1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::SEHLeaveStmtClass: 177 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 178 break; 179 case Stmt::OMPParallelDirectiveClass: 180 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 181 break; 182 case Stmt::OMPSimdDirectiveClass: 183 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 184 break; 185 case Stmt::OMPForDirectiveClass: 186 EmitOMPForDirective(cast<OMPForDirective>(*S)); 187 break; 188 case Stmt::OMPForSimdDirectiveClass: 189 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 190 break; 191 case Stmt::OMPSectionsDirectiveClass: 192 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 193 break; 194 case Stmt::OMPSectionDirectiveClass: 195 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 196 break; 197 case Stmt::OMPSingleDirectiveClass: 198 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 199 break; 200 case Stmt::OMPMasterDirectiveClass: 201 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 202 break; 203 case Stmt::OMPCriticalDirectiveClass: 204 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 205 break; 206 case Stmt::OMPParallelForDirectiveClass: 207 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 208 break; 209 case Stmt::OMPParallelForSimdDirectiveClass: 210 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 211 break; 212 case Stmt::OMPParallelSectionsDirectiveClass: 213 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 214 break; 215 case Stmt::OMPTaskDirectiveClass: 216 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 217 break; 218 case Stmt::OMPTaskyieldDirectiveClass: 219 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 220 break; 221 case Stmt::OMPBarrierDirectiveClass: 222 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 223 break; 224 case Stmt::OMPTaskwaitDirectiveClass: 225 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 226 break; 227 case Stmt::OMPFlushDirectiveClass: 228 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 229 break; 230 case Stmt::OMPOrderedDirectiveClass: 231 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 232 break; 233 case Stmt::OMPAtomicDirectiveClass: 234 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 235 break; 236 case Stmt::OMPTargetDirectiveClass: 237 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 238 break; 239 case Stmt::OMPTeamsDirectiveClass: 240 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 241 break; 242 } 243 } 244 245 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 246 switch (S->getStmtClass()) { 247 default: return false; 248 case Stmt::NullStmtClass: break; 249 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 250 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 251 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 252 case Stmt::AttributedStmtClass: 253 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 254 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 255 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 256 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 257 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 258 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 259 } 260 261 return true; 262 } 263 264 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 265 /// this captures the expression result of the last sub-statement and returns it 266 /// (for use by the statement expression extension). 267 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 268 AggValueSlot AggSlot) { 269 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 270 "LLVM IR generation of compound statement ('{}')"); 271 272 // Keep track of the current cleanup stack depth, including debug scopes. 273 LexicalScope Scope(*this, S.getSourceRange()); 274 275 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 276 } 277 278 llvm::Value* 279 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 280 bool GetLast, 281 AggValueSlot AggSlot) { 282 283 for (CompoundStmt::const_body_iterator I = S.body_begin(), 284 E = S.body_end()-GetLast; I != E; ++I) 285 EmitStmt(*I); 286 287 llvm::Value *RetAlloca = nullptr; 288 if (GetLast) { 289 // We have to special case labels here. They are statements, but when put 290 // at the end of a statement expression, they yield the value of their 291 // subexpression. Handle this by walking through all labels we encounter, 292 // emitting them before we evaluate the subexpr. 293 const Stmt *LastStmt = S.body_back(); 294 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 295 EmitLabel(LS->getDecl()); 296 LastStmt = LS->getSubStmt(); 297 } 298 299 EnsureInsertPoint(); 300 301 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 302 if (hasAggregateEvaluationKind(ExprTy)) { 303 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 304 } else { 305 // We can't return an RValue here because there might be cleanups at 306 // the end of the StmtExpr. Because of that, we have to emit the result 307 // here into a temporary alloca. 308 RetAlloca = CreateMemTemp(ExprTy); 309 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 310 /*IsInit*/false); 311 } 312 313 } 314 315 return RetAlloca; 316 } 317 318 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 319 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 320 321 // If there is a cleanup stack, then we it isn't worth trying to 322 // simplify this block (we would need to remove it from the scope map 323 // and cleanup entry). 324 if (!EHStack.empty()) 325 return; 326 327 // Can only simplify direct branches. 328 if (!BI || !BI->isUnconditional()) 329 return; 330 331 // Can only simplify empty blocks. 332 if (BI != BB->begin()) 333 return; 334 335 BB->replaceAllUsesWith(BI->getSuccessor(0)); 336 BI->eraseFromParent(); 337 BB->eraseFromParent(); 338 } 339 340 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 341 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 342 343 // Fall out of the current block (if necessary). 344 EmitBranch(BB); 345 346 if (IsFinished && BB->use_empty()) { 347 delete BB; 348 return; 349 } 350 351 // Place the block after the current block, if possible, or else at 352 // the end of the function. 353 if (CurBB && CurBB->getParent()) 354 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 355 else 356 CurFn->getBasicBlockList().push_back(BB); 357 Builder.SetInsertPoint(BB); 358 } 359 360 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 361 // Emit a branch from the current block to the target one if this 362 // was a real block. If this was just a fall-through block after a 363 // terminator, don't emit it. 364 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 365 366 if (!CurBB || CurBB->getTerminator()) { 367 // If there is no insert point or the previous block is already 368 // terminated, don't touch it. 369 } else { 370 // Otherwise, create a fall-through branch. 371 Builder.CreateBr(Target); 372 } 373 374 Builder.ClearInsertionPoint(); 375 } 376 377 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 378 bool inserted = false; 379 for (llvm::User *u : block->users()) { 380 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 381 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 382 inserted = true; 383 break; 384 } 385 } 386 387 if (!inserted) 388 CurFn->getBasicBlockList().push_back(block); 389 390 Builder.SetInsertPoint(block); 391 } 392 393 CodeGenFunction::JumpDest 394 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 395 JumpDest &Dest = LabelMap[D]; 396 if (Dest.isValid()) return Dest; 397 398 // Create, but don't insert, the new block. 399 Dest = JumpDest(createBasicBlock(D->getName()), 400 EHScopeStack::stable_iterator::invalid(), 401 NextCleanupDestIndex++); 402 return Dest; 403 } 404 405 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 406 // Add this label to the current lexical scope if we're within any 407 // normal cleanups. Jumps "in" to this label --- when permitted by 408 // the language --- may need to be routed around such cleanups. 409 if (EHStack.hasNormalCleanups() && CurLexicalScope) 410 CurLexicalScope->addLabel(D); 411 412 JumpDest &Dest = LabelMap[D]; 413 414 // If we didn't need a forward reference to this label, just go 415 // ahead and create a destination at the current scope. 416 if (!Dest.isValid()) { 417 Dest = getJumpDestInCurrentScope(D->getName()); 418 419 // Otherwise, we need to give this label a target depth and remove 420 // it from the branch-fixups list. 421 } else { 422 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 423 Dest.setScopeDepth(EHStack.stable_begin()); 424 ResolveBranchFixups(Dest.getBlock()); 425 } 426 427 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 428 EmitBlock(Dest.getBlock()); 429 Cnt.beginRegion(Builder); 430 } 431 432 /// Change the cleanup scope of the labels in this lexical scope to 433 /// match the scope of the enclosing context. 434 void CodeGenFunction::LexicalScope::rescopeLabels() { 435 assert(!Labels.empty()); 436 EHScopeStack::stable_iterator innermostScope 437 = CGF.EHStack.getInnermostNormalCleanup(); 438 439 // Change the scope depth of all the labels. 