1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27
28 //===----------------------------------------------------------------------===//
29 // Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31
32 namespace {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34 CodeGenFunction &CGF;
35 CGBuilderTy &Builder;
36 AggValueSlot Dest;
37
38 /// We want to use 'dest' as the return slot except under two
39 /// conditions:
40 /// - The destination slot requires garbage collection, so we
41 /// need to use the GC API.
42 /// - The destination slot is potentially aliased.
shouldUseDestForReturnSlot() const43 bool shouldUseDestForReturnSlot() const {
44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45 }
46
getReturnValueSlot() const47 ReturnValueSlot getReturnValueSlot() const {
48 if (!shouldUseDestForReturnSlot())
49 return ReturnValueSlot();
50
51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52 }
53
EnsureSlot(QualType T)54 AggValueSlot EnsureSlot(QualType T) {
55 if (!Dest.isIgnored()) return Dest;
56 return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57 }
EnsureDest(QualType T)58 void EnsureDest(QualType T) {
59 if (!Dest.isIgnored()) return;
60 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
61 }
62
63 public:
AggExprEmitter(CodeGenFunction & cgf,AggValueSlot Dest)64 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest)
65 : CGF(cgf), Builder(CGF.Builder), Dest(Dest) {
66 }
67
68 //===--------------------------------------------------------------------===//
69 // Utilities
70 //===--------------------------------------------------------------------===//
71
72 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
73 /// represents a value lvalue, this method emits the address of the lvalue,
74 /// then loads the result into DestPtr.
75 void EmitAggLoadOfLValue(const Expr *E);
76
77 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
78 void EmitFinalDestCopy(QualType type, const LValue &src);
79 void EmitFinalDestCopy(QualType type, RValue src,
80 CharUnits srcAlignment = CharUnits::Zero());
81 void EmitCopy(QualType type, const AggValueSlot &dest,
82 const AggValueSlot &src);
83
84 void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
85
86 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
87 QualType elementType, InitListExpr *E);
88
needsGC(QualType T)89 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
90 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
91 return AggValueSlot::NeedsGCBarriers;
92 return AggValueSlot::DoesNotNeedGCBarriers;
93 }
94
95 bool TypeRequiresGCollection(QualType T);
96
97 //===--------------------------------------------------------------------===//
98 // Visitor Methods
99 //===--------------------------------------------------------------------===//
100
VisitStmt(Stmt * S)101 void VisitStmt(Stmt *S) {
102 CGF.ErrorUnsupported(S, "aggregate expression");
103 }
VisitParenExpr(ParenExpr * PE)104 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)105 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
106 Visit(GE->getResultExpr());
107 }
VisitUnaryExtension(UnaryOperator * E)108 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)109 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
110 return Visit(E->getReplacement());
111 }
112
113 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)114 void VisitDeclRefExpr(DeclRefExpr *E) {
115 // For aggregates, we should always be able to emit the variable
116 // as an l-value unless it's a reference. This is due to the fact
117 // that we can't actually ever see a normal l2r conversion on an
118 // aggregate in C++, and in C there's no language standard
119 // actively preventing us from listing variables in the captures
120 // list of a block.
121 if (E->getDecl()->getType()->isReferenceType()) {
122 if (CodeGenFunction::ConstantEmission result
123 = CGF.tryEmitAsConstant(E)) {
124 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
125 return;
126 }
127 }
128
129 EmitAggLoadOfLValue(E);
130 }
131
VisitMemberExpr(MemberExpr * ME)132 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
VisitUnaryDeref(UnaryOperator * E)133 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
VisitStringLiteral(StringLiteral * E)134 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
135 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
VisitArraySubscriptExpr(ArraySubscriptExpr * E)136 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
137 EmitAggLoadOfLValue(E);
138 }
VisitPredefinedExpr(const PredefinedExpr * E)139 void VisitPredefinedExpr(const PredefinedExpr *E) {
140 EmitAggLoadOfLValue(E);
141 }
142
143 // Operators.
144 void VisitCastExpr(CastExpr *E);
145 void VisitCallExpr(const CallExpr *E);
146 void VisitStmtExpr(const StmtExpr *E);
147 void VisitBinaryOperator(const BinaryOperator *BO);
148 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
149 void VisitBinAssign(const BinaryOperator *E);
150 void VisitBinComma(const BinaryOperator *E);
151
152 void VisitObjCMessageExpr(ObjCMessageExpr *E);
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)153 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
154 EmitAggLoadOfLValue(E);
155 }
156
157 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
158 void VisitChooseExpr(const ChooseExpr *CE);
159 void VisitInitListExpr(InitListExpr *E);
160 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)161 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
162 Visit(DAE->getExpr());
163 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)164 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
165 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
166 Visit(DIE->getExpr());
167 }
168 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
169 void VisitCXXConstructExpr(const CXXConstructExpr *E);
170 void VisitLambdaExpr(LambdaExpr *E);
171 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
172 void VisitExprWithCleanups(ExprWithCleanups *E);
173 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
VisitCXXTypeidExpr(CXXTypeidExpr * E)174 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
175 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
176 void VisitOpaqueValueExpr(OpaqueValueExpr *E);
177
VisitPseudoObjectExpr(PseudoObjectExpr * E)178 void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
179 if (E->isGLValue()) {
180 LValue LV = CGF.EmitPseudoObjectLValue(E);
181 return EmitFinalDestCopy(E->getType(), LV);
182 }
183
184 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
185 }
186
187 void VisitVAArgExpr(VAArgExpr *E);
188
189 void EmitInitializationToLValue(Expr *E, LValue Address);
190 void EmitNullInitializationToLValue(LValue Address);
191 // case Expr::ChooseExprClass:
VisitCXXThrowExpr(const CXXThrowExpr * E)192 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
VisitAtomicExpr(AtomicExpr * E)193 void VisitAtomicExpr(AtomicExpr *E) {
194 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
195 }
196 };
197 } // end anonymous namespace.
198
199 //===----------------------------------------------------------------------===//
200 // Utilities
201 //===----------------------------------------------------------------------===//
202
203 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
204 /// represents a value lvalue, this method emits the address of the lvalue,
205 /// then loads the result into DestPtr.
EmitAggLoadOfLValue(const Expr * E)206 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
207 LValue LV = CGF.EmitLValue(E);
208
209 // If the type of the l-value is atomic, then do an atomic load.
