1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerKind>> Checks, 89 const BinOpInfo &Info); 90 91 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 92 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 93 } 94 95 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 96 const AlignValueAttr *AVAttr = nullptr; 97 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 98 const ValueDecl *VD = DRE->getDecl(); 99 100 if (VD->getType()->isReferenceType()) { 101 if (const auto *TTy = 102 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 103 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 104 } else { 105 // Assumptions for function parameters are emitted at the start of the 106 // function, so there is no need to repeat that here. 107 if (isa<ParmVarDecl>(VD)) 108 return; 109 110 AVAttr = VD->getAttr<AlignValueAttr>(); 111 } 112 } 113 114 if (!AVAttr) 115 if (const auto *TTy = 116 dyn_cast<TypedefType>(E->getType())) 117 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 118 119 if (!AVAttr) 120 return; 121 122 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 123 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 124 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 125 } 126 127 /// EmitLoadOfLValue - Given an expression with complex type that represents a 128 /// value l-value, this method emits the address of the l-value, then loads 129 /// and returns the result. 130 Value *EmitLoadOfLValue(const Expr *E) { 131 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 132 E->getExprLoc()); 133 134 EmitLValueAlignmentAssumption(E, V); 135 return V; 136 } 137 138 /// EmitConversionToBool - Convert the specified expression value to a 139 /// boolean (i1) truth value. This is equivalent to "Val != 0". 140 Value *EmitConversionToBool(Value *Src, QualType DstTy); 141 142 /// \brief Emit a check that a conversion to or from a floating-point type 143 /// does not overflow. 144 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 145 Value *Src, QualType SrcType, 146 QualType DstType, llvm::Type *DstTy); 147 148 /// EmitScalarConversion - Emit a conversion from the specified type to the 149 /// specified destination type, both of which are LLVM scalar types. 150 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 151 152 /// EmitComplexToScalarConversion - Emit a conversion from the specified 153 /// complex type to the specified destination type, where the destination type 154 /// is an LLVM scalar type. 155 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 156 QualType SrcTy, QualType DstTy); 157 158 /// EmitNullValue - Emit a value that corresponds to null for the given type. 159 Value *EmitNullValue(QualType Ty); 160 161 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 162 Value *EmitFloatToBoolConversion(Value *V) { 163 // Compare against 0.0 for fp scalars. 164 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 165 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 166 } 167 168 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 169 Value *EmitPointerToBoolConversion(Value *V) { 170 Value *Zero = llvm::ConstantPointerNull::get( 171 cast<llvm::PointerType>(V->getType())); 172 return Builder.CreateICmpNE(V, Zero, "tobool"); 173 } 174 175 Value *EmitIntToBoolConversion(Value *V) { 176 // Because of the type rules of C, we often end up computing a 177 // logical value, then zero extending it to int, then wanting it 178 // as a logical value again. Optimize this common case. 179 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 180 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 181 Value *Result = ZI->getOperand(0); 182 // If there aren't any more uses, zap the instruction to save space. 183 // Note that there can be more uses, for example if this 184 // is the result of an assignment. 185 if (ZI->use_empty()) 186 ZI->eraseFromParent(); 187 return Result; 188 } 189 } 190 191 return Builder.CreateIsNotNull(V, "tobool"); 192 } 193 194 //===--------------------------------------------------------------------===// 195 // Visitor Methods 196 //===--------------------------------------------------------------------===// 197 198 Value *Visit(Expr *E) { 199 ApplyDebugLocation DL(CGF, E->getLocStart()); 200 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 201 } 202 203 Value *VisitStmt(Stmt *S) { 204 S->dump(CGF.getContext().getSourceManager()); 205 llvm_unreachable("Stmt can't have complex result type!"); 206 } 207 Value *VisitExpr(Expr *S); 208 209 Value *VisitParenExpr(ParenExpr *PE) { 210 return Visit(PE->getSubExpr()); 211 } 212 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 213 return Visit(E->getReplacement()); 214 } 215 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 216 return Visit(GE->getResultExpr()); 217 } 218 219 // Leaves. 220 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 221 return Builder.getInt(E->getValue()); 222 } 223 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 224 return llvm::ConstantFP::get(VMContext, E->getValue()); 225 } 226 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 227 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 228 } 229 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 230 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 231 } 232 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 233 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 234 } 235 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 236 return EmitNullValue(E->getType()); 237 } 238 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 239 return EmitNullValue(E->getType()); 240 } 241 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 242 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 243 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 244 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 245 return Builder.CreateBitCast(V, ConvertType(E->getType())); 246 } 247 248 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 249 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 250 } 251 252 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 253 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 254 } 255 256 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 257 if (E->isGLValue()) 258 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 259 260 // Otherwise, assume the mapping is the scalar directly. 261 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 262 } 263 264 // l-values. 265 Value *VisitDeclRefExpr(DeclRefExpr *E) { 266 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 267 if (result.isReference()) 268 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 269 E->getExprLoc()); 270 return result.getValue(); 271 } 272 return EmitLoadOfLValue(E); 273 } 274 275 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 276 return CGF.EmitObjCSelectorExpr(E); 277 } 278 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 279 return CGF.EmitObjCProtocolExpr(E); 280 } 281 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 282 return EmitLoadOfLValue(E); 283 } 284 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 285 if (E->getMethodDecl() && 286 E->getMethodDecl()->getReturnType()->isReferenceType()) 287 return EmitLoadOfLValue(E); 288 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 289 } 290 291 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 292 LValue LV = CGF.EmitObjCIsaExpr(E); 293 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 294 return V; 295 } 296 297 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 298 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 299 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 300 Value *VisitMemberExpr(MemberExpr *E); 301 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 302 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 303 return EmitLoadOfLValue(E); 304 } 305 306 Value *VisitInitListExpr(InitListExpr *E); 307 308 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 309 return EmitNullValue(E->getType()); 310 } 311 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 312 if (E->getType()->isVariablyModifiedType()) 313 CGF.EmitVariablyModifiedType(E->getType()); 314 315 if (CGDebugInfo *DI = CGF.getDebugInfo()) 316 DI->EmitExplicitCastType(E->getType()); 317 318 return VisitCastExpr(E); 319 } 320 Value *VisitCastExpr(CastExpr *E); 321 322 Value *VisitCallExpr(const CallExpr *E) { 323 if (E->getCallReturnType()->isReferenceType()) 324 return EmitLoadOfLValue(E); 325 326 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 327 328 EmitLValueAlignmentAssumption(E, V); 329 return V; 330 } 331 332 Value *VisitStmtExpr(const StmtExpr *E); 333 334 // Unary Operators. 335 Value *VisitUnaryPostDec(const UnaryOperator *E) { 336 LValue LV = EmitLValue(E->getSubExpr()); 337 return EmitScalarPrePostIncDec(E, LV, false, false); 338 } 339 Value *VisitUnaryPostInc(const UnaryOperator *E) { 340 LValue LV = EmitLValue(E->getSubExpr()); 341 return EmitScalarPrePostIncDec(E, LV, true, false); 342 } 343 Value *VisitUnaryPreDec(const UnaryOperator *E) { 344 LValue LV = EmitLValue(E->getSubExpr()); 345 return EmitScalarPrePostIncDec(E, LV, false, true); 346 } 347 Value *VisitUnaryPreInc(const UnaryOperator *E) { 348 LValue LV = EmitLValue(E->getSubExpr()); 349 return EmitScalarPrePostIncDec(E, LV, true, true); 350 } 351 352 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 353 llvm::Value *InVal, 354 llvm::Value *NextVal, 355 bool IsInc); 356 357 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 358 bool isInc, bool isPre); 359 360 361 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 362 if (isa<MemberPointerType>(E->getType())) // never sugared 363 return CGF.CGM.getMemberPointerConstant(E); 364 365 return EmitLValue(E->getSubExpr()).getAddress(); 366 } 367 Value *VisitUnaryDeref(const UnaryOperator *E) { 368 if (E->getType()->isVoidType()) 369 return Visit(E->getSubExpr()); // the actual value should be unused 370 return EmitLoadOfLValue(E); 371 } 372 Value *VisitUnaryPlus(const UnaryOperator *E) { 373 // This differs from gcc, though, most likely due to a bug in gcc. 374 TestAndClearIgnoreResultAssign(); 375 return Visit(E->getSubExpr()); 376 } 377 Value *VisitUnaryMinus (const UnaryOperator *E); 378 Value *VisitUnaryNot (const UnaryOperator *E); 379 Value *VisitUnaryLNot (const UnaryOperator *E); 380 Value *VisitUnaryReal (const UnaryOperator *E); 381 Value *VisitUnaryImag (const UnaryOperator *E); 382 Value *VisitUnaryExtension(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // C++ 387 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 388 return EmitLoadOfLValue(E); 389 } 390 391 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 392 return Visit(DAE->getExpr()); 393 } 394 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 395 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 396 return Visit(DIE->getExpr()); 397 } 398 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 399 return CGF.LoadCXXThis(); 400 } 401 402 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 403 CGF.enterFullExpression(E); 404 CodeGenFunction::RunCleanupsScope Scope(CGF); 405 return Visit(E->getSubExpr()); 406 } 407 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 408 return CGF.EmitCXXNewExpr(E); 409 } 410 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 411 CGF.EmitCXXDeleteExpr(E); 412 return nullptr; 413 } 414 415 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 416 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 417 } 418 419 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 420 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 421 } 422 423 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 424 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 425 } 426 427 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 428 // C++ [expr.pseudo]p1: 429 // The result shall only be used as the operand for the function call 430 // operator (), and the result of such a call has type void. The only 431 // effect is the evaluation of the postfix-expression before the dot or 432 // arrow. 433 CGF.EmitScalarExpr(E->getBase()); 434 return nullptr; 435 } 436 437 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 438 return EmitNullValue(E->getType()); 439 } 440 441 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 442 CGF.EmitCXXThrowExpr(E); 443 return nullptr; 444 } 445 446 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 447 return Builder.getInt1(E->getValue()); 448 } 449 450 // Binary Operators. 451 Value *EmitMul(const BinOpInfo &Ops) { 452 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 453 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 454 case LangOptions::SOB_Defined: 455 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 456 case LangOptions::SOB_Undefined: 457 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 458 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 459 // Fall through. 460 case LangOptions::SOB_Trapping: 461 return EmitOverflowCheckedBinOp(Ops); 462 } 463 } 464 465 if (Ops.Ty->isUnsignedIntegerType() && 466 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 467 return EmitOverflowCheckedBinOp(Ops); 468 469 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 470 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 471 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 472 } 473 /// Create a binary op that checks for overflow. 474 /// Currently only supports +, - and *. 475 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 476 477 // Check for undefined division and modulus behaviors. 478 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 479 llvm::Value *Zero,bool isDiv); 480 // Common helper for getting how wide LHS of shift is. 481 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 482 Value *EmitDiv(const BinOpInfo &Ops); 483 Value *EmitRem(const BinOpInfo &Ops); 484 Value *EmitAdd(const BinOpInfo &Ops); 485 Value *EmitSub(const BinOpInfo &Ops); 486 Value *EmitShl(const BinOpInfo &Ops); 487 Value *EmitShr(const BinOpInfo &Ops); 488 Value *EmitAnd(const BinOpInfo &Ops) { 489 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 490 } 491 Value *EmitXor(const BinOpInfo &Ops) { 492 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 493 } 494 Value *EmitOr (const BinOpInfo &Ops) { 495 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 496 } 497 498 BinOpInfo EmitBinOps(const BinaryOperator *E); 499 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 500 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 501 Value *&Result); 502 503 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 504 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 505 506 // Binary operators and binary compound assignment operators. 507 #define HANDLEBINOP(OP) \ 508 Value *VisitBin ## OP(const BinaryOperator *E) { \ 509 return Emit ## OP(EmitBinOps(E)); \ 510 } \ 511 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 512 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 513 } 514 HANDLEBINOP(Mul) 515 HANDLEBINOP(Div) 516 HANDLEBINOP(Rem) 517 HANDLEBINOP(Add) 518 HANDLEBINOP(Sub) 519 HANDLEBINOP(Shl) 520 HANDLEBINOP(Shr) 521 HANDLEBINOP(And) 522 HANDLEBINOP(Xor) 523 HANDLEBINOP(Or) 524 #undef HANDLEBINOP 525 526 // Comparisons. 