1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 35 QualType ET, 36 const ObjCMethodDecl *Method, 37 RValue Result); 38 39 /// Given the address of a variable of pointer type, find the correct 40 /// null to store into it. 41 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 42 llvm::Type *type = 43 cast<llvm::PointerType>(addr->getType())->getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:]. 59 /// 60 llvm::Value * 61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 62 // Generate the correct selector for this literal's concrete type. 63 // Get the method. 64 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 EmitCallArgs(Args, BoxingMethod, E->arg_begin(), E->arg_end()); 78 79 RValue result = Runtime.GenerateMessageSend( 80 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 81 Args, ClassDecl, BoxingMethod); 82 return Builder.CreateBitCast(result.getScalarVal(), 83 ConvertType(E->getType())); 84 } 85 86 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 87 const ObjCMethodDecl *MethodWithObjects) { 88 ASTContext &Context = CGM.getContext(); 89 const ObjCDictionaryLiteral *DLE = nullptr; 90 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 91 if (!ALE) 92 DLE = cast<ObjCDictionaryLiteral>(E); 93 94 // Compute the type of the array we're initializing. 95 uint64_t NumElements = 96 ALE ? ALE->getNumElements() : DLE->getNumElements(); 97 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 98 NumElements); 99 QualType ElementType = Context.getObjCIdType().withConst(); 100 QualType ElementArrayType 101 = Context.getConstantArrayType(ElementType, APNumElements, 102 ArrayType::Normal, /*IndexTypeQuals=*/0); 103 104 // Allocate the temporary array(s). 105 llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects"); 106 llvm::Value *Keys = nullptr; 107 if (DLE) 108 Keys = CreateMemTemp(ElementArrayType, "keys"); 109 110 // In ARC, we may need to do extra work to keep all the keys and 111 // values alive until after the call. 112 SmallVector<llvm::Value *, 16> NeededObjects; 113 bool TrackNeededObjects = 114 (getLangOpts().ObjCAutoRefCount && 115 CGM.getCodeGenOpts().OptimizationLevel != 0); 116 117 // Perform the actual initialialization of the array(s). 118 for (uint64_t i = 0; i < NumElements; i++) { 119 if (ALE) { 120 // Emit the element and store it to the appropriate array slot. 121 const Expr *Rhs = ALE->getElement(i); 122 LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 123 ElementType, 124 Context.getTypeAlignInChars(Rhs->getType()), 125 Context); 126 127 llvm::Value *value = EmitScalarExpr(Rhs); 128 EmitStoreThroughLValue(RValue::get(value), LV, true); 129 if (TrackNeededObjects) { 130 NeededObjects.push_back(value); 131 } 132 } else { 133 // Emit the key and store it to the appropriate array slot. 134 const Expr *Key = DLE->getKeyValueElement(i).Key; 135 LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i), 136 ElementType, 137 Context.getTypeAlignInChars(Key->getType()), 138 Context); 139 llvm::Value *keyValue = EmitScalarExpr(Key); 140 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 141 142 // Emit the value and store it to the appropriate array slot. 143 const Expr *Value = DLE->getKeyValueElement(i).Value; 144 LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 145 ElementType, 146 Context.getTypeAlignInChars(Value->getType()), 147 Context); 148 llvm::Value *valueValue = EmitScalarExpr(Value); 149 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 150 if (TrackNeededObjects) { 151 NeededObjects.push_back(keyValue); 152 NeededObjects.push_back(valueValue); 153 } 154 } 155 } 156 157 // Generate the argument list. 158 CallArgList Args; 159 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 160 const ParmVarDecl *argDecl = *PI++; 161 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 162 Args.add(RValue::get(Objects), ArgQT); 163 if (DLE) { 164 argDecl = *PI++; 165 ArgQT = argDecl->getType().getUnqualifiedType(); 166 Args.add(RValue::get(Keys), ArgQT); 167 } 168 argDecl = *PI; 169 ArgQT = argDecl->getType().getUnqualifiedType(); 170 llvm::Value *Count = 171 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 172 Args.add(RValue::get(Count), ArgQT); 173 174 // Generate a reference to the class pointer, which will be the receiver. 175 Selector Sel = MethodWithObjects->getSelector(); 176 QualType ResultType = E->getType(); 177 const ObjCObjectPointerType *InterfacePointerType 178 = ResultType->getAsObjCInterfacePointerType(); 179 ObjCInterfaceDecl *Class 180 = InterfacePointerType->getObjectType()->getInterface(); 181 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 182 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 183 184 // Generate the message send. 185 RValue result = Runtime.GenerateMessageSend( 186 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 187 Receiver, Args, Class, MethodWithObjects); 188 189 // The above message send needs these objects, but in ARC they are 190 // passed in a buffer that is essentially __unsafe_unretained. 191 // Therefore we must prevent the optimizer from releasing them until 192 // after the call. 193 if (TrackNeededObjects) { 194 EmitARCIntrinsicUse(NeededObjects); 195 } 196 197 return Builder.CreateBitCast(result.getScalarVal(), 198 ConvertType(E->getType())); 199 } 200 201 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 202 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 203 } 204 205 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 206 const ObjCDictionaryLiteral *E) { 207 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 208 } 209 210 /// Emit a selector. 211 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 212 // Untyped selector. 213 // Note that this implementation allows for non-constant strings to be passed 214 // as arguments to @selector(). Currently, the only thing preventing this 215 // behaviour is the type checking in the front end. 216 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 217 } 218 219 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 220 // FIXME: This should pass the Decl not the name. 221 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 222 } 223 224 /// \brief Adjust the type of the result of an Objective-C message send 225 /// expression when the method has a related result type. 226 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 227 QualType ExpT, 228 const ObjCMethodDecl *Method, 229 RValue Result) { 230 if (!Method) 231 return Result; 232 233 if (!Method->hasRelatedResultType() || 234 CGF.getContext().hasSameType(ExpT, Method->getReturnType()) || 235 !Result.isScalar()) 236 return Result; 237 238 // We have applied a related result type. Cast the rvalue appropriately. 239 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 240 CGF.ConvertType(ExpT))); 241 } 242 243 /// Decide whether to extend the lifetime of the receiver of a 244 /// returns-inner-pointer message. 245 static bool 246 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 247 switch (message->getReceiverKind()) { 248 249 // For a normal instance message, we should extend unless the 250 // receiver is loaded from a variable with precise lifetime. 251 case ObjCMessageExpr::Instance: { 252 const Expr *receiver = message->getInstanceReceiver(); 253 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 254 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 255 receiver = ice->getSubExpr()->IgnoreParens(); 256 257 // Only __strong variables. 258 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 259 return true; 260 261 // All ivars and fields have precise lifetime. 262 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 263 return false; 264 265 // Otherwise, check for variables. 266 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 267 if (!declRef) return true; 268 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 269 if (!var) return true; 270 271 // All variables have precise lifetime except local variables with 272 // automatic storage duration that aren't specially marked. 273 return (var->hasLocalStorage() && 274 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 275 } 276 277 case ObjCMessageExpr::Class: 278 case ObjCMessageExpr::SuperClass: 279 // It's never necessary for class objects. 280 return false; 281 282 case ObjCMessageExpr::SuperInstance: 283 // We generally assume that 'self' lives throughout a method call. 284 return false; 285 } 286 287 llvm_unreachable("invalid receiver kind"); 288 } 289 290 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 291 ReturnValueSlot Return) { 292 // Only the lookup mechanism and first two arguments of the method 293 // implementation vary between runtimes. We can get the receiver and 294 // arguments in generic code. 295 296 bool isDelegateInit = E->isDelegateInitCall(); 297 298 const ObjCMethodDecl *method = E->getMethodDecl(); 299 300 // We don't retain the receiver in delegate init calls, and this is 301 // safe because the receiver value is always loaded from 'self', 302 // which we zero out. We don't want to Block_copy block receivers, 303 // though. 304 bool retainSelf = 305 (!isDelegateInit && 306 CGM.getLangOpts().ObjCAutoRefCount && 307 method && 308 method->hasAttr<NSConsumesSelfAttr>()); 309 310 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 311 bool isSuperMessage = false; 312 bool isClassMessage = false; 313 ObjCInterfaceDecl *OID = nullptr; 314 // Find the receiver 315 QualType ReceiverType; 316 llvm::Value *Receiver = nullptr; 317 switch (E->getReceiverKind()) { 318 case ObjCMessageExpr::Instance: 319 ReceiverType = E->getInstanceReceiver()->getType(); 320 if (retainSelf) { 321 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 322 E->getInstanceReceiver()); 323 Receiver = ter.getPointer(); 324 if (ter.getInt()) retainSelf = false; 325 } else 326 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 327 break; 328 329 case ObjCMessageExpr::Class: { 330 ReceiverType = E->getClassReceiver(); 331 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 332 assert(ObjTy && "Invalid Objective-C class message send"); 333 OID = ObjTy->getInterface(); 334 assert(OID && "Invalid Objective-C class message send"); 335 Receiver = Runtime.GetClass(*this, OID); 336 isClassMessage = true; 337 break; 338 } 339 340 case ObjCMessageExpr::SuperInstance: 341 ReceiverType = E->getSuperType(); 342 Receiver = LoadObjCSelf(); 343 isSuperMessage = true; 344 break; 345 346 case ObjCMessageExpr::SuperClass: 347 ReceiverType = E->getSuperType(); 348 Receiver = LoadObjCSelf(); 349 isSuperMessage = true; 350 isClassMessage = true; 351 break; 352 } 353 354 if (retainSelf) 355 Receiver = EmitARCRetainNonBlock(Receiver); 356 357 // In ARC, we sometimes want to "extend the lifetime" 358 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 359 // messages. 360 if (getLangOpts().ObjCAutoRefCount && method && 361 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 362 shouldExtendReceiverForInnerPointerMessage(E)) 363 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 364 365 QualType ResultType = method ? method->getReturnType() : E->getType(); 366 367 CallArgList Args; 368 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 369 370 // For delegate init calls in ARC, do an unsafe store of null into 371 // self. This represents the call taking direct ownership of that 372 // value. We have to do this after emitting the other call 373 // arguments because they might also reference self, but we don't 374 // have to worry about any of them modifying self because that would 375 // be an undefined read and write of an object in unordered 376 // expressions. 377 if (isDelegateInit) { 378 assert(getLangOpts().ObjCAutoRefCount && 379 "delegate init calls should only be marked in ARC"); 380 381 // Do an unsafe store of null into self. 382 llvm::Value *selfAddr = 383 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 384 assert(selfAddr && "no self entry for a delegate init call?"); 385 386 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 387 } 388 389 RValue result; 390 if (isSuperMessage) { 391 // super is only valid in an Objective-C method 392 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 393 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 394 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 395 E->getSelector(), 396 OMD->getClassInterface(), 397 isCategoryImpl, 398 Receiver, 399 isClassMessage, 400 Args, 401 method); 402 } else { 403 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 404 E->getSelector(), 405 Receiver, Args, OID, 406 method); 407 } 408 409 // For delegate init calls in ARC, implicitly store the result of 410 // the call back into self. This takes ownership of the value. 411 if (isDelegateInit) { 412 llvm::Value *selfAddr = 413 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 414 llvm::Value *newSelf = result.getScalarVal(); 415 416 // The delegate return type isn't necessarily a matching type; in 417 // fact, it's quite likely to be 'id'. 418 llvm::Type *selfTy = 419 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 420 newSelf = Builder.CreateBitCast(newSelf, selfTy); 421 422 Builder.CreateStore(newSelf, selfAddr); 423 } 424 425 return AdjustRelatedResultType(*this, E->getType(), method, result); 426 } 427 428 namespace { 429 struct FinishARCDealloc : EHScopeStack::Cleanup { 430 void Emit(CodeGenFunction &CGF, Flags flags) override { 431 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 432 433 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 434 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 435 if (!iface->getSuperClass()) return; 436 437 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 438 439 // Call [super dealloc] if we have a superclass. 