1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27
28 using namespace clang;
29 using namespace CodeGen;
30
31 static CharUnits
ComputeNonVirtualBaseClassOffset(ASTContext & Context,const CXXRecordDecl * DerivedClass,CastExpr::path_const_iterator Start,CastExpr::path_const_iterator End)32 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
33 const CXXRecordDecl *DerivedClass,
34 CastExpr::path_const_iterator Start,
35 CastExpr::path_const_iterator End) {
36 CharUnits Offset = CharUnits::Zero();
37
38 const CXXRecordDecl *RD = DerivedClass;
39
40 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
41 const CXXBaseSpecifier *Base = *I;
42 assert(!Base->isVirtual() && "Should not see virtual bases here!");
43
44 // Get the layout.
45 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
46
47 const CXXRecordDecl *BaseDecl =
48 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
49
50 // Add the offset.
51 Offset += Layout.getBaseClassOffset(BaseDecl);
52
53 RD = BaseDecl;
54 }
55
56 return Offset;
57 }
58
59 llvm::Constant *
GetNonVirtualBaseClassOffset(const CXXRecordDecl * ClassDecl,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd)60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
61 CastExpr::path_const_iterator PathBegin,
62 CastExpr::path_const_iterator PathEnd) {
63 assert(PathBegin != PathEnd && "Base path should not be empty!");
64
65 CharUnits Offset =
66 ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
67 PathBegin, PathEnd);
68 if (Offset.isZero())
69 return nullptr;
70
71 llvm::Type *PtrDiffTy =
72 Types.ConvertType(getContext().getPointerDiffType());
73
74 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
75 }
76
77 /// Gets the address of a direct base class within a complete object.
78 /// This should only be used for (1) non-virtual bases or (2) virtual bases
79 /// when the type is known to be complete (e.g. in complete destructors).
80 ///
81 /// The object pointed to by 'This' is assumed to be non-null.
82 llvm::Value *
GetAddressOfDirectBaseInCompleteClass(llvm::Value * This,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,bool BaseIsVirtual)83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
84 const CXXRecordDecl *Derived,
85 const CXXRecordDecl *Base,
86 bool BaseIsVirtual) {
87 // 'this' must be a pointer (in some address space) to Derived.
88 assert(This->getType()->isPointerTy() &&
89 cast<llvm::PointerType>(This->getType())->getElementType()
90 == ConvertType(Derived));
91
92 // Compute the offset of the virtual base.
93 CharUnits Offset;
94 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
95 if (BaseIsVirtual)
96 Offset = Layout.getVBaseClassOffset(Base);
97 else
98 Offset = Layout.getBaseClassOffset(Base);
99
100 // Shift and cast down to the base type.
101 // TODO: for complete types, this should be possible with a GEP.
102 llvm::Value *V = This;
103 if (Offset.isPositive()) {
104 V = Builder.CreateBitCast(V, Int8PtrTy);
105 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
106 }
107 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
108
109 return V;
110 }
111
112 static llvm::Value *
ApplyNonVirtualAndVirtualOffset(CodeGenFunction & CGF,llvm::Value * ptr,CharUnits nonVirtualOffset,llvm::Value * virtualOffset)113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
114 CharUnits nonVirtualOffset,
115 llvm::Value *virtualOffset) {
116 // Assert that we have something to do.
117 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
118
119 // Compute the offset from the static and dynamic components.
120 llvm::Value *baseOffset;
121 if (!nonVirtualOffset.isZero()) {
122 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
123 nonVirtualOffset.getQuantity());
124 if (virtualOffset) {
125 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
126 }
127 } else {
128 baseOffset = virtualOffset;
129 }
130
131 // Apply the base offset.