210 if (LV.getType()->isAtomicType()) {
211 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
212 return;
213 }
214
215 EmitFinalDestCopy(E->getType(), LV);
216 }
217
218 /// \brief True if the given aggregate type requires special GC API calls.
TypeRequiresGCollection(QualType T)219 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
220 // Only record types have members that might require garbage collection.
221 const RecordType *RecordTy = T->getAs<RecordType>();
222 if (!RecordTy) return false;
223
224 // Don't mess with non-trivial C++ types.
225 RecordDecl *Record = RecordTy->getDecl();
226 if (isa<CXXRecordDecl>(Record) &&
227 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
228 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
229 return false;
230
231 // Check whether the type has an object member.
232 return Record->hasObjectMember();
233 }
234
235 /// \brief Perform the final move to DestPtr if for some reason
236 /// getReturnValueSlot() didn't use it directly.
237 ///
238 /// The idea is that you do something like this:
239 /// RValue Result = EmitSomething(..., getReturnValueSlot());
240 /// EmitMoveFromReturnSlot(E, Result);
241 ///
242 /// If nothing interferes, this will cause the result to be emitted
243 /// directly into the return value slot. Otherwise, a final move
244 /// will be performed.
EmitMoveFromReturnSlot(const Expr * E,RValue src)245 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
246 if (shouldUseDestForReturnSlot()) {
247 // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
248 // The possibility of undef rvalues complicates that a lot,
249 // though, so we can't really assert.
250 return;
251 }
252
253 // Otherwise, copy from there to the destination.
254 assert(Dest.getAddr() != src.getAggregateAddr());
255 std::pair<CharUnits, CharUnits> typeInfo =
256 CGF.getContext().getTypeInfoInChars(E->getType());
257 EmitFinalDestCopy(E->getType(), src, typeInfo.second);
258 }
259
260 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,RValue src,CharUnits srcAlign)261 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
262 CharUnits srcAlign) {
263 assert(src.isAggregate() && "value must be aggregate value!");
264 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
265 EmitFinalDestCopy(type, srcLV);
266 }
267
268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,const LValue & src)269 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
270 // If Dest is ignored, then we're evaluating an aggregate expression
271 // in a context that doesn't care about the result. Note that loads
272 // from volatile l-values force the existence of a non-ignored
273 // destination.
274 if (Dest.isIgnored())
275 return;
276
277 AggValueSlot srcAgg =
278 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
279 needsGC(type), AggValueSlot::IsAliased);
280 EmitCopy(type, Dest, srcAgg);
281 }
282
283 /// Perform a copy from the source into the destination.
284 ///
285 /// \param type - the type of the aggregate being copied; qualifiers are
286 /// ignored
EmitCopy(QualType type,const AggValueSlot & dest,const AggValueSlot & src)287 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
288 const AggValueSlot &src) {
289 if (dest.requiresGCollection()) {
290 CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
291 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
292 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
293 dest.getAddr(),
294 src.getAddr(),
295 size);
296 return;
297 }
298
299 // If the result of the assignment is used, copy the LHS there also.
300 // It's volatile if either side is. Use the minimum alignment of
301 // the two sides.
302 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
303 dest.isVolatile() || src.isVolatile(),
304 std::min(dest.getAlignment(), src.getAlignment()));
305 }
306
307 /// \brief Emit the initializer for a std::initializer_list initialized with a
308 /// real initializer list.
309 void
VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)310 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
311 // Emit an array containing the elements. The array is externally destructed
312 // if the std::initializer_list object is.
313 ASTContext &Ctx = CGF.getContext();
314 LValue Array = CGF.EmitLValue(E->getSubExpr());
315 assert(Array.isSimple() && "initializer_list array not a simple lvalue");
316 llvm::Value *ArrayPtr = Array.getAddress();
317
318 const ConstantArrayType *ArrayType =
319 Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
320 assert(ArrayType && "std::initializer_list constructed from non-array");
321
322 // FIXME: Perform the checks on the field types in SemaInit.
323 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
324 RecordDecl::field_iterator Field = Record->field_begin();
325 if (Field == Record->field_end()) {
326 CGF.ErrorUnsupported(E, "weird std::initializer_list");
327 return;
328 }
329
330 // Start pointer.
331 if (!Field->getType()->isPointerType() ||
332 !Ctx.hasSameType(Field->getType()->getPointeeType(),
333 ArrayType->getElementType())) {
334 CGF.ErrorUnsupported(E, "weird std::initializer_list");
335 return;
336 }
337
338 AggValueSlot Dest = EnsureSlot(E->getType());
339 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
340 Dest.getAlignment());
341 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
342 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
343 llvm::Value *IdxStart[] = { Zero, Zero };
344 llvm::Value *ArrayStart =
345 Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart");
346 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
347 ++Field;
348
349 if (Field == Record->field_end()) {
350 CGF.ErrorUnsupported(E, "weird std::initializer_list");
351 return;
352 }
353
354 llvm::Value *Size = Builder.getInt(ArrayType->getSize());
355 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
356 if (Field->getType()->isPointerType() &&
357 Ctx.hasSameType(Field->getType()->getPointeeType(),
358 ArrayType->getElementType())) {
359 // End pointer.
360 llvm::Value *IdxEnd[] = { Zero, Size };
361 llvm::Value *ArrayEnd =
362 Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend");
363 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
364 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
365 // Length.
366 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
367 } else {
368 CGF.ErrorUnsupported(E, "weird std::initializer_list");
369 return;
370 }
371 }
372
373 /// \brief Determine if E is a trivial array filler, that is, one that is
374 /// equivalent to zero-initialization.
isTrivialFiller(Expr * E)375 static bool isTrivialFiller(Expr *E) {
376 if (!E)
377 return true;
378
379 if (isa<ImplicitValueInitExpr>(E))
380 return true;
381
382 if (auto *ILE = dyn_cast<InitListExpr>(E)) {
383 if (ILE->getNumInits())
384 return false;
385 return isTrivialFiller(ILE->getArrayFiller());
386 }
387
388 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
389 return Cons->getConstructor()->isDefaultConstructor() &&
390 Cons->getConstructor()->isTrivial();
391
392 // FIXME: Are there other cases where we can avoid emitting an initializer?