527 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 528 unsigned SICmpOpc, unsigned FCmpOpc); 529 #define VISITCOMP(CODE, UI, SI, FP) \ 530 Value *VisitBin##CODE(const BinaryOperator *E) { \ 531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 532 llvm::FCmpInst::FP); } 533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 539 #undef VISITCOMP 540 541 Value *VisitBinAssign (const BinaryOperator *E); 542 543 Value *VisitBinLAnd (const BinaryOperator *E); 544 Value *VisitBinLOr (const BinaryOperator *E); 545 Value *VisitBinComma (const BinaryOperator *E); 546 547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 549 550 // Other Operators. 551 Value *VisitBlockExpr(const BlockExpr *BE); 552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 553 Value *VisitChooseExpr(ChooseExpr *CE); 554 Value *VisitVAArgExpr(VAArgExpr *VE); 555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 556 return CGF.EmitObjCStringLiteral(E); 557 } 558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 559 return CGF.EmitObjCBoxedExpr(E); 560 } 561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 562 return CGF.EmitObjCArrayLiteral(E); 563 } 564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 565 return CGF.EmitObjCDictionaryLiteral(E); 566 } 567 Value *VisitAsTypeExpr(AsTypeExpr *CE); 568 Value *VisitAtomicExpr(AtomicExpr *AE); 569 }; 570 } // end anonymous namespace. 571 572 //===----------------------------------------------------------------------===// 573 // Utilities 574 //===----------------------------------------------------------------------===// 575 576 /// EmitConversionToBool - Convert the specified expression value to a 577 /// boolean (i1) truth value. This is equivalent to "Val != 0". 578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 580 581 if (SrcType->isRealFloatingType()) 582 return EmitFloatToBoolConversion(Src); 583 584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 586 587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 588 "Unknown scalar type to convert"); 589 590 if (isa<llvm::IntegerType>(Src->getType())) 591 return EmitIntToBoolConversion(Src); 592 593 assert(isa<llvm::PointerType>(Src->getType())); 594 return EmitPointerToBoolConversion(Src); 595 } 596 597 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 598 QualType OrigSrcType, 599 Value *Src, QualType SrcType, 600 QualType DstType, 601 llvm::Type *DstTy) { 602 CodeGenFunction::SanitizerScope SanScope(&CGF); 603 using llvm::APFloat; 604 using llvm::APSInt; 605 606 llvm::Type *SrcTy = Src->getType(); 607 608 llvm::Value *Check = nullptr; 609 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 610 // Integer to floating-point. This can fail for unsigned short -> __half 611 // or unsigned __int128 -> float. 612 assert(DstType->isFloatingType()); 613 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 614 615 APFloat LargestFloat = 616 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 617 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 618 619 bool IsExact; 620 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 621 &IsExact) != APFloat::opOK) 622 // The range of representable values of this floating point type includes 623 // all values of this integer type. Don't need an overflow check. 624 return; 625 626 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 627 if (SrcIsUnsigned) 628 Check = Builder.CreateICmpULE(Src, Max); 629 else { 630 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 631 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 632 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 633 Check = Builder.CreateAnd(GE, LE); 634 } 635 } else { 636 const llvm::fltSemantics &SrcSema = 637 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 638 if (isa<llvm::IntegerType>(DstTy)) { 639 // Floating-point to integer. This has undefined behavior if the source is 640 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 641 // to an integer). 642 unsigned Width = CGF.getContext().getIntWidth(DstType); 643 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 644 645 APSInt Min = APSInt::getMinValue(Width, Unsigned); 646 APFloat MinSrc(SrcSema, APFloat::uninitialized); 647 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 648 APFloat::opOverflow) 649 // Don't need an overflow check for lower bound. Just check for 650 // -Inf/NaN. 651 MinSrc = APFloat::getInf(SrcSema, true); 652 else 653 // Find the largest value which is too small to represent (before 654 // truncation toward zero). 655 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 656 657 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 658 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 659 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 660 APFloat::opOverflow) 661 // Don't need an overflow check for upper bound. Just check for 662 // +Inf/NaN. 663 MaxSrc = APFloat::getInf(SrcSema, false); 664 else 665 // Find the smallest value which is too large to represent (before 666 // truncation toward zero). 667 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 668 669 // If we're converting from __half, convert the range to float to match 670 // the type of src. 671 if (OrigSrcType->isHalfType()) { 672 const llvm::fltSemantics &Sema = 673 CGF.getContext().getFloatTypeSemantics(SrcType); 674 bool IsInexact; 675 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 676 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 677 } 678 679 llvm::Value *GE = 680 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 681 llvm::Value *LE = 682 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 683 Check = Builder.CreateAnd(GE, LE); 684 } else { 685 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 686 // 687 // Floating-point to floating-point. This has undefined behavior if the 688 // source is not in the range of representable values of the destination 689 // type. The C and C++ standards are spectacularly unclear here. We 690 // diagnose finite out-of-range conversions, but allow infinities and NaNs 691 // to convert to the corresponding value in the smaller type. 692 // 693 // C11 Annex F gives all such conversions defined behavior for IEC 60559 694 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 695 // does not. 696 697 // Converting from a lower rank to a higher rank can never have 698 // undefined behavior, since higher-rank types must have a superset 699 // of values of lower-rank types. 700 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 701 return; 702 703 assert(!OrigSrcType->isHalfType() && 704 "should not check conversion from __half, it has the lowest rank"); 705 706 const llvm::fltSemantics &DstSema = 707 CGF.getContext().getFloatTypeSemantics(DstType); 708 APFloat MinBad = APFloat::getLargest(DstSema, false); 709 APFloat MaxBad = APFloat::getInf(DstSema, false); 710 711 bool IsInexact; 712 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 713 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 714 715 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 716 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 717 llvm::Value *GE = 718 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 719 llvm::Value *LE = 720 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 721 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 722 } 723 } 724 725 // FIXME: Provide a SourceLocation. 726 llvm::Constant *StaticArgs[] = { 727 CGF.EmitCheckTypeDescriptor(OrigSrcType), 728 CGF.EmitCheckTypeDescriptor(DstType) 729 }; 730 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 731 "float_cast_overflow", StaticArgs, OrigSrc); 732 } 733 734 /// EmitScalarConversion - Emit a conversion from the specified type to the 735 /// specified destination type, both of which are LLVM scalar types. 736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 737 QualType DstType) { 738 SrcType = CGF.getContext().getCanonicalType(SrcType); 739 DstType = CGF.getContext().getCanonicalType(DstType); 740 if (SrcType == DstType) return Src; 741 742 if (DstType->isVoidType()) return nullptr; 743 744 llvm::Value *OrigSrc = Src; 745 QualType OrigSrcType = SrcType; 746 llvm::Type *SrcTy = Src->getType(); 747 748 // If casting to/from storage-only half FP, use special intrinsics. 749 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 750 !CGF.getContext().getLangOpts().HalfArgsAndReturns) { 751 Src = Builder.CreateCall( 752 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 753 CGF.CGM.FloatTy), 754 Src); 755 SrcType = CGF.getContext().FloatTy; 756 SrcTy = CGF.FloatTy; 757 } 758 759 // Handle conversions to bool first, they are special: comparisons against 0. 760 if (DstType->isBooleanType()) 761 return EmitConversionToBool(Src, SrcType); 762 763 llvm::Type *DstTy = ConvertType(DstType); 764 765 // Ignore conversions like int -> uint. 766 if (SrcTy == DstTy) 767 return Src; 768 769 // Handle pointer conversions next: pointers can only be converted to/from 770 // other pointers and integers. Check for pointer types in terms of LLVM, as 771 // some native types (like Obj-C id) may map to a pointer type. 772 if (isa<llvm::PointerType>(DstTy)) { 773 // The source value may be an integer, or a pointer. 774 if (isa<llvm::PointerType>(SrcTy)) 775 return Builder.CreateBitCast(Src, DstTy, "conv"); 776 777 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 778 // First, convert to the correct width so that we control the kind of 779 // extension. 780 llvm::Type *MiddleTy = CGF.IntPtrTy; 781 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 782 llvm::Value* IntResult = 783 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 784 // Then, cast to pointer. 785 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 786 } 787 788 if (isa<llvm::PointerType>(SrcTy)) { 789 // Must be an ptr to int cast. 790 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 791 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 792 } 793 794 // A scalar can be splatted to an extended vector of the same element type 795 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 796 // Cast the scalar to element type 797 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 798 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 799 800 // Splat the element across to all elements 801 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 802 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 803 } 804 805 // Allow bitcast from vector to integer/fp of the same size. 806 if (isa<llvm::VectorType>(SrcTy) || 807 isa<llvm::VectorType>(DstTy)) 808 return Builder.CreateBitCast(Src, DstTy, "conv"); 809 810 // Finally, we have the arithmetic types: real int/float. 811 Value *Res = nullptr; 812 llvm::Type *ResTy = DstTy; 813 814 // An overflowing conversion has undefined behavior if either the source type 815 // or the destination type is a floating-point type. 816 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 817 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 818 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 819 DstTy); 820 821 // Cast to half via float 822 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 823 !CGF.getContext().getLangOpts().HalfArgsAndReturns) 824 DstTy = CGF.FloatTy; 825 826 if (isa<llvm::IntegerType>(SrcTy)) { 827 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 828 if (isa<llvm::IntegerType>(DstTy)) 829 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 830 else if (InputSigned) 831 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 832 else 833 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 834 } else if (isa<llvm::IntegerType>(DstTy)) { 835 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 836 if (DstType->isSignedIntegerOrEnumerationType()) 837 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 838 else 839 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 840 } else { 841 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 842 "Unknown real conversion"); 843 if (DstTy->getTypeID() < SrcTy->getTypeID()) 844 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 845 else 846 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 847 } 848 849 if (DstTy != ResTy) { 850 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 851 Res = Builder.CreateCall( 852 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 853 Res); 854 } 855 856 return Res; 857 } 858 859 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 860 /// type to the specified destination type, where the destination type is an 861 /// LLVM scalar type. 862 Value *ScalarExprEmitter:: 863 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 864 QualType SrcTy, QualType DstTy) { 865 // Get the source element type. 866 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 867 868 // Handle conversions to bool first, they are special: comparisons against 0. 869 if (DstTy->isBooleanType()) { 870 // Complex != 0 -> (Real != 0) | (Imag != 0) 871 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 872 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 873 return Builder.CreateOr(Src.first, Src.second, "tobool"); 874 } 875 876 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 877 // the imaginary part of the complex value is discarded and the value of the 878 // real part is converted according to the conversion rules for the 879 // corresponding real type. 880 return EmitScalarConversion(Src.first, SrcTy, DstTy); 881 } 882 883 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 884 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 885 } 886 887 /// \brief Emit a sanitization check for the given "binary" operation (which 888 /// might actually be a unary increment which has been lowered to a binary 889 /// operation). The check passes if all values in \p Checks (which are \c i1), 890 /// are \c true. 891 void ScalarExprEmitter::EmitBinOpCheck( 892 ArrayRef<std::pair<Value *, SanitizerKind>> Checks, const BinOpInfo &Info) { 893 assert(CGF.IsSanitizerScope); 894 StringRef CheckName; 895 SmallVector<llvm::Constant *, 4> StaticData; 896 SmallVector<llvm::Value *, 2> DynamicData; 897 898 BinaryOperatorKind Opcode = Info.Opcode; 899 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 900 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 901 902 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 903 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 904 if (UO && UO->getOpcode() == UO_Minus) { 905 CheckName = "negate_overflow"; 906 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 907 DynamicData.push_back(Info.RHS); 908 } else { 909 if (BinaryOperator::isShiftOp(Opcode)) { 910 // Shift LHS negative or too large, or RHS out of bounds. 911 CheckName = "shift_out_of_bounds"; 912 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 913 StaticData.push_back( 914 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 915 StaticData.push_back( 916 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 917 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 918 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 919 CheckName = "divrem_overflow"; 920 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 921 } else { 922 // Arithmetic overflow (+, -, *). 