440 for (SmallVectorImpl<const LabelDecl*>::const_iterator 441 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 442 assert(CGF.LabelMap.count(*i)); 443 JumpDest &dest = CGF.LabelMap.find(*i)->second; 444 assert(dest.getScopeDepth().isValid()); 445 assert(innermostScope.encloses(dest.getScopeDepth())); 446 dest.setScopeDepth(innermostScope); 447 } 448 449 // Reparent the labels if the new scope also has cleanups. 450 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 451 ParentScope->Labels.append(Labels.begin(), Labels.end()); 452 } 453 } 454 455 456 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 457 EmitLabel(S.getDecl()); 458 EmitStmt(S.getSubStmt()); 459 } 460 461 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 462 const Stmt *SubStmt = S.getSubStmt(); 463 switch (SubStmt->getStmtClass()) { 464 case Stmt::DoStmtClass: 465 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 466 break; 467 case Stmt::ForStmtClass: 468 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 469 break; 470 case Stmt::WhileStmtClass: 471 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 472 break; 473 case Stmt::CXXForRangeStmtClass: 474 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 475 break; 476 default: 477 EmitStmt(SubStmt); 478 } 479 } 480 481 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 482 // If this code is reachable then emit a stop point (if generating 483 // debug info). We have to do this ourselves because we are on the 484 // "simple" statement path. 485 if (HaveInsertPoint()) 486 EmitStopPoint(&S); 487 488 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 489 } 490 491 492 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 493 if (const LabelDecl *Target = S.getConstantTarget()) { 494 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 495 return; 496 } 497 498 // Ensure that we have an i8* for our PHI node. 499 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 500 Int8PtrTy, "addr"); 501 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 502 503 // Get the basic block for the indirect goto. 504 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 505 506 // The first instruction in the block has to be the PHI for the switch dest, 507 // add an entry for this branch. 508 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 509 510 EmitBranch(IndGotoBB); 511 } 512 513 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 514 // C99 6.8.4.1: The first substatement is executed if the expression compares 515 // unequal to 0. The condition must be a scalar type. 516 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 517 RegionCounter Cnt = getPGORegionCounter(&S); 518 519 if (S.getConditionVariable()) 520 EmitAutoVarDecl(*S.getConditionVariable()); 521 522 // If the condition constant folds and can be elided, try to avoid emitting 523 // the condition and the dead arm of the if/else. 524 bool CondConstant; 525 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 526 // Figure out which block (then or else) is executed. 527 const Stmt *Executed = S.getThen(); 528 const Stmt *Skipped = S.getElse(); 529 if (!CondConstant) // Condition false? 530 std::swap(Executed, Skipped); 531 532 // If the skipped block has no labels in it, just emit the executed block. 533 // This avoids emitting dead code and simplifies the CFG substantially. 534 if (!ContainsLabel(Skipped)) { 535 if (CondConstant) 536 Cnt.beginRegion(Builder); 537 if (Executed) { 538 RunCleanupsScope ExecutedScope(*this); 539 EmitStmt(Executed); 540 } 541 return; 542 } 543 } 544 545 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 546 // the conditional branch. 547 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 548 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 549 llvm::BasicBlock *ElseBlock = ContBlock; 550 if (S.getElse()) 551 ElseBlock = createBasicBlock("if.else"); 552 553 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 554 555 // Emit the 'then' code. 556 EmitBlock(ThenBlock); 557 Cnt.beginRegion(Builder); 558 { 559 RunCleanupsScope ThenScope(*this); 560 EmitStmt(S.getThen()); 561 } 562 EmitBranch(ContBlock); 563 564 // Emit the 'else' code if present. 565 if (const Stmt *Else = S.getElse()) { 566 { 567 // There is no need to emit line number for unconditional branch. 568 ApplyDebugLocation DL(*this); 569 EmitBlock(ElseBlock); 570 } 571 { 572 RunCleanupsScope ElseScope(*this); 573 EmitStmt(Else); 574 } 575 { 576 // There is no need to emit line number for unconditional branch. 577 ApplyDebugLocation DL(*this); 578 EmitBranch(ContBlock); 579 } 580 } 581 582 // Emit the continuation block for code after the if. 583 EmitBlock(ContBlock, true); 584 } 585 586 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 587 llvm::BranchInst *CondBr, 588 ArrayRef<const Attr *> Attrs) { 589 // Return if there are no hints. 590 if (Attrs.empty()) 591 return; 592 593 // Add vectorize and unroll hints to the metadata on the conditional branch. 594 // 595 // FIXME: Should this really start with a size of 1? 596 SmallVector<llvm::Metadata *, 2> Metadata(1); 597 for (const auto *Attr : Attrs) { 598 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 599 600 // Skip non loop hint attributes 601 if (!LH) 602 continue; 603 604 LoopHintAttr::OptionType Option = LH->getOption(); 605 LoopHintAttr::LoopHintState State = LH->getState(); 606 const char *MetadataName; 607 switch (Option) { 608 case LoopHintAttr::Vectorize: 609 case LoopHintAttr::VectorizeWidth: 610 MetadataName = "llvm.loop.vectorize.width"; 611 break; 612 case LoopHintAttr::Interleave: 613 case LoopHintAttr::InterleaveCount: 614 MetadataName = "llvm.loop.interleave.count"; 615 break; 616 case LoopHintAttr::Unroll: 617 // With the unroll loop hint, a non-zero value indicates full unrolling. 618 MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable" 619 : "llvm.loop.unroll.full"; 620 break; 621 case LoopHintAttr::UnrollCount: 622 MetadataName = "llvm.loop.unroll.count"; 623 break; 624 } 625 626 Expr *ValueExpr = LH->getValue(); 627 int ValueInt = 1; 628 if (ValueExpr) { 629 llvm::APSInt ValueAPS = 630 ValueExpr->EvaluateKnownConstInt(CGM.getContext()); 631 ValueInt = static_cast<int>(ValueAPS.getSExtValue()); 632 } 633 634 llvm::Constant *Value; 635 llvm::MDString *Name; 636 switch (Option) { 637 case LoopHintAttr::Vectorize: 638 case LoopHintAttr::Interleave: 639 if (State != LoopHintAttr::Disable) { 640 // FIXME: In the future I will modifiy the behavior of the metadata 641 // so we can enable/disable vectorization and interleaving separately. 642 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 643 Value = Builder.getTrue(); 644 break; 645 } 646 // Vectorization/interleaving is disabled, set width/count to 1. 647 ValueInt = 1; 648 // Fallthrough. 649 case LoopHintAttr::VectorizeWidth: 650 case LoopHintAttr::InterleaveCount: 651 case LoopHintAttr::UnrollCount: 652 Name = llvm::MDString::get(Context, MetadataName); 653 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 654 break; 655 case LoopHintAttr::Unroll: 656 Name = llvm::MDString::get(Context, MetadataName); 657 Value = nullptr; 658 break; 659 } 660 661 SmallVector<llvm::Metadata *, 2> OpValues; 662 OpValues.push_back(Name); 663 if (Value) 664 OpValues.push_back(llvm::ConstantAsMetadata::get(Value)); 665 666 // Set or overwrite metadata indicated by Name. 667 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 668 } 669 670 // FIXME: This condition is never false. Should it be an assert? 671 if (!Metadata.empty()) { 672 // Add llvm.loop MDNode to CondBr. 673 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 674 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 675 676 CondBr->setMetadata("llvm.loop", LoopID); 677 } 678 } 679 680 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 681 ArrayRef<const Attr *> WhileAttrs) { 682 RegionCounter Cnt = getPGORegionCounter(&S); 683 684 // Emit the header for the loop, which will also become 685 // the continue target. 686 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 687 EmitBlock(LoopHeader.getBlock()); 688 689 LoopStack.push(LoopHeader.getBlock()); 690 691 // Create an exit block for when the condition fails, which will 692 // also become the break target. 693 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 694 695 // Store the blocks to use for break and continue. 696 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 697 698 // C++ [stmt.while]p2: 699 // When the condition of a while statement is a declaration, the 700 // scope of the variable that is declared extends from its point 701 // of declaration (3.3.2) to the end of the while statement. 702 // [...] 703 // The object created in a condition is destroyed and created 704 // with each iteration of the loop. 705 RunCleanupsScope ConditionScope(*this); 706 707 if (S.getConditionVariable()) 708 EmitAutoVarDecl(*S.getConditionVariable()); 709 710 // Evaluate the conditional in the while header. C99 6.8.5.1: The 711 // evaluation of the controlling expression takes place before each 712 // execution of the loop body. 713 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 714 715 // while(1) is common, avoid extra exit blocks. Be sure 716 // to correctly handle break/continue though. 