1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 static CharUnits 32 ComputeNonVirtualBaseClassOffset(ASTContext &Context, 33 const CXXRecordDecl *DerivedClass, 34 CastExpr::path_const_iterator Start, 35 CastExpr::path_const_iterator End) { 36 CharUnits Offset = CharUnits::Zero(); 37 38 const CXXRecordDecl *RD = DerivedClass; 39 40 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 41 const CXXBaseSpecifier *Base = *I; 42 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 43 44 // Get the layout. 45 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 46 47 const CXXRecordDecl *BaseDecl = 48 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 49 50 // Add the offset. 51 Offset += Layout.getBaseClassOffset(BaseDecl); 52 53 RD = BaseDecl; 54 } 55 56 return Offset; 57 } 58 59 llvm::Constant * 60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 61 CastExpr::path_const_iterator PathBegin, 62 CastExpr::path_const_iterator PathEnd) { 63 assert(PathBegin != PathEnd && "Base path should not be empty!"); 64 65 CharUnits Offset = 66 ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl, 67 PathBegin, PathEnd); 68 if (Offset.isZero()) 69 return nullptr; 70 71 llvm::Type *PtrDiffTy = 72 Types.ConvertType(getContext().getPointerDiffType()); 73 74 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 75 } 76 77 /// Gets the address of a direct base class within a complete object. 78 /// This should only be used for (1) non-virtual bases or (2) virtual bases 79 /// when the type is known to be complete (e.g. in complete destructors). 80 /// 81 /// The object pointed to by 'This' is assumed to be non-null. 82 llvm::Value * 83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This, 84 const CXXRecordDecl *Derived, 85 const CXXRecordDecl *Base, 86 bool BaseIsVirtual) { 87 // 'this' must be a pointer (in some address space) to Derived. 88 assert(This->getType()->isPointerTy() && 89 cast<llvm::PointerType>(This->getType())->getElementType() 90 == ConvertType(Derived)); 91 92 // Compute the offset of the virtual base. 93 CharUnits Offset; 94 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 95 if (BaseIsVirtual) 96 Offset = Layout.getVBaseClassOffset(Base); 97 else 98 Offset = Layout.getBaseClassOffset(Base); 99 100 // Shift and cast down to the base type. 101 // TODO: for complete types, this should be possible with a GEP. 102 llvm::Value *V = This; 103 if (Offset.isPositive()) { 104 V = Builder.CreateBitCast(V, Int8PtrTy); 105 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity()); 106 } 107 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo()); 108 109 return V; 110 } 111 112 static llvm::Value * 113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr, 114 CharUnits nonVirtualOffset, 115 llvm::Value *virtualOffset) { 116 // Assert that we have something to do. 117 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 118 119 // Compute the offset from the static and dynamic components. 120 llvm::Value *baseOffset; 121 if (!nonVirtualOffset.isZero()) { 122 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 123 nonVirtualOffset.getQuantity()); 124 if (virtualOffset) { 125 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 126 } 127 } else { 128 baseOffset = virtualOffset; 129 } 130 131 // Apply the base offset. 132 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 133 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 134 return ptr; 135 } 136 137 llvm::Value *CodeGenFunction::GetAddressOfBaseClass( 138 llvm::Value *Value, const CXXRecordDecl *Derived, 139 CastExpr::path_const_iterator PathBegin, 140 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 141 SourceLocation Loc) { 142 assert(PathBegin != PathEnd && "Base path should not be empty!"); 143 144 CastExpr::path_const_iterator Start = PathBegin; 145 const CXXRecordDecl *VBase = nullptr; 146 147 // Sema has done some convenient canonicalization here: if the 148 // access path involved any virtual steps, the conversion path will 149 // *start* with a step down to the correct virtual base subobject, 150 // and hence will not require any further steps. 151 if ((*Start)->isVirtual()) { 152 VBase = 153 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 154 ++Start; 155 } 156 157 // Compute the static offset of the ultimate destination within its 158 // allocating subobject (the virtual base, if there is one, or else 159 // the "complete" object that we see). 160 CharUnits NonVirtualOffset = 161 ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived, 162 Start, PathEnd); 163 164 // If there's a virtual step, we can sometimes "devirtualize" it. 165 // For now, that's limited to when the derived type is final. 166 // TODO: "devirtualize" this for accesses to known-complete objects. 167 if (VBase && Derived->hasAttr<FinalAttr>()) { 168 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 169 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 170 NonVirtualOffset += vBaseOffset; 171 VBase = nullptr; // we no longer have a virtual step 172 } 173 174 // Get the base pointer type. 175 llvm::Type *BasePtrTy = 176 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 177 178 QualType DerivedTy = getContext().getRecordType(Derived); 179 CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy); 180 181 // If the static offset is zero and we don't have a virtual step, 182 // just do a bitcast; null checks are unnecessary. 183 if (NonVirtualOffset.isZero() && !VBase) { 184 if (sanitizePerformTypeCheck()) { 185 EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign, 186 !NullCheckValue); 187 } 188 return Builder.CreateBitCast(Value, BasePtrTy); 189 } 190 191 llvm::BasicBlock *origBB = nullptr; 192 llvm::BasicBlock *endBB = nullptr; 193 194 // Skip over the offset (and the vtable load) if we're supposed to 195 // null-check the pointer. 196 if (NullCheckValue) { 197 origBB = Builder.GetInsertBlock(); 198 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 199 endBB = createBasicBlock("cast.end"); 200 201 llvm::Value *isNull = Builder.CreateIsNull(Value); 202 Builder.CreateCondBr(isNull, endBB, notNullBB); 203 EmitBlock(notNullBB); 204 } 205 206 if (sanitizePerformTypeCheck()) { 207 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value, 208 DerivedTy, DerivedAlign, true); 209 } 210 211 // Compute the virtual offset. 212 llvm::Value *VirtualOffset = nullptr; 213 if (VBase) { 214 VirtualOffset = 215 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 216 } 217 218 // Apply both offsets. 219 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, 220 NonVirtualOffset, 221 VirtualOffset); 222 223 // Cast to the destination type. 224 Value = Builder.CreateBitCast(Value, BasePtrTy); 225 226 // Build a phi if we needed a null check. 227 if (NullCheckValue) { 228 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 229 Builder.CreateBr(endBB); 230 EmitBlock(endBB); 231 232 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 233 PHI->addIncoming(Value, notNullBB); 234 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 235 Value = PHI; 236 } 237 238 return Value; 239 } 240 241 llvm::Value * 242 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value, 243 const CXXRecordDecl *Derived, 244 CastExpr::path_const_iterator PathBegin, 245 CastExpr::path_const_iterator PathEnd, 246 bool NullCheckValue) { 247 assert(PathBegin != PathEnd && "Base path should not be empty!"); 248 249 QualType DerivedTy = 250 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 251 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 252 253 llvm::Value *NonVirtualOffset = 254 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 255 256 if (!NonVirtualOffset) { 257 // No offset, we can just cast back. 258 return Builder.CreateBitCast(Value, DerivedPtrTy); 259 } 260 261 llvm::BasicBlock *CastNull = nullptr; 262 llvm::BasicBlock *CastNotNull = nullptr; 263 llvm::BasicBlock *CastEnd = nullptr; 264 265 if (NullCheckValue) { 266 CastNull = createBasicBlock("cast.null"); 267 CastNotNull = createBasicBlock("cast.notnull"); 268 CastEnd = createBasicBlock("cast.end"); 269 270 llvm::Value *IsNull = Builder.CreateIsNull(Value); 271 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 272 EmitBlock(CastNotNull); 273 } 274 275 // Apply the offset. 276 Value = Builder.CreateBitCast(Value, Int8PtrTy); 277 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 278 "sub.ptr"); 279 280 // Just cast. 281 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 282 283 if (NullCheckValue) { 284 Builder.CreateBr(CastEnd); 285 EmitBlock(CastNull); 286 Builder.CreateBr(CastEnd); 287 EmitBlock(CastEnd); 288 289 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 290 PHI->addIncoming(Value, CastNotNull); 291 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), 292 CastNull); 293 Value = PHI; 294 } 295 296 return Value; 297 } 298 299 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 300 bool ForVirtualBase, 301 bool Delegating) { 302 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 303 // This constructor/destructor does not need a VTT parameter. 304 return nullptr; 305 } 306 307 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 308 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 309 310 llvm::Value *VTT; 311 312 uint64_t SubVTTIndex; 313 314 if (Delegating) { 315 // If this is a delegating constructor call, just load the VTT. 316 return LoadCXXVTT(); 317 } else if (RD == Base) { 318 // If the record matches the base, this is the complete ctor/dtor 319 // variant calling the base variant in a class with virtual bases. 320 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 321 "doing no-op VTT offset in base dtor/ctor?"); 322 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 323 SubVTTIndex = 0; 324 } else { 325 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 326 CharUnits BaseOffset = ForVirtualBase ? 