ConvertType(getContext().LongTy); 2630 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2631 2632 // The struct. 2633 C = llvm::ConstantStruct::get(STy, Fields); 2634 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2635 llvm::GlobalVariable::PrivateLinkage, C, 2636 "_unnamed_cfstring_"); 2637 GV->setSection("__DATA,__cfstring"); 2638 Entry.second = GV; 2639 2640 return GV; 2641 } 2642 2643 llvm::Constant * 2644 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2645 unsigned StringLength = 0; 2646 llvm::StringMapEntry<llvm::Constant*> &Entry = 2647 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2648 2649 if (auto *C = Entry.second) 2650 return C; 2651 2652 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2653 llvm::Constant *Zeros[] = { Zero, Zero }; 2654 llvm::Value *V; 2655 // If we don't already have it, get _NSConstantStringClassReference. 2656 if (!ConstantStringClassRef) { 2657 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2658 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2659 llvm::Constant *GV; 2660 if (LangOpts.ObjCRuntime.isNonFragile()) { 2661 std::string str = 2662 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2663 : "OBJC_CLASS_$_" + StringClass; 2664 GV = getObjCRuntime().GetClassGlobal(str); 2665 // Make sure the result is of the correct type. 2666 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2667 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2668 ConstantStringClassRef = V; 2669 } else { 2670 std::string str = 2671 StringClass.empty() ? "_NSConstantStringClassReference" 2672 : "_" + StringClass + "ClassReference"; 2673 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2674 GV = CreateRuntimeVariable(PTy, str); 2675 // Decay array -> ptr 2676 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2677 ConstantStringClassRef = V; 2678 } 2679 } 2680 else 2681 V = ConstantStringClassRef; 2682 2683 if (!NSConstantStringType) { 2684 // Construct the type for a constant NSString. 2685 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2686 D->startDefinition(); 2687 2688 QualType FieldTypes[3]; 2689 2690 // const int *isa; 2691 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2692 // const char *str; 2693 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2694 // unsigned int length; 2695 FieldTypes[2] = Context.UnsignedIntTy; 2696 2697 // Create fields 2698 for (unsigned i = 0; i < 3; ++i) { 2699 FieldDecl *Field = FieldDecl::Create(Context, D, 2700 SourceLocation(), 2701 SourceLocation(), nullptr, 2702 FieldTypes[i], /*TInfo=*/nullptr, 2703 /*BitWidth=*/nullptr, 2704 /*Mutable=*/false, 2705 ICIS_NoInit); 2706 Field->setAccess(AS_public); 2707 D->addDecl(Field); 2708 } 2709 2710 D->completeDefinition(); 2711 QualType NSTy = Context.getTagDeclType(D); 2712 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2713 } 2714 2715 llvm::Constant *Fields[3]; 2716 2717 // Class pointer. 2718 Fields[0] = cast<llvm::ConstantExpr>(V); 2719 2720 // String pointer. 2721 llvm::Constant *C = 2722 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2723 2724 llvm::GlobalValue::LinkageTypes Linkage; 2725 bool isConstant; 2726 Linkage = llvm::GlobalValue::PrivateLinkage; 2727 isConstant = !LangOpts.WritableStrings; 2728 2729 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2730 Linkage, C, ".str"); 2731 GV->setUnnamedAddr(true); 2732 // Don't enforce the target's minimum global alignment, since the only use 2733 // of the string is via this class initializer. 2734 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2735 GV->setAlignment(Align.getQuantity()); 2736 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2737 2738 // String length. 2739 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2740 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2741 2742 // The struct. 2743 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2744 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2745 llvm::GlobalVariable::PrivateLinkage, C, 2746 "_unnamed_nsstring_"); 2747 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2748 const char *NSStringNonFragileABISection = 2749 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2750 // FIXME. Fix section. 