1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23
24 using namespace clang;
25 using namespace CodeGen;
26
commonEmitCXXMemberOrOperatorCall(CodeGenFunction & CGF,const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,CallArgList & Args)27 static RequiredArgs commonEmitCXXMemberOrOperatorCall(
28 CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee,
29 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam,
30 QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) {
31 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
32 isa<CXXOperatorCallExpr>(CE));
33 assert(MD->isInstance() &&
34 "Trying to emit a member or operator call expr on a static method!");
35
36 // C++11 [class.mfct.non-static]p2:
37 // If a non-static member function of a class X is called for an object that
38 // is not of type X, or of a type derived from X, the behavior is undefined.
39 SourceLocation CallLoc;
40 if (CE)
41 CallLoc = CE->getExprLoc();
42 CGF.EmitTypeCheck(
43 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
44 : CodeGenFunction::TCK_MemberCall,
45 CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
46
47 // Push the this ptr.
48 Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
49
50 // If there is an implicit parameter (e.g. VTT), emit it.
51 if (ImplicitParam) {
52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53 }
54
55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57
58 // And the rest of the call args.
59 if (CE) {
60 // Special case: skip first argument of CXXOperatorCall (it is "this").
61 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
62 CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(),
63 CE->getDirectCallee());
64 } else {
65 assert(
66 FPT->getNumParams() == 0 &&
67 "No CallExpr specified for function with non-zero number of arguments");
68 }
69 return required;
70 }
71
EmitCXXMemberOrOperatorCall(const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE)72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
73 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
75 const CallExpr *CE) {
76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
77 CallArgList Args;
78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
79 *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE,
80 Args);
81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
82 Callee, ReturnValue, Args, MD);
83 }
84
EmitCXXStructorCall(const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,StructorType Type)85 RValue CodeGenFunction::EmitCXXStructorCall(
86 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
87 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
88 const CallExpr *CE, StructorType Type) {
89 CallArgList Args;
90 commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This,
91 ImplicitParam, ImplicitParamTy, CE, Args);
92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type),
93 Callee, ReturnValue, Args, MD);
94 }
95
getCXXRecord(const Expr * E)96 static CXXRecordDecl *getCXXRecord(const Expr *E) {
97 QualType T = E->getType();
98 if (const PointerType *PTy = T->getAs<PointerType>())
99 T = PTy->getPointeeType();
100 const RecordType *Ty = T->castAs<RecordType>();
101 return cast<CXXRecordDecl>(Ty->getDecl());
102 }
103
104 // Note: This function also emit constructor calls to support a MSVC
105 // extensions allowing explicit constructor function call.
EmitCXXMemberCallExpr(const CXXMemberCallExpr * CE,ReturnValueSlot ReturnValue)106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
107 ReturnValueSlot ReturnValue) {
108 const Expr *callee = CE->getCallee()->IgnoreParens();
109
110 if (isa<BinaryOperator>(callee))
111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
112
113 const MemberExpr *ME = cast<MemberExpr>(callee);
114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
115
116 if (MD->isStatic()) {
117 // The method is static, emit it as we would a regular call.
118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
120 ReturnValue);
121 }
122
123 bool HasQualifier = ME->hasQualifier();
124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
125 bool IsArrow = ME->isArrow();
126 const Expr *Base = ME->getBase();
127
128 return EmitCXXMemberOrOperatorMemberCallExpr(
129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
130 }
131
EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr * CE,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue,bool HasQualifier,NestedNameSpecifier * Qualifier,bool IsArrow,const Expr * Base)132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
135 const Expr *Base) {
136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
137
138 // Compute the object pointer.
139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
140
141 const CXXMethodDecl *DevirtualizedMethod = nullptr;
142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
145 assert(DevirtualizedMethod);
146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
147 const Expr *Inner = Base->ignoreParenBaseCasts();
148 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
149 MD->getReturnType().getCanonicalType())
150 // If the return types are not the same, this might be a case where more
151 // code needs to run to compensate for it. For example, the derived
152 // method might return a type that inherits form from the return
153 // type of MD and has a prefix.
154 // For now we just avoid devirtualizing these covariant cases.
155 DevirtualizedMethod = nullptr;
156 else if (getCXXRecord(Inner) == DevirtualizedClass)
157 // If the class of the Inner expression is where the dynamic method
158 // is defined, build the this pointer from it.
159 Base = Inner;
160 else if (getCXXRecord(Base) != DevirtualizedClass) {
161 // If the method is defined in a class that is not the best dynamic
162 // one or the one of the full expression, we would have to build
163 // a derived-to-base cast to compute the correct this pointer, but
164 // we don't have support for that yet, so do a virtual call.
165 DevirtualizedMethod = nullptr;
166 }
167 }
168
169 llvm::Value *This;
170 if (IsArrow)
171 This = EmitScalarExpr(Base);
172 else
173 This = EmitLValue(Base).getAddress();
174
175
176 if (MD->isTrivial()) {
177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
178 if (isa<CXXConstructorDecl>(MD) &&
179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
180 return RValue::get(nullptr);
181
182 if (!MD->getParent()->mayInsertExtraPadding()) {
183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
184 // We don't like to generate the trivial copy/move assignment operator
185 // when it isn't necessary; just produce the proper effect here.
186 // Special case: skip first argument of CXXOperatorCall (it is "this").
187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
188 llvm::Value *RHS =
189 EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
190 EmitAggregateAssign(This, RHS, CE->getType());
191 return RValue::get(This);
192 }
193
194 if (isa<CXXConstructorDecl>(MD) &&
195 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
196 // Trivial move and copy ctor are the same.
197 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
198 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
199 EmitAggregateCopy(This, RHS, CE->arg_begin()->getType());
200 return RValue::get(This);
201 }
202 llvm_unreachable("unknown trivial member function");
203 }
204 }
205
206 // Compute the function type we're calling.
207 const CXXMethodDecl *CalleeDecl =
208 DevirtualizedMethod ? DevirtualizedMethod : MD;
209 const CGFunctionInfo *FInfo = nullptr;
210 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
211 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
212 Dtor, StructorType::Complete);
213 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
214 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
215 Ctor, StructorType::Complete);
216 else
217 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
218
219 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
220
221 // C++ [class.virtual]p12:
222 // Explicit qualification with the scope operator (5.1) suppresses the
223 // virtual call mechanism.
224 //
225 // We also don't emit a virtual call if the base expression has a record type
226 // because then we know what the type is.
227 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
228 llvm::Value *Callee;
229
230 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
231 assert(CE->arg_begin() == CE->arg_end() &&
232 "Destructor shouldn't have explicit parameters");
233 assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
234 if (UseVirtualCall) {
235 CGM.getCXXABI().EmitVirtualDestructorCall(
236 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
237 } else {
238 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
239 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
240 else if (!DevirtualizedMethod)
241 Callee =
242 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
243 else {
244 const CXXDestructorDecl *DDtor =
245 cast<CXXDestructorDecl>(DevirtualizedMethod);
246 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
247 }
248 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
249 /*ImplicitParam=*/nullptr, QualType(), CE);
250 }
251 return RValue::get(nullptr);
252 }
253
254 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
255 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
256 } else if (UseVirtualCall) {
257 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
258 } else {
259 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
260 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
261 else if (!DevirtualizedMethod)
262 Callee = CGM.GetAddrOfFunction(MD, Ty);
263 else {
264 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
265 }
266 }
267
268 if (MD->isVirtual()) {
269 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
270 *this, MD, This, UseVirtualCall);
271 }
272
273 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
274 /*ImplicitParam=*/nullptr, QualType(), CE);
275 }
276
277 RValue
EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr * E,ReturnValueSlot ReturnValue)278 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
279 ReturnValueSlot ReturnValue) {
280 const BinaryOperator *BO =
281 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
282 const Expr *BaseExpr = BO->getLHS();
283 const Expr *MemFnExpr = BO->getRHS();
284
285 const MemberPointerType *MPT =
286 MemFnExpr->getType()->castAs<MemberPointerType>();
287
288 const FunctionProtoType *FPT =
289 MPT->getPointeeType()->castAs<FunctionProtoType>();
290 const CXXRecordDecl *RD =
291 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
292
293 // Get the member function pointer.
