1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32
33
EmitDecl(const Decl & D)34 void CodeGenFunction::EmitDecl(const Decl &D) {
35 switch (D.getKind()) {
36 case Decl::TranslationUnit:
37 case Decl::Namespace:
38 case Decl::UnresolvedUsingTypename:
39 case Decl::ClassTemplateSpecialization:
40 case Decl::ClassTemplatePartialSpecialization:
41 case Decl::VarTemplateSpecialization:
42 case Decl::VarTemplatePartialSpecialization:
43 case Decl::TemplateTypeParm:
44 case Decl::UnresolvedUsingValue:
45 case Decl::NonTypeTemplateParm:
46 case Decl::CXXMethod:
47 case Decl::CXXConstructor:
48 case Decl::CXXDestructor:
49 case Decl::CXXConversion:
50 case Decl::Field:
51 case Decl::MSProperty:
52 case Decl::IndirectField:
53 case Decl::ObjCIvar:
54 case Decl::ObjCAtDefsField:
55 case Decl::ParmVar:
56 case Decl::ImplicitParam:
57 case Decl::ClassTemplate:
58 case Decl::VarTemplate:
59 case Decl::FunctionTemplate:
60 case Decl::TypeAliasTemplate:
61 case Decl::TemplateTemplateParm:
62 case Decl::ObjCMethod:
63 case Decl::ObjCCategory:
64 case Decl::ObjCProtocol:
65 case Decl::ObjCInterface:
66 case Decl::ObjCCategoryImpl:
67 case Decl::ObjCImplementation:
68 case Decl::ObjCProperty:
69 case Decl::ObjCCompatibleAlias:
70 case Decl::AccessSpec:
71 case Decl::LinkageSpec:
72 case Decl::ObjCPropertyImpl:
73 case Decl::FileScopeAsm:
74 case Decl::Friend:
75 case Decl::FriendTemplate:
76 case Decl::Block:
77 case Decl::Captured:
78 case Decl::ClassScopeFunctionSpecialization:
79 case Decl::UsingShadow:
80 llvm_unreachable("Declaration should not be in declstmts!");
81 case Decl::Function: // void X();
82 case Decl::Record: // struct/union/class X;
83 case Decl::Enum: // enum X;
84 case Decl::EnumConstant: // enum ? { X = ? }
85 case Decl::CXXRecord: // struct/union/class X; [C++]
86 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
87 case Decl::Label: // __label__ x;
88 case Decl::Import:
89 case Decl::OMPThreadPrivate:
90 case Decl::Empty:
91 // None of these decls require codegen support.
92 return;
93
94 case Decl::NamespaceAlias:
95 if (CGDebugInfo *DI = getDebugInfo())
96 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
97 return;
98 case Decl::Using: // using X; [C++]
99 if (CGDebugInfo *DI = getDebugInfo())
100 DI->EmitUsingDecl(cast<UsingDecl>(D));
101 return;
102 case Decl::UsingDirective: // using namespace X; [C++]
103 if (CGDebugInfo *DI = getDebugInfo())
104 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
105 return;
106 case Decl::Var: {
107 const VarDecl &VD = cast<VarDecl>(D);
108 assert(VD.isLocalVarDecl() &&
109 "Should not see file-scope variables inside a function!");
110 return EmitVarDecl(VD);
111 }
112
113 case Decl::Typedef: // typedef int X;
114 case Decl::TypeAlias: { // using X = int; [C++0x]
115 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
116 QualType Ty = TD.getUnderlyingType();
117
118 if (Ty->isVariablyModifiedType())
119 EmitVariablyModifiedType(Ty);
120 }
121 }
122 }
123
124 /// EmitVarDecl - This method handles emission of any variable declaration
125 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
127 if (D.isStaticLocal()) {
128 llvm::GlobalValue::LinkageTypes Linkage =
129 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
130
131 // FIXME: We need to force the emission/use of a guard variable for
132 // some variables even if we can constant-evaluate them because
133 // we can't guarantee every translation unit will constant-evaluate them.
134
135 return EmitStaticVarDecl(D, Linkage);
136 }
137
138 if (D.hasExternalStorage())
139 // Don't emit it now, allow it to be emitted lazily on its first use.
140 return;
141
142 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
143 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
144
145 assert(D.hasLocalStorage());
146 return EmitAutoVarDecl(D);
147 }
148
getStaticDeclName(CodeGenModule & CGM,const VarDecl & D)149 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
150 if (CGM.getLangOpts().CPlusPlus)
151 return CGM.getMangledName(&D).str();
152
153 // If this isn't C++, we don't need a mangled name, just a pretty one.
154 assert(!D.isExternallyVisible() && "name shouldn't matter");
155 std::string ContextName;
156 const DeclContext *DC = D.getDeclContext();
157 if (const auto *FD = dyn_cast<FunctionDecl>(DC))
158 ContextName = CGM.getMangledName(FD);
159 else if (const auto *BD = dyn_cast<BlockDecl>(DC))
160 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
161 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
162 ContextName = OMD->getSelector().getAsString();
163 else
164 llvm_unreachable("Unknown context for static var decl");
165
166 ContextName += "." + D.getNameAsString();
167 return ContextName;
168 }
169
getOrCreateStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)170 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
171 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
172 // In general, we don't always emit static var decls once before we reference
173 // them. It is possible to reference them before emitting the function that
174 // contains them, and it is possible to emit the containing function multiple
175 // times.
176 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
177 return ExistingGV;
178
179 QualType Ty = D.getType();
180 assert(Ty->isConstantSizeType() && "VLAs can't be static");
181
182 // Use the label if the variable is renamed with the asm-label extension.
183 std::string Name;
184 if (D.hasAttr<AsmLabelAttr>())
185 Name = getMangledName(&D);
186 else
187 Name = getStaticDeclName(*this, D);
188
189 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
190 unsigned AddrSpace =
191 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
192
193 // Local address space cannot have an initializer.
194 llvm::Constant *Init = nullptr;
195 if (Ty.getAddressSpace() != LangAS::opencl_local)
196 Init = EmitNullConstant(Ty);
197 else
198 Init = llvm::UndefValue::get(LTy);
199
200 llvm::GlobalVariable *GV =
201 new llvm::GlobalVariable(getModule(), LTy,
202 Ty.isConstant(getContext()), Linkage,
203 Init, Name, nullptr,
204 llvm::GlobalVariable::NotThreadLocal,
205 AddrSpace);
206 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
207 setGlobalVisibility(GV, &D);
208
209 if (D.getTLSKind())
210 setTLSMode(GV, D);
211
212 if (D.isExternallyVisible()) {
213 if (D.hasAttr<DLLImportAttr>())
214 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
215 else if (D.hasAttr<DLLExportAttr>())
216 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
217 }
218
219 // Make sure the result is of the correct type.
220 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
221 llvm::Constant *Addr = GV;
222 if (AddrSpace != ExpectedAddrSpace) {
223 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
224 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
225 }
226
227 setStaticLocalDeclAddress(&D, Addr);
228
229 // Ensure that the static local gets initialized by making sure the parent
230 // function gets emitted eventually.
231 const Decl *DC = cast<Decl>(D.getDeclContext());
232
233 // We can't name blocks or captured statements directly, so try to emit their
234 // parents.
235 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
236 DC = DC->getNonClosureContext();
237 // FIXME: Ensure that global blocks get emitted.