717 bool EmitBoolCondBranch = true; 718 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 719 if (C->isOne()) 720 EmitBoolCondBranch = false; 721 722 // As long as the condition is true, go to the loop body. 723 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 724 if (EmitBoolCondBranch) { 725 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 726 if (ConditionScope.requiresCleanups()) 727 ExitBlock = createBasicBlock("while.exit"); 728 llvm::BranchInst *CondBr = 729 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 730 PGO.createLoopWeights(S.getCond(), Cnt)); 731 732 if (ExitBlock != LoopExit.getBlock()) { 733 EmitBlock(ExitBlock); 734 EmitBranchThroughCleanup(LoopExit); 735 } 736 737 // Attach metadata to loop body conditional branch. 738 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 739 } 740 741 // Emit the loop body. We have to emit this in a cleanup scope 742 // because it might be a singleton DeclStmt. 743 { 744 RunCleanupsScope BodyScope(*this); 745 EmitBlock(LoopBody); 746 Cnt.beginRegion(Builder); 747 EmitStmt(S.getBody()); 748 } 749 750 BreakContinueStack.pop_back(); 751 752 // Immediately force cleanup. 753 ConditionScope.ForceCleanup(); 754 755 EmitStopPoint(&S); 756 // Branch to the loop header again. 757 EmitBranch(LoopHeader.getBlock()); 758 759 LoopStack.pop(); 760 761 // Emit the exit block. 762 EmitBlock(LoopExit.getBlock(), true); 763 764 // The LoopHeader typically is just a branch if we skipped emitting 765 // a branch, try to erase it. 766 if (!EmitBoolCondBranch) 767 SimplifyForwardingBlocks(LoopHeader.getBlock()); 768 } 769 770 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 771 ArrayRef<const Attr *> DoAttrs) { 772 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 773 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 774 775 RegionCounter Cnt = getPGORegionCounter(&S); 776 777 // Store the blocks to use for break and continue. 778 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 779 780 // Emit the body of the loop. 781 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 782 783 LoopStack.push(LoopBody); 784 785 EmitBlockWithFallThrough(LoopBody, Cnt); 786 { 787 RunCleanupsScope BodyScope(*this); 788 EmitStmt(S.getBody()); 789 } 790 791 EmitBlock(LoopCond.getBlock()); 792 793 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 794 // after each execution of the loop body." 795 796 // Evaluate the conditional in the while header. 797 // C99 6.8.5p2/p4: The first substatement is executed if the expression 798 // compares unequal to 0. The condition must be a scalar type. 799 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 800 801 BreakContinueStack.pop_back(); 802 803 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 804 // to correctly handle break/continue though. 805 bool EmitBoolCondBranch = true; 806 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 807 if (C->isZero()) 808 EmitBoolCondBranch = false; 809 810 // As long as the condition is true, iterate the loop. 811 if (EmitBoolCondBranch) { 812 llvm::BranchInst *CondBr = 813 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 814 PGO.createLoopWeights(S.getCond(), Cnt)); 815 816 // Attach metadata to loop body conditional branch. 817 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 818 } 819 820 LoopStack.pop(); 821 822 // Emit the exit block. 823 EmitBlock(LoopExit.getBlock()); 824 825 // The DoCond block typically is just a branch if we skipped 826 // emitting a branch, try to erase it. 827 if (!EmitBoolCondBranch) 828 SimplifyForwardingBlocks(LoopCond.getBlock()); 829 } 830 831 void CodeGenFunction::EmitForStmt(const ForStmt &S, 832 ArrayRef<const Attr *> ForAttrs) { 833 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 834 835 LexicalScope ForScope(*this, S.getSourceRange()); 836 837 // Evaluate the first part before the loop. 838 if (S.getInit()) 839 EmitStmt(S.getInit()); 840 841 RegionCounter Cnt = getPGORegionCounter(&S); 842 843 // Start the loop with a block that tests the condition. 844 // If there's an increment, the continue scope will be overwritten 845 // later. 846 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 847 llvm::BasicBlock *CondBlock = Continue.getBlock(); 848 EmitBlock(CondBlock); 849 850 LoopStack.push(CondBlock); 851 852 // If the for loop doesn't have an increment we can just use the 853 // condition as the continue block. Otherwise we'll need to create 854 // a block for it (in the current scope, i.e. in the scope of the 855 // condition), and that we will become our continue block. 856 if (S.getInc()) 857 Continue = getJumpDestInCurrentScope("for.inc"); 858 859 // Store the blocks to use for break and continue. 860 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 861 862 // Create a cleanup scope for the condition variable cleanups. 863 LexicalScope ConditionScope(*this, S.getSourceRange()); 864 865 if (S.getCond()) { 866 // If the for statement has a condition scope, emit the local variable 867 // declaration. 868 if (S.getConditionVariable()) { 869 EmitAutoVarDecl(*S.getConditionVariable()); 870 } 871 872 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 873 // If there are any cleanups between here and the loop-exit scope, 874 // create a block to stage a loop exit along. 875 if (ForScope.requiresCleanups()) 876 ExitBlock = createBasicBlock("for.cond.cleanup"); 877 878 // As long as the condition is true, iterate the loop. 879 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 880 881 // C99 6.8.5p2/p4: The first substatement is executed if the expression 882 // compares unequal to 0. The condition must be a scalar type. 883 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 884 llvm::BranchInst *CondBr = 885 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 886 PGO.createLoopWeights(S.getCond(), Cnt)); 887 888 // Attach metadata to loop body conditional branch. 889 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 890 891 if (ExitBlock != LoopExit.getBlock()) { 892 EmitBlock(ExitBlock); 893 EmitBranchThroughCleanup(LoopExit); 894 } 895 896 EmitBlock(ForBody); 897 } else { 898 // Treat it as a non-zero constant. Don't even create a new block for the 899 // body, just fall into it. 900 } 901 Cnt.beginRegion(Builder); 902 903 { 904 // Create a separate cleanup scope for the body, in case it is not 905 // a compound statement. 906 RunCleanupsScope BodyScope(*this); 907 EmitStmt(S.getBody()); 908 } 909 910 // If there is an increment, emit it next. 911 if (S.getInc()) { 912 EmitBlock(Continue.getBlock()); 913 EmitStmt(S.getInc()); 914 } 915 916 BreakContinueStack.pop_back(); 917 918 ConditionScope.ForceCleanup(); 919 920 EmitStopPoint(&S); 921 EmitBranch(CondBlock); 922 923 ForScope.ForceCleanup(); 924 925 LoopStack.pop(); 926 927 // Emit the fall-through block. 928 EmitBlock(LoopExit.getBlock(), true); 929 } 930 931 void 932 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 933 ArrayRef<const Attr *> ForAttrs) { 934 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 935 936 LexicalScope ForScope(*this, S.getSourceRange()); 937 938 // Evaluate the first pieces before the loop. 939 EmitStmt(S.getRangeStmt()); 940 EmitStmt(S.getBeginEndStmt()); 941 942 RegionCounter Cnt = getPGORegionCounter(&S); 943 944 // Start the loop with a block that tests the condition. 945 // If there's an increment, the continue scope will be overwritten 946 // later. 947 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 948 EmitBlock(CondBlock); 949 950 LoopStack.push(CondBlock); 951 952 // If there are any cleanups between here and the loop-exit scope, 953 // create a block to stage a loop exit along. 954 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 955 if (ForScope.requiresCleanups()) 956 ExitBlock = createBasicBlock("for.cond.cleanup"); 957 958 // The loop body, consisting of the specified body and the loop variable. 959 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 960 961 // The body is executed if the expression, contextually converted 962 // to bool, is true. 963 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 964 llvm::BranchInst *CondBr = Builder.CreateCondBr( 965 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 966 967 // Attach metadata to loop body conditional branch. 968 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 969 970 if (ExitBlock != LoopExit.getBlock()) { 971 EmitBlock(ExitBlock); 972 EmitBranchThroughCleanup(LoopExit); 973 } 974 975 EmitBlock(ForBody); 976 Cnt.beginRegion(Builder); 977 978 // Create a block for the increment. In case of a 'continue', we jump there. 979 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 980 981 // Store the blocks to use for break and continue. 982 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 983 984 { 985 // Create a separate cleanup scope for the loop variable and body. 986 LexicalScope BodyScope(*this, S.getSourceRange()); 987 EmitStmt(S.getLoopVarStmt()); 988 EmitStmt(S.getBody()); 989 } 990 991 EmitStopPoint(&S); 992 // If there is an increment, emit it next. 993 EmitBlock(Continue.getBlock()); 994 EmitStmt(S.getInc()); 995 996 BreakContinueStack.pop_back(); 997 998 EmitBranch(CondBlock); 999 1000 ForScope.ForceCleanup(); 1001 1002 LoopStack.pop(); 1003 1004 // Emit the fall-through block. 