1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs commonEmitCXXMemberOrOperatorCall( 28 CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) { 31 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 32 isa<CXXOperatorCallExpr>(CE)); 33 assert(MD->isInstance() && 34 "Trying to emit a member or operator call expr on a static method!"); 35 36 // C++11 [class.mfct.non-static]p2: 37 // If a non-static member function of a class X is called for an object that 38 // is not of type X, or of a type derived from X, the behavior is undefined. 39 SourceLocation CallLoc; 40 if (CE) 41 CallLoc = CE->getExprLoc(); 42 CGF.EmitTypeCheck( 43 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall 44 : CodeGenFunction::TCK_MemberCall, 45 CallLoc, This, CGF.getContext().getRecordType(MD->getParent())); 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(CGF.getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 if (CE) { 60 // Special case: skip first argument of CXXOperatorCall (it is "this"). 61 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 62 CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(), 63 CE->getDirectCallee()); 64 } else { 65 assert( 66 FPT->getNumParams() == 0 && 67 "No CallExpr specified for function with non-zero number of arguments"); 68 } 69 return required; 70 } 71 72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 73 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 75 const CallExpr *CE) { 76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 77 CallArgList Args; 78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 79 *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE, 80 Args); 81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 82 Callee, ReturnValue, Args, MD); 83 } 84 85 RValue CodeGenFunction::EmitCXXStructorCall( 86 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 87 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 88 const CallExpr *CE, StructorType Type) { 89 CallArgList Args; 90 commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This, 91 ImplicitParam, ImplicitParamTy, CE, Args); 92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type), 93 Callee, ReturnValue, Args, MD); 94 } 95 96 static CXXRecordDecl *getCXXRecord(const Expr *E) { 97 QualType T = E->getType(); 98 if (const PointerType *PTy = T->getAs<PointerType>()) 99 T = PTy->getPointeeType(); 100 const RecordType *Ty = T->castAs<RecordType>(); 101 return cast<CXXRecordDecl>(Ty->getDecl()); 102 } 103 104 // Note: This function also emit constructor calls to support a MSVC 105 // extensions allowing explicit constructor function call. 106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 107 ReturnValueSlot ReturnValue) { 108 const Expr *callee = CE->getCallee()->IgnoreParens(); 109 110 if (isa<BinaryOperator>(callee)) 111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 112 113 const MemberExpr *ME = cast<MemberExpr>(callee); 114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 115 116 if (MD->isStatic()) { 117 // The method is static, emit it as we would a regular call. 118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 120 ReturnValue); 121 } 122 123 bool HasQualifier = ME->hasQualifier(); 124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 125 bool IsArrow = ME->isArrow(); 126 const Expr *Base = ME->getBase(); 127 128 return EmitCXXMemberOrOperatorMemberCallExpr( 129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 130 } 131 132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 135 const Expr *Base) { 136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 137 138 // Compute the object pointer. 139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 140 141 const CXXMethodDecl *DevirtualizedMethod = nullptr; 142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 145 assert(DevirtualizedMethod); 146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 147 const Expr *Inner = Base->ignoreParenBaseCasts(); 148 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 149 MD->getReturnType().getCanonicalType()) 150 // If the return types are not the same, this might be a case where more 151 // code needs to run to compensate for it. For example, the derived 152 // method might return a type that inherits form from the return 153 // type of MD and has a prefix. 154 // For now we just avoid devirtualizing these covariant cases. 155 DevirtualizedMethod = nullptr; 156 else if (getCXXRecord(Inner) == DevirtualizedClass) 157 // If the class of the Inner expression is where the dynamic method 158 // is defined, build the this pointer from it. 159 Base = Inner; 160 else if (getCXXRecord(Base) != DevirtualizedClass) { 161 // If the method is defined in a class that is not the best dynamic 162 // one or the one of the full expression, we would have to build 163 // a derived-to-base cast to compute the correct this pointer, but 164 // we don't have support for that yet, so do a virtual call. 165 DevirtualizedMethod = nullptr; 166 } 167 } 168 169 llvm::Value *This; 170 if (IsArrow) 171 This = EmitScalarExpr(Base); 172 else 173 This = EmitLValue(Base).getAddress(); 174 175 176 if (MD->isTrivial()) { 177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 178 if (isa<CXXConstructorDecl>(MD) && 179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 180 return RValue::get(nullptr); 181 182 if (!MD->getParent()->mayInsertExtraPadding()) { 183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 184 // We don't like to generate the trivial copy/move assignment operator 185 // when it isn't necessary; just produce the proper effect here. 186 // Special case: skip first argument of CXXOperatorCall (it is "this"). 187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 188 llvm::Value *RHS = 189 EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress(); 190 EmitAggregateAssign(This, RHS, CE->getType()); 191 return RValue::get(This); 192 } 193 194 if (isa<CXXConstructorDecl>(MD) && 195 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 196 // Trivial move and copy ctor are the same. 197 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 198 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 199 EmitAggregateCopy(This, RHS, CE->arg_begin()->getType()); 200 return RValue::get(This); 201 } 202 llvm_unreachable("unknown trivial member function"); 203 } 204 } 205 206 // Compute the function type we're calling. 207 const CXXMethodDecl *CalleeDecl = 208 DevirtualizedMethod ? DevirtualizedMethod : MD; 209 const CGFunctionInfo *FInfo = nullptr; 210 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 211 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 212 Dtor, StructorType::Complete); 213 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 214 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 215 Ctor, StructorType::Complete); 216 else 217 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 218 219 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 220 221 // C++ [class.virtual]p12: 222 // Explicit qualification with the scope operator (5.1) suppresses the 223 // virtual call mechanism. 