238 if (!DC)
239 return Addr;
240 }
241
242 GlobalDecl GD;
243 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
244 GD = GlobalDecl(CD, Ctor_Base);
245 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
246 GD = GlobalDecl(DD, Dtor_Base);
247 else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
248 GD = GlobalDecl(FD);
249 else {
250 // Don't do anything for Obj-C method decls or global closures. We should
251 // never defer them.
252 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
253 }
254 if (GD.getDecl())
255 (void)GetAddrOfGlobal(GD);
256
257 return Addr;
258 }
259
260 /// hasNontrivialDestruction - Determine whether a type's destruction is
261 /// non-trivial. If so, and the variable uses static initialization, we must
262 /// register its destructor to run on exit.
hasNontrivialDestruction(QualType T)263 static bool hasNontrivialDestruction(QualType T) {
264 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
265 return RD && !RD->hasTrivialDestructor();
266 }
267
268 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
269 /// global variable that has already been created for it. If the initializer
270 /// has a different type than GV does, this may free GV and return a different
271 /// one. Otherwise it just returns GV.
272 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)273 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
274 llvm::GlobalVariable *GV) {
275 llvm::Constant *Init = CGM.EmitConstantInit(D, this);
276
277 // If constant emission failed, then this should be a C++ static
278 // initializer.
279 if (!Init) {
280 if (!getLangOpts().CPlusPlus)
281 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
282 else if (Builder.GetInsertBlock()) {
283 // Since we have a static initializer, this global variable can't
284 // be constant.
285 GV->setConstant(false);
286
287 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
288 }
289 return GV;
290 }
291
292 // The initializer may differ in type from the global. Rewrite
293 // the global to match the initializer. (We have to do this
294 // because some types, like unions, can't be completely represented
295 // in the LLVM type system.)
296 if (GV->getType()->getElementType() != Init->getType()) {
297 llvm::GlobalVariable *OldGV = GV;
298
299 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
300 OldGV->isConstant(),
301 OldGV->getLinkage(), Init, "",
302 /*InsertBefore*/ OldGV,
303 OldGV->getThreadLocalMode(),
304 CGM.getContext().getTargetAddressSpace(D.getType()));
305 GV->setVisibility(OldGV->getVisibility());
306
307 // Steal the name of the old global
308 GV->takeName(OldGV);
309
310 // Replace all uses of the old global with the new global
311 llvm::Constant *NewPtrForOldDecl =
312 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
313 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
314
315 // Erase the old global, since it is no longer used.
316 OldGV->eraseFromParent();
317 }
318
319 GV->setConstant(CGM.isTypeConstant(D.getType(), true));
320 GV->setInitializer(Init);
321
322 if (hasNontrivialDestruction(D.getType())) {
323 // We have a constant initializer, but a nontrivial destructor. We still
324 // need to perform a guarded "initialization" in order to register the
325 // destructor.
326 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
327 }
328
329 return GV;
330 }
331
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)332 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
333 llvm::GlobalValue::LinkageTypes Linkage) {
334 llvm::Value *&DMEntry = LocalDeclMap[&D];
335 assert(!DMEntry && "Decl already exists in localdeclmap!");
336
337 // Check to see if we already have a global variable for this
338 // declaration. This can happen when double-emitting function
339 // bodies, e.g. with complete and base constructors.
340 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
341
342 // Store into LocalDeclMap before generating initializer to handle
343 // circular references.
344 DMEntry = addr;
345
346 // We can't have a VLA here, but we can have a pointer to a VLA,
347 // even though that doesn't really make any sense.
348 // Make sure to evaluate VLA bounds now so that we have them for later.
349 if (D.getType()->isVariablyModifiedType())
350 EmitVariablyModifiedType(D.getType());
351
352 // Save the type in case adding the initializer forces a type change.
353 llvm::Type *expectedType = addr->getType();
354
355 llvm::GlobalVariable *var =
356 cast<llvm::GlobalVariable>(addr->stripPointerCasts());
357 // If this value has an initializer, emit it.
358 if (D.getInit())
359 var = AddInitializerToStaticVarDecl(D, var);
360
361 var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
362
363 if (D.hasAttr<AnnotateAttr>())
364 CGM.AddGlobalAnnotations(&D, var);
365
366 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
367 var->setSection(SA->getName());
368
369 if (D.hasAttr<UsedAttr>())
370 CGM.addUsedGlobal(var);
371
372 // We may have to cast the constant because of the initializer
373 // mismatch above.
374 //
375 // FIXME: It is really dangerous to store this in the map; if anyone
376 // RAUW's the GV uses of this constant will be invalid.
377 llvm::Constant *castedAddr =
378 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
379 DMEntry = castedAddr;
380 CGM.setStaticLocalDeclAddress(&D, castedAddr);
381
382 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
383
384 // Emit global variable debug descriptor for static vars.
385 CGDebugInfo *DI = getDebugInfo();
386 if (DI &&
387 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
388 DI->setLocation(D.getLocation());
389 DI->EmitGlobalVariable(var, &D);
390 }
391 }
392
393 namespace {
394 struct DestroyObject : EHScopeStack::Cleanup {
DestroyObject__anon398828f30111::DestroyObject395 DestroyObject(llvm::Value *addr, QualType type,
396 CodeGenFunction::Destroyer *destroyer,
397 bool useEHCleanupForArray)
398 : addr(addr), type(type), destroyer(destroyer),
399 useEHCleanupForArray(useEHCleanupForArray) {}
400
401 llvm::Value *addr;
402 QualType type;
403 CodeGenFunction::Destroyer *destroyer;
404 bool useEHCleanupForArray;
405
Emit__anon398828f30111::DestroyObject406 void Emit(CodeGenFunction &CGF, Flags flags) override {
407 // Don't use an EH cleanup recursively from an EH cleanup.
408 bool useEHCleanupForArray =
409 flags.isForNormalCleanup() && this->useEHCleanupForArray;
410
411 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
412 }
413 };
414
415 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anon398828f30111::DestroyNRVOVariable416 DestroyNRVOVariable(llvm::Value *addr,
417 const CXXDestructorDecl *Dtor,
418 llvm::Value *NRVOFlag)
419 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
420
421 const CXXDestructorDecl *Dtor;
422 llvm::Value *NRVOFlag;
423 llvm::Value *Loc;
424
Emit__anon398828f30111::DestroyNRVOVariable425 void Emit(CodeGenFunction &CGF, Flags flags) override {
426 // Along the exceptions path we always execute the dtor.
427 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
428
429 llvm::BasicBlock *SkipDtorBB = nullptr;
430 if (NRVO) {
431 // If we exited via NRVO, we skip the destructor call.
432 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
433 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
434 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
435 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
436 CGF.EmitBlock(RunDtorBB);
437 }
438
439 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
440 /*ForVirtualBase=*/false,
441 /*Delegating=*/false,
442 Loc);
443
444 if (NRVO) CGF.EmitBlock(SkipDtorBB);
445 }
446 };
447
448 struct CallStackRestore : EHScopeStack::Cleanup {
449 llvm::Value *Stack;
CallStackRestore__anon398828f30111::CallStackRestore450 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
Emit__anon398828f30111::CallStackRestore451 void Emit(CodeGenFunction &CGF, Flags flags) override {
452 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
453 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
454 CGF.Builder.CreateCall(F, V);
455 }
456 };
457
458 struct ExtendGCLifetime : EHScopeStack::Cleanup {
459 const VarDecl &Var;
ExtendGCLifetime__anon398828f30111::ExtendGCLifetime460 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
461
Emit__anon398828f30111::ExtendGCLifetime462 void Emit(CodeGenFunction &CGF, Flags flags) override {
463 // Compute the address of the local variable, in case it's a
464 // byref or something.
