1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Type.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 34 void CodeGenFunction::EmitDecl(const Decl &D) { 35 switch (D.getKind()) { 36 case Decl::TranslationUnit: 37 case Decl::Namespace: 38 case Decl::UnresolvedUsingTypename: 39 case Decl::ClassTemplateSpecialization: 40 case Decl::ClassTemplatePartialSpecialization: 41 case Decl::VarTemplateSpecialization: 42 case Decl::VarTemplatePartialSpecialization: 43 case Decl::TemplateTypeParm: 44 case Decl::UnresolvedUsingValue: 45 case Decl::NonTypeTemplateParm: 46 case Decl::CXXMethod: 47 case Decl::CXXConstructor: 48 case Decl::CXXDestructor: 49 case Decl::CXXConversion: 50 case Decl::Field: 51 case Decl::MSProperty: 52 case Decl::IndirectField: 53 case Decl::ObjCIvar: 54 case Decl::ObjCAtDefsField: 55 case Decl::ParmVar: 56 case Decl::ImplicitParam: 57 case Decl::ClassTemplate: 58 case Decl::VarTemplate: 59 case Decl::FunctionTemplate: 60 case Decl::TypeAliasTemplate: 61 case Decl::TemplateTemplateParm: 62 case Decl::ObjCMethod: 63 case Decl::ObjCCategory: 64 case Decl::ObjCProtocol: 65 case Decl::ObjCInterface: 66 case Decl::ObjCCategoryImpl: 67 case Decl::ObjCImplementation: 68 case Decl::ObjCProperty: 69 case Decl::ObjCCompatibleAlias: 70 case Decl::AccessSpec: 71 case Decl::LinkageSpec: 72 case Decl::ObjCPropertyImpl: 73 case Decl::FileScopeAsm: 74 case Decl::Friend: 75 case Decl::FriendTemplate: 76 case Decl::Block: 77 case Decl::Captured: 78 case Decl::ClassScopeFunctionSpecialization: 79 case Decl::UsingShadow: 80 llvm_unreachable("Declaration should not be in declstmts!"); 81 case Decl::Function: // void X(); 82 case Decl::Record: // struct/union/class X; 83 case Decl::Enum: // enum X; 84 case Decl::EnumConstant: // enum ? { X = ? } 85 case Decl::CXXRecord: // struct/union/class X; [C++] 86 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 87 case Decl::Label: // __label__ x; 88 case Decl::Import: 89 case Decl::OMPThreadPrivate: 90 case Decl::Empty: 91 // None of these decls require codegen support. 92 return; 93 94 case Decl::NamespaceAlias: 95 if (CGDebugInfo *DI = getDebugInfo()) 96 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 97 return; 98 case Decl::Using: // using X; [C++] 99 if (CGDebugInfo *DI = getDebugInfo()) 100 DI->EmitUsingDecl(cast<UsingDecl>(D)); 101 return; 102 case Decl::UsingDirective: // using namespace X; [C++] 103 if (CGDebugInfo *DI = getDebugInfo()) 104 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 105 return; 106 case Decl::Var: { 107 const VarDecl &VD = cast<VarDecl>(D); 108 assert(VD.isLocalVarDecl() && 109 "Should not see file-scope variables inside a function!"); 110 return EmitVarDecl(VD); 111 } 112 113 case Decl::Typedef: // typedef int X; 114 case Decl::TypeAlias: { // using X = int; [C++0x] 115 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 116 QualType Ty = TD.getUnderlyingType(); 117 118 if (Ty->isVariablyModifiedType()) 119 EmitVariablyModifiedType(Ty); 120 } 121 } 122 } 123 124 /// EmitVarDecl - This method handles emission of any variable declaration 125 /// inside a function, including static vars etc. 126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 127 if (D.isStaticLocal()) { 128 llvm::GlobalValue::LinkageTypes Linkage = 129 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 130 131 // FIXME: We need to force the emission/use of a guard variable for 132 // some variables even if we can constant-evaluate them because 133 // we can't guarantee every translation unit will constant-evaluate them. 134 135 return EmitStaticVarDecl(D, Linkage); 136 } 137 138 if (D.hasExternalStorage()) 139 // Don't emit it now, allow it to be emitted lazily on its first use. 140 return; 141 142 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 143 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 144 145 assert(D.hasLocalStorage()); 146 return EmitAutoVarDecl(D); 147 } 148 149 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 150 if (CGM.getLangOpts().CPlusPlus) 151 return CGM.getMangledName(&D).str(); 152 153 // If this isn't C++, we don't need a mangled name, just a pretty one. 154 assert(!D.isExternallyVisible() && "name shouldn't matter"); 155 std::string ContextName; 156 const DeclContext *DC = D.getDeclContext(); 157 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 158 ContextName = CGM.getMangledName(FD); 159 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 160 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 161 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 162 ContextName = OMD->getSelector().getAsString(); 163 else 164 llvm_unreachable("Unknown context for static var decl"); 165 166 ContextName += "." + D.getNameAsString(); 167 return ContextName; 168 } 169 170 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 171 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 172 // In general, we don't always emit static var decls once before we reference 173 // them. It is possible to reference them before emitting the function that 174 // contains them, and it is possible to emit the containing function multiple 175 // times. 176 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 177 return ExistingGV; 178 179 QualType Ty = D.getType(); 180 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 181 182 // Use the label if the variable is renamed with the asm-label extension. 183 std::string Name; 184 if (D.hasAttr<AsmLabelAttr>()) 185 Name = getMangledName(&D); 186 else 187 Name = getStaticDeclName(*this, D); 188 189 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 190 unsigned AddrSpace = 191 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 192 193 // Local address space cannot have an initializer. 194 llvm::Constant *Init = nullptr; 195 if (Ty.getAddressSpace() != LangAS::opencl_local) 196 Init = EmitNullConstant(Ty); 197 else 198 Init = llvm::UndefValue::get(LTy); 199 200 llvm::GlobalVariable *GV = 201 new llvm::GlobalVariable(getModule(), LTy, 202 Ty.isConstant(getContext()), Linkage, 203 Init, Name, nullptr, 204 llvm::GlobalVariable::NotThreadLocal, 205 AddrSpace); 206 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 207 setGlobalVisibility(GV, &D); 208 209 if (D.getTLSKind()) 210 setTLSMode(GV, D); 211 212 if (D.isExternallyVisible()) { 213 if (D.hasAttr<DLLImportAttr>()) 214 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 215 else if (D.hasAttr<DLLExportAttr>()) 216 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 217 } 218 219 // Make sure the result is of the correct type. 220 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 221 llvm::Constant *Addr = GV; 222 if (AddrSpace != ExpectedAddrSpace) { 223 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 224 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 225 } 226 227 setStaticLocalDeclAddress(&D, Addr); 228 229 // Ensure that the static local gets initialized by making sure the parent 230 // function gets emitted eventually. 231 const Decl *DC = cast<Decl>(D.getDeclContext()); 232 233 // We can't name blocks or captured statements directly, so try to emit their 234 // parents. 235 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 236 DC = DC->getNonClosureContext(); 237 // FIXME: Ensure that global blocks get emitted. 