440 llvm::Value *self = CGF.LoadObjCSelf(); 441 442 CallArgList args; 443 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 444 CGF.getContext().VoidTy, 445 method->getSelector(), 446 iface, 447 isCategory, 448 self, 449 /*is class msg*/ false, 450 args, 451 method); 452 } 453 }; 454 } 455 456 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 457 /// the LLVM function and sets the other context used by 458 /// CodeGenFunction. 459 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 460 const ObjCContainerDecl *CD) { 461 SourceLocation StartLoc = OMD->getLocStart(); 462 FunctionArgList args; 463 // Check if we should generate debug info for this method. 464 if (OMD->hasAttr<NoDebugAttr>()) 465 DebugInfo = nullptr; // disable debug info indefinitely for this function 466 467 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 468 469 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 470 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 471 472 args.push_back(OMD->getSelfDecl()); 473 args.push_back(OMD->getCmdDecl()); 474 475 for (const auto *PI : OMD->params()) 476 args.push_back(PI); 477 478 CurGD = OMD; 479 CurEHLocation = OMD->getLocEnd(); 480 481 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 482 OMD->getLocation(), StartLoc); 483 484 // In ARC, certain methods get an extra cleanup. 485 if (CGM.getLangOpts().ObjCAutoRefCount && 486 OMD->isInstanceMethod() && 487 OMD->getSelector().isUnarySelector()) { 488 const IdentifierInfo *ident = 489 OMD->getSelector().getIdentifierInfoForSlot(0); 490 if (ident->isStr("dealloc")) 491 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 492 } 493 } 494 495 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 496 LValue lvalue, QualType type); 497 498 /// Generate an Objective-C method. An Objective-C method is a C function with 499 /// its pointer, name, and types registered in the class struture. 500 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 501 StartObjCMethod(OMD, OMD->getClassInterface()); 502 PGO.assignRegionCounters(OMD, CurFn); 503 assert(isa<CompoundStmt>(OMD->getBody())); 504 RegionCounter Cnt = getPGORegionCounter(OMD->getBody()); 505 Cnt.beginRegion(Builder); 506 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 507 FinishFunction(OMD->getBodyRBrace()); 508 } 509 510 /// emitStructGetterCall - Call the runtime function to load a property 511 /// into the return value slot. 512 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 513 bool isAtomic, bool hasStrong) { 514 ASTContext &Context = CGF.getContext(); 515 516 llvm::Value *src = 517 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 518 ivar, 0).getAddress(); 519 520 // objc_copyStruct (ReturnValue, &structIvar, 521 // sizeof (Type of Ivar), isAtomic, false); 522 CallArgList args; 523 524 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 525 args.add(RValue::get(dest), Context.VoidPtrTy); 526 527 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 528 args.add(RValue::get(src), Context.VoidPtrTy); 529 530 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 531 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 532 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 533 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 534 535 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 536 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 537 FunctionType::ExtInfo(), 538 RequiredArgs::All), 539 fn, ReturnValueSlot(), args); 540 } 541 542 /// Determine whether the given architecture supports unaligned atomic 543 /// accesses. They don't have to be fast, just faster than a function 544 /// call and a mutex. 545 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 546 // FIXME: Allow unaligned atomic load/store on x86. (It is not 547 // currently supported by the backend.) 548 return 0; 549 } 550 551 /// Return the maximum size that permits atomic accesses for the given 552 /// architecture. 553 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 554 llvm::Triple::ArchType arch) { 555 // ARM has 8-byte atomic accesses, but it's not clear whether we 556 // want to rely on them here. 557 558 // In the default case, just assume that any size up to a pointer is 559 // fine given adequate alignment. 560 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 561 } 562 563 namespace { 564 class PropertyImplStrategy { 565 public: 566 enum StrategyKind { 567 /// The 'native' strategy is to use the architecture's provided 568 /// reads and writes. 569 Native, 570 571 /// Use objc_setProperty and objc_getProperty. 572 GetSetProperty, 573 574 /// Use objc_setProperty for the setter, but use expression 575 /// evaluation for the getter. 576 SetPropertyAndExpressionGet, 577 578 /// Use objc_copyStruct. 579 CopyStruct, 580 581 /// The 'expression' strategy is to emit normal assignment or 582 /// lvalue-to-rvalue expressions. 583 Expression 584 }; 585 586 StrategyKind getKind() const { return StrategyKind(Kind); } 587 588 bool hasStrongMember() const { return HasStrong; } 589 bool isAtomic() const { return IsAtomic; } 590 bool isCopy() const { return IsCopy; } 591 592 CharUnits getIvarSize() const { return IvarSize; } 593 CharUnits getIvarAlignment() const { return IvarAlignment; } 594 595 PropertyImplStrategy(CodeGenModule &CGM, 596 const ObjCPropertyImplDecl *propImpl); 597 598 private: 599 unsigned Kind : 8; 600 unsigned IsAtomic : 1; 601 unsigned IsCopy : 1; 602 unsigned HasStrong : 1; 603 604 CharUnits IvarSize; 605 CharUnits IvarAlignment; 606 }; 607 } 608 609 /// Pick an implementation strategy for the given property synthesis. 610 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 611 const ObjCPropertyImplDecl *propImpl) { 612 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 613 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 614 615 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 616 IsAtomic = prop->isAtomic(); 617 HasStrong = false; // doesn't matter here. 618 619 // Evaluate the ivar's size and alignment. 620 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 621 QualType ivarType = ivar->getType(); 622 std::tie(IvarSize, IvarAlignment) = 623 CGM.getContext().getTypeInfoInChars(ivarType); 624 625 // If we have a copy property, we always have to use getProperty/setProperty. 626 // TODO: we could actually use setProperty and an expression for non-atomics. 627 if (IsCopy) { 628 Kind = GetSetProperty; 629 return; 630 } 631 632 // Handle retain. 633 if (setterKind == ObjCPropertyDecl::Retain) { 634 // In GC-only, there's nothing special that needs to be done. 635 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 636 // fallthrough 637 638 // In ARC, if the property is non-atomic, use expression emission, 639 // which translates to objc_storeStrong. This isn't required, but 640 // it's slightly nicer. 641 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 642 // Using standard expression emission for the setter is only 643 // acceptable if the ivar is __strong, which won't be true if 644 // the property is annotated with __attribute__((NSObject)). 645 // TODO: falling all the way back to objc_setProperty here is 646 // just laziness, though; we could still use objc_storeStrong 647 // if we hacked it right. 648 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 649 Kind = Expression; 650 else 651 Kind = SetPropertyAndExpressionGet; 652 return; 653 654 // Otherwise, we need to at least use setProperty. However, if 655 // the property isn't atomic, we can use normal expression 656 // emission for the getter. 657 } else if (!IsAtomic) { 658 Kind = SetPropertyAndExpressionGet; 659 return; 660 661 // Otherwise, we have to use both setProperty and getProperty. 662 } else { 663 Kind = GetSetProperty; 664 return; 665 } 666 } 667 668 // If we're not atomic, just use expression accesses. 669 if (!IsAtomic) { 670 Kind = Expression; 671 return; 672 } 673 674 // Properties on bitfield ivars need to be emitted using expression 675 // accesses even if they're nominally atomic. 676 if (ivar->isBitField()) { 677 Kind = Expression; 678 return; 679 } 680 681 // GC-qualified or ARC-qualified ivars need to be emitted as 682 // expressions. This actually works out to being atomic anyway, 683 // except for ARC __strong, but that should trigger the above code. 684 if (ivarType.hasNonTrivialObjCLifetime() || 685 (CGM.getLangOpts().getGC() && 686 CGM.getContext().getObjCGCAttrKind(ivarType))) { 687 Kind = Expression; 688 return; 689 } 690 691 // Compute whether the ivar has strong members. 692 if (CGM.getLangOpts().getGC()) 693 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 694 HasStrong = recordType->getDecl()->hasObjectMember(); 695 696 // We can never access structs with object members with a native 697 // access, because we need to use write barriers. This is what 698 // objc_copyStruct is for. 699 if (HasStrong) { 700 Kind = CopyStruct; 701 return; 702 } 703 704 // Otherwise, this is target-dependent and based on the size and 705 // alignment of the ivar. 706 707 // If the size of the ivar is not a power of two, give up. We don't 708 // want to get into the business of doing compare-and-swaps. 709 if (!IvarSize.isPowerOfTwo()) { 710 Kind = CopyStruct; 711 return; 712 } 713 714 llvm::Triple::ArchType arch = 715 CGM.getTarget().getTriple().getArch(); 716 717 // Most architectures require memory to fit within a single cache 718 // line, so the alignment has to be at least the size of the access. 719 // Otherwise we have to grab a lock. 720 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 721 Kind = CopyStruct; 722 return; 723 } 724 725 // If the ivar's size exceeds the architecture's maximum atomic 726 // access size, we have to use CopyStruct. 727 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 728 Kind = CopyStruct; 729 return; 730 } 731 732 // Otherwise, we can use native loads and stores. 733 Kind = Native; 734 } 735 736 /// \brief Generate an Objective-C property getter function. 737 /// 738 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 739 /// is illegal within a category. 740 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 741 const ObjCPropertyImplDecl *PID) { 742 llvm::Constant *AtomicHelperFn = 743 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 744 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 745 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 746 assert(OMD && "Invalid call to generate getter (empty method)"); 747 StartObjCMethod(OMD, IMP->getClassInterface()); 748 749 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 750 751 FinishFunction(); 752 } 753 754 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 755 const Expr *getter = propImpl->getGetterCXXConstructor(); 756 if (!getter) return true; 757 758 // Sema only makes only of these when the ivar has a C++ class type, 759 // so the form is pretty constrained. 760 761 // If the property has a reference type, we might just be binding a 762 // reference, in which case the result will be a gl-value. We should 763 // treat this as a non-trivial operation. 764 if (getter->isGLValue()) 765 return false; 766 767 // If we selected a trivial copy-constructor, we're okay. 768 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 769 return (construct->getConstructor()->isTrivial()); 770 771 // The constructor might require cleanups (in which case it's never 772 // trivial). 773 assert(isa<ExprWithCleanups>(getter)); 774 return false; 775 } 776 777 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 778 /// copy the ivar into the resturn slot. 779 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 780 llvm::Value *returnAddr, 781 ObjCIvarDecl *ivar, 782 llvm::Constant *AtomicHelperFn) { 783 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 784 // AtomicHelperFn); 785 CallArgList args; 786 787 // The 1st argument is the return Slot. 788 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 789 790 // The 2nd argument is the address of the ivar. 791 llvm::Value *ivarAddr = 792 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 793 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 794 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 795 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 796 797 // Third argument is the helper function. 798 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 799 800 llvm::Value *copyCppAtomicObjectFn = 801 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 802 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 803 args, 804 FunctionType::ExtInfo(), 805 RequiredArgs::All), 806 copyCppAtomicObjectFn, ReturnValueSlot(), args); 807 } 808 809 void 810 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 811 const ObjCPropertyImplDecl *propImpl, 812 const ObjCMethodDecl *GetterMethodDecl, 813 llvm::Constant *AtomicHelperFn) { 814 // If there's a non-trivial 'get' expression, we just have to emit that. 815 if (!hasTrivialGetExpr(propImpl)) { 816 if (!AtomicHelperFn) { 817 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 818 /*nrvo*/ nullptr); 819 EmitReturnStmt(ret); 820 } 821 else { 822 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 823 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 824 ivar, AtomicHelperFn); 825 } 826 return; 827 } 828 829 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 830 QualType propType = prop->getType(); 831 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 832 833 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 834 835 // Pick an implementation strategy. 