923 switch (Opcode) { 924 case BO_Add: CheckName = "add_overflow"; break; 925 case BO_Sub: CheckName = "sub_overflow"; break; 926 case BO_Mul: CheckName = "mul_overflow"; break; 927 default: llvm_unreachable("unexpected opcode for bin op check"); 928 } 929 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 930 } 931 DynamicData.push_back(Info.LHS); 932 DynamicData.push_back(Info.RHS); 933 } 934 935 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 936 } 937 938 //===----------------------------------------------------------------------===// 939 // Visitor Methods 940 //===----------------------------------------------------------------------===// 941 942 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 943 CGF.ErrorUnsupported(E, "scalar expression"); 944 if (E->getType()->isVoidType()) 945 return nullptr; 946 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 947 } 948 949 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 950 // Vector Mask Case 951 if (E->getNumSubExprs() == 2 || 952 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 953 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 954 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 955 Value *Mask; 956 957 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 958 unsigned LHSElts = LTy->getNumElements(); 959 960 if (E->getNumSubExprs() == 3) { 961 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 962 963 // Shuffle LHS & RHS into one input vector. 964 SmallVector<llvm::Constant*, 32> concat; 965 for (unsigned i = 0; i != LHSElts; ++i) { 966 concat.push_back(Builder.getInt32(2*i)); 967 concat.push_back(Builder.getInt32(2*i+1)); 968 } 969 970 Value* CV = llvm::ConstantVector::get(concat); 971 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 972 LHSElts *= 2; 973 } else { 974 Mask = RHS; 975 } 976 977 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 978 llvm::Constant* EltMask; 979 980 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 981 llvm::NextPowerOf2(LHSElts-1)-1); 982 983 // Mask off the high bits of each shuffle index. 984 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 985 EltMask); 986 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 987 988 // newv = undef 989 // mask = mask & maskbits 990 // for each elt 991 // n = extract mask i 992 // x = extract val n 993 // newv = insert newv, x, i 994 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 995 MTy->getNumElements()); 996 Value* NewV = llvm::UndefValue::get(RTy); 997 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 998 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 999 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1000 1001 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1002 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1003 } 1004 return NewV; 1005 } 1006 1007 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1008 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1009 1010 SmallVector<llvm::Constant*, 32> indices; 1011 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1012 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1013 // Check for -1 and output it as undef in the IR. 1014 if (Idx.isSigned() && Idx.isAllOnesValue()) 1015 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1016 else 1017 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1018 } 1019 1020 Value *SV = llvm::ConstantVector::get(indices); 1021 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1022 } 1023 1024 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1025 QualType SrcType = E->getSrcExpr()->getType(), 1026 DstType = E->getType(); 1027 1028 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1029 1030 SrcType = CGF.getContext().getCanonicalType(SrcType); 1031 DstType = CGF.getContext().getCanonicalType(DstType); 1032 if (SrcType == DstType) return Src; 1033 1034 assert(SrcType->isVectorType() && 1035 "ConvertVector source type must be a vector"); 1036 assert(DstType->isVectorType() && 1037 "ConvertVector destination type must be a vector"); 1038 1039 llvm::Type *SrcTy = Src->getType(); 1040 llvm::Type *DstTy = ConvertType(DstType); 1041 1042 // Ignore conversions like int -> uint. 1043 if (SrcTy == DstTy) 1044 return Src; 1045 1046 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1047 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1048 1049 assert(SrcTy->isVectorTy() && 1050 "ConvertVector source IR type must be a vector"); 1051 assert(DstTy->isVectorTy() && 1052 "ConvertVector destination IR type must be a vector"); 1053 1054 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1055 *DstEltTy = DstTy->getVectorElementType(); 1056 1057 if (DstEltType->isBooleanType()) { 1058 assert((SrcEltTy->isFloatingPointTy() || 1059 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1060 1061 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1062 if (SrcEltTy->isFloatingPointTy()) { 1063 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1064 } else { 1065 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1066 } 1067 } 1068 1069 // We have the arithmetic types: real int/float. 1070 Value *Res = nullptr; 1071 1072 if (isa<llvm::IntegerType>(SrcEltTy)) { 1073 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1074 if (isa<llvm::IntegerType>(DstEltTy)) 1075 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1076 else if (InputSigned) 1077 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1078 else 1079 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1080 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1081 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1082 if (DstEltType->isSignedIntegerOrEnumerationType()) 1083 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1084 else 1085 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1086 } else { 1087 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1088 "Unknown real conversion"); 1089 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1090 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1091 else 1092 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1093 } 1094 1095 return Res; 1096 } 1097 1098 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1099 llvm::APSInt Value; 1100 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1101 if (E->isArrow()) 1102 CGF.EmitScalarExpr(E->getBase()); 1103 else 1104 EmitLValue(E->getBase()); 1105 return Builder.getInt(Value); 1106 } 1107 1108 return EmitLoadOfLValue(E); 1109 } 1110 1111 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1112 TestAndClearIgnoreResultAssign(); 1113 1114 // Emit subscript expressions in rvalue context's. For most cases, this just 1115 // loads the lvalue formed by the subscript expr. However, we have to be 1116 // careful, because the base of a vector subscript is occasionally an rvalue, 1117 // so we can't get it as an lvalue. 1118 if (!E->getBase()->getType()->isVectorType()) 1119 return EmitLoadOfLValue(E); 1120 1121 // Handle the vector case. The base must be a vector, the index must be an 1122 // integer value. 1123 Value *Base = Visit(E->getBase()); 1124 Value *Idx = Visit(E->getIdx()); 1125 QualType IdxTy = E->getIdx()->getType(); 1126 1127 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1128 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1129 1130 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1131 } 1132 1133 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1134 unsigned Off, llvm::Type *I32Ty) { 1135 int MV = SVI->getMaskValue(Idx); 1136 if (MV == -1) 1137 return llvm::UndefValue::get(I32Ty); 1138 return llvm::ConstantInt::get(I32Ty, Off+MV); 1139 } 1140 1141 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1142 bool Ignore = TestAndClearIgnoreResultAssign(); 1143 (void)Ignore; 1144 assert (Ignore == false && "init list ignored"); 1145 unsigned NumInitElements = E->getNumInits(); 1146 1147 if (E->hadArrayRangeDesignator()) 1148 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1149 1150 llvm::VectorType *VType = 1151 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1152 1153 if (!VType) { 1154 if (NumInitElements == 0) { 1155 // C++11 value-initialization for the scalar. 1156 return EmitNullValue(E->getType()); 1157 } 1158 // We have a scalar in braces. Just use the first element. 1159 return Visit(E->getInit(0)); 1160 } 1161 1162 unsigned ResElts = VType->getNumElements(); 1163 1164 // Loop over initializers collecting the Value for each, and remembering 1165 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1166 // us to fold the shuffle for the swizzle into the shuffle for the vector 1167 // initializer, since LLVM optimizers generally do not want to touch 1168 // shuffles. 1169 unsigned CurIdx = 0; 1170 bool VIsUndefShuffle = false; 1171 llvm::Value *V = llvm::UndefValue::get(VType); 1172 for (unsigned i = 0; i != NumInitElements; ++i) { 1173 Expr *IE = E->getInit(i); 1174 Value *Init = Visit(IE); 1175 SmallVector<llvm::Constant*, 16> Args; 1176 1177 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1178 1179 // Handle scalar elements. If the scalar initializer is actually one 1180 // element of a different vector of the same width, use shuffle instead of 1181 // extract+insert. 1182 if (!VVT) { 1183 if (isa<ExtVectorElementExpr>(IE)) { 1184 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1185 1186 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1187 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1188 Value *LHS = nullptr, *RHS = nullptr; 1189 if (CurIdx == 0) { 1190 // insert into undef -> shuffle (src, undef) 1191 Args.push_back(C); 1192 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1193 1194 LHS = EI->getVectorOperand(); 1195 RHS = V; 1196 VIsUndefShuffle = true; 1197 } else if (VIsUndefShuffle) { 1198 // insert into undefshuffle && size match -> shuffle (v, src) 1199 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1200 for (unsigned j = 0; j != CurIdx; ++j) 1201 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1202 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1203 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1204 1205 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1206 RHS = EI->getVectorOperand(); 1207 VIsUndefShuffle = false; 1208 } 1209 if (!Args.empty()) { 1210 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1211 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1212 ++CurIdx; 1213 continue; 1214 } 1215 } 1216 } 1217 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1218 "vecinit"); 1219 VIsUndefShuffle = false; 1220 ++CurIdx; 1221 continue; 1222 } 1223 1224 unsigned InitElts = VVT->getNumElements(); 1225 1226 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1227 // input is the same width as the vector being constructed, generate an 1228 // optimized shuffle of the swizzle input into the result. 1229 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1230 if (isa<ExtVectorElementExpr>(IE)) { 1231 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1232 Value *SVOp = SVI->getOperand(0); 1233 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1234 1235 if (OpTy->getNumElements() == ResElts) { 1236 for (unsigned j = 0; j != CurIdx; ++j) { 1237 // If the current vector initializer is a shuffle with undef, merge 1238 // this shuffle directly into it. 1239 if (VIsUndefShuffle) { 1240 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1241 CGF.Int32Ty)); 1242 } else { 1243 Args.push_back(Builder.getInt32(j)); 1244 } 1245 } 1246 for (unsigned j = 0, je = InitElts; j != je; ++j) 1247 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1248 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1249 1250 if (VIsUndefShuffle) 1251 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1252 1253 Init = SVOp; 1254 } 1255 } 1256 1257 // Extend init to result vector length, and then shuffle its contribution 1258 // to the vector initializer into V. 1259 if (Args.empty()) { 1260 for (unsigned j = 0; j != InitElts; ++j) 1261 Args.push_back(Builder.getInt32(j)); 1262 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1263 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1264 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1265 Mask, "vext"); 1266 1267 Args.clear(); 1268 for (unsigned j = 0; j != CurIdx; ++j) 1269 Args.push_back(Builder.getInt32(j)); 1270 for (unsigned j = 0; j != InitElts; ++j) 1271 Args.push_back(Builder.getInt32(j+Offset)); 1272 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1273 } 1274 1275 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1276 // merging subsequent shuffles into this one. 1277 if (CurIdx == 0) 1278 std::swap(V, Init); 1279 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1280 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1281 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1282 CurIdx += InitElts; 1283 } 1284 1285 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1286 // Emit remaining default initializers. 1287 llvm::Type *EltTy = VType->getElementType(); 1288 1289 // Emit remaining default initializers 1290 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1291 Value *Idx = Builder.getInt32(CurIdx); 1292 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1293 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1294 } 1295 return V; 1296 } 1297 1298 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1299 const Expr *E = CE->getSubExpr(); 1300 1301 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1302 return false; 1303 1304 if (isa<CXXThisExpr>(E)) { 1305 // We always assume that 'this' is never null. 1306 return false; 1307 } 1308 1309 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1310 // And that glvalue casts are never null. 1311 if (ICE->getValueKind() != VK_RValue) 1312 return false; 1313 } 1314 1315 return true; 1316 } 1317 1318 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1319 // have to handle a more broad range of conversions than explicit casts, as they 1320 // handle things like function to ptr-to-function decay etc. 1321 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1322 Expr *E = CE->getSubExpr(); 1323 QualType DestTy = CE->getType(); 1324 CastKind Kind = CE->getCastKind(); 1325 1326 if (!DestTy->isVoidType()) 1327 TestAndClearIgnoreResultAssign(); 1328 1329 // Since almost all cast kinds apply to scalars, this switch doesn't have 1330 // a default case, so the compiler will warn on a missing case. The cases 1331 // are in the same order as in the CastKind enum. 1332 switch (Kind) { 1333 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1334 case CK_BuiltinFnToFnPtr: 1335 llvm_unreachable("builtin functions are handled elsewhere"); 1336 1337 case CK_LValueBitCast: 1338 case CK_ObjCObjectLValueCast: { 1339 Value *V = EmitLValue(E).getAddress(); 1340 V = Builder.CreateBitCast(V, 1341 ConvertType(CGF.getContext().getPointerType(DestTy))); 1342 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), 1343 CE->getExprLoc()); 1344 } 1345 1346 case CK_CPointerToObjCPointerCast: 1347 case CK_BlockPointerToObjCPointerCast: 1348 case CK_AnyPointerToBlockPointerCast: 1349 case CK_BitCast: { 1350 Value *Src = Visit(const_cast<Expr*>(E)); 1351 llvm::Type *SrcTy = Src->getType(); 1352 llvm::Type *DstTy = ConvertType(DestTy); 1353 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1354 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1355 llvm_unreachable("wrong cast for pointers in different address spaces" 1356 "(must be an address space cast)!"); 1357 } 1358 return Builder.CreateBitCast(Src, DstTy); 1359 } 1360 case CK_AddressSpaceConversion: { 1361 Value *Src = Visit(const_cast<Expr*>(E)); 1362 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1363 } 1364 case CK_AtomicToNonAtomic: 1365 case CK_NonAtomicToAtomic: 1366 case CK_NoOp: 1367 case CK_UserDefinedConversion: 1368 return Visit(const_cast<Expr*>(E)); 1369 1370 case CK_BaseToDerived: { 1371 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1372 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1373 1374 llvm::Value *V = Visit(E); 1375 1376 llvm::Value *Derived = 1377 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1378 