393 return false;
394 }
395
396 /// \brief Emit initialization of an array from an initializer list.
EmitArrayInit(llvm::Value * DestPtr,llvm::ArrayType * AType,QualType elementType,InitListExpr * E)397 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
398 QualType elementType, InitListExpr *E) {
399 uint64_t NumInitElements = E->getNumInits();
400
401 uint64_t NumArrayElements = AType->getNumElements();
402 assert(NumInitElements <= NumArrayElements);
403
404 // DestPtr is an array*. Construct an elementType* by drilling
405 // down a level.
406 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
407 llvm::Value *indices[] = { zero, zero };
408 llvm::Value *begin =
409 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
410
411 // Exception safety requires us to destroy all the
412 // already-constructed members if an initializer throws.
413 // For that, we'll need an EH cleanup.
414 QualType::DestructionKind dtorKind = elementType.isDestructedType();
415 llvm::AllocaInst *endOfInit = nullptr;
416 EHScopeStack::stable_iterator cleanup;
417 llvm::Instruction *cleanupDominator = nullptr;
418 if (CGF.needsEHCleanup(dtorKind)) {
419 // In principle we could tell the cleanup where we are more
420 // directly, but the control flow can get so varied here that it
421 // would actually be quite complex. Therefore we go through an
422 // alloca.
423 endOfInit = CGF.CreateTempAlloca(begin->getType(),
424 "arrayinit.endOfInit");
425 cleanupDominator = Builder.CreateStore(begin, endOfInit);
426 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
427 CGF.getDestroyer(dtorKind));
428 cleanup = CGF.EHStack.stable_begin();
429
430 // Otherwise, remember that we didn't need a cleanup.
431 } else {
432 dtorKind = QualType::DK_none;
433 }
434
435 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
436
437 // The 'current element to initialize'. The invariants on this
438 // variable are complicated. Essentially, after each iteration of
439 // the loop, it points to the last initialized element, except
440 // that it points to the beginning of the array before any
441 // elements have been initialized.
442 llvm::Value *element = begin;
443
444 // Emit the explicit initializers.
445 for (uint64_t i = 0; i != NumInitElements; ++i) {
446 // Advance to the next element.
447 if (i > 0) {
448 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
449
450 // Tell the cleanup that it needs to destroy up to this
451 // element. TODO: some of these stores can be trivially
452 // observed to be unnecessary.
453 if (endOfInit) Builder.CreateStore(element, endOfInit);
454 }
455
456 LValue elementLV = CGF.MakeAddrLValue(element, elementType);
457 EmitInitializationToLValue(E->getInit(i), elementLV);
458 }
459
460 // Check whether there's a non-trivial array-fill expression.
461 Expr *filler = E->getArrayFiller();
462 bool hasTrivialFiller = isTrivialFiller(filler);
463
464 // Any remaining elements need to be zero-initialized, possibly
465 // using the filler expression. We can skip this if the we're
466 // emitting to zeroed memory.
467 if (NumInitElements != NumArrayElements &&
468 !(Dest.isZeroed() && hasTrivialFiller &&
469 CGF.getTypes().isZeroInitializable(elementType))) {
470
471 // Use an actual loop. This is basically
472 // do { *array++ = filler; } while (array != end);
473
474 // Advance to the start of the rest of the array.
475 if (NumInitElements) {
476 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
477 if (endOfInit) Builder.CreateStore(element, endOfInit);
478 }
479
480 // Compute the end of the array.
481 llvm::Value *end = Builder.CreateInBoundsGEP(begin,
482 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
483 "arrayinit.end");
484
485 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
486 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
487
488 // Jump into the body.
489 CGF.EmitBlock(bodyBB);
490 llvm::PHINode *currentElement =
491 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
492 currentElement->addIncoming(element, entryBB);
493
494 // Emit the actual filler expression.
495 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
496 if (filler)
497 EmitInitializationToLValue(filler, elementLV);
498 else
499 EmitNullInitializationToLValue(elementLV);
500
501 // Move on to the next element.
502 llvm::Value *nextElement =
503 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
504
505 // Tell the EH cleanup that we finished with the last element.
506 if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
507
508 // Leave the loop if we're done.
509 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
510 "arrayinit.done");
511 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
512 Builder.CreateCondBr(done, endBB, bodyBB);
513 currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
514
515 CGF.EmitBlock(endBB);
516 }
517
518 // Leave the partial-array cleanup if we entered one.
519 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
520 }
521
522 //===----------------------------------------------------------------------===//
523 // Visitor Methods
524 //===----------------------------------------------------------------------===//
525
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)526 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
527 Visit(E->GetTemporaryExpr());
528 }
529
VisitOpaqueValueExpr(OpaqueValueExpr * e)530 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
531 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
532 }
533
534 void
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)535 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
536 if (Dest.isPotentiallyAliased() &&
537 E->getType().isPODType(CGF.getContext())) {
538 // For a POD type, just emit a load of the lvalue + a copy, because our
539 // compound literal might alias the destination.
540 EmitAggLoadOfLValue(E);
541 return;
542 }
543
544 AggValueSlot Slot = EnsureSlot(E->getType());
545 CGF.EmitAggExpr(E->getInitializer(), Slot);
546 }
547
548 /// Attempt to look through various unimportant expressions to find a
549 /// cast of the given kind.
findPeephole(Expr * op,CastKind kind)550 static Expr *findPeephole(Expr *op, CastKind kind) {
551 while (true) {
552 op = op->IgnoreParens();
553 if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
554 if (castE->getCastKind() == kind)
555 return castE->getSubExpr();
556 if (castE->getCastKind() == CK_NoOp)
557 continue;
558 }
559 return nullptr;
560 }
561 }
562
VisitCastExpr(CastExpr * E)563 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
564 switch (E->getCastKind()) {
565 case CK_Dynamic: {
566 // FIXME: Can this actually happen? We have no test coverage for it.
567 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
568 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
569 CodeGenFunction::TCK_Load);
570 // FIXME: Do we also need to handle property references here?