836 PropertyImplStrategy strategy(CGM, propImpl); 837 switch (strategy.getKind()) { 838 case PropertyImplStrategy::Native: { 839 // We don't need to do anything for a zero-size struct. 840 if (strategy.getIvarSize().isZero()) 841 return; 842 843 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 844 845 // Currently, all atomic accesses have to be through integer 846 // types, so there's no point in trying to pick a prettier type. 847 llvm::Type *bitcastType = 848 llvm::Type::getIntNTy(getLLVMContext(), 849 getContext().toBits(strategy.getIvarSize())); 850 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 851 852 // Perform an atomic load. This does not impose ordering constraints. 853 llvm::Value *ivarAddr = LV.getAddress(); 854 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 855 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 856 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 857 load->setAtomic(llvm::Unordered); 858 859 // Store that value into the return address. Doing this with a 860 // bitcast is likely to produce some pretty ugly IR, but it's not 861 // the *most* terrible thing in the world. 862 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 863 864 // Make sure we don't do an autorelease. 865 AutoreleaseResult = false; 866 return; 867 } 868 869 case PropertyImplStrategy::GetSetProperty: { 870 llvm::Value *getPropertyFn = 871 CGM.getObjCRuntime().GetPropertyGetFunction(); 872 if (!getPropertyFn) { 873 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 874 return; 875 } 876 877 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 878 // FIXME: Can't this be simpler? This might even be worse than the 879 // corresponding gcc code. 880 llvm::Value *cmd = 881 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 882 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 883 llvm::Value *ivarOffset = 884 EmitIvarOffset(classImpl->getClassInterface(), ivar); 885 886 CallArgList args; 887 args.add(RValue::get(self), getContext().getObjCIdType()); 888 args.add(RValue::get(cmd), getContext().getObjCSelType()); 889 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 890 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 891 getContext().BoolTy); 892 893 // FIXME: We shouldn't need to get the function info here, the 894 // runtime already should have computed it to build the function. 895 llvm::Instruction *CallInstruction; 896 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 897 FunctionType::ExtInfo(), 898 RequiredArgs::All), 899 getPropertyFn, ReturnValueSlot(), args, nullptr, 900 &CallInstruction); 901 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 902 call->setTailCall(); 903 904 // We need to fix the type here. Ivars with copy & retain are 905 // always objects so we don't need to worry about complex or 906 // aggregates. 907 RV = RValue::get(Builder.CreateBitCast( 908 RV.getScalarVal(), 909 getTypes().ConvertType(getterMethod->getReturnType()))); 910 911 EmitReturnOfRValue(RV, propType); 912 913 // objc_getProperty does an autorelease, so we should suppress ours. 914 AutoreleaseResult = false; 915 916 return; 917 } 918 919 case PropertyImplStrategy::CopyStruct: 920 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 921 strategy.hasStrongMember()); 922 return; 923 924 case PropertyImplStrategy::Expression: 925 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 926 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 927 928 QualType ivarType = ivar->getType(); 929 switch (getEvaluationKind(ivarType)) { 930 case TEK_Complex: { 931 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 932 EmitStoreOfComplex(pair, 933 MakeNaturalAlignAddrLValue(ReturnValue, ivarType), 934 /*init*/ true); 935 return; 936 } 937 case TEK_Aggregate: 938 // The return value slot is guaranteed to not be aliased, but 939 // that's not necessarily the same as "on the stack", so 940 // we still potentially need objc_memmove_collectable. 941 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 942 return; 943 case TEK_Scalar: { 944 llvm::Value *value; 945 if (propType->isReferenceType()) { 946 value = LV.getAddress(); 947 } else { 948 // We want to load and autoreleaseReturnValue ARC __weak ivars. 949 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 950 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 951 952 // Otherwise we want to do a simple load, suppressing the 953 // final autorelease. 954 } else { 955 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 956 AutoreleaseResult = false; 957 } 958 959 value = Builder.CreateBitCast(value, ConvertType(propType)); 960 value = Builder.CreateBitCast( 961 value, ConvertType(GetterMethodDecl->getReturnType())); 962 } 963 964 EmitReturnOfRValue(RValue::get(value), propType); 965 return; 966 } 967 } 968 llvm_unreachable("bad evaluation kind"); 969 } 970 971 } 972 llvm_unreachable("bad @property implementation strategy!"); 973 } 974 975 /// emitStructSetterCall - Call the runtime function to store the value 976 /// from the first formal parameter into the given ivar. 977 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 978 ObjCIvarDecl *ivar) { 979 // objc_copyStruct (&structIvar, &Arg, 980 // sizeof (struct something), true, false); 981 CallArgList args; 982 983 // The first argument is the address of the ivar. 984 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 985 CGF.LoadObjCSelf(), ivar, 0) 986 .getAddress(); 987 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 988 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 989 990 // The second argument is the address of the parameter variable. 991 ParmVarDecl *argVar = *OMD->param_begin(); 992 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 993 VK_LValue, SourceLocation()); 994 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 995 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 996 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 997 998 // The third argument is the sizeof the type. 999 llvm::Value *size = 1000 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1001 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1002 1003 // The fourth argument is the 'isAtomic' flag. 1004 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1005 1006 // The fifth argument is the 'hasStrong' flag. 1007 // FIXME: should this really always be false? 1008 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1009 1010 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1011 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1012 args, 1013 FunctionType::ExtInfo(), 1014 RequiredArgs::All), 1015 copyStructFn, ReturnValueSlot(), args); 1016 } 1017 1018 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1019 /// the value from the first formal parameter into the given ivar, using 1020 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1021 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1022 ObjCMethodDecl *OMD, 1023 ObjCIvarDecl *ivar, 1024 llvm::Constant *AtomicHelperFn) { 1025 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1026 // AtomicHelperFn); 1027 CallArgList args; 1028 1029 // The first argument is the address of the ivar. 1030 llvm::Value *ivarAddr = 1031 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1032 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 1033 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1034 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1035 1036 // The second argument is the address of the parameter variable. 1037 ParmVarDecl *argVar = *OMD->param_begin(); 1038 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1039 VK_LValue, SourceLocation()); 1040 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1041 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1042 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1043 1044 // Third argument is the helper function. 1045 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1046 1047 llvm::Value *copyCppAtomicObjectFn = 1048 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1049 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1050 args, 1051 FunctionType::ExtInfo(), 1052 RequiredArgs::All), 1053 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1054 } 1055 1056 1057 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1058 Expr *setter = PID->getSetterCXXAssignment(); 1059 if (!setter) return true; 1060 1061 // Sema only makes only of these when the ivar has a C++ class type, 1062 // so the form is pretty constrained. 1063 1064 // An operator call is trivial if the function it calls is trivial. 1065 // This also implies that there's nothing non-trivial going on with 1066 // the arguments, because operator= can only be trivial if it's a 1067 // synthesized assignment operator and therefore both parameters are 1068 // references. 1069 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1070 if (const FunctionDecl *callee 1071 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1072 if (callee->isTrivial()) 1073 return true; 1074 return false; 1075 } 1076 1077 assert(isa<ExprWithCleanups>(setter)); 1078 return false; 1079 } 1080 1081 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1082 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1083 return false; 1084 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1085 } 1086 1087 void 1088 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1089 const ObjCPropertyImplDecl *propImpl, 1090 llvm::Constant *AtomicHelperFn) { 1091 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1092 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1093 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1094 1095 // Just use the setter expression if Sema gave us one and it's 1096 // non-trivial. 1097 if (!hasTrivialSetExpr(propImpl)) { 1098 if (!AtomicHelperFn) 1099 // If non-atomic, assignment is called directly. 1100 EmitStmt(propImpl->getSetterCXXAssignment()); 1101 else 1102 // If atomic, assignment is called via a locking api. 1103 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1104 AtomicHelperFn); 1105 return; 1106 } 1107 1108 PropertyImplStrategy strategy(CGM, propImpl); 1109 switch (strategy.getKind()) { 1110 case PropertyImplStrategy::Native: { 1111 // We don't need to do anything for a zero-size struct. 1112 if (strategy.getIvarSize().isZero()) 1113 return; 1114 1115 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 1116 1117 LValue ivarLValue = 1118 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1119 llvm::Value *ivarAddr = ivarLValue.getAddress(); 1120 1121 // Currently, all atomic accesses have to be through integer 1122 // types, so there's no point in trying to pick a prettier type. 1123 llvm::Type *bitcastType = 1124 llvm::Type::getIntNTy(getLLVMContext(), 1125 getContext().toBits(strategy.getIvarSize())); 1126 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1127 1128 // Cast both arguments to the chosen operation type. 1129 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 1130 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1131 1132 // This bitcast load is likely to cause some nasty IR. 1133 llvm::Value *load = Builder.CreateLoad(argAddr); 1134 1135 // Perform an atomic store. There are no memory ordering requirements. 1136 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1137 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 1138 store->setAtomic(llvm::Unordered); 1139 return; 1140 } 1141 1142 case PropertyImplStrategy::GetSetProperty: 1143 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1144 1145 llvm::Value *setOptimizedPropertyFn = nullptr; 1146 llvm::Value *setPropertyFn = nullptr; 1147 if (UseOptimizedSetter(CGM)) { 1148 // 10.8 and iOS 6.0 code and GC is off 1149 setOptimizedPropertyFn = 1150 CGM.getObjCRuntime() 1151 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1152 strategy.isCopy()); 1153 if (!setOptimizedPropertyFn) { 1154 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1155 return; 1156 } 1157 } 1158 else { 1159 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1160 if (!setPropertyFn) { 1161 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1162 return; 1163 } 1164 } 1165 1166 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1167 // <is-atomic>, <is-copy>). 1168 llvm::Value *cmd = 1169 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 1170 llvm::Value *self = 1171 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1172 llvm::Value *ivarOffset = 1173 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1174 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 1175 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 1176 1177 CallArgList args; 1178 args.add(RValue::get(self), getContext().getObjCIdType()); 1179 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1180 if (setOptimizedPropertyFn) { 1181 args.add(RValue::get(arg), getContext().getObjCIdType()); 1182 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1183 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1184 FunctionType::ExtInfo(), 1185 RequiredArgs::All), 1186 setOptimizedPropertyFn, ReturnValueSlot(), args); 1187 } else { 1188 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1189 args.add(RValue::get(arg), getContext().getObjCIdType()); 1190 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1191 getContext().BoolTy); 1192 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1193 getContext().BoolTy); 1194 // FIXME: We shouldn't need to get the function info here, the runtime 1195 // already should have computed it to build the function. 