327 Layout.getVBaseClassOffset(Base) : 328 Layout.getBaseClassOffset(Base); 329 330 SubVTTIndex = 331 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 332 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 333 } 334 335 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 336 // A VTT parameter was passed to the constructor, use it. 337 VTT = LoadCXXVTT(); 338 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 339 } else { 340 // We're the complete constructor, so get the VTT by name. 341 VTT = CGM.getVTables().GetAddrOfVTT(RD); 342 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 343 } 344 345 return VTT; 346 } 347 348 namespace { 349 /// Call the destructor for a direct base class. 350 struct CallBaseDtor : EHScopeStack::Cleanup { 351 const CXXRecordDecl *BaseClass; 352 bool BaseIsVirtual; 353 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 354 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 355 356 void Emit(CodeGenFunction &CGF, Flags flags) override { 357 const CXXRecordDecl *DerivedClass = 358 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 359 360 const CXXDestructorDecl *D = BaseClass->getDestructor(); 361 llvm::Value *Addr = 362 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(), 363 DerivedClass, BaseClass, 364 BaseIsVirtual); 365 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 366 /*Delegating=*/false, Addr); 367 } 368 }; 369 370 /// A visitor which checks whether an initializer uses 'this' in a 371 /// way which requires the vtable to be properly set. 372 struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> { 373 typedef EvaluatedExprVisitor<DynamicThisUseChecker> super; 374 375 bool UsesThis; 376 377 DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {} 378 379 // Black-list all explicit and implicit references to 'this'. 380 // 381 // Do we need to worry about external references to 'this' derived 382 // from arbitrary code? If so, then anything which runs arbitrary 383 // external code might potentially access the vtable. 384 void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; } 385 }; 386 } 387 388 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 389 DynamicThisUseChecker Checker(C); 390 Checker.Visit(const_cast<Expr*>(Init)); 391 return Checker.UsesThis; 392 } 393 394 static void EmitBaseInitializer(CodeGenFunction &CGF, 395 const CXXRecordDecl *ClassDecl, 396 CXXCtorInitializer *BaseInit, 397 CXXCtorType CtorType) { 398 assert(BaseInit->isBaseInitializer() && 399 "Must have base initializer!"); 400 401 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 402 403 const Type *BaseType = BaseInit->getBaseClass(); 404 CXXRecordDecl *BaseClassDecl = 405 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 406 407 bool isBaseVirtual = BaseInit->isBaseVirtual(); 408 409 // The base constructor doesn't construct virtual bases. 410 if (CtorType == Ctor_Base && isBaseVirtual) 411 return; 412 413 // If the initializer for the base (other than the constructor 414 // itself) accesses 'this' in any way, we need to initialize the 415 // vtables. 416 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 417 CGF.InitializeVTablePointers(ClassDecl); 418 419 // We can pretend to be a complete class because it only matters for 420 // virtual bases, and we only do virtual bases for complete ctors. 421 llvm::Value *V = 422 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 423 BaseClassDecl, 424 isBaseVirtual); 425 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType); 426 AggValueSlot AggSlot = 427 AggValueSlot::forAddr(V, Alignment, Qualifiers(), 428 AggValueSlot::IsDestructed, 429 AggValueSlot::DoesNotNeedGCBarriers, 430 AggValueSlot::IsNotAliased); 431 432 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 433 434 if (CGF.CGM.getLangOpts().Exceptions && 435 !BaseClassDecl->hasTrivialDestructor()) 436 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 437 isBaseVirtual); 438 } 439 440 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 441 LValue LHS, 442 Expr *Init, 443 llvm::Value *ArrayIndexVar, 444 QualType T, 445 ArrayRef<VarDecl *> ArrayIndexes, 446 unsigned Index) { 447 if (Index == ArrayIndexes.size()) { 448 LValue LV = LHS; 449 450 if (ArrayIndexVar) { 451 // If we have an array index variable, load it and use it as an offset. 452 // Then, increment the value. 453 llvm::Value *Dest = LHS.getAddress(); 454 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 455 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 456 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 457 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 458 CGF.Builder.CreateStore(Next, ArrayIndexVar); 459 460 // Update the LValue. 461 LV.setAddress(Dest); 462 CharUnits Align = CGF.getContext().getTypeAlignInChars(T); 463 LV.setAlignment(std::min(Align, LV.getAlignment())); 464 } 465 466 switch (CGF.getEvaluationKind(T)) { 467 case TEK_Scalar: 468 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 469 break; 470 case TEK_Complex: 471 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 472 break; 473 case TEK_Aggregate: { 474 AggValueSlot Slot = 475 AggValueSlot::forLValue(LV, 476 AggValueSlot::IsDestructed, 477 AggValueSlot::DoesNotNeedGCBarriers, 478 AggValueSlot::IsNotAliased); 479 480 CGF.EmitAggExpr(Init, Slot); 481 break; 482 } 483 } 484 485 return; 486 } 487 488 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 489 assert(Array && "Array initialization without the array type?"); 490 llvm::Value *IndexVar 491 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 492 assert(IndexVar && "Array index variable not loaded"); 493 494 // Initialize this index variable to zero. 495 llvm::Value* Zero 496 = llvm::Constant::getNullValue( 497 CGF.ConvertType(CGF.getContext().getSizeType())); 498 CGF.Builder.CreateStore(Zero, IndexVar); 499 500 // Start the loop with a block that tests the condition. 501 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 502 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 503 504 CGF.EmitBlock(CondBlock); 505 506 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 507 // Generate: if (loop-index < number-of-elements) fall to the loop body, 508 // otherwise, go to the block after the for-loop. 509 uint64_t NumElements = Array->getSize().getZExtValue(); 510 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 511 llvm::Value *NumElementsPtr = 512 llvm::ConstantInt::get(Counter->getType(), NumElements); 513 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 514 "isless"); 515 516 // If the condition is true, execute the body. 517 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 518 519 CGF.EmitBlock(ForBody); 520 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 521 522 // Inside the loop body recurse to emit the inner loop or, eventually, the 523 // constructor call. 524 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 525 Array->getElementType(), ArrayIndexes, Index + 1); 526 527 CGF.EmitBlock(ContinueBlock); 528 529 // Emit the increment of the loop counter. 530 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 531 Counter = CGF.Builder.CreateLoad(IndexVar); 532 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 533 CGF.Builder.CreateStore(NextVal, IndexVar); 534 535 // Finally, branch back up to the condition for the next iteration. 536 CGF.EmitBranch(CondBlock); 537 538 // Emit the fall-through block. 539 CGF.EmitBlock(AfterFor, true); 540 } 541 542 static void EmitMemberInitializer(CodeGenFunction &CGF, 543 const CXXRecordDecl *ClassDecl, 544 CXXCtorInitializer *MemberInit, 545 const CXXConstructorDecl *Constructor, 546 FunctionArgList &Args) { 547 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 548 assert(MemberInit->isAnyMemberInitializer() && 549 "Must have member initializer!"); 550 assert(MemberInit->getInit() && "Must have initializer!"); 551 552 // non-static data member initializers. 553 FieldDecl *Field = MemberInit->getAnyMember(); 554 QualType FieldType = Field->getType(); 555 556 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 557 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 558 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 559 560 if (MemberInit->isIndirectMemberInitializer()) { 561 // If we are initializing an anonymous union field, drill down to 562 // the field. 563 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 564 for (const auto *I : IndirectField->chain()) 565 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 566 FieldType = MemberInit->getIndirectMember()->getAnonField()->getType(); 567 } else { 568 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 569 } 570 571 // Special case: if we are in a copy or move constructor, and we are copying 572 // an array of PODs or classes with trivial copy constructors, ignore the 573 // AST and perform the copy we know is equivalent. 574 // FIXME: This is hacky at best... if we had a bit more explicit information 575 // in the AST, we could generalize it more easily. 576 const ConstantArrayType *Array 577 = CGF.getContext().getAsConstantArrayType(FieldType); 578 if (Array && Constructor->isDefaulted() && 579 Constructor->isCopyOrMoveConstructor()) { 580 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 581 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 582 if (BaseElementTy.isPODType(CGF.getContext()) || 583 (CE && CE->getConstructor()->isTrivial())) { 584 unsigned SrcArgIndex = 585 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 586 llvm::Value *SrcPtr 587 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 588 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 589 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 590 591 // Copy the aggregate. 