294 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
295
296 // Emit the 'this' pointer.
297 llvm::Value *This;
298
299 if (BO->getOpcode() == BO_PtrMemI)
300 This = EmitScalarExpr(BaseExpr);
301 else
302 This = EmitLValue(BaseExpr).getAddress();
303
304 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
305 QualType(MPT->getClass(), 0));
306
307 // Ask the ABI to load the callee. Note that This is modified.
308 llvm::Value *Callee =
309 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
310
311 CallArgList Args;
312
313 QualType ThisType =
314 getContext().getPointerType(getContext().getTagDeclType(RD));
315
316 // Push the this ptr.
317 Args.add(RValue::get(This), ThisType);
318
319 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
320
321 // And the rest of the call args
322 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee());
323 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
324 Callee, ReturnValue, Args);
325 }
326
327 RValue
EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue)328 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
329 const CXXMethodDecl *MD,
330 ReturnValueSlot ReturnValue) {
331 assert(MD->isInstance() &&
332 "Trying to emit a member call expr on a static method!");
333 return EmitCXXMemberOrOperatorMemberCallExpr(
334 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
335 /*IsArrow=*/false, E->getArg(0));
336 }
337
EmitCUDAKernelCallExpr(const CUDAKernelCallExpr * E,ReturnValueSlot ReturnValue)338 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
339 ReturnValueSlot ReturnValue) {
340 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
341 }
342
EmitNullBaseClassInitialization(CodeGenFunction & CGF,llvm::Value * DestPtr,const CXXRecordDecl * Base)343 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
344 llvm::Value *DestPtr,
345 const CXXRecordDecl *Base) {
346 if (Base->isEmpty())
347 return;
348
349 DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
350
351 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
352 CharUnits Size = Layout.getNonVirtualSize();
353 CharUnits Align = Layout.getNonVirtualAlignment();
354
355 llvm::Value *SizeVal = CGF.CGM.getSize(Size);
356
357 // If the type contains a pointer to data member we can't memset it to zero.
358 // Instead, create a null constant and copy it to the destination.
359 // TODO: there are other patterns besides zero that we can usefully memset,
360 // like -1, which happens to be the pattern used by member-pointers.
361 // TODO: isZeroInitializable can be over-conservative in the case where a
362 // virtual base contains a member pointer.
363 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
364 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
365
366 llvm::GlobalVariable *NullVariable =
367 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
368 /*isConstant=*/true,
369 llvm::GlobalVariable::PrivateLinkage,
370 NullConstant, Twine());
371 NullVariable->setAlignment(Align.getQuantity());
372 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
373
374 // Get and call the appropriate llvm.memcpy overload.
375 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
376 return;
377 }
378
379 // Otherwise, just memset the whole thing to zero. This is legal
380 // because in LLVM, all default initializers (other than the ones we just
381 // handled above) are guaranteed to have a bit pattern of all zeros.
382 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
383 Align.getQuantity());
384 }
385
386 void
EmitCXXConstructExpr(const CXXConstructExpr * E,AggValueSlot Dest)387 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
388 AggValueSlot Dest) {
389 assert(!Dest.isIgnored() && "Must have a destination!");
390 const CXXConstructorDecl *CD = E->getConstructor();
391
392 // If we require zero initialization before (or instead of) calling the
393 // constructor, as can be the case with a non-user-provided default
394 // constructor, emit the zero initialization now, unless destination is
395 // already zeroed.
396 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
397 switch (E->getConstructionKind()) {
398 case CXXConstructExpr::CK_Delegating:
399 case CXXConstructExpr::CK_Complete:
400 EmitNullInitialization(Dest.getAddr(), E->getType());
401 break;
402 case CXXConstructExpr::CK_VirtualBase:
403 case CXXConstructExpr::CK_NonVirtualBase:
404 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
405 break;
406 }
407 }
408
409 // If this is a call to a trivial default constructor, do nothing.
410 if (CD->isTrivial() && CD->isDefaultConstructor())
411 return;
412
413 // Elide the constructor if we're constructing from a temporary.
414 // The temporary check is required because Sema sets this on NRVO
415 // returns.
416 if (getLangOpts().ElideConstructors && E->isElidable()) {
417 assert(getContext().hasSameUnqualifiedType(E->getType(),
418 E->getArg(0)->getType()));
419 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
420 EmitAggExpr(E->getArg(0), Dest);
421 return;
422 }
423 }
424
425 if (const ConstantArrayType *arrayType
426 = getContext().getAsConstantArrayType(E->getType())) {
427 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E);
428 } else {
429 CXXCtorType Type = Ctor_Complete;
430 bool ForVirtualBase = false;
431 bool Delegating = false;
432
433 switch (E->getConstructionKind()) {
434 case CXXConstructExpr::CK_Delegating:
435 // We should be emitting a constructor; GlobalDecl will assert this
436 Type = CurGD.getCtorType();
437 Delegating = true;
438 break;
439
440 case CXXConstructExpr::CK_Complete:
441 Type = Ctor_Complete;
442 break;
443
444 case CXXConstructExpr::CK_VirtualBase:
445 ForVirtualBase = true;
446 // fall-through
447
448 case CXXConstructExpr::CK_NonVirtualBase:
449 Type = Ctor_Base;
450 }
451
452 // Call the constructor.
453 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
454 E);
455 }
456 }
457
458 void
EmitSynthesizedCXXCopyCtor(llvm::Value * Dest,llvm::Value * Src,const Expr * Exp)459 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
460 llvm::Value *Src,
461 const Expr *Exp) {
462 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
463 Exp = E->getSubExpr();
464 assert(isa<CXXConstructExpr>(Exp) &&
465 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
466 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
467 const CXXConstructorDecl *CD = E->getConstructor();
468 RunCleanupsScope Scope(*this);
469
470 // If we require zero initialization before (or instead of) calling the
471 // constructor, as can be the case with a non-user-provided default
472 // constructor, emit the zero initialization now.
473 // FIXME. Do I still need this for a copy ctor synthesis?
474 if (E->requiresZeroInitialization())
475 EmitNullInitialization(Dest, E->getType());
476
477 assert(!getContext().getAsConstantArrayType(E->getType())
478 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
479 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
480 }
481
CalculateCookiePadding(CodeGenFunction & CGF,const CXXNewExpr * E)482 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
483 const CXXNewExpr *E) {
484 if (!E->isArray())
485 return CharUnits::Zero();
486
487 // No cookie is required if the operator new[] being used is the
488 // reserved placement operator new[].
489 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
490 return CharUnits::Zero();
491
492 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
493 }
494
EmitCXXNewAllocSize(CodeGenFunction & CGF,const CXXNewExpr * e,unsigned minElements,llvm::Value * & numElements,llvm::Value * & sizeWithoutCookie)495 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
496 const CXXNewExpr *e,
497 unsigned minElements,
498 llvm::Value *&numElements,
499 llvm::Value *&sizeWithoutCookie) {
500 QualType type = e->getAllocatedType();
501
502 if (!e->isArray()) {
503 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
504 sizeWithoutCookie
505 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
506 return sizeWithoutCookie;
507 }
508
509 // The width of size_t.