571 if (LV.isSimple())
572 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
573 else
574 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
575
576 if (!Dest.isIgnored())
577 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
578 break;
579 }
580
581 case CK_ToUnion: {
582 if (Dest.isIgnored()) break;
583
584 // GCC union extension
585 QualType Ty = E->getSubExpr()->getType();
586 QualType PtrTy = CGF.getContext().getPointerType(Ty);
587 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
588 CGF.ConvertType(PtrTy));
589 EmitInitializationToLValue(E->getSubExpr(),
590 CGF.MakeAddrLValue(CastPtr, Ty));
591 break;
592 }
593
594 case CK_DerivedToBase:
595 case CK_BaseToDerived:
596 case CK_UncheckedDerivedToBase: {
597 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
598 "should have been unpacked before we got here");
599 }
600
601 case CK_NonAtomicToAtomic:
602 case CK_AtomicToNonAtomic: {
603 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
604
605 // Determine the atomic and value types.
606 QualType atomicType = E->getSubExpr()->getType();
607 QualType valueType = E->getType();
608 if (isToAtomic) std::swap(atomicType, valueType);
609
610 assert(atomicType->isAtomicType());
611 assert(CGF.getContext().hasSameUnqualifiedType(valueType,
612 atomicType->castAs<AtomicType>()->getValueType()));
613
614 // Just recurse normally if we're ignoring the result or the
615 // atomic type doesn't change representation.
616 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
617 return Visit(E->getSubExpr());
618 }
619
620 CastKind peepholeTarget =
621 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
622
623 // These two cases are reverses of each other; try to peephole them.
624 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
625 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
626 E->getType()) &&
627 "peephole significantly changed types?");
628 return Visit(op);
629 }
630
631 // If we're converting an r-value of non-atomic type to an r-value
632 // of atomic type, just emit directly into the relevant sub-object.
633 if (isToAtomic) {
634 AggValueSlot valueDest = Dest;
635 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
636 // Zero-initialize. (Strictly speaking, we only need to intialize
637 // the padding at the end, but this is simpler.)
638 if (!Dest.isZeroed())
639 CGF.EmitNullInitialization(Dest.getAddr(), atomicType);
640
641 // Build a GEP to refer to the subobject.
642 llvm::Value *valueAddr =
643 CGF.Builder.CreateStructGEP(valueDest.getAddr(), 0);
644 valueDest = AggValueSlot::forAddr(valueAddr,
645 valueDest.getAlignment(),
646 valueDest.getQualifiers(),
647 valueDest.isExternallyDestructed(),
648 valueDest.requiresGCollection(),
649 valueDest.isPotentiallyAliased(),
650 AggValueSlot::IsZeroed);
651 }
652
653 CGF.EmitAggExpr(E->getSubExpr(), valueDest);
654 return;
655 }
656
657 // Otherwise, we're converting an atomic type to a non-atomic type.
658 // Make an atomic temporary, emit into that, and then copy the value out.
659 AggValueSlot atomicSlot =
660 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
661 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
662
663 llvm::Value *valueAddr =
664 Builder.CreateStructGEP(atomicSlot.getAddr(), 0);
665 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
666 return EmitFinalDestCopy(valueType, rvalue);
667 }
668
669 case CK_LValueToRValue:
670 // If we're loading from a volatile type, force the destination
671 // into existence.
672 if (E->getSubExpr()->getType().isVolatileQualified()) {
673 EnsureDest(E->getType());
674 return Visit(E->getSubExpr());
675 }
676
677 // fallthrough
678
679 case CK_NoOp:
680 case CK_UserDefinedConversion:
681 case CK_ConstructorConversion:
682 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
683 E->getType()) &&
684 "Implicit cast types must be compatible");
685 Visit(E->getSubExpr());
686 break;
687
688 case CK_LValueBitCast:
689 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
690
691 case CK_Dependent:
692 case CK_BitCast:
693 case CK_ArrayToPointerDecay:
694 case CK_FunctionToPointerDecay:
695 case CK_NullToPointer:
696 case CK_NullToMemberPointer:
697 case CK_BaseToDerivedMemberPointer:
698 case CK_DerivedToBaseMemberPointer:
699 case CK_MemberPointerToBoolean:
700 case CK_ReinterpretMemberPointer:
701 case CK_IntegralToPointer:
702 case CK_PointerToIntegral:
703 case CK_PointerToBoolean:
704 case CK_ToVoid:
705 case CK_VectorSplat:
706 case CK_IntegralCast:
707 case CK_IntegralToBoolean:
708 case CK_IntegralToFloating:
709 case CK_FloatingToIntegral:
710 case CK_FloatingToBoolean:
711 case CK_FloatingCast:
712 case CK_CPointerToObjCPointerCast:
713 case CK_BlockPointerToObjCPointerCast:
714 case CK_AnyPointerToBlockPointerCast:
715 case CK_ObjCObjectLValueCast:
716 case CK_FloatingRealToComplex:
717 case CK_FloatingComplexToReal:
718 case CK_FloatingComplexToBoolean:
719 case CK_FloatingComplexCast:
720 case CK_FloatingComplexToIntegralComplex:
721 case CK_IntegralRealToComplex:
722 case CK_IntegralComplexToReal:
723 case CK_IntegralComplexToBoolean:
724 case CK_IntegralComplexCast:
725 case CK_IntegralComplexToFloatingComplex:
726 case CK_ARCProduceObject:
727 case CK_ARCConsumeObject:
728 case CK_ARCReclaimReturnedObject:
729 case CK_ARCExtendBlockObject:
730 case CK_CopyAndAutoreleaseBlockObject:
731 case CK_BuiltinFnToFnPtr:
732 case CK_ZeroToOCLEvent:
733 case CK_AddressSpaceConversion:
734 llvm_unreachable("cast kind invalid for aggregate types");
735 }
736 }
737
VisitCallExpr(const CallExpr * E)738 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
739 if (E->getCallReturnType()->isReferenceType()) {
740 EmitAggLoadOfLValue(E);
741 return;
742 }
743
744 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
745 EmitMoveFromReturnSlot(E, RV);
746 }
747
VisitObjCMessageExpr(ObjCMessageExpr * E)748 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
749 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
750 EmitMoveFromReturnSlot(E, RV);
751 }
752
VisitBinComma(const BinaryOperator * E)753 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
754 CGF.EmitIgnoredExpr(E->getLHS());
755 Visit(E->getRHS());
756 }
757
VisitStmtExpr(const StmtExpr * E)758 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
759 CodeGenFunction::StmtExprEvaluation eval(CGF);
760 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
761 }
762
VisitBinaryOperator(const BinaryOperator * E)763 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
764 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
765 VisitPointerToDataMemberBinaryOperator(E);
766 else
767 CGF.ErrorUnsupported(E, "aggregate binary expression");
768 }
769
VisitPointerToDataMemberBinaryOperator(const BinaryOperator * E)770 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
771 const BinaryOperator *E) {
772 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
773 EmitFinalDestCopy(E->getType(), LV);
774 }
775
776 /// Is the value of the given expression possibly a reference to or
777 /// into a __block variable?
isBlockVarRef(const Expr * E)778 static bool isBlockVarRef(const Expr *E) {
779 // Make sure we look through parens.