592 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 593 LHS.isVolatileQualified()); 594 return; 595 } 596 } 597 598 ArrayRef<VarDecl *> ArrayIndexes; 599 if (MemberInit->getNumArrayIndices()) 600 ArrayIndexes = MemberInit->getArrayIndexes(); 601 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 602 } 603 604 void CodeGenFunction::EmitInitializerForField( 605 FieldDecl *Field, LValue LHS, Expr *Init, 606 ArrayRef<VarDecl *> ArrayIndexes) { 607 QualType FieldType = Field->getType(); 608 switch (getEvaluationKind(FieldType)) { 609 case TEK_Scalar: 610 if (LHS.isSimple()) { 611 EmitExprAsInit(Init, Field, LHS, false); 612 } else { 613 RValue RHS = RValue::get(EmitScalarExpr(Init)); 614 EmitStoreThroughLValue(RHS, LHS); 615 } 616 break; 617 case TEK_Complex: 618 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 619 break; 620 case TEK_Aggregate: { 621 llvm::Value *ArrayIndexVar = nullptr; 622 if (ArrayIndexes.size()) { 623 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 624 625 // The LHS is a pointer to the first object we'll be constructing, as 626 // a flat array. 627 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 628 llvm::Type *BasePtr = ConvertType(BaseElementTy); 629 BasePtr = llvm::PointerType::getUnqual(BasePtr); 630 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), 631 BasePtr); 632 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 633 634 // Create an array index that will be used to walk over all of the 635 // objects we're constructing. 636 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index"); 637 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 638 Builder.CreateStore(Zero, ArrayIndexVar); 639 640 641 // Emit the block variables for the array indices, if any. 642 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 643 EmitAutoVarDecl(*ArrayIndexes[I]); 644 } 645 646 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 647 ArrayIndexes, 0); 648 } 649 } 650 651 // Ensure that we destroy this object if an exception is thrown 652 // later in the constructor. 653 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 654 if (needsEHCleanup(dtorKind)) 655 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 656 } 657 658 /// Checks whether the given constructor is a valid subject for the 659 /// complete-to-base constructor delegation optimization, i.e. 660 /// emitting the complete constructor as a simple call to the base 661 /// constructor. 662 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 663 664 // Currently we disable the optimization for classes with virtual 665 // bases because (1) the addresses of parameter variables need to be 666 // consistent across all initializers but (2) the delegate function 667 // call necessarily creates a second copy of the parameter variable. 668 // 669 // The limiting example (purely theoretical AFAIK): 670 // struct A { A(int &c) { c++; } }; 671 // struct B : virtual A { 672 // B(int count) : A(count) { printf("%d\n", count); } 673 // }; 674 // ...although even this example could in principle be emitted as a 675 // delegation since the address of the parameter doesn't escape. 676 if (Ctor->getParent()->getNumVBases()) { 677 // TODO: white-list trivial vbase initializers. This case wouldn't 678 // be subject to the restrictions below. 679 680 // TODO: white-list cases where: 681 // - there are no non-reference parameters to the constructor 682 // - the initializers don't access any non-reference parameters 683 // - the initializers don't take the address of non-reference 684 // parameters 685 // - etc. 686 // If we ever add any of the above cases, remember that: 687 // - function-try-blocks will always blacklist this optimization 688 // - we need to perform the constructor prologue and cleanup in 689 // EmitConstructorBody. 690 691 return false; 692 } 693 694 // We also disable the optimization for variadic functions because 695 // it's impossible to "re-pass" varargs. 696 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 697 return false; 698 699 // FIXME: Decide if we can do a delegation of a delegating constructor. 700 if (Ctor->isDelegatingConstructor()) 701 return false; 702 703 return true; 704 } 705 706 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 707 // to poison the extra field paddings inserted under 708 // -fsanitize-address-field-padding=1|2. 709 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 710 ASTContext &Context = getContext(); 711 const CXXRecordDecl *ClassDecl = 712 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 713 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 714 if (!ClassDecl->mayInsertExtraPadding()) return; 715 716 struct SizeAndOffset { 717 uint64_t Size; 718 uint64_t Offset; 719 }; 720 721 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 722 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 723 724 // Populate sizes and offsets of fields. 725 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 726 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 727 SSV[i].Offset = 728 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 729 730 size_t NumFields = 0; 731 for (const auto *Field : ClassDecl->fields()) { 732 const FieldDecl *D = Field; 733 std::pair<CharUnits, CharUnits> FieldInfo = 734 Context.getTypeInfoInChars(D->getType()); 735 CharUnits FieldSize = FieldInfo.first; 736 assert(NumFields < SSV.size()); 737 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 738 NumFields++; 739 } 740 assert(NumFields == SSV.size()); 741 if (SSV.size() <= 1) return; 742 743 // We will insert calls to __asan_* run-time functions. 744 // LLVM AddressSanitizer pass may decide to inline them later. 745 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 746 llvm::FunctionType *FTy = 747 llvm::FunctionType::get(CGM.VoidTy, Args, false); 748 llvm::Constant *F = CGM.CreateRuntimeFunction( 749 FTy, Prologue ? "__asan_poison_intra_object_redzone" 750 : "__asan_unpoison_intra_object_redzone"); 751 752 llvm::Value *ThisPtr = LoadCXXThis(); 753 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 754 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 755 // For each field check if it has sufficient padding, 756 // if so (un)poison it with a call. 757 for (size_t i = 0; i < SSV.size(); i++) { 758 uint64_t AsanAlignment = 8; 759 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 760 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 761 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 762 if (PoisonSize < AsanAlignment || !SSV[i].Size || 763 (NextField % AsanAlignment) != 0) 764 continue; 765 Builder.CreateCall2( 766 F, Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 767 Builder.getIntN(PtrSize, PoisonSize)); 768 } 769 } 770 771 /// EmitConstructorBody - Emits the body of the current constructor. 772 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 773 EmitAsanPrologueOrEpilogue(true); 774 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 775 CXXCtorType CtorType = CurGD.getCtorType(); 776 777 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 778 CtorType == Ctor_Complete) && 779 "can only generate complete ctor for this ABI"); 780 781 // Before we go any further, try the complete->base constructor 782 // delegation optimization. 783 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 784 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 785 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 786 return; 787 } 788 789 const FunctionDecl *Definition = 0; 790 Stmt *Body = Ctor->getBody(Definition); 791 assert(Definition == Ctor && "emitting wrong constructor body"); 792 793 // Enter the function-try-block before the constructor prologue if 794 // applicable. 795 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 796 if (IsTryBody) 797 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 798 799 RegionCounter Cnt = getPGORegionCounter(Body); 800 Cnt.beginRegion(Builder); 801 802 RunCleanupsScope RunCleanups(*this); 803 804 // TODO: in restricted cases, we can emit the vbase initializers of 805 // a complete ctor and then delegate to the base ctor. 806 807 // Emit the constructor prologue, i.e. the base and member 808 // initializers. 809 EmitCtorPrologue(Ctor, CtorType, Args); 810 811 // Emit the body of the statement. 812 if (IsTryBody) 813 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 814 else if (Body) 815 EmitStmt(Body); 816 817 // Emit any cleanup blocks associated with the member or base 818 // initializers, which includes (along the exceptional path) the 819 // destructors for those members and bases that were fully 820 // constructed. 821 RunCleanups.ForceCleanup(); 822 823 if (IsTryBody) 824 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 825 } 826 827 namespace { 828 /// RAII object to indicate that codegen is copying the value representation 829 /// instead of the object representation. Useful when copying a struct or 830 /// class which has uninitialized members and we're only performing 831 /// lvalue-to-rvalue conversion on the object but not its members. 832 class CopyingValueRepresentation { 833 public: 834 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 835 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 836 CGF.SanOpts.set(SanitizerKind::Bool, false); 837 CGF.SanOpts.set(SanitizerKind::Enum, false); 838 } 839 ~CopyingValueRepresentation() { 840 CGF.SanOpts = OldSanOpts; 841 } 842 private: 843 CodeGenFunction &CGF; 844 SanitizerSet OldSanOpts; 845 }; 846 } 847 848 namespace { 849 class FieldMemcpyizer { 850 public: 851 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 852 const VarDecl *SrcRec) 853 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 854 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 855 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 856 LastFieldOffset(0), LastAddedFieldIndex(0) {} 857 858 bool isMemcpyableField(FieldDecl *F) const { 859 // Never memcpy fields when we are adding poisoned paddings. 