132 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
133 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
134 return ptr;
135 }
136
GetAddressOfBaseClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue,SourceLocation Loc)137 llvm::Value *CodeGenFunction::GetAddressOfBaseClass(
138 llvm::Value *Value, const CXXRecordDecl *Derived,
139 CastExpr::path_const_iterator PathBegin,
140 CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
141 SourceLocation Loc) {
142 assert(PathBegin != PathEnd && "Base path should not be empty!");
143
144 CastExpr::path_const_iterator Start = PathBegin;
145 const CXXRecordDecl *VBase = nullptr;
146
147 // Sema has done some convenient canonicalization here: if the
148 // access path involved any virtual steps, the conversion path will
149 // *start* with a step down to the correct virtual base subobject,
150 // and hence will not require any further steps.
151 if ((*Start)->isVirtual()) {
152 VBase =
153 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
154 ++Start;
155 }
156
157 // Compute the static offset of the ultimate destination within its
158 // allocating subobject (the virtual base, if there is one, or else
159 // the "complete" object that we see).
160 CharUnits NonVirtualOffset =
161 ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
162 Start, PathEnd);
163
164 // If there's a virtual step, we can sometimes "devirtualize" it.
165 // For now, that's limited to when the derived type is final.
166 // TODO: "devirtualize" this for accesses to known-complete objects.
167 if (VBase && Derived->hasAttr<FinalAttr>()) {
168 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
169 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
170 NonVirtualOffset += vBaseOffset;
171 VBase = nullptr; // we no longer have a virtual step
172 }
173
174 // Get the base pointer type.
175 llvm::Type *BasePtrTy =
176 ConvertType((PathEnd[-1])->getType())->getPointerTo();
177
178 QualType DerivedTy = getContext().getRecordType(Derived);
179 CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy);
180
181 // If the static offset is zero and we don't have a virtual step,
182 // just do a bitcast; null checks are unnecessary.
183 if (NonVirtualOffset.isZero() && !VBase) {
184 if (sanitizePerformTypeCheck()) {
185 EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign,
186 !NullCheckValue);
187 }
188 return Builder.CreateBitCast(Value, BasePtrTy);
189 }
190
191 llvm::BasicBlock *origBB = nullptr;
192 llvm::BasicBlock *endBB = nullptr;
193
194 // Skip over the offset (and the vtable load) if we're supposed to
195 // null-check the pointer.
196 if (NullCheckValue) {
197 origBB = Builder.GetInsertBlock();
198 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
199 endBB = createBasicBlock("cast.end");
200
201 llvm::Value *isNull = Builder.CreateIsNull(Value);
202 Builder.CreateCondBr(isNull, endBB, notNullBB);
203 EmitBlock(notNullBB);
204 }
205
206 if (sanitizePerformTypeCheck()) {
207 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value,
208 DerivedTy, DerivedAlign, true);
209 }
210
211 // Compute the virtual offset.
212 llvm::Value *VirtualOffset = nullptr;
213 if (VBase) {
214 VirtualOffset =
215 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
216 }
217
218 // Apply both offsets.
219 Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
220 NonVirtualOffset,
221 VirtualOffset);
222
223 // Cast to the destination type.
224 Value = Builder.CreateBitCast(Value, BasePtrTy);
225
226 // Build a phi if we needed a null check.
227 if (NullCheckValue) {
228 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
229 Builder.CreateBr(endBB);
230 EmitBlock(endBB);
231
232 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
233 PHI->addIncoming(Value, notNullBB);
234 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
235 Value = PHI;
236 }
237
238 return Value;
239 }
240
241 llvm::Value *
GetAddressOfDerivedClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)242 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
243 const CXXRecordDecl *Derived,
244 CastExpr::path_const_iterator PathBegin,
245 CastExpr::path_const_iterator PathEnd,
246 bool NullCheckValue) {
247 assert(PathBegin != PathEnd && "Base path should not be empty!");
248
249 QualType DerivedTy =
250 getContext().getCanonicalType(getContext().getTagDeclType(Derived));
251 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
252
253 llvm::Value *NonVirtualOffset =
254 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
255
256 if (!NonVirtualOffset) {
257 // No offset, we can just cast back.