780 E = E->IgnoreParens();
781
782 // Check for a direct reference to a __block variable.
783 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
784 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
785 return (var && var->hasAttr<BlocksAttr>());
786 }
787
788 // More complicated stuff.
789
790 // Binary operators.
791 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
792 // For an assignment or pointer-to-member operation, just care
793 // about the LHS.
794 if (op->isAssignmentOp() || op->isPtrMemOp())
795 return isBlockVarRef(op->getLHS());
796
797 // For a comma, just care about the RHS.
798 if (op->getOpcode() == BO_Comma)
799 return isBlockVarRef(op->getRHS());
800
801 // FIXME: pointer arithmetic?
802 return false;
803
804 // Check both sides of a conditional operator.
805 } else if (const AbstractConditionalOperator *op
806 = dyn_cast<AbstractConditionalOperator>(E)) {
807 return isBlockVarRef(op->getTrueExpr())
808 || isBlockVarRef(op->getFalseExpr());
809
810 // OVEs are required to support BinaryConditionalOperators.
811 } else if (const OpaqueValueExpr *op
812 = dyn_cast<OpaqueValueExpr>(E)) {
813 if (const Expr *src = op->getSourceExpr())
814 return isBlockVarRef(src);
815
816 // Casts are necessary to get things like (*(int*)&var) = foo().
817 // We don't really care about the kind of cast here, except
818 // we don't want to look through l2r casts, because it's okay
819 // to get the *value* in a __block variable.
820 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
821 if (cast->getCastKind() == CK_LValueToRValue)
822 return false;
823 return isBlockVarRef(cast->getSubExpr());
824
825 // Handle unary operators. Again, just aggressively look through
826 // it, ignoring the operation.
827 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
828 return isBlockVarRef(uop->getSubExpr());
829
830 // Look into the base of a field access.
831 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
832 return isBlockVarRef(mem->getBase());
833
834 // Look into the base of a subscript.
835 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
836 return isBlockVarRef(sub->getBase());
837 }
838
839 return false;
840 }
841
VisitBinAssign(const BinaryOperator * E)842 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
843 // For an assignment to work, the value on the right has
844 // to be compatible with the value on the left.
845 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
846 E->getRHS()->getType())
847 && "Invalid assignment");
848
849 // If the LHS might be a __block variable, and the RHS can
850 // potentially cause a block copy, we need to evaluate the RHS first
851 // so that the assignment goes the right place.
852 // This is pretty semantically fragile.
853 if (isBlockVarRef(E->getLHS()) &&
854 E->getRHS()->HasSideEffects(CGF.getContext())) {
855 // Ensure that we have a destination, and evaluate the RHS into that.
856 EnsureDest(E->getRHS()->getType());
857 Visit(E->getRHS());
858
859 // Now emit the LHS and copy into it.
860 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
861
862 // That copy is an atomic copy if the LHS is atomic.
863 if (LHS.getType()->isAtomicType()) {
864 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
865 return;
866 }
867
868 EmitCopy(E->getLHS()->getType(),
869 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
870 needsGC(E->getLHS()->getType()),
871 AggValueSlot::IsAliased),
872 Dest);
873 return;
874 }
875
876 LValue LHS = CGF.EmitLValue(E->getLHS());
877
878 // If we have an atomic type, evaluate into the destination and then
879 // do an atomic copy.
880 if (LHS.getType()->isAtomicType()) {
881 EnsureDest(E->getRHS()->getType());
882 Visit(E->getRHS());
883 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
884 return;
885 }
886
887 // Codegen the RHS so that it stores directly into the LHS.
888 AggValueSlot LHSSlot =
889 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
890 needsGC(E->getLHS()->getType()),
891 AggValueSlot::IsAliased);
892 // A non-volatile aggregate destination might have volatile member.
893 if (!LHSSlot.isVolatile() &&
894 CGF.hasVolatileMember(E->getLHS()->getType()))
895 LHSSlot.setVolatile(true);
896
897 CGF.EmitAggExpr(E->getRHS(), LHSSlot);
898
899 // Copy into the destination if the assignment isn't ignored.
900 EmitFinalDestCopy(E->getType(), LHS);
901 }
902
903 void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)904 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
905 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
906 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
907 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
908
909 // Bind the common expression if necessary.
910 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
911
912 RegionCounter Cnt = CGF.getPGORegionCounter(E);
913 CodeGenFunction::ConditionalEvaluation eval(CGF);
914 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
915
916 // Save whether the destination's lifetime is externally managed.
917 bool isExternallyDestructed = Dest.isExternallyDestructed();
918
919 eval.begin(CGF);
920 CGF.EmitBlock(LHSBlock);
921 Cnt.beginRegion(Builder);
922 Visit(E->getTrueExpr());
923 eval.end(CGF);
924
925 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
926 CGF.Builder.CreateBr(ContBlock);
927
928 // If the result of an agg expression is unused, then the emission
929 // of the LHS might need to create a destination slot. That's fine
930 // with us, and we can safely emit the RHS into the same slot, but
931 // we shouldn't claim that it's already being destructed.
932 Dest.setExternallyDestructed(isExternallyDestructed);
933
934 eval.begin(CGF);
935 CGF.EmitBlock(RHSBlock);
936 Visit(E->getFalseExpr());
937 eval.end(CGF);
938
939 CGF.EmitBlock(ContBlock);
940 }
941
VisitChooseExpr(const ChooseExpr * CE)942 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
943 Visit(CE->getChosenSubExpr());
944 }
945
VisitVAArgExpr(VAArgExpr * VE)946 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
947 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
948 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
949
950 if (!ArgPtr) {
951 // If EmitVAArg fails, we fall back to the LLVM instruction.