CE->path_begin(), CE->path_end(), 1379 ShouldNullCheckClassCastValue(CE)); 1380 1381 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1382 // performed and the object is not of the derived type. 1383 if (CGF.sanitizePerformTypeCheck()) 1384 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1385 Derived, DestTy->getPointeeType()); 1386 1387 return Derived; 1388 } 1389 case CK_UncheckedDerivedToBase: 1390 case CK_DerivedToBase: { 1391 const CXXRecordDecl *DerivedClassDecl = 1392 E->getType()->getPointeeCXXRecordDecl(); 1393 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1394 1395 return CGF.GetAddressOfBaseClass( 1396 Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(), 1397 ShouldNullCheckClassCastValue(CE), CE->getExprLoc()); 1398 } 1399 case CK_Dynamic: { 1400 Value *V = Visit(const_cast<Expr*>(E)); 1401 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1402 return CGF.EmitDynamicCast(V, DCE); 1403 } 1404 1405 case CK_ArrayToPointerDecay: { 1406 assert(E->getType()->isArrayType() && 1407 "Array to pointer decay must have array source type!"); 1408 1409 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1410 1411 // Note that VLA pointers are always decayed, so we don't need to do 1412 // anything here. 1413 if (!E->getType()->isVariableArrayType()) { 1414 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1415 V = CGF.Builder.CreatePointerCast( 1416 V, ConvertType(E->getType())->getPointerTo( 1417 V->getType()->getPointerAddressSpace())); 1418 1419 assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) && 1420 "Expected pointer to array"); 1421 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1422 } 1423 1424 // Make sure the array decay ends up being the right type. This matters if 1425 // the array type was of an incomplete type. 1426 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType())); 1427 } 1428 case CK_FunctionToPointerDecay: 1429 return EmitLValue(E).getAddress(); 1430 1431 case CK_NullToPointer: 1432 if (MustVisitNullValue(E)) 1433 (void) Visit(E); 1434 1435 return llvm::ConstantPointerNull::get( 1436 cast<llvm::PointerType>(ConvertType(DestTy))); 1437 1438 case CK_NullToMemberPointer: { 1439 if (MustVisitNullValue(E)) 1440 (void) Visit(E); 1441 1442 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1443 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1444 } 1445 1446 case CK_ReinterpretMemberPointer: 1447 case CK_BaseToDerivedMemberPointer: 1448 case CK_DerivedToBaseMemberPointer: { 1449 Value *Src = Visit(E); 1450 1451 // Note that the AST doesn't distinguish between checked and 1452 // unchecked member pointer conversions, so we always have to 1453 // implement checked conversions here. This is inefficient when 1454 // actual control flow may be required in order to perform the 1455 // check, which it is for data member pointers (but not member 1456 // function pointers on Itanium and ARM). 1457 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1458 } 1459 1460 case CK_ARCProduceObject: 1461 return CGF.EmitARCRetainScalarExpr(E); 1462 case CK_ARCConsumeObject: 1463 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1464 case CK_ARCReclaimReturnedObject: { 1465 llvm::Value *value = Visit(E); 1466 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1467 return CGF.EmitObjCConsumeObject(E->getType(), value); 1468 } 1469 case CK_ARCExtendBlockObject: 1470 return CGF.EmitARCExtendBlockObject(E); 1471 1472 case CK_CopyAndAutoreleaseBlockObject: 1473 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1474 1475 case CK_FloatingRealToComplex: 1476 case CK_FloatingComplexCast: 1477 case CK_IntegralRealToComplex: 1478 case CK_IntegralComplexCast: 1479 case CK_IntegralComplexToFloatingComplex: 1480 case CK_FloatingComplexToIntegralComplex: 1481 case CK_ConstructorConversion: 1482 case CK_ToUnion: 1483 llvm_unreachable("scalar cast to non-scalar value"); 1484 1485 case CK_LValueToRValue: 1486 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1487 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1488 return Visit(const_cast<Expr*>(E)); 1489 1490 case CK_IntegralToPointer: { 1491 Value *Src = Visit(const_cast<Expr*>(E)); 1492 1493 // First, convert to the correct width so that we control the kind of 1494 // extension. 1495 llvm::Type *MiddleTy = CGF.IntPtrTy; 1496 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1497 llvm::Value* IntResult = 1498 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1499 1500 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1501 } 1502 case CK_PointerToIntegral: 1503 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1504 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1505 1506 case CK_ToVoid: { 1507 CGF.EmitIgnoredExpr(E); 1508 return nullptr; 1509 } 1510 case CK_VectorSplat: { 1511 llvm::Type *DstTy = ConvertType(DestTy); 1512 Value *Elt = Visit(const_cast<Expr*>(E)); 1513 Elt = EmitScalarConversion(Elt, E->getType(), 1514 DestTy->getAs<VectorType>()->getElementType()); 1515 1516 // Splat the element across to all elements 1517 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1518 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1519 } 1520 1521 case CK_IntegralCast: 1522 case CK_IntegralToFloating: 1523 case CK_FloatingToIntegral: 1524 case CK_FloatingCast: 1525 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1526 case CK_IntegralToBoolean: 1527 return EmitIntToBoolConversion(Visit(E)); 1528 case CK_PointerToBoolean: 1529 return EmitPointerToBoolConversion(Visit(E)); 1530 case CK_FloatingToBoolean: 1531 return EmitFloatToBoolConversion(Visit(E)); 1532 case CK_MemberPointerToBoolean: { 1533 llvm::Value *MemPtr = Visit(E); 1534 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1535 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1536 } 1537 1538 case CK_FloatingComplexToReal: 1539 case CK_IntegralComplexToReal: 1540 return CGF.EmitComplexExpr(E, false, true).first; 1541 1542 case CK_FloatingComplexToBoolean: 1543 case CK_IntegralComplexToBoolean: { 1544 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1545 1546 // TODO: kill this function off, inline appropriate case here 1547 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1548 } 1549 1550 case CK_ZeroToOCLEvent: { 1551 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1552 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1553 } 1554 1555 } 1556 1557 llvm_unreachable("unknown scalar cast"); 1558 } 1559 1560 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1561 CodeGenFunction::StmtExprEvaluation eval(CGF); 1562 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1563 !E->getType()->isVoidType()); 1564 if (!RetAlloca) 1565 return nullptr; 1566 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1567 E->getExprLoc()); 1568 } 1569 1570 //===----------------------------------------------------------------------===// 1571 // Unary Operators 1572 //===----------------------------------------------------------------------===// 1573 1574 llvm::Value *ScalarExprEmitter:: 1575 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1576 llvm::Value *InVal, 1577 llvm::Value *NextVal, bool IsInc) { 1578 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1579 case LangOptions::SOB_Defined: 1580 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1581 case LangOptions::SOB_Undefined: 1582 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1583 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1584 // Fall through. 1585 case LangOptions::SOB_Trapping: 1586 BinOpInfo BinOp; 1587 BinOp.LHS = InVal; 1588 BinOp.RHS = NextVal; 1589 BinOp.Ty = E->getType(); 1590 BinOp.Opcode = BO_Add; 1591 BinOp.FPContractable = false; 1592 BinOp.E = E; 1593 return EmitOverflowCheckedBinOp(BinOp); 1594 } 1595 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1596 } 1597 1598 llvm::Value * 1599 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1600 bool isInc, bool isPre) { 1601 1602 QualType type = E->getSubExpr()->getType(); 1603 llvm::PHINode *atomicPHI = nullptr; 1604 llvm::Value *value; 1605 llvm::Value *input; 1606 1607 int amount = (isInc ? 1 : -1); 1608 1609 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1610 type = atomicTy->getValueType(); 1611 if (isInc && type->isBooleanType()) { 1612 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1613 if (isPre) { 1614 Builder.Insert(new llvm::StoreInst(True, 1615 LV.getAddress(), LV.isVolatileQualified(), 1616 LV.getAlignment().getQuantity(), 1617 llvm::SequentiallyConsistent)); 1618 return Builder.getTrue(); 1619 } 1620 // For atomic bool increment, we just store true and return it for 1621 // preincrement, do an atomic swap with true for postincrement 1622 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1623 LV.getAddress(), True, llvm::SequentiallyConsistent); 1624 } 1625 // Special case for atomic increment / decrement on integers, emit 1626 // atomicrmw instructions. We skip this if we want to be doing overflow 1627 // checking, and fall into the slow path with the atomic cmpxchg loop. 1628 if (!type->isBooleanType() && type->isIntegerType() && 1629 !(type->isUnsignedIntegerType() && 1630 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1631 CGF.getLangOpts().getSignedOverflowBehavior() != 1632 LangOptions::SOB_Trapping) { 1633 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1634 llvm::AtomicRMWInst::Sub; 1635 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1636 llvm::Instruction::Sub; 1637 llvm::Value *amt = CGF.EmitToMemory( 1638 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1639 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1640 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1641 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1642 } 1643 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1644 input = value; 1645 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1646 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1647 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1648 value = CGF.EmitToMemory(value, type); 1649 Builder.CreateBr(opBB); 1650 Builder.SetInsertPoint(opBB); 1651 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1652 atomicPHI->addIncoming(value, startBB); 1653 value = atomicPHI; 1654 } else { 1655 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1656 input = value; 1657 } 1658 1659 // Special case of integer increment that we have to check first: bool++. 1660 // Due to promotion rules, we get: 1661 // bool++ -> bool = bool + 1 1662 // -> bool = (int)bool + 1 1663 // -> bool = ((int)bool + 1 != 0) 1664 // An interesting aspect of this is that increment is always true. 1665 // Decrement does not have this property. 1666 if (isInc && type->isBooleanType()) { 1667 value = Builder.getTrue(); 1668 1669 // Most common case by far: integer increment. 1670 } else if (type->isIntegerType()) { 1671 1672 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1673 1674 // Note that signed integer inc/dec with width less than int can't 1675 // overflow because of promotion rules; we're just eliding a few steps here. 1676 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1677 CGF.IntTy->getIntegerBitWidth(); 1678 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1679 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1680 } else if (CanOverflow && type->isUnsignedIntegerType() && 1681 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1682 BinOpInfo BinOp; 1683 BinOp.LHS = value; 1684 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1685 BinOp.Ty = E->getType(); 1686 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1687 BinOp.FPContractable = false; 1688 BinOp.E = E; 1689 value = EmitOverflowCheckedBinOp(BinOp); 1690 } else 1691 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1692 1693 // Next most common: pointer increment. 1694 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1695 QualType type = ptr->getPointeeType(); 1696 1697 // VLA types don't have constant size. 1698 if (const VariableArrayType *vla 1699 = CGF.getContext().getAsVariableArrayType(type)) { 1700 llvm::Value *numElts = CGF.getVLASize(vla).first; 1701 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1702 if (CGF.getLangOpts().isSignedOverflowDefined()) 1703 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1704 else 1705 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1706 1707 // Arithmetic on function pointers (!) is just +-1. 1708 } else if (type->isFunctionType()) { 1709 llvm::Value *amt = Builder.getInt32(amount); 1710 1711 value = CGF.EmitCastToVoidPtr(value); 1712 if (CGF.getLangOpts().isSignedOverflowDefined()) 1713 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1714 else 1715 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1716 value = Builder.CreateBitCast(value, input->getType()); 1717 1718 // For everything else, we can just do a simple increment. 1719 } else { 1720 llvm::Value *amt = Builder.getInt32(amount); 1721 if (CGF.getLangOpts().isSignedOverflowDefined()) 1722 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1723 else 1724 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1725 } 1726 1727 // Vector increment/decrement. 1728 } else if (type->isVectorType()) { 1729 if (type->hasIntegerRepresentation()) { 1730 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1731 1732 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1733 } else { 1734 value = Builder.CreateFAdd( 1735 value, 1736 llvm::ConstantFP::get(value->getType(), amount), 1737 isInc ? "inc" : "dec"); 1738 } 1739 1740 // Floating point. 1741 } else if (type->isRealFloatingType()) { 1742 // Add the inc/dec to the real part. 1743 llvm::Value *amt; 1744 1745 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 1746 !CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1747 // Another special case: half FP increment should be done via float 1748 value = Builder.CreateCall( 1749 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1750 CGF.CGM.FloatTy), 1751 input); 1752 } 1753 1754 if (value->getType()->isFloatTy()) 1755 amt = llvm::ConstantFP::get(VMContext, 1756 llvm::APFloat(static_cast<float>(amount))); 1757 else if (value->getType()->isDoubleTy()) 1758 amt = llvm::ConstantFP::get(VMContext, 1759 llvm::APFloat(static_cast<double>(amount))); 1760 else { 1761 llvm::APFloat F(static_cast<float>(amount)); 1762 bool ignored; 1763 F.convert(CGF.getTarget().getLongDoubleFormat(), 1764 llvm::APFloat::rmTowardZero, &ignored); 1765 amt = llvm::ConstantFP::get(VMContext, F); 1766 } 1767 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1768 1769 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 1770 !CGF.getContext().getLangOpts().HalfArgsAndReturns) 1771 value = Builder.CreateCall( 1772 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1773 CGF.CGM.FloatTy), 1774 value); 1775 1776 // Objective-C pointer types. 1777 } else { 1778 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1779 value = CGF.EmitCastToVoidPtr(value); 1780 1781 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1782 if (!isInc) size = -size; 1783 llvm::Value *sizeValue = 1784 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1785 1786 if (CGF.getLangOpts().isSignedOverflowDefined()) 1787 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1788 else 1789 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1790 value = Builder.CreateBitCast(value, input->getType()); 1791 } 1792 1793 if (atomicPHI) { 1794 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1795 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1796 auto Pair = CGF.EmitAtomicCompareExchange( 1797 LV, RValue::get(atomicPHI), RValue::get(CGF.EmitToMemory(value, type)), 1798 E->getExprLoc()); 1799 llvm::Value *old = Pair.first.getScalarVal(); 1800 llvm::Value *success = Pair.second.getScalarVal(); 1801 atomicPHI->addIncoming(old, opBB); 1802 Builder.CreateCondBr(success, contBB, opBB); 1803 Builder.SetInsertPoint(contBB); 1804 return isPre ? value : input; 1805 } 1806 1807 // Store the updated result through the lvalue. 