860 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 861 return false; 862 Qualifiers Qual = F->getType().getQualifiers(); 863 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 864 return false; 865 return true; 866 } 867 868 void addMemcpyableField(FieldDecl *F) { 869 if (!FirstField) 870 addInitialField(F); 871 else 872 addNextField(F); 873 } 874 875 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 876 unsigned LastFieldSize = 877 LastField->isBitField() ? 878 LastField->getBitWidthValue(CGF.getContext()) : 879 CGF.getContext().getTypeSize(LastField->getType()); 880 uint64_t MemcpySizeBits = 881 LastFieldOffset + LastFieldSize - FirstByteOffset + 882 CGF.getContext().getCharWidth() - 1; 883 CharUnits MemcpySize = 884 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 885 return MemcpySize; 886 } 887 888 void emitMemcpy() { 889 // Give the subclass a chance to bail out if it feels the memcpy isn't 890 // worth it (e.g. Hasn't aggregated enough data). 891 if (!FirstField) { 892 return; 893 } 894 895 CharUnits Alignment; 896 897 uint64_t FirstByteOffset; 898 if (FirstField->isBitField()) { 899 const CGRecordLayout &RL = 900 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 901 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 902 Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment); 903 // FirstFieldOffset is not appropriate for bitfields, 904 // it won't tell us what the storage offset should be and thus might not 905 // be properly aligned. 906 // 907 // Instead calculate the storage offset using the offset of the field in 908 // the struct type. 909 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 910 FirstByteOffset = 911 DL.getStructLayout(RL.getLLVMType()) 912 ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField)); 913 } else { 914 Alignment = CGF.getContext().getDeclAlign(FirstField); 915 FirstByteOffset = FirstFieldOffset; 916 } 917 918 assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) % 919 Alignment) == 0 && "Bad field alignment."); 920 921 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 922 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 923 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 924 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 925 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 926 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 927 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 928 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 929 930 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(), 931 Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(), 932 MemcpySize, Alignment); 933 reset(); 934 } 935 936 void reset() { 937 FirstField = nullptr; 938 } 939 940 protected: 941 CodeGenFunction &CGF; 942 const CXXRecordDecl *ClassDecl; 943 944 private: 945 946 void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr, 947 CharUnits Size, CharUnits Alignment) { 948 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 949 llvm::Type *DBP = 950 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 951 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 952 953 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 954 llvm::Type *SBP = 955 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 956 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 957 958 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(), 959 Alignment.getQuantity()); 960 } 961 962 void addInitialField(FieldDecl *F) { 963 FirstField = F; 964 LastField = F; 965 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 966 LastFieldOffset = FirstFieldOffset; 967 LastAddedFieldIndex = F->getFieldIndex(); 968 return; 969 } 970 971 void addNextField(FieldDecl *F) { 972 // For the most part, the following invariant will hold: 973 // F->getFieldIndex() == LastAddedFieldIndex + 1 974 // The one exception is that Sema won't add a copy-initializer for an 975 // unnamed bitfield, which will show up here as a gap in the sequence. 976 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 977 "Cannot aggregate fields out of order."); 978 LastAddedFieldIndex = F->getFieldIndex(); 979 980 // The 'first' and 'last' fields are chosen by offset, rather than field 981 // index. This allows the code to support bitfields, as well as regular 982 // fields. 983 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 984 if (FOffset < FirstFieldOffset) { 985 FirstField = F; 986 FirstFieldOffset = FOffset; 987 } else if (FOffset > LastFieldOffset) { 988 LastField = F; 989 LastFieldOffset = FOffset; 990 } 991 } 992 993 const VarDecl *SrcRec; 994 const ASTRecordLayout &RecLayout; 995 FieldDecl *FirstField; 996 FieldDecl *LastField; 997 uint64_t FirstFieldOffset, LastFieldOffset; 998 unsigned LastAddedFieldIndex; 999 }; 1000 1001 class ConstructorMemcpyizer : public FieldMemcpyizer { 1002 private: 1003 1004 /// Get source argument for copy constructor. Returns null if not a copy 1005 /// constructor. 1006 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1007 const CXXConstructorDecl *CD, 1008 FunctionArgList &Args) { 1009 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1010 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1011 return nullptr; 1012 } 1013 1014 // Returns true if a CXXCtorInitializer represents a member initialization 1015 // that can be rolled into a memcpy. 1016 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1017 if (!MemcpyableCtor) 1018 return false; 1019 FieldDecl *Field = MemberInit->getMember(); 1020 assert(Field && "No field for member init."); 1021 QualType FieldType = Field->getType(); 1022 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1023 1024 // Bail out on non-POD, not-trivially-constructable members. 1025 if (!(CE && CE->getConstructor()->isTrivial()) && 1026 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1027 FieldType->isReferenceType())) 1028 return false; 1029 1030 // Bail out on volatile fields. 1031 if (!isMemcpyableField(Field)) 1032 return false; 1033 1034 // Otherwise we're good. 1035 return true; 1036 } 1037 1038 public: 1039 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1040 FunctionArgList &Args) 1041 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1042 ConstructorDecl(CD), 1043 MemcpyableCtor(CD->isDefaulted() && 1044 CD->isCopyOrMoveConstructor() && 1045 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1046 Args(Args) { } 1047 1048 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1049 if (isMemberInitMemcpyable(MemberInit)) { 1050 AggregatedInits.push_back(MemberInit); 1051 addMemcpyableField(MemberInit->getMember()); 1052 } else { 1053 emitAggregatedInits(); 1054 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1055 ConstructorDecl, Args); 1056 } 1057 } 1058 1059 void emitAggregatedInits() { 1060 if (AggregatedInits.size() <= 1) { 1061 // This memcpy is too small to be worthwhile. Fall back on default 1062 // codegen. 1063 if (!AggregatedInits.empty()) { 1064 CopyingValueRepresentation CVR(CGF); 1065 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1066 AggregatedInits[0], ConstructorDecl, Args); 1067 } 1068 reset(); 1069 return; 1070 } 1071 1072 pushEHDestructors(); 1073 emitMemcpy(); 1074 AggregatedInits.clear(); 1075 } 1076 1077 void pushEHDestructors() { 1078 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 1079 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1080 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 1081 1082 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1083 QualType FieldType = AggregatedInits[i]->getMember()->getType(); 1084 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1085 if (CGF.needsEHCleanup(dtorKind)) 1086 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 1087 } 1088 } 1089 1090 void finish() { 1091 emitAggregatedInits(); 1092 } 1093 1094 private: 1095 const CXXConstructorDecl *ConstructorDecl; 1096 bool MemcpyableCtor; 1097 FunctionArgList &Args; 1098 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1099 }; 1100 1101 class AssignmentMemcpyizer : public FieldMemcpyizer { 1102 private: 1103 1104 // Returns the memcpyable field copied by the given statement, if one 1105 // exists. Otherwise returns null. 1106 FieldDecl *getMemcpyableField(Stmt *S) { 1107 if (!AssignmentsMemcpyable) 1108 return nullptr; 1109 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1110 // Recognise trivial assignments. 1111 if (BO->getOpcode() != BO_Assign) 1112 return nullptr; 1113 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1114 if (!ME) 1115 return nullptr; 1116 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1117 if (!Field || !isMemcpyableField(Field)) 1118 return nullptr; 1119 Stmt *RHS = BO->getRHS(); 1120 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1121 RHS = EC->getSubExpr(); 1122 if (!RHS) 1123 return nullptr; 1124 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1125 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1126 return nullptr; 1127 return Field; 1128 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1129 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1130 if (!