2751 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2752 ? NSStringNonFragileABISection 2753 : NSStringSection); 2754 Entry.second = GV; 2755 2756 return GV; 2757 } 2758 2759 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2760 if (ObjCFastEnumerationStateType.isNull()) { 2761 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2762 D->startDefinition(); 2763 2764 QualType FieldTypes[] = { 2765 Context.UnsignedLongTy, 2766 Context.getPointerType(Context.getObjCIdType()), 2767 Context.getPointerType(Context.UnsignedLongTy), 2768 Context.getConstantArrayType(Context.UnsignedLongTy, 2769 llvm::APInt(32, 5), ArrayType::Normal, 0) 2770 }; 2771 2772 for (size_t i = 0; i < 4; ++i) { 2773 FieldDecl *Field = FieldDecl::Create(Context, 2774 D, 2775 SourceLocation(), 2776 SourceLocation(), nullptr, 2777 FieldTypes[i], /*TInfo=*/nullptr, 2778 /*BitWidth=*/nullptr, 2779 /*Mutable=*/false, 2780 ICIS_NoInit); 2781 Field->setAccess(AS_public); 2782 D->addDecl(Field); 2783 } 2784 2785 D->completeDefinition(); 2786 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2787 } 2788 2789 return ObjCFastEnumerationStateType; 2790 } 2791 2792 llvm::Constant * 2793 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2794 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2795 2796 // Don't emit it as the address of the string, emit the string data itself 2797 // as an inline array. 2798 if (E->getCharByteWidth() == 1) { 2799 SmallString<64> Str(E->getString()); 2800 2801 // Resize the string to the right size, which is indicated by its type. 2802 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2803 Str.resize(CAT->getSize().getZExtValue()); 2804 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2805 } 2806 2807 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2808 llvm::Type *ElemTy = AType->getElementType(); 2809 unsigned NumElements = AType->getNumElements(); 2810 2811 // Wide strings have either 2-byte or 4-byte elements. 2812 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2813 SmallVector<uint16_t, 32> Elements; 2814 Elements.reserve(NumElements); 2815 2816 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2817 Elements.push_back(E->getCodeUnit(i)); 2818 Elements.resize(NumElements); 2819 return llvm::ConstantDataArray::get(VMContext, Elements); 2820 } 2821 2822 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2823 SmallVector<uint32_t, 32> Elements; 2824 Elements.reserve(NumElements); 2825 2826 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2827 Elements.push_back(E->getCodeUnit(i)); 2828 Elements.resize(NumElements); 2829 return llvm::ConstantDataArray::get(VMContext, Elements); 2830 } 2831 2832 static llvm::GlobalVariable * 2833 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2834 CodeGenModule &CGM, StringRef GlobalName, 2835 unsigned Alignment) { 2836 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2837 unsigned AddrSpace = 0; 2838 if (CGM.getLangOpts().OpenCL) 2839 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2840 2841 // Create a global variable for this string 2842 auto *GV = new llvm::GlobalVariable( 2843 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2844 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2845 GV->setAlignment(Alignment); 2846 GV->setUnnamedAddr(true); 2847 return GV; 2848 } 2849 2850 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2851 /// constant array for the given string literal. 2852 llvm::GlobalVariable * 2853 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2854 StringRef Name) { 2855 auto Alignment = 2856 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2857 2858 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2859 llvm::GlobalVariable **Entry = nullptr; 2860 if (!LangOpts.WritableStrings) { 2861 Entry = &ConstantStringMap[C]; 2862 if (auto GV = *Entry) { 2863 if (Alignment > GV->getAlignment()) 2864 GV->setAlignment(Alignment); 2865 return GV; 2866 } 2867 } 2868 2869 SmallString<256> MangledNameBuffer; 2870 StringRef GlobalVariableName; 2871 llvm::GlobalValue::LinkageTypes LT; 2872 2873 // Mangle the string literal if the ABI allows for it. However, we cannot 2874 // do this if we are compiling with ASan or -fwritable-strings because they 2875 // rely on strings having normal linkage. 2876 if (!LangOpts.WritableStrings && 2877 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2878 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2879 llvm::raw_svector_ostream Out(MangledNameBuffer); 2880 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2881 Out.flush(); 2882 2883 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2884 GlobalVariableName = MangledNameBuffer; 2885 } else { 2886 LT = llvm::GlobalValue::PrivateLinkage; 2887 GlobalVariableName = Name; 2888 } 2889 2890 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2891 if (Entry) 2892 *Entry = GV; 2893 2894 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2895 QualType()); 2896 return GV; 2897 } 2898 2899 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2900 /// array for the given ObjCEncodeExpr node. 2901 llvm::GlobalVariable * 2902 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2903 std::string Str; 2904 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2905 2906 return GetAddrOfConstantCString(Str); 2907 } 2908 2909 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2910 /// the literal and a terminating '\0' character. 