224 // 225 // We also don't emit a virtual call if the base expression has a record type 226 // because then we know what the type is. 227 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 228 llvm::Value *Callee; 229 230 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 231 assert(CE->arg_begin() == CE->arg_end() && 232 "Destructor shouldn't have explicit parameters"); 233 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 234 if (UseVirtualCall) { 235 CGM.getCXXABI().EmitVirtualDestructorCall( 236 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 237 } else { 238 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 239 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 240 else if (!DevirtualizedMethod) 241 Callee = 242 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 243 else { 244 const CXXDestructorDecl *DDtor = 245 cast<CXXDestructorDecl>(DevirtualizedMethod); 246 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 247 } 248 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This, 249 /*ImplicitParam=*/nullptr, QualType(), CE); 250 } 251 return RValue::get(nullptr); 252 } 253 254 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 255 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 256 } else if (UseVirtualCall) { 257 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty); 258 } else { 259 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 260 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 261 else if (!DevirtualizedMethod) 262 Callee = CGM.GetAddrOfFunction(MD, Ty); 263 else { 264 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 265 } 266 } 267 268 if (MD->isVirtual()) { 269 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 270 *this, MD, This, UseVirtualCall); 271 } 272 273 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This, 274 /*ImplicitParam=*/nullptr, QualType(), CE); 275 } 276 277 RValue 278 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 279 ReturnValueSlot ReturnValue) { 280 const BinaryOperator *BO = 281 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 282 const Expr *BaseExpr = BO->getLHS(); 283 const Expr *MemFnExpr = BO->getRHS(); 284 285 const MemberPointerType *MPT = 286 MemFnExpr->getType()->castAs<MemberPointerType>(); 287 288 const FunctionProtoType *FPT = 289 MPT->getPointeeType()->castAs<FunctionProtoType>(); 290 const CXXRecordDecl *RD = 291 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 292 293 // Get the member function pointer. 294 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 295 296 // Emit the 'this' pointer. 297 llvm::Value *This; 298 299 if (BO->getOpcode() == BO_PtrMemI) 300 This = EmitScalarExpr(BaseExpr); 301 else 302 This = EmitLValue(BaseExpr).getAddress(); 303 304 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 305 QualType(MPT->getClass(), 0)); 306 307 // Ask the ABI to load the callee. Note that This is modified. 308 llvm::Value *Callee = 309 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT); 310 311 CallArgList Args; 312 313 QualType ThisType = 314 getContext().getPointerType(getContext().getTagDeclType(RD)); 315 316 // Push the this ptr. 317 Args.add(RValue::get(This), ThisType); 318 319 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 320 321 // And the rest of the call args 322 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee()); 323 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 324 Callee, ReturnValue, Args); 325 } 326 327 RValue 328 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 329 const CXXMethodDecl *MD, 330 ReturnValueSlot ReturnValue) { 331 assert(MD->isInstance() && 332 "Trying to emit a member call expr on a static method!"); 333 return EmitCXXMemberOrOperatorMemberCallExpr( 334 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 335 /*IsArrow=*/false, E->getArg(0)); 336 } 337 338 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 339 ReturnValueSlot ReturnValue) { 340 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 341 } 342 343 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 344 llvm::Value *DestPtr, 345 const CXXRecordDecl *Base) { 346 if (Base->isEmpty()) 347 return; 348 349 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 350 351 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 352 CharUnits Size = Layout.getNonVirtualSize(); 353 CharUnits Align = Layout.getNonVirtualAlignment(); 354 355 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 356 357 // If the type contains a pointer to data member we can't memset it to zero. 358 // Instead, create a null constant and copy it to the destination. 359 // TODO: there are other patterns besides zero that we can usefully memset, 360 // like -1, which happens to be the pattern used by member-pointers. 361 // TODO: isZeroInitializable can be over-conservative in the case where a 362 // virtual base contains a member pointer. 363 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 364 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 365 366 llvm::GlobalVariable *NullVariable = 367 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 368 /*isConstant=*/true, 369 llvm::GlobalVariable::PrivateLinkage, 370 NullConstant, Twine()); 371 NullVariable->setAlignment(Align.getQuantity()); 372 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 373 374 // Get and call the appropriate llvm.memcpy overload. 375 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 376 return; 377 } 378 379 // Otherwise, just memset the whole thing to zero. This is legal 380 // because in LLVM, all default initializers (other than the ones we just 381 // handled above) are guaranteed to have a bit pattern of all zeros. 382 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 383 Align.getQuantity()); 384 } 385 386 void 387 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 388 AggValueSlot Dest) { 389 assert(!Dest.isIgnored() && "Must have a destination!"); 390 const CXXConstructorDecl *CD = E->getConstructor(); 391 392 // If we require zero initialization before (or instead of) calling the 393 // constructor, as can be the case with a non-user-provided default 394 // constructor, emit the zero initialization now, unless destination is 395 // already zeroed. 396 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 397 switch (E->getConstructionKind()) { 398 case CXXConstructExpr::CK_Delegating: 399 case CXXConstructExpr::CK_Complete: 400 EmitNullInitialization(Dest.getAddr(), E->getType()); 401 break; 402 case CXXConstructExpr::CK_VirtualBase: 403 case CXXConstructExpr::CK_NonVirtualBase: 404 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 405 break; 406 } 407 } 408 409 // If this is a call to a trivial default constructor, do nothing. 410 if (CD->isTrivial() && CD->isDefaultConstructor()) 411 return; 412 413 // Elide the constructor if we're constructing from a temporary. 414 // The temporary check is required because Sema sets this on NRVO 415 // returns. 416 if (getLangOpts().ElideConstructors && E->isElidable()) { 417 assert(getContext().hasSameUnqualifiedType(E->getType(), 418 E->getArg(0)->getType())); 419 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 420 EmitAggExpr(E->getArg(0), Dest); 421 return; 422 } 423 } 424 425 if (const ConstantArrayType *arrayType 426 = getContext().getAsConstantArrayType(E->getType())) { 427 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E); 428 } else { 429 CXXCtorType Type = Ctor_Complete; 430 bool ForVirtualBase = false; 431 bool Delegating = false; 432 433 switch (E->getConstructionKind()) { 434 case CXXConstructExpr::CK_Delegating: 435 // We should be emitting a constructor; GlobalDecl will assert this 436 Type = CurGD.getCtorType(); 437 Delegating = true; 438 break; 439 440 case CXXConstructExpr::CK_Complete: 441 Type = Ctor_Complete; 442 break; 443 444 case CXXConstructExpr::CK_VirtualBase: 445 ForVirtualBase = true; 446 // fall-through 447 448 case CXXConstructExpr::CK_NonVirtualBase: 449 Type = Ctor_Base; 450 } 451 452 // Call the constructor. 453 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 454 E); 455 } 456 } 457 458 void 459 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 460 llvm::Value *Src, 461 const Expr *Exp) { 462 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 463 Exp = E->getSubExpr(); 464 assert(isa<CXXConstructExpr>(Exp) && 465 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 466 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 467 const CXXConstructorDecl *CD = E->getConstructor(); 468 RunCleanupsScope Scope(*this); 469 470 // If we require zero initialization before (or instead of) calling the 471 // constructor, as can be the case with a non-user-provided default 472 // constructor, emit the zero initialization now. 473 // FIXME. Do I still need this for a copy ctor synthesis? 474 if (E->requiresZeroInitialization()) 475 EmitNullInitialization(Dest, E->getType()); 476 477 assert(!getContext().getAsConstantArrayType(E->getType()) 478 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 479 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 480 } 481 482 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 483 const CXXNewExpr *E) { 484 if (!E->isArray()) 485 return CharUnits::Zero(); 486 487 // No cookie is required if the operator new[] being used is the 488 // reserved placement operator new[]. 