1196 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1197 FunctionType::ExtInfo(), 1198 RequiredArgs::All), 1199 setPropertyFn, ReturnValueSlot(), args); 1200 } 1201 1202 return; 1203 } 1204 1205 case PropertyImplStrategy::CopyStruct: 1206 emitStructSetterCall(*this, setterMethod, ivar); 1207 return; 1208 1209 case PropertyImplStrategy::Expression: 1210 break; 1211 } 1212 1213 // Otherwise, fake up some ASTs and emit a normal assignment. 1214 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1215 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1216 VK_LValue, SourceLocation()); 1217 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1218 selfDecl->getType(), CK_LValueToRValue, &self, 1219 VK_RValue); 1220 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1221 SourceLocation(), SourceLocation(), 1222 &selfLoad, true, true); 1223 1224 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1225 QualType argType = argDecl->getType().getNonReferenceType(); 1226 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1227 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1228 argType.getUnqualifiedType(), CK_LValueToRValue, 1229 &arg, VK_RValue); 1230 1231 // The property type can differ from the ivar type in some situations with 1232 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1233 // The following absurdity is just to ensure well-formed IR. 1234 CastKind argCK = CK_NoOp; 1235 if (ivarRef.getType()->isObjCObjectPointerType()) { 1236 if (argLoad.getType()->isObjCObjectPointerType()) 1237 argCK = CK_BitCast; 1238 else if (argLoad.getType()->isBlockPointerType()) 1239 argCK = CK_BlockPointerToObjCPointerCast; 1240 else 1241 argCK = CK_CPointerToObjCPointerCast; 1242 } else if (ivarRef.getType()->isBlockPointerType()) { 1243 if (argLoad.getType()->isBlockPointerType()) 1244 argCK = CK_BitCast; 1245 else 1246 argCK = CK_AnyPointerToBlockPointerCast; 1247 } else if (ivarRef.getType()->isPointerType()) { 1248 argCK = CK_BitCast; 1249 } 1250 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1251 ivarRef.getType(), argCK, &argLoad, 1252 VK_RValue); 1253 Expr *finalArg = &argLoad; 1254 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1255 argLoad.getType())) 1256 finalArg = &argCast; 1257 1258 1259 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1260 ivarRef.getType(), VK_RValue, OK_Ordinary, 1261 SourceLocation(), false); 1262 EmitStmt(&assign); 1263 } 1264 1265 /// \brief Generate an Objective-C property setter function. 1266 /// 1267 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1268 /// is illegal within a category. 1269 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1270 const ObjCPropertyImplDecl *PID) { 1271 llvm::Constant *AtomicHelperFn = 1272 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1273 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1274 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1275 assert(OMD && "Invalid call to generate setter (empty method)"); 1276 StartObjCMethod(OMD, IMP->getClassInterface()); 1277 1278 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1279 1280 FinishFunction(); 1281 } 1282 1283 namespace { 1284 struct DestroyIvar : EHScopeStack::Cleanup { 1285 private: 1286 llvm::Value *addr; 1287 const ObjCIvarDecl *ivar; 1288 CodeGenFunction::Destroyer *destroyer; 1289 bool useEHCleanupForArray; 1290 public: 1291 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1292 CodeGenFunction::Destroyer *destroyer, 1293 bool useEHCleanupForArray) 1294 : addr(addr), ivar(ivar), destroyer(destroyer), 1295 useEHCleanupForArray(useEHCleanupForArray) {} 1296 1297 void Emit(CodeGenFunction &CGF, Flags flags) override { 1298 LValue lvalue 1299 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1300 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1301 flags.isForNormalCleanup() && useEHCleanupForArray); 1302 } 1303 }; 1304 } 1305 1306 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1307 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1308 llvm::Value *addr, 1309 QualType type) { 1310 llvm::Value *null = getNullForVariable(addr); 1311 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1312 } 1313 1314 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1315 ObjCImplementationDecl *impl) { 1316 CodeGenFunction::RunCleanupsScope scope(CGF); 1317 1318 llvm::Value *self = CGF.LoadObjCSelf(); 1319 1320 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1321 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1322 ivar; ivar = ivar->getNextIvar()) { 1323 QualType type = ivar->getType(); 1324 1325 // Check whether the ivar is a destructible type. 1326 QualType::DestructionKind dtorKind = type.isDestructedType(); 1327 if (!dtorKind) continue; 1328 1329 CodeGenFunction::Destroyer *destroyer = nullptr; 1330 1331 // Use a call to objc_storeStrong to destroy strong ivars, for the 1332 // general benefit of the tools. 1333 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1334 destroyer = destroyARCStrongWithStore; 1335 1336 // Otherwise use the default for the destruction kind. 1337 } else { 1338 destroyer = CGF.getDestroyer(dtorKind); 1339 } 1340 1341 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1342 1343 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1344 cleanupKind & EHCleanup); 1345 } 1346 1347 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1348 } 1349 1350 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1351 ObjCMethodDecl *MD, 1352 bool ctor) { 1353 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1354 StartObjCMethod(MD, IMP->getClassInterface()); 1355 1356 // Emit .cxx_construct. 1357 if (ctor) { 1358 // Suppress the final autorelease in ARC. 1359 AutoreleaseResult = false; 1360 1361 for (const auto *IvarInit : IMP->inits()) { 1362 FieldDecl *Field = IvarInit->getAnyMember(); 1363 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1364 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1365 LoadObjCSelf(), Ivar, 0); 1366 EmitAggExpr(IvarInit->getInit(), 1367 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1368 AggValueSlot::DoesNotNeedGCBarriers, 1369 AggValueSlot::IsNotAliased)); 1370 } 1371 // constructor returns 'self'. 1372 CodeGenTypes &Types = CGM.getTypes(); 1373 QualType IdTy(CGM.getContext().getObjCIdType()); 1374 llvm::Value *SelfAsId = 1375 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1376 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1377 1378 // Emit .cxx_destruct. 1379 } else { 1380 emitCXXDestructMethod(*this, IMP); 1381 } 1382 FinishFunction(); 1383 } 1384 1385 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1386 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1387 it++; it++; 1388 const ABIArgInfo &AI = it->info; 1389 // FIXME. Is this sufficient check? 1390 return (AI.getKind() == ABIArgInfo::Indirect); 1391 } 1392 1393 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1394 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1395 return false; 1396 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1397 return FDTTy->getDecl()->hasObjectMember(); 1398 return false; 1399 } 1400 1401 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1402 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1403 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1404 Self->getType(), VK_LValue, SourceLocation()); 1405 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1406 } 1407 1408 QualType CodeGenFunction::TypeOfSelfObject() { 1409 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1410 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1411 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1412 getContext().getCanonicalType(selfDecl->getType())); 1413 return PTy->getPointeeType(); 1414 } 1415 1416 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1417 llvm::Constant *EnumerationMutationFn = 1418 CGM.getObjCRuntime().EnumerationMutationFunction(); 1419 1420 if (!EnumerationMutationFn) { 1421 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1422 return; 1423 } 1424 1425 CGDebugInfo *DI = getDebugInfo(); 1426 if (DI) 1427 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1428 1429 // The local variable comes into scope immediately. 1430 AutoVarEmission variable = AutoVarEmission::invalid(); 1431 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1432 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1433 1434 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1435 1436 // Fast enumeration state. 1437 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1438 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1439 EmitNullInitialization(StatePtr, StateTy); 1440 1441 // Number of elements in the items array. 1442 static const unsigned NumItems = 16; 1443 1444 // Fetch the countByEnumeratingWithState:objects:count: selector. 1445 IdentifierInfo *II[] = { 1446 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1447 &CGM.getContext().Idents.get("objects"), 1448 &CGM.getContext().Idents.get("count") 1449 }; 1450 Selector FastEnumSel = 1451 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1452 1453 QualType ItemsTy = 1454 getContext().getConstantArrayType(getContext().getObjCIdType(), 1455 llvm::APInt(32, NumItems), 1456 ArrayType::Normal, 0); 1457 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1458 1459 // Emit the collection pointer. In ARC, we do a retain. 1460 llvm::Value *Collection; 1461 if (getLangOpts().ObjCAutoRefCount) { 1462 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1463 1464 // Enter a cleanup to do the release. 1465 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1466 } else { 1467 Collection = EmitScalarExpr(S.getCollection()); 1468 } 1469 1470 // The 'continue' label needs to appear within the cleanup for the 1471 // collection object. 1472 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1473 1474 // Send it our message: 1475 CallArgList Args; 1476 1477 // The first argument is a temporary of the enumeration-state type. 1478 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1479 1480 // The second argument is a temporary array with space for NumItems 1481 // pointers. We'll actually be loading elements from the array 1482 // pointer written into the control state; this buffer is so that 1483 // collections that *aren't* backed by arrays can still queue up 1484 // batches of elements. 1485 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1486 1487 // The third argument is the capacity of that temporary array. 1488 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1489 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1490 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1491 1492 // Start the enumeration. 1493 RValue CountRV = 1494 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1495 getContext().UnsignedLongTy, 1496 FastEnumSel, 1497 Collection, Args); 1498 1499 // The initial number of objects that were returned in the buffer. 1500 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1501 1502 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1503 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1504 1505 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1506 1507 // If the limit pointer was zero to begin with, the collection is 1508 // empty; skip all this. Set the branch weight assuming this has the same 1509 // probability of exiting the loop as any other loop exit. 1510 uint64_t EntryCount = PGO.getCurrentRegionCount(); 1511 RegionCounter Cnt = getPGORegionCounter(&S); 1512 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1513 EmptyBB, LoopInitBB, 1514 PGO.createBranchWeights(EntryCount, Cnt.getCount())); 1515 1516 // Otherwise, initialize the loop. 1517 EmitBlock(LoopInitBB); 1518 1519 // Save the initial mutations value. This is the value at an 1520 // address that was written into the state object by 1521 // countByEnumeratingWithState:objects:count:. 1522 llvm::Value *StateMutationsPtrPtr = 1523 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1524 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1525 "mutationsptr"); 1526 1527 llvm::Value *initialMutations = 1528 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1529 1530 // Start looping. This is the point we return to whenever we have a 1531 // fresh, non-empty batch of objects. 1532 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1533 EmitBlock(LoopBodyBB); 1534 1535 // The current index into the buffer. 1536 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1537 index->addIncoming(zero, LoopInitBB); 1538 1539 // The current buffer size. 1540 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1541 count->addIncoming(initialBufferLimit, LoopInitBB); 1542 1543 Cnt.beginRegion(Builder); 1544 1545 // Check whether the mutations value has changed from where it was 1546 // at start. StateMutationsPtr should actually be invariant between 1547 // refreshes. 