2911 /// The result has pointer to array type. 2912 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2913 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2914 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2915 if (Alignment == 0) { 2916 Alignment = getContext() 2917 .getAlignOfGlobalVarInChars(getContext().CharTy) 2918 .getQuantity(); 2919 } 2920 2921 llvm::Constant *C = 2922 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2923 2924 // Don't share any string literals if strings aren't constant. 2925 llvm::GlobalVariable **Entry = nullptr; 2926 if (!LangOpts.WritableStrings) { 2927 Entry = &ConstantStringMap[C]; 2928 if (auto GV = *Entry) { 2929 if (Alignment > GV->getAlignment()) 2930 GV->setAlignment(Alignment); 2931 return GV; 2932 } 2933 } 2934 2935 // Get the default prefix if a name wasn't specified. 2936 if (!GlobalName) 2937 GlobalName = ".str"; 2938 // Create a global variable for this. 2939 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2940 GlobalName, Alignment); 2941 if (Entry) 2942 *Entry = GV; 2943 return GV; 2944 } 2945 2946 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2947 const MaterializeTemporaryExpr *E, const Expr *Init) { 2948 assert((E->getStorageDuration() == SD_Static || 2949 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2950 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2951 2952 // If we're not materializing a subobject of the temporary, keep the 2953 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2954 QualType MaterializedType = Init->getType(); 2955 if (Init == E->GetTemporaryExpr()) 2956 MaterializedType = E->getType(); 2957 2958 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2959 if (Slot) 2960 return Slot; 2961 2962 // FIXME: If an externally-visible declaration extends multiple temporaries, 2963 // we need to give each temporary the same name in every translation unit (and 2964 // we also need to make the temporaries externally-visible). 2965 SmallString<256> Name; 2966 llvm::raw_svector_ostream Out(Name); 2967 getCXXABI().getMangleContext().mangleReferenceTemporary( 2968 VD, E->getManglingNumber(), Out); 2969 Out.flush(); 2970 2971 APValue *Value = nullptr; 2972 if (E->getStorageDuration() == SD_Static) { 2973 // We might have a cached constant initializer for this temporary. Note 2974 // that this might have a different value from the value computed by 2975 // evaluating the initializer if the surrounding constant expression 2976 // modifies the temporary. 2977 Value = getContext().getMaterializedTemporaryValue(E, false); 2978 if (Value && Value->isUninit()) 2979 Value = nullptr; 2980 } 2981 2982 // Try evaluating it now, it might have a constant initializer. 2983 Expr::EvalResult EvalResult; 2984 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2985 !EvalResult.hasSideEffects()) 2986 Value = &EvalResult.Val; 2987 2988 llvm::Constant *InitialValue = nullptr; 2989 bool Constant = false; 2990 llvm::Type *Type; 2991 if (Value) { 2992 // The temporary has a constant initializer, use it. 2993 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2994 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2995 Type = InitialValue->getType(); 2996 } else { 2997 // No initializer, the initialization will be provided when we 2998 // initialize the declaration which performed lifetime extension. 2999 Type = getTypes().ConvertTypeForMem(MaterializedType); 3000 } 3001 3002 // Create a global variable for this lifetime-extended temporary. 3003 llvm::GlobalValue::LinkageTypes Linkage = 3004 getLLVMLinkageVarDefinition(VD, Constant); 3005 // There is no need for this temporary to have global linkage if the global 3006 // variable has external linkage. 3007 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 3008 Linkage = llvm::GlobalVariable::PrivateLinkage; 3009 unsigned AddrSpace = GetGlobalVarAddressSpace( 3010 VD, getContext().getTargetAddressSpace(MaterializedType)); 3011 auto *GV = new llvm::GlobalVariable( 3012 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3013 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3014 AddrSpace); 3015 setGlobalVisibility(GV, VD); 3016 GV->setAlignment( 3017 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3018 if (VD->getTLSKind()) 3019 setTLSMode(GV, *VD); 3020 Slot = GV; 3021 return GV; 3022 } 3023 3024 /// EmitObjCPropertyImplementations - Emit information for synthesized 3025 /// properties for an implementation. 3026 void CodeGenModule::EmitObjCPropertyImplementations(const 3027 ObjCImplementationDecl *D) { 3028 for (const auto *PID : D->property_impls()) { 3029 // Dynamic is just for type-checking. 3030 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3031 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3032 3033 // Determine which methods need to be implemented, some may have 3034 // been overridden. Note that ::isPropertyAccessor is not the method 3035 // we want, that just indicates if the decl came from a 3036 // property. What we want to know is if the method is defined in 3037 // this implementation. 