489 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 490 return CharUnits::Zero(); 491 492 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 493 } 494 495 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 496 const CXXNewExpr *e, 497 unsigned minElements, 498 llvm::Value *&numElements, 499 llvm::Value *&sizeWithoutCookie) { 500 QualType type = e->getAllocatedType(); 501 502 if (!e->isArray()) { 503 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 504 sizeWithoutCookie 505 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 506 return sizeWithoutCookie; 507 } 508 509 // The width of size_t. 510 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 511 512 // Figure out the cookie size. 513 llvm::APInt cookieSize(sizeWidth, 514 CalculateCookiePadding(CGF, e).getQuantity()); 515 516 // Emit the array size expression. 517 // We multiply the size of all dimensions for NumElements. 518 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 519 numElements = CGF.EmitScalarExpr(e->getArraySize()); 520 assert(isa<llvm::IntegerType>(numElements->getType())); 521 522 // The number of elements can be have an arbitrary integer type; 523 // essentially, we need to multiply it by a constant factor, add a 524 // cookie size, and verify that the result is representable as a 525 // size_t. That's just a gloss, though, and it's wrong in one 526 // important way: if the count is negative, it's an error even if 527 // the cookie size would bring the total size >= 0. 528 bool isSigned 529 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 530 llvm::IntegerType *numElementsType 531 = cast<llvm::IntegerType>(numElements->getType()); 532 unsigned numElementsWidth = numElementsType->getBitWidth(); 533 534 // Compute the constant factor. 535 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 536 while (const ConstantArrayType *CAT 537 = CGF.getContext().getAsConstantArrayType(type)) { 538 type = CAT->getElementType(); 539 arraySizeMultiplier *= CAT->getSize(); 540 } 541 542 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 543 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 544 typeSizeMultiplier *= arraySizeMultiplier; 545 546 // This will be a size_t. 547 llvm::Value *size; 548 549 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 550 // Don't bloat the -O0 code. 551 if (llvm::ConstantInt *numElementsC = 552 dyn_cast<llvm::ConstantInt>(numElements)) { 553 const llvm::APInt &count = numElementsC->getValue(); 554 555 bool hasAnyOverflow = false; 556 557 // If 'count' was a negative number, it's an overflow. 558 if (isSigned && count.isNegative()) 559 hasAnyOverflow = true; 560 561 // We want to do all this arithmetic in size_t. If numElements is 562 // wider than that, check whether it's already too big, and if so, 563 // overflow. 564 else if (numElementsWidth > sizeWidth && 565 numElementsWidth - sizeWidth > count.countLeadingZeros()) 566 hasAnyOverflow = true; 567 568 // Okay, compute a count at the right width. 569 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 570 571 // If there is a brace-initializer, we cannot allocate fewer elements than 572 // there are initializers. If we do, that's treated like an overflow. 573 if (adjustedCount.ult(minElements)) 574 hasAnyOverflow = true; 575 576 // Scale numElements by that. This might overflow, but we don't 577 // care because it only overflows if allocationSize does, too, and 578 // if that overflows then we shouldn't use this. 579 numElements = llvm::ConstantInt::get(CGF.SizeTy, 580 adjustedCount * arraySizeMultiplier); 581 582 // Compute the size before cookie, and track whether it overflowed. 583 bool overflow; 584 llvm::APInt allocationSize 585 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 586 hasAnyOverflow |= overflow; 587 588 // Add in the cookie, and check whether it's overflowed. 589 if (cookieSize != 0) { 590 // Save the current size without a cookie. This shouldn't be 591 // used if there was overflow. 592 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 593 594 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 595 hasAnyOverflow |= overflow; 596 } 597 598 // On overflow, produce a -1 so operator new will fail. 599 if (hasAnyOverflow) { 600 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 601 } else { 602 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 603 } 604 605 // Otherwise, we might need to use the overflow intrinsics. 606 } else { 607 // There are up to five conditions we need to test for: 608 // 1) if isSigned, we need to check whether numElements is negative; 609 // 2) if numElementsWidth > sizeWidth, we need to check whether 610 // numElements is larger than something representable in size_t; 611 // 3) if minElements > 0, we need to check whether numElements is smaller 612 // than that. 613 // 4) we need to compute 614 // sizeWithoutCookie := numElements * typeSizeMultiplier 615 // and check whether it overflows; and 616 // 5) if we need a cookie, we need to compute 617 // size := sizeWithoutCookie + cookieSize 618 // and check whether it overflows. 619 620 llvm::Value *hasOverflow = nullptr; 621 622 // If numElementsWidth > sizeWidth, then one way or another, we're 623 // going to have to do a comparison for (2), and this happens to 624 // take care of (1), too. 625 if (numElementsWidth > sizeWidth) { 626 llvm::APInt threshold(numElementsWidth, 1); 627 threshold <<= sizeWidth; 628 629 llvm::Value *thresholdV 630 = llvm::ConstantInt::get(numElementsType, threshold); 631 632 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 633 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 634 635 // Otherwise, if we're signed, we want to sext up to size_t. 636 } else if (isSigned) { 637 if (numElementsWidth < sizeWidth) 638 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 639 640 // If there's a non-1 type size multiplier, then we can do the 641 // signedness check at the same time as we do the multiply 642 // because a negative number times anything will cause an 643 // unsigned overflow. Otherwise, we have to do it here. But at least 644 // in this case, we can subsume the >= minElements check. 645 if (typeSizeMultiplier == 1) 646 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 647 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 648 649 // Otherwise, zext up to size_t if necessary. 650 } else if (numElementsWidth < sizeWidth) { 651 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 652 } 653 654 assert(numElements->getType() == CGF.SizeTy); 655 656 if (minElements) { 657 // Don't allow allocation of fewer elements than we have initializers. 658 if (!hasOverflow) { 659 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 660 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 661 } else if (numElementsWidth > sizeWidth) { 662 // The other existing overflow subsumes this check. 663 // We do an unsigned comparison, since any signed value < -1 is 664 // taken care of either above or below. 665 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 666 CGF.Builder.CreateICmpULT(numElements, 667 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 668 } 669 } 670 671 size = numElements; 672 673 // Multiply by the type size if necessary. This multiplier 674 // includes all the factors for nested arrays. 675 // 676 // This step also causes numElements to be scaled up by the 677 // nested-array factor if necessary. Overflow on this computation 678 // can be ignored because the result shouldn't be used if 679 // allocation fails. 680 if (typeSizeMultiplier != 1) { 681 llvm::Value *umul_with_overflow 682 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 683 684 llvm::Value *tsmV = 685 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 686 llvm::Value *result = 687 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 688 689 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 690 if (hasOverflow) 691 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 692 else 693 hasOverflow = overflowed; 694 695 size = CGF.Builder.CreateExtractValue(result, 0); 696 697 // Also scale up numElements by the array size multiplier. 