510 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
511
512 // Figure out the cookie size.
513 llvm::APInt cookieSize(sizeWidth,
514 CalculateCookiePadding(CGF, e).getQuantity());
515
516 // Emit the array size expression.
517 // We multiply the size of all dimensions for NumElements.
518 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
519 numElements = CGF.EmitScalarExpr(e->getArraySize());
520 assert(isa<llvm::IntegerType>(numElements->getType()));
521
522 // The number of elements can be have an arbitrary integer type;
523 // essentially, we need to multiply it by a constant factor, add a
524 // cookie size, and verify that the result is representable as a
525 // size_t. That's just a gloss, though, and it's wrong in one
526 // important way: if the count is negative, it's an error even if
527 // the cookie size would bring the total size >= 0.
528 bool isSigned
529 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
530 llvm::IntegerType *numElementsType
531 = cast<llvm::IntegerType>(numElements->getType());
532 unsigned numElementsWidth = numElementsType->getBitWidth();
533
534 // Compute the constant factor.
535 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
536 while (const ConstantArrayType *CAT
537 = CGF.getContext().getAsConstantArrayType(type)) {
538 type = CAT->getElementType();
539 arraySizeMultiplier *= CAT->getSize();
540 }
541
542 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
543 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
544 typeSizeMultiplier *= arraySizeMultiplier;
545
546 // This will be a size_t.
547 llvm::Value *size;
548
549 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
550 // Don't bloat the -O0 code.
551 if (llvm::ConstantInt *numElementsC =
552 dyn_cast<llvm::ConstantInt>(numElements)) {
553 const llvm::APInt &count = numElementsC->getValue();
554
555 bool hasAnyOverflow = false;
556
557 // If 'count' was a negative number, it's an overflow.
558 if (isSigned && count.isNegative())
559 hasAnyOverflow = true;
560
561 // We want to do all this arithmetic in size_t. If numElements is
562 // wider than that, check whether it's already too big, and if so,
563 // overflow.
564 else if (numElementsWidth > sizeWidth &&
565 numElementsWidth - sizeWidth > count.countLeadingZeros())
566 hasAnyOverflow = true;
567
568 // Okay, compute a count at the right width.
569 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
570
571 // If there is a brace-initializer, we cannot allocate fewer elements than
572 // there are initializers. If we do, that's treated like an overflow.
573 if (adjustedCount.ult(minElements))
574 hasAnyOverflow = true;
575
576 // Scale numElements by that. This might overflow, but we don't
577 // care because it only overflows if allocationSize does, too, and
578 // if that overflows then we shouldn't use this.
579 numElements = llvm::ConstantInt::get(CGF.SizeTy,
580 adjustedCount * arraySizeMultiplier);
581
582 // Compute the size before cookie, and track whether it overflowed.
583 bool overflow;
584 llvm::APInt allocationSize
585 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
586 hasAnyOverflow |= overflow;
587
588 // Add in the cookie, and check whether it's overflowed.
589 if (cookieSize != 0) {
590 // Save the current size without a cookie. This shouldn't be
591 // used if there was overflow.
592 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
593
594 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
595 hasAnyOverflow |= overflow;
596 }
597
598 // On overflow, produce a -1 so operator new will fail.
599 if (hasAnyOverflow) {
600 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
601 } else {
602 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
603 }
604
605 // Otherwise, we might need to use the overflow intrinsics.
606 } else {
607 // There are up to five conditions we need to test for:
608 // 1) if isSigned, we need to check whether numElements is negative;
609 // 2) if numElementsWidth > sizeWidth, we need to check whether
610 // numElements is larger than something representable in size_t;
611 // 3) if minElements > 0, we need to check whether numElements is smaller
612 // than that.
613 // 4) we need to compute
614 // sizeWithoutCookie := numElements * typeSizeMultiplier
615 // and check whether it overflows; and
616 // 5) if we need a cookie, we need to compute
617 // size := sizeWithoutCookie + cookieSize
618 // and check whether it overflows.
619
620 llvm::Value *hasOverflow = nullptr;
621
622 // If numElementsWidth > sizeWidth, then one way or another, we're
623 // going to have to do a comparison for (2), and this happens to
624 // take care of (1), too.
625 if (numElementsWidth > sizeWidth) {
626 llvm::APInt threshold(numElementsWidth, 1);
627 threshold <<= sizeWidth;
628
629 llvm::Value *thresholdV
630 = llvm::ConstantInt::get(numElementsType, threshold);
631
632 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
633 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
634
635 // Otherwise, if we're signed, we want to sext up to size_t.
636 } else if (isSigned) {
637 if (numElementsWidth < sizeWidth)
638 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
639
640 // If there's a non-1 type size multiplier, then we can do the
641 // signedness check at the same time as we do the multiply
642 // because a negative number times anything will cause an
643 // unsigned overflow. Otherwise, we have to do it here. But at least
644 // in this case, we can subsume the >= minElements check.
645 if (typeSizeMultiplier == 1)
646 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
647 llvm::ConstantInt::get(CGF.SizeTy, minElements));
648
649 // Otherwise, zext up to size_t if necessary.
650 } else if (numElementsWidth < sizeWidth) {
651 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
652 }
653
654 assert(numElements->getType() == CGF.SizeTy);
655
656 if (minElements) {
657 // Don't allow allocation of fewer elements than we have initializers.
658 if (!hasOverflow) {
659 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
660 llvm::ConstantInt::get(CGF.SizeTy, minElements));
661 } else if (numElementsWidth > sizeWidth) {
662 // The other existing overflow subsumes this check.
663 // We do an unsigned comparison, since any signed value < -1 is
664 // taken care of either above or below.
665 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
666 CGF.Builder.CreateICmpULT(numElements,
667 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
668 }
669 }
670
671 size = numElements;
672
673 // Multiply by the type size if necessary. This multiplier
674 // includes all the factors for nested arrays.
675 //
676 // This step also causes numElements to be scaled up by the
677 // nested-array factor if necessary. Overflow on this computation
678 // can be ignored because the result shouldn't be used if
679 // allocation fails.
680 if (typeSizeMultiplier != 1) {
681 llvm::Value *umul_with_overflow
682 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
683
684 llvm::Value *tsmV =
685 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
686 llvm::Value *result =
687 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
688
689 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
690 if (hasOverflow)
691 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
692 else
693 hasOverflow = overflowed;
694
695 size = CGF.Builder.CreateExtractValue(result, 0);
696
697 // Also scale up numElements by the array size multiplier.
698 if (arraySizeMultiplier != 1) {
699 // If the base element type size is 1, then we can re-use the
700 // multiply we just did.
701 if (typeSize.isOne()) {
702 assert(arraySizeMultiplier == typeSizeMultiplier);
703 numElements = size;
704
705 // Otherwise we need a separate multiply.
706 } else {
707 llvm::Value *asmV =
708 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
709 numElements = CGF.Builder.CreateMul(numElements, asmV);
710 }
711 }
712 } else {
713 // numElements doesn't need to be scaled.
714 assert(arraySizeMultiplier == 1);
715 }
716
717 // Add in the cookie size if necessary.
718 if (cookieSize != 0) {
719 sizeWithoutCookie = size;
720
721 llvm::Value *uadd_with_overflow
722 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
723
724 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
725 llvm::Value *result =
726 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
727
728 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
729 if (hasOverflow)
730 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
731 else
732 hasOverflow = overflowed;
733
734 size = CGF.Builder.CreateExtractValue(result, 0);
735 }
736
737 // If we had any possibility of dynamic overflow, make a select to
738 // overwrite 'size' with an all-ones value, which should cause
739 // operator new to throw.