3038 if (!D->getInstanceMethod(PD->getGetterName())) 3039 CodeGenFunction(*this).GenerateObjCGetter( 3040 const_cast<ObjCImplementationDecl *>(D), PID); 3041 if (!PD->isReadOnly() && 3042 !D->getInstanceMethod(PD->getSetterName())) 3043 CodeGenFunction(*this).GenerateObjCSetter( 3044 const_cast<ObjCImplementationDecl *>(D), PID); 3045 } 3046 } 3047 } 3048 3049 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3050 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3051 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3052 ivar; ivar = ivar->getNextIvar()) 3053 if (ivar->getType().isDestructedType()) 3054 return true; 3055 3056 return false; 3057 } 3058 3059 static bool AllTrivialInitializers(CodeGenModule &CGM, 3060 ObjCImplementationDecl *D) { 3061 CodeGenFunction CGF(CGM); 3062 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3063 E = D->init_end(); B != E; ++B) { 3064 CXXCtorInitializer *CtorInitExp = *B; 3065 Expr *Init = CtorInitExp->getInit(); 3066 if (!CGF.isTrivialInitializer(Init)) 3067 return false; 3068 } 3069 return true; 3070 } 3071 3072 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3073 /// for an implementation. 3074 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3075 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3076 if (needsDestructMethod(D)) { 3077 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3078 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3079 ObjCMethodDecl *DTORMethod = 3080 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3081 cxxSelector, getContext().VoidTy, nullptr, D, 3082 /*isInstance=*/true, /*isVariadic=*/false, 3083 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3084 /*isDefined=*/false, ObjCMethodDecl::Required); 3085 D->addInstanceMethod(DTORMethod); 3086 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3087 D->setHasDestructors(true); 3088 } 3089 3090 // If the implementation doesn't have any ivar initializers, we don't need 3091 // a .cxx_construct. 3092 if (D->getNumIvarInitializers() == 0 || 3093 AllTrivialInitializers(*this, D)) 3094 return; 3095 3096 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3097 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3098 // The constructor returns 'self'. 3099 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3100 D->getLocation(), 3101 D->getLocation(), 3102 cxxSelector, 3103 getContext().getObjCIdType(), 3104 nullptr, D, /*isInstance=*/true, 3105 /*isVariadic=*/false, 3106 /*isPropertyAccessor=*/true, 3107 /*isImplicitlyDeclared=*/true, 3108 /*isDefined=*/false, 3109 ObjCMethodDecl::Required); 3110 D->addInstanceMethod(CTORMethod); 3111 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3112 D->setHasNonZeroConstructors(true); 3113 } 3114 3115 /// EmitNamespace - Emit all declarations in a namespace. 3116 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3117 for (auto *I : ND->decls()) { 3118 if (const auto *VD = dyn_cast<VarDecl>(I)) 3119 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3120 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3121 continue; 3122 EmitTopLevelDecl(I); 3123 } 3124 } 3125 3126 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3127 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3128 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3129 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3130 ErrorUnsupported(LSD, "linkage spec"); 3131 return; 3132 } 3133 3134 for (auto *I : LSD->decls()) { 3135 // Meta-data for ObjC class includes references to implemented methods. 3136 // Generate class's method definitions first. 3137 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3138 for (auto *M : OID->methods()) 3139 EmitTopLevelDecl(M); 3140 } 3141 EmitTopLevelDecl(I); 3142 } 3143 } 3144 3145 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3146 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3147 // Ignore dependent declarations. 3148 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3149 return; 3150 3151 switch (D->getKind()) { 3152 case Decl::CXXConversion: 3153 case Decl::CXXMethod: 3154 case Decl::Function: 3155 // Skip function templates 3156 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3157 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3158 return; 3159 3160 EmitGlobal(cast<FunctionDecl>(D)); 3161 // Always provide some coverage mapping 3162 // even for the functions that aren't emitted. 3163 AddDeferredUnusedCoverageMapping(D); 3164 break; 3165 3166 case Decl::Var: 3167 // Skip variable templates 3168 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3169 return; 3170 case Decl::VarTemplateSpecialization: 3171 EmitGlobal(cast<VarDecl>(D)); 3172 break; 3173 3174 // Indirect fields from global anonymous structs and unions can be 3175 // ignored; only the actual variable requires IR gen support. 