698 if (arraySizeMultiplier != 1) { 699 // If the base element type size is 1, then we can re-use the 700 // multiply we just did. 701 if (typeSize.isOne()) { 702 assert(arraySizeMultiplier == typeSizeMultiplier); 703 numElements = size; 704 705 // Otherwise we need a separate multiply. 706 } else { 707 llvm::Value *asmV = 708 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 709 numElements = CGF.Builder.CreateMul(numElements, asmV); 710 } 711 } 712 } else { 713 // numElements doesn't need to be scaled. 714 assert(arraySizeMultiplier == 1); 715 } 716 717 // Add in the cookie size if necessary. 718 if (cookieSize != 0) { 719 sizeWithoutCookie = size; 720 721 llvm::Value *uadd_with_overflow 722 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 723 724 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 725 llvm::Value *result = 726 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 727 728 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 729 if (hasOverflow) 730 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 731 else 732 hasOverflow = overflowed; 733 734 size = CGF.Builder.CreateExtractValue(result, 0); 735 } 736 737 // If we had any possibility of dynamic overflow, make a select to 738 // overwrite 'size' with an all-ones value, which should cause 739 // operator new to throw. 740 if (hasOverflow) 741 size = CGF.Builder.CreateSelect(hasOverflow, 742 llvm::Constant::getAllOnesValue(CGF.SizeTy), 743 size); 744 } 745 746 if (cookieSize == 0) 747 sizeWithoutCookie = size; 748 else 749 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 750 751 return size; 752 } 753 754 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 755 QualType AllocType, llvm::Value *NewPtr) { 756 // FIXME: Refactor with EmitExprAsInit. 757 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 758 switch (CGF.getEvaluationKind(AllocType)) { 759 case TEK_Scalar: 760 CGF.EmitScalarInit(Init, nullptr, 761 CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false); 762 return; 763 case TEK_Complex: 764 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 765 Alignment), 766 /*isInit*/ true); 767 return; 768 case TEK_Aggregate: { 769 AggValueSlot Slot 770 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 771 AggValueSlot::IsDestructed, 772 AggValueSlot::DoesNotNeedGCBarriers, 773 AggValueSlot::IsNotAliased); 774 CGF.EmitAggExpr(Init, Slot); 775 return; 776 } 777 } 778 llvm_unreachable("bad evaluation kind"); 779 } 780 781 void 782 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 783 QualType ElementType, 784 llvm::Value *BeginPtr, 785 llvm::Value *NumElements, 786 llvm::Value *AllocSizeWithoutCookie) { 787 // If we have a type with trivial initialization and no initializer, 788 // there's nothing to do. 789 if (!E->hasInitializer()) 790 return; 791 792 llvm::Value *CurPtr = BeginPtr; 793 794 unsigned InitListElements = 0; 795 796 const Expr *Init = E->getInitializer(); 797 llvm::AllocaInst *EndOfInit = nullptr; 798 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 799 EHScopeStack::stable_iterator Cleanup; 800 llvm::Instruction *CleanupDominator = nullptr; 801 802 // If the initializer is an initializer list, first do the explicit elements. 803 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 804 InitListElements = ILE->getNumInits(); 805 806 // If this is a multi-dimensional array new, we will initialize multiple 807 // elements with each init list element. 808 QualType AllocType = E->getAllocatedType(); 809 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 810 AllocType->getAsArrayTypeUnsafe())) { 811 unsigned AS = CurPtr->getType()->getPointerAddressSpace(); 812 llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS); 813 CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy); 814 InitListElements *= getContext().getConstantArrayElementCount(CAT); 815 } 816 817 // Enter a partial-destruction Cleanup if necessary. 818 if (needsEHCleanup(DtorKind)) { 819 // In principle we could tell the Cleanup where we are more 820 // directly, but the control flow can get so varied here that it 821 // would actually be quite complex. Therefore we go through an 822 // alloca. 823 EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end"); 824 CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit); 825 pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType, 826 getDestroyer(DtorKind)); 827 Cleanup = EHStack.stable_begin(); 828 } 829 830 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 831 // Tell the cleanup that it needs to destroy up to this 832 // element. TODO: some of these stores can be trivially 833 // observed to be unnecessary. 834 if (EndOfInit) 835 Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()), 836 EndOfInit); 837 // FIXME: If the last initializer is an incomplete initializer list for 838 // an array, and we have an array filler, we can fold together the two 839 // initialization loops. 840 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 841 ILE->getInit(i)->getType(), CurPtr); 842 CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next"); 843 } 844 845 // The remaining elements are filled with the array filler expression. 846 Init = ILE->getArrayFiller(); 847 848 // Extract the initializer for the individual array elements by pulling 849 // out the array filler from all the nested initializer lists. This avoids 850 // generating a nested loop for the initialization. 851 while (Init && Init->getType()->isConstantArrayType()) { 852 auto *SubILE = dyn_cast<InitListExpr>(Init); 853 if (!SubILE) 854 break; 855 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 856 Init = SubILE->getArrayFiller(); 857 } 858 859 // Switch back to initializing one base element at a time. 860 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType()); 861 } 862 863 // Attempt to perform zero-initialization using memset. 864 auto TryMemsetInitialization = [&]() -> bool { 865 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 866 // we can initialize with a memset to -1. 867 if (!CGM.getTypes().isZeroInitializable(ElementType)) 868 return false; 869 870 // Optimization: since zero initialization will just set the memory 871 // to all zeroes, generate a single memset to do it in one shot. 872 873 // Subtract out the size of any elements we've already initialized. 874 auto *RemainingSize = AllocSizeWithoutCookie; 875 if (InitListElements) { 876 // We know this can't overflow; we check this when doing the allocation. 877 auto *InitializedSize = llvm::ConstantInt::get( 878 RemainingSize->getType(), 879 getContext().getTypeSizeInChars(ElementType).getQuantity() * 880 InitListElements); 881 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 882 } 883 884 // Create the memset. 885 CharUnits Alignment = getContext().getTypeAlignInChars(ElementType); 886 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, 887 Alignment.getQuantity(), false); 888 return true; 889 }; 890 891 // If all elements have already been initialized, skip any further 892 // initialization. 893 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 894 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 895 // If there was a Cleanup, deactivate it. 896 if (CleanupDominator) 897 DeactivateCleanupBlock(Cleanup, CleanupDominator); 898 return; 899 } 900 901 assert(Init && "have trailing elements to initialize but no initializer"); 902 903 // If this is a constructor call, try to optimize it out, and failing that 904 // emit a single loop to initialize all remaining elements. 905 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 906 CXXConstructorDecl *Ctor = CCE->getConstructor(); 907 if (Ctor->isTrivial()) { 908 // If new expression did not specify value-initialization, then there 909 // is no initialization. 910 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 911 return; 912 913 if (TryMemsetInitialization()) 914 return; 915 } 916 917 // Store the new Cleanup position for irregular Cleanups. 