1548 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1549 llvm::Value *currentMutations 1550 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1551 1552 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1553 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1554 1555 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1556 WasNotMutatedBB, WasMutatedBB); 1557 1558 // If so, call the enumeration-mutation function. 1559 EmitBlock(WasMutatedBB); 1560 llvm::Value *V = 1561 Builder.CreateBitCast(Collection, 1562 ConvertType(getContext().getObjCIdType())); 1563 CallArgList Args2; 1564 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1565 // FIXME: We shouldn't need to get the function info here, the runtime already 1566 // should have computed it to build the function. 1567 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1568 FunctionType::ExtInfo(), 1569 RequiredArgs::All), 1570 EnumerationMutationFn, ReturnValueSlot(), Args2); 1571 1572 // Otherwise, or if the mutation function returns, just continue. 1573 EmitBlock(WasNotMutatedBB); 1574 1575 // Initialize the element variable. 1576 RunCleanupsScope elementVariableScope(*this); 1577 bool elementIsVariable; 1578 LValue elementLValue; 1579 QualType elementType; 1580 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1581 // Initialize the variable, in case it's a __block variable or something. 1582 EmitAutoVarInit(variable); 1583 1584 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1585 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1586 VK_LValue, SourceLocation()); 1587 elementLValue = EmitLValue(&tempDRE); 1588 elementType = D->getType(); 1589 elementIsVariable = true; 1590 1591 if (D->isARCPseudoStrong()) 1592 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1593 } else { 1594 elementLValue = LValue(); // suppress warning 1595 elementType = cast<Expr>(S.getElement())->getType(); 1596 elementIsVariable = false; 1597 } 1598 llvm::Type *convertedElementType = ConvertType(elementType); 1599 1600 // Fetch the buffer out of the enumeration state. 1601 // TODO: this pointer should actually be invariant between 1602 // refreshes, which would help us do certain loop optimizations. 1603 llvm::Value *StateItemsPtr = 1604 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1605 llvm::Value *EnumStateItems = 1606 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1607 1608 // Fetch the value at the current index from the buffer. 1609 llvm::Value *CurrentItemPtr = 1610 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1611 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1612 1613 // Cast that value to the right type. 1614 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1615 "currentitem"); 1616 1617 // Make sure we have an l-value. Yes, this gets evaluated every 1618 // time through the loop. 1619 if (!elementIsVariable) { 1620 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1621 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1622 } else { 1623 EmitScalarInit(CurrentItem, elementLValue); 1624 } 1625 1626 // If we do have an element variable, this assignment is the end of 1627 // its initialization. 1628 if (elementIsVariable) 1629 EmitAutoVarCleanups(variable); 1630 1631 // Perform the loop body, setting up break and continue labels. 1632 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1633 { 1634 RunCleanupsScope Scope(*this); 1635 EmitStmt(S.getBody()); 1636 } 1637 BreakContinueStack.pop_back(); 1638 1639 // Destroy the element variable now. 1640 elementVariableScope.ForceCleanup(); 1641 1642 // Check whether there are more elements. 1643 EmitBlock(AfterBody.getBlock()); 1644 1645 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1646 1647 // First we check in the local buffer. 1648 llvm::Value *indexPlusOne 1649 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1650 1651 // If we haven't overrun the buffer yet, we can continue. 1652 // Set the branch weights based on the simplifying assumption that this is 1653 // like a while-loop, i.e., ignoring that the false branch fetches more 1654 // elements and then returns to the loop. 1655 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1656 LoopBodyBB, FetchMoreBB, 1657 PGO.createBranchWeights(Cnt.getCount(), EntryCount)); 1658 1659 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1660 count->addIncoming(count, AfterBody.getBlock()); 1661 1662 // Otherwise, we have to fetch more elements. 1663 EmitBlock(FetchMoreBB); 1664 1665 CountRV = 1666 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1667 getContext().UnsignedLongTy, 1668 FastEnumSel, 1669 Collection, Args); 1670 1671 // If we got a zero count, we're done. 1672 llvm::Value *refetchCount = CountRV.getScalarVal(); 1673 1674 // (note that the message send might split FetchMoreBB) 1675 index->addIncoming(zero, Builder.GetInsertBlock()); 1676 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1677 1678 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1679 EmptyBB, LoopBodyBB); 1680 1681 // No more elements. 1682 EmitBlock(EmptyBB); 1683 1684 if (!elementIsVariable) { 1685 // If the element was not a declaration, set it to be null. 1686 1687 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1688 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1689 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1690 } 1691 1692 if (DI) 1693 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1694 1695 // Leave the cleanup we entered in ARC. 1696 if (getLangOpts().ObjCAutoRefCount) 1697 PopCleanupBlock(); 1698 1699 EmitBlock(LoopEnd.getBlock()); 1700 } 1701 1702 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1703 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1704 } 1705 1706 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1707 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1708 } 1709 1710 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1711 const ObjCAtSynchronizedStmt &S) { 1712 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1713 } 1714 1715 /// Produce the code for a CK_ARCProduceObject. Just does a 1716 /// primitive retain. 1717 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1718 llvm::Value *value) { 1719 return EmitARCRetain(type, value); 1720 } 1721 1722 namespace { 1723 struct CallObjCRelease : EHScopeStack::Cleanup { 1724 CallObjCRelease(llvm::Value *object) : object(object) {} 1725 llvm::Value *object; 1726 1727 void Emit(CodeGenFunction &CGF, Flags flags) override { 1728 // Releases at the end of the full-expression are imprecise. 1729 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1730 } 1731 }; 1732 } 1733 1734 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1735 /// release at the end of the full-expression. 1736 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1737 llvm::Value *object) { 1738 // If we're in a conditional branch, we need to make the cleanup 1739 // conditional. 1740 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1741 return object; 1742 } 1743 1744 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1745 llvm::Value *value) { 1746 return EmitARCRetainAutorelease(type, value); 1747 } 1748 1749 /// Given a number of pointers, inform the optimizer that they're 1750 /// being intrinsically used up until this point in the program. 1751 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1752 llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use; 1753 if (!fn) { 1754 llvm::FunctionType *fnType = 1755 llvm::FunctionType::get(CGM.VoidTy, None, true); 1756 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1757 } 1758 1759 // This isn't really a "runtime" function, but as an intrinsic it 1760 // doesn't really matter as long as we align things up. 1761 EmitNounwindRuntimeCall(fn, values); 1762 } 1763 1764 1765 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1766 llvm::FunctionType *type, 1767 StringRef fnName) { 1768 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1769 1770 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1771 // If the target runtime doesn't naturally support ARC, emit weak 1772 // references to the runtime support library. We don't really 1773 // permit this to fail, but we need a particular relocation style. 1774 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1775 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1776 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1777 // If we have Native ARC, set nonlazybind attribute for these APIs for 1778 // performance. 1779 f->addFnAttr(llvm::Attribute::NonLazyBind); 1780 } 1781 } 1782 1783 return fn; 1784 } 1785 1786 /// Perform an operation having the signature 1787 /// i8* (i8*) 1788 /// where a null input causes a no-op and returns null. 1789 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1790 llvm::Value *value, 1791 llvm::Constant *&fn, 1792 StringRef fnName, 1793 bool isTailCall = false) { 1794 if (isa<llvm::ConstantPointerNull>(value)) return value; 1795 1796 if (!fn) { 1797 llvm::FunctionType *fnType = 1798 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1799 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1800 } 1801 1802 // Cast the argument to 'id'. 1803 llvm::Type *origType = value->getType(); 1804 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1805 1806 // Call the function. 1807 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1808 if (isTailCall) 1809 call->setTailCall(); 1810 1811 // Cast the result back to the original type. 1812 return CGF.Builder.CreateBitCast(call, origType); 1813 } 1814 1815 /// Perform an operation having the following signature: 1816 /// i8* (i8**) 1817 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1818 llvm::Value *addr, 1819 llvm::Constant *&fn, 1820 StringRef fnName) { 1821 if (!fn) { 1822 llvm::FunctionType *fnType = 1823 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1824 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1825 } 1826 1827 // Cast the argument to 'id*'. 1828 llvm::Type *origType = addr->getType(); 1829 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1830 1831 // Call the function. 1832 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr); 1833 1834 // Cast the result back to a dereference of the original type. 1835 if (origType != CGF.Int8PtrPtrTy) 1836 result = CGF.Builder.CreateBitCast(result, 1837 cast<llvm::PointerType>(origType)->getElementType()); 1838 1839 return result; 1840 } 1841 1842 /// Perform an operation having the following signature: 1843 /// i8* (i8**, i8*) 1844 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1845 llvm::Value *addr, 1846 llvm::Value *value, 1847 llvm::Constant *&fn, 1848 StringRef fnName, 1849 bool ignored) { 1850 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1851 == value->getType()); 1852 1853 if (!fn) { 1854 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1855 1856 llvm::FunctionType *fnType 1857 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1858 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1859 } 1860 1861 llvm::Type *origType = value->getType(); 1862 1863 llvm::Value *args[] = { 1864 CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy), 1865 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1866 }; 1867 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1868 1869 if (ignored) return nullptr; 1870 1871 return CGF.Builder.CreateBitCast(result, origType); 1872 } 1873 1874 /// Perform an operation having the following signature: 1875 /// void (i8**, i8**) 1876 static void emitARCCopyOperation(CodeGenFunction &CGF, 1877 llvm::Value *dst, 1878 llvm::Value *src, 1879 llvm::Constant *&fn, 1880 StringRef fnName) { 1881 assert(dst->getType() == src->getType()); 1882 1883 if (!fn) { 1884 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1885 1886 llvm::FunctionType *fnType 1887 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1888 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1889 } 1890 1891 llvm::Value *args[] = { 1892 CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy), 1893 CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy) 1894 }; 1895 CGF.EmitNounwindRuntimeCall(fn, args); 1896 } 1897 1898 /// Produce the code to do a retain. Based on the type, calls one of: 1899 /// call i8* \@objc_retain(i8* %value) 1900 /// call i8* \@objc_retainBlock(i8* %value) 1901 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1902 if (type->isBlockPointerType()) 1903 return EmitARCRetainBlock(value, /*mandatory*/ false); 1904 else 1905 return EmitARCRetainNonBlock(value); 1906 } 1907 1908 /// Retain the given object, with normal retain semantics. 1909 /// call i8* \@objc_retain(i8* %value) 1910 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1911 return emitARCValueOperation(*this, value, 1912 CGM.getARCEntrypoints().objc_retain, 1913 "objc_retain"); 1914 } 1915 1916 /// Retain the given block, with _Block_copy semantics. 1917 /// call i8* \@objc_retainBlock(i8* %value) 1918 /// 1919 /// \param mandatory - If false, emit the call with metadata 1920 /// indicating that it's okay for the optimizer to eliminate this call 1921 /// if it can prove that the block never escapes except down the stack. 