3176 case Decl::IndirectField: 3177 break; 3178 3179 // C++ Decls 3180 case Decl::Namespace: 3181 EmitNamespace(cast<NamespaceDecl>(D)); 3182 break; 3183 // No code generation needed. 3184 case Decl::UsingShadow: 3185 case Decl::ClassTemplate: 3186 case Decl::VarTemplate: 3187 case Decl::VarTemplatePartialSpecialization: 3188 case Decl::FunctionTemplate: 3189 case Decl::TypeAliasTemplate: 3190 case Decl::Block: 3191 case Decl::Empty: 3192 break; 3193 case Decl::Using: // using X; [C++] 3194 if (CGDebugInfo *DI = getModuleDebugInfo()) 3195 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3196 return; 3197 case Decl::NamespaceAlias: 3198 if (CGDebugInfo *DI = getModuleDebugInfo()) 3199 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3200 return; 3201 case Decl::UsingDirective: // using namespace X; [C++] 3202 if (CGDebugInfo *DI = getModuleDebugInfo()) 3203 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3204 return; 3205 case Decl::CXXConstructor: 3206 // Skip function templates 3207 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3208 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3209 return; 3210 3211 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3212 break; 3213 case Decl::CXXDestructor: 3214 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3215 return; 3216 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3217 break; 3218 3219 case Decl::StaticAssert: 3220 // Nothing to do. 3221 break; 3222 3223 // Objective-C Decls 3224 3225 // Forward declarations, no (immediate) code generation. 3226 case Decl::ObjCInterface: 3227 case Decl::ObjCCategory: 3228 break; 3229 3230 case Decl::ObjCProtocol: { 3231 auto *Proto = cast<ObjCProtocolDecl>(D); 3232 if (Proto->isThisDeclarationADefinition()) 3233 ObjCRuntime->GenerateProtocol(Proto); 3234 break; 3235 } 3236 3237 case Decl::ObjCCategoryImpl: 3238 // Categories have properties but don't support synthesize so we 3239 // can ignore them here. 3240 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3241 break; 3242 3243 case Decl::ObjCImplementation: { 3244 auto *OMD = cast<ObjCImplementationDecl>(D); 3245 EmitObjCPropertyImplementations(OMD); 3246 EmitObjCIvarInitializations(OMD); 3247 ObjCRuntime->GenerateClass(OMD); 3248 // Emit global variable debug information. 3249 if (CGDebugInfo *DI = getModuleDebugInfo()) 3250 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3251 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3252 OMD->getClassInterface()), OMD->getLocation()); 3253 break; 3254 } 3255 case Decl::ObjCMethod: { 3256 auto *OMD = cast<ObjCMethodDecl>(D); 3257 // If this is not a prototype, emit the body. 3258 if (OMD->getBody()) 3259 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3260 break; 3261 } 3262 case Decl::ObjCCompatibleAlias: 3263 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3264 break; 3265 3266 case Decl::LinkageSpec: 3267 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3268 break; 3269 3270 case Decl::FileScopeAsm: { 3271 auto *AD = cast<FileScopeAsmDecl>(D); 3272 StringRef AsmString = AD->getAsmString()->getString(); 3273 3274 const std::string &S = getModule().getModuleInlineAsm(); 3275 if (S.empty()) 3276 getModule().setModuleInlineAsm(AsmString); 3277 else if (S.end()[-1] == '\n') 3278 getModule().setModuleInlineAsm(S + AsmString.str()); 3279 else 3280 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3281 break; 3282 } 3283 3284 case Decl::Import: { 3285 auto *Import = cast<ImportDecl>(D); 3286 3287 // Ignore import declarations that come from imported modules. 3288 if (clang::Module *Owner = Import->getOwningModule()) { 3289 if (getLangOpts().CurrentModule.empty() || 3290 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3291 break; 3292 } 3293 3294 ImportedModules.insert(Import->getImportedModule()); 3295 break; 3296 } 3297 3298 case Decl::OMPThreadPrivate: 3299 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3300 break; 3301 3302 case Decl::ClassTemplateSpecialization: { 3303 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3304 if (DebugInfo && 3305 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3306 Spec->hasDefinition()) 3307 DebugInfo->completeTemplateDefinition(*Spec); 3308 break; 3309 } 3310 3311 default: 3312 // Make sure we handled everything we should, every other kind is a 3313 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3314 // function. Need to recode Decl::Kind to do that easily. 3315 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3316 break; 3317 } 3318 } 3319 3320 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3321 // Do we need to generate coverage mapping? 