1005 EmitBlock(LoopExit.getBlock(), true); 1006 } 1007 1008 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1009 if (RV.isScalar()) { 1010 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1011 } else if (RV.isAggregate()) { 1012 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 1013 } else { 1014 EmitStoreOfComplex(RV.getComplexVal(), 1015 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 1016 /*init*/ true); 1017 } 1018 EmitBranchThroughCleanup(ReturnBlock); 1019 } 1020 1021 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1022 /// if the function returns void, or may be missing one if the function returns 1023 /// non-void. Fun stuff :). 1024 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1025 // Emit the result value, even if unused, to evalute the side effects. 1026 const Expr *RV = S.getRetValue(); 1027 1028 // Treat block literals in a return expression as if they appeared 1029 // in their own scope. This permits a small, easily-implemented 1030 // exception to our over-conservative rules about not jumping to 1031 // statements following block literals with non-trivial cleanups. 1032 RunCleanupsScope cleanupScope(*this); 1033 if (const ExprWithCleanups *cleanups = 1034 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1035 enterFullExpression(cleanups); 1036 RV = cleanups->getSubExpr(); 1037 } 1038 1039 // FIXME: Clean this up by using an LValue for ReturnTemp, 1040 // EmitStoreThroughLValue, and EmitAnyExpr. 1041 if (getLangOpts().ElideConstructors && 1042 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1043 // Apply the named return value optimization for this return statement, 1044 // which means doing nothing: the appropriate result has already been 1045 // constructed into the NRVO variable. 1046 1047 // If there is an NRVO flag for this variable, set it to 1 into indicate 1048 // that the cleanup code should not destroy the variable. 1049 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1050 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 1051 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 1052 // Make sure not to return anything, but evaluate the expression 1053 // for side effects. 1054 if (RV) 1055 EmitAnyExpr(RV); 1056 } else if (!RV) { 1057 // Do nothing (return value is left uninitialized) 1058 } else if (FnRetTy->isReferenceType()) { 1059 // If this function returns a reference, take the address of the expression 1060 // rather than the value. 1061 RValue Result = EmitReferenceBindingToExpr(RV); 1062 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1063 } else { 1064 switch (getEvaluationKind(RV->getType())) { 1065 case TEK_Scalar: 1066 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1067 break; 1068 case TEK_Complex: 1069 EmitComplexExprIntoLValue(RV, 1070 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1071 /*isInit*/ true); 1072 break; 1073 case TEK_Aggregate: { 1074 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1075 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1076 Qualifiers(), 1077 AggValueSlot::IsDestructed, 1078 AggValueSlot::DoesNotNeedGCBarriers, 1079 AggValueSlot::IsNotAliased)); 1080 break; 1081 } 1082 } 1083 } 1084 1085 ++NumReturnExprs; 1086 if (!RV || RV->isEvaluatable(getContext())) 1087 ++NumSimpleReturnExprs; 1088 1089 cleanupScope.ForceCleanup(); 1090 EmitBranchThroughCleanup(ReturnBlock); 1091 } 1092 1093 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1094 // As long as debug info is modeled with instructions, we have to ensure we 1095 // have a place to insert here and write the stop point here. 1096 if (HaveInsertPoint()) 1097 EmitStopPoint(&S); 1098 1099 for (const auto *I : S.decls()) 1100 EmitDecl(*I); 1101 } 1102 1103 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1104 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1105 1106 // If this code is reachable then emit a stop point (if generating 1107 // debug info). We have to do this ourselves because we are on the 1108 // "simple" statement path. 1109 if (HaveInsertPoint()) 1110 EmitStopPoint(&S); 1111 1112 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1113 } 1114 1115 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1116 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1117 1118 // If this code is reachable then emit a stop point (if generating 1119 // debug info). We have to do this ourselves because we are on the 1120 // "simple" statement path. 1121 if (HaveInsertPoint()) 1122 EmitStopPoint(&S); 1123 1124 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1125 } 1126 1127 /// EmitCaseStmtRange - If case statement range is not too big then 1128 /// add multiple cases to switch instruction, one for each value within 1129 /// the range. If range is too big then emit "if" condition check. 1130 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1131 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1132 1133 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1134 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1135 1136 RegionCounter CaseCnt = getPGORegionCounter(&S); 1137 1138 // Emit the code for this case. We do this first to make sure it is 1139 // properly chained from our predecessor before generating the 1140 // switch machinery to enter this block. 1141 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1142 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1143 EmitStmt(S.getSubStmt()); 1144 1145 // If range is empty, do nothing. 1146 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1147 return; 1148 1149 llvm::APInt Range = RHS - LHS; 1150 // FIXME: parameters such as this should not be hardcoded. 1151 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1152 // Range is small enough to add multiple switch instruction cases. 1153 uint64_t Total = CaseCnt.getCount(); 1154 unsigned NCases = Range.getZExtValue() + 1; 1155 // We only have one region counter for the entire set of cases here, so we 1156 // need to divide the weights evenly between the generated cases, ensuring 1157 // that the total weight is preserved. E.g., a weight of 5 over three cases 1158 // will be distributed as weights of 2, 2, and 1. 1159 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1160 for (unsigned I = 0; I != NCases; ++I) { 1161 if (SwitchWeights) 1162 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1163 if (Rem) 1164 Rem--; 1165 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1166 LHS++; 1167 } 1168 return; 1169 } 1170 1171 // The range is too big. Emit "if" condition into a new block, 1172 // making sure to save and restore the current insertion point. 1173 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1174 1175 // Push this test onto the chain of range checks (which terminates 1176 // in the default basic block). The switch's default will be changed 1177 // to the top of this chain after switch emission is complete. 1178 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1179 CaseRangeBlock = createBasicBlock("sw.caserange"); 1180 1181 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1182 Builder.SetInsertPoint(CaseRangeBlock); 1183 1184 // Emit range check. 1185 llvm::Value *Diff = 1186 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1187 llvm::Value *Cond = 1188 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1189 1190 llvm::MDNode *Weights = nullptr; 1191 if (SwitchWeights) { 1192 uint64_t ThisCount = CaseCnt.getCount(); 1193 uint64_t DefaultCount = (*SwitchWeights)[0]; 1194 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1195 1196 // Since we're chaining the switch default through each large case range, we 1197 // need to update the weight for the default, ie, the first case, to include 1198 // this case. 1199 (*SwitchWeights)[0] += ThisCount; 1200 } 1201 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1202 1203 // Restore the appropriate insertion point. 1204 if (RestoreBB) 1205 Builder.SetInsertPoint(RestoreBB); 1206 else 1207 Builder.ClearInsertionPoint(); 1208 } 1209 1210 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1211 // If there is no enclosing switch instance that we're aware of, then this 1212 // case statement and its block can be elided. This situation only happens 1213 // when we've constant-folded the switch, are emitting the constant case, 1214 // and part of the constant case includes another case statement. For 1215 // instance: switch (4) { case 4: do { case 5: } while (1); } 1216 if (!SwitchInsn) { 1217 EmitStmt(S.getSubStmt()); 1218 return; 1219 } 1220 1221 // Handle case ranges. 1222 if (S.getRHS()) { 1223 EmitCaseStmtRange(S); 1224 return; 1225 } 1226 1227 RegionCounter CaseCnt = getPGORegionCounter(&S); 1228 llvm::ConstantInt *CaseVal = 1229 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1230 1231 // If the body of the case is just a 'break', try to not emit an empty block. 1232 // If we're profiling or we're not optimizing, leave the block in for better 1233 // debug and coverage analysis. 1234 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1235 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1236 isa<BreakStmt>(S.getSubStmt())) { 1237 JumpDest Block = BreakContinueStack.back().BreakBlock; 1238 1239 // Only do this optimization if there are no cleanups that need emitting. 