1922 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1923 bool mandatory) { 1924 llvm::Value *result 1925 = emitARCValueOperation(*this, value, 1926 CGM.getARCEntrypoints().objc_retainBlock, 1927 "objc_retainBlock"); 1928 1929 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1930 // tell the optimizer that it doesn't need to do this copy if the 1931 // block doesn't escape, where being passed as an argument doesn't 1932 // count as escaping. 1933 if (!mandatory && isa<llvm::Instruction>(result)) { 1934 llvm::CallInst *call 1935 = cast<llvm::CallInst>(result->stripPointerCasts()); 1936 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1937 1938 call->setMetadata("clang.arc.copy_on_escape", 1939 llvm::MDNode::get(Builder.getContext(), None)); 1940 } 1941 1942 return result; 1943 } 1944 1945 /// Retain the given object which is the result of a function call. 1946 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1947 /// 1948 /// Yes, this function name is one character away from a different 1949 /// call with completely different semantics. 1950 llvm::Value * 1951 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1952 // Fetch the void(void) inline asm which marks that we're going to 1953 // retain the autoreleased return value. 1954 llvm::InlineAsm *&marker 1955 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1956 if (!marker) { 1957 StringRef assembly 1958 = CGM.getTargetCodeGenInfo() 1959 .getARCRetainAutoreleasedReturnValueMarker(); 1960 1961 // If we have an empty assembly string, there's nothing to do. 1962 if (assembly.empty()) { 1963 1964 // Otherwise, at -O0, build an inline asm that we're going to call 1965 // in a moment. 1966 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1967 llvm::FunctionType *type = 1968 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1969 1970 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1971 1972 // If we're at -O1 and above, we don't want to litter the code 1973 // with this marker yet, so leave a breadcrumb for the ARC 1974 // optimizer to pick up. 1975 } else { 1976 llvm::NamedMDNode *metadata = 1977 CGM.getModule().getOrInsertNamedMetadata( 1978 "clang.arc.retainAutoreleasedReturnValueMarker"); 1979 assert(metadata->getNumOperands() <= 1); 1980 if (metadata->getNumOperands() == 0) { 1981 metadata->addOperand(llvm::MDNode::get( 1982 getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly))); 1983 } 1984 } 1985 } 1986 1987 // Call the marker asm if we made one, which we do only at -O0. 1988 if (marker) Builder.CreateCall(marker); 1989 1990 return emitARCValueOperation(*this, value, 1991 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1992 "objc_retainAutoreleasedReturnValue"); 1993 } 1994 1995 /// Release the given object. 1996 /// call void \@objc_release(i8* %value) 1997 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 1998 ARCPreciseLifetime_t precise) { 1999 if (isa<llvm::ConstantPointerNull>(value)) return; 2000 2001 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 2002 if (!fn) { 2003 llvm::FunctionType *fnType = 2004 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2005 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2006 } 2007 2008 // Cast the argument to 'id'. 2009 value = Builder.CreateBitCast(value, Int8PtrTy); 2010 2011 // Call objc_release. 2012 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2013 2014 if (precise == ARCImpreciseLifetime) { 2015 call->setMetadata("clang.imprecise_release", 2016 llvm::MDNode::get(Builder.getContext(), None)); 2017 } 2018 } 2019 2020 /// Destroy a __strong variable. 2021 /// 2022 /// At -O0, emit a call to store 'null' into the address; 2023 /// instrumenting tools prefer this because the address is exposed, 2024 /// but it's relatively cumbersome to optimize. 2025 /// 2026 /// At -O1 and above, just load and call objc_release. 2027 /// 2028 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2029 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, 2030 ARCPreciseLifetime_t precise) { 2031 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2032 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType()); 2033 llvm::Value *null = llvm::ConstantPointerNull::get( 2034 cast<llvm::PointerType>(addrTy->getElementType())); 2035 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2036 return; 2037 } 2038 2039 llvm::Value *value = Builder.CreateLoad(addr); 2040 EmitARCRelease(value, precise); 2041 } 2042 2043 /// Store into a strong object. Always calls this: 2044 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2045 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 2046 llvm::Value *value, 2047 bool ignored) { 2048 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 2049 == value->getType()); 2050 2051 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 2052 if (!fn) { 2053 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2054 llvm::FunctionType *fnType 2055 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2056 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2057 } 2058 2059 llvm::Value *args[] = { 2060 Builder.CreateBitCast(addr, Int8PtrPtrTy), 2061 Builder.CreateBitCast(value, Int8PtrTy) 2062 }; 2063 EmitNounwindRuntimeCall(fn, args); 2064 2065 if (ignored) return nullptr; 2066 return value; 2067 } 2068 2069 /// Store into a strong object. Sometimes calls this: 2070 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2071 /// Other times, breaks it down into components. 2072 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2073 llvm::Value *newValue, 2074 bool ignored) { 2075 QualType type = dst.getType(); 2076 bool isBlock = type->isBlockPointerType(); 2077 2078 // Use a store barrier at -O0 unless this is a block type or the 2079 // lvalue is inadequately aligned. 2080 if (shouldUseFusedARCCalls() && 2081 !isBlock && 2082 (dst.getAlignment().isZero() || 2083 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2084 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2085 } 2086 2087 // Otherwise, split it out. 2088 2089 // Retain the new value. 2090 newValue = EmitARCRetain(type, newValue); 2091 2092 // Read the old value. 2093 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2094 2095 // Store. We do this before the release so that any deallocs won't 2096 // see the old value. 2097 EmitStoreOfScalar(newValue, dst); 2098 2099 // Finally, release the old value. 2100 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2101 2102 return newValue; 2103 } 2104 2105 /// Autorelease the given object. 2106 /// call i8* \@objc_autorelease(i8* %value) 2107 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2108 return emitARCValueOperation(*this, value, 2109 CGM.getARCEntrypoints().objc_autorelease, 2110 "objc_autorelease"); 2111 } 2112 2113 /// Autorelease the given object. 2114 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2115 llvm::Value * 2116 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2117 return emitARCValueOperation(*this, value, 2118 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2119 "objc_autoreleaseReturnValue", 2120 /*isTailCall*/ true); 2121 } 2122 2123 /// Do a fused retain/autorelease of the given object. 2124 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2125 llvm::Value * 2126 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2127 return emitARCValueOperation(*this, value, 2128 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2129 "objc_retainAutoreleaseReturnValue", 2130 /*isTailCall*/ true); 2131 } 2132 2133 /// Do a fused retain/autorelease of the given object. 2134 /// call i8* \@objc_retainAutorelease(i8* %value) 2135 /// or 2136 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2137 /// call i8* \@objc_autorelease(i8* %retain) 2138 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2139 llvm::Value *value) { 2140 if (!type->isBlockPointerType()) 2141 return EmitARCRetainAutoreleaseNonBlock(value); 2142 2143 if (isa<llvm::ConstantPointerNull>(value)) return value; 2144 2145 llvm::Type *origType = value->getType(); 2146 value = Builder.CreateBitCast(value, Int8PtrTy); 2147 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2148 value = EmitARCAutorelease(value); 2149 return Builder.CreateBitCast(value, origType); 2150 } 2151 2152 /// Do a fused retain/autorelease of the given object. 2153 /// call i8* \@objc_retainAutorelease(i8* %value) 2154 llvm::Value * 2155 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2156 return emitARCValueOperation(*this, value, 2157 CGM.getARCEntrypoints().objc_retainAutorelease, 2158 "objc_retainAutorelease"); 2159 } 2160 2161 /// i8* \@objc_loadWeak(i8** %addr) 2162 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2163 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 2164 return emitARCLoadOperation(*this, addr, 2165 CGM.getARCEntrypoints().objc_loadWeak, 2166 "objc_loadWeak"); 2167 } 2168 2169 /// i8* \@objc_loadWeakRetained(i8** %addr) 2170 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 2171 return emitARCLoadOperation(*this, addr, 2172 CGM.getARCEntrypoints().objc_loadWeakRetained, 2173 "objc_loadWeakRetained"); 2174 } 2175 2176 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2177 /// Returns %value. 2178 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 2179 llvm::Value *value, 2180 bool ignored) { 2181 return emitARCStoreOperation(*this, addr, value, 2182 CGM.getARCEntrypoints().objc_storeWeak, 2183 "objc_storeWeak", ignored); 2184 } 2185 2186 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2187 /// Returns %value. %addr is known to not have a current weak entry. 2188 /// Essentially equivalent to: 2189 /// *addr = nil; objc_storeWeak(addr, value); 2190 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 2191 // If we're initializing to null, just write null to memory; no need 2192 // to get the runtime involved. But don't do this if optimization 2193 // is enabled, because accounting for this would make the optimizer 2194 // much more complicated. 2195 if (isa<llvm::ConstantPointerNull>(value) && 2196 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2197 Builder.CreateStore(value, addr); 2198 return; 2199 } 2200 2201 emitARCStoreOperation(*this, addr, value, 2202 CGM.getARCEntrypoints().objc_initWeak, 2203 "objc_initWeak", /*ignored*/ true); 2204 } 2205 2206 /// void \@objc_destroyWeak(i8** %addr) 2207 /// Essentially objc_storeWeak(addr, nil). 2208 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 2209 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2210 if (!fn) { 2211 llvm::FunctionType *fnType = 2212 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2213 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2214 } 2215 2216 // Cast the argument to 'id*'. 2217 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2218 2219 EmitNounwindRuntimeCall(fn, addr); 2220 } 2221 2222 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2223 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2224 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2225 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 2226 emitARCCopyOperation(*this, dst, src, 2227 CGM.getARCEntrypoints().objc_moveWeak, 2228 "objc_moveWeak"); 2229 } 2230 2231 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2232 /// Disregards the current value in %dest. Essentially 2233 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2234 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 2235 emitARCCopyOperation(*this, dst, src, 2236 CGM.getARCEntrypoints().objc_copyWeak, 2237 "objc_copyWeak"); 2238 } 2239 2240 /// Produce the code to do a objc_autoreleasepool_push. 2241 /// call i8* \@objc_autoreleasePoolPush(void) 2242 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2243 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2244 if (!fn) { 2245 llvm::FunctionType *fnType = 2246 llvm::FunctionType::get(Int8PtrTy, false); 2247 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2248 } 2249 2250 return EmitNounwindRuntimeCall(fn); 2251 } 2252 2253 /// Produce the code to do a primitive release. 2254 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2255 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2256 assert(value->getType() == Int8PtrTy); 2257 2258 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2259 if (!fn) { 2260 llvm::FunctionType *fnType = 2261 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2262 2263 // We don't want to use a weak import here; instead we should not 2264 // fall into this path. 2265 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2266 } 2267 2268 // objc_autoreleasePoolPop can throw. 2269 EmitRuntimeCallOrInvoke(fn, value); 2270 } 2271 2272 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2273 /// Which is: [[NSAutoreleasePool alloc] init]; 2274 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2275 /// init is declared as: - (id) init; in its NSObject super class. 2276 /// 2277 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2278 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2279 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2280 // [NSAutoreleasePool alloc] 2281 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2282 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2283 CallArgList Args; 2284 RValue AllocRV = 2285 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2286 getContext().getObjCIdType(), 2287 AllocSel, Receiver, Args); 2288 2289 // [Receiver init] 2290 Receiver = AllocRV.getScalarVal(); 2291 II = &CGM.getContext().Idents.get("init"); 2292 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2293 RValue InitRV = 2294 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2295 getContext().getObjCIdType(), 2296 InitSel, Receiver, Args); 2297 return InitRV.getScalarVal(); 2298 } 2299 2300 /// Produce the code to do a primitive release. 