952 llvm::Value *Val =
953 Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType()));
954 if (!Dest.isIgnored())
955 Builder.CreateStore(Val, Dest.getAddr());
956 return;
957 }
958
959 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
960 }
961
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)962 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
963 // Ensure that we have a slot, but if we already do, remember
964 // whether it was externally destructed.
965 bool wasExternallyDestructed = Dest.isExternallyDestructed();
966 EnsureDest(E->getType());
967
968 // We're going to push a destructor if there isn't already one.
969 Dest.setExternallyDestructed();
970
971 Visit(E->getSubExpr());
972
973 // Push that destructor we promised.
974 if (!wasExternallyDestructed)
975 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
976 }
977
978 void
VisitCXXConstructExpr(const CXXConstructExpr * E)979 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
980 AggValueSlot Slot = EnsureSlot(E->getType());
981 CGF.EmitCXXConstructExpr(E, Slot);
982 }
983
984 void
VisitLambdaExpr(LambdaExpr * E)985 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
986 AggValueSlot Slot = EnsureSlot(E->getType());
987 CGF.EmitLambdaExpr(E, Slot);
988 }
989
VisitExprWithCleanups(ExprWithCleanups * E)990 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
991 CGF.enterFullExpression(E);
992 CodeGenFunction::RunCleanupsScope cleanups(CGF);
993 Visit(E->getSubExpr());
994 }
995
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)996 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
997 QualType T = E->getType();
998 AggValueSlot Slot = EnsureSlot(T);
999 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1000 }
1001
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)1002 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1003 QualType T = E->getType();
1004 AggValueSlot Slot = EnsureSlot(T);
1005 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1006 }
1007
1008 /// isSimpleZero - If emitting this value will obviously just cause a store of
1009 /// zero to memory, return true. This can return false if uncertain, so it just
1010 /// handles simple cases.
isSimpleZero(const Expr * E,CodeGenFunction & CGF)1011 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1012 E = E->IgnoreParens();
1013
1014 // 0
1015 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1016 return IL->getValue() == 0;
1017 // +0.0
1018 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1019 return FL->getValue().isPosZero();
1020 // int()
1021 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1022 CGF.getTypes().isZeroInitializable(E->getType()))
1023 return true;
1024 // (int*)0 - Null pointer expressions.
1025 if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1026 return ICE->getCastKind() == CK_NullToPointer;
1027 // '\0'
1028 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1029 return CL->getValue() == 0;
1030
1031 // Otherwise, hard case: conservatively return false.
1032 return false;
1033 }
1034
1035
1036 void
EmitInitializationToLValue(Expr * E,LValue LV)1037 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1038 QualType type = LV.getType();
1039 // FIXME: Ignore result?
1040 // FIXME: Are initializers affected by volatile?
1041 if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1042 // Storing "i32 0" to a zero'd memory location is a noop.
1043 return;
1044 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1045 return EmitNullInitializationToLValue(LV);
1046 } else if (type->isReferenceType()) {
1047 RValue RV = CGF.EmitReferenceBindingToExpr(E);
1048 return CGF.EmitStoreThroughLValue(RV, LV);
1049 }
1050
1051 switch (CGF.getEvaluationKind(type)) {
1052 case TEK_Complex:
1053 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1054 return;
1055 case TEK_Aggregate:
1056 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1057 AggValueSlot::IsDestructed,
1058 AggValueSlot::DoesNotNeedGCBarriers,
1059 AggValueSlot::IsNotAliased,
1060 Dest.isZeroed()));
1061 return;
1062 case TEK_Scalar:
1063 if (LV.isSimple()) {
1064 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1065 } else {
1066 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1067 }
1068 return;
1069 }
1070 llvm_unreachable("bad evaluation kind");
1071 }
1072
EmitNullInitializationToLValue(LValue lv)1073 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1074 QualType type = lv.getType();
1075
1076 // If the destination slot is already zeroed out before the aggregate is
1077 // copied into it, we don't have to emit any zeros here.
1078 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1079 return;
1080
1081 if (CGF.hasScalarEvaluationKind(type)) {
1082 // For non-aggregates, we can store the appropriate null constant.
1083 llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1084 // Note that the following is not equivalent to
1085 // EmitStoreThroughBitfieldLValue for ARC types.
1086 if (lv.isBitField()) {
1087 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1088 } else {
1089 assert(lv.isSimple());
1090 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1091 }
1092 } else {
1093 // There's a potential optimization opportunity in combining
1094 // memsets; that would be easy for arrays, but relatively
1095 // difficult for structures with the current code.
1096 CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1097 }
1098 }
1099
VisitInitListExpr(InitListExpr * E)1100 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1101 #if 0
1102 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
1103 // (Length of globals? Chunks of zeroed-out space?).
1104 //
1105 // If we can, prefer a copy from a global; this is a lot less code for long
1106 // globals, and it's easier for the current optimizers to analyze.
1107 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1108 llvm::GlobalVariable* GV =
1109 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1110 llvm::GlobalValue::InternalLinkage, C, "");
1111 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1112 return;
1113 }
1114 #endif
1115 if (E->hadArrayRangeDesignator())
1116 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1117
1118 AggValueSlot Dest = EnsureSlot(E->getType());
1119
1120 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
1121 Dest.getAlignment());
1122
1123 // Handle initialization of an array.
1124 if (E->getType()->isArrayType()) {
1125 if (E->isStringLiteralInit())
1126 return Visit(E->getInit(0));
1127
1128 QualType elementType =
1129 CGF.getContext().getAsArrayType(E->getType())->getElementType();
1130
1131 llvm::PointerType *APType =
1132 cast<llvm::PointerType>(Dest.getAddr()->getType());
1133 llvm::ArrayType *AType =
1134 cast<llvm::ArrayType>(APType->getElementType());
1135
1136 EmitArrayInit(Dest.getAddr(), AType, elementType, E);
1137 return;
1138 }
1139
1140 if (E->getType()->isAtomicType()) {
1141 // An _Atomic(T) object can be list-initialized from an expression
1142 // of the same type.
1143 assert(E->getNumInits() == 1 &&
1144 CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
1145 E->getType()) &&
1146 "unexpected list initialization for atomic object");
1147 return Visit(E->getInit(0));
1148 }
1149
1150 assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1151
1152 // Do struct initialization; this code just sets each individual member
1153 // to the approprate value. This makes bitfield support automatic;
1154 // the disadvantage is that the generated code is more difficult for
1155 // the optimizer, especially with bitfields.