238 if (!DC) 239 return Addr; 240 } 241 242 GlobalDecl GD; 243 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 244 GD = GlobalDecl(CD, Ctor_Base); 245 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 246 GD = GlobalDecl(DD, Dtor_Base); 247 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 248 GD = GlobalDecl(FD); 249 else { 250 // Don't do anything for Obj-C method decls or global closures. We should 251 // never defer them. 252 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 253 } 254 if (GD.getDecl()) 255 (void)GetAddrOfGlobal(GD); 256 257 return Addr; 258 } 259 260 /// hasNontrivialDestruction - Determine whether a type's destruction is 261 /// non-trivial. If so, and the variable uses static initialization, we must 262 /// register its destructor to run on exit. 263 static bool hasNontrivialDestruction(QualType T) { 264 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 265 return RD && !RD->hasTrivialDestructor(); 266 } 267 268 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 269 /// global variable that has already been created for it. If the initializer 270 /// has a different type than GV does, this may free GV and return a different 271 /// one. Otherwise it just returns GV. 272 llvm::GlobalVariable * 273 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 274 llvm::GlobalVariable *GV) { 275 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 276 277 // If constant emission failed, then this should be a C++ static 278 // initializer. 279 if (!Init) { 280 if (!getLangOpts().CPlusPlus) 281 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 282 else if (Builder.GetInsertBlock()) { 283 // Since we have a static initializer, this global variable can't 284 // be constant. 285 GV->setConstant(false); 286 287 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 288 } 289 return GV; 290 } 291 292 // The initializer may differ in type from the global. Rewrite 293 // the global to match the initializer. (We have to do this 294 // because some types, like unions, can't be completely represented 295 // in the LLVM type system.) 296 if (GV->getType()->getElementType() != Init->getType()) { 297 llvm::GlobalVariable *OldGV = GV; 298 299 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 300 OldGV->isConstant(), 301 OldGV->getLinkage(), Init, "", 302 /*InsertBefore*/ OldGV, 303 OldGV->getThreadLocalMode(), 304 CGM.getContext().getTargetAddressSpace(D.getType())); 305 GV->setVisibility(OldGV->getVisibility()); 306 307 // Steal the name of the old global 308 GV->takeName(OldGV); 309 310 // Replace all uses of the old global with the new global 311 llvm::Constant *NewPtrForOldDecl = 312 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 313 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 314 315 // Erase the old global, since it is no longer used. 316 OldGV->eraseFromParent(); 317 } 318 319 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 320 GV->setInitializer(Init); 321 322 if (hasNontrivialDestruction(D.getType())) { 323 // We have a constant initializer, but a nontrivial destructor. We still 324 // need to perform a guarded "initialization" in order to register the 325 // destructor. 326 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 327 } 328 329 return GV; 330 } 331 332 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 333 llvm::GlobalValue::LinkageTypes Linkage) { 334 llvm::Value *&DMEntry = LocalDeclMap[&D]; 335 assert(!DMEntry && "Decl already exists in localdeclmap!"); 336 337 // Check to see if we already have a global variable for this 338 // declaration. This can happen when double-emitting function 339 // bodies, e.g. with complete and base constructors. 340 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 341 342 // Store into LocalDeclMap before generating initializer to handle 343 // circular references. 344 DMEntry = addr; 345 346 // We can't have a VLA here, but we can have a pointer to a VLA, 347 // even though that doesn't really make any sense. 348 // Make sure to evaluate VLA bounds now so that we have them for later. 349 if (D.getType()->isVariablyModifiedType()) 350 EmitVariablyModifiedType(D.getType()); 351 352 // Save the type in case adding the initializer forces a type change. 353 llvm::Type *expectedType = addr->getType(); 354 355 llvm::GlobalVariable *var = 356 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 357 // If this value has an initializer, emit it. 358 if (D.getInit()) 359 var = AddInitializerToStaticVarDecl(D, var); 360 361 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 362 363 if (D.hasAttr<AnnotateAttr>()) 364 CGM.AddGlobalAnnotations(&D, var); 365 366 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 367 var->setSection(SA->getName()); 368 369 if (D.hasAttr<UsedAttr>()) 370 CGM.addUsedGlobal(var); 371 372 // We may have to cast the constant because of the initializer 373 // mismatch above. 374 // 375 // FIXME: It is really dangerous to store this in the map; if anyone 376 // RAUW's the GV uses of this constant will be invalid. 377 llvm::Constant *castedAddr = 378 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 379 DMEntry = castedAddr; 380 CGM.setStaticLocalDeclAddress(&D, castedAddr); 381 382 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 383 384 // Emit global variable debug descriptor for static vars. 385 CGDebugInfo *DI = getDebugInfo(); 386 if (DI && 387 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 388 DI->setLocation(D.getLocation()); 389 DI->EmitGlobalVariable(var, &D); 390 } 391 } 392 393 namespace { 394 struct DestroyObject : EHScopeStack::Cleanup { 395 DestroyObject(llvm::Value *addr, QualType type, 396 CodeGenFunction::Destroyer *destroyer, 397 bool useEHCleanupForArray) 398 : addr(addr), type(type), destroyer(destroyer), 399 useEHCleanupForArray(useEHCleanupForArray) {} 400 401 llvm::Value *addr; 402 QualType type; 403 CodeGenFunction::Destroyer *destroyer; 404 bool useEHCleanupForArray; 405 406 void Emit(CodeGenFunction &CGF, Flags flags) override { 407 // Don't use an EH cleanup recursively from an EH cleanup. 408 bool useEHCleanupForArray = 409 flags.isForNormalCleanup() && this->useEHCleanupForArray; 410 411 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 412 } 413 }; 414 415 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 416 DestroyNRVOVariable(llvm::Value *addr, 417 const CXXDestructorDecl *Dtor, 418 llvm::Value *NRVOFlag) 419 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 420 421 const CXXDestructorDecl *Dtor; 422 llvm::Value *NRVOFlag; 423 llvm::Value *Loc; 424 425 void Emit(CodeGenFunction &CGF, Flags flags) override { 426 // Along the exceptions path we always execute the dtor. 427 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 428 429 llvm::BasicBlock *SkipDtorBB = nullptr; 430 if (NRVO) { 431 // If we exited via NRVO, we skip the destructor call. 432 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 433 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 434 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 435 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 436 CGF.EmitBlock(RunDtorBB); 437 } 438 439 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 440 /*ForVirtualBase=*/false, 441 /*Delegating=*/false, 442 Loc); 443 444 if (NRVO) CGF.EmitBlock(SkipDtorBB); 445 } 446 }; 447 448 struct CallStackRestore : EHScopeStack::Cleanup { 449 llvm::Value *Stack; 450 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 451 void Emit(CodeGenFunction &CGF, Flags flags) override { 452 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 453 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 454 CGF.Builder.CreateCall(F, V); 455 } 456 }; 457 458 struct ExtendGCLifetime : EHScopeStack::Cleanup { 459 const VarDecl &Var; 460 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 461 462 void Emit(CodeGenFunction &CGF, Flags flags) override { 463 // Compute the address of the local variable, in case it's a 464 // byref or something. 