(MD && (MD->isCopyAssignmentOperator() || 1131 MD->isMoveAssignmentOperator()) && 1132 MD->isTrivial())) 1133 return nullptr; 1134 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1135 if (!IOA) 1136 return nullptr; 1137 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1138 if (!Field || !isMemcpyableField(Field)) 1139 return nullptr; 1140 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1141 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1142 return nullptr; 1143 return Field; 1144 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1145 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1146 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1147 return nullptr; 1148 Expr *DstPtr = CE->getArg(0); 1149 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1150 DstPtr = DC->getSubExpr(); 1151 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1152 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1153 return nullptr; 1154 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1155 if (!ME) 1156 return nullptr; 1157 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1158 if (!Field || !isMemcpyableField(Field)) 1159 return nullptr; 1160 Expr *SrcPtr = CE->getArg(1); 1161 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1162 SrcPtr = SC->getSubExpr(); 1163 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1164 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1165 return nullptr; 1166 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1167 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1168 return nullptr; 1169 return Field; 1170 } 1171 1172 return nullptr; 1173 } 1174 1175 bool AssignmentsMemcpyable; 1176 SmallVector<Stmt*, 16> AggregatedStmts; 1177 1178 public: 1179 1180 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1181 FunctionArgList &Args) 1182 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1183 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1184 assert(Args.size() == 2); 1185 } 1186 1187 void emitAssignment(Stmt *S) { 1188 FieldDecl *F = getMemcpyableField(S); 1189 if (F) { 1190 addMemcpyableField(F); 1191 AggregatedStmts.push_back(S); 1192 } else { 1193 emitAggregatedStmts(); 1194 CGF.EmitStmt(S); 1195 } 1196 } 1197 1198 void emitAggregatedStmts() { 1199 if (AggregatedStmts.size() <= 1) { 1200 if (!AggregatedStmts.empty()) { 1201 CopyingValueRepresentation CVR(CGF); 1202 CGF.EmitStmt(AggregatedStmts[0]); 1203 } 1204 reset(); 1205 } 1206 1207 emitMemcpy(); 1208 AggregatedStmts.clear(); 1209 } 1210 1211 void finish() { 1212 emitAggregatedStmts(); 1213 } 1214 }; 1215 1216 } 1217 1218 /// EmitCtorPrologue - This routine generates necessary code to initialize 1219 /// base classes and non-static data members belonging to this constructor. 1220 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1221 CXXCtorType CtorType, 1222 FunctionArgList &Args) { 1223 if (CD->isDelegatingConstructor()) 1224 return EmitDelegatingCXXConstructorCall(CD, Args); 1225 1226 const CXXRecordDecl *ClassDecl = CD->getParent(); 1227 1228 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1229 E = CD->init_end(); 1230 1231 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1232 if (ClassDecl->getNumVBases() && 1233 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1234 // The ABIs that don't have constructor variants need to put a branch 1235 // before the virtual base initialization code. 1236 BaseCtorContinueBB = 1237 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1238 assert(BaseCtorContinueBB); 1239 } 1240 1241 // Virtual base initializers first. 1242 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1243 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1244 } 1245 1246 if (BaseCtorContinueBB) { 1247 // Complete object handler should continue to the remaining initializers. 1248 Builder.CreateBr(BaseCtorContinueBB); 1249 EmitBlock(BaseCtorContinueBB); 1250 } 1251 1252 // Then, non-virtual base initializers. 1253 for (; B != E && (*B)->isBaseInitializer(); B++) { 1254 assert(!(*B)->isBaseVirtual()); 1255 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1256 } 1257 1258 InitializeVTablePointers(ClassDecl); 1259 1260 // And finally, initialize class members. 1261 FieldConstructionScope FCS(*this, CXXThisValue); 1262 ConstructorMemcpyizer CM(*this, CD, Args); 1263 for (; B != E; B++) { 1264 CXXCtorInitializer *Member = (*B); 1265 assert(!Member->isBaseInitializer()); 1266 assert(Member->isAnyMemberInitializer() && 1267 "Delegating initializer on non-delegating constructor"); 1268 CM.addMemberInitializer(Member); 1269 } 1270 CM.finish(); 1271 } 1272 1273 static bool 1274 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1275 1276 static bool 1277 HasTrivialDestructorBody(ASTContext &Context, 1278 const CXXRecordDecl *BaseClassDecl, 1279 const CXXRecordDecl *MostDerivedClassDecl) 1280 { 1281 // If the destructor is trivial we don't have to check anything else. 1282 if (BaseClassDecl->hasTrivialDestructor()) 1283 return true; 1284 1285 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1286 return false; 1287 1288 // Check fields. 1289 for (const auto *Field : BaseClassDecl->fields()) 1290 if (!FieldHasTrivialDestructorBody(Context, Field)) 1291 return false; 1292 1293 // Check non-virtual bases. 1294 for (const auto &I : BaseClassDecl->bases()) { 1295 if (I.isVirtual()) 1296 continue; 1297 1298 const CXXRecordDecl *NonVirtualBase = 1299 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1300 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1301 MostDerivedClassDecl)) 1302 return false; 1303 } 1304 1305 if (BaseClassDecl == MostDerivedClassDecl) { 1306 // Check virtual bases. 1307 for (const auto &I : BaseClassDecl->vbases()) { 1308 const CXXRecordDecl *VirtualBase = 1309 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1310 if (!HasTrivialDestructorBody(Context, VirtualBase, 1311 MostDerivedClassDecl)) 1312 return false; 1313 } 1314 } 1315 1316 return true; 1317 } 1318 1319 static bool 1320 FieldHasTrivialDestructorBody(ASTContext &Context, 1321 const FieldDecl *Field) 1322 { 1323 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1324 1325 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1326 if (!RT) 1327 return true; 1328 1329 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1330 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1331 } 1332 1333 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1334 /// any vtable pointers before calling this destructor. 1335 static bool CanSkipVTablePointerInitialization(ASTContext &Context, 1336 const CXXDestructorDecl *Dtor) { 1337 if (!Dtor->hasTrivialBody()) 1338 return false; 1339 1340 // Check the fields. 1341 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1342 for (const auto *Field : ClassDecl->fields()) 1343 if (!FieldHasTrivialDestructorBody(Context, Field)) 1344 return false; 1345 1346 return true; 1347 } 1348 1349 /// EmitDestructorBody - Emits the body of the current destructor. 1350 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1351 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1352 CXXDtorType DtorType = CurGD.getDtorType(); 1353 1354 // The call to operator delete in a deleting destructor happens 1355 // outside of the function-try-block, which means it's always 1356 // possible to delegate the destructor body to the complete 1357 // destructor. Do so. 1358 if (DtorType == Dtor_Deleting) { 1359 EnterDtorCleanups(Dtor, Dtor_Deleting); 1360 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1361 /*Delegating=*/false, LoadCXXThis()); 1362 PopCleanupBlock(); 1363 return; 1364 } 1365 1366 Stmt *Body = Dtor->getBody(); 1367 1368 // If the body is a function-try-block, enter the try before 1369 // anything else. 1370 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1371 if (isTryBody) 1372 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1373 EmitAsanPrologueOrEpilogue(false); 1374 1375 // Enter the epilogue cleanups. 1376 RunCleanupsScope DtorEpilogue(*this); 1377 1378 // If this is the complete variant, just invoke the base variant; 1379 // the epilogue will destruct the virtual bases. But we can't do 1380 // this optimization if the body is a function-try-block, because 1381 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1382 // always delegate because we might not have a definition in this TU. 1383 switch (DtorType) { 1384 case Dtor_Comdat: 1385 llvm_unreachable("not expecting a COMDAT"); 1386 1387 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1388 1389 case Dtor_Complete: 1390 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1391 "can't emit a dtor without a body for non-Microsoft ABIs"); 1392 1393 // Enter the cleanup scopes for virtual bases. 1394 EnterDtorCleanups(Dtor, Dtor_Complete); 1395 1396 if (!isTryBody) { 1397 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1398 /*Delegating=*/false, LoadCXXThis()); 1399 break; 1400 } 1401 // Fallthrough: act like we're in the base variant. 1402 1403 case Dtor_Base: 1404 assert(Body); 1405 1406 RegionCounter Cnt = getPGORegionCounter(Body); 1407 Cnt.beginRegion(Builder); 1408 1409 // Enter the cleanup scopes for fields and non-virtual bases. 1410 EnterDtorCleanups(Dtor, Dtor_Base); 1411 1412 // Initialize the vtable pointers before entering the body. 1413 if (!CanSkipVTablePointerInitialization(getContext(), Dtor)) 1414 InitializeVTablePointers(Dtor->getParent()); 1415 1416 if (isTryBody) 1417 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1418 else if (Body) 1419 EmitStmt(Body); 1420 else { 1421 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1422 // nothing to do besides what's in the epilogue 1423 } 1424 // -fapple-kext must inline any call to this dtor into 1425 // the caller's body. 1426 if (getLangOpts().AppleKext) 1427 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1428 break; 1429 } 1430 1431 // Jump out through the epilogue cleanups. 1432 DtorEpilogue.ForceCleanup(); 1433 1434 // Exit the try if applicable. 1435 if (isTryBody) 1436 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1437 } 1438 1439 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1440 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1441 const Stmt *RootS = AssignOp->getBody(); 1442 assert(isa<CompoundStmt>(RootS) && 1443 "Body of an implicit assignment operator should be compound stmt."); 1444 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1445 1446 LexicalScope Scope(*this, RootCS->getSourceRange()); 1447 1448 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1449 for (auto *I : RootCS->body()) 1450 AM.emitAssignment(I); 1451 AM.finish(); 1452 } 1453 1454 namespace { 1455 /// Call the operator delete associated with the current destructor. 