918 // 919 // FIXME: Share this cleanup with the constructor call emission rather than 920 // having it create a cleanup of its own. 921 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 922 923 // Emit a constructor call loop to initialize the remaining elements. 924 if (InitListElements) 925 NumElements = Builder.CreateSub( 926 NumElements, 927 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 928 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 929 CCE->requiresZeroInitialization()); 930 return; 931 } 932 933 // If this is value-initialization, we can usually use memset. 934 ImplicitValueInitExpr IVIE(ElementType); 935 if (isa<ImplicitValueInitExpr>(Init)) { 936 if (TryMemsetInitialization()) 937 return; 938 939 // Switch to an ImplicitValueInitExpr for the element type. This handles 940 // only one case: multidimensional array new of pointers to members. In 941 // all other cases, we already have an initializer for the array element. 942 Init = &IVIE; 943 } 944 945 // At this point we should have found an initializer for the individual 946 // elements of the array. 947 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 948 "got wrong type of element to initialize"); 949 950 // If we have an empty initializer list, we can usually use memset. 951 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 952 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 953 return; 954 955 // Create the loop blocks. 956 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 957 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 958 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 959 960 // Find the end of the array, hoisted out of the loop. 961 llvm::Value *EndPtr = 962 Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end"); 963 964 // If the number of elements isn't constant, we have to now check if there is 965 // anything left to initialize. 966 if (!ConstNum) { 967 llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr, 968 "array.isempty"); 969 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 970 } 971 972 // Enter the loop. 973 EmitBlock(LoopBB); 974 975 // Set up the current-element phi. 976 llvm::PHINode *CurPtrPhi = 977 Builder.CreatePHI(CurPtr->getType(), 2, "array.cur"); 978 CurPtrPhi->addIncoming(CurPtr, EntryBB); 979 CurPtr = CurPtrPhi; 980 981 // Store the new Cleanup position for irregular Cleanups. 982 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 983 984 // Enter a partial-destruction Cleanup if necessary. 985 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 986 pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType, 987 getDestroyer(DtorKind)); 988 Cleanup = EHStack.stable_begin(); 989 CleanupDominator = Builder.CreateUnreachable(); 990 } 991 992 // Emit the initializer into this element. 993 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 994 995 // Leave the Cleanup if we entered one. 996 if (CleanupDominator) { 997 DeactivateCleanupBlock(Cleanup, CleanupDominator); 998 CleanupDominator->eraseFromParent(); 999 } 1000 1001 // Advance to the next element by adjusting the pointer type as necessary. 1002 llvm::Value *NextPtr = 1003 Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next"); 1004 1005 // Check whether we've gotten to the end of the array and, if so, 1006 // exit the loop. 1007 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1008 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1009 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1010 1011 EmitBlock(ContBB); 1012 } 1013 1014 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1015 QualType ElementType, 1016 llvm::Value *NewPtr, 1017 llvm::Value *NumElements, 1018 llvm::Value *AllocSizeWithoutCookie) { 1019 ApplyDebugLocation DL(CGF, E->getStartLoc()); 1020 if (E->isArray()) 1021 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements, 1022 AllocSizeWithoutCookie); 1023 else if (const Expr *Init = E->getInitializer()) 1024 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1025 } 1026 1027 /// Emit a call to an operator new or operator delete function, as implicitly 1028 /// created by new-expressions and delete-expressions. 1029 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1030 const FunctionDecl *Callee, 1031 const FunctionProtoType *CalleeType, 1032 const CallArgList &Args) { 1033 llvm::Instruction *CallOrInvoke; 1034 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1035 RValue RV = 1036 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1037 Args, CalleeType, /*chainCall=*/false), 1038 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1039 1040 /// C++1y [expr.new]p10: 1041 /// [In a new-expression,] an implementation is allowed to omit a call 1042 /// to a replaceable global allocation function. 1043 /// 1044 /// We model such elidable calls with the 'builtin' attribute. 1045 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1046 if (Callee->isReplaceableGlobalAllocationFunction() && 1047 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1048 // FIXME: Add addAttribute to CallSite. 1049 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1050 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1051 llvm::Attribute::Builtin); 1052 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1053 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1054 llvm::Attribute::Builtin); 1055 else 1056 llvm_unreachable("unexpected kind of call instruction"); 1057 } 1058 1059 return RV; 1060 } 1061 1062 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1063 const Expr *Arg, 1064 bool IsDelete) { 1065 CallArgList Args; 1066 const Stmt *ArgS = Arg; 1067 EmitCallArgs(Args, *Type->param_type_begin(), 1068 ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1)); 1069 // Find the allocation or deallocation function that we're calling. 1070 ASTContext &Ctx = getContext(); 1071 DeclarationName Name = Ctx.DeclarationNames 1072 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1073 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1074 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1075 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1076 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1077 llvm_unreachable("predeclared global operator new/delete is missing"); 1078 } 1079 1080 namespace { 1081 /// A cleanup to call the given 'operator delete' function upon 1082 /// abnormal exit from a new expression. 1083 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1084 size_t NumPlacementArgs; 1085 const FunctionDecl *OperatorDelete; 1086 llvm::Value *Ptr; 1087 llvm::Value *AllocSize; 1088 1089 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1090 1091 public: 1092 static size_t getExtraSize(size_t NumPlacementArgs) { 1093 return NumPlacementArgs * sizeof(RValue); 1094 } 1095 1096 CallDeleteDuringNew(size_t NumPlacementArgs, 1097 const FunctionDecl *OperatorDelete, 1098 llvm::Value *Ptr, 1099 llvm::Value *AllocSize) 1100 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1101 Ptr(Ptr), AllocSize(AllocSize) {} 1102 1103 void setPlacementArg(unsigned I, RValue Arg) { 1104 assert(I < NumPlacementArgs && "index out of range"); 1105 getPlacementArgs()[I] = Arg; 1106 } 1107 1108 void Emit(CodeGenFunction &CGF, Flags flags) override { 1109 const FunctionProtoType *FPT 1110 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1111 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1112 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1113 1114 CallArgList DeleteArgs; 1115 1116 // The first argument is always a void*. 1117 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1118 DeleteArgs.add(RValue::get(Ptr), *AI++); 1119 1120 // A member 'operator delete' can take an extra 'size_t' argument. 1121 if (FPT->getNumParams() == NumPlacementArgs + 2) 1122 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1123 1124 // Pass the rest of the arguments, which must match exactly. 1125 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1126 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1127 1128 // Call 'operator delete'. 