1808 if (LV.isBitField()) 1809 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1810 else 1811 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1812 1813 // If this is a postinc, return the value read from memory, otherwise use the 1814 // updated value. 1815 return isPre ? value : input; 1816 } 1817 1818 1819 1820 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1821 TestAndClearIgnoreResultAssign(); 1822 // Emit unary minus with EmitSub so we handle overflow cases etc. 1823 BinOpInfo BinOp; 1824 BinOp.RHS = Visit(E->getSubExpr()); 1825 1826 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1827 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1828 else 1829 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1830 BinOp.Ty = E->getType(); 1831 BinOp.Opcode = BO_Sub; 1832 BinOp.FPContractable = false; 1833 BinOp.E = E; 1834 return EmitSub(BinOp); 1835 } 1836 1837 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1838 TestAndClearIgnoreResultAssign(); 1839 Value *Op = Visit(E->getSubExpr()); 1840 return Builder.CreateNot(Op, "neg"); 1841 } 1842 1843 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1844 // Perform vector logical not on comparison with zero vector. 1845 if (E->getType()->isExtVectorType()) { 1846 Value *Oper = Visit(E->getSubExpr()); 1847 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1848 Value *Result; 1849 if (Oper->getType()->isFPOrFPVectorTy()) 1850 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1851 else 1852 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1853 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1854 } 1855 1856 // Compare operand to zero. 1857 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1858 1859 // Invert value. 1860 // TODO: Could dynamically modify easy computations here. For example, if 1861 // the operand is an icmp ne, turn into icmp eq. 1862 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1863 1864 // ZExt result to the expr type. 1865 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1866 } 1867 1868 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1869 // Try folding the offsetof to a constant. 1870 llvm::APSInt Value; 1871 if (E->EvaluateAsInt(Value, CGF.getContext())) 1872 return Builder.getInt(Value); 1873 1874 // Loop over the components of the offsetof to compute the value. 1875 unsigned n = E->getNumComponents(); 1876 llvm::Type* ResultType = ConvertType(E->getType()); 1877 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1878 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1879 for (unsigned i = 0; i != n; ++i) { 1880 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1881 llvm::Value *Offset = nullptr; 1882 switch (ON.getKind()) { 1883 case OffsetOfExpr::OffsetOfNode::Array: { 1884 // Compute the index 1885 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1886 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1887 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1888 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1889 1890 // Save the element type 1891 CurrentType = 1892 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1893 1894 // Compute the element size 1895 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1896 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1897 1898 // Multiply out to compute the result 1899 Offset = Builder.CreateMul(Idx, ElemSize); 1900 break; 1901 } 1902 1903 case OffsetOfExpr::OffsetOfNode::Field: { 1904 FieldDecl *MemberDecl = ON.getField(); 1905 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1906 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1907 1908 // Compute the index of the field in its parent. 1909 unsigned i = 0; 1910 // FIXME: It would be nice if we didn't have to loop here! 1911 for (RecordDecl::field_iterator Field = RD->field_begin(), 1912 FieldEnd = RD->field_end(); 1913 Field != FieldEnd; ++Field, ++i) { 1914 if (*Field == MemberDecl) 1915 break; 1916 } 1917 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1918 1919 // Compute the offset to the field 1920 int64_t OffsetInt = RL.getFieldOffset(i) / 1921 CGF.getContext().getCharWidth(); 1922 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1923 1924 // Save the element type. 1925 CurrentType = MemberDecl->getType(); 1926 break; 1927 } 1928 1929 case OffsetOfExpr::OffsetOfNode::Identifier: 1930 llvm_unreachable("dependent __builtin_offsetof"); 1931 1932 case OffsetOfExpr::OffsetOfNode::Base: { 1933 if (ON.getBase()->isVirtual()) { 1934 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1935 continue; 1936 } 1937 1938 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1939 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1940 1941 // Save the element type. 1942 CurrentType = ON.getBase()->getType(); 1943 1944 // Compute the offset to the base. 1945 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1946 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1947 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1948 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1949 break; 1950 } 1951 } 1952 Result = Builder.CreateAdd(Result, Offset); 1953 } 1954 return Result; 1955 } 1956 1957 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1958 /// argument of the sizeof expression as an integer. 1959 Value * 1960 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1961 const UnaryExprOrTypeTraitExpr *E) { 1962 QualType TypeToSize = E->getTypeOfArgument(); 1963 if (E->getKind() == UETT_SizeOf) { 1964 if (const VariableArrayType *VAT = 1965 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1966 if (E->isArgumentType()) { 1967 // sizeof(type) - make sure to emit the VLA size. 1968 CGF.EmitVariablyModifiedType(TypeToSize); 1969 } else { 1970 // C99 6.5.3.4p2: If the argument is an expression of type 1971 // VLA, it is evaluated. 1972 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1973 } 1974 1975 QualType eltType; 1976 llvm::Value *numElts; 1977 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 1978 1979 llvm::Value *size = numElts; 1980 1981 // Scale the number of non-VLA elements by the non-VLA element size. 1982 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1983 if (!eltSize.isOne()) 1984 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1985 1986 return size; 1987 } 1988 } 1989 1990 // If this isn't sizeof(vla), the result must be constant; use the constant 1991 // folding logic so we don't have to duplicate it here. 1992 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1993 } 1994 1995 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1996 Expr *Op = E->getSubExpr(); 1997 if (Op->getType()->isAnyComplexType()) { 1998 // If it's an l-value, load through the appropriate subobject l-value. 1999 // Note that we have to ask E because Op might be an l-value that 2000 // this won't work for, e.g. an Obj-C property. 2001 if (E->isGLValue()) 2002 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2003 E->getExprLoc()).getScalarVal(); 2004 2005 // Otherwise, calculate and project. 2006 return CGF.EmitComplexExpr(Op, false, true).first; 2007 } 2008 2009 return Visit(Op); 2010 } 2011 2012 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2013 Expr *Op = E->getSubExpr(); 2014 if (Op->getType()->isAnyComplexType()) { 2015 // If it's an l-value, load through the appropriate subobject l-value. 2016 // Note that we have to ask E because Op might be an l-value that 2017 // this won't work for, e.g. an Obj-C property. 2018 if (Op->isGLValue()) 2019 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2020 E->getExprLoc()).getScalarVal(); 2021 2022 // Otherwise, calculate and project. 2023 return CGF.EmitComplexExpr(Op, true, false).second; 2024 } 2025 2026 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2027 // effects are evaluated, but not the actual value. 2028 if (Op->isGLValue()) 2029 CGF.EmitLValue(Op); 2030 else 2031 CGF.EmitScalarExpr(Op, true); 2032 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2033 } 2034 2035 //===----------------------------------------------------------------------===// 2036 // Binary Operators 2037 //===----------------------------------------------------------------------===// 2038 2039 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2040 TestAndClearIgnoreResultAssign(); 2041 BinOpInfo Result; 2042 Result.LHS = Visit(E->getLHS()); 2043 Result.RHS = Visit(E->getRHS()); 2044 Result.Ty = E->getType(); 2045 Result.Opcode = E->getOpcode(); 2046 Result.FPContractable = E->isFPContractable(); 2047 Result.E = E; 2048 return Result; 2049 } 2050 2051 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2052 const CompoundAssignOperator *E, 2053 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2054 Value *&Result) { 2055 QualType LHSTy = E->getLHS()->getType(); 2056 BinOpInfo OpInfo; 2057 2058 if (E->getComputationResultType()->isAnyComplexType()) 2059 return CGF.EmitScalarCompooundAssignWithComplex(E, Result); 2060 2061 // Emit the RHS first. __block variables need to have the rhs evaluated 2062 // first, plus this should improve codegen a little. 2063 OpInfo.RHS = Visit(E->getRHS()); 2064 OpInfo.Ty = E->getComputationResultType(); 2065 OpInfo.Opcode = E->getOpcode(); 2066 OpInfo.FPContractable = false; 2067 OpInfo.E = E; 2068 // Load/convert the LHS. 2069 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2070 2071 llvm::PHINode *atomicPHI = nullptr; 2072 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2073 QualType type = atomicTy->getValueType(); 2074 if (!type->isBooleanType() && type->isIntegerType() && 2075 !(type->isUnsignedIntegerType() && 2076 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2077 CGF.getLangOpts().getSignedOverflowBehavior() != 2078 LangOptions::SOB_Trapping) { 2079 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2080 switch (OpInfo.Opcode) { 2081 // We don't have atomicrmw operands for *, %, /, <<, >> 2082 case BO_MulAssign: case BO_DivAssign: 2083 case BO_RemAssign: 2084 case BO_ShlAssign: 2085 case BO_ShrAssign: 2086 break; 2087 case BO_AddAssign: 2088 aop = llvm::AtomicRMWInst::Add; 2089 break; 2090 case BO_SubAssign: 2091 aop = llvm::AtomicRMWInst::Sub; 2092 break; 2093 case BO_AndAssign: 2094 aop = llvm::AtomicRMWInst::And; 2095 break; 2096 case BO_XorAssign: 2097 aop = llvm::AtomicRMWInst::Xor; 2098 break; 2099 case BO_OrAssign: 2100 aop = llvm::AtomicRMWInst::Or; 2101 break; 2102 default: 2103 llvm_unreachable("Invalid compound assignment type"); 2104 } 2105 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2106 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 2107 E->getRHS()->getType(), LHSTy), LHSTy); 2108 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 2109 llvm::SequentiallyConsistent); 2110 return LHSLV; 2111 } 2112 } 2113 // FIXME: For floating point types, we should be saving and restoring the 2114 // floating point environment in the loop. 2115 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2116 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2117 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2118 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2119 Builder.CreateBr(opBB); 2120 Builder.SetInsertPoint(opBB); 2121 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2122 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2123 OpInfo.LHS = atomicPHI; 2124 } 2125 else 2126 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2127 2128 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 2129 E->getComputationLHSType()); 2130 2131 // Expand the binary operator. 2132 Result = (this->*Func)(OpInfo); 2133 2134 // Convert the result back to the LHS type. 2135 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2136 2137 if (atomicPHI) { 2138 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2139 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2140 auto Pair = CGF.EmitAtomicCompareExchange( 2141 LHSLV, RValue::get(atomicPHI), 2142 RValue::get(CGF.EmitToMemory(Result, LHSTy)), E->getExprLoc()); 2143 llvm::Value *old = Pair.first.getScalarVal(); 2144 llvm::Value *success = Pair.second.getScalarVal(); 2145 atomicPHI->addIncoming(old, opBB); 2146 Builder.CreateCondBr(success, contBB, opBB); 2147 Builder.SetInsertPoint(contBB); 2148 return LHSLV; 2149 } 2150 2151 // Store the result value into the LHS lvalue. Bit-fields are handled 2152 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2153 // 'An assignment expression has the value of the left operand after the 2154 // assignment...'. 2155 if (LHSLV.isBitField()) 2156 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2157 else 2158 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2159 2160 return LHSLV; 2161 } 2162 2163 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2164 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2165 bool Ignore = TestAndClearIgnoreResultAssign(); 2166 Value *RHS; 2167 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2168 2169 // If the result is clearly ignored, return now. 2170 if (Ignore) 2171 return nullptr; 2172 2173 // The result of an assignment in C is the assigned r-value. 2174 if (!CGF.getLangOpts().CPlusPlus) 2175 return RHS; 2176 2177 // If the lvalue is non-volatile, return the computed value of the assignment. 2178 if (!LHS.isVolatileQualified()) 2179 return RHS; 2180 2181 // Otherwise, reload the value. 2182 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2183 } 2184 2185 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2186 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2187 SmallVector<std::pair<llvm::Value *, SanitizerKind>, 2> Checks; 2188 2189 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2190 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2191 SanitizerKind::IntegerDivideByZero)); 2192 } 2193 2194 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2195 Ops.Ty->hasSignedIntegerRepresentation()) { 2196 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2197 2198 llvm::Value *IntMin = 2199 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2200 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2201 2202 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2203 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2204 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2205 Checks.push_back( 2206 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2207 } 2208 2209 if (Checks.size() > 0) 2210 EmitBinOpCheck(Checks, Ops); 2211 } 2212 2213 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2214 { 2215 CodeGenFunction::SanitizerScope SanScope(&CGF); 2216 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2217 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2218 Ops.Ty->isIntegerType()) { 2219 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2220 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2221 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2222 Ops.Ty->isRealFloatingType()) { 2223 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2224 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2225 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2226 Ops); 2227 } 2228 } 2229 2230 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2231 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2232 if (CGF.getLangOpts().OpenCL) { 2233 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2234 llvm::Type *ValTy = Val->getType(); 2235 if (ValTy->isFloatTy() || 2236 (isa<llvm::VectorType>(ValTy) && 2237 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2238 CGF.SetFPAccuracy(Val, 2.5); 2239 } 2240 return Val; 2241 } 2242 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2243 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2244 else 2245 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2246 } 2247 2248 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2249 // Rem in C can't be a floating point type: C99 6.5.5p2. 