465 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 466 Var.getType(), VK_LValue, SourceLocation()); 467 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 468 SourceLocation()); 469 CGF.EmitExtendGCLifetime(value); 470 } 471 }; 472 473 struct CallCleanupFunction : EHScopeStack::Cleanup { 474 llvm::Constant *CleanupFn; 475 const CGFunctionInfo &FnInfo; 476 const VarDecl &Var; 477 478 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 479 const VarDecl *Var) 480 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 481 482 void Emit(CodeGenFunction &CGF, Flags flags) override { 483 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 484 Var.getType(), VK_LValue, SourceLocation()); 485 // Compute the address of the local variable, in case it's a byref 486 // or something. 487 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 488 489 // In some cases, the type of the function argument will be different from 490 // the type of the pointer. An example of this is 491 // void f(void* arg); 492 // __attribute__((cleanup(f))) void *g; 493 // 494 // To fix this we insert a bitcast here. 495 QualType ArgTy = FnInfo.arg_begin()->type; 496 llvm::Value *Arg = 497 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 498 499 CallArgList Args; 500 Args.add(RValue::get(Arg), 501 CGF.getContext().getPointerType(Var.getType())); 502 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 503 } 504 }; 505 506 /// A cleanup to call @llvm.lifetime.end. 507 class CallLifetimeEnd : public EHScopeStack::Cleanup { 508 llvm::Value *Addr; 509 llvm::Value *Size; 510 public: 511 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 512 : Addr(addr), Size(size) {} 513 514 void Emit(CodeGenFunction &CGF, Flags flags) override { 515 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 516 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 517 Size, castAddr) 518 ->setDoesNotThrow(); 519 } 520 }; 521 } 522 523 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 524 /// variable with lifetime. 525 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 526 llvm::Value *addr, 527 Qualifiers::ObjCLifetime lifetime) { 528 switch (lifetime) { 529 case Qualifiers::OCL_None: 530 llvm_unreachable("present but none"); 531 532 case Qualifiers::OCL_ExplicitNone: 533 // nothing to do 534 break; 535 536 case Qualifiers::OCL_Strong: { 537 CodeGenFunction::Destroyer *destroyer = 538 (var.hasAttr<ObjCPreciseLifetimeAttr>() 539 ? CodeGenFunction::destroyARCStrongPrecise 540 : CodeGenFunction::destroyARCStrongImprecise); 541 542 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 543 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 544 cleanupKind & EHCleanup); 545 break; 546 } 547 case Qualifiers::OCL_Autoreleasing: 548 // nothing to do 549 break; 550 551 case Qualifiers::OCL_Weak: 552 // __weak objects always get EH cleanups; otherwise, exceptions 553 // could cause really nasty crashes instead of mere leaks. 554 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 555 CodeGenFunction::destroyARCWeak, 556 /*useEHCleanup*/ true); 557 break; 558 } 559 } 560 561 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 562 if (const Expr *e = dyn_cast<Expr>(s)) { 563 // Skip the most common kinds of expressions that make 564 // hierarchy-walking expensive. 565 s = e = e->IgnoreParenCasts(); 566 567 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 568 return (ref->getDecl() == &var); 569 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 570 const BlockDecl *block = be->getBlockDecl(); 571 for (const auto &I : block->captures()) { 572 if (I.getVariable() == &var) 573 return true; 574 } 575 } 576 } 577 578 for (Stmt::const_child_range children = s->children(); children; ++children) 579 // children might be null; as in missing decl or conditional of an if-stmt. 580 if ((*children) && isAccessedBy(var, *children)) 581 return true; 582 583 return false; 584 } 585 586 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 587 if (!decl) return false; 588 if (!isa<VarDecl>(decl)) return false; 589 const VarDecl *var = cast<VarDecl>(decl); 590 return isAccessedBy(*var, e); 591 } 592 593 static void drillIntoBlockVariable(CodeGenFunction &CGF, 594 LValue &lvalue, 595 const VarDecl *var) { 596 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 597 } 598 599 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 600 LValue lvalue, bool capturedByInit) { 601 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 602 if (!lifetime) { 603 llvm::Value *value = EmitScalarExpr(init); 604 if (capturedByInit) 605 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 606 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 607 return; 608 } 609 610 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 611 init = DIE->getExpr(); 612 613 // If we're emitting a value with lifetime, we have to do the 614 // initialization *before* we leave the cleanup scopes. 615 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 616 enterFullExpression(ewc); 617 init = ewc->getSubExpr(); 618 } 619 CodeGenFunction::RunCleanupsScope Scope(*this); 620 621 // We have to maintain the illusion that the variable is 622 // zero-initialized. If the variable might be accessed in its 623 // initializer, zero-initialize before running the initializer, then 624 // actually perform the initialization with an assign. 625 bool accessedByInit = false; 626 if (lifetime != Qualifiers::OCL_ExplicitNone) 627 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 628 if (accessedByInit) { 629 LValue tempLV = lvalue; 630 // Drill down to the __block object if necessary. 631 if (capturedByInit) { 632 // We can use a simple GEP for this because it can't have been 633 // moved yet. 634 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 635 getByRefValueLLVMField(cast<VarDecl>(D)))); 636 } 637 638 llvm::PointerType *ty 639 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 640 ty = cast<llvm::PointerType>(ty->getElementType()); 641 642 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 643 644 // If __weak, we want to use a barrier under certain conditions. 645 if (lifetime == Qualifiers::OCL_Weak) 646 EmitARCInitWeak(tempLV.getAddress(), zero); 647 648 // Otherwise just do a simple store. 649 else 650 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 651 } 652 653 // Emit the initializer. 654 llvm::Value *value = nullptr; 655 656 switch (lifetime) { 657 case Qualifiers::OCL_None: 658 llvm_unreachable("present but none"); 659 660 case Qualifiers::OCL_ExplicitNone: 661 // nothing to do 662 value = EmitScalarExpr(init); 663 break; 664 665 case Qualifiers::OCL_Strong: { 666 value = EmitARCRetainScalarExpr(init); 667 break; 668 } 669 670 case Qualifiers::OCL_Weak: { 671 // No way to optimize a producing initializer into this. It's not 672 // worth optimizing for, because the value will immediately 673 // disappear in the common case. 674 value = EmitScalarExpr(init); 675 676 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 677 if (accessedByInit) 678 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 679 else 680 EmitARCInitWeak(lvalue.getAddress(), value); 681 return; 682 } 683 684 case Qualifiers::OCL_Autoreleasing: 685 value = EmitARCRetainAutoreleaseScalarExpr(init); 686 break; 687 } 688 689 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 690 691 // If the variable might have been accessed by its initializer, we 692 // might have to initialize with a barrier. We have to do this for 693 // both __weak and __strong, but __weak got filtered out above. 694 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 695 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 696 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 697 EmitARCRelease(oldValue, ARCImpreciseLifetime); 698 return; 699 } 700 701 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 702 } 703 704 /// EmitScalarInit - Initialize the given lvalue with the given object. 