465 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
466 Var.getType(), VK_LValue, SourceLocation());
467 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
468 SourceLocation());
469 CGF.EmitExtendGCLifetime(value);
470 }
471 };
472
473 struct CallCleanupFunction : EHScopeStack::Cleanup {
474 llvm::Constant *CleanupFn;
475 const CGFunctionInfo &FnInfo;
476 const VarDecl &Var;
477
CallCleanupFunction__anon398828f30111::CallCleanupFunction478 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
479 const VarDecl *Var)
480 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
481
Emit__anon398828f30111::CallCleanupFunction482 void Emit(CodeGenFunction &CGF, Flags flags) override {
483 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
484 Var.getType(), VK_LValue, SourceLocation());
485 // Compute the address of the local variable, in case it's a byref
486 // or something.
487 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
488
489 // In some cases, the type of the function argument will be different from
490 // the type of the pointer. An example of this is
491 // void f(void* arg);
492 // __attribute__((cleanup(f))) void *g;
493 //
494 // To fix this we insert a bitcast here.
495 QualType ArgTy = FnInfo.arg_begin()->type;
496 llvm::Value *Arg =
497 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
498
499 CallArgList Args;
500 Args.add(RValue::get(Arg),
501 CGF.getContext().getPointerType(Var.getType()));
502 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
503 }
504 };
505
506 /// A cleanup to call @llvm.lifetime.end.
507 class CallLifetimeEnd : public EHScopeStack::Cleanup {
508 llvm::Value *Addr;
509 llvm::Value *Size;
510 public:
CallLifetimeEnd(llvm::Value * addr,llvm::Value * size)511 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
512 : Addr(addr), Size(size) {}
513
Emit(CodeGenFunction & CGF,Flags flags)514 void Emit(CodeGenFunction &CGF, Flags flags) override {
515 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
516 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
517 Size, castAddr)
518 ->setDoesNotThrow();
519 }
520 };
521 }
522
523 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
524 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,llvm::Value * addr,Qualifiers::ObjCLifetime lifetime)525 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
526 llvm::Value *addr,
527 Qualifiers::ObjCLifetime lifetime) {
528 switch (lifetime) {
529 case Qualifiers::OCL_None:
530 llvm_unreachable("present but none");
531
532 case Qualifiers::OCL_ExplicitNone:
533 // nothing to do
534 break;
535
536 case Qualifiers::OCL_Strong: {
537 CodeGenFunction::Destroyer *destroyer =
538 (var.hasAttr<ObjCPreciseLifetimeAttr>()
539 ? CodeGenFunction::destroyARCStrongPrecise
540 : CodeGenFunction::destroyARCStrongImprecise);
541
542 CleanupKind cleanupKind = CGF.getARCCleanupKind();
543 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
544 cleanupKind & EHCleanup);
545 break;
546 }
547 case Qualifiers::OCL_Autoreleasing:
548 // nothing to do
549 break;
550
551 case Qualifiers::OCL_Weak:
552 // __weak objects always get EH cleanups; otherwise, exceptions
553 // could cause really nasty crashes instead of mere leaks.
554 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
555 CodeGenFunction::destroyARCWeak,
556 /*useEHCleanup*/ true);
557 break;
558 }
559 }
560
isAccessedBy(const VarDecl & var,const Stmt * s)561 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
562 if (const Expr *e = dyn_cast<Expr>(s)) {
563 // Skip the most common kinds of expressions that make
564 // hierarchy-walking expensive.
565 s = e = e->IgnoreParenCasts();
566
567 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
568 return (ref->getDecl() == &var);
569 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
570 const BlockDecl *block = be->getBlockDecl();
571 for (const auto &I : block->captures()) {
572 if (I.getVariable() == &var)
573 return true;
574 }
575 }
576 }
577
578 for (Stmt::const_child_range children = s->children(); children; ++children)
579 // children might be null; as in missing decl or conditional of an if-stmt.
580 if ((*children) && isAccessedBy(var, *children))
581 return true;
582
583 return false;
584 }
585
isAccessedBy(const ValueDecl * decl,const Expr * e)586 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
587 if (!decl) return false;
588 if (!isa<VarDecl>(decl)) return false;
589 const VarDecl *var = cast<VarDecl>(decl);
590 return isAccessedBy(*var, e);
591 }
592
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)593 static void drillIntoBlockVariable(CodeGenFunction &CGF,
594 LValue &lvalue,
595 const VarDecl *var) {
596 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
597 }
598
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)599 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
600 LValue lvalue, bool capturedByInit) {
601 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
602 if (!lifetime) {
603 llvm::Value *value = EmitScalarExpr(init);
604 if (capturedByInit)
605 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
606 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
607 return;
608 }
609
610 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
611 init = DIE->getExpr();
612
613 // If we're emitting a value with lifetime, we have to do the
614 // initialization *before* we leave the cleanup scopes.
615 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
616 enterFullExpression(ewc);
617 init = ewc->getSubExpr();
618 }
619 CodeGenFunction::RunCleanupsScope Scope(*this);
620
621 // We have to maintain the illusion that the variable is
622 // zero-initialized. If the variable might be accessed in its
623 // initializer, zero-initialize before running the initializer, then
624 // actually perform the initialization with an assign.
625 bool accessedByInit = false;
626 if (lifetime != Qualifiers::OCL_ExplicitNone)
627 accessedByInit = (capturedByInit || isAccessedBy(D, init));
628 if (accessedByInit) {
629 LValue tempLV = lvalue;
630 // Drill down to the __block object if necessary.
631 if (capturedByInit) {
632 // We can use a simple GEP for this because it can't have been
633 // moved yet.
634 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
635 getByRefValueLLVMField(cast<VarDecl>(D))));
636 }
637
638 llvm::PointerType *ty
639 = cast<llvm::PointerType>(tempLV.getAddress()->getType());
640 ty = cast<llvm::PointerType>(ty->getElementType());
641
642 llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
643
644 // If __weak, we want to use a barrier under certain conditions.
645 if (lifetime == Qualifiers::OCL_Weak)
646 EmitARCInitWeak(tempLV.getAddress(), zero);
647
648 // Otherwise just do a simple store.
649 else
650 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
651 }
652
653 // Emit the initializer.
654 llvm::Value *value = nullptr;
655
656 switch (lifetime) {
657 case Qualifiers::OCL_None:
658 llvm_unreachable("present but none");
659
660 case Qualifiers::OCL_ExplicitNone:
661 // nothing to do
662 value = EmitScalarExpr(init);
663 break;
664
665 case Qualifiers::OCL_Strong: {
666 value = EmitARCRetainScalarExpr(init);
667 break;
668 }
669
670 case Qualifiers::OCL_Weak: {
671 // No way to optimize a producing initializer into this. It's not
672 // worth optimizing for, because the value will immediately
673 // disappear in the common case.