1129 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1130 } 1131 }; 1132 1133 /// A cleanup to call the given 'operator delete' function upon 1134 /// abnormal exit from a new expression when the new expression is 1135 /// conditional. 1136 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1137 size_t NumPlacementArgs; 1138 const FunctionDecl *OperatorDelete; 1139 DominatingValue<RValue>::saved_type Ptr; 1140 DominatingValue<RValue>::saved_type AllocSize; 1141 1142 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1143 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1144 } 1145 1146 public: 1147 static size_t getExtraSize(size_t NumPlacementArgs) { 1148 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1149 } 1150 1151 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1152 const FunctionDecl *OperatorDelete, 1153 DominatingValue<RValue>::saved_type Ptr, 1154 DominatingValue<RValue>::saved_type AllocSize) 1155 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1156 Ptr(Ptr), AllocSize(AllocSize) {} 1157 1158 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1159 assert(I < NumPlacementArgs && "index out of range"); 1160 getPlacementArgs()[I] = Arg; 1161 } 1162 1163 void Emit(CodeGenFunction &CGF, Flags flags) override { 1164 const FunctionProtoType *FPT 1165 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1166 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1167 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1168 1169 CallArgList DeleteArgs; 1170 1171 // The first argument is always a void*. 1172 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1173 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1174 1175 // A member 'operator delete' can take an extra 'size_t' argument. 1176 if (FPT->getNumParams() == NumPlacementArgs + 2) { 1177 RValue RV = AllocSize.restore(CGF); 1178 DeleteArgs.add(RV, *AI++); 1179 } 1180 1181 // Pass the rest of the arguments, which must match exactly. 1182 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1183 RValue RV = getPlacementArgs()[I].restore(CGF); 1184 DeleteArgs.add(RV, *AI++); 1185 } 1186 1187 // Call 'operator delete'. 1188 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1189 } 1190 }; 1191 } 1192 1193 /// Enter a cleanup to call 'operator delete' if the initializer in a 1194 /// new-expression throws. 1195 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1196 const CXXNewExpr *E, 1197 llvm::Value *NewPtr, 1198 llvm::Value *AllocSize, 1199 const CallArgList &NewArgs) { 1200 // If we're not inside a conditional branch, then the cleanup will 1201 // dominate and we can do the easier (and more efficient) thing. 1202 if (!CGF.isInConditionalBranch()) { 1203 CallDeleteDuringNew *Cleanup = CGF.EHStack 1204 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1205 E->getNumPlacementArgs(), 1206 E->getOperatorDelete(), 1207 NewPtr, AllocSize); 1208 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1209 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1210 1211 return; 1212 } 1213 1214 // Otherwise, we need to save all this stuff. 1215 DominatingValue<RValue>::saved_type SavedNewPtr = 1216 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1217 DominatingValue<RValue>::saved_type SavedAllocSize = 1218 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1219 1220 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1221 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1222 E->getNumPlacementArgs(), 1223 E->getOperatorDelete(), 1224 SavedNewPtr, 1225 SavedAllocSize); 1226 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1227 Cleanup->setPlacementArg(I, 1228 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1229 1230 CGF.initFullExprCleanup(); 1231 } 1232 1233 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1234 // The element type being allocated. 1235 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1236 1237 // 1. Build a call to the allocation function. 1238 FunctionDecl *allocator = E->getOperatorNew(); 1239 const FunctionProtoType *allocatorType = 1240 allocator->getType()->castAs<FunctionProtoType>(); 1241 1242 CallArgList allocatorArgs; 1243 1244 // The allocation size is the first argument. 1245 QualType sizeType = getContext().getSizeType(); 1246 1247 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1248 unsigned minElements = 0; 1249 if (E->isArray() && E->hasInitializer()) { 1250 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1251 minElements = ILE->getNumInits(); 1252 } 1253 1254 llvm::Value *numElements = nullptr; 1255 llvm::Value *allocSizeWithoutCookie = nullptr; 1256 llvm::Value *allocSize = 1257 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1258 allocSizeWithoutCookie); 1259 1260 allocatorArgs.add(RValue::get(allocSize), sizeType); 1261 1262 // We start at 1 here because the first argument (the allocation size) 1263 // has already been emitted. 1264 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(), 1265 E->placement_arg_end(), /* CalleeDecl */ nullptr, 1266 /*ParamsToSkip*/ 1); 1267 1268 // Emit the allocation call. If the allocator is a global placement 1269 // operator, just "inline" it directly. 1270 RValue RV; 1271 if (allocator->isReservedGlobalPlacementOperator()) { 1272 assert(allocatorArgs.size() == 2); 1273 RV = allocatorArgs[1].RV; 1274 // TODO: kill any unnecessary computations done for the size 1275 // argument. 1276 } else { 1277 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1278 } 1279 1280 // Emit a null check on the allocation result if the allocation 1281 // function is allowed to return null (because it has a non-throwing 1282 // exception spec; for this part, we inline 1283 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1284 // interesting initializer. 1285 bool nullCheck = allocatorType->isNothrow(getContext()) && 1286 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1287 1288 llvm::BasicBlock *nullCheckBB = nullptr; 1289 llvm::BasicBlock *contBB = nullptr; 1290 1291 llvm::Value *allocation = RV.getScalarVal(); 1292 unsigned AS = allocation->getType()->getPointerAddressSpace(); 1293 1294 // The null-check means that the initializer is conditionally 1295 // evaluated. 1296 ConditionalEvaluation conditional(*this); 1297 1298 if (nullCheck) { 1299 conditional.begin(*this); 1300 1301 nullCheckBB = Builder.GetInsertBlock(); 1302 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1303 contBB = createBasicBlock("new.cont"); 1304 1305 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1306 Builder.CreateCondBr(isNull, contBB, notNullBB); 1307 EmitBlock(notNullBB); 1308 } 1309 1310 // If there's an operator delete, enter a cleanup to call it if an 1311 // exception is thrown. 1312 EHScopeStack::stable_iterator operatorDeleteCleanup; 1313 llvm::Instruction *cleanupDominator = nullptr; 1314 if (E->getOperatorDelete() && 1315 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1316 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1317 operatorDeleteCleanup = EHStack.stable_begin(); 1318 cleanupDominator = Builder.CreateUnreachable(); 1319 } 1320 1321 assert((allocSize == allocSizeWithoutCookie) == 1322 CalculateCookiePadding(*this, E).isZero()); 1323 if (allocSize != allocSizeWithoutCookie) { 1324 assert(E->isArray()); 1325 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1326 numElements, 1327 E, allocType); 1328 } 1329 1330 llvm::Type *elementPtrTy 1331 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1332 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1333 1334 EmitNewInitializer(*this, E, allocType, result, numElements, 1335 allocSizeWithoutCookie); 1336 if (E->isArray()) { 1337 // NewPtr is a pointer to the base element type. If we're 1338 // allocating an array of arrays, we'll need to cast back to the 1339 // array pointer type. 1340 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1341 if (result->getType() != resultType) 1342 result = Builder.CreateBitCast(result, resultType); 1343 } 1344 1345 // Deactivate the 'operator delete' cleanup if we finished 1346 // initialization. 