1156 unsigned NumInitElements = E->getNumInits();
1157 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1158
1159 // Prepare a 'this' for CXXDefaultInitExprs.
1160 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr());
1161
1162 if (record->isUnion()) {
1163 // Only initialize one field of a union. The field itself is
1164 // specified by the initializer list.
1165 if (!E->getInitializedFieldInUnion()) {
1166 // Empty union; we have nothing to do.
1167
1168 #ifndef NDEBUG
1169 // Make sure that it's really an empty and not a failure of
1170 // semantic analysis.
1171 for (const auto *Field : record->fields())
1172 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1173 #endif
1174 return;
1175 }
1176
1177 // FIXME: volatility
1178 FieldDecl *Field = E->getInitializedFieldInUnion();
1179
1180 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1181 if (NumInitElements) {
1182 // Store the initializer into the field
1183 EmitInitializationToLValue(E->getInit(0), FieldLoc);
1184 } else {
1185 // Default-initialize to null.
1186 EmitNullInitializationToLValue(FieldLoc);
1187 }
1188
1189 return;
1190 }
1191
1192 // We'll need to enter cleanup scopes in case any of the member
1193 // initializers throw an exception.
1194 SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1195 llvm::Instruction *cleanupDominator = nullptr;
1196
1197 // Here we iterate over the fields; this makes it simpler to both
1198 // default-initialize fields and skip over unnamed fields.
1199 unsigned curInitIndex = 0;
1200 for (const auto *field : record->fields()) {
1201 // We're done once we hit the flexible array member.
1202 if (field->getType()->isIncompleteArrayType())
1203 break;
1204
1205 // Always skip anonymous bitfields.
1206 if (field->isUnnamedBitfield())
1207 continue;
1208
1209 // We're done if we reach the end of the explicit initializers, we
1210 // have a zeroed object, and the rest of the fields are
1211 // zero-initializable.
1212 if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1213 CGF.getTypes().isZeroInitializable(E->getType()))
1214 break;
1215
1216
1217 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1218 // We never generate write-barries for initialized fields.
1219 LV.setNonGC(true);
1220
1221 if (curInitIndex < NumInitElements) {
1222 // Store the initializer into the field.
1223 EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1224 } else {
1225 // We're out of initalizers; default-initialize to null
1226 EmitNullInitializationToLValue(LV);
1227 }
1228
1229 // Push a destructor if necessary.
1230 // FIXME: if we have an array of structures, all explicitly
1231 // initialized, we can end up pushing a linear number of cleanups.
1232 bool pushedCleanup = false;
1233 if (QualType::DestructionKind dtorKind
1234 = field->getType().isDestructedType()) {
1235 assert(LV.isSimple());
1236 if (CGF.needsEHCleanup(dtorKind)) {
1237 if (!cleanupDominator)
1238 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1239
1240 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1241 CGF.getDestroyer(dtorKind), false);
1242 cleanups.push_back(CGF.EHStack.stable_begin());
1243 pushedCleanup = true;
1244 }
1245 }
1246
1247 // If the GEP didn't get used because of a dead zero init or something
1248 // else, clean it up for -O0 builds and general tidiness.
1249 if (!pushedCleanup && LV.isSimple())
1250 if (llvm::GetElementPtrInst *GEP =
1251 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1252 if (GEP->use_empty())
1253 GEP->eraseFromParent();
1254 }
1255
1256 // Deactivate all the partial cleanups in reverse order, which
1257 // generally means popping them.
1258 for (unsigned i = cleanups.size(); i != 0; --i)
1259 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1260
1261 // Destroy the placeholder if we made one.
1262 if (cleanupDominator)
1263 cleanupDominator->eraseFromParent();
1264 }
1265
1266 //===----------------------------------------------------------------------===//
1267 // Entry Points into this File
1268 //===----------------------------------------------------------------------===//
1269
1270 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1271 /// non-zero bytes that will be stored when outputting the initializer for the
1272 /// specified initializer expression.
GetNumNonZeroBytesInInit(const Expr * E,CodeGenFunction & CGF)1273 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1274 E = E->IgnoreParens();
1275
1276 // 0 and 0.0 won't require any non-zero stores!
1277 if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1278
1279 // If this is an initlist expr, sum up the size of sizes of the (present)
1280 // elements. If this is something weird, assume the whole thing is non-zero.
1281 const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1282 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1283 return CGF.getContext().getTypeSizeInChars(E->getType());
1284
1285 // InitListExprs for structs have to be handled carefully. If there are
1286 // reference members, we need to consider the size of the reference, not the
1287 // referencee. InitListExprs for unions and arrays can't have references.
1288 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1289 if (!RT->isUnionType()) {
1290 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1291 CharUnits NumNonZeroBytes = CharUnits::Zero();
1292
1293 unsigned ILEElement = 0;
1294 for (const auto *Field : SD->fields()) {
1295 // We're done once we hit the flexible array member or run out of
1296 // InitListExpr elements.
1297 if (Field->getType()->isIncompleteArrayType() ||
1298 ILEElement == ILE->getNumInits())
1299 break;
1300 if (Field->isUnnamedBitfield())
1301 continue;
1302
1303 const Expr *E = ILE->getInit(ILEElement++);
1304
1305 // Reference values are always non-null and have the width of a pointer.
1306 if (Field->getType()->isReferenceType())
1307 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1308 CGF.getTarget().getPointerWidth(0));
1309 else
1310 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1311 }
1312
1313 return NumNonZeroBytes;
1314 }
1315 }
1316
1317
1318 CharUnits NumNonZeroBytes = CharUnits::Zero();
1319 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1320 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1321 return NumNonZeroBytes;
1322 }
1323
1324 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1325 /// zeros in it, emit a memset and avoid storing the individual zeros.
1326 ///
CheckAggExprForMemSetUse(AggValueSlot & Slot,const Expr * E,CodeGenFunction & CGF)1327 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1328 CodeGenFunction &CGF) {
1329 // If the slot is already known to be zeroed, nothing to do. Don't mess with
1330 // volatile stores.