1240 if (isObviouslyBranchWithoutCleanups(Block)) { 1241 if (SwitchWeights) 1242 SwitchWeights->push_back(CaseCnt.getCount()); 1243 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1244 1245 // If there was a fallthrough into this case, make sure to redirect it to 1246 // the end of the switch as well. 1247 if (Builder.GetInsertBlock()) { 1248 Builder.CreateBr(Block.getBlock()); 1249 Builder.ClearInsertionPoint(); 1250 } 1251 return; 1252 } 1253 } 1254 1255 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1256 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1257 if (SwitchWeights) 1258 SwitchWeights->push_back(CaseCnt.getCount()); 1259 SwitchInsn->addCase(CaseVal, CaseDest); 1260 1261 // Recursively emitting the statement is acceptable, but is not wonderful for 1262 // code where we have many case statements nested together, i.e.: 1263 // case 1: 1264 // case 2: 1265 // case 3: etc. 1266 // Handling this recursively will create a new block for each case statement 1267 // that falls through to the next case which is IR intensive. It also causes 1268 // deep recursion which can run into stack depth limitations. Handle 1269 // sequential non-range case statements specially. 1270 const CaseStmt *CurCase = &S; 1271 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1272 1273 // Otherwise, iteratively add consecutive cases to this switch stmt. 1274 while (NextCase && NextCase->getRHS() == nullptr) { 1275 CurCase = NextCase; 1276 llvm::ConstantInt *CaseVal = 1277 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1278 1279 CaseCnt = getPGORegionCounter(NextCase); 1280 if (SwitchWeights) 1281 SwitchWeights->push_back(CaseCnt.getCount()); 1282 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1283 CaseDest = createBasicBlock("sw.bb"); 1284 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1285 } 1286 1287 SwitchInsn->addCase(CaseVal, CaseDest); 1288 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1289 } 1290 1291 // Normal default recursion for non-cases. 1292 EmitStmt(CurCase->getSubStmt()); 1293 } 1294 1295 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1296 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1297 assert(DefaultBlock->empty() && 1298 "EmitDefaultStmt: Default block already defined?"); 1299 1300 RegionCounter Cnt = getPGORegionCounter(&S); 1301 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1302 1303 EmitStmt(S.getSubStmt()); 1304 } 1305 1306 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1307 /// constant value that is being switched on, see if we can dead code eliminate 1308 /// the body of the switch to a simple series of statements to emit. Basically, 1309 /// on a switch (5) we want to find these statements: 1310 /// case 5: 1311 /// printf(...); <-- 1312 /// ++i; <-- 1313 /// break; 1314 /// 1315 /// and add them to the ResultStmts vector. If it is unsafe to do this 1316 /// transformation (for example, one of the elided statements contains a label 1317 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1318 /// should include statements after it (e.g. the printf() line is a substmt of 1319 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1320 /// statement, then return CSFC_Success. 1321 /// 1322 /// If Case is non-null, then we are looking for the specified case, checking 1323 /// that nothing we jump over contains labels. If Case is null, then we found 1324 /// the case and are looking for the break. 1325 /// 1326 /// If the recursive walk actually finds our Case, then we set FoundCase to 1327 /// true. 1328 /// 1329 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1330 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1331 const SwitchCase *Case, 1332 bool &FoundCase, 1333 SmallVectorImpl<const Stmt*> &ResultStmts) { 1334 // If this is a null statement, just succeed. 1335 if (!S) 1336 return Case ? CSFC_Success : CSFC_FallThrough; 1337 1338 // If this is the switchcase (case 4: or default) that we're looking for, then 1339 // we're in business. Just add the substatement. 1340 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1341 if (S == Case) { 1342 FoundCase = true; 1343 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1344 ResultStmts); 1345 } 1346 1347 // Otherwise, this is some other case or default statement, just ignore it. 1348 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1349 ResultStmts); 1350 } 1351 1352 // If we are in the live part of the code and we found our break statement, 1353 // return a success! 1354 if (!Case && isa<BreakStmt>(S)) 1355 return CSFC_Success; 1356 1357 // If this is a switch statement, then it might contain the SwitchCase, the 1358 // break, or neither. 1359 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1360 // Handle this as two cases: we might be looking for the SwitchCase (if so 1361 // the skipped statements must be skippable) or we might already have it. 1362 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1363 if (Case) { 1364 // Keep track of whether we see a skipped declaration. The code could be 1365 // using the declaration even if it is skipped, so we can't optimize out 1366 // the decl if the kept statements might refer to it. 1367 bool HadSkippedDecl = false; 1368 1369 // If we're looking for the case, just see if we can skip each of the 1370 // substatements. 1371 for (; Case && I != E; ++I) { 1372 HadSkippedDecl |= isa<DeclStmt>(*I); 1373 1374 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1375 case CSFC_Failure: return CSFC_Failure; 1376 case CSFC_Success: 1377 // A successful result means that either 1) that the statement doesn't 1378 // have the case and is skippable, or 2) does contain the case value 1379 // and also contains the break to exit the switch. In the later case, 1380 // we just verify the rest of the statements are elidable. 1381 if (FoundCase) { 1382 // If we found the case and skipped declarations, we can't do the 1383 // optimization. 1384 if (HadSkippedDecl) 1385 return CSFC_Failure; 1386 1387 for (++I; I != E; ++I) 1388 if (CodeGenFunction::ContainsLabel(*I, true)) 1389 return CSFC_Failure; 1390 return CSFC_Success; 1391 } 1392 break; 1393 case CSFC_FallThrough: 1394 // If we have a fallthrough condition, then we must have found the 1395 // case started to include statements. Consider the rest of the 1396 // statements in the compound statement as candidates for inclusion. 1397 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1398 // We recursively found Case, so we're not looking for it anymore. 1399 Case = nullptr; 1400 1401 // If we found the case and skipped declarations, we can't do the 1402 // optimization. 1403 if (HadSkippedDecl) 1404 return CSFC_Failure; 1405 break; 1406 } 1407 } 1408 } 1409 1410 // If we have statements in our range, then we know that the statements are 1411 // live and need to be added to the set of statements we're tracking. 1412 for (; I != E; ++I) { 1413 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1414 case CSFC_Failure: return CSFC_Failure; 1415 case CSFC_FallThrough: 1416 // A fallthrough result means that the statement was simple and just 1417 // included in ResultStmt, keep adding them afterwards. 1418 break; 1419 case CSFC_Success: 1420 // A successful result means that we found the break statement and 1421 // stopped statement inclusion. We just ensure that any leftover stmts 1422 // are skippable and return success ourselves. 1423 for (++I; I != E; ++I) 1424 if (CodeGenFunction::ContainsLabel(*I, true)) 1425 return CSFC_Failure; 1426 return CSFC_Success; 1427 } 1428 } 1429 1430 return Case ? CSFC_Success : CSFC_FallThrough; 1431 } 1432 1433 // Okay, this is some other statement that we don't handle explicitly, like a 1434 // for statement or increment etc. If we are skipping over this statement, 1435 // just verify it doesn't have labels, which would make it invalid to elide. 1436 if (Case) { 1437 if (CodeGenFunction::ContainsLabel(S, true)) 1438 return CSFC_Failure; 1439 return CSFC_Success; 1440 } 1441 1442 // Otherwise, we want to include this statement. Everything is cool with that 1443 // so long as it doesn't contain a break out of the switch we're in. 1444 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1445 1446 // Otherwise, everything is great. Include the statement and tell the caller 1447 // that we fall through and include the next statement as well. 1448 ResultStmts.push_back(S); 1449 return CSFC_FallThrough; 1450 } 1451 1452 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1453 /// then invoke CollectStatementsForCase to find the list of statements to emit 1454 /// for a switch on constant. See the comment above CollectStatementsForCase 1455 /// for more details. 1456 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1457 const llvm::APSInt &ConstantCondValue, 1458 SmallVectorImpl<const Stmt*> &ResultStmts, 1459 ASTContext &C, 1460 const SwitchCase *&ResultCase) { 1461 // First step, find the switch case that is being branched to. We can do this 1462 // efficiently by scanning the SwitchCase list. 1463 const SwitchCase *Case = S.getSwitchCaseList(); 1464 const DefaultStmt *DefaultCase = nullptr; 1465 1466 for (; Case; Case = Case->getNextSwitchCase()) { 1467 // It's either a default or case. Just remember the default statement in 1468 // case we're not jumping to any numbered cases. 