674 value = EmitScalarExpr(init);
675
676 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
677 if (accessedByInit)
678 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
679 else
680 EmitARCInitWeak(lvalue.getAddress(), value);
681 return;
682 }
683
684 case Qualifiers::OCL_Autoreleasing:
685 value = EmitARCRetainAutoreleaseScalarExpr(init);
686 break;
687 }
688
689 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
690
691 // If the variable might have been accessed by its initializer, we
692 // might have to initialize with a barrier. We have to do this for
693 // both __weak and __strong, but __weak got filtered out above.
694 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
695 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
696 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
697 EmitARCRelease(oldValue, ARCImpreciseLifetime);
698 return;
699 }
700
701 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
702 }
703
704 /// EmitScalarInit - Initialize the given lvalue with the given object.
EmitScalarInit(llvm::Value * init,LValue lvalue)705 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
706 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
707 if (!lifetime)
708 return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
709
710 switch (lifetime) {
711 case Qualifiers::OCL_None:
712 llvm_unreachable("present but none");
713
714 case Qualifiers::OCL_ExplicitNone:
715 // nothing to do
716 break;
717
718 case Qualifiers::OCL_Strong:
719 init = EmitARCRetain(lvalue.getType(), init);
720 break;
721
722 case Qualifiers::OCL_Weak:
723 // Initialize and then skip the primitive store.
724 EmitARCInitWeak(lvalue.getAddress(), init);
725 return;
726
727 case Qualifiers::OCL_Autoreleasing:
728 init = EmitARCRetainAutorelease(lvalue.getType(), init);
729 break;
730 }
731
732 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
733 }
734
735 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
736 /// non-zero parts of the specified initializer with equal or fewer than
737 /// NumStores scalar stores.
canEmitInitWithFewStoresAfterMemset(llvm::Constant * Init,unsigned & NumStores)738 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
739 unsigned &NumStores) {
740 // Zero and Undef never requires any extra stores.
741 if (isa<llvm::ConstantAggregateZero>(Init) ||
742 isa<llvm::ConstantPointerNull>(Init) ||
743 isa<llvm::UndefValue>(Init))
744 return true;
745 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
746 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
747 isa<llvm::ConstantExpr>(Init))
748 return Init->isNullValue() || NumStores--;
749
750 // See if we can emit each element.
751 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
752 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
753 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
754 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
755 return false;
756 }
757 return true;
758 }
759
760 if (llvm::ConstantDataSequential *CDS =
761 dyn_cast<llvm::ConstantDataSequential>(Init)) {
762 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
763 llvm::Constant *Elt = CDS->getElementAsConstant(i);
764 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
765 return false;
766 }
767 return true;
768 }
769
770 // Anything else is hard and scary.
771 return false;
772 }
773
774 /// emitStoresForInitAfterMemset - For inits that
775 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
776 /// stores that would be required.
emitStoresForInitAfterMemset(llvm::Constant * Init,llvm::Value * Loc,bool isVolatile,CGBuilderTy & Builder)777 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
778 bool isVolatile, CGBuilderTy &Builder) {
779 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
780 "called emitStoresForInitAfterMemset for zero or undef value.");
781
782 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
783 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
784 isa<llvm::ConstantExpr>(Init)) {
785 Builder.CreateStore(Init, Loc, isVolatile);
786 return;
787 }
788
789 if (llvm::ConstantDataSequential *CDS =
790 dyn_cast<llvm::ConstantDataSequential>(Init)) {
791 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
792 llvm::Constant *Elt = CDS->getElementAsConstant(i);
793
794 // If necessary, get a pointer to the element and emit it.
795 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
796 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
797 isVolatile, Builder);
798 }
799 return;
800 }
801
802 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
803 "Unknown value type!");
804
805 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
806 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
807
808 // If necessary, get a pointer to the element and emit it.
809 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
810 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
811 isVolatile, Builder);
812 }
813 }
814
815
816 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
817 /// plus some stores to initialize a local variable instead of using a memcpy
818 /// from a constant global. It is beneficial to use memset if the global is all
819 /// zeros, or mostly zeros and large.
shouldUseMemSetPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)820 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
821 uint64_t GlobalSize) {
822 // If a global is all zeros, always use a memset.
823 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
824
825 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
826 // do it if it will require 6 or fewer scalar stores.
827 // TODO: Should budget depends on the size? Avoiding a large global warrants
828 // plopping in more stores.
829 unsigned StoreBudget = 6;
830 uint64_t SizeLimit = 32;
831
832 return GlobalSize > SizeLimit &&
833 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
834 }
835
836 /// Should we use the LLVM lifetime intrinsics for the given local variable?
shouldUseLifetimeMarkers(CodeGenFunction & CGF,const VarDecl & D,unsigned Size)837 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
838 unsigned Size) {
839 // For now, only in optimized builds.
840 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
841 return false;
842
843 // Limit the size of marked objects to 32 bytes. We don't want to increase
844 // compile time by marking tiny objects.
845 unsigned SizeThreshold = 32;
846
847 return Size > SizeThreshold;
848 }
849
850
851 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
852 /// variable declaration with auto, register, or no storage class specifier.
853 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)854 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
855 AutoVarEmission emission = EmitAutoVarAlloca(D);
856 EmitAutoVarInit(emission);
857 EmitAutoVarCleanups(emission);
858 }
859
860 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
861 /// local variable. Does not emit initialization or destruction.
862 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)863 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
864 QualType Ty = D.getType();
865
866 AutoVarEmission emission(D);
867
868 bool isByRef = D.hasAttr<BlocksAttr>();
869 emission.IsByRef = isByRef;
870
871 CharUnits alignment = getContext().getDeclAlign(&D);
872 emission.Alignment = alignment;
873
874 // If the type is variably-modified, emit all the VLA sizes for it.
875 if (Ty->isVariablyModifiedType())
876 EmitVariablyModifiedType(Ty);
877
878 llvm::Value *DeclPtr;
879 if (Ty->isConstantSizeType()) {
880 bool NRVO = getLangOpts().ElideConstructors &&
881 D.isNRVOVariable();
882
883 // If this value is an array or struct with a statically determinable
884 // constant initializer, there are optimizations we can do.
885 //
886 // TODO: We should constant-evaluate the initializer of any variable,
887 // as long as it is initialized by a constant expression. Currently,
888 // isConstantInitializer produces wrong answers for structs with
889 // reference or bitfield members, and a few other cases, and checking
890 // for POD-ness protects us from some of these.
891 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
892 (D.isConstexpr() ||
893 ((Ty.isPODType(getContext()) ||
894 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
895 D.getInit()->isConstantInitializer(getContext(), false)))) {
896
897 // If the variable's a const type, and it's neither an NRVO
898 // candidate nor a __block variable and has no mutable members,
899 // emit it as a global instead.
900 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
901 CGM.isTypeConstant(Ty, true)) {
902 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
903
904 emission.Address = nullptr; // signal this condition to later callbacks
905 assert(emission.wasEmittedAsGlobal());
906 return emission;
907 }
908
909 // Otherwise, tell the initialization code that we're in this case.
910 emission.IsConstantAggregate = true;
911 }
912
913 // A normal fixed sized variable becomes an alloca in the entry block,
914 // unless it's an NRVO variable.