1331 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == nullptr)
1332 return;
1333
1334 // C++ objects with a user-declared constructor don't need zero'ing.
1335 if (CGF.getLangOpts().CPlusPlus)
1336 if (const RecordType *RT = CGF.getContext()
1337 .getBaseElementType(E->getType())->getAs<RecordType>()) {
1338 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1339 if (RD->hasUserDeclaredConstructor())
1340 return;
1341 }
1342
1343 // If the type is 16-bytes or smaller, prefer individual stores over memset.
1344 std::pair<CharUnits, CharUnits> TypeInfo =
1345 CGF.getContext().getTypeInfoInChars(E->getType());
1346 if (TypeInfo.first <= CharUnits::fromQuantity(16))
1347 return;
1348
1349 // Check to see if over 3/4 of the initializer are known to be zero. If so,
1350 // we prefer to emit memset + individual stores for the rest.
1351 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1352 if (NumNonZeroBytes*4 > TypeInfo.first)
1353 return;
1354
1355 // Okay, it seems like a good idea to use an initial memset, emit the call.
1356 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1357 CharUnits Align = TypeInfo.second;
1358
1359 llvm::Value *Loc = Slot.getAddr();
1360
1361 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1362 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1363 Align.getQuantity(), false);
1364
1365 // Tell the AggExprEmitter that the slot is known zero.
1366 Slot.setZeroed();
1367 }
1368
1369
1370
1371
1372 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1373 /// type. The result is computed into DestPtr. Note that if DestPtr is null,
1374 /// the value of the aggregate expression is not needed. If VolatileDest is
1375 /// true, DestPtr cannot be 0.
EmitAggExpr(const Expr * E,AggValueSlot Slot)1376 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1377 assert(E && hasAggregateEvaluationKind(E->getType()) &&
1378 "Invalid aggregate expression to emit");
1379 assert((Slot.getAddr() != nullptr || Slot.isIgnored()) &&
1380 "slot has bits but no address");
1381
1382 // Optimize the slot if possible.
1383 CheckAggExprForMemSetUse(Slot, E, *this);
1384
1385 AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E));
1386 }
1387
EmitAggExprToLValue(const Expr * E)1388 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1389 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1390 llvm::Value *Temp = CreateMemTemp(E->getType());
1391 LValue LV = MakeAddrLValue(Temp, E->getType());
1392 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1393 AggValueSlot::DoesNotNeedGCBarriers,
1394 AggValueSlot::IsNotAliased));
1395 return LV;
1396 }
1397
EmitAggregateCopy(llvm::Value * DestPtr,llvm::Value * SrcPtr,QualType Ty,bool isVolatile,CharUnits alignment,bool isAssignment)1398 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1399 llvm::Value *SrcPtr, QualType Ty,
1400 bool isVolatile,
1401 CharUnits alignment,
1402 bool isAssignment) {
1403 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1404
1405 if (getLangOpts().CPlusPlus) {
1406 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1407 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1408 assert((Record->hasTrivialCopyConstructor() ||
1409 Record->hasTrivialCopyAssignment() ||
1410 Record->hasTrivialMoveConstructor() ||
1411 Record->hasTrivialMoveAssignment()) &&
1412 "Trying to aggregate-copy a type without a trivial copy/move "
1413 "constructor or assignment operator");
1414 // Ignore empty classes in C++.
1415 if (Record->isEmpty())
1416 return;
1417 }
1418 }
1419
1420 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
1421 // C99 6.5.16.1p3, which states "If the value being stored in an object is
1422 // read from another object that overlaps in anyway the storage of the first
1423 // object, then the overlap shall be exact and the two objects shall have
1424 // qualified or unqualified versions of a compatible type."
1425 //
1426 // memcpy is not defined if the source and destination pointers are exactly
1427 // equal, but other compilers do this optimization, and almost every memcpy
1428 // implementation handles this case safely. If there is a libc that does not
1429 // safely handle this, we can add a target hook.
1430
1431 // Get data size and alignment info for this aggregate. If this is an
1432 // assignment don't copy the tail padding. Otherwise copying it is fine.
1433 std::pair<CharUnits, CharUnits> TypeInfo;
1434 if (isAssignment)
1435 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1436 else
1437 TypeInfo = getContext().getTypeInfoInChars(Ty);
1438
1439 if (alignment.isZero())
1440 alignment = TypeInfo.second;
1441
1442 // FIXME: Handle variable sized types.
1443
1444 // FIXME: If we have a volatile struct, the optimizer can remove what might
1445 // appear to be `extra' memory ops:
1446 //
1447 // volatile struct { int i; } a, b;
1448 //
1449 // int main() {
1450 // a = b;
1451 // a = b;
1452 // }
1453 //
1454 // we need to use a different call here. We use isVolatile to indicate when
1455 // either the source or the destination is volatile.
1456
1457 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1458 llvm::Type *DBP =
1459 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1460 DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1461
1462 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1463 llvm::Type *SBP =
1464 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1465 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1466
1467 // Don't do any of the memmove_collectable tests if GC isn't set.
1468 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1469 // fall through
1470 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1471 RecordDecl *Record = RecordTy->getDecl();
1472 if (Record->hasObjectMember()) {
1473 CharUnits size = TypeInfo.first;
1474 llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1475 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1476 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1477 SizeVal);
1478 return;
1479 }
1480 } else if (Ty->isArrayType()) {
1481 QualType BaseType = getContext().getBaseElementType(Ty);
1482 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1483 if (RecordTy->getDecl()->hasObjectMember()) {
1484 CharUnits size = TypeInfo.first;
1485 llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1486 llvm::Value *SizeVal =
1487 llvm::ConstantInt::get(SizeTy, size.getQuantity());
1488 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1489 SizeVal);
1490 return;
1491 }
1492 }
1493 }
1494
1495 // Determine the metadata to describe the position of any padding in this
1496 // memcpy, as well as the TBAA tags for the members of the struct, in case
1497 // the optimizer wishes to expand it in to scalar memory operations.
1498 llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty);
1499
1500 Builder.CreateMemCpy(DestPtr, SrcPtr,
1501 llvm::ConstantInt::get(IntPtrTy,
1502 TypeInfo.first.getQuantity()),
1503 alignment.getQuantity(), isVolatile,
1504 /*TBAATag=*/nullptr, TBAAStructTag);
1505 }
1506