740 if (hasOverflow)
741 size = CGF.Builder.CreateSelect(hasOverflow,
742 llvm::Constant::getAllOnesValue(CGF.SizeTy),
743 size);
744 }
745
746 if (cookieSize == 0)
747 sizeWithoutCookie = size;
748 else
749 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
750
751 return size;
752 }
753
StoreAnyExprIntoOneUnit(CodeGenFunction & CGF,const Expr * Init,QualType AllocType,llvm::Value * NewPtr)754 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
755 QualType AllocType, llvm::Value *NewPtr) {
756 // FIXME: Refactor with EmitExprAsInit.
757 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
758 switch (CGF.getEvaluationKind(AllocType)) {
759 case TEK_Scalar:
760 CGF.EmitScalarInit(Init, nullptr,
761 CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false);
762 return;
763 case TEK_Complex:
764 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
765 Alignment),
766 /*isInit*/ true);
767 return;
768 case TEK_Aggregate: {
769 AggValueSlot Slot
770 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
771 AggValueSlot::IsDestructed,
772 AggValueSlot::DoesNotNeedGCBarriers,
773 AggValueSlot::IsNotAliased);
774 CGF.EmitAggExpr(Init, Slot);
775 return;
776 }
777 }
778 llvm_unreachable("bad evaluation kind");
779 }
780
781 void
EmitNewArrayInitializer(const CXXNewExpr * E,QualType ElementType,llvm::Value * BeginPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)782 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
783 QualType ElementType,
784 llvm::Value *BeginPtr,
785 llvm::Value *NumElements,
786 llvm::Value *AllocSizeWithoutCookie) {
787 // If we have a type with trivial initialization and no initializer,
788 // there's nothing to do.
789 if (!E->hasInitializer())
790 return;
791
792 llvm::Value *CurPtr = BeginPtr;
793
794 unsigned InitListElements = 0;
795
796 const Expr *Init = E->getInitializer();
797 llvm::AllocaInst *EndOfInit = nullptr;
798 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
799 EHScopeStack::stable_iterator Cleanup;
800 llvm::Instruction *CleanupDominator = nullptr;
801
802 // If the initializer is an initializer list, first do the explicit elements.
803 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
804 InitListElements = ILE->getNumInits();
805
806 // If this is a multi-dimensional array new, we will initialize multiple
807 // elements with each init list element.
808 QualType AllocType = E->getAllocatedType();
809 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
810 AllocType->getAsArrayTypeUnsafe())) {
811 unsigned AS = CurPtr->getType()->getPointerAddressSpace();
812 llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS);
813 CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
814 InitListElements *= getContext().getConstantArrayElementCount(CAT);
815 }
816
817 // Enter a partial-destruction Cleanup if necessary.
818 if (needsEHCleanup(DtorKind)) {
819 // In principle we could tell the Cleanup where we are more
820 // directly, but the control flow can get so varied here that it
821 // would actually be quite complex. Therefore we go through an
822 // alloca.
823 EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
824 CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
825 pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
826 getDestroyer(DtorKind));
827 Cleanup = EHStack.stable_begin();
828 }
829
830 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
831 // Tell the cleanup that it needs to destroy up to this
832 // element. TODO: some of these stores can be trivially
833 // observed to be unnecessary.
834 if (EndOfInit)
835 Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
836 EndOfInit);
837 // FIXME: If the last initializer is an incomplete initializer list for
838 // an array, and we have an array filler, we can fold together the two
839 // initialization loops.
840 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
841 ILE->getInit(i)->getType(), CurPtr);
842 CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next");
843 }
844
845 // The remaining elements are filled with the array filler expression.
846 Init = ILE->getArrayFiller();
847
848 // Extract the initializer for the individual array elements by pulling
849 // out the array filler from all the nested initializer lists. This avoids
850 // generating a nested loop for the initialization.
851 while (Init && Init->getType()->isConstantArrayType()) {
852 auto *SubILE = dyn_cast<InitListExpr>(Init);
853 if (!SubILE)
854 break;
855 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
856 Init = SubILE->getArrayFiller();
857 }
858
859 // Switch back to initializing one base element at a time.
860 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
861 }
862
863 // Attempt to perform zero-initialization using memset.
864 auto TryMemsetInitialization = [&]() -> bool {
865 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
866 // we can initialize with a memset to -1.
867 if (!CGM.getTypes().isZeroInitializable(ElementType))
868 return false;
869
870 // Optimization: since zero initialization will just set the memory
871 // to all zeroes, generate a single memset to do it in one shot.
872
873 // Subtract out the size of any elements we've already initialized.
874 auto *RemainingSize = AllocSizeWithoutCookie;
875 if (InitListElements) {
876 // We know this can't overflow; we check this when doing the allocation.
877 auto *InitializedSize = llvm::ConstantInt::get(
878 RemainingSize->getType(),
879 getContext().getTypeSizeInChars(ElementType).getQuantity() *
880 InitListElements);
881 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
882 }
883
884 // Create the memset.
885 CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
886 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
887 Alignment.getQuantity(), false);
888 return true;
889 };
890
891 // If all elements have already been initialized, skip any further
892 // initialization.
893 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
894 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
895 // If there was a Cleanup, deactivate it.
896 if (CleanupDominator)
897 DeactivateCleanupBlock(Cleanup, CleanupDominator);
898 return;
899 }
900
901 assert(Init && "have trailing elements to initialize but no initializer");
902
903 // If this is a constructor call, try to optimize it out, and failing that
904 // emit a single loop to initialize all remaining elements.
905 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
906 CXXConstructorDecl *Ctor = CCE->getConstructor();
907 if (Ctor->isTrivial()) {
908 // If new expression did not specify value-initialization, then there
909 // is no initialization.
910 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
911 return;
912
913 if (TryMemsetInitialization())
914 return;
915 }
916
917 // Store the new Cleanup position for irregular Cleanups.
918 //
919 // FIXME: Share this cleanup with the constructor call emission rather than
920 // having it create a cleanup of its own.
921 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
922
923 // Emit a constructor call loop to initialize the remaining elements.
924 if (InitListElements)
925 NumElements = Builder.CreateSub(
926 NumElements,
927 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
928 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
929 CCE->requiresZeroInitialization());
930 return;
931 }
932
933 // If this is value-initialization, we can usually use memset.
934 ImplicitValueInitExpr IVIE(ElementType);
935 if (isa<ImplicitValueInitExpr>(Init)) {
936 if (TryMemsetInitialization())
937 return;
938
939 // Switch to an ImplicitValueInitExpr for the element type. This handles
940 // only one case: multidimensional array new of pointers to members. In
941 // all other cases, we already have an initializer for the array element.
942 Init = &IVIE;
943 }
944
945 // At this point we should have found an initializer for the individual
946 // elements of the array.
947 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
948 "got wrong type of element to initialize");
949
950 // If we have an empty initializer list, we can usually use memset.
951 if (auto *ILE = dyn_cast<InitListExpr>(Init))
952 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
953 return;
954
955 // Create the loop blocks.
956 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
957 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
958 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
959
960 // Find the end of the array, hoisted out of the loop.
961 llvm::Value *EndPtr =
962 Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
963
964 // If the number of elements isn't constant, we have to now check if there is
965 // anything left to initialize.
966 if (!ConstNum) {
967 llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
968 "array.isempty");
969 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
970 }
971
972 // Enter the loop.
973 EmitBlock(LoopBB);
974
975 // Set up the current-element phi.