1469 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1470 DefaultCase = DS; 1471 continue; 1472 } 1473 1474 // Check to see if this case is the one we're looking for. 1475 const CaseStmt *CS = cast<CaseStmt>(Case); 1476 // Don't handle case ranges yet. 1477 if (CS->getRHS()) return false; 1478 1479 // If we found our case, remember it as 'case'. 1480 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1481 break; 1482 } 1483 1484 // If we didn't find a matching case, we use a default if it exists, or we 1485 // elide the whole switch body! 1486 if (!Case) { 1487 // It is safe to elide the body of the switch if it doesn't contain labels 1488 // etc. If it is safe, return successfully with an empty ResultStmts list. 1489 if (!DefaultCase) 1490 return !CodeGenFunction::ContainsLabel(&S); 1491 Case = DefaultCase; 1492 } 1493 1494 // Ok, we know which case is being jumped to, try to collect all the 1495 // statements that follow it. This can fail for a variety of reasons. Also, 1496 // check to see that the recursive walk actually found our case statement. 1497 // Insane cases like this can fail to find it in the recursive walk since we 1498 // don't handle every stmt kind: 1499 // switch (4) { 1500 // while (1) { 1501 // case 4: ... 1502 bool FoundCase = false; 1503 ResultCase = Case; 1504 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1505 ResultStmts) != CSFC_Failure && 1506 FoundCase; 1507 } 1508 1509 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1510 // Handle nested switch statements. 1511 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1512 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1513 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1514 1515 // See if we can constant fold the condition of the switch and therefore only 1516 // emit the live case statement (if any) of the switch. 1517 llvm::APSInt ConstantCondValue; 1518 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1519 SmallVector<const Stmt*, 4> CaseStmts; 1520 const SwitchCase *Case = nullptr; 1521 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1522 getContext(), Case)) { 1523 if (Case) { 1524 RegionCounter CaseCnt = getPGORegionCounter(Case); 1525 CaseCnt.beginRegion(Builder); 1526 } 1527 RunCleanupsScope ExecutedScope(*this); 1528 1529 // Emit the condition variable if needed inside the entire cleanup scope 1530 // used by this special case for constant folded switches. 1531 if (S.getConditionVariable()) 1532 EmitAutoVarDecl(*S.getConditionVariable()); 1533 1534 // At this point, we are no longer "within" a switch instance, so 1535 // we can temporarily enforce this to ensure that any embedded case 1536 // statements are not emitted. 1537 SwitchInsn = nullptr; 1538 1539 // Okay, we can dead code eliminate everything except this case. Emit the 1540 // specified series of statements and we're good. 1541 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1542 EmitStmt(CaseStmts[i]); 1543 RegionCounter ExitCnt = getPGORegionCounter(&S); 1544 ExitCnt.beginRegion(Builder); 1545 1546 // Now we want to restore the saved switch instance so that nested 1547 // switches continue to function properly 1548 SwitchInsn = SavedSwitchInsn; 1549 1550 return; 1551 } 1552 } 1553 1554 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1555 1556 RunCleanupsScope ConditionScope(*this); 1557 if (S.getConditionVariable()) 1558 EmitAutoVarDecl(*S.getConditionVariable()); 1559 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1560 1561 // Create basic block to hold stuff that comes after switch 1562 // statement. We also need to create a default block now so that 1563 // explicit case ranges tests can have a place to jump to on 1564 // failure. 1565 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1566 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1567 if (PGO.haveRegionCounts()) { 1568 // Walk the SwitchCase list to find how many there are. 1569 uint64_t DefaultCount = 0; 1570 unsigned NumCases = 0; 1571 for (const SwitchCase *Case = S.getSwitchCaseList(); 1572 Case; 1573 Case = Case->getNextSwitchCase()) { 1574 if (isa<DefaultStmt>(Case)) 1575 DefaultCount = getPGORegionCounter(Case).getCount(); 1576 NumCases += 1; 1577 } 1578 SwitchWeights = new SmallVector<uint64_t, 16>(); 1579 SwitchWeights->reserve(NumCases); 1580 // The default needs to be first. We store the edge count, so we already 1581 // know the right weight. 1582 SwitchWeights->push_back(DefaultCount); 1583 } 1584 CaseRangeBlock = DefaultBlock; 1585 1586 // Clear the insertion point to indicate we are in unreachable code. 1587 Builder.ClearInsertionPoint(); 1588 1589 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1590 // then reuse last ContinueBlock. 1591 JumpDest OuterContinue; 1592 if (!BreakContinueStack.empty()) 1593 OuterContinue = BreakContinueStack.back().ContinueBlock; 1594 1595 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1596 1597 // Emit switch body. 1598 EmitStmt(S.getBody()); 1599 1600 BreakContinueStack.pop_back(); 1601 1602 // Update the default block in case explicit case range tests have 1603 // been chained on top. 1604 SwitchInsn->setDefaultDest(CaseRangeBlock); 1605 1606 // If a default was never emitted: 1607 if (!DefaultBlock->getParent()) { 1608 // If we have cleanups, emit the default block so that there's a 1609 // place to jump through the cleanups from. 1610 if (ConditionScope.requiresCleanups()) { 1611 EmitBlock(DefaultBlock); 1612 1613 // Otherwise, just forward the default block to the switch end. 1614 } else { 1615 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1616 delete DefaultBlock; 1617 } 1618 } 1619 1620 ConditionScope.ForceCleanup(); 1621 1622 // Emit continuation. 1623 EmitBlock(SwitchExit.getBlock(), true); 1624 RegionCounter ExitCnt = getPGORegionCounter(&S); 1625 ExitCnt.beginRegion(Builder); 1626 1627 if (SwitchWeights) { 1628 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1629 "switch weights do not match switch cases"); 1630 // If there's only one jump destination there's no sense weighting it. 1631 if (SwitchWeights->size() > 1) 1632 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1633 PGO.createBranchWeights(*SwitchWeights)); 1634 delete SwitchWeights; 1635 } 1636 SwitchInsn = SavedSwitchInsn; 1637 SwitchWeights = SavedSwitchWeights; 1638 CaseRangeBlock = SavedCRBlock; 1639 } 1640 1641 static std::string 1642 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1643 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1644 std::string Result; 1645 1646 while (*Constraint) { 1647 switch (*Constraint) { 1648 default: 1649 Result += Target.convertConstraint(Constraint); 1650 break; 1651 // Ignore these 1652 case '*': 1653 case '?': 1654 case '!': 1655 case '=': // Will see this and the following in mult-alt constraints. 1656 case '+': 1657 break; 1658 case '#': // Ignore the rest of the constraint alternative. 1659 while (Constraint[1] && Constraint[1] != ',') 1660 Constraint++; 1661 break; 1662 case '&': 1663 case '%': 1664 Result += *Constraint; 1665 while (Constraint[1] && Constraint[1] == *Constraint) 1666 Constraint++; 1667 break; 1668 case ',': 1669 Result += "|"; 1670 break; 1671 case 'g': 1672 Result += "imr"; 1673 break; 1674 case '[': { 1675 assert(OutCons && 1676 "Must pass output names to constraints with a symbolic name"); 1677 unsigned Index; 1678 bool result = Target.resolveSymbolicName(Constraint, 1679 &(*OutCons)[0], 1680 OutCons->size(), Index); 1681 assert(result && "Could not resolve symbolic name"); (void)result; 1682 Result += llvm::utostr(Index); 1683 break; 1684 } 1685 } 1686 1687 Constraint++; 1688 } 1689 1690 return Result; 1691 } 1692 1693 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1694 /// as using a particular register add that as a constraint that will be used 1695 /// in this asm stmt. 1696 static std::string 1697 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1698 const TargetInfo &Target, CodeGenModule &CGM, 1699 const AsmStmt &Stmt) { 1700 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1701 if (!AsmDeclRef) 1702 return Constraint; 1703 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1704 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1705 if (!Variable) 1706 return Constraint; 1707 if (Variable->getStorageClass() != SC_Register) 1708 return Constraint; 1709 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1710 if (!Attr) 1711 return Constraint; 1712 StringRef Register = Attr->getLabel(); 1713 assert(Target.isValidGCCRegisterName(Register)); 1714 // We're using validateOutputConstraint here because we only care if 1715 // this is a register constraint. 