258 return Builder.CreateBitCast(Value, DerivedPtrTy);
259 }
260
261 llvm::BasicBlock *CastNull = nullptr;
262 llvm::BasicBlock *CastNotNull = nullptr;
263 llvm::BasicBlock *CastEnd = nullptr;
264
265 if (NullCheckValue) {
266 CastNull = createBasicBlock("cast.null");
267 CastNotNull = createBasicBlock("cast.notnull");
268 CastEnd = createBasicBlock("cast.end");
269
270 llvm::Value *IsNull = Builder.CreateIsNull(Value);
271 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
272 EmitBlock(CastNotNull);
273 }
274
275 // Apply the offset.
276 Value = Builder.CreateBitCast(Value, Int8PtrTy);
277 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
278 "sub.ptr");
279
280 // Just cast.
281 Value = Builder.CreateBitCast(Value, DerivedPtrTy);
282
283 if (NullCheckValue) {
284 Builder.CreateBr(CastEnd);
285 EmitBlock(CastNull);
286 Builder.CreateBr(CastEnd);
287 EmitBlock(CastEnd);
288
289 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
290 PHI->addIncoming(Value, CastNotNull);
291 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
292 CastNull);
293 Value = PHI;
294 }
295
296 return Value;
297 }
298
GetVTTParameter(GlobalDecl GD,bool ForVirtualBase,bool Delegating)299 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
300 bool ForVirtualBase,
301 bool Delegating) {
302 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
303 // This constructor/destructor does not need a VTT parameter.
304 return nullptr;
305 }
306
307 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
308 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
309
310 llvm::Value *VTT;
311
312 uint64_t SubVTTIndex;
313
314 if (Delegating) {
315 // If this is a delegating constructor call, just load the VTT.
316 return LoadCXXVTT();
317 } else if (RD == Base) {
318 // If the record matches the base, this is the complete ctor/dtor
319 // variant calling the base variant in a class with virtual bases.
320 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
321 "doing no-op VTT offset in base dtor/ctor?");
322 assert(!ForVirtualBase && "Can't have same class as virtual base!");
323 SubVTTIndex = 0;
324 } else {
325 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
326 CharUnits BaseOffset = ForVirtualBase ?
327 Layout.getVBaseClassOffset(Base) :
328 Layout.getBaseClassOffset(Base);
329
330 SubVTTIndex =
331 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
332 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
333 }
334
335 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
336 // A VTT parameter was passed to the constructor, use it.
337 VTT = LoadCXXVTT();
338 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
339 } else {
340 // We're the complete constructor, so get the VTT by name.
341 VTT = CGM.getVTables().GetAddrOfVTT(RD);
342 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
343 }
344
345 return VTT;
346 }
347
348 namespace {
349 /// Call the destructor for a direct base class.
350 struct CallBaseDtor : EHScopeStack::Cleanup {
351 const CXXRecordDecl *BaseClass;
352 bool BaseIsVirtual;
CallBaseDtor__anone7009f310111::CallBaseDtor353 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
354 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
355
Emit__anone7009f310111::CallBaseDtor356 void Emit(CodeGenFunction &CGF, Flags flags) override {
357 const CXXRecordDecl *DerivedClass =
358 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
359
360 const CXXDestructorDecl *D = BaseClass->getDestructor();
361 llvm::Value *Addr =
362 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
363 DerivedClass, BaseClass,
364 BaseIsVirtual);
365 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
366 /*Delegating=*/false, Addr);
367 }
368 };
369
370 /// A visitor which checks whether an initializer uses 'this' in a
371 /// way which requires the vtable to be properly set.
372 struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
373 typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
374
375 bool UsesThis;
376
DynamicThisUseChecker__anone7009f310111::DynamicThisUseChecker377 DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
378
379 // Black-list all explicit and implicit references to 'this'.