2250 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2251 CodeGenFunction::SanitizerScope SanScope(&CGF); 2252 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2253 2254 if (Ops.Ty->isIntegerType()) 2255 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2256 } 2257 2258 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2259 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2260 else 2261 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2262 } 2263 2264 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2265 unsigned IID; 2266 unsigned OpID = 0; 2267 2268 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2269 switch (Ops.Opcode) { 2270 case BO_Add: 2271 case BO_AddAssign: 2272 OpID = 1; 2273 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2274 llvm::Intrinsic::uadd_with_overflow; 2275 break; 2276 case BO_Sub: 2277 case BO_SubAssign: 2278 OpID = 2; 2279 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2280 llvm::Intrinsic::usub_with_overflow; 2281 break; 2282 case BO_Mul: 2283 case BO_MulAssign: 2284 OpID = 3; 2285 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2286 llvm::Intrinsic::umul_with_overflow; 2287 break; 2288 default: 2289 llvm_unreachable("Unsupported operation for overflow detection"); 2290 } 2291 OpID <<= 1; 2292 if (isSigned) 2293 OpID |= 1; 2294 2295 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2296 2297 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2298 2299 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2300 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2301 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2302 2303 // Handle overflow with llvm.trap if no custom handler has been specified. 2304 const std::string *handlerName = 2305 &CGF.getLangOpts().OverflowHandler; 2306 if (handlerName->empty()) { 2307 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2308 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2309 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2310 CodeGenFunction::SanitizerScope SanScope(&CGF); 2311 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2312 SanitizerKind Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2313 : SanitizerKind::UnsignedIntegerOverflow; 2314 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2315 } else 2316 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2317 return result; 2318 } 2319 2320 // Branch in case of overflow. 2321 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2322 llvm::Function::iterator insertPt = initialBB; 2323 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2324 std::next(insertPt)); 2325 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2326 2327 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2328 2329 // If an overflow handler is set, then we want to call it and then use its 2330 // result, if it returns. 2331 Builder.SetInsertPoint(overflowBB); 2332 2333 // Get the overflow handler. 2334 llvm::Type *Int8Ty = CGF.Int8Ty; 2335 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2336 llvm::FunctionType *handlerTy = 2337 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2338 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2339 2340 // Sign extend the args to 64-bit, so that we can use the same handler for 2341 // all types of overflow. 2342 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2343 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2344 2345 // Call the handler with the two arguments, the operation, and the size of 2346 // the result. 2347 llvm::Value *handlerArgs[] = { 2348 lhs, 2349 rhs, 2350 Builder.getInt8(OpID), 2351 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2352 }; 2353 llvm::Value *handlerResult = 2354 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2355 2356 // Truncate the result back to the desired size. 2357 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2358 Builder.CreateBr(continueBB); 2359 2360 Builder.SetInsertPoint(continueBB); 2361 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2362 phi->addIncoming(result, initialBB); 2363 phi->addIncoming(handlerResult, overflowBB); 2364 2365 return phi; 2366 } 2367 2368 /// Emit pointer + index arithmetic. 2369 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2370 const BinOpInfo &op, 2371 bool isSubtraction) { 2372 // Must have binary (not unary) expr here. Unary pointer 2373 // increment/decrement doesn't use this path. 2374 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2375 2376 Value *pointer = op.LHS; 2377 Expr *pointerOperand = expr->getLHS(); 2378 Value *index = op.RHS; 2379 Expr *indexOperand = expr->getRHS(); 2380 2381 // In a subtraction, the LHS is always the pointer. 2382 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2383 std::swap(pointer, index); 2384 std::swap(pointerOperand, indexOperand); 2385 } 2386 2387 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2388 if (width != CGF.PointerWidthInBits) { 2389 // Zero-extend or sign-extend the pointer value according to 2390 // whether the index is signed or not. 2391 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2392 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2393 "idx.ext"); 2394 } 2395 2396 // If this is subtraction, negate the index. 2397 if (isSubtraction) 2398 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2399 2400 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2401 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2402 /*Accessed*/ false); 2403 2404 const PointerType *pointerType 2405 = pointerOperand->getType()->getAs<PointerType>(); 2406 if (!pointerType) { 2407 QualType objectType = pointerOperand->getType() 2408 ->castAs<ObjCObjectPointerType>() 2409 ->getPointeeType(); 2410 llvm::Value *objectSize 2411 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2412 2413 index = CGF.Builder.CreateMul(index, objectSize); 2414 2415 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2416 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2417 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2418 } 2419 2420 QualType elementType = pointerType->getPointeeType(); 2421 if (const VariableArrayType *vla 2422 = CGF.getContext().getAsVariableArrayType(elementType)) { 2423 // The element count here is the total number of non-VLA elements. 2424 llvm::Value *numElements = CGF.getVLASize(vla).first; 2425 2426 // Effectively, the multiply by the VLA size is part of the GEP. 2427 // GEP indexes are signed, and scaling an index isn't permitted to 2428 // signed-overflow, so we use the same semantics for our explicit 2429 // multiply. We suppress this if overflow is not undefined behavior. 2430 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2431 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2432 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2433 } else { 2434 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2435 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2436 } 2437 return pointer; 2438 } 2439 2440 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2441 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2442 // future proof. 2443 if (elementType->isVoidType() || elementType->isFunctionType()) { 2444 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2445 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2446 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2447 } 2448 2449 if (CGF.getLangOpts().isSignedOverflowDefined()) 2450 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2451 2452 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2453 } 2454 2455 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2456 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2457 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2458 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2459 // efficient operations. 2460 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2461 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2462 bool negMul, bool negAdd) { 2463 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2464 2465 Value *MulOp0 = MulOp->getOperand(0); 2466 Value *MulOp1 = MulOp->getOperand(1); 2467 if (negMul) { 2468 MulOp0 = 2469 Builder.CreateFSub( 2470 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2471 "neg"); 2472 } else if (negAdd) { 2473 Addend = 2474 Builder.CreateFSub( 2475 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2476 "neg"); 2477 } 2478 2479 Value *FMulAdd = 2480 Builder.CreateCall3( 2481 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2482 MulOp0, MulOp1, Addend); 2483 MulOp->eraseFromParent(); 2484 2485 return FMulAdd; 2486 } 2487 2488 // Check whether it would be legal to emit an fmuladd intrinsic call to 2489 // represent op and if so, build the fmuladd. 2490 // 2491 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2492 // Does NOT check the type of the operation - it's assumed that this function 2493 // will be called from contexts where it's known that the type is contractable. 2494 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2495 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2496 bool isSub=false) { 2497 2498 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2499 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2500 "Only fadd/fsub can be the root of an fmuladd."); 2501 2502 // Check whether this op is marked as fusable. 2503 if (!op.FPContractable) 2504 return nullptr; 2505 2506 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2507 // either disabled, or handled entirely by the LLVM backend). 2508 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2509 return nullptr; 2510 2511 // We have a potentially fusable op. Look for a mul on one of the operands. 2512 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2513 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2514 assert(LHSBinOp->getNumUses() == 0 && 2515 "Operations with multiple uses shouldn't be contracted."); 2516 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2517 } 2518 } else if (llvm::BinaryOperator* RHSBinOp = 2519 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2520 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2521 assert(RHSBinOp->getNumUses() == 0 && 2522 "Operations with multiple uses shouldn't be contracted."); 2523 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2524 } 2525 } 2526 2527 return nullptr; 2528 } 2529 2530 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2531 if (op.LHS->getType()->isPointerTy() || 2532 op.RHS->getType()->isPointerTy()) 2533 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2534 2535 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2536 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2537 case LangOptions::SOB_Defined: 2538 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2539 case LangOptions::SOB_Undefined: 2540 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2541 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2542 // Fall through. 2543 case LangOptions::SOB_Trapping: 2544 return EmitOverflowCheckedBinOp(op); 2545 } 2546 } 2547 2548 if (op.Ty->isUnsignedIntegerType() && 2549 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2550 return EmitOverflowCheckedBinOp(op); 2551 2552 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2553 // Try to form an fmuladd. 2554 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2555 return FMulAdd; 2556 2557 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2558 } 2559 2560 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2561 } 2562 2563 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2564 // The LHS is always a pointer if either side is. 2565 if (!op.LHS->getType()->isPointerTy()) { 2566 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2567 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2568 case LangOptions::SOB_Defined: 2569 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2570 case LangOptions::SOB_Undefined: 2571 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2572 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2573 // Fall through. 2574 case LangOptions::SOB_Trapping: 2575 return EmitOverflowCheckedBinOp(op); 2576 } 2577 } 2578 2579 if (op.Ty->isUnsignedIntegerType() && 2580 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2581 return EmitOverflowCheckedBinOp(op); 2582 2583 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2584 // Try to form an fmuladd. 2585 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2586 return FMulAdd; 2587 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2588 } 2589 2590 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2591 } 2592 2593 // If the RHS is not a pointer, then we have normal pointer 2594 // arithmetic. 2595 if (!op.RHS->getType()->isPointerTy()) 2596 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2597 2598 // Otherwise, this is a pointer subtraction. 2599 2600 // Do the raw subtraction part. 2601 llvm::Value *LHS 2602 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2603 llvm::Value *RHS 2604 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2605 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2606 2607 // Okay, figure out the element size. 2608 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2609 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2610 2611 llvm::Value *divisor = nullptr; 2612 2613 // For a variable-length array, this is going to be non-constant. 2614 if (const VariableArrayType *vla 2615 = CGF.getContext().getAsVariableArrayType(elementType)) { 2616 llvm::Value *numElements; 2617 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2618 2619 divisor = numElements; 2620 2621 // Scale the number of non-VLA elements by the non-VLA element size. 2622 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2623 if (!eltSize.isOne()) 2624 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2625 2626 // For everything elese, we can just compute it, safe in the 2627 // assumption that Sema won't let anything through that we can't 2628 // safely compute the size of. 2629 } else { 2630 CharUnits elementSize; 2631 // Handle GCC extension for pointer arithmetic on void* and 2632 // function pointer types. 2633 if (elementType->isVoidType() || elementType->isFunctionType()) 2634 elementSize = CharUnits::One(); 2635 else 2636 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2637 2638 // Don't even emit the divide for element size of 1. 2639 if (elementSize.isOne()) 2640 return diffInChars; 2641 2642 divisor = CGF.CGM.getSize(elementSize); 2643 } 2644 2645 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2646 // pointer difference in C is only defined in the case where both operands 2647 // are pointing to elements of an array. 