3322 if (!CodeGenOpts.CoverageMapping) 3323 return; 3324 switch (D->getKind()) { 3325 case Decl::CXXConversion: 3326 case Decl::CXXMethod: 3327 case Decl::Function: 3328 case Decl::ObjCMethod: 3329 case Decl::CXXConstructor: 3330 case Decl::CXXDestructor: { 3331 if (!cast<FunctionDecl>(D)->hasBody()) 3332 return; 3333 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3334 if (I == DeferredEmptyCoverageMappingDecls.end()) 3335 DeferredEmptyCoverageMappingDecls[D] = true; 3336 break; 3337 } 3338 default: 3339 break; 3340 }; 3341 } 3342 3343 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3344 // Do we need to generate coverage mapping? 3345 if (!CodeGenOpts.CoverageMapping) 3346 return; 3347 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3348 if (Fn->isTemplateInstantiation()) 3349 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3350 } 3351 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3352 if (I == DeferredEmptyCoverageMappingDecls.end()) 3353 DeferredEmptyCoverageMappingDecls[D] = false; 3354 else 3355 I->second = false; 3356 } 3357 3358 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3359 std::vector<const Decl *> DeferredDecls; 3360 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3361 if (!I.second) 3362 continue; 3363 DeferredDecls.push_back(I.first); 3364 } 3365 // Sort the declarations by their location to make sure that the tests get a 3366 // predictable order for the coverage mapping for the unused declarations. 3367 if (CodeGenOpts.DumpCoverageMapping) 3368 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3369 [] (const Decl *LHS, const Decl *RHS) { 3370 return LHS->getLocStart() < RHS->getLocStart(); 3371 }); 3372 for (const auto *D : DeferredDecls) { 3373 switch (D->getKind()) { 3374 case Decl::CXXConversion: 3375 case Decl::CXXMethod: 3376 case Decl::Function: 3377 case Decl::ObjCMethod: { 3378 CodeGenPGO PGO(*this); 3379 GlobalDecl GD(cast<FunctionDecl>(D)); 3380 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3381 getFunctionLinkage(GD)); 3382 break; 3383 } 3384 case Decl::CXXConstructor: { 3385 CodeGenPGO PGO(*this); 3386 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3387 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3388 getFunctionLinkage(GD)); 3389 break; 3390 } 3391 case Decl::CXXDestructor: { 3392 CodeGenPGO PGO(*this); 3393 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3394 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3395 getFunctionLinkage(GD)); 3396 break; 3397 } 3398 default: 3399 break; 3400 }; 3401 } 3402 } 3403 3404 /// Turns the given pointer into a constant. 3405 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3406 const void *Ptr) { 3407 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3408 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3409 return llvm::ConstantInt::get(i64, PtrInt); 3410 } 3411 3412 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3413 llvm::NamedMDNode *&GlobalMetadata, 3414 GlobalDecl D, 3415 llvm::GlobalValue *Addr) { 3416 if (!GlobalMetadata) 3417 GlobalMetadata = 3418 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3419 3420 // TODO: should we report variant information for ctors/dtors? 3421 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3422 llvm::ConstantAsMetadata::get(GetPointerConstant( 3423 CGM.getLLVMContext(), D.getDecl()))}; 3424 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3425 } 3426 3427 /// For each function which is declared within an extern "C" region and marked 3428 /// as 'used', but has internal linkage, create an alias from the unmangled 3429 /// name to the mangled name if possible. People expect to be able to refer 3430 /// to such functions with an unmangled name from inline assembly within the 3431 /// same translation unit. 3432 void CodeGenModule::EmitStaticExternCAliases() { 3433 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3434 E = StaticExternCValues.end(); 3435 I != E; ++I) { 3436 IdentifierInfo *Name = I->first; 3437 llvm::GlobalValue *Val = I->second; 3438 if (Val && !getModule().getNamedValue(Name->getName())) 3439 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3440 } 3441 } 3442 3443 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3444 GlobalDecl &Result) const { 3445 auto Res = Manglings.find(MangledName); 3446 if (Res == Manglings.end()) 3447 return false; 3448 Result = Res->getValue(); 3449 return true; 3450 } 3451 3452 /// Emits metadata nodes associating all the global values in the 3453 /// current module with the Decls they came from. This is useful for 3454 /// projects using IR gen as a subroutine. 3455 /// 3456 /// Since there's currently no way to associate an MDNode directly 3457 /// with an llvm::GlobalValue, we create a global named metadata 3458 /// with the name 'clang.global.decl.ptrs'. 