705 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 706 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 707 if (!lifetime) 708 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 709 710 switch (lifetime) { 711 case Qualifiers::OCL_None: 712 llvm_unreachable("present but none"); 713 714 case Qualifiers::OCL_ExplicitNone: 715 // nothing to do 716 break; 717 718 case Qualifiers::OCL_Strong: 719 init = EmitARCRetain(lvalue.getType(), init); 720 break; 721 722 case Qualifiers::OCL_Weak: 723 // Initialize and then skip the primitive store. 724 EmitARCInitWeak(lvalue.getAddress(), init); 725 return; 726 727 case Qualifiers::OCL_Autoreleasing: 728 init = EmitARCRetainAutorelease(lvalue.getType(), init); 729 break; 730 } 731 732 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 733 } 734 735 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 736 /// non-zero parts of the specified initializer with equal or fewer than 737 /// NumStores scalar stores. 738 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 739 unsigned &NumStores) { 740 // Zero and Undef never requires any extra stores. 741 if (isa<llvm::ConstantAggregateZero>(Init) || 742 isa<llvm::ConstantPointerNull>(Init) || 743 isa<llvm::UndefValue>(Init)) 744 return true; 745 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 746 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 747 isa<llvm::ConstantExpr>(Init)) 748 return Init->isNullValue() || NumStores--; 749 750 // See if we can emit each element. 751 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 752 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 753 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 754 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 755 return false; 756 } 757 return true; 758 } 759 760 if (llvm::ConstantDataSequential *CDS = 761 dyn_cast<llvm::ConstantDataSequential>(Init)) { 762 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 763 llvm::Constant *Elt = CDS->getElementAsConstant(i); 764 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 765 return false; 766 } 767 return true; 768 } 769 770 // Anything else is hard and scary. 771 return false; 772 } 773 774 /// emitStoresForInitAfterMemset - For inits that 775 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 776 /// stores that would be required. 777 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 778 bool isVolatile, CGBuilderTy &Builder) { 779 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 780 "called emitStoresForInitAfterMemset for zero or undef value."); 781 782 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 783 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 784 isa<llvm::ConstantExpr>(Init)) { 785 Builder.CreateStore(Init, Loc, isVolatile); 786 return; 787 } 788 789 if (llvm::ConstantDataSequential *CDS = 790 dyn_cast<llvm::ConstantDataSequential>(Init)) { 791 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 792 llvm::Constant *Elt = CDS->getElementAsConstant(i); 793 794 // If necessary, get a pointer to the element and emit it. 795 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 796 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 797 isVolatile, Builder); 798 } 799 return; 800 } 801 802 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 803 "Unknown value type!"); 804 805 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 806 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 807 808 // If necessary, get a pointer to the element and emit it. 809 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 810 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 811 isVolatile, Builder); 812 } 813 } 814 815 816 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 817 /// plus some stores to initialize a local variable instead of using a memcpy 818 /// from a constant global. It is beneficial to use memset if the global is all 819 /// zeros, or mostly zeros and large. 820 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 821 uint64_t GlobalSize) { 822 // If a global is all zeros, always use a memset. 823 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 824 825 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 826 // do it if it will require 6 or fewer scalar stores. 827 // TODO: Should budget depends on the size? Avoiding a large global warrants 828 // plopping in more stores. 829 unsigned StoreBudget = 6; 830 uint64_t SizeLimit = 32; 831 832 return GlobalSize > SizeLimit && 833 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 834 } 835 836 /// Should we use the LLVM lifetime intrinsics for the given local variable? 837 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 838 unsigned Size) { 839 // For now, only in optimized builds. 840 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 841 return false; 842 843 // Limit the size of marked objects to 32 bytes. We don't want to increase 844 // compile time by marking tiny objects. 845 unsigned SizeThreshold = 32; 846 847 return Size > SizeThreshold; 848 } 849 850 851 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 852 /// variable declaration with auto, register, or no storage class specifier. 853 /// These turn into simple stack objects, or GlobalValues depending on target. 854 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 855 AutoVarEmission emission = EmitAutoVarAlloca(D); 856 EmitAutoVarInit(emission); 857 EmitAutoVarCleanups(emission); 858 } 859 860 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 861 /// local variable. Does not emit initialization or destruction. 862 CodeGenFunction::AutoVarEmission 863 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 864 QualType Ty = D.getType(); 865 866 AutoVarEmission emission(D); 867 868 bool isByRef = D.hasAttr<BlocksAttr>(); 869 emission.IsByRef = isByRef; 870 871 CharUnits alignment = getContext().getDeclAlign(&D); 872 emission.Alignment = alignment; 873 874 // If the type is variably-modified, emit all the VLA sizes for it. 875 if (Ty->isVariablyModifiedType()) 876 EmitVariablyModifiedType(Ty); 877 878 llvm::Value *DeclPtr; 879 if (Ty->isConstantSizeType()) { 880 bool NRVO = getLangOpts().ElideConstructors && 881 D.isNRVOVariable(); 882 883 // If this value is an array or struct with a statically determinable 884 // constant initializer, there are optimizations we can do. 885 // 886 // TODO: We should constant-evaluate the initializer of any variable, 887 // as long as it is initialized by a constant expression. Currently, 888 // isConstantInitializer produces wrong answers for structs with 889 // reference or bitfield members, and a few other cases, and checking 890 // for POD-ness protects us from some of these. 891 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 892 (D.isConstexpr() || 893 ((Ty.isPODType(getContext()) || 894 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 895 D.getInit()->isConstantInitializer(getContext(), false)))) { 896 897 // If the variable's a const type, and it's neither an NRVO 898 // candidate nor a __block variable and has no mutable members, 899 // emit it as a global instead. 900 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 901 CGM.isTypeConstant(Ty, true)) { 902 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 903 904 emission.Address = nullptr; // signal this condition to later callbacks 905 assert(emission.wasEmittedAsGlobal()); 906 return emission; 907 } 908 909 // Otherwise, tell the initialization code that we're in this case. 910 emission.IsConstantAggregate = true; 911 } 912 913 // A normal fixed sized variable becomes an alloca in the entry block, 914 // unless it's an NRVO variable. 915 llvm::Type *LTy = ConvertTypeForMem(Ty); 916 917 if (NRVO) { 918 // The named return value optimization: allocate this variable in the 919 // return slot, so that we can elide the copy when returning this 920 // variable (C++0x [class.copy]p34). 921 DeclPtr = ReturnValue; 922 923 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 924 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 925 // Create a flag that is used to indicate when the NRVO was applied 926 // to this variable. Set it to zero to indicate that NRVO was not 927 // applied. 