915 llvm::Type *LTy = ConvertTypeForMem(Ty);
916
917 if (NRVO) {
918 // The named return value optimization: allocate this variable in the
919 // return slot, so that we can elide the copy when returning this
920 // variable (C++0x [class.copy]p34).
921 DeclPtr = ReturnValue;
922
923 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
924 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
925 // Create a flag that is used to indicate when the NRVO was applied
926 // to this variable. Set it to zero to indicate that NRVO was not
927 // applied.
928 llvm::Value *Zero = Builder.getFalse();
929 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
930 EnsureInsertPoint();
931 Builder.CreateStore(Zero, NRVOFlag);
932
933 // Record the NRVO flag for this variable.
934 NRVOFlags[&D] = NRVOFlag;
935 emission.NRVOFlag = NRVOFlag;
936 }
937 }
938 } else {
939 if (isByRef)
940 LTy = BuildByRefType(&D);
941
942 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
943 Alloc->setName(D.getName());
944
945 CharUnits allocaAlignment = alignment;
946 if (isByRef)
947 allocaAlignment = std::max(allocaAlignment,
948 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
949 Alloc->setAlignment(allocaAlignment.getQuantity());
950 DeclPtr = Alloc;
951
952 // Emit a lifetime intrinsic if meaningful. There's no point
953 // in doing this if we don't have a valid insertion point (?).
954 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
955 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
956 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
957
958 emission.SizeForLifetimeMarkers = sizeV;
959 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
960 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
961 ->setDoesNotThrow();
962 } else {
963 assert(!emission.useLifetimeMarkers());
964 }
965 }
966 } else {
967 EnsureInsertPoint();
968
969 if (!DidCallStackSave) {
970 // Save the stack.
971 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
972
973 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
974 llvm::Value *V = Builder.CreateCall(F);
975
976 Builder.CreateStore(V, Stack);
977
978 DidCallStackSave = true;
979
980 // Push a cleanup block and restore the stack there.
981 // FIXME: in general circumstances, this should be an EH cleanup.
982 pushStackRestore(NormalCleanup, Stack);
983 }
984
985 llvm::Value *elementCount;
986 QualType elementType;
987 std::tie(elementCount, elementType) = getVLASize(Ty);
988
989 llvm::Type *llvmTy = ConvertTypeForMem(elementType);
990
991 // Allocate memory for the array.
992 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
993 vla->setAlignment(alignment.getQuantity());
994
995 DeclPtr = vla;
996 }
997
998 llvm::Value *&DMEntry = LocalDeclMap[&D];
999 assert(!DMEntry && "Decl already exists in localdeclmap!");
1000 DMEntry = DeclPtr;
1001 emission.Address = DeclPtr;
1002
1003 // Emit debug info for local var declaration.
1004 if (HaveInsertPoint())
1005 if (CGDebugInfo *DI = getDebugInfo()) {
1006 if (CGM.getCodeGenOpts().getDebugInfo()
1007 >= CodeGenOptions::LimitedDebugInfo) {
1008 DI->setLocation(D.getLocation());
1009 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
1010 }
1011 }
1012
1013 if (D.hasAttr<AnnotateAttr>())
1014 EmitVarAnnotations(&D, emission.Address);
1015
1016 return emission;
1017 }
1018
1019 /// Determines whether the given __block variable is potentially
1020 /// captured by the given expression.
isCapturedBy(const VarDecl & var,const Expr * e)1021 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1022 // Skip the most common kinds of expressions that make
1023 // hierarchy-walking expensive.
1024 e = e->IgnoreParenCasts();
1025
1026 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1027 const BlockDecl *block = be->getBlockDecl();
1028 for (const auto &I : block->captures()) {
1029 if (I.getVariable() == &var)
1030 return true;
1031 }
1032
1033 // No need to walk into the subexpressions.
1034 return false;
1035 }
1036
1037 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1038 const CompoundStmt *CS = SE->getSubStmt();
1039 for (const auto *BI : CS->body())
1040 if (const auto *E = dyn_cast<Expr>(BI)) {
1041 if (isCapturedBy(var, E))
1042 return true;
1043 }
1044 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1045 // special case declarations
1046 for (const auto *I : DS->decls()) {
1047 if (const auto *VD = dyn_cast<VarDecl>((I))) {
1048 const Expr *Init = VD->getInit();
1049 if (Init && isCapturedBy(var, Init))
1050 return true;
1051 }
1052 }
1053 }
1054 else
1055 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1056 // Later, provide code to poke into statements for capture analysis.
1057 return true;
1058 return false;
1059 }
1060
1061 for (Stmt::const_child_range children = e->children(); children; ++children)
1062 if (isCapturedBy(var, cast<Expr>(*children)))
1063 return true;
1064
1065 return false;
1066 }
1067
1068 /// \brief Determine whether the given initializer is trivial in the sense
1069 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)1070 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1071 if (!Init)
1072 return true;
1073
1074 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1075 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1076 if (Constructor->isTrivial() &&
1077 Constructor->isDefaultConstructor() &&
1078 !Construct->requiresZeroInitialization())
1079 return true;
1080
1081 return false;
1082 }
EmitAutoVarInit(const AutoVarEmission & emission)1083 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1084 assert(emission.Variable && "emission was not valid!");
1085
1086 // If this was emitted as a global constant, we're done.
1087 if (emission.wasEmittedAsGlobal()) return;
1088
1089 const VarDecl &D = *emission.Variable;
1090 ApplyDebugLocation DL(*this, D.getLocation());
1091 QualType type = D.getType();
1092
1093 // If this local has an initializer, emit it now.
1094 const Expr *Init = D.getInit();
1095
1096 // If we are at an unreachable point, we don't need to emit the initializer
1097 // unless it contains a label.
1098 if (!HaveInsertPoint()) {
1099 if (!Init || !ContainsLabel(Init)) return;
1100 EnsureInsertPoint();
1101 }
1102
1103 // Initialize the structure of a __block variable.
1104 if (emission.IsByRef)
1105 emitByrefStructureInit(emission);
1106
1107 if (isTrivialInitializer(Init))
1108 return;
1109
1110 CharUnits alignment = emission.Alignment;
1111
1112 // Check whether this is a byref variable that's potentially
1113 // captured and moved by its own initializer. If so, we'll need to
1114 // emit the initializer first, then copy into the variable.
1115 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1116
1117 llvm::Value *Loc =
1118 capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1119
1120 llvm::Constant *constant = nullptr;
1121 if (emission.IsConstantAggregate || D.isConstexpr()) {
1122 assert(!capturedByInit && "constant init contains a capturing block?");
1123 constant = CGM.EmitConstantInit(D, this);
1124 }
1125
1126 if (!constant) {
1127 LValue lv = MakeAddrLValue(Loc, type, alignment);
1128 lv.setNonGC(true);
1129 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1130 }
1131
1132 if (!emission.IsConstantAggregate) {
1133 // For simple scalar/complex initialization, store the value directly.
1134 LValue lv = MakeAddrLValue(Loc, type, alignment);
1135 lv.setNonGC(true);
1136 return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1137 }
1138
1139 // If this is a simple aggregate initialization, we can optimize it
1140 // in various ways.