1347 if (operatorDeleteCleanup.isValid()) { 1348 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1349 cleanupDominator->eraseFromParent(); 1350 } 1351 1352 if (nullCheck) { 1353 conditional.end(*this); 1354 1355 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1356 EmitBlock(contBB); 1357 1358 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1359 PHI->addIncoming(result, notNullBB); 1360 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1361 nullCheckBB); 1362 1363 result = PHI; 1364 } 1365 1366 return result; 1367 } 1368 1369 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1370 llvm::Value *Ptr, 1371 QualType DeleteTy) { 1372 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1373 1374 const FunctionProtoType *DeleteFTy = 1375 DeleteFD->getType()->getAs<FunctionProtoType>(); 1376 1377 CallArgList DeleteArgs; 1378 1379 // Check if we need to pass the size to the delete operator. 1380 llvm::Value *Size = nullptr; 1381 QualType SizeTy; 1382 if (DeleteFTy->getNumParams() == 2) { 1383 SizeTy = DeleteFTy->getParamType(1); 1384 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1385 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1386 DeleteTypeSize.getQuantity()); 1387 } 1388 1389 QualType ArgTy = DeleteFTy->getParamType(0); 1390 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1391 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1392 1393 if (Size) 1394 DeleteArgs.add(RValue::get(Size), SizeTy); 1395 1396 // Emit the call to delete. 1397 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1398 } 1399 1400 namespace { 1401 /// Calls the given 'operator delete' on a single object. 1402 struct CallObjectDelete : EHScopeStack::Cleanup { 1403 llvm::Value *Ptr; 1404 const FunctionDecl *OperatorDelete; 1405 QualType ElementType; 1406 1407 CallObjectDelete(llvm::Value *Ptr, 1408 const FunctionDecl *OperatorDelete, 1409 QualType ElementType) 1410 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1411 1412 void Emit(CodeGenFunction &CGF, Flags flags) override { 1413 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1414 } 1415 }; 1416 } 1417 1418 void 1419 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1420 llvm::Value *CompletePtr, 1421 QualType ElementType) { 1422 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1423 OperatorDelete, ElementType); 1424 } 1425 1426 /// Emit the code for deleting a single object. 1427 static void EmitObjectDelete(CodeGenFunction &CGF, 1428 const CXXDeleteExpr *DE, 1429 llvm::Value *Ptr, 1430 QualType ElementType) { 1431 // Find the destructor for the type, if applicable. If the 1432 // destructor is virtual, we'll just emit the vcall and return. 1433 const CXXDestructorDecl *Dtor = nullptr; 1434 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1435 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1436 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1437 Dtor = RD->getDestructor(); 1438 1439 if (Dtor->isVirtual()) { 1440 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1441 Dtor); 1442 return; 1443 } 1444 } 1445 } 1446 1447 // Make sure that we call delete even if the dtor throws. 1448 // This doesn't have to a conditional cleanup because we're going 1449 // to pop it off in a second. 1450 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1451 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1452 Ptr, OperatorDelete, ElementType); 1453 1454 if (Dtor) 1455 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1456 /*ForVirtualBase=*/false, 1457 /*Delegating=*/false, 1458 Ptr); 1459 else if (CGF.getLangOpts().ObjCAutoRefCount && 1460 ElementType->isObjCLifetimeType()) { 1461 switch (ElementType.getObjCLifetime()) { 1462 case Qualifiers::OCL_None: 1463 case Qualifiers::OCL_ExplicitNone: 1464 case Qualifiers::OCL_Autoreleasing: 1465 break; 1466 1467 case Qualifiers::OCL_Strong: { 1468 // Load the pointer value. 1469 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1470 ElementType.isVolatileQualified()); 1471 1472 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 1473 break; 1474 } 1475 1476 case Qualifiers::OCL_Weak: 1477 CGF.EmitARCDestroyWeak(Ptr); 1478 break; 1479 } 1480 } 1481 1482 CGF.PopCleanupBlock(); 1483 } 1484 1485 namespace { 1486 /// Calls the given 'operator delete' on an array of objects. 1487 struct CallArrayDelete : EHScopeStack::Cleanup { 1488 llvm::Value *Ptr; 1489 const FunctionDecl *OperatorDelete; 1490 llvm::Value *NumElements; 1491 QualType ElementType; 1492 CharUnits CookieSize; 1493 1494 CallArrayDelete(llvm::Value *Ptr, 1495 const FunctionDecl *OperatorDelete, 1496 llvm::Value *NumElements, 1497 QualType ElementType, 1498 CharUnits CookieSize) 1499 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1500 ElementType(ElementType), CookieSize(CookieSize) {} 1501 1502 void Emit(CodeGenFunction &CGF, Flags flags) override { 1503 const FunctionProtoType *DeleteFTy = 1504 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1505 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 1506 1507 CallArgList Args; 1508 1509 // Pass the pointer as the first argument. 1510 QualType VoidPtrTy = DeleteFTy->getParamType(0); 1511 llvm::Value *DeletePtr 1512 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1513 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1514 1515 // Pass the original requested size as the second argument. 1516 if (DeleteFTy->getNumParams() == 2) { 1517 QualType size_t = DeleteFTy->getParamType(1); 1518 llvm::IntegerType *SizeTy 1519 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1520 1521 CharUnits ElementTypeSize = 1522 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1523 1524 // The size of an element, multiplied by the number of elements. 1525 llvm::Value *Size 1526 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1527 Size = CGF.Builder.CreateMul(Size, NumElements); 1528 1529 // Plus the size of the cookie if applicable. 1530 if (!CookieSize.isZero()) { 1531 llvm::Value *CookieSizeV 1532 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1533 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1534 } 1535 1536 Args.add(RValue::get(Size), size_t); 1537 } 1538 1539 // Emit the call to delete. 1540 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1541 } 1542 }; 1543 } 1544 1545 /// Emit the code for deleting an array of objects. 1546 static void EmitArrayDelete(CodeGenFunction &CGF, 1547 const CXXDeleteExpr *E, 1548 llvm::Value *deletedPtr, 1549 QualType elementType) { 1550 llvm::Value *numElements = nullptr; 1551 llvm::Value *allocatedPtr = nullptr; 1552 CharUnits cookieSize; 1553 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1554 numElements, allocatedPtr, cookieSize); 1555 1556 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1557 1558 // Make sure that we call delete even if one of the dtors throws. 1559 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1560 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1561 allocatedPtr, operatorDelete, 1562 numElements, elementType, 1563 cookieSize); 1564 1565 // Destroy the elements. 1566 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1567 assert(numElements && "no element count for a type with a destructor!"); 1568 1569 llvm::Value *arrayEnd = 1570 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1571 1572 // Note that it is legal to allocate a zero-length array, and we 1573 // can never fold the check away because the length should always 1574 // come from a cookie. 1575 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1576 CGF.getDestroyer(dtorKind), 1577 /*checkZeroLength*/ true, 1578 CGF.needsEHCleanup(dtorKind)); 1579 } 1580 1581 // Pop the cleanup block. 1582 CGF.PopCleanupBlock(); 1583 } 1584 1585 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1586 const Expr *Arg = E->getArgument(); 1587 llvm::Value *Ptr = EmitScalarExpr(Arg); 1588 1589 // Null check the pointer. 1590 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1591 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1592 1593 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1594 1595 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1596 EmitBlock(DeleteNotNull); 1597 1598 // We might be deleting a pointer to array. If so, GEP down to the 1599 // first non-array element. 