928 llvm::Value *Zero = Builder.getFalse(); 929 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 930 EnsureInsertPoint(); 931 Builder.CreateStore(Zero, NRVOFlag); 932 933 // Record the NRVO flag for this variable. 934 NRVOFlags[&D] = NRVOFlag; 935 emission.NRVOFlag = NRVOFlag; 936 } 937 } 938 } else { 939 if (isByRef) 940 LTy = BuildByRefType(&D); 941 942 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 943 Alloc->setName(D.getName()); 944 945 CharUnits allocaAlignment = alignment; 946 if (isByRef) 947 allocaAlignment = std::max(allocaAlignment, 948 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 949 Alloc->setAlignment(allocaAlignment.getQuantity()); 950 DeclPtr = Alloc; 951 952 // Emit a lifetime intrinsic if meaningful. There's no point 953 // in doing this if we don't have a valid insertion point (?). 954 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 955 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 956 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 957 958 emission.SizeForLifetimeMarkers = sizeV; 959 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 960 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 961 ->setDoesNotThrow(); 962 } else { 963 assert(!emission.useLifetimeMarkers()); 964 } 965 } 966 } else { 967 EnsureInsertPoint(); 968 969 if (!DidCallStackSave) { 970 // Save the stack. 971 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 972 973 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 974 llvm::Value *V = Builder.CreateCall(F); 975 976 Builder.CreateStore(V, Stack); 977 978 DidCallStackSave = true; 979 980 // Push a cleanup block and restore the stack there. 981 // FIXME: in general circumstances, this should be an EH cleanup. 982 pushStackRestore(NormalCleanup, Stack); 983 } 984 985 llvm::Value *elementCount; 986 QualType elementType; 987 std::tie(elementCount, elementType) = getVLASize(Ty); 988 989 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 990 991 // Allocate memory for the array. 992 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 993 vla->setAlignment(alignment.getQuantity()); 994 995 DeclPtr = vla; 996 } 997 998 llvm::Value *&DMEntry = LocalDeclMap[&D]; 999 assert(!DMEntry && "Decl already exists in localdeclmap!"); 1000 DMEntry = DeclPtr; 1001 emission.Address = DeclPtr; 1002 1003 // Emit debug info for local var declaration. 1004 if (HaveInsertPoint()) 1005 if (CGDebugInfo *DI = getDebugInfo()) { 1006 if (CGM.getCodeGenOpts().getDebugInfo() 1007 >= CodeGenOptions::LimitedDebugInfo) { 1008 DI->setLocation(D.getLocation()); 1009 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 1010 } 1011 } 1012 1013 if (D.hasAttr<AnnotateAttr>()) 1014 EmitVarAnnotations(&D, emission.Address); 1015 1016 return emission; 1017 } 1018 1019 /// Determines whether the given __block variable is potentially 1020 /// captured by the given expression. 1021 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1022 // Skip the most common kinds of expressions that make 1023 // hierarchy-walking expensive. 1024 e = e->IgnoreParenCasts(); 1025 1026 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1027 const BlockDecl *block = be->getBlockDecl(); 1028 for (const auto &I : block->captures()) { 1029 if (I.getVariable() == &var) 1030 return true; 1031 } 1032 1033 // No need to walk into the subexpressions. 1034 return false; 1035 } 1036 1037 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1038 const CompoundStmt *CS = SE->getSubStmt(); 1039 for (const auto *BI : CS->body()) 1040 if (const auto *E = dyn_cast<Expr>(BI)) { 1041 if (isCapturedBy(var, E)) 1042 return true; 1043 } 1044 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1045 // special case declarations 1046 for (const auto *I : DS->decls()) { 1047 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1048 const Expr *Init = VD->getInit(); 1049 if (Init && isCapturedBy(var, Init)) 1050 return true; 1051 } 1052 } 1053 } 1054 else 1055 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1056 // Later, provide code to poke into statements for capture analysis. 1057 return true; 1058 return false; 1059 } 1060 1061 for (Stmt::const_child_range children = e->children(); children; ++children) 1062 if (isCapturedBy(var, cast<Expr>(*children))) 1063 return true; 1064 1065 return false; 1066 } 1067 1068 /// \brief Determine whether the given initializer is trivial in the sense 1069 /// that it requires no code to be generated. 1070 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1071 if (!Init) 1072 return true; 1073 1074 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1075 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1076 if (Constructor->isTrivial() && 1077 Constructor->isDefaultConstructor() && 1078 !Construct->requiresZeroInitialization()) 1079 return true; 1080 1081 return false; 1082 } 1083 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1084 assert(emission.Variable && "emission was not valid!"); 1085 1086 // If this was emitted as a global constant, we're done. 1087 if (emission.wasEmittedAsGlobal()) return; 1088 1089 const VarDecl &D = *emission.Variable; 1090 ApplyDebugLocation DL(*this, D.getLocation()); 1091 QualType type = D.getType(); 1092 1093 // If this local has an initializer, emit it now. 1094 const Expr *Init = D.getInit(); 1095 1096 // If we are at an unreachable point, we don't need to emit the initializer 1097 // unless it contains a label. 1098 if (!HaveInsertPoint()) { 1099 if (!Init || !ContainsLabel(Init)) return; 1100 EnsureInsertPoint(); 1101 } 1102 1103 // Initialize the structure of a __block variable. 1104 if (emission.IsByRef) 1105 emitByrefStructureInit(emission); 1106 1107 if (isTrivialInitializer(Init)) 1108 return; 1109 1110 CharUnits alignment = emission.Alignment; 1111 1112 // Check whether this is a byref variable that's potentially 1113 // captured and moved by its own initializer. If so, we'll need to 1114 // emit the initializer first, then copy into the variable. 1115 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1116 1117 llvm::Value *Loc = 1118 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1119 1120 llvm::Constant *constant = nullptr; 1121 if (emission.IsConstantAggregate || D.isConstexpr()) { 1122 assert(!capturedByInit && "constant init contains a capturing block?"); 1123 constant = CGM.EmitConstantInit(D, this); 1124 } 1125 1126 if (!constant) { 1127 LValue lv = MakeAddrLValue(Loc, type, alignment); 1128 lv.setNonGC(true); 1129 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1130 } 1131 1132 if (!emission.IsConstantAggregate) { 1133 // For simple scalar/complex initialization, store the value directly. 1134 LValue lv = MakeAddrLValue(Loc, type, alignment); 1135 lv.setNonGC(true); 1136 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1137 } 1138 1139 // If this is a simple aggregate initialization, we can optimize it 1140 // in various ways. 1141 bool isVolatile = type.isVolatileQualified(); 1142 1143 llvm::Value *SizeVal = 1144 llvm::ConstantInt::get(IntPtrTy, 1145 getContext().getTypeSizeInChars(type).getQuantity()); 1146 1147 llvm::Type *BP = Int8PtrTy; 1148 if (Loc->getType() != BP) 1149 Loc = Builder.CreateBitCast(Loc, BP); 1150 1151 // If the initializer is all or mostly zeros, codegen with memset then do 1152 // a few stores afterward. 1153 if (shouldUseMemSetPlusStoresToInitialize(constant, 1154 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1155 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1156 alignment.getQuantity(), isVolatile); 1157 // Zero and undef don't require a stores. 1158 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1159 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1160 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1161 } 1162 } else { 1163 // Otherwise, create a temporary global with the initializer then 1164 // memcpy from the global to the alloca. 