2648 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2649 } 2650 2651 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2652 llvm::IntegerType *Ty; 2653 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2654 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2655 else 2656 Ty = cast<llvm::IntegerType>(LHS->getType()); 2657 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2658 } 2659 2660 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2661 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2662 // RHS to the same size as the LHS. 2663 Value *RHS = Ops.RHS; 2664 if (Ops.LHS->getType() != RHS->getType()) 2665 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2666 2667 if (CGF.SanOpts.has(SanitizerKind::Shift) && !CGF.getLangOpts().OpenCL && 2668 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2669 CodeGenFunction::SanitizerScope SanScope(&CGF); 2670 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2671 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2672 2673 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2674 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2675 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2676 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2677 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2678 2679 // Check whether we are shifting any non-zero bits off the top of the 2680 // integer. 2681 CGF.EmitBlock(CheckBitsShifted); 2682 llvm::Value *BitsShiftedOff = 2683 Builder.CreateLShr(Ops.LHS, 2684 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2685 /*NUW*/true, /*NSW*/true), 2686 "shl.check"); 2687 if (CGF.getLangOpts().CPlusPlus) { 2688 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2689 // Under C++11's rules, shifting a 1 bit into the sign bit is 2690 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2691 // define signed left shifts, so we use the C99 and C++11 rules there). 2692 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2693 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2694 } 2695 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2696 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2697 CGF.EmitBlock(Cont); 2698 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2699 P->addIncoming(Valid, Orig); 2700 P->addIncoming(SecondCheck, CheckBitsShifted); 2701 Valid = P; 2702 } 2703 2704 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::Shift), Ops); 2705 } 2706 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2707 if (CGF.getLangOpts().OpenCL) 2708 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2709 2710 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2711 } 2712 2713 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2714 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2715 // RHS to the same size as the LHS. 2716 Value *RHS = Ops.RHS; 2717 if (Ops.LHS->getType() != RHS->getType()) 2718 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2719 2720 if (CGF.SanOpts.has(SanitizerKind::Shift) && !CGF.getLangOpts().OpenCL && 2721 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2722 CodeGenFunction::SanitizerScope SanScope(&CGF); 2723 llvm::Value *Valid = 2724 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2725 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::Shift), Ops); 2726 } 2727 2728 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2729 if (CGF.getLangOpts().OpenCL) 2730 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2731 2732 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2733 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2734 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2735 } 2736 2737 enum IntrinsicType { VCMPEQ, VCMPGT }; 2738 // return corresponding comparison intrinsic for given vector type 2739 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2740 BuiltinType::Kind ElemKind) { 2741 switch (ElemKind) { 2742 default: llvm_unreachable("unexpected element type"); 2743 case BuiltinType::Char_U: 2744 case BuiltinType::UChar: 2745 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2746 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2747 case BuiltinType::Char_S: 2748 case BuiltinType::SChar: 2749 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2750 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2751 case BuiltinType::UShort: 2752 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2753 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2754 case BuiltinType::Short: 2755 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2756 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2757 case BuiltinType::UInt: 2758 case BuiltinType::ULong: 2759 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2760 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2761 case BuiltinType::Int: 2762 case BuiltinType::Long: 2763 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2764 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2765 case BuiltinType::Float: 2766 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2767 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2768 } 2769 } 2770 2771 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2772 unsigned SICmpOpc, unsigned FCmpOpc) { 2773 TestAndClearIgnoreResultAssign(); 2774 Value *Result; 2775 QualType LHSTy = E->getLHS()->getType(); 2776 QualType RHSTy = E->getRHS()->getType(); 2777 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2778 assert(E->getOpcode() == BO_EQ || 2779 E->getOpcode() == BO_NE); 2780 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2781 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2782 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2783 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2784 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2785 Value *LHS = Visit(E->getLHS()); 2786 Value *RHS = Visit(E->getRHS()); 2787 2788 // If AltiVec, the comparison results in a numeric type, so we use 2789 // intrinsics comparing vectors and giving 0 or 1 as a result 2790 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2791 // constants for mapping CR6 register bits to predicate result 2792 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2793 2794 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2795 2796 // in several cases vector arguments order will be reversed 2797 Value *FirstVecArg = LHS, 2798 *SecondVecArg = RHS; 2799 2800 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2801 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2802 BuiltinType::Kind ElementKind = BTy->getKind(); 2803 2804 switch(E->getOpcode()) { 2805 default: llvm_unreachable("is not a comparison operation"); 2806 case BO_EQ: 2807 CR6 = CR6_LT; 2808 ID = GetIntrinsic(VCMPEQ, ElementKind); 2809 break; 2810 case BO_NE: 2811 CR6 = CR6_EQ; 2812 ID = GetIntrinsic(VCMPEQ, ElementKind); 2813 break; 2814 case BO_LT: 2815 CR6 = CR6_LT; 2816 ID = GetIntrinsic(VCMPGT, ElementKind); 2817 std::swap(FirstVecArg, SecondVecArg); 2818 break; 2819 case BO_GT: 2820 CR6 = CR6_LT; 2821 ID = GetIntrinsic(VCMPGT, ElementKind); 2822 break; 2823 case BO_LE: 2824 if (ElementKind == BuiltinType::Float) { 2825 CR6 = CR6_LT; 2826 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2827 std::swap(FirstVecArg, SecondVecArg); 2828 } 2829 else { 2830 CR6 = CR6_EQ; 2831 ID = GetIntrinsic(VCMPGT, ElementKind); 2832 } 2833 break; 2834 case BO_GE: 2835 if (ElementKind == BuiltinType::Float) { 2836 CR6 = CR6_LT; 2837 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2838 } 2839 else { 2840 CR6 = CR6_EQ; 2841 ID = GetIntrinsic(VCMPGT, ElementKind); 2842 std::swap(FirstVecArg, SecondVecArg); 2843 } 2844 break; 2845 } 2846 2847 Value *CR6Param = Builder.getInt32(CR6); 2848 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2849 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2850 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2851 } 2852 2853 if (LHS->getType()->isFPOrFPVectorTy()) { 2854 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2855 LHS, RHS, "cmp"); 2856 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2857 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2858 LHS, RHS, "cmp"); 2859 } else { 2860 // Unsigned integers and pointers. 2861 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2862 LHS, RHS, "cmp"); 2863 } 2864 2865 // If this is a vector comparison, sign extend the result to the appropriate 2866 // vector integer type and return it (don't convert to bool). 2867 if (LHSTy->isVectorType()) 2868 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2869 2870 } else { 2871 // Complex Comparison: can only be an equality comparison. 2872 CodeGenFunction::ComplexPairTy LHS, RHS; 2873 QualType CETy; 2874 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2875 LHS = CGF.EmitComplexExpr(E->getLHS()); 2876 CETy = CTy->getElementType(); 2877 } else { 2878 LHS.first = Visit(E->getLHS()); 2879 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2880 CETy = LHSTy; 2881 } 2882 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2883 RHS = CGF.EmitComplexExpr(E->getRHS()); 2884 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2885 CTy->getElementType()) && 2886 "The element types must always match."); 2887 (void)CTy; 2888 } else { 2889 RHS.first = Visit(E->getRHS()); 2890 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2891 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2892 "The element types must always match."); 2893 } 2894 2895 Value *ResultR, *ResultI; 2896 if (CETy->isRealFloatingType()) { 2897 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2898 LHS.first, RHS.first, "cmp.r"); 2899 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2900 LHS.second, RHS.second, "cmp.i"); 2901 } else { 2902 // Complex comparisons can only be equality comparisons. As such, signed 2903 // and unsigned opcodes are the same. 2904 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2905 LHS.first, RHS.first, "cmp.r"); 2906 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2907 LHS.second, RHS.second, "cmp.i"); 2908 } 2909 2910 if (E->getOpcode() == BO_EQ) { 2911 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2912 } else { 2913 assert(E->getOpcode() == BO_NE && 2914 "Complex comparison other than == or != ?"); 2915 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2916 } 2917 } 2918 2919 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2920 } 2921 2922 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2923 bool Ignore = TestAndClearIgnoreResultAssign(); 2924 2925 Value *RHS; 2926 LValue LHS; 2927 2928 switch (E->getLHS()->getType().getObjCLifetime()) { 2929 case Qualifiers::OCL_Strong: 2930 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2931 break; 2932 2933 case Qualifiers::OCL_Autoreleasing: 2934 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2935 break; 2936 2937 case Qualifiers::OCL_Weak: 2938 RHS = Visit(E->getRHS()); 2939 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2940 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2941 break; 2942 2943 // No reason to do any of these differently. 2944 case Qualifiers::OCL_None: 2945 case Qualifiers::OCL_ExplicitNone: 2946 // __block variables need to have the rhs evaluated first, plus 2947 // this should improve codegen just a little. 2948 RHS = Visit(E->getRHS()); 2949 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2950 2951 // Store the value into the LHS. Bit-fields are handled specially 2952 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2953 // 'An assignment expression has the value of the left operand after 2954 // the assignment...'. 2955 if (LHS.isBitField()) 2956 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2957 else 2958 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2959 } 2960 2961 // If the result is clearly ignored, return now. 2962 if (Ignore) 2963 return nullptr; 2964 2965 // The result of an assignment in C is the assigned r-value. 2966 if (!CGF.getLangOpts().CPlusPlus) 2967 return RHS; 2968 2969 // If the lvalue is non-volatile, return the computed value of the assignment. 2970 if (!LHS.isVolatileQualified()) 2971 return RHS; 2972 2973 // Otherwise, reload the value. 2974 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2975 } 2976 2977 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2978 RegionCounter Cnt = CGF.getPGORegionCounter(E); 2979 2980 // Perform vector logical and on comparisons with zero vectors. 2981 if (E->getType()->isVectorType()) { 2982 Cnt.beginRegion(Builder); 2983 2984 Value *LHS = Visit(E->getLHS()); 2985 Value *RHS = Visit(E->getRHS()); 2986 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2987 if (LHS->getType()->isFPOrFPVectorTy()) { 2988 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2989 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2990 } else { 2991 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2992 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2993 } 2994 Value *And = Builder.CreateAnd(LHS, RHS); 2995 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2996 } 2997 2998 llvm::Type *ResTy = ConvertType(E->getType()); 2999 3000 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3001 // If we have 1 && X, just emit X without inserting the control flow. 3002 bool LHSCondVal; 3003 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3004 if (LHSCondVal) { // If we have 1 && X, just emit X. 3005 Cnt.beginRegion(Builder); 3006 3007 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3008 // ZExt result to int or bool. 3009 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3010 } 3011 3012 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3013 if (!CGF.ContainsLabel(E->getRHS())) 3014 return llvm::Constant::getNullValue(ResTy); 3015 } 3016 3017 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3018 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3019 3020 CodeGenFunction::ConditionalEvaluation eval(CGF); 3021 3022 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3023 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount()); 3024 3025 // Any edges into the ContBlock are now from an (indeterminate number of) 3026 // edges from this first condition. All of these values will be false. Start 3027 // setting up the PHI node in the Cont Block for this. 3028 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3029 "", ContBlock); 3030 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3031 PI != PE; ++PI) 3032 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3033 3034 eval.begin(CGF); 3035 CGF.EmitBlock(RHSBlock); 3036 Cnt.beginRegion(Builder); 3037 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3038 eval.end(CGF); 3039 3040 // Reaquire the RHS block, as there may be subblocks inserted. 3041 RHSBlock = Builder.GetInsertBlock(); 3042 3043 // Emit an unconditional branch from this block to ContBlock. 3044 { 3045 // There is no need to emit line number for unconditional branch. 3046 ApplyDebugLocation DL(CGF); 3047 CGF.EmitBlock(ContBlock); 3048 } 3049 // Insert an entry into the phi node for the edge with the value of RHSCond. 3050 PN->addIncoming(RHSCond, RHSBlock); 3051 3052 // ZExt result to int. 3053 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3054 } 3055 3056 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3057 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3058 3059 // Perform vector logical or on comparisons with zero vectors. 