976 llvm::PHINode *CurPtrPhi =
977 Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
978 CurPtrPhi->addIncoming(CurPtr, EntryBB);
979 CurPtr = CurPtrPhi;
980
981 // Store the new Cleanup position for irregular Cleanups.
982 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
983
984 // Enter a partial-destruction Cleanup if necessary.
985 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
986 pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
987 getDestroyer(DtorKind));
988 Cleanup = EHStack.stable_begin();
989 CleanupDominator = Builder.CreateUnreachable();
990 }
991
992 // Emit the initializer into this element.
993 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
994
995 // Leave the Cleanup if we entered one.
996 if (CleanupDominator) {
997 DeactivateCleanupBlock(Cleanup, CleanupDominator);
998 CleanupDominator->eraseFromParent();
999 }
1000
1001 // Advance to the next element by adjusting the pointer type as necessary.
1002 llvm::Value *NextPtr =
1003 Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next");
1004
1005 // Check whether we've gotten to the end of the array and, if so,
1006 // exit the loop.
1007 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1008 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1009 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1010
1011 EmitBlock(ContBB);
1012 }
1013
EmitNewInitializer(CodeGenFunction & CGF,const CXXNewExpr * E,QualType ElementType,llvm::Value * NewPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)1014 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1015 QualType ElementType,
1016 llvm::Value *NewPtr,
1017 llvm::Value *NumElements,
1018 llvm::Value *AllocSizeWithoutCookie) {
1019 ApplyDebugLocation DL(CGF, E->getStartLoc());
1020 if (E->isArray())
1021 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements,
1022 AllocSizeWithoutCookie);
1023 else if (const Expr *Init = E->getInitializer())
1024 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1025 }
1026
1027 /// Emit a call to an operator new or operator delete function, as implicitly
1028 /// created by new-expressions and delete-expressions.
EmitNewDeleteCall(CodeGenFunction & CGF,const FunctionDecl * Callee,const FunctionProtoType * CalleeType,const CallArgList & Args)1029 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1030 const FunctionDecl *Callee,
1031 const FunctionProtoType *CalleeType,
1032 const CallArgList &Args) {
1033 llvm::Instruction *CallOrInvoke;
1034 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1035 RValue RV =
1036 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1037 Args, CalleeType, /*chainCall=*/false),
1038 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1039
1040 /// C++1y [expr.new]p10:
1041 /// [In a new-expression,] an implementation is allowed to omit a call
1042 /// to a replaceable global allocation function.
1043 ///
1044 /// We model such elidable calls with the 'builtin' attribute.
1045 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1046 if (Callee->isReplaceableGlobalAllocationFunction() &&
1047 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1048 // FIXME: Add addAttribute to CallSite.
1049 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1050 CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1051 llvm::Attribute::Builtin);
1052 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1053 II->addAttribute(llvm::AttributeSet::FunctionIndex,
1054 llvm::Attribute::Builtin);
1055 else
1056 llvm_unreachable("unexpected kind of call instruction");
1057 }
1058
1059 return RV;
1060 }
1061
EmitBuiltinNewDeleteCall(const FunctionProtoType * Type,const Expr * Arg,bool IsDelete)1062 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1063 const Expr *Arg,
1064 bool IsDelete) {
1065 CallArgList Args;
1066 const Stmt *ArgS = Arg;
1067 EmitCallArgs(Args, *Type->param_type_begin(),
1068 ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
1069 // Find the allocation or deallocation function that we're calling.
1070 ASTContext &Ctx = getContext();
1071 DeclarationName Name = Ctx.DeclarationNames
1072 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1073 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1074 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1075 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1076 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1077 llvm_unreachable("predeclared global operator new/delete is missing");
1078 }
1079
1080 namespace {
1081 /// A cleanup to call the given 'operator delete' function upon
1082 /// abnormal exit from a new expression.
1083 class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1084 size_t NumPlacementArgs;
1085 const FunctionDecl *OperatorDelete;
1086 llvm::Value *Ptr;
1087 llvm::Value *AllocSize;
1088
getPlacementArgs()1089 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1090
1091 public:
getExtraSize(size_t NumPlacementArgs)1092 static size_t getExtraSize(size_t NumPlacementArgs) {
1093 return NumPlacementArgs * sizeof(RValue);
1094 }
1095
CallDeleteDuringNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,llvm::Value * Ptr,llvm::Value * AllocSize)1096 CallDeleteDuringNew(size_t NumPlacementArgs,
1097 const FunctionDecl *OperatorDelete,
1098 llvm::Value *Ptr,
1099 llvm::Value *AllocSize)
1100 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1101 Ptr(Ptr), AllocSize(AllocSize) {}
1102
setPlacementArg(unsigned I,RValue Arg)1103 void setPlacementArg(unsigned I, RValue Arg) {
1104 assert(I < NumPlacementArgs && "index out of range");
1105 getPlacementArgs()[I] = Arg;
1106 }
1107
Emit(CodeGenFunction & CGF,Flags flags)1108 void Emit(CodeGenFunction &CGF, Flags flags) override {
1109 const FunctionProtoType *FPT
1110 = OperatorDelete->getType()->getAs<FunctionProtoType>();
1111 assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1112 (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1113
1114 CallArgList DeleteArgs;
1115
1116 // The first argument is always a void*.
1117 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1118 DeleteArgs.add(RValue::get(Ptr), *AI++);
1119
1120 // A member 'operator delete' can take an extra 'size_t' argument.
1121 if (FPT->getNumParams() == NumPlacementArgs + 2)
1122 DeleteArgs.add(RValue::get(AllocSize), *AI++);
1123
1124 // Pass the rest of the arguments, which must match exactly.
1125 for (unsigned I = 0; I != NumPlacementArgs; ++I)
1126 DeleteArgs.add(getPlacementArgs()[I], *AI++);
1127
1128 // Call 'operator delete'.
1129 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1130 }
1131 };
1132
1133 /// A cleanup to call the given 'operator delete' function upon
1134 /// abnormal exit from a new expression when the new expression is
1135 /// conditional.
1136 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1137 size_t NumPlacementArgs;
1138 const FunctionDecl *OperatorDelete;
1139 DominatingValue<RValue>::saved_type Ptr;
1140 DominatingValue<RValue>::saved_type AllocSize;
1141
getPlacementArgs()1142 DominatingValue<RValue>::saved_type *getPlacementArgs() {
1143 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1144 }
1145
1146 public:
getExtraSize(size_t NumPlacementArgs)1147 static size_t getExtraSize(size_t NumPlacementArgs) {
1148 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1149 }
1150
CallDeleteDuringConditionalNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,DominatingValue<RValue>::saved_type Ptr,DominatingValue<RValue>::saved_type AllocSize)1151 CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1152 const FunctionDecl *OperatorDelete,
1153 DominatingValue<RValue>::saved_type Ptr,
1154 DominatingValue<RValue>::saved_type AllocSize)
1155 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1156 Ptr(Ptr), AllocSize(AllocSize) {}
1157
setPlacementArg(unsigned I,DominatingValue<RValue>::saved_type Arg)1158 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1159 assert(I < NumPlacementArgs && "index out of range");
1160 getPlacementArgs()[I] = Arg;
1161 }
1162
Emit(CodeGenFunction & CGF,Flags flags)1163 void Emit(CodeGenFunction &CGF, Flags flags) override {
1164 const FunctionProtoType *FPT
1165 = OperatorDelete->getType()->getAs<FunctionProtoType>();
1166 assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1167 (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1168
1169 CallArgList DeleteArgs;
1170
1171 // The first argument is always a void*.