1716 TargetInfo::ConstraintInfo Info(Constraint, ""); 1717 if (Target.validateOutputConstraint(Info) && 1718 !Info.allowsRegister()) { 1719 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1720 return Constraint; 1721 } 1722 // Canonicalize the register here before returning it. 1723 Register = Target.getNormalizedGCCRegisterName(Register); 1724 return "{" + Register.str() + "}"; 1725 } 1726 1727 llvm::Value* 1728 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1729 LValue InputValue, QualType InputType, 1730 std::string &ConstraintStr, 1731 SourceLocation Loc) { 1732 llvm::Value *Arg; 1733 if (Info.allowsRegister() || !Info.allowsMemory()) { 1734 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1735 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1736 } else { 1737 llvm::Type *Ty = ConvertType(InputType); 1738 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1739 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1740 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1741 Ty = llvm::PointerType::getUnqual(Ty); 1742 1743 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1744 Ty)); 1745 } else { 1746 Arg = InputValue.getAddress(); 1747 ConstraintStr += '*'; 1748 } 1749 } 1750 } else { 1751 Arg = InputValue.getAddress(); 1752 ConstraintStr += '*'; 1753 } 1754 1755 return Arg; 1756 } 1757 1758 llvm::Value* CodeGenFunction::EmitAsmInput( 1759 const TargetInfo::ConstraintInfo &Info, 1760 const Expr *InputExpr, 1761 std::string &ConstraintStr) { 1762 if (Info.allowsRegister() || !Info.allowsMemory()) 1763 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1764 return EmitScalarExpr(InputExpr); 1765 1766 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1767 LValue Dest = EmitLValue(InputExpr); 1768 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1769 InputExpr->getExprLoc()); 1770 } 1771 1772 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1773 /// asm call instruction. The !srcloc MDNode contains a list of constant 1774 /// integers which are the source locations of the start of each line in the 1775 /// asm. 1776 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1777 CodeGenFunction &CGF) { 1778 SmallVector<llvm::Metadata *, 8> Locs; 1779 // Add the location of the first line to the MDNode. 1780 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1781 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1782 StringRef StrVal = Str->getString(); 1783 if (!StrVal.empty()) { 1784 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1785 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1786 1787 // Add the location of the start of each subsequent line of the asm to the 1788 // MDNode. 1789 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1790 if (StrVal[i] != '\n') continue; 1791 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1792 CGF.getTarget()); 1793 Locs.push_back(llvm::ConstantAsMetadata::get( 1794 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1795 } 1796 } 1797 1798 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1799 } 1800 1801 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1802 // Assemble the final asm string. 1803 std::string AsmString = S.generateAsmString(getContext()); 1804 1805 // Get all the output and input constraints together. 1806 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1807 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1808 1809 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1810 StringRef Name; 1811 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1812 Name = GAS->getOutputName(i); 1813 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1814 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1815 assert(IsValid && "Failed to parse output constraint"); 1816 OutputConstraintInfos.push_back(Info); 1817 } 1818 1819 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1820 StringRef Name; 1821 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1822 Name = GAS->getInputName(i); 1823 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1824 bool IsValid = 1825 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1826 S.getNumOutputs(), Info); 1827 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1828 InputConstraintInfos.push_back(Info); 1829 } 1830 1831 std::string Constraints; 1832 1833 std::vector<LValue> ResultRegDests; 1834 std::vector<QualType> ResultRegQualTys; 1835 std::vector<llvm::Type *> ResultRegTypes; 1836 std::vector<llvm::Type *> ResultTruncRegTypes; 1837 std::vector<llvm::Type *> ArgTypes; 1838 std::vector<llvm::Value*> Args; 1839 1840 // Keep track of inout constraints. 1841 std::string InOutConstraints; 1842 std::vector<llvm::Value*> InOutArgs; 1843 std::vector<llvm::Type*> InOutArgTypes; 1844 1845 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1846 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1847 1848 // Simplify the output constraint. 1849 std::string OutputConstraint(S.getOutputConstraint(i)); 1850 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1851 getTarget()); 1852 1853 const Expr *OutExpr = S.getOutputExpr(i); 1854 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1855 1856 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1857 getTarget(), CGM, S); 1858 1859 LValue Dest = EmitLValue(OutExpr); 1860 if (!Constraints.empty()) 1861 Constraints += ','; 1862 1863 // If this is a register output, then make the inline asm return it 1864 // by-value. If this is a memory result, return the value by-reference. 1865 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1866 Constraints += "=" + OutputConstraint; 1867 ResultRegQualTys.push_back(OutExpr->getType()); 1868 ResultRegDests.push_back(Dest); 1869 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1870 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1871 1872 // If this output is tied to an input, and if the input is larger, then 1873 // we need to set the actual result type of the inline asm node to be the 1874 // same as the input type. 1875 if (Info.hasMatchingInput()) { 1876 unsigned InputNo; 1877 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1878 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1879 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1880 break; 1881 } 1882 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1883 1884 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1885 QualType OutputType = OutExpr->getType(); 1886 1887 uint64_t InputSize = getContext().getTypeSize(InputTy); 1888 if (getContext().getTypeSize(OutputType) < InputSize) { 1889 // Form the asm to return the value as a larger integer or fp type. 1890 ResultRegTypes.back() = ConvertType(InputTy); 1891 } 1892 } 1893 if (llvm::Type* AdjTy = 1894 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1895 ResultRegTypes.back())) 1896 ResultRegTypes.back() = AdjTy; 1897 else { 1898 CGM.getDiags().Report(S.getAsmLoc(), 1899 diag::err_asm_invalid_type_in_input) 1900 << OutExpr->getType() << OutputConstraint; 1901 } 1902 } else { 1903 ArgTypes.push_back(Dest.getAddress()->getType()); 1904 Args.push_back(Dest.getAddress()); 1905 Constraints += "=*"; 1906 Constraints += OutputConstraint; 1907 } 1908 1909 if (Info.isReadWrite()) { 1910 InOutConstraints += ','; 1911 1912 const Expr *InputExpr = S.getOutputExpr(i); 1913 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1914 InOutConstraints, 1915 InputExpr->getExprLoc()); 1916 1917 if (llvm::Type* AdjTy = 1918 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1919 Arg->getType())) 1920 Arg = Builder.CreateBitCast(Arg, AdjTy); 1921 1922 if (Info.allowsRegister()) 1923 InOutConstraints += llvm::utostr(i); 1924 else 1925 InOutConstraints += OutputConstraint; 1926 1927 InOutArgTypes.push_back(Arg->getType()); 1928 InOutArgs.push_back(Arg); 1929 } 1930 } 1931 1932 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1933 // to the return value slot. Only do this when returning in registers. 1934 if (isa<MSAsmStmt>(&S)) { 1935 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1936 if (RetAI.isDirect() || RetAI.isExtend()) { 1937 // Make a fake lvalue for the return value slot. 1938 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1939 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1940 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1941 ResultRegDests, AsmString, S.getNumOutputs()); 1942 SawAsmBlock = true; 1943 } 1944 } 1945 1946 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1947 const Expr *InputExpr = S.getInputExpr(i); 1948 1949 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1950 1951 if (!Constraints.empty()) 1952 Constraints += ','; 1953 1954 // Simplify the input constraint. 1955 std::string InputConstraint(S.getInputConstraint(i)); 1956 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1957 &OutputConstraintInfos); 1958 1959 InputConstraint = 1960 AddVariableConstraints(InputConstraint, 1961 *InputExpr->IgnoreParenNoopCasts(getContext()), 1962 getTarget(), CGM, S); 1963 1964 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1965 1966 // If this input argument is tied to a larger output result, extend the 1967 // input to be the same size as the output. The LLVM backend wants to see 1968 // the input and output of a matching constraint be the same size. Note 1969 // that GCC does not define what the top bits are here. We use zext because 1970 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1971 if (Info.hasTiedOperand()) { 1972 unsigned Output = Info.getTiedOperand(); 1973 QualType OutputType = S.getOutputExpr(Output)->getType(); 1974 QualType InputTy = InputExpr->getType(); 1975 1976 if (getContext().getTypeSize(OutputType) > 1977 getContext().getTypeSize(InputTy)) { 1978 // Use ptrtoint as appropriate so that we can do our extension. 