1141 bool isVolatile = type.isVolatileQualified();
1142
1143 llvm::Value *SizeVal =
1144 llvm::ConstantInt::get(IntPtrTy,
1145 getContext().getTypeSizeInChars(type).getQuantity());
1146
1147 llvm::Type *BP = Int8PtrTy;
1148 if (Loc->getType() != BP)
1149 Loc = Builder.CreateBitCast(Loc, BP);
1150
1151 // If the initializer is all or mostly zeros, codegen with memset then do
1152 // a few stores afterward.
1153 if (shouldUseMemSetPlusStoresToInitialize(constant,
1154 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1155 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1156 alignment.getQuantity(), isVolatile);
1157 // Zero and undef don't require a stores.
1158 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1159 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1160 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1161 }
1162 } else {
1163 // Otherwise, create a temporary global with the initializer then
1164 // memcpy from the global to the alloca.
1165 std::string Name = getStaticDeclName(CGM, D);
1166 llvm::GlobalVariable *GV =
1167 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1168 llvm::GlobalValue::PrivateLinkage,
1169 constant, Name);
1170 GV->setAlignment(alignment.getQuantity());
1171 GV->setUnnamedAddr(true);
1172
1173 llvm::Value *SrcPtr = GV;
1174 if (SrcPtr->getType() != BP)
1175 SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1176
1177 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1178 isVolatile);
1179 }
1180 }
1181
1182 /// Emit an expression as an initializer for a variable at the given
1183 /// location. The expression is not necessarily the normal
1184 /// initializer for the variable, and the address is not necessarily
1185 /// its normal location.
1186 ///
1187 /// \param init the initializing expression
1188 /// \param var the variable to act as if we're initializing
1189 /// \param loc the address to initialize; its type is a pointer
1190 /// to the LLVM mapping of the variable's type
1191 /// \param alignment the alignment of the address
1192 /// \param capturedByInit true if the variable is a __block variable
1193 /// whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1194 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1195 LValue lvalue, bool capturedByInit) {
1196 QualType type = D->getType();
1197
1198 if (type->isReferenceType()) {
1199 RValue rvalue = EmitReferenceBindingToExpr(init);
1200 if (capturedByInit)
1201 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1202 EmitStoreThroughLValue(rvalue, lvalue, true);
1203 return;
1204 }
1205 switch (getEvaluationKind(type)) {
1206 case TEK_Scalar:
1207 EmitScalarInit(init, D, lvalue, capturedByInit);
1208 return;
1209 case TEK_Complex: {
1210 ComplexPairTy complex = EmitComplexExpr(init);
1211 if (capturedByInit)
1212 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1213 EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1214 return;
1215 }
1216 case TEK_Aggregate:
1217 if (type->isAtomicType()) {
1218 EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1219 } else {
1220 // TODO: how can we delay here if D is captured by its initializer?
1221 EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1222 AggValueSlot::IsDestructed,
1223 AggValueSlot::DoesNotNeedGCBarriers,
1224 AggValueSlot::IsNotAliased));
1225 }
1226 return;
1227 }
1228 llvm_unreachable("bad evaluation kind");
1229 }
1230
1231 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1232 void CodeGenFunction::emitAutoVarTypeCleanup(
1233 const CodeGenFunction::AutoVarEmission &emission,
1234 QualType::DestructionKind dtorKind) {
1235 assert(dtorKind != QualType::DK_none);
1236
1237 // Note that for __block variables, we want to destroy the
1238 // original stack object, not the possibly forwarded object.
1239 llvm::Value *addr = emission.getObjectAddress(*this);
1240
1241 const VarDecl *var = emission.Variable;
1242 QualType type = var->getType();
1243
1244 CleanupKind cleanupKind = NormalAndEHCleanup;
1245 CodeGenFunction::Destroyer *destroyer = nullptr;
1246
1247 switch (dtorKind) {
1248 case QualType::DK_none:
1249 llvm_unreachable("no cleanup for trivially-destructible variable");
1250
1251 case QualType::DK_cxx_destructor:
1252 // If there's an NRVO flag on the emission, we need a different
1253 // cleanup.
1254 if (emission.NRVOFlag) {
1255 assert(!type->isArrayType());
1256 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1257 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1258 emission.NRVOFlag);
1259 return;
1260 }
1261 break;
1262
1263 case QualType::DK_objc_strong_lifetime:
1264 // Suppress cleanups for pseudo-strong variables.
1265 if (var->isARCPseudoStrong()) return;
1266
1267 // Otherwise, consider whether to use an EH cleanup or not.
1268 cleanupKind = getARCCleanupKind();
1269
1270 // Use the imprecise destroyer by default.
1271 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1272 destroyer = CodeGenFunction::destroyARCStrongImprecise;
1273 break;
1274
1275 case QualType::DK_objc_weak_lifetime:
1276 break;
1277 }
1278
1279 // If we haven't chosen a more specific destroyer, use the default.
1280 if (!destroyer) destroyer = getDestroyer(dtorKind);
1281
1282 // Use an EH cleanup in array destructors iff the destructor itself
1283 // is being pushed as an EH cleanup.
1284 bool useEHCleanup = (cleanupKind & EHCleanup);
1285 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1286 useEHCleanup);
1287 }
1288
EmitAutoVarCleanups(const AutoVarEmission & emission)1289 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1290 assert(emission.Variable && "emission was not valid!");
1291
1292 // If this was emitted as a global constant, we're done.
1293 if (emission.wasEmittedAsGlobal()) return;
1294
1295 // If we don't have an insertion point, we're done. Sema prevents
1296 // us from jumping into any of these scopes anyway.
1297 if (!HaveInsertPoint()) return;
1298
1299 const VarDecl &D = *emission.Variable;
1300
1301 // Make sure we call @llvm.lifetime.end. This needs to happen
1302 // *last*, so the cleanup needs to be pushed *first*.
1303 if (emission.useLifetimeMarkers()) {
1304 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1305 emission.getAllocatedAddress(),
1306 emission.getSizeForLifetimeMarkers());
1307 }
1308
1309 // Check the type for a cleanup.
1310 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1311 emitAutoVarTypeCleanup(emission, dtorKind);
1312
1313 // In GC mode, honor objc_precise_lifetime.
1314 if (getLangOpts().getGC() != LangOptions::NonGC &&
1315 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1316 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1317 }
1318
1319 // Handle the cleanup attribute.
1320 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1321 const FunctionDecl *FD = CA->getFunctionDecl();
1322
1323 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1324 assert(F && "Could not find function!");
1325
1326 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1327 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1328 }
1329
1330 // If this is a block variable, call _Block_object_destroy
1331 // (on the unforwarded address).
1332 if (emission.IsByRef)
1333 enterByrefCleanup(emission);
1334 }
1335
1336 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)1337 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1338 switch (kind) {
1339 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1340 case QualType::DK_cxx_destructor:
1341 return destroyCXXObject;
1342 case QualType::DK_objc_strong_lifetime:
1343 return destroyARCStrongPrecise;
1344 case QualType::DK_objc_weak_lifetime:
1345 return destroyARCWeak;
1346 }
1347 llvm_unreachable("Unknown DestructionKind");
1348 }
1349
1350 /// pushEHDestroy - Push the standard destructor for the given type as
1351 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1352 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1353 llvm::Value *addr, QualType type) {
1354 assert(dtorKind && "cannot push destructor for trivial type");
1355 assert(needsEHCleanup(dtorKind));
1356
1357 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1358 }
1359
1360 /// pushDestroy - Push the standard destructor for the given type as
1361 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1362 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1363 llvm::Value *addr, QualType type) {
1364 assert(dtorKind && "cannot push destructor for trivial type");
1365
1366 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1367 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1368 cleanupKind & EHCleanup);
1369 }
1370
pushDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1371 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1372 QualType type, Destroyer *destroyer,
1373 bool useEHCleanupForArray) {
1374 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1375 destroyer, useEHCleanupForArray);
1376 }
1377
pushStackRestore(CleanupKind Kind,llvm::Value * SPMem)1378 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1379 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1380 }
1381
pushLifetimeExtendedDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1382 void CodeGenFunction::pushLifetimeExtendedDestroy(
1383 CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1384 Destroyer *destroyer, bool useEHCleanupForArray) {
1385 assert(!isInConditionalBranch() &&
1386 "performing lifetime extension from within conditional");
1387
1388 // Push an EH-only cleanup for the object now.