1165 std::string Name = getStaticDeclName(CGM, D); 1166 llvm::GlobalVariable *GV = 1167 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1168 llvm::GlobalValue::PrivateLinkage, 1169 constant, Name); 1170 GV->setAlignment(alignment.getQuantity()); 1171 GV->setUnnamedAddr(true); 1172 1173 llvm::Value *SrcPtr = GV; 1174 if (SrcPtr->getType() != BP) 1175 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1176 1177 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1178 isVolatile); 1179 } 1180 } 1181 1182 /// Emit an expression as an initializer for a variable at the given 1183 /// location. The expression is not necessarily the normal 1184 /// initializer for the variable, and the address is not necessarily 1185 /// its normal location. 1186 /// 1187 /// \param init the initializing expression 1188 /// \param var the variable to act as if we're initializing 1189 /// \param loc the address to initialize; its type is a pointer 1190 /// to the LLVM mapping of the variable's type 1191 /// \param alignment the alignment of the address 1192 /// \param capturedByInit true if the variable is a __block variable 1193 /// whose address is potentially changed by the initializer 1194 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1195 LValue lvalue, bool capturedByInit) { 1196 QualType type = D->getType(); 1197 1198 if (type->isReferenceType()) { 1199 RValue rvalue = EmitReferenceBindingToExpr(init); 1200 if (capturedByInit) 1201 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1202 EmitStoreThroughLValue(rvalue, lvalue, true); 1203 return; 1204 } 1205 switch (getEvaluationKind(type)) { 1206 case TEK_Scalar: 1207 EmitScalarInit(init, D, lvalue, capturedByInit); 1208 return; 1209 case TEK_Complex: { 1210 ComplexPairTy complex = EmitComplexExpr(init); 1211 if (capturedByInit) 1212 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1213 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1214 return; 1215 } 1216 case TEK_Aggregate: 1217 if (type->isAtomicType()) { 1218 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1219 } else { 1220 // TODO: how can we delay here if D is captured by its initializer? 1221 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1222 AggValueSlot::IsDestructed, 1223 AggValueSlot::DoesNotNeedGCBarriers, 1224 AggValueSlot::IsNotAliased)); 1225 } 1226 return; 1227 } 1228 llvm_unreachable("bad evaluation kind"); 1229 } 1230 1231 /// Enter a destroy cleanup for the given local variable. 1232 void CodeGenFunction::emitAutoVarTypeCleanup( 1233 const CodeGenFunction::AutoVarEmission &emission, 1234 QualType::DestructionKind dtorKind) { 1235 assert(dtorKind != QualType::DK_none); 1236 1237 // Note that for __block variables, we want to destroy the 1238 // original stack object, not the possibly forwarded object. 1239 llvm::Value *addr = emission.getObjectAddress(*this); 1240 1241 const VarDecl *var = emission.Variable; 1242 QualType type = var->getType(); 1243 1244 CleanupKind cleanupKind = NormalAndEHCleanup; 1245 CodeGenFunction::Destroyer *destroyer = nullptr; 1246 1247 switch (dtorKind) { 1248 case QualType::DK_none: 1249 llvm_unreachable("no cleanup for trivially-destructible variable"); 1250 1251 case QualType::DK_cxx_destructor: 1252 // If there's an NRVO flag on the emission, we need a different 1253 // cleanup. 1254 if (emission.NRVOFlag) { 1255 assert(!type->isArrayType()); 1256 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1257 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1258 emission.NRVOFlag); 1259 return; 1260 } 1261 break; 1262 1263 case QualType::DK_objc_strong_lifetime: 1264 // Suppress cleanups for pseudo-strong variables. 1265 if (var->isARCPseudoStrong()) return; 1266 1267 // Otherwise, consider whether to use an EH cleanup or not. 1268 cleanupKind = getARCCleanupKind(); 1269 1270 // Use the imprecise destroyer by default. 1271 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1272 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1273 break; 1274 1275 case QualType::DK_objc_weak_lifetime: 1276 break; 1277 } 1278 1279 // If we haven't chosen a more specific destroyer, use the default. 1280 if (!destroyer) destroyer = getDestroyer(dtorKind); 1281 1282 // Use an EH cleanup in array destructors iff the destructor itself 1283 // is being pushed as an EH cleanup. 1284 bool useEHCleanup = (cleanupKind & EHCleanup); 1285 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1286 useEHCleanup); 1287 } 1288 1289 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1290 assert(emission.Variable && "emission was not valid!"); 1291 1292 // If this was emitted as a global constant, we're done. 1293 if (emission.wasEmittedAsGlobal()) return; 1294 1295 // If we don't have an insertion point, we're done. Sema prevents 1296 // us from jumping into any of these scopes anyway. 1297 if (!HaveInsertPoint()) return; 1298 1299 const VarDecl &D = *emission.Variable; 1300 1301 // Make sure we call @llvm.lifetime.end. This needs to happen 1302 // *last*, so the cleanup needs to be pushed *first*. 1303 if (emission.useLifetimeMarkers()) { 1304 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1305 emission.getAllocatedAddress(), 1306 emission.getSizeForLifetimeMarkers()); 1307 } 1308 1309 // Check the type for a cleanup. 1310 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1311 emitAutoVarTypeCleanup(emission, dtorKind); 1312 1313 // In GC mode, honor objc_precise_lifetime. 1314 if (getLangOpts().getGC() != LangOptions::NonGC && 1315 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1316 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1317 } 1318 1319 // Handle the cleanup attribute. 1320 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1321 const FunctionDecl *FD = CA->getFunctionDecl(); 1322 1323 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1324 assert(F && "Could not find function!"); 1325 1326 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1327 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1328 } 1329 1330 // If this is a block variable, call _Block_object_destroy 1331 // (on the unforwarded address). 1332 if (emission.IsByRef) 1333 enterByrefCleanup(emission); 1334 } 1335 1336 CodeGenFunction::Destroyer * 1337 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1338 switch (kind) { 1339 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1340 case QualType::DK_cxx_destructor: 1341 return destroyCXXObject; 1342 case QualType::DK_objc_strong_lifetime: 1343 return destroyARCStrongPrecise; 1344 case QualType::DK_objc_weak_lifetime: 1345 return destroyARCWeak; 1346 } 1347 llvm_unreachable("Unknown DestructionKind"); 1348 } 1349 1350 /// pushEHDestroy - Push the standard destructor for the given type as 1351 /// an EH-only cleanup. 1352 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1353 llvm::Value *addr, QualType type) { 1354 assert(dtorKind && "cannot push destructor for trivial type"); 1355 assert(needsEHCleanup(dtorKind)); 1356 1357 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1358 } 1359 1360 /// pushDestroy - Push the standard destructor for the given type as 1361 /// at least a normal cleanup. 