1456 struct CallDtorDelete : EHScopeStack::Cleanup { 1457 CallDtorDelete() {} 1458 1459 void Emit(CodeGenFunction &CGF, Flags flags) override { 1460 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1461 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1462 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1463 CGF.getContext().getTagDeclType(ClassDecl)); 1464 } 1465 }; 1466 1467 struct CallDtorDeleteConditional : EHScopeStack::Cleanup { 1468 llvm::Value *ShouldDeleteCondition; 1469 public: 1470 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1471 : ShouldDeleteCondition(ShouldDeleteCondition) { 1472 assert(ShouldDeleteCondition != nullptr); 1473 } 1474 1475 void Emit(CodeGenFunction &CGF, Flags flags) override { 1476 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1477 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1478 llvm::Value *ShouldCallDelete 1479 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1480 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1481 1482 CGF.EmitBlock(callDeleteBB); 1483 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1484 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1485 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1486 CGF.getContext().getTagDeclType(ClassDecl)); 1487 CGF.Builder.CreateBr(continueBB); 1488 1489 CGF.EmitBlock(continueBB); 1490 } 1491 }; 1492 1493 class DestroyField : public EHScopeStack::Cleanup { 1494 const FieldDecl *field; 1495 CodeGenFunction::Destroyer *destroyer; 1496 bool useEHCleanupForArray; 1497 1498 public: 1499 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1500 bool useEHCleanupForArray) 1501 : field(field), destroyer(destroyer), 1502 useEHCleanupForArray(useEHCleanupForArray) {} 1503 1504 void Emit(CodeGenFunction &CGF, Flags flags) override { 1505 // Find the address of the field. 1506 llvm::Value *thisValue = CGF.LoadCXXThis(); 1507 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1508 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1509 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1510 assert(LV.isSimple()); 1511 1512 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1513 flags.isForNormalCleanup() && useEHCleanupForArray); 1514 } 1515 }; 1516 } 1517 1518 /// \brief Emit all code that comes at the end of class's 1519 /// destructor. This is to call destructors on members and base classes 1520 /// in reverse order of their construction. 1521 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1522 CXXDtorType DtorType) { 1523 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1524 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1525 1526 // The deleting-destructor phase just needs to call the appropriate 1527 // operator delete that Sema picked up. 1528 if (DtorType == Dtor_Deleting) { 1529 assert(DD->getOperatorDelete() && 1530 "operator delete missing - EnterDtorCleanups"); 1531 if (CXXStructorImplicitParamValue) { 1532 // If there is an implicit param to the deleting dtor, it's a boolean 1533 // telling whether we should call delete at the end of the dtor. 1534 EHStack.pushCleanup<CallDtorDeleteConditional>( 1535 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1536 } else { 1537 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1538 } 1539 return; 1540 } 1541 1542 const CXXRecordDecl *ClassDecl = DD->getParent(); 1543 1544 // Unions have no bases and do not call field destructors. 1545 if (ClassDecl->isUnion()) 1546 return; 1547 1548 // The complete-destructor phase just destructs all the virtual bases. 1549 if (DtorType == Dtor_Complete) { 1550 1551 // We push them in the forward order so that they'll be popped in 1552 // the reverse order. 1553 for (const auto &Base : ClassDecl->vbases()) { 1554 CXXRecordDecl *BaseClassDecl 1555 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1556 1557 // Ignore trivial destructors. 1558 if (BaseClassDecl->hasTrivialDestructor()) 1559 continue; 1560 1561 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1562 BaseClassDecl, 1563 /*BaseIsVirtual*/ true); 1564 } 1565 1566 return; 1567 } 1568 1569 assert(DtorType == Dtor_Base); 1570 1571 // Destroy non-virtual bases. 1572 for (const auto &Base : ClassDecl->bases()) { 1573 // Ignore virtual bases. 1574 if (Base.isVirtual()) 1575 continue; 1576 1577 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1578 1579 // Ignore trivial destructors. 1580 if (BaseClassDecl->hasTrivialDestructor()) 1581 continue; 1582 1583 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1584 BaseClassDecl, 1585 /*BaseIsVirtual*/ false); 1586 } 1587 1588 // Destroy direct fields. 1589 for (const auto *Field : ClassDecl->fields()) { 1590 QualType type = Field->getType(); 1591 QualType::DestructionKind dtorKind = type.isDestructedType(); 1592 if (!dtorKind) continue; 1593 1594 // Anonymous union members do not have their destructors called. 1595 const RecordType *RT = type->getAsUnionType(); 1596 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1597 1598 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1599 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1600 getDestroyer(dtorKind), 1601 cleanupKind & EHCleanup); 1602 } 1603 } 1604 1605 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1606 /// constructor for each of several members of an array. 1607 /// 1608 /// \param ctor the constructor to call for each element 1609 /// \param arrayType the type of the array to initialize 1610 /// \param arrayBegin an arrayType* 1611 /// \param zeroInitialize true if each element should be 1612 /// zero-initialized before it is constructed 1613 void CodeGenFunction::EmitCXXAggrConstructorCall( 1614 const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType, 1615 llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1616 QualType elementType; 1617 llvm::Value *numElements = 1618 emitArrayLength(arrayType, elementType, arrayBegin); 1619 1620 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1621 } 1622 1623 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1624 /// constructor for each of several members of an array. 1625 /// 1626 /// \param ctor the constructor to call for each element 1627 /// \param numElements the number of elements in the array; 1628 /// may be zero 1629 /// \param arrayBegin a T*, where T is the type constructed by ctor 1630 /// \param zeroInitialize true if each element should be 1631 /// zero-initialized before it is constructed 1632 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1633 llvm::Value *numElements, 1634 llvm::Value *arrayBegin, 1635 const CXXConstructExpr *E, 1636 bool zeroInitialize) { 1637 1638 // It's legal for numElements to be zero. This can happen both 1639 // dynamically, because x can be zero in 'new A[x]', and statically, 1640 // because of GCC extensions that permit zero-length arrays. There 1641 // are probably legitimate places where we could assume that this 1642 // doesn't happen, but it's not clear that it's worth it. 1643 llvm::BranchInst *zeroCheckBranch = nullptr; 1644 1645 // Optimize for a constant count. 1646 llvm::ConstantInt *constantCount 1647 = dyn_cast<llvm::ConstantInt>(numElements); 1648 if (constantCount) { 1649 // Just skip out if the constant count is zero. 1650 if (constantCount->isZero()) return; 1651 1652 // Otherwise, emit the check. 1653 } else { 1654 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1655 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1656 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1657 EmitBlock(loopBB); 1658 } 1659 1660 // Find the end of the array. 1661 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1662 "arrayctor.end"); 1663 1664 // Enter the loop, setting up a phi for the current location to initialize. 1665 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1666 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1667 EmitBlock(loopBB); 1668 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1669 "arrayctor.cur"); 1670 cur->addIncoming(arrayBegin, entryBB); 1671 1672 // Inside the loop body, emit the constructor call on the array element. 1673 1674 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1675 1676 // Zero initialize the storage, if requested. 1677 if (zeroInitialize) 1678 EmitNullInitialization(cur, type); 1679 1680 // C++ [class.temporary]p4: 1681 // There are two contexts in which temporaries are destroyed at a different 1682 // point than the end of the full-expression. The first context is when a 1683 // default constructor is called to initialize an element of an array. 1684 // If the constructor has one or more default arguments, the destruction of 1685 // every temporary created in a default argument expression is sequenced 1686 // before the construction of the next array element, if any. 1687 1688 { 1689 RunCleanupsScope Scope(*this); 1690 1691 // Evaluate the constructor and its arguments in a regular 1692 // partial-destroy cleanup. 1693 if (getLangOpts().Exceptions && 1694 !ctor->getParent()->hasTrivialDestructor()) { 1695 Destroyer *destroyer = destroyCXXObject; 1696 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer); 1697 } 1698 1699 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1700 /*Delegating=*/false, cur, E); 1701 } 1702 1703 // Go to the next element. 