1389 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1390 // around in case a temporary's destructor throws an exception.
1391 if (cleanupKind & EHCleanup)
1392 EHStack.pushCleanup<DestroyObject>(
1393 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1394 destroyer, useEHCleanupForArray);
1395
1396 // Remember that we need to push a full cleanup for the object at the
1397 // end of the full-expression.
1398 pushCleanupAfterFullExpr<DestroyObject>(
1399 cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1400 }
1401
1402 /// emitDestroy - Immediately perform the destruction of the given
1403 /// object.
1404 ///
1405 /// \param addr - the address of the object; a type*
1406 /// \param type - the type of the object; if an array type, all
1407 /// objects are destroyed in reverse order
1408 /// \param destroyer - the function to call to destroy individual
1409 /// elements
1410 /// \param useEHCleanupForArray - whether an EH cleanup should be
1411 /// used when destroying array elements, in case one of the
1412 /// destructions throws an exception
emitDestroy(llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1413 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1414 Destroyer *destroyer,
1415 bool useEHCleanupForArray) {
1416 const ArrayType *arrayType = getContext().getAsArrayType(type);
1417 if (!arrayType)
1418 return destroyer(*this, addr, type);
1419
1420 llvm::Value *begin = addr;
1421 llvm::Value *length = emitArrayLength(arrayType, type, begin);
1422
1423 // Normally we have to check whether the array is zero-length.
1424 bool checkZeroLength = true;
1425
1426 // But if the array length is constant, we can suppress that.
1427 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1428 // ...and if it's constant zero, we can just skip the entire thing.
1429 if (constLength->isZero()) return;
1430 checkZeroLength = false;
1431 }
1432
1433 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1434 emitArrayDestroy(begin, end, type, destroyer,
1435 checkZeroLength, useEHCleanupForArray);
1436 }
1437
1438 /// emitArrayDestroy - Destroys all the elements of the given array,
1439 /// beginning from last to first. The array cannot be zero-length.
1440 ///
1441 /// \param begin - a type* denoting the first element of the array
1442 /// \param end - a type* denoting one past the end of the array
1443 /// \param type - the element type of the array
1444 /// \param destroyer - the function to call to destroy elements
1445 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1446 /// the remaining elements in case the destruction of a single
1447 /// element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType type,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)1448 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1449 llvm::Value *end,
1450 QualType type,
1451 Destroyer *destroyer,
1452 bool checkZeroLength,
1453 bool useEHCleanup) {
1454 assert(!type->isArrayType());
1455
1456 // The basic structure here is a do-while loop, because we don't
1457 // need to check for the zero-element case.
1458 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1459 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1460
1461 if (checkZeroLength) {
1462 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1463 "arraydestroy.isempty");
1464 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1465 }
1466
1467 // Enter the loop body, making that address the current address.
1468 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1469 EmitBlock(bodyBB);
1470 llvm::PHINode *elementPast =
1471 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1472 elementPast->addIncoming(end, entryBB);
1473
1474 // Shift the address back by one element.
1475 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1476 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1477 "arraydestroy.element");
1478
1479 if (useEHCleanup)
1480 pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1481
1482 // Perform the actual destruction there.
1483 destroyer(*this, element, type);
1484
1485 if (useEHCleanup)
1486 PopCleanupBlock();
1487
1488 // Check whether we've reached the end.
1489 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1490 Builder.CreateCondBr(done, doneBB, bodyBB);
1491 elementPast->addIncoming(element, Builder.GetInsertBlock());
1492
1493 // Done.
1494 EmitBlock(doneBB);
1495 }
1496
1497 /// Perform partial array destruction as if in an EH cleanup. Unlike
1498 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CodeGenFunction::Destroyer * destroyer)1499 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1500 llvm::Value *begin, llvm::Value *end,
1501 QualType type,
1502 CodeGenFunction::Destroyer *destroyer) {
1503 // If the element type is itself an array, drill down.
1504 unsigned arrayDepth = 0;
1505 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1506 // VLAs don't require a GEP index to walk into.
1507 if (!isa<VariableArrayType>(arrayType))
1508 arrayDepth++;
1509 type = arrayType->getElementType();
1510 }
1511
1512 if (arrayDepth) {
1513 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1514
1515 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1516 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1517 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1518 }
1519
1520 // Destroy the array. We don't ever need an EH cleanup because we
1521 // assume that we're in an EH cleanup ourselves, so a throwing
1522 // destructor causes an immediate terminate.
1523 CGF.emitArrayDestroy(begin, end, type, destroyer,
1524 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1525 }
1526
1527 namespace {
1528 /// RegularPartialArrayDestroy - a cleanup which performs a partial
1529 /// array destroy where the end pointer is regularly determined and
1530 /// does not need to be loaded from a local.
1531 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1532 llvm::Value *ArrayBegin;
1533 llvm::Value *ArrayEnd;
1534 QualType ElementType;
1535 CodeGenFunction::Destroyer *Destroyer;
1536 public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CodeGenFunction::Destroyer * destroyer)1537 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1538 QualType elementType,
1539 CodeGenFunction::Destroyer *destroyer)
1540 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1541 ElementType(elementType), Destroyer(destroyer) {}
1542
Emit(CodeGenFunction & CGF,Flags flags)1543 void Emit(CodeGenFunction &CGF, Flags flags) override {
1544 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1545 ElementType, Destroyer);
1546 }
1547 };
1548
1549 /// IrregularPartialArrayDestroy - a cleanup which performs a
1550 /// partial array destroy where the end pointer is irregularly
1551 /// determined and must be loaded from a local.