3060 if (E->getType()->isVectorType()) { 3061 Cnt.beginRegion(Builder); 3062 3063 Value *LHS = Visit(E->getLHS()); 3064 Value *RHS = Visit(E->getRHS()); 3065 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3066 if (LHS->getType()->isFPOrFPVectorTy()) { 3067 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3068 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3069 } else { 3070 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3071 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3072 } 3073 Value *Or = Builder.CreateOr(LHS, RHS); 3074 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3075 } 3076 3077 llvm::Type *ResTy = ConvertType(E->getType()); 3078 3079 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3080 // If we have 0 || X, just emit X without inserting the control flow. 3081 bool LHSCondVal; 3082 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3083 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3084 Cnt.beginRegion(Builder); 3085 3086 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3087 // ZExt result to int or bool. 3088 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3089 } 3090 3091 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3092 if (!CGF.ContainsLabel(E->getRHS())) 3093 return llvm::ConstantInt::get(ResTy, 1); 3094 } 3095 3096 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3097 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3098 3099 CodeGenFunction::ConditionalEvaluation eval(CGF); 3100 3101 // Branch on the LHS first. If it is true, go to the success (cont) block. 3102 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3103 Cnt.getParentCount() - Cnt.getCount()); 3104 3105 // Any edges into the ContBlock are now from an (indeterminate number of) 3106 // edges from this first condition. All of these values will be true. Start 3107 // setting up the PHI node in the Cont Block for this. 3108 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3109 "", ContBlock); 3110 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3111 PI != PE; ++PI) 3112 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3113 3114 eval.begin(CGF); 3115 3116 // Emit the RHS condition as a bool value. 3117 CGF.EmitBlock(RHSBlock); 3118 Cnt.beginRegion(Builder); 3119 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3120 3121 eval.end(CGF); 3122 3123 // Reaquire the RHS block, as there may be subblocks inserted. 3124 RHSBlock = Builder.GetInsertBlock(); 3125 3126 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3127 // into the phi node for the edge with the value of RHSCond. 3128 CGF.EmitBlock(ContBlock); 3129 PN->addIncoming(RHSCond, RHSBlock); 3130 3131 // ZExt result to int. 3132 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3133 } 3134 3135 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3136 CGF.EmitIgnoredExpr(E->getLHS()); 3137 CGF.EnsureInsertPoint(); 3138 return Visit(E->getRHS()); 3139 } 3140 3141 //===----------------------------------------------------------------------===// 3142 // Other Operators 3143 //===----------------------------------------------------------------------===// 3144 3145 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3146 /// expression is cheap enough and side-effect-free enough to evaluate 3147 /// unconditionally instead of conditionally. This is used to convert control 3148 /// flow into selects in some cases. 3149 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3150 CodeGenFunction &CGF) { 3151 // Anything that is an integer or floating point constant is fine. 3152 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3153 3154 // Even non-volatile automatic variables can't be evaluated unconditionally. 3155 // Referencing a thread_local may cause non-trivial initialization work to 3156 // occur. If we're inside a lambda and one of the variables is from the scope 3157 // outside the lambda, that function may have returned already. Reading its 3158 // locals is a bad idea. Also, these reads may introduce races there didn't 3159 // exist in the source-level program. 3160 } 3161 3162 3163 Value *ScalarExprEmitter:: 3164 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3165 TestAndClearIgnoreResultAssign(); 3166 3167 // Bind the common expression if necessary. 3168 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3169 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3170 3171 Expr *condExpr = E->getCond(); 3172 Expr *lhsExpr = E->getTrueExpr(); 3173 Expr *rhsExpr = E->getFalseExpr(); 3174 3175 // If the condition constant folds and can be elided, try to avoid emitting 3176 // the condition and the dead arm. 3177 bool CondExprBool; 3178 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3179 Expr *live = lhsExpr, *dead = rhsExpr; 3180 if (!CondExprBool) std::swap(live, dead); 3181 3182 // If the dead side doesn't have labels we need, just emit the Live part. 3183 if (!CGF.ContainsLabel(dead)) { 3184 if (CondExprBool) 3185 Cnt.beginRegion(Builder); 3186 Value *Result = Visit(live); 3187 3188 // If the live part is a throw expression, it acts like it has a void 3189 // type, so evaluating it returns a null Value*. However, a conditional 3190 // with non-void type must return a non-null Value*. 3191 if (!Result && !E->getType()->isVoidType()) 3192 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3193 3194 return Result; 3195 } 3196 } 3197 3198 // OpenCL: If the condition is a vector, we can treat this condition like 3199 // the select function. 3200 if (CGF.getLangOpts().OpenCL 3201 && condExpr->getType()->isVectorType()) { 3202 Cnt.beginRegion(Builder); 3203 3204 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3205 llvm::Value *LHS = Visit(lhsExpr); 3206 llvm::Value *RHS = Visit(rhsExpr); 3207 3208 llvm::Type *condType = ConvertType(condExpr->getType()); 3209 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3210 3211 unsigned numElem = vecTy->getNumElements(); 3212 llvm::Type *elemType = vecTy->getElementType(); 3213 3214 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3215 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3216 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3217 llvm::VectorType::get(elemType, 3218 numElem), 3219 "sext"); 3220 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3221 3222 // Cast float to int to perform ANDs if necessary. 3223 llvm::Value *RHSTmp = RHS; 3224 llvm::Value *LHSTmp = LHS; 3225 bool wasCast = false; 3226 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3227 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3228 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3229 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3230 wasCast = true; 3231 } 3232 3233 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3234 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3235 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3236 if (wasCast) 3237 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3238 3239 return tmp5; 3240 } 3241 3242 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3243 // select instead of as control flow. We can only do this if it is cheap and 3244 // safe to evaluate the LHS and RHS unconditionally. 3245 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3246 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3247 Cnt.beginRegion(Builder); 3248 3249 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3250 llvm::Value *LHS = Visit(lhsExpr); 3251 llvm::Value *RHS = Visit(rhsExpr); 3252 if (!LHS) { 3253 // If the conditional has void type, make sure we return a null Value*. 3254 assert(!RHS && "LHS and RHS types must match"); 3255 return nullptr; 3256 } 3257 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3258 } 3259 3260 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3261 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3262 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3263 3264 CodeGenFunction::ConditionalEvaluation eval(CGF); 3265 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount()); 3266 3267 CGF.EmitBlock(LHSBlock); 3268 Cnt.beginRegion(Builder); 3269 eval.begin(CGF); 3270 Value *LHS = Visit(lhsExpr); 3271 eval.end(CGF); 3272 3273 LHSBlock = Builder.GetInsertBlock(); 3274 Builder.CreateBr(ContBlock); 3275 3276 CGF.EmitBlock(RHSBlock); 3277 eval.begin(CGF); 3278 Value *RHS = Visit(rhsExpr); 3279 eval.end(CGF); 3280 3281 RHSBlock = Builder.GetInsertBlock(); 3282 CGF.EmitBlock(ContBlock); 3283 3284 // If the LHS or RHS is a throw expression, it will be legitimately null. 3285 if (!LHS) 3286 return RHS; 3287 if (!RHS) 3288 return LHS; 3289 3290 // Create a PHI node for the real part. 3291 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3292 PN->addIncoming(LHS, LHSBlock); 3293 PN->addIncoming(RHS, RHSBlock); 3294 return PN; 3295 } 3296 3297 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3298 return Visit(E->getChosenSubExpr()); 3299 } 3300 3301 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3302 QualType Ty = VE->getType(); 3303 3304 if (Ty->isVariablyModifiedType()) 3305 CGF.EmitVariablyModifiedType(Ty); 3306 3307 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3308 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3309 llvm::Type *ArgTy = ConvertType(VE->getType()); 3310 3311 // If EmitVAArg fails, we fall back to the LLVM instruction. 3312 if (!ArgPtr) 3313 return Builder.CreateVAArg(ArgValue, ArgTy); 3314 3315 // FIXME Volatility. 3316 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3317 3318 // If EmitVAArg promoted the type, we must truncate it. 3319 if (ArgTy != Val->getType()) { 3320 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3321 Val = Builder.CreateIntToPtr(Val, ArgTy); 3322 else 3323 Val = Builder.CreateTrunc(Val, ArgTy); 3324 } 3325 3326 return Val; 3327 } 3328 3329 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3330 return CGF.EmitBlockLiteral(block); 3331 } 3332 3333 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3334 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3335 llvm::Type *DstTy = ConvertType(E->getType()); 3336 3337 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3338 // a shuffle vector instead of a bitcast. 3339 llvm::Type *SrcTy = Src->getType(); 3340 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3341 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3342 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3343 if ((numElementsDst == 3 && numElementsSrc == 4) 3344 || (numElementsDst == 4 && numElementsSrc == 3)) { 3345 3346 3347 // In the case of going from int4->float3, a bitcast is needed before 3348 // doing a shuffle. 3349 llvm::Type *srcElemTy = 3350 cast<llvm::VectorType>(SrcTy)->getElementType(); 3351 llvm::Type *dstElemTy = 3352 cast<llvm::VectorType>(DstTy)->getElementType(); 3353 3354 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3355 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3356 // Create a float type of the same size as the source or destination. 3357 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3358 numElementsSrc); 3359 3360 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3361 } 3362 3363 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3364 3365 SmallVector<llvm::Constant*, 3> Args; 3366 Args.push_back(Builder.getInt32(0)); 3367 Args.push_back(Builder.getInt32(1)); 3368 Args.push_back(Builder.getInt32(2)); 3369 3370 if (numElementsDst == 4) 3371 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3372 3373 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3374 3375 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3376 } 3377 } 3378 3379 return Builder.CreateBitCast(Src, DstTy, "astype"); 3380 } 3381 3382 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3383 return CGF.EmitAtomicExpr(E).getScalarVal(); 3384 } 3385 3386 //===----------------------------------------------------------------------===// 3387 // Entry Point into this File 3388 //===----------------------------------------------------------------------===// 3389 3390 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3391 /// type, ignoring the result. 3392 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3393 assert(E && hasScalarEvaluationKind(E->getType()) && 3394 "Invalid scalar expression to emit"); 3395 3396 bool hasDebugInfo = getDebugInfo(); 3397 if (isa<CXXDefaultArgExpr>(E)) 3398 disableDebugInfo(); 3399 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3400 .Visit(const_cast<Expr*>(E)); 3401 if (isa<CXXDefaultArgExpr>(E) && hasDebugInfo) 3402 enableDebugInfo(); 3403 return V; 3404 } 3405 3406 /// EmitScalarConversion - Emit a conversion from the specified type to the 3407 /// specified destination type, both of which are LLVM scalar types. 3408 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3409 QualType DstTy) { 3410 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3411 "Invalid scalar expression to emit"); 3412 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3413 } 3414 3415 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3416 /// type to the specified destination type, where the destination type is an 3417 /// LLVM scalar type. 3418 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3419 QualType SrcTy, 3420 QualType DstTy) { 3421 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3422 "Invalid complex -> scalar conversion"); 3423 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3424 DstTy); 3425 } 3426 3427 3428 llvm::Value *CodeGenFunction:: 3429 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3430 bool isInc, bool isPre) { 3431 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3432 } 3433 3434 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3435 llvm::Value *V; 3436 // object->isa or (*object).isa 3437 // Generate code as for: *(Class*)object 3438 // build Class* type 3439 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3440 3441 Expr *BaseExpr = E->getBase(); 3442 if (BaseExpr->isRValue()) { 3443 V = CreateMemTemp(E->getType(), "resval"); 3444 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3445 Builder.CreateStore(Src, V); 3446 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3447 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); 3448 } else { 3449 if (E->isArrow()) 3450 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3451 else 3452 V = EmitLValue(BaseExpr).getAddress(); 3453 } 3454 3455 // build Class* type 3456 ClassPtrTy = ClassPtrTy->getPointerTo(); 3457 V = Builder.CreateBitCast(V, ClassPtrTy); 3458 return MakeNaturalAlignAddrLValue(V, E->getType()); 3459 } 3460 3461 3462 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3463 const CompoundAssignOperator *E) { 3464 ScalarExprEmitter Scalar(*this); 3465 Value *Result = nullptr; 3466 switch (E->getOpcode()) { 3467 #define COMPOUND_OP(Op) \ 3468 case BO_##Op##Assign: \ 3469 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3470 Result) 3471 COMPOUND_OP(Mul); 3472 COMPOUND_OP(Div); 3473 COMPOUND_OP(Rem); 3474 COMPOUND_OP(Add); 3475 COMPOUND_OP(Sub); 3476 COMPOUND_OP(Shl); 3477 COMPOUND_OP(Shr); 3478 COMPOUND_OP(And); 3479 COMPOUND_OP(Xor); 3480 COMPOUND_OP(Or); 3481 #undef COMPOUND_OP 3482 3483 case BO_PtrMemD: 3484 case BO_PtrMemI: 3485 case BO_Mul: 3486 case BO_Div: 3487 case BO_Rem: 3488 case BO_Add: 3489 case BO_Sub: 3490 case BO_Shl: 3491 case BO_Shr: 3492 case BO_LT: 3493 case BO_GT: 3494 case BO_LE: 3495 case BO_GE: 3496 case BO_EQ: 3497 case BO_NE: 3498 case BO_And: 3499 case BO_Xor: 3500 case BO_Or: 3501 case BO_LAnd: 3502 case BO_LOr: 3503 case BO_Assign: 3504 case BO_Comma: 3505 llvm_unreachable("Not valid compound assignment operators"); 3506 } 3507 3508 llvm_unreachable("Unhandled compound assignment operator"); 3509 } 3510