1704 llvm::Value *next = 1705 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1706 "arrayctor.next"); 1707 cur->addIncoming(next, Builder.GetInsertBlock()); 1708 1709 // Check whether that's the end of the loop. 1710 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1711 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1712 Builder.CreateCondBr(done, contBB, loopBB); 1713 1714 // Patch the earlier check to skip over the loop. 1715 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1716 1717 EmitBlock(contBB); 1718 } 1719 1720 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1721 llvm::Value *addr, 1722 QualType type) { 1723 const RecordType *rtype = type->castAs<RecordType>(); 1724 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1725 const CXXDestructorDecl *dtor = record->getDestructor(); 1726 assert(!dtor->isTrivial()); 1727 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1728 /*Delegating=*/false, addr); 1729 } 1730 1731 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1732 CXXCtorType Type, 1733 bool ForVirtualBase, 1734 bool Delegating, llvm::Value *This, 1735 const CXXConstructExpr *E) { 1736 // If this is a trivial constructor, just emit what's needed. 1737 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) { 1738 if (E->getNumArgs() == 0) { 1739 // Trivial default constructor, no codegen required. 1740 assert(D->isDefaultConstructor() && 1741 "trivial 0-arg ctor not a default ctor"); 1742 return; 1743 } 1744 1745 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1746 assert(D->isCopyOrMoveConstructor() && 1747 "trivial 1-arg ctor not a copy/move ctor"); 1748 1749 const Expr *Arg = E->getArg(0); 1750 QualType Ty = Arg->getType(); 1751 llvm::Value *Src = EmitLValue(Arg).getAddress(); 1752 EmitAggregateCopy(This, Src, Ty); 1753 return; 1754 } 1755 1756 // C++11 [class.mfct.non-static]p2: 1757 // If a non-static member function of a class X is called for an object that 1758 // is not of type X, or of a type derived from X, the behavior is undefined. 1759 // FIXME: Provide a source location here. 1760 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This, 1761 getContext().getRecordType(D->getParent())); 1762 1763 CallArgList Args; 1764 1765 // Push the this ptr. 1766 Args.add(RValue::get(This), D->getThisType(getContext())); 1767 1768 // Add the rest of the user-supplied arguments. 1769 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1770 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor()); 1771 1772 // Insert any ABI-specific implicit constructor arguments. 1773 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 1774 *this, D, Type, ForVirtualBase, Delegating, Args); 1775 1776 // Emit the call. 1777 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 1778 const CGFunctionInfo &Info = 1779 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 1780 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 1781 } 1782 1783 void 1784 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1785 llvm::Value *This, llvm::Value *Src, 1786 const CXXConstructExpr *E) { 1787 if (D->isTrivial() && 1788 !D->getParent()->mayInsertExtraPadding()) { 1789 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1790 assert(D->isCopyOrMoveConstructor() && 1791 "trivial 1-arg ctor not a copy/move ctor"); 1792 EmitAggregateCopy(This, Src, E->arg_begin()->getType()); 1793 return; 1794 } 1795 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete); 1796 assert(D->isInstance() && 1797 "Trying to emit a member call expr on a static method!"); 1798 1799 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1800 1801 CallArgList Args; 1802 1803 // Push the this ptr. 1804 Args.add(RValue::get(This), D->getThisType(getContext())); 1805 1806 // Push the src ptr. 1807 QualType QT = *(FPT->param_type_begin()); 1808 llvm::Type *t = CGM.getTypes().ConvertType(QT); 1809 Src = Builder.CreateBitCast(Src, t); 1810 Args.add(RValue::get(Src), QT); 1811 1812 // Skip over first argument (Src). 1813 EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(), 1814 /*ParamsToSkip*/ 1); 1815 1816 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All), 1817 Callee, ReturnValueSlot(), Args, D); 1818 } 1819 1820 void 1821 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1822 CXXCtorType CtorType, 1823 const FunctionArgList &Args, 1824 SourceLocation Loc) { 1825 CallArgList DelegateArgs; 1826 1827 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 1828 assert(I != E && "no parameters to constructor"); 1829 1830 // this 1831 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType()); 1832 ++I; 1833 1834 // vtt 1835 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType), 1836 /*ForVirtualBase=*/false, 1837 /*Delegating=*/true)) { 1838 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy); 1839 DelegateArgs.add(RValue::get(VTT), VoidPP); 1840 1841 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 1842 assert(I != E && "cannot skip vtt parameter, already done with args"); 1843 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type"); 1844 ++I; 1845 } 1846 } 1847 1848 // Explicit arguments. 1849 for (; I != E; ++I) { 1850 const VarDecl *param = *I; 1851 // FIXME: per-argument source location 1852 EmitDelegateCallArg(DelegateArgs, param, Loc); 1853 } 1854 1855 llvm::Value *Callee = 1856 CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType)); 1857 EmitCall(CGM.getTypes() 1858 .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)), 1859 Callee, ReturnValueSlot(), DelegateArgs, Ctor); 1860 } 1861 1862 namespace { 1863 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup { 1864 const CXXDestructorDecl *Dtor; 1865 llvm::Value *Addr; 1866 CXXDtorType Type; 1867 1868 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr, 1869 CXXDtorType Type) 1870 : Dtor(D), Addr(Addr), Type(Type) {} 1871 1872 void Emit(CodeGenFunction &CGF, Flags flags) override { 1873 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 1874 /*Delegating=*/true, Addr); 1875 } 1876 }; 1877 } 1878 1879 void 1880 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1881 const FunctionArgList &Args) { 1882 assert(Ctor->isDelegatingConstructor()); 1883 1884 llvm::Value *ThisPtr = LoadCXXThis(); 1885 1886 QualType Ty = getContext().getTagDeclType(Ctor->getParent()); 1887 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1888 AggValueSlot AggSlot = 1889 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(), 1890 AggValueSlot::IsDestructed, 1891 AggValueSlot::DoesNotNeedGCBarriers, 1892 AggValueSlot::IsNotAliased); 1893 1894 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 1895 1896 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 1897 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 1898 CXXDtorType Type = 1899 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 1900 1901 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 1902 ClassDecl->getDestructor(), 1903 ThisPtr, Type); 1904 } 1905 } 1906 1907 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 1908 CXXDtorType Type, 1909 bool ForVirtualBase, 1910 bool Delegating, 1911 llvm::Value *This) { 1912 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 1913 Delegating, This); 1914 } 1915 1916 namespace { 1917 struct CallLocalDtor : EHScopeStack::Cleanup { 1918 const CXXDestructorDecl *Dtor; 1919 llvm::Value *Addr; 1920 1921 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr) 1922 : Dtor(D), Addr(Addr) {} 1923 1924 void Emit(CodeGenFunction &CGF, Flags flags) override { 1925 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1926 /*ForVirtualBase=*/false, 1927 /*Delegating=*/false, Addr); 1928 } 1929 }; 1930 } 1931 1932 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 1933 llvm::Value *Addr) { 1934 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 1935 } 1936 1937 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) { 1938 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 1939 if (!ClassDecl) return; 1940 if (ClassDecl->hasTrivialDestructor()) return; 1941 1942 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 1943 assert(D && D->isUsed() && "destructor not marked as used!"); 1944 PushDestructorCleanup(D, Addr); 1945 } 1946 1947 void 1948 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base, 1949 const CXXRecordDecl *NearestVBase, 1950 CharUnits OffsetFromNearestVBase, 1951 const CXXRecordDecl *VTableClass) { 1952 // Compute the address point. 1953 bool NeedsVirtualOffset; 1954 llvm::Value *VTableAddressPoint = 1955 CGM.getCXXABI().getVTableAddressPointInStructor( 1956 *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset); 1957 if (!VTableAddressPoint) 1958 return; 1959 1960 // Compute where to store the address point. 1961 llvm::Value *VirtualOffset = nullptr; 1962 CharUnits NonVirtualOffset = CharUnits::Zero(); 1963 1964 if (NeedsVirtualOffset) { 1965 // We need to use the virtual base offset offset because the virtual base 1966 // might have a different offset in the most derived class. 1967 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this, 1968 LoadCXXThis(), 1969 VTableClass, 1970 NearestVBase); 1971 NonVirtualOffset = OffsetFromNearestVBase; 1972 } else { 1973 // We can just use the base offset in the complete class. 1974 NonVirtualOffset = Base.getBaseOffset(); 1975 } 1976 1977 // Apply the offsets. 1978 llvm::Value *VTableField = LoadCXXThis(); 1979 1980 if (!NonVirtualOffset.isZero() || VirtualOffset) 1981 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField, 1982 NonVirtualOffset, 1983 VirtualOffset); 1984 1985 // Finally, store the address point. Use the same LLVM types as the field to 1986 // support optimization. 1987 llvm::Type *VTablePtrTy = 1988 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 1989 ->getPointerTo() 1990 ->getPointerTo(); 1991 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 1992 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 1993 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 1994 CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr()); 1995 } 1996 1997 void 1998 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base, 1999 const CXXRecordDecl *NearestVBase, 2000 CharUnits OffsetFromNearestVBase, 2001 bool BaseIsNonVirtualPrimaryBase, 2002 const CXXRecordDecl *VTableClass, 2003 VisitedVirtualBasesSetTy& VBases) { 2004 // If this base is a non-virtual primary base the address point has already 2005 // been set. 2006 if (!BaseIsNonVirtualPrimaryBase) { 2007 // Initialize the vtable pointer for this base. 2008 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase, 2009 VTableClass); 2010 } 2011 2012 const CXXRecordDecl *RD = Base.getBase(); 2013 2014 // Traverse bases. 