1979 if (isa<llvm::PointerType>(Arg->getType())) 1980 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1981 llvm::Type *OutputTy = ConvertType(OutputType); 1982 if (isa<llvm::IntegerType>(OutputTy)) 1983 Arg = Builder.CreateZExt(Arg, OutputTy); 1984 else if (isa<llvm::PointerType>(OutputTy)) 1985 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1986 else { 1987 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1988 Arg = Builder.CreateFPExt(Arg, OutputTy); 1989 } 1990 } 1991 } 1992 if (llvm::Type* AdjTy = 1993 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1994 Arg->getType())) 1995 Arg = Builder.CreateBitCast(Arg, AdjTy); 1996 else 1997 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1998 << InputExpr->getType() << InputConstraint; 1999 2000 ArgTypes.push_back(Arg->getType()); 2001 Args.push_back(Arg); 2002 Constraints += InputConstraint; 2003 } 2004 2005 // Append the "input" part of inout constraints last. 2006 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2007 ArgTypes.push_back(InOutArgTypes[i]); 2008 Args.push_back(InOutArgs[i]); 2009 } 2010 Constraints += InOutConstraints; 2011 2012 // Clobbers 2013 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2014 StringRef Clobber = S.getClobber(i); 2015 2016 if (Clobber != "memory" && Clobber != "cc") 2017 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2018 2019 if (!Constraints.empty()) 2020 Constraints += ','; 2021 2022 Constraints += "~{"; 2023 Constraints += Clobber; 2024 Constraints += '}'; 2025 } 2026 2027 // Add machine specific clobbers 2028 std::string MachineClobbers = getTarget().getClobbers(); 2029 if (!MachineClobbers.empty()) { 2030 if (!Constraints.empty()) 2031 Constraints += ','; 2032 Constraints += MachineClobbers; 2033 } 2034 2035 llvm::Type *ResultType; 2036 if (ResultRegTypes.empty()) 2037 ResultType = VoidTy; 2038 else if (ResultRegTypes.size() == 1) 2039 ResultType = ResultRegTypes[0]; 2040 else 2041 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2042 2043 llvm::FunctionType *FTy = 2044 llvm::FunctionType::get(ResultType, ArgTypes, false); 2045 2046 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2047 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2048 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2049 llvm::InlineAsm *IA = 2050 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2051 /* IsAlignStack */ false, AsmDialect); 2052 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2053 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2054 llvm::Attribute::NoUnwind); 2055 2056 // Slap the source location of the inline asm into a !srcloc metadata on the 2057 // call. 2058 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2059 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2060 *this)); 2061 } else { 2062 // At least put the line number on MS inline asm blobs. 2063 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2064 Result->setMetadata("srcloc", 2065 llvm::MDNode::get(getLLVMContext(), 2066 llvm::ConstantAsMetadata::get(Loc))); 2067 } 2068 2069 // Extract all of the register value results from the asm. 2070 std::vector<llvm::Value*> RegResults; 2071 if (ResultRegTypes.size() == 1) { 2072 RegResults.push_back(Result); 2073 } else { 2074 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2075 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2076 RegResults.push_back(Tmp); 2077 } 2078 } 2079 2080 assert(RegResults.size() == ResultRegTypes.size()); 2081 assert(RegResults.size() == ResultTruncRegTypes.size()); 2082 assert(RegResults.size() == ResultRegDests.size()); 2083 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2084 llvm::Value *Tmp = RegResults[i]; 2085 2086 // If the result type of the LLVM IR asm doesn't match the result type of 2087 // the expression, do the conversion. 2088 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2089 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2090 2091 // Truncate the integer result to the right size, note that TruncTy can be 2092 // a pointer. 2093 if (TruncTy->isFloatingPointTy()) 2094 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2095 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2096 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2097 Tmp = Builder.CreateTrunc(Tmp, 2098 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2099 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2100 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2101 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2102 Tmp = Builder.CreatePtrToInt(Tmp, 2103 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2104 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2105 } else if (TruncTy->isIntegerTy()) { 2106 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2107 } else if (TruncTy->isVectorTy()) { 2108 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2109 } 2110 } 2111 2112 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2113 } 2114 } 2115 2116 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2117 const RecordDecl *RD = S.getCapturedRecordDecl(); 2118 QualType RecordTy = getContext().getRecordType(RD); 2119 2120 // Initialize the captured struct. 2121 LValue SlotLV = MakeNaturalAlignAddrLValue( 2122 CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2123 2124 RecordDecl::field_iterator CurField = RD->field_begin(); 2125 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2126 E = S.capture_init_end(); 2127 I != E; ++I, ++CurField) { 2128 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2129 if (CurField->hasCapturedVLAType()) { 2130 auto VAT = CurField->getCapturedVLAType(); 2131 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2132 } else { 2133 EmitInitializerForField(*CurField, LV, *I, None); 2134 } 2135 } 2136 2137 return SlotLV; 2138 } 2139 2140 /// Generate an outlined function for the body of a CapturedStmt, store any 2141 /// captured variables into the captured struct, and call the outlined function. 2142 llvm::Function * 2143 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2144 LValue CapStruct = InitCapturedStruct(S); 2145 2146 // Emit the CapturedDecl 2147 CodeGenFunction CGF(CGM, true); 2148 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2149 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2150 delete CGF.CapturedStmtInfo; 2151 2152 // Emit call to the helper function. 2153 EmitCallOrInvoke(F, CapStruct.getAddress()); 2154 2155 return F; 2156 } 2157 2158 llvm::Value * 2159 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2160 LValue CapStruct = InitCapturedStruct(S); 2161 return CapStruct.getAddress(); 2162 } 2163 2164 /// Creates the outlined function for a CapturedStmt. 2165 llvm::Function * 2166 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2167 assert(CapturedStmtInfo && 2168 "CapturedStmtInfo should be set when generating the captured function"); 2169 const CapturedDecl *CD = S.getCapturedDecl(); 2170 const RecordDecl *RD = S.getCapturedRecordDecl(); 2171 SourceLocation Loc = S.getLocStart(); 2172 assert(CD->hasBody() && "missing CapturedDecl body"); 2173 2174 // Build the argument list. 2175 ASTContext &Ctx = CGM.getContext(); 2176 FunctionArgList Args; 2177 Args.append(CD->param_begin(), CD->param_end()); 2178 2179 // Create the function declaration. 2180 FunctionType::ExtInfo ExtInfo; 2181 const CGFunctionInfo &FuncInfo = 2182 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2183 /*IsVariadic=*/false); 2184 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2185 2186 llvm::Function *F = 2187 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2188 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2189 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2190 2191 // Generate the function. 2192 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2193 CD->getLocation(), 2194 CD->getBody()->getLocStart()); 2195 // Set the context parameter in CapturedStmtInfo. 2196 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2197 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2198 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2199 2200 // Initialize variable-length arrays. 2201 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2202 Ctx.getTagDeclType(RD)); 2203 for (auto *FD : RD->fields()) { 2204 if (FD->hasCapturedVLAType()) { 2205 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2206 S.getLocStart()).getScalarVal(); 2207 auto VAT = FD->getCapturedVLAType(); 2208 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2209 } 2210 } 2211 2212 // If 'this' is captured, load it into CXXThisValue. 2213 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2214 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2215 LValue ThisLValue = EmitLValueForField(Base, FD); 2216 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2217 } 2218 2219 PGO.assignRegionCounters(CD, F); 2220 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2221 FinishFunction(CD->getBodyRBrace()); 2222 2223 return F; 2224 } 2225