1172 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1173 DeleteArgs.add(Ptr.restore(CGF), *AI++);
1174
1175 // A member 'operator delete' can take an extra 'size_t' argument.
1176 if (FPT->getNumParams() == NumPlacementArgs + 2) {
1177 RValue RV = AllocSize.restore(CGF);
1178 DeleteArgs.add(RV, *AI++);
1179 }
1180
1181 // Pass the rest of the arguments, which must match exactly.
1182 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1183 RValue RV = getPlacementArgs()[I].restore(CGF);
1184 DeleteArgs.add(RV, *AI++);
1185 }
1186
1187 // Call 'operator delete'.
1188 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1189 }
1190 };
1191 }
1192
1193 /// Enter a cleanup to call 'operator delete' if the initializer in a
1194 /// new-expression throws.
EnterNewDeleteCleanup(CodeGenFunction & CGF,const CXXNewExpr * E,llvm::Value * NewPtr,llvm::Value * AllocSize,const CallArgList & NewArgs)1195 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1196 const CXXNewExpr *E,
1197 llvm::Value *NewPtr,
1198 llvm::Value *AllocSize,
1199 const CallArgList &NewArgs) {
1200 // If we're not inside a conditional branch, then the cleanup will
1201 // dominate and we can do the easier (and more efficient) thing.
1202 if (!CGF.isInConditionalBranch()) {
1203 CallDeleteDuringNew *Cleanup = CGF.EHStack
1204 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1205 E->getNumPlacementArgs(),
1206 E->getOperatorDelete(),
1207 NewPtr, AllocSize);
1208 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1209 Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1210
1211 return;
1212 }
1213
1214 // Otherwise, we need to save all this stuff.
1215 DominatingValue<RValue>::saved_type SavedNewPtr =
1216 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1217 DominatingValue<RValue>::saved_type SavedAllocSize =
1218 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1219
1220 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1221 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1222 E->getNumPlacementArgs(),
1223 E->getOperatorDelete(),
1224 SavedNewPtr,
1225 SavedAllocSize);
1226 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1227 Cleanup->setPlacementArg(I,
1228 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1229
1230 CGF.initFullExprCleanup();
1231 }
1232
EmitCXXNewExpr(const CXXNewExpr * E)1233 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1234 // The element type being allocated.
1235 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1236
1237 // 1. Build a call to the allocation function.
1238 FunctionDecl *allocator = E->getOperatorNew();
1239 const FunctionProtoType *allocatorType =
1240 allocator->getType()->castAs<FunctionProtoType>();
1241
1242 CallArgList allocatorArgs;
1243
1244 // The allocation size is the first argument.
1245 QualType sizeType = getContext().getSizeType();
1246
1247 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1248 unsigned minElements = 0;
1249 if (E->isArray() && E->hasInitializer()) {
1250 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1251 minElements = ILE->getNumInits();
1252 }
1253
1254 llvm::Value *numElements = nullptr;
1255 llvm::Value *allocSizeWithoutCookie = nullptr;
1256 llvm::Value *allocSize =
1257 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1258 allocSizeWithoutCookie);
1259
1260 allocatorArgs.add(RValue::get(allocSize), sizeType);
1261
1262 // We start at 1 here because the first argument (the allocation size)
1263 // has already been emitted.
1264 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(),
1265 E->placement_arg_end(), /* CalleeDecl */ nullptr,
1266 /*ParamsToSkip*/ 1);
1267
1268 // Emit the allocation call. If the allocator is a global placement
1269 // operator, just "inline" it directly.
1270 RValue RV;
1271 if (allocator->isReservedGlobalPlacementOperator()) {
1272 assert(allocatorArgs.size() == 2);
1273 RV = allocatorArgs[1].RV;
1274 // TODO: kill any unnecessary computations done for the size
1275 // argument.
1276 } else {
1277 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1278 }
1279
1280 // Emit a null check on the allocation result if the allocation
1281 // function is allowed to return null (because it has a non-throwing
1282 // exception spec; for this part, we inline
1283 // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1284 // interesting initializer.
1285 bool nullCheck = allocatorType->isNothrow(getContext()) &&
1286 (!allocType.isPODType(getContext()) || E->hasInitializer());
1287
1288 llvm::BasicBlock *nullCheckBB = nullptr;
1289 llvm::BasicBlock *contBB = nullptr;
1290
1291 llvm::Value *allocation = RV.getScalarVal();
1292 unsigned AS = allocation->getType()->getPointerAddressSpace();
1293
1294 // The null-check means that the initializer is conditionally
1295 // evaluated.
1296 ConditionalEvaluation conditional(*this);
1297
1298 if (nullCheck) {
1299 conditional.begin(*this);
1300
1301 nullCheckBB = Builder.GetInsertBlock();
1302 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1303 contBB = createBasicBlock("new.cont");
1304
1305 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1306 Builder.CreateCondBr(isNull, contBB, notNullBB);
1307 EmitBlock(notNullBB);
1308 }
1309
1310 // If there's an operator delete, enter a cleanup to call it if an
1311 // exception is thrown.
1312 EHScopeStack::stable_iterator operatorDeleteCleanup;
1313 llvm::Instruction *cleanupDominator = nullptr;
1314 if (E->getOperatorDelete() &&
1315 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1316 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1317 operatorDeleteCleanup = EHStack.stable_begin();
1318 cleanupDominator = Builder.CreateUnreachable();
1319 }
1320
1321 assert((allocSize == allocSizeWithoutCookie) ==
1322 CalculateCookiePadding(*this, E).isZero());
1323 if (allocSize != allocSizeWithoutCookie) {
1324 assert(E->isArray());
1325 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1326 numElements,
1327 E, allocType);
1328 }
1329
1330 llvm::Type *elementPtrTy
1331 = ConvertTypeForMem(allocType)->getPointerTo(AS);
1332 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1333
1334 EmitNewInitializer(*this, E, allocType, result, numElements,
1335 allocSizeWithoutCookie);
1336 if (E->isArray()) {
1337 // NewPtr is a pointer to the base element type. If we're
1338 // allocating an array of arrays, we'll need to cast back to the
1339 // array pointer type.
1340 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1341 if (result->getType() != resultType)
1342 result = Builder.CreateBitCast(result, resultType);
1343 }
1344
1345 // Deactivate the 'operator delete' cleanup if we finished
1346 // initialization.
1347 if (operatorDeleteCleanup.isValid()) {
1348 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1349 cleanupDominator->eraseFromParent();
1350 }
1351
1352 if (nullCheck) {
1353 conditional.end(*this);
1354
1355 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1356 EmitBlock(contBB);
1357
1358 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1359 PHI->addIncoming(result, notNullBB);
1360 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1361 nullCheckBB);
1362
1363 result = PHI;
1364 }
1365
1366 return result;
1367 }
1368
EmitDeleteCall(const FunctionDecl * DeleteFD,llvm::Value * Ptr,QualType DeleteTy)1369 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1370 llvm::Value *Ptr,
1371 QualType DeleteTy) {
1372 assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1373
1374 const FunctionProtoType *DeleteFTy =
1375 DeleteFD->getType()->getAs<FunctionProtoType>();
1376
1377 CallArgList DeleteArgs;
1378
1379 // Check if we need to pass the size to the delete operator.
1380 llvm::Value *Size = nullptr;
1381 QualType SizeTy;
1382 if (DeleteFTy->getNumParams() == 2) {
1383 SizeTy = DeleteFTy->getParamType(1);
1384 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1385 Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1386 DeleteTypeSize.getQuantity());
1387 }
1388
1389 QualType ArgTy = DeleteFTy->getParamType(0);
1390 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1391 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1392
1393 if (Size)
1394 DeleteArgs.add(RValue::get(Size), SizeTy);
1395
1396 // Emit the call to delete.