2015 for (const auto &I : RD->bases()) { 2016 CXXRecordDecl *BaseDecl 2017 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2018 2019 // Ignore classes without a vtable. 2020 if (!BaseDecl->isDynamicClass()) 2021 continue; 2022 2023 CharUnits BaseOffset; 2024 CharUnits BaseOffsetFromNearestVBase; 2025 bool BaseDeclIsNonVirtualPrimaryBase; 2026 2027 if (I.isVirtual()) { 2028 // Check if we've visited this virtual base before. 2029 if (!VBases.insert(BaseDecl).second) 2030 continue; 2031 2032 const ASTRecordLayout &Layout = 2033 getContext().getASTRecordLayout(VTableClass); 2034 2035 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2036 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2037 BaseDeclIsNonVirtualPrimaryBase = false; 2038 } else { 2039 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2040 2041 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2042 BaseOffsetFromNearestVBase = 2043 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2044 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2045 } 2046 2047 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset), 2048 I.isVirtual() ? BaseDecl : NearestVBase, 2049 BaseOffsetFromNearestVBase, 2050 BaseDeclIsNonVirtualPrimaryBase, 2051 VTableClass, VBases); 2052 } 2053 } 2054 2055 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2056 // Ignore classes without a vtable. 2057 if (!RD->isDynamicClass()) 2058 return; 2059 2060 // Initialize the vtable pointers for this class and all of its bases. 2061 VisitedVirtualBasesSetTy VBases; 2062 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()), 2063 /*NearestVBase=*/nullptr, 2064 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2065 /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases); 2066 2067 if (RD->getNumVBases()) 2068 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2069 } 2070 2071 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This, 2072 llvm::Type *Ty) { 2073 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo()); 2074 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2075 CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr()); 2076 return VTable; 2077 } 2078 2079 2080 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2081 // quite what we want. 2082 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2083 while (true) { 2084 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2085 E = PE->getSubExpr(); 2086 continue; 2087 } 2088 2089 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2090 if (CE->getCastKind() == CK_NoOp) { 2091 E = CE->getSubExpr(); 2092 continue; 2093 } 2094 } 2095 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2096 if (UO->getOpcode() == UO_Extension) { 2097 E = UO->getSubExpr(); 2098 continue; 2099 } 2100 } 2101 return E; 2102 } 2103 } 2104 2105 bool 2106 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2107 const CXXMethodDecl *MD) { 2108 // When building with -fapple-kext, all calls must go through the vtable since 2109 // the kernel linker can do runtime patching of vtables. 2110 if (getLangOpts().AppleKext) 2111 return false; 2112 2113 // If the most derived class is marked final, we know that no subclass can 2114 // override this member function and so we can devirtualize it. For example: 2115 // 2116 // struct A { virtual void f(); } 2117 // struct B final : A { }; 2118 // 2119 // void f(B *b) { 2120 // b->f(); 2121 // } 2122 // 2123 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2124 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2125 return true; 2126 2127 // If the member function is marked 'final', we know that it can't be 2128 // overridden and can therefore devirtualize it. 2129 if (MD->hasAttr<FinalAttr>()) 2130 return true; 2131 2132 // Similarly, if the class itself is marked 'final' it can't be overridden 2133 // and we can therefore devirtualize the member function call. 2134 if (MD->getParent()->hasAttr<FinalAttr>()) 2135 return true; 2136 2137 Base = skipNoOpCastsAndParens(Base); 2138 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2139 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2140 // This is a record decl. We know the type and can devirtualize it. 2141 return VD->getType()->isRecordType(); 2142 } 2143 2144 return false; 2145 } 2146 2147 // We can devirtualize calls on an object accessed by a class member access 2148 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2149 // a derived class object constructed in the same location. 2150 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2151 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2152 return VD->getType()->isRecordType(); 2153 2154 // We can always devirtualize calls on temporary object expressions. 2155 if (isa<CXXConstructExpr>(Base)) 2156 return true; 2157 2158 // And calls on bound temporaries. 2159 if (isa<CXXBindTemporaryExpr>(Base)) 2160 return true; 2161 2162 // Check if this is a call expr that returns a record type. 2163 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2164 return CE->getCallReturnType()->isRecordType(); 2165 2166 // We can't devirtualize the call. 2167 return false; 2168 } 2169 2170 void CodeGenFunction::EmitForwardingCallToLambda( 2171 const CXXMethodDecl *callOperator, 2172 CallArgList &callArgs) { 2173 // Get the address of the call operator. 2174 const CGFunctionInfo &calleeFnInfo = 2175 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2176 llvm::Value *callee = 2177 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2178 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2179 2180 // Prepare the return slot. 2181 const FunctionProtoType *FPT = 2182 callOperator->getType()->castAs<FunctionProtoType>(); 2183 QualType resultType = FPT->getReturnType(); 2184 ReturnValueSlot returnSlot; 2185 if (!resultType->isVoidType() && 2186 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2187 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2188 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2189 2190 // We don't need to separately arrange the call arguments because 2191 // the call can't be variadic anyway --- it's impossible to forward 2192 // variadic arguments. 2193 2194 // Now emit our call. 2195 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2196 callArgs, callOperator); 2197 2198 // If necessary, copy the returned value into the slot. 2199 if (!resultType->isVoidType() && returnSlot.isNull()) 2200 EmitReturnOfRValue(RV, resultType); 2201 else 2202 EmitBranchThroughCleanup(ReturnBlock); 2203 } 2204 2205 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2206 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2207 const VarDecl *variable = BD->capture_begin()->getVariable(); 2208 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2209 2210 // Start building arguments for forwarding call 2211 CallArgList CallArgs; 2212 2213 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2214 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false); 2215 CallArgs.add(RValue::get(ThisPtr), ThisType); 2216 2217 // Add the rest of the parameters. 2218 for (auto param : BD->params()) 2219 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2220 2221 assert(!Lambda->isGenericLambda() && 2222 "generic lambda interconversion to block not implemented"); 2223 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2224 } 2225 2226 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2227 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2228 // FIXME: Making this work correctly is nasty because it requires either 2229 // cloning the body of the call operator or making the call operator forward. 2230 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2231 return; 2232 } 2233 2234 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2235 } 2236 2237 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2238 const CXXRecordDecl *Lambda = MD->getParent(); 2239 2240 // Start building arguments for forwarding call 2241 CallArgList CallArgs; 2242 2243 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2244 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2245 CallArgs.add(RValue::get(ThisPtr), ThisType); 2246 2247 // Add the rest of the parameters. 2248 for (auto Param : MD->params()) 2249 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2250 2251 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2252 // For a generic lambda, find the corresponding call operator specialization 2253 // to which the call to the static-invoker shall be forwarded. 2254 if (Lambda->isGenericLambda()) { 2255 assert(MD->isFunctionTemplateSpecialization()); 2256 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2257 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2258 void *InsertPos = nullptr; 2259 FunctionDecl *CorrespondingCallOpSpecialization = 2260 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2261 assert(CorrespondingCallOpSpecialization); 2262 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2263 } 2264 EmitForwardingCallToLambda(CallOp, CallArgs); 2265 } 2266 2267 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2268 if (MD->isVariadic()) { 2269 // FIXME: Making this work correctly is nasty because it requires either 2270 // cloning the body of the call operator or making the call operator forward. 2271 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2272 return; 2273 } 2274 2275 EmitLambdaDelegatingInvokeBody(MD); 2276 } 2277