1362 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1363 llvm::Value *addr, QualType type) { 1364 assert(dtorKind && "cannot push destructor for trivial type"); 1365 1366 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1367 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1368 cleanupKind & EHCleanup); 1369 } 1370 1371 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1372 QualType type, Destroyer *destroyer, 1373 bool useEHCleanupForArray) { 1374 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1375 destroyer, useEHCleanupForArray); 1376 } 1377 1378 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) { 1379 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1380 } 1381 1382 void CodeGenFunction::pushLifetimeExtendedDestroy( 1383 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 1384 Destroyer *destroyer, bool useEHCleanupForArray) { 1385 assert(!isInConditionalBranch() && 1386 "performing lifetime extension from within conditional"); 1387 1388 // Push an EH-only cleanup for the object now. 1389 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1390 // around in case a temporary's destructor throws an exception. 1391 if (cleanupKind & EHCleanup) 1392 EHStack.pushCleanup<DestroyObject>( 1393 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1394 destroyer, useEHCleanupForArray); 1395 1396 // Remember that we need to push a full cleanup for the object at the 1397 // end of the full-expression. 1398 pushCleanupAfterFullExpr<DestroyObject>( 1399 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1400 } 1401 1402 /// emitDestroy - Immediately perform the destruction of the given 1403 /// object. 1404 /// 1405 /// \param addr - the address of the object; a type* 1406 /// \param type - the type of the object; if an array type, all 1407 /// objects are destroyed in reverse order 1408 /// \param destroyer - the function to call to destroy individual 1409 /// elements 1410 /// \param useEHCleanupForArray - whether an EH cleanup should be 1411 /// used when destroying array elements, in case one of the 1412 /// destructions throws an exception 1413 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1414 Destroyer *destroyer, 1415 bool useEHCleanupForArray) { 1416 const ArrayType *arrayType = getContext().getAsArrayType(type); 1417 if (!arrayType) 1418 return destroyer(*this, addr, type); 1419 1420 llvm::Value *begin = addr; 1421 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1422 1423 // Normally we have to check whether the array is zero-length. 1424 bool checkZeroLength = true; 1425 1426 // But if the array length is constant, we can suppress that. 1427 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1428 // ...and if it's constant zero, we can just skip the entire thing. 1429 if (constLength->isZero()) return; 1430 checkZeroLength = false; 1431 } 1432 1433 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1434 emitArrayDestroy(begin, end, type, destroyer, 1435 checkZeroLength, useEHCleanupForArray); 1436 } 1437 1438 /// emitArrayDestroy - Destroys all the elements of the given array, 1439 /// beginning from last to first. The array cannot be zero-length. 1440 /// 1441 /// \param begin - a type* denoting the first element of the array 1442 /// \param end - a type* denoting one past the end of the array 1443 /// \param type - the element type of the array 1444 /// \param destroyer - the function to call to destroy elements 1445 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1446 /// the remaining elements in case the destruction of a single 1447 /// element throws 1448 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1449 llvm::Value *end, 1450 QualType type, 1451 Destroyer *destroyer, 1452 bool checkZeroLength, 1453 bool useEHCleanup) { 1454 assert(!type->isArrayType()); 1455 1456 // The basic structure here is a do-while loop, because we don't 1457 // need to check for the zero-element case. 1458 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1459 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1460 1461 if (checkZeroLength) { 1462 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1463 "arraydestroy.isempty"); 1464 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1465 } 1466 1467 // Enter the loop body, making that address the current address. 1468 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1469 EmitBlock(bodyBB); 1470 llvm::PHINode *elementPast = 1471 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1472 elementPast->addIncoming(end, entryBB); 1473 1474 // Shift the address back by one element. 1475 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1476 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1477 "arraydestroy.element"); 1478 1479 if (useEHCleanup) 1480 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1481 1482 // Perform the actual destruction there. 1483 destroyer(*this, element, type); 1484 1485 if (useEHCleanup) 1486 PopCleanupBlock(); 1487 1488 // Check whether we've reached the end. 1489 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1490 Builder.CreateCondBr(done, doneBB, bodyBB); 1491 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1492 1493 // Done. 1494 EmitBlock(doneBB); 1495 } 1496 1497 /// Perform partial array destruction as if in an EH cleanup. Unlike 1498 /// emitArrayDestroy, the element type here may still be an array type. 1499 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1500 llvm::Value *begin, llvm::Value *end, 1501 QualType type, 1502 CodeGenFunction::Destroyer *destroyer) { 1503 // If the element type is itself an array, drill down. 1504 unsigned arrayDepth = 0; 1505 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1506 // VLAs don't require a GEP index to walk into. 1507 if (!isa<VariableArrayType>(arrayType)) 1508 arrayDepth++; 1509 type = arrayType->getElementType(); 1510 } 1511 1512 if (arrayDepth) { 1513 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1514 1515 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1516 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1517 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1518 } 1519 1520 // Destroy the array. We don't ever need an EH cleanup because we 1521 // assume that we're in an EH cleanup ourselves, so a throwing 1522 // destructor causes an immediate terminate. 1523 CGF.emitArrayDestroy(begin, end, type, destroyer, 1524 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1525 } 1526 1527 namespace { 1528 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1529 /// array destroy where the end pointer is regularly determined and 1530 /// does not need to be loaded from a local. 1531 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1532 llvm::Value *ArrayBegin; 1533 llvm::Value *ArrayEnd; 1534 QualType ElementType; 1535 CodeGenFunction::Destroyer *Destroyer; 1536 public: 1537 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1538 QualType elementType, 1539 CodeGenFunction::Destroyer *destroyer) 1540 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1541 ElementType(elementType), Destroyer(destroyer) {} 1542 1543 void Emit(CodeGenFunction &CGF, Flags flags) override { 1544 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1545 ElementType, Destroyer); 1546 } 1547 }; 1548 1549 /// IrregularPartialArrayDestroy - a cleanup which performs a 1550 /// partial array destroy where the end pointer is irregularly 1551 /// determined and must be loaded from a local. 