1397 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1398 }
1399
1400 namespace {
1401 /// Calls the given 'operator delete' on a single object.
1402 struct CallObjectDelete : EHScopeStack::Cleanup {
1403 llvm::Value *Ptr;
1404 const FunctionDecl *OperatorDelete;
1405 QualType ElementType;
1406
CallObjectDelete__anonbe0810ed0311::CallObjectDelete1407 CallObjectDelete(llvm::Value *Ptr,
1408 const FunctionDecl *OperatorDelete,
1409 QualType ElementType)
1410 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1411
Emit__anonbe0810ed0311::CallObjectDelete1412 void Emit(CodeGenFunction &CGF, Flags flags) override {
1413 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1414 }
1415 };
1416 }
1417
1418 void
pushCallObjectDeleteCleanup(const FunctionDecl * OperatorDelete,llvm::Value * CompletePtr,QualType ElementType)1419 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1420 llvm::Value *CompletePtr,
1421 QualType ElementType) {
1422 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1423 OperatorDelete, ElementType);
1424 }
1425
1426 /// Emit the code for deleting a single object.
EmitObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,llvm::Value * Ptr,QualType ElementType)1427 static void EmitObjectDelete(CodeGenFunction &CGF,
1428 const CXXDeleteExpr *DE,
1429 llvm::Value *Ptr,
1430 QualType ElementType) {
1431 // Find the destructor for the type, if applicable. If the
1432 // destructor is virtual, we'll just emit the vcall and return.
1433 const CXXDestructorDecl *Dtor = nullptr;
1434 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1435 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1436 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1437 Dtor = RD->getDestructor();
1438
1439 if (Dtor->isVirtual()) {
1440 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1441 Dtor);
1442 return;
1443 }
1444 }
1445 }
1446
1447 // Make sure that we call delete even if the dtor throws.
1448 // This doesn't have to a conditional cleanup because we're going
1449 // to pop it off in a second.
1450 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1451 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1452 Ptr, OperatorDelete, ElementType);
1453
1454 if (Dtor)
1455 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1456 /*ForVirtualBase=*/false,
1457 /*Delegating=*/false,
1458 Ptr);
1459 else if (CGF.getLangOpts().ObjCAutoRefCount &&
1460 ElementType->isObjCLifetimeType()) {
1461 switch (ElementType.getObjCLifetime()) {
1462 case Qualifiers::OCL_None:
1463 case Qualifiers::OCL_ExplicitNone:
1464 case Qualifiers::OCL_Autoreleasing:
1465 break;
1466
1467 case Qualifiers::OCL_Strong: {
1468 // Load the pointer value.
1469 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1470 ElementType.isVolatileQualified());
1471
1472 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1473 break;
1474 }
1475
1476 case Qualifiers::OCL_Weak:
1477 CGF.EmitARCDestroyWeak(Ptr);
1478 break;
1479 }
1480 }
1481
1482 CGF.PopCleanupBlock();
1483 }
1484
1485 namespace {
1486 /// Calls the given 'operator delete' on an array of objects.
1487 struct CallArrayDelete : EHScopeStack::Cleanup {
1488 llvm::Value *Ptr;
1489 const FunctionDecl *OperatorDelete;
1490 llvm::Value *NumElements;
1491 QualType ElementType;
1492 CharUnits CookieSize;
1493
CallArrayDelete__anonbe0810ed0411::CallArrayDelete1494 CallArrayDelete(llvm::Value *Ptr,
1495 const FunctionDecl *OperatorDelete,
1496 llvm::Value *NumElements,
1497 QualType ElementType,
1498 CharUnits CookieSize)
1499 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1500 ElementType(ElementType), CookieSize(CookieSize) {}
1501
Emit__anonbe0810ed0411::CallArrayDelete1502 void Emit(CodeGenFunction &CGF, Flags flags) override {
1503 const FunctionProtoType *DeleteFTy =
1504 OperatorDelete->getType()->getAs<FunctionProtoType>();
1505 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1506
1507 CallArgList Args;
1508
1509 // Pass the pointer as the first argument.
1510 QualType VoidPtrTy = DeleteFTy->getParamType(0);
1511 llvm::Value *DeletePtr
1512 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1513 Args.add(RValue::get(DeletePtr), VoidPtrTy);
1514
1515 // Pass the original requested size as the second argument.
1516 if (DeleteFTy->getNumParams() == 2) {
1517 QualType size_t = DeleteFTy->getParamType(1);
1518 llvm::IntegerType *SizeTy
1519 = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1520
1521 CharUnits ElementTypeSize =
1522 CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1523
1524 // The size of an element, multiplied by the number of elements.
1525 llvm::Value *Size
1526 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1527 Size = CGF.Builder.CreateMul(Size, NumElements);
1528
1529 // Plus the size of the cookie if applicable.
1530 if (!CookieSize.isZero()) {
1531 llvm::Value *CookieSizeV
1532 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1533 Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1534 }
1535
1536 Args.add(RValue::get(Size), size_t);
1537 }
1538
1539 // Emit the call to delete.
1540 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1541 }
1542 };
1543 }
1544
1545 /// Emit the code for deleting an array of objects.
EmitArrayDelete(CodeGenFunction & CGF,const CXXDeleteExpr * E,llvm::Value * deletedPtr,QualType elementType)1546 static void EmitArrayDelete(CodeGenFunction &CGF,
1547 const CXXDeleteExpr *E,
1548 llvm::Value *deletedPtr,
1549 QualType elementType) {
1550 llvm::Value *numElements = nullptr;
1551 llvm::Value *allocatedPtr = nullptr;
1552 CharUnits cookieSize;
1553 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1554 numElements, allocatedPtr, cookieSize);
1555
1556 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1557
1558 // Make sure that we call delete even if one of the dtors throws.
1559 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1560 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1561 allocatedPtr, operatorDelete,
1562 numElements, elementType,
1563 cookieSize);
1564
1565 // Destroy the elements.
1566 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1567 assert(numElements && "no element count for a type with a destructor!");
1568
1569 llvm::Value *arrayEnd =
1570 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1571
1572 // Note that it is legal to allocate a zero-length array, and we
1573 // can never fold the check away because the length should always
1574 // come from a cookie.
1575 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1576 CGF.getDestroyer(dtorKind),
1577 /*checkZeroLength*/ true,
1578 CGF.needsEHCleanup(dtorKind));
1579 }
1580
1581 // Pop the cleanup block.
1582 CGF.PopCleanupBlock();
1583 }
1584
EmitCXXDeleteExpr(const CXXDeleteExpr * E)1585 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1586 const Expr *Arg = E->getArgument();
1587 llvm::Value *Ptr = EmitScalarExpr(Arg);
1588
1589 // Null check the pointer.
1590 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1591 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1592
1593 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1594
1595 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1596 EmitBlock(DeleteNotNull);
1597
1598 // We might be deleting a pointer to array. If so, GEP down to the
1599 // first non-array element.
1600 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1601 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1602 if (DeleteTy->isConstantArrayType()) {
1603 llvm::Value *Zero = Builder.getInt32(0);
1604 SmallVector<llvm::Value*,8> GEP;
1605
1606 GEP.push_back(Zero); // point at the outermost array
1607
1608 // For each layer of array type we're pointing at:
1609 while (const ConstantArrayType *Arr
1610 = getContext().getAsConstantArrayType(DeleteTy)) {
1611 // 1. Unpeel the array type.
1612 DeleteTy = Arr->getElementType();
1613
1614 // 2. GEP to the first element of the array.