1552 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1553 llvm::Value *ArrayBegin;
1554 llvm::Value *ArrayEndPointer;
1555 QualType ElementType;
1556 CodeGenFunction::Destroyer *Destroyer;
1557 public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,CodeGenFunction::Destroyer * destroyer)1558 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1559 llvm::Value *arrayEndPointer,
1560 QualType elementType,
1561 CodeGenFunction::Destroyer *destroyer)
1562 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1563 ElementType(elementType), Destroyer(destroyer) {}
1564
Emit(CodeGenFunction & CGF,Flags flags)1565 void Emit(CodeGenFunction &CGF, Flags flags) override {
1566 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1567 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1568 ElementType, Destroyer);
1569 }
1570 };
1571 }
1572
1573 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1574 /// already-constructed elements of the given array. The cleanup
1575 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1576 ///
1577 /// \param elementType - the immediate element type of the array;
1578 /// possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,Destroyer * destroyer)1579 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1580 llvm::Value *arrayEndPointer,
1581 QualType elementType,
1582 Destroyer *destroyer) {
1583 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1584 arrayBegin, arrayEndPointer,
1585 elementType, destroyer);
1586 }
1587
1588 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1589 /// already-constructed elements of the given array. The cleanup
1590 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1591 ///
1592 /// \param elementType - the immediate element type of the array;
1593 /// possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,Destroyer * destroyer)1594 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1595 llvm::Value *arrayEnd,
1596 QualType elementType,
1597 Destroyer *destroyer) {
1598 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1599 arrayBegin, arrayEnd,
1600 elementType, destroyer);
1601 }
1602
1603 /// Lazily declare the @llvm.lifetime.start intrinsic.
getLLVMLifetimeStartFn()1604 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1605 if (LifetimeStartFn) return LifetimeStartFn;
1606 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1607 llvm::Intrinsic::lifetime_start);
1608 return LifetimeStartFn;
1609 }
1610
1611 /// Lazily declare the @llvm.lifetime.end intrinsic.
getLLVMLifetimeEndFn()1612 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1613 if (LifetimeEndFn) return LifetimeEndFn;
1614 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1615 llvm::Intrinsic::lifetime_end);
1616 return LifetimeEndFn;
1617 }
1618
1619 namespace {
1620 /// A cleanup to perform a release of an object at the end of a
1621 /// function. This is used to balance out the incoming +1 of a
1622 /// ns_consumed argument when we can't reasonably do that just by
1623 /// not doing the initial retain for a __block argument.
1624 struct ConsumeARCParameter : EHScopeStack::Cleanup {
ConsumeARCParameter__anon398828f30311::ConsumeARCParameter1625 ConsumeARCParameter(llvm::Value *param,
1626 ARCPreciseLifetime_t precise)
1627 : Param(param), Precise(precise) {}
1628
1629 llvm::Value *Param;
1630 ARCPreciseLifetime_t Precise;
1631
Emit__anon398828f30311::ConsumeARCParameter1632 void Emit(CodeGenFunction &CGF, Flags flags) override {
1633 CGF.EmitARCRelease(Param, Precise);
1634 }
1635 };
1636 }
1637
1638 /// Emit an alloca (or GlobalValue depending on target)
1639 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,llvm::Value * Arg,bool ArgIsPointer,unsigned ArgNo)1640 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1641 bool ArgIsPointer, unsigned ArgNo) {
1642 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1643 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1644 "Invalid argument to EmitParmDecl");
1645
1646 Arg->setName(D.getName());
1647
1648 QualType Ty = D.getType();
1649
1650 // Use better IR generation for certain implicit parameters.
1651 if (isa<ImplicitParamDecl>(D)) {
1652 // The only implicit argument a block has is its literal.
1653 if (BlockInfo) {
1654 LocalDeclMap[&D] = Arg;
1655 llvm::Value *LocalAddr = nullptr;
1656 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1657 // Allocate a stack slot to let the debug info survive the RA.
1658 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1659 D.getName() + ".addr");
1660 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1661 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1662 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1663 LocalAddr = Builder.CreateLoad(Alloc);
1664 }
1665
1666 if (CGDebugInfo *DI = getDebugInfo()) {
1667 if (CGM.getCodeGenOpts().getDebugInfo()
1668 >= CodeGenOptions::LimitedDebugInfo) {
1669 DI->setLocation(D.getLocation());
1670 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo,
1671 LocalAddr, Builder);
1672 }
1673 }
1674
1675 return;
1676 }
1677 }
1678
1679 llvm::Value *DeclPtr;
1680 bool DoStore = false;
1681 bool IsScalar = hasScalarEvaluationKind(Ty);
1682 CharUnits Align = getContext().getDeclAlign(&D);
1683 // If we already have a pointer to the argument, reuse the input pointer.
1684 if (ArgIsPointer) {
1685 // If we have a prettier pointer type at this point, bitcast to that.
1686 unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1687 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1688 DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1689 D.getName());
1690 // Push a destructor cleanup for this parameter if the ABI requires it.
1691 // Don't push a cleanup in a thunk for a method that will also emit a
1692 // cleanup.
1693 if (!IsScalar && !CurFuncIsThunk &&
1694 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1695 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1696 if (RD && RD->hasNonTrivialDestructor())
1697 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1698 }
1699 } else {
1700 // Otherwise, create a temporary to hold the value.
1701 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1702 D.getName() + ".addr");
1703 Alloc->setAlignment(Align.getQuantity());
1704 DeclPtr = Alloc;
1705 DoStore = true;
1706 }
1707
1708 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1709 if (IsScalar) {
1710 Qualifiers qs = Ty.getQualifiers();
1711 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1712 // We honor __attribute__((ns_consumed)) for types with lifetime.
1713 // For __strong, it's handled by just skipping the initial retain;
1714 // otherwise we have to balance out the initial +1 with an extra
1715 // cleanup to do the release at the end of the function.
1716 bool isConsumed = D.hasAttr<NSConsumedAttr>();
1717
1718 // 'self' is always formally __strong, but if this is not an
1719 // init method then we don't want to retain it.
1720 if (D.isARCPseudoStrong()) {
1721 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1722 assert(&D == method->getSelfDecl());
1723 assert(lt == Qualifiers::OCL_Strong);
1724 assert(qs.hasConst());
1725 assert(method->getMethodFamily() != OMF_init);
1726 (void) method;
1727 lt = Qualifiers::OCL_ExplicitNone;
1728 }
1729
1730 if (lt == Qualifiers::OCL_Strong) {
1731 if (!isConsumed) {
1732 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1733 // use objc_storeStrong(&dest, value) for retaining the
1734 // object. But first, store a null into 'dest' because
1735 // objc_storeStrong attempts to release its old value.
1736 llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1737 EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1738 EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1739 DoStore = false;
1740 }
1741 else
1742 // Don't use objc_retainBlock for block pointers, because we
1743 // don't want to Block_copy something just because we got it
1744 // as a parameter.
1745 Arg = EmitARCRetainNonBlock(Arg);
1746 }
1747 } else {
1748 // Push the cleanup for a consumed parameter.
1749 if (isConsumed) {
1750 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1751 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1752 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1753 precise);
1754 }
1755
1756 if (lt == Qualifiers::OCL_Weak) {
1757 EmitARCInitWeak(DeclPtr, Arg);
1758 DoStore = false; // The weak init is a store, no need to do two.
1759 }
1760 }
1761
1762 // Enter the cleanup scope.
1763 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1764 }
1765 }
1766
1767 // Store the initial value into the alloca.
1768 if (DoStore)
1769 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1770
1771 llvm::Value *&DMEntry = LocalDeclMap[&D];
1772 assert(!DMEntry && "Decl already exists in localdeclmap!");
1773 DMEntry = DeclPtr;
1774
1775 // Emit debug info for param declaration.
1776 if (CGDebugInfo *DI = getDebugInfo()) {
1777 if (CGM.getCodeGenOpts().getDebugInfo()
1778 >= CodeGenOptions::LimitedDebugInfo) {
1779 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1780 }
1781 }
1782
1783 if (D.hasAttr<AnnotateAttr>())
1784 EmitVarAnnotations(&D, DeclPtr);
1785 }
1786