2301 /// [tmp drain]; 2302 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2303 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2304 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2305 CallArgList Args; 2306 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2307 getContext().VoidTy, DrainSel, Arg, Args); 2308 } 2309 2310 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2311 llvm::Value *addr, 2312 QualType type) { 2313 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2314 } 2315 2316 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2317 llvm::Value *addr, 2318 QualType type) { 2319 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2320 } 2321 2322 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2323 llvm::Value *addr, 2324 QualType type) { 2325 CGF.EmitARCDestroyWeak(addr); 2326 } 2327 2328 namespace { 2329 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2330 llvm::Value *Token; 2331 2332 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2333 2334 void Emit(CodeGenFunction &CGF, Flags flags) override { 2335 CGF.EmitObjCAutoreleasePoolPop(Token); 2336 } 2337 }; 2338 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2339 llvm::Value *Token; 2340 2341 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2342 2343 void Emit(CodeGenFunction &CGF, Flags flags) override { 2344 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2345 } 2346 }; 2347 } 2348 2349 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2350 if (CGM.getLangOpts().ObjCAutoRefCount) 2351 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2352 else 2353 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2354 } 2355 2356 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2357 LValue lvalue, 2358 QualType type) { 2359 switch (type.getObjCLifetime()) { 2360 case Qualifiers::OCL_None: 2361 case Qualifiers::OCL_ExplicitNone: 2362 case Qualifiers::OCL_Strong: 2363 case Qualifiers::OCL_Autoreleasing: 2364 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2365 SourceLocation()).getScalarVal(), 2366 false); 2367 2368 case Qualifiers::OCL_Weak: 2369 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2370 true); 2371 } 2372 2373 llvm_unreachable("impossible lifetime!"); 2374 } 2375 2376 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2377 const Expr *e) { 2378 e = e->IgnoreParens(); 2379 QualType type = e->getType(); 2380 2381 // If we're loading retained from a __strong xvalue, we can avoid 2382 // an extra retain/release pair by zeroing out the source of this 2383 // "move" operation. 2384 if (e->isXValue() && 2385 !type.isConstQualified() && 2386 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2387 // Emit the lvalue. 2388 LValue lv = CGF.EmitLValue(e); 2389 2390 // Load the object pointer. 2391 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2392 SourceLocation()).getScalarVal(); 2393 2394 // Set the source pointer to NULL. 2395 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2396 2397 return TryEmitResult(result, true); 2398 } 2399 2400 // As a very special optimization, in ARC++, if the l-value is the 2401 // result of a non-volatile assignment, do a simple retain of the 2402 // result of the call to objc_storeWeak instead of reloading. 2403 if (CGF.getLangOpts().CPlusPlus && 2404 !type.isVolatileQualified() && 2405 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2406 isa<BinaryOperator>(e) && 2407 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2408 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2409 2410 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2411 } 2412 2413 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2414 llvm::Value *value); 2415 2416 /// Given that the given expression is some sort of call (which does 2417 /// not return retained), emit a retain following it. 2418 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2419 llvm::Value *value = CGF.EmitScalarExpr(e); 2420 return emitARCRetainAfterCall(CGF, value); 2421 } 2422 2423 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2424 llvm::Value *value) { 2425 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2426 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2427 2428 // Place the retain immediately following the call. 2429 CGF.Builder.SetInsertPoint(call->getParent(), 2430 ++llvm::BasicBlock::iterator(call)); 2431 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2432 2433 CGF.Builder.restoreIP(ip); 2434 return value; 2435 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2436 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2437 2438 // Place the retain at the beginning of the normal destination block. 2439 llvm::BasicBlock *BB = invoke->getNormalDest(); 2440 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2441 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2442 2443 CGF.Builder.restoreIP(ip); 2444 return value; 2445 2446 // Bitcasts can arise because of related-result returns. Rewrite 2447 // the operand. 2448 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2449 llvm::Value *operand = bitcast->getOperand(0); 2450 operand = emitARCRetainAfterCall(CGF, operand); 2451 bitcast->setOperand(0, operand); 2452 return bitcast; 2453 2454 // Generic fall-back case. 2455 } else { 2456 // Retain using the non-block variant: we never need to do a copy 2457 // of a block that's been returned to us. 2458 return CGF.EmitARCRetainNonBlock(value); 2459 } 2460 } 2461 2462 /// Determine whether it might be important to emit a separate 2463 /// objc_retain_block on the result of the given expression, or 2464 /// whether it's okay to just emit it in a +1 context. 2465 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2466 assert(e->getType()->isBlockPointerType()); 2467 e = e->IgnoreParens(); 2468 2469 // For future goodness, emit block expressions directly in +1 2470 // contexts if we can. 2471 if (isa<BlockExpr>(e)) 2472 return false; 2473 2474 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2475 switch (cast->getCastKind()) { 2476 // Emitting these operations in +1 contexts is goodness. 2477 case CK_LValueToRValue: 2478 case CK_ARCReclaimReturnedObject: 2479 case CK_ARCConsumeObject: 2480 case CK_ARCProduceObject: 2481 return false; 2482 2483 // These operations preserve a block type. 2484 case CK_NoOp: 2485 case CK_BitCast: 2486 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2487 2488 // These operations are known to be bad (or haven't been considered). 2489 case CK_AnyPointerToBlockPointerCast: 2490 default: 2491 return true; 2492 } 2493 } 2494 2495 return true; 2496 } 2497 2498 /// Try to emit a PseudoObjectExpr at +1. 2499 /// 2500 /// This massively duplicates emitPseudoObjectRValue. 2501 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2502 const PseudoObjectExpr *E) { 2503 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2504 2505 // Find the result expression. 2506 const Expr *resultExpr = E->getResultExpr(); 2507 assert(resultExpr); 2508 TryEmitResult result; 2509 2510 for (PseudoObjectExpr::const_semantics_iterator 2511 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2512 const Expr *semantic = *i; 2513 2514 // If this semantic expression is an opaque value, bind it 2515 // to the result of its source expression. 2516 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2517 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2518 OVMA opaqueData; 2519 2520 // If this semantic is the result of the pseudo-object 2521 // expression, try to evaluate the source as +1. 2522 if (ov == resultExpr) { 2523 assert(!OVMA::shouldBindAsLValue(ov)); 2524 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2525 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2526 2527 // Otherwise, just bind it. 2528 } else { 2529 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2530 } 2531 opaques.push_back(opaqueData); 2532 2533 // Otherwise, if the expression is the result, evaluate it 2534 // and remember the result. 2535 } else if (semantic == resultExpr) { 2536 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2537 2538 // Otherwise, evaluate the expression in an ignored context. 2539 } else { 2540 CGF.EmitIgnoredExpr(semantic); 2541 } 2542 } 2543 2544 // Unbind all the opaques now. 2545 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2546 opaques[i].unbind(CGF); 2547 2548 return result; 2549 } 2550 2551 static TryEmitResult 2552 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2553 // We should *never* see a nested full-expression here, because if 2554 // we fail to emit at +1, our caller must not retain after we close 2555 // out the full-expression. 2556 assert(!isa<ExprWithCleanups>(e)); 2557 2558 // The desired result type, if it differs from the type of the 2559 // ultimate opaque expression. 2560 llvm::Type *resultType = nullptr; 2561 2562 while (true) { 2563 e = e->IgnoreParens(); 2564 2565 // There's a break at the end of this if-chain; anything 2566 // that wants to keep looping has to explicitly continue. 2567 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2568 switch (ce->getCastKind()) { 2569 // No-op casts don't change the type, so we just ignore them. 2570 case CK_NoOp: 2571 e = ce->getSubExpr(); 2572 continue; 2573 2574 case CK_LValueToRValue: { 2575 TryEmitResult loadResult 2576 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2577 if (resultType) { 2578 llvm::Value *value = loadResult.getPointer(); 2579 value = CGF.Builder.CreateBitCast(value, resultType); 2580 loadResult.setPointer(value); 2581 } 2582 return loadResult; 2583 } 2584 2585 // These casts can change the type, so remember that and 2586 // soldier on. We only need to remember the outermost such 2587 // cast, though. 2588 case CK_CPointerToObjCPointerCast: 2589 case CK_BlockPointerToObjCPointerCast: 2590 case CK_AnyPointerToBlockPointerCast: 2591 case CK_BitCast: 2592 if (!resultType) 2593 resultType = CGF.ConvertType(ce->getType()); 2594 e = ce->getSubExpr(); 2595 assert(e->getType()->hasPointerRepresentation()); 2596 continue; 2597 2598 // For consumptions, just emit the subexpression and thus elide 2599 // the retain/release pair. 2600 case CK_ARCConsumeObject: { 2601 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2602 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2603 return TryEmitResult(result, true); 2604 } 2605 2606 // Block extends are net +0. Naively, we could just recurse on 2607 // the subexpression, but actually we need to ensure that the 2608 // value is copied as a block, so there's a little filter here. 2609 case CK_ARCExtendBlockObject: { 2610 llvm::Value *result; // will be a +0 value 2611 2612 // If we can't safely assume the sub-expression will produce a 2613 // block-copied value, emit the sub-expression at +0. 2614 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2615 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2616 2617 // Otherwise, try to emit the sub-expression at +1 recursively. 2618 } else { 2619 TryEmitResult subresult 2620 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2621 result = subresult.getPointer(); 2622 2623 // If that produced a retained value, just use that, 2624 // possibly casting down. 2625 if (subresult.getInt()) { 2626 if (resultType) 2627 result = CGF.Builder.CreateBitCast(result, resultType); 2628 return TryEmitResult(result, true); 2629 } 2630 2631 // Otherwise it's +0. 2632 } 2633 2634 // Retain the object as a block, then cast down. 2635 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2636 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2637 return TryEmitResult(result, true); 2638 } 2639 2640 // For reclaims, emit the subexpression as a retained call and 2641 // skip the consumption. 2642 case CK_ARCReclaimReturnedObject: { 2643 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2644 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2645 return TryEmitResult(result, true); 2646 } 2647 2648 default: 2649 break; 2650 } 2651 2652 // Skip __extension__. 2653 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2654 if (op->getOpcode() == UO_Extension) { 2655 e = op->getSubExpr(); 2656 continue; 2657 } 2658 2659 // For calls and message sends, use the retained-call logic. 2660 // Delegate inits are a special case in that they're the only 2661 // returns-retained expression that *isn't* surrounded by 2662 // a consume. 2663 } else if (isa<CallExpr>(e) || 2664 (isa<ObjCMessageExpr>(e) && 2665 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2666 llvm::Value *result = emitARCRetainCall(CGF, e); 2667 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2668 return TryEmitResult(result, true); 2669 2670 // Look through pseudo-object expressions. 2671 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2672 TryEmitResult result 2673 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2674 if (resultType) { 2675 llvm::Value *value = result.getPointer(); 2676 value = CGF.Builder.CreateBitCast(value, resultType); 2677 result.setPointer(value); 2678 } 2679 return result; 2680 } 2681 2682 // Conservatively halt the search at any other expression kind. 2683 break; 2684 } 2685 2686 // We didn't find an obvious production, so emit what we've got and 2687 // tell the caller that we didn't manage to retain. 