1552 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1553 llvm::Value *ArrayBegin; 1554 llvm::Value *ArrayEndPointer; 1555 QualType ElementType; 1556 CodeGenFunction::Destroyer *Destroyer; 1557 public: 1558 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1559 llvm::Value *arrayEndPointer, 1560 QualType elementType, 1561 CodeGenFunction::Destroyer *destroyer) 1562 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1563 ElementType(elementType), Destroyer(destroyer) {} 1564 1565 void Emit(CodeGenFunction &CGF, Flags flags) override { 1566 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1567 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1568 ElementType, Destroyer); 1569 } 1570 }; 1571 } 1572 1573 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1574 /// already-constructed elements of the given array. The cleanup 1575 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1576 /// 1577 /// \param elementType - the immediate element type of the array; 1578 /// possibly still an array type 1579 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1580 llvm::Value *arrayEndPointer, 1581 QualType elementType, 1582 Destroyer *destroyer) { 1583 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1584 arrayBegin, arrayEndPointer, 1585 elementType, destroyer); 1586 } 1587 1588 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1589 /// already-constructed elements of the given array. The cleanup 1590 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1591 /// 1592 /// \param elementType - the immediate element type of the array; 1593 /// possibly still an array type 1594 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1595 llvm::Value *arrayEnd, 1596 QualType elementType, 1597 Destroyer *destroyer) { 1598 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1599 arrayBegin, arrayEnd, 1600 elementType, destroyer); 1601 } 1602 1603 /// Lazily declare the @llvm.lifetime.start intrinsic. 1604 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1605 if (LifetimeStartFn) return LifetimeStartFn; 1606 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1607 llvm::Intrinsic::lifetime_start); 1608 return LifetimeStartFn; 1609 } 1610 1611 /// Lazily declare the @llvm.lifetime.end intrinsic. 1612 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1613 if (LifetimeEndFn) return LifetimeEndFn; 1614 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1615 llvm::Intrinsic::lifetime_end); 1616 return LifetimeEndFn; 1617 } 1618 1619 namespace { 1620 /// A cleanup to perform a release of an object at the end of a 1621 /// function. This is used to balance out the incoming +1 of a 1622 /// ns_consumed argument when we can't reasonably do that just by 1623 /// not doing the initial retain for a __block argument. 1624 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1625 ConsumeARCParameter(llvm::Value *param, 1626 ARCPreciseLifetime_t precise) 1627 : Param(param), Precise(precise) {} 1628 1629 llvm::Value *Param; 1630 ARCPreciseLifetime_t Precise; 1631 1632 void Emit(CodeGenFunction &CGF, Flags flags) override { 1633 CGF.EmitARCRelease(Param, Precise); 1634 } 1635 }; 1636 } 1637 1638 /// Emit an alloca (or GlobalValue depending on target) 1639 /// for the specified parameter and set up LocalDeclMap. 1640 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1641 bool ArgIsPointer, unsigned ArgNo) { 1642 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1643 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1644 "Invalid argument to EmitParmDecl"); 1645 1646 Arg->setName(D.getName()); 1647 1648 QualType Ty = D.getType(); 1649 1650 // Use better IR generation for certain implicit parameters. 1651 if (isa<ImplicitParamDecl>(D)) { 1652 // The only implicit argument a block has is its literal. 1653 if (BlockInfo) { 1654 LocalDeclMap[&D] = Arg; 1655 llvm::Value *LocalAddr = nullptr; 1656 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1657 // Allocate a stack slot to let the debug info survive the RA. 1658 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1659 D.getName() + ".addr"); 1660 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1661 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1662 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1663 LocalAddr = Builder.CreateLoad(Alloc); 1664 } 1665 1666 if (CGDebugInfo *DI = getDebugInfo()) { 1667 if (CGM.getCodeGenOpts().getDebugInfo() 1668 >= CodeGenOptions::LimitedDebugInfo) { 1669 DI->setLocation(D.getLocation()); 1670 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo, 1671 LocalAddr, Builder); 1672 } 1673 } 1674 1675 return; 1676 } 1677 } 1678 1679 llvm::Value *DeclPtr; 1680 bool DoStore = false; 1681 bool IsScalar = hasScalarEvaluationKind(Ty); 1682 CharUnits Align = getContext().getDeclAlign(&D); 1683 // If we already have a pointer to the argument, reuse the input pointer. 1684 if (ArgIsPointer) { 1685 // If we have a prettier pointer type at this point, bitcast to that. 1686 unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace(); 1687 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1688 DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy, 1689 D.getName()); 1690 // Push a destructor cleanup for this parameter if the ABI requires it. 1691 // Don't push a cleanup in a thunk for a method that will also emit a 1692 // cleanup. 1693 if (!IsScalar && !CurFuncIsThunk && 1694 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1695 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1696 if (RD && RD->hasNonTrivialDestructor()) 1697 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1698 } 1699 } else { 1700 // Otherwise, create a temporary to hold the value. 1701 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1702 D.getName() + ".addr"); 1703 Alloc->setAlignment(Align.getQuantity()); 1704 DeclPtr = Alloc; 1705 DoStore = true; 1706 } 1707 1708 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1709 if (IsScalar) { 1710 Qualifiers qs = Ty.getQualifiers(); 1711 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1712 // We honor __attribute__((ns_consumed)) for types with lifetime. 1713 // For __strong, it's handled by just skipping the initial retain; 1714 // otherwise we have to balance out the initial +1 with an extra 1715 // cleanup to do the release at the end of the function. 1716 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1717 1718 // 'self' is always formally __strong, but if this is not an 1719 // init method then we don't want to retain it. 1720 if (D.isARCPseudoStrong()) { 1721 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1722 assert(&D == method->getSelfDecl()); 1723 assert(lt == Qualifiers::OCL_Strong); 1724 assert(qs.hasConst()); 1725 assert(method->getMethodFamily() != OMF_init); 1726 (void) method; 1727 lt = Qualifiers::OCL_ExplicitNone; 1728 } 1729 1730 if (lt == Qualifiers::OCL_Strong) { 1731 if (!isConsumed) { 1732 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1733 // use objc_storeStrong(&dest, value) for retaining the 1734 // object. But first, store a null into 'dest' because 1735 // objc_storeStrong attempts to release its old value. 1736 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1737 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1738 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1739 DoStore = false; 1740 } 1741 else 1742 // Don't use objc_retainBlock for block pointers, because we 1743 // don't want to Block_copy something just because we got it 1744 // as a parameter. 1745 Arg = EmitARCRetainNonBlock(Arg); 1746 } 1747 } else { 1748 // Push the cleanup for a consumed parameter. 1749 if (isConsumed) { 1750 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1751 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1752 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1753 precise); 1754 } 1755 1756 if (lt == Qualifiers::OCL_Weak) { 1757 EmitARCInitWeak(DeclPtr, Arg); 1758 DoStore = false; // The weak init is a store, no need to do two. 1759 } 1760 } 1761 1762 // Enter the cleanup scope. 1763 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1764 } 1765 } 1766 1767 // Store the initial value into the alloca. 1768 if (DoStore) 1769 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1770 1771 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1772 assert(!DMEntry && "Decl already exists in localdeclmap!"); 1773 DMEntry = DeclPtr; 1774 1775 // Emit debug info for param declaration. 1776 if (CGDebugInfo *DI = getDebugInfo()) { 1777 if (CGM.getCodeGenOpts().getDebugInfo() 1778 >= CodeGenOptions::LimitedDebugInfo) { 1779 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1780 } 1781 } 1782 1783 if (D.hasAttr<AnnotateAttr>()) 1784 EmitVarAnnotations(&D, DeclPtr); 1785 } 1786