3459 void CodeGenModule::EmitDeclMetadata() { 3460 llvm::NamedMDNode *GlobalMetadata = nullptr; 3461 3462 // StaticLocalDeclMap 3463 for (auto &I : MangledDeclNames) { 3464 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3465 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3466 } 3467 } 3468 3469 /// Emits metadata nodes for all the local variables in the current 3470 /// function. 3471 void CodeGenFunction::EmitDeclMetadata() { 3472 if (LocalDeclMap.empty()) return; 3473 3474 llvm::LLVMContext &Context = getLLVMContext(); 3475 3476 // Find the unique metadata ID for this name. 3477 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3478 3479 llvm::NamedMDNode *GlobalMetadata = nullptr; 3480 3481 for (auto &I : LocalDeclMap) { 3482 const Decl *D = I.first; 3483 llvm::Value *Addr = I.second; 3484 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3485 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3486 Alloca->setMetadata( 3487 DeclPtrKind, llvm::MDNode::get( 3488 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3489 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3490 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3491 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3492 } 3493 } 3494 } 3495 3496 void CodeGenModule::EmitVersionIdentMetadata() { 3497 llvm::NamedMDNode *IdentMetadata = 3498 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3499 std::string Version = getClangFullVersion(); 3500 llvm::LLVMContext &Ctx = TheModule.getContext(); 3501 3502 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3503 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3504 } 3505 3506 void CodeGenModule::EmitTargetMetadata() { 3507 // Warning, new MangledDeclNames may be appended within this loop. 3508 // We rely on MapVector insertions adding new elements to the end 3509 // of the container. 3510 // FIXME: Move this loop into the one target that needs it, and only 3511 // loop over those declarations for which we couldn't emit the target 3512 // metadata when we emitted the declaration. 3513 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3514 auto Val = *(MangledDeclNames.begin() + I); 3515 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3516 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3517 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3518 } 3519 } 3520 3521 void CodeGenModule::EmitCoverageFile() { 3522 if (!getCodeGenOpts().CoverageFile.empty()) { 3523 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3524 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3525 llvm::LLVMContext &Ctx = TheModule.getContext(); 3526 llvm::MDString *CoverageFile = 3527 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3528 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3529 llvm::MDNode *CU = CUNode->getOperand(i); 3530 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3531 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3532 } 3533 } 3534 } 3535 } 3536 3537 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3538 // Sema has checked that all uuid strings are of the form 3539 // "12345678-1234-1234-1234-1234567890ab". 3540 assert(Uuid.size() == 36); 3541 for (unsigned i = 0; i < 36; ++i) { 3542 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3543 else assert(isHexDigit(Uuid[i])); 3544 } 3545 3546 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3547 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3548 3549 llvm::Constant *Field3[8]; 3550 for (unsigned Idx = 0; Idx < 8; ++Idx) 3551 Field3[Idx] = llvm::ConstantInt::get( 3552 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3553 3554 llvm::Constant *Fields[4] = { 3555 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3556 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3557 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3558 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3559 }; 3560 3561 return llvm::ConstantStruct::getAnon(Fields); 3562 } 3563 3564 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3565 bool ForEH) { 3566 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3567 // FIXME: should we even be calling this method if RTTI is disabled 3568 // and it's not for EH? 3569 if (!ForEH && !getLangOpts().RTTI) 3570 return llvm::Constant::getNullValue(Int8PtrTy); 3571 3572 if (ForEH && Ty->isObjCObjectPointerType() && 3573 LangOpts.ObjCRuntime.isGNUFamily()) 3574 return ObjCRuntime->GetEHType(Ty); 3575 3576 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3577 } 3578 3579 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3580 for (auto RefExpr : D->varlists()) { 3581 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3582 bool PerformInit = 3583 VD->getAnyInitializer() && 3584 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3585 /*ForRef=*/false); 3586 if (auto InitFunction = 3587 getOpenMPRuntime().EmitOMPThreadPrivateVarDefinition( 3588 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), 3589 PerformInit)) 3590 CXXGlobalInits.push_back(InitFunction); 3591 } 3592 } 3593 3594