1600 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1601 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1602 if (DeleteTy->isConstantArrayType()) { 1603 llvm::Value *Zero = Builder.getInt32(0); 1604 SmallVector<llvm::Value*,8> GEP; 1605 1606 GEP.push_back(Zero); // point at the outermost array 1607 1608 // For each layer of array type we're pointing at: 1609 while (const ConstantArrayType *Arr 1610 = getContext().getAsConstantArrayType(DeleteTy)) { 1611 // 1. Unpeel the array type. 1612 DeleteTy = Arr->getElementType(); 1613 1614 // 2. GEP to the first element of the array. 1615 GEP.push_back(Zero); 1616 } 1617 1618 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1619 } 1620 1621 assert(ConvertTypeForMem(DeleteTy) == 1622 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1623 1624 if (E->isArrayForm()) { 1625 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1626 } else { 1627 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1628 } 1629 1630 EmitBlock(DeleteEnd); 1631 } 1632 1633 static bool isGLValueFromPointerDeref(const Expr *E) { 1634 E = E->IgnoreParens(); 1635 1636 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1637 if (!CE->getSubExpr()->isGLValue()) 1638 return false; 1639 return isGLValueFromPointerDeref(CE->getSubExpr()); 1640 } 1641 1642 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1643 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1644 1645 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1646 if (BO->getOpcode() == BO_Comma) 1647 return isGLValueFromPointerDeref(BO->getRHS()); 1648 1649 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1650 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1651 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1652 1653 // C++11 [expr.sub]p1: 1654 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1655 if (isa<ArraySubscriptExpr>(E)) 1656 return true; 1657 1658 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1659 if (UO->getOpcode() == UO_Deref) 1660 return true; 1661 1662 return false; 1663 } 1664 1665 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1666 llvm::Type *StdTypeInfoPtrTy) { 1667 // Get the vtable pointer. 1668 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1669 1670 // C++ [expr.typeid]p2: 1671 // If the glvalue expression is obtained by applying the unary * operator to 1672 // a pointer and the pointer is a null pointer value, the typeid expression 1673 // throws the std::bad_typeid exception. 1674 // 1675 // However, this paragraph's intent is not clear. We choose a very generous 1676 // interpretation which implores us to consider comma operators, conditional 1677 // operators, parentheses and other such constructs. 1678 QualType SrcRecordTy = E->getType(); 1679 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1680 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1681 llvm::BasicBlock *BadTypeidBlock = 1682 CGF.createBasicBlock("typeid.bad_typeid"); 1683 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1684 1685 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1686 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1687 1688 CGF.EmitBlock(BadTypeidBlock); 1689 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1690 CGF.EmitBlock(EndBlock); 1691 } 1692 1693 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1694 StdTypeInfoPtrTy); 1695 } 1696 1697 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1698 llvm::Type *StdTypeInfoPtrTy = 1699 ConvertType(E->getType())->getPointerTo(); 1700 1701 if (E->isTypeOperand()) { 1702 llvm::Constant *TypeInfo = 1703 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1704 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1705 } 1706 1707 // C++ [expr.typeid]p2: 1708 // When typeid is applied to a glvalue expression whose type is a 1709 // polymorphic class type, the result refers to a std::type_info object 1710 // representing the type of the most derived object (that is, the dynamic 1711 // type) to which the glvalue refers. 1712 if (E->isPotentiallyEvaluated()) 1713 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1714 StdTypeInfoPtrTy); 1715 1716 QualType OperandTy = E->getExprOperand()->getType(); 1717 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1718 StdTypeInfoPtrTy); 1719 } 1720 1721 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1722 QualType DestTy) { 1723 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1724 if (DestTy->isPointerType()) 1725 return llvm::Constant::getNullValue(DestLTy); 1726 1727 /// C++ [expr.dynamic.cast]p9: 1728 /// A failed cast to reference type throws std::bad_cast 1729 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1730 return nullptr; 1731 1732 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1733 return llvm::UndefValue::get(DestLTy); 1734 } 1735 1736 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1737 const CXXDynamicCastExpr *DCE) { 1738 QualType DestTy = DCE->getTypeAsWritten(); 1739 1740 if (DCE->isAlwaysNull()) 1741 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1742 return T; 1743 1744 QualType SrcTy = DCE->getSubExpr()->getType(); 1745 1746 // C++ [expr.dynamic.cast]p7: 1747 // If T is "pointer to cv void," then the result is a pointer to the most 1748 // derived object pointed to by v. 1749 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1750 1751 bool isDynamicCastToVoid; 1752 QualType SrcRecordTy; 1753 QualType DestRecordTy; 1754 if (DestPTy) { 1755 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1756 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1757 DestRecordTy = DestPTy->getPointeeType(); 1758 } else { 1759 isDynamicCastToVoid = false; 1760 SrcRecordTy = SrcTy; 1761 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1762 } 1763 1764 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1765 1766 // C++ [expr.dynamic.cast]p4: 1767 // If the value of v is a null pointer value in the pointer case, the result 1768 // is the null pointer value of type T. 1769 bool ShouldNullCheckSrcValue = 1770 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 1771 SrcRecordTy); 1772 1773 llvm::BasicBlock *CastNull = nullptr; 1774 llvm::BasicBlock *CastNotNull = nullptr; 1775 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1776 1777 if (ShouldNullCheckSrcValue) { 1778 CastNull = createBasicBlock("dynamic_cast.null"); 1779 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1780 1781 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1782 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1783 EmitBlock(CastNotNull); 1784 } 1785 1786 if (isDynamicCastToVoid) { 1787 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy, 1788 DestTy); 1789 } else { 1790 assert(DestRecordTy->isRecordType() && 1791 "destination type must be a record type!"); 1792 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy, 1793 DestTy, DestRecordTy, CastEnd); 1794 } 1795 1796 if (ShouldNullCheckSrcValue) { 1797 EmitBranch(CastEnd); 1798 1799 EmitBlock(CastNull); 1800 EmitBranch(CastEnd); 1801 } 1802 1803 EmitBlock(CastEnd); 1804 1805 if (ShouldNullCheckSrcValue) { 1806 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1807 PHI->addIncoming(Value, CastNotNull); 1808 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1809 1810 Value = PHI; 1811 } 1812 1813 return Value; 1814 } 1815 1816 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1817 RunCleanupsScope Scope(*this); 1818 LValue SlotLV = 1819 MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment()); 1820 1821 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1822 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1823 e = E->capture_init_end(); 1824 i != e; ++i, ++CurField) { 1825 // Emit initialization 1826 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1827 if (CurField->hasCapturedVLAType()) { 1828 auto VAT = CurField->getCapturedVLAType(); 1829 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1830 } else { 1831 ArrayRef<VarDecl *> ArrayIndexes; 1832 if (CurField->getType()->isArrayType()) 1833 ArrayIndexes = E->getCaptureInitIndexVars(i); 1834 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1835 } 1836 } 1837 } 1838