1615 GEP.push_back(Zero);
1616 }
1617
1618 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1619 }
1620
1621 assert(ConvertTypeForMem(DeleteTy) ==
1622 cast<llvm::PointerType>(Ptr->getType())->getElementType());
1623
1624 if (E->isArrayForm()) {
1625 EmitArrayDelete(*this, E, Ptr, DeleteTy);
1626 } else {
1627 EmitObjectDelete(*this, E, Ptr, DeleteTy);
1628 }
1629
1630 EmitBlock(DeleteEnd);
1631 }
1632
isGLValueFromPointerDeref(const Expr * E)1633 static bool isGLValueFromPointerDeref(const Expr *E) {
1634 E = E->IgnoreParens();
1635
1636 if (const auto *CE = dyn_cast<CastExpr>(E)) {
1637 if (!CE->getSubExpr()->isGLValue())
1638 return false;
1639 return isGLValueFromPointerDeref(CE->getSubExpr());
1640 }
1641
1642 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1643 return isGLValueFromPointerDeref(OVE->getSourceExpr());
1644
1645 if (const auto *BO = dyn_cast<BinaryOperator>(E))
1646 if (BO->getOpcode() == BO_Comma)
1647 return isGLValueFromPointerDeref(BO->getRHS());
1648
1649 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1650 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1651 isGLValueFromPointerDeref(ACO->getFalseExpr());
1652
1653 // C++11 [expr.sub]p1:
1654 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1655 if (isa<ArraySubscriptExpr>(E))
1656 return true;
1657
1658 if (const auto *UO = dyn_cast<UnaryOperator>(E))
1659 if (UO->getOpcode() == UO_Deref)
1660 return true;
1661
1662 return false;
1663 }
1664
EmitTypeidFromVTable(CodeGenFunction & CGF,const Expr * E,llvm::Type * StdTypeInfoPtrTy)1665 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1666 llvm::Type *StdTypeInfoPtrTy) {
1667 // Get the vtable pointer.
1668 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1669
1670 // C++ [expr.typeid]p2:
1671 // If the glvalue expression is obtained by applying the unary * operator to
1672 // a pointer and the pointer is a null pointer value, the typeid expression
1673 // throws the std::bad_typeid exception.
1674 //
1675 // However, this paragraph's intent is not clear. We choose a very generous
1676 // interpretation which implores us to consider comma operators, conditional
1677 // operators, parentheses and other such constructs.
1678 QualType SrcRecordTy = E->getType();
1679 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1680 isGLValueFromPointerDeref(E), SrcRecordTy)) {
1681 llvm::BasicBlock *BadTypeidBlock =
1682 CGF.createBasicBlock("typeid.bad_typeid");
1683 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1684
1685 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1686 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1687
1688 CGF.EmitBlock(BadTypeidBlock);
1689 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1690 CGF.EmitBlock(EndBlock);
1691 }
1692
1693 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1694 StdTypeInfoPtrTy);
1695 }
1696
EmitCXXTypeidExpr(const CXXTypeidExpr * E)1697 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1698 llvm::Type *StdTypeInfoPtrTy =
1699 ConvertType(E->getType())->getPointerTo();
1700
1701 if (E->isTypeOperand()) {
1702 llvm::Constant *TypeInfo =
1703 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1704 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1705 }
1706
1707 // C++ [expr.typeid]p2:
1708 // When typeid is applied to a glvalue expression whose type is a
1709 // polymorphic class type, the result refers to a std::type_info object
1710 // representing the type of the most derived object (that is, the dynamic
1711 // type) to which the glvalue refers.
1712 if (E->isPotentiallyEvaluated())
1713 return EmitTypeidFromVTable(*this, E->getExprOperand(),
1714 StdTypeInfoPtrTy);
1715
1716 QualType OperandTy = E->getExprOperand()->getType();
1717 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1718 StdTypeInfoPtrTy);
1719 }
1720
EmitDynamicCastToNull(CodeGenFunction & CGF,QualType DestTy)1721 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1722 QualType DestTy) {
1723 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1724 if (DestTy->isPointerType())
1725 return llvm::Constant::getNullValue(DestLTy);
1726
1727 /// C++ [expr.dynamic.cast]p9:
1728 /// A failed cast to reference type throws std::bad_cast
1729 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1730 return nullptr;
1731
1732 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1733 return llvm::UndefValue::get(DestLTy);
1734 }
1735
EmitDynamicCast(llvm::Value * Value,const CXXDynamicCastExpr * DCE)1736 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1737 const CXXDynamicCastExpr *DCE) {
1738 QualType DestTy = DCE->getTypeAsWritten();
1739
1740 if (DCE->isAlwaysNull())
1741 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1742 return T;
1743
1744 QualType SrcTy = DCE->getSubExpr()->getType();
1745
1746 // C++ [expr.dynamic.cast]p7:
1747 // If T is "pointer to cv void," then the result is a pointer to the most
1748 // derived object pointed to by v.
1749 const PointerType *DestPTy = DestTy->getAs<PointerType>();
1750
1751 bool isDynamicCastToVoid;
1752 QualType SrcRecordTy;
1753 QualType DestRecordTy;
1754 if (DestPTy) {
1755 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1756 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1757 DestRecordTy = DestPTy->getPointeeType();
1758 } else {
1759 isDynamicCastToVoid = false;
1760 SrcRecordTy = SrcTy;
1761 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1762 }
1763
1764 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1765
1766 // C++ [expr.dynamic.cast]p4:
1767 // If the value of v is a null pointer value in the pointer case, the result
1768 // is the null pointer value of type T.
1769 bool ShouldNullCheckSrcValue =
1770 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1771 SrcRecordTy);
1772
1773 llvm::BasicBlock *CastNull = nullptr;
1774 llvm::BasicBlock *CastNotNull = nullptr;
1775 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1776
1777 if (ShouldNullCheckSrcValue) {
1778 CastNull = createBasicBlock("dynamic_cast.null");
1779 CastNotNull = createBasicBlock("dynamic_cast.notnull");
1780
1781 llvm::Value *IsNull = Builder.CreateIsNull(Value);
1782 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1783 EmitBlock(CastNotNull);
1784 }
1785
1786 if (isDynamicCastToVoid) {
1787 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
1788 DestTy);
1789 } else {
1790 assert(DestRecordTy->isRecordType() &&
1791 "destination type must be a record type!");
1792 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
1793 DestTy, DestRecordTy, CastEnd);
1794 }
1795
1796 if (ShouldNullCheckSrcValue) {
1797 EmitBranch(CastEnd);
1798
1799 EmitBlock(CastNull);
1800 EmitBranch(CastEnd);
1801 }
1802
1803 EmitBlock(CastEnd);
1804
1805 if (ShouldNullCheckSrcValue) {
1806 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1807 PHI->addIncoming(Value, CastNotNull);
1808 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1809
1810 Value = PHI;
1811 }
1812
1813 return Value;
1814 }
1815
EmitLambdaExpr(const LambdaExpr * E,AggValueSlot Slot)1816 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1817 RunCleanupsScope Scope(*this);
1818 LValue SlotLV =
1819 MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment());
1820
1821 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1822 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1823 e = E->capture_init_end();
1824 i != e; ++i, ++CurField) {
1825 // Emit initialization
1826 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1827 if (CurField->hasCapturedVLAType()) {
1828 auto VAT = CurField->getCapturedVLAType();
1829 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1830 } else {
1831 ArrayRef<VarDecl *> ArrayIndexes;
1832 if (CurField->getType()->isArrayType())
1833 ArrayIndexes = E->getCaptureInitIndexVars(i);
1834 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1835 }
1836 }
1837 }
1838