2688 llvm::Value *result = CGF.EmitScalarExpr(e); 2689 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2690 return TryEmitResult(result, false); 2691 } 2692 2693 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2694 LValue lvalue, 2695 QualType type) { 2696 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2697 llvm::Value *value = result.getPointer(); 2698 if (!result.getInt()) 2699 value = CGF.EmitARCRetain(type, value); 2700 return value; 2701 } 2702 2703 /// EmitARCRetainScalarExpr - Semantically equivalent to 2704 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2705 /// best-effort attempt to peephole expressions that naturally produce 2706 /// retained objects. 2707 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2708 // The retain needs to happen within the full-expression. 2709 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2710 enterFullExpression(cleanups); 2711 RunCleanupsScope scope(*this); 2712 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2713 } 2714 2715 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2716 llvm::Value *value = result.getPointer(); 2717 if (!result.getInt()) 2718 value = EmitARCRetain(e->getType(), value); 2719 return value; 2720 } 2721 2722 llvm::Value * 2723 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2724 // The retain needs to happen within the full-expression. 2725 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2726 enterFullExpression(cleanups); 2727 RunCleanupsScope scope(*this); 2728 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2729 } 2730 2731 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2732 llvm::Value *value = result.getPointer(); 2733 if (result.getInt()) 2734 value = EmitARCAutorelease(value); 2735 else 2736 value = EmitARCRetainAutorelease(e->getType(), value); 2737 return value; 2738 } 2739 2740 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2741 llvm::Value *result; 2742 bool doRetain; 2743 2744 if (shouldEmitSeparateBlockRetain(e)) { 2745 result = EmitScalarExpr(e); 2746 doRetain = true; 2747 } else { 2748 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2749 result = subresult.getPointer(); 2750 doRetain = !subresult.getInt(); 2751 } 2752 2753 if (doRetain) 2754 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2755 return EmitObjCConsumeObject(e->getType(), result); 2756 } 2757 2758 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2759 // In ARC, retain and autorelease the expression. 2760 if (getLangOpts().ObjCAutoRefCount) { 2761 // Do so before running any cleanups for the full-expression. 2762 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2763 return EmitARCRetainAutoreleaseScalarExpr(expr); 2764 } 2765 2766 // Otherwise, use the normal scalar-expression emission. The 2767 // exception machinery doesn't do anything special with the 2768 // exception like retaining it, so there's no safety associated with 2769 // only running cleanups after the throw has started, and when it 2770 // matters it tends to be substantially inferior code. 2771 return EmitScalarExpr(expr); 2772 } 2773 2774 std::pair<LValue,llvm::Value*> 2775 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2776 bool ignored) { 2777 // Evaluate the RHS first. 2778 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2779 llvm::Value *value = result.getPointer(); 2780 2781 bool hasImmediateRetain = result.getInt(); 2782 2783 // If we didn't emit a retained object, and the l-value is of block 2784 // type, then we need to emit the block-retain immediately in case 2785 // it invalidates the l-value. 2786 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2787 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2788 hasImmediateRetain = true; 2789 } 2790 2791 LValue lvalue = EmitLValue(e->getLHS()); 2792 2793 // If the RHS was emitted retained, expand this. 2794 if (hasImmediateRetain) { 2795 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 2796 EmitStoreOfScalar(value, lvalue); 2797 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 2798 } else { 2799 value = EmitARCStoreStrong(lvalue, value, ignored); 2800 } 2801 2802 return std::pair<LValue,llvm::Value*>(lvalue, value); 2803 } 2804 2805 std::pair<LValue,llvm::Value*> 2806 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2807 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2808 LValue lvalue = EmitLValue(e->getLHS()); 2809 2810 EmitStoreOfScalar(value, lvalue); 2811 2812 return std::pair<LValue,llvm::Value*>(lvalue, value); 2813 } 2814 2815 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2816 const ObjCAutoreleasePoolStmt &ARPS) { 2817 const Stmt *subStmt = ARPS.getSubStmt(); 2818 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2819 2820 CGDebugInfo *DI = getDebugInfo(); 2821 if (DI) 2822 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2823 2824 // Keep track of the current cleanup stack depth. 2825 RunCleanupsScope Scope(*this); 2826 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2827 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2828 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2829 } else { 2830 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2831 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2832 } 2833 2834 for (const auto *I : S.body()) 2835 EmitStmt(I); 2836 2837 if (DI) 2838 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2839 } 2840 2841 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2842 /// make sure it survives garbage collection until this point. 2843 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2844 // We just use an inline assembly. 2845 llvm::FunctionType *extenderType 2846 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2847 llvm::Value *extender 2848 = llvm::InlineAsm::get(extenderType, 2849 /* assembly */ "", 2850 /* constraints */ "r", 2851 /* side effects */ true); 2852 2853 object = Builder.CreateBitCast(object, VoidPtrTy); 2854 EmitNounwindRuntimeCall(extender, object); 2855 } 2856 2857 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2858 /// non-trivial copy assignment function, produce following helper function. 2859 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2860 /// 2861 llvm::Constant * 2862 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2863 const ObjCPropertyImplDecl *PID) { 2864 if (!getLangOpts().CPlusPlus || 2865 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2866 return nullptr; 2867 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2868 if (!Ty->isRecordType()) 2869 return nullptr; 2870 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2871 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2872 return nullptr; 2873 llvm::Constant *HelperFn = nullptr; 2874 if (hasTrivialSetExpr(PID)) 2875 return nullptr; 2876 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2877 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2878 return HelperFn; 2879 2880 ASTContext &C = getContext(); 2881 IdentifierInfo *II 2882 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2883 FunctionDecl *FD = FunctionDecl::Create(C, 2884 C.getTranslationUnitDecl(), 2885 SourceLocation(), 2886 SourceLocation(), II, C.VoidTy, 2887 nullptr, SC_Static, 2888 false, 2889 false); 2890 2891 QualType DestTy = C.getPointerType(Ty); 2892 QualType SrcTy = Ty; 2893 SrcTy.addConst(); 2894 SrcTy = C.getPointerType(SrcTy); 2895 2896 FunctionArgList args; 2897 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 2898 args.push_back(&dstDecl); 2899 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 2900 args.push_back(&srcDecl); 2901 2902 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2903 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2904 2905 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2906 2907 llvm::Function *Fn = 2908 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2909 "__assign_helper_atomic_property_", 2910 &CGM.getModule()); 2911 2912 StartFunction(FD, C.VoidTy, Fn, FI, args); 2913 2914 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2915 VK_RValue, SourceLocation()); 2916 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2917 VK_LValue, OK_Ordinary, SourceLocation()); 2918 2919 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2920 VK_RValue, SourceLocation()); 2921 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2922 VK_LValue, OK_Ordinary, SourceLocation()); 2923 2924 Expr *Args[2] = { &DST, &SRC }; 2925 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2926 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2927 Args, DestTy->getPointeeType(), 2928 VK_LValue, SourceLocation(), false); 2929 2930 EmitStmt(&TheCall); 2931 2932 FinishFunction(); 2933 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2934 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2935 return HelperFn; 2936 } 2937 2938 llvm::Constant * 2939 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2940 const ObjCPropertyImplDecl *PID) { 2941 if (!getLangOpts().CPlusPlus || 2942 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2943 return nullptr; 2944 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2945 QualType Ty = PD->getType(); 2946 if (!Ty->isRecordType()) 2947 return nullptr; 2948 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2949 return nullptr; 2950 llvm::Constant *HelperFn = nullptr; 2951 2952 if (hasTrivialGetExpr(PID)) 2953 return nullptr; 2954 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2955 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2956 return HelperFn; 2957 2958 2959 ASTContext &C = getContext(); 2960 IdentifierInfo *II 2961 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2962 FunctionDecl *FD = FunctionDecl::Create(C, 2963 C.getTranslationUnitDecl(), 2964 SourceLocation(), 2965 SourceLocation(), II, C.VoidTy, 2966 nullptr, SC_Static, 2967 false, 2968 false); 2969 2970 QualType DestTy = C.getPointerType(Ty); 2971 QualType SrcTy = Ty; 2972 SrcTy.addConst(); 2973 SrcTy = C.getPointerType(SrcTy); 2974 2975 FunctionArgList args; 2976 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 2977 args.push_back(&dstDecl); 2978 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 2979 args.push_back(&srcDecl); 2980 2981 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2982 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2983 2984 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2985 2986 llvm::Function *Fn = 2987 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2988 "__copy_helper_atomic_property_", &CGM.getModule()); 2989 2990 StartFunction(FD, C.VoidTy, Fn, FI, args); 2991 2992 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2993 VK_RValue, SourceLocation()); 2994 2995 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2996 VK_LValue, OK_Ordinary, SourceLocation()); 2997 2998 CXXConstructExpr *CXXConstExpr = 2999 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3000 3001 SmallVector<Expr*, 4> ConstructorArgs; 3002 ConstructorArgs.push_back(&SRC); 3003 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 3004 ++A; 3005 3006 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 3007 A != AEnd; ++A) 3008 ConstructorArgs.push_back(*A); 3009 3010 CXXConstructExpr *TheCXXConstructExpr = 3011 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3012 CXXConstExpr->getConstructor(), 3013 CXXConstExpr->isElidable(), 3014 ConstructorArgs, 3015 CXXConstExpr->hadMultipleCandidates(), 3016 CXXConstExpr->isListInitialization(), 3017 CXXConstExpr->isStdInitListInitialization(), 3018 CXXConstExpr->requiresZeroInitialization(), 3019 CXXConstExpr->getConstructionKind(), 3020 SourceRange()); 3021 3022 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3023 VK_RValue, SourceLocation()); 3024 3025 RValue DV = EmitAnyExpr(&DstExpr); 3026 CharUnits Alignment 3027 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3028 EmitAggExpr(TheCXXConstructExpr, 3029 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 3030 AggValueSlot::IsDestructed, 3031 AggValueSlot::DoesNotNeedGCBarriers, 3032 AggValueSlot::IsNotAliased)); 3033 3034 FinishFunction(); 3035 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3036 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3037 return HelperFn; 3038 } 3039 3040 llvm::Value * 3041 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3042 // Get selectors for retain/autorelease. 3043 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3044 Selector CopySelector = 3045 getContext().Selectors.getNullarySelector(CopyID); 3046 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3047 Selector AutoreleaseSelector = 3048 getContext().Selectors.getNullarySelector(AutoreleaseID); 3049 3050 // Emit calls to retain/autorelease. 3051 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3052 llvm::Value *Val = Block; 3053 RValue Result; 3054 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3055 Ty, CopySelector, 3056 Val, CallArgList(), nullptr, nullptr); 3057 Val = Result.getScalarVal(); 3058 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3059 Ty, AutoreleaseSelector, 3060 Val, CallArgList(), nullptr, nullptr); 3061 Val = Result.getScalarVal(); 3062 return Val; 3063 } 3064 3065 3066 CGObjCRuntime::~CGObjCRuntime() {} 3067