380 //
381 // Do we need to worry about external references to 'this' derived
382 // from arbitrary code? If so, then anything which runs arbitrary
383 // external code might potentially access the vtable.
VisitCXXThisExpr__anone7009f310111::DynamicThisUseChecker384 void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
385 };
386 }
387
BaseInitializerUsesThis(ASTContext & C,const Expr * Init)388 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
389 DynamicThisUseChecker Checker(C);
390 Checker.Visit(const_cast<Expr*>(Init));
391 return Checker.UsesThis;
392 }
393
EmitBaseInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * BaseInit,CXXCtorType CtorType)394 static void EmitBaseInitializer(CodeGenFunction &CGF,
395 const CXXRecordDecl *ClassDecl,
396 CXXCtorInitializer *BaseInit,
397 CXXCtorType CtorType) {
398 assert(BaseInit->isBaseInitializer() &&
399 "Must have base initializer!");
400
401 llvm::Value *ThisPtr = CGF.LoadCXXThis();
402
403 const Type *BaseType = BaseInit->getBaseClass();
404 CXXRecordDecl *BaseClassDecl =
405 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
406
407 bool isBaseVirtual = BaseInit->isBaseVirtual();
408
409 // The base constructor doesn't construct virtual bases.
410 if (CtorType == Ctor_Base && isBaseVirtual)
411 return;
412
413 // If the initializer for the base (other than the constructor
414 // itself) accesses 'this' in any way, we need to initialize the
415 // vtables.
416 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
417 CGF.InitializeVTablePointers(ClassDecl);
418
419 // We can pretend to be a complete class because it only matters for
420 // virtual bases, and we only do virtual bases for complete ctors.
421 llvm::Value *V =
422 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
423 BaseClassDecl,
424 isBaseVirtual);
425 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
426 AggValueSlot AggSlot =
427 AggValueSlot::forAddr(V, Alignment, Qualifiers(),
428 AggValueSlot::IsDestructed,
429 AggValueSlot::DoesNotNeedGCBarriers,
430 AggValueSlot::IsNotAliased);
431
432 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
433
434 if (CGF.CGM.getLangOpts().Exceptions &&
435 !BaseClassDecl->hasTrivialDestructor())
436 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
437 isBaseVirtual);
438 }
439
EmitAggMemberInitializer(CodeGenFunction & CGF,LValue LHS,Expr * Init,llvm::Value * ArrayIndexVar,QualType T,ArrayRef<VarDecl * > ArrayIndexes,unsigned Index)440 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
441 LValue LHS,
442 Expr *Init,
443 llvm::Value *ArrayIndexVar,
444 QualType T,
445 ArrayRef<VarDecl *> ArrayIndexes,
446 unsigned Index) {
447 if (Index == ArrayIndexes.size()) {
448 LValue LV = LHS;
449
450 if (ArrayIndexVar) {
451 // If we have an array index variable, load it and use it as an offset.
452 // Then, increment the value.
453 llvm::Value *Dest = LHS.getAddress();
454 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
455 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
456 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
457 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
458 CGF.Builder.CreateStore(Next, ArrayIndexVar);
459
460 // Update the LValue.
461 LV.setAddress(Dest);
462 CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
463 LV.setAlignment(std::min(Align, LV.getAlignment()));
464 }
465
466 switch (CGF.getEvaluationKind(T)) {
467 case TEK_Scalar:
468 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
469 break;
470 case TEK_Complex:
471 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
472 break;
473 case TEK_Aggregate: {
474 AggValueSlot Slot =
475 AggValueSlot::forLValue(LV,
476 AggValueSlot::IsDestructed,
477 AggValueSlot::DoesNotNeedGCBarriers,
478 AggValueSlot::IsNotAliased);
479
480 CGF.EmitAggExpr(Init, Slot);
481 break;
482 }
483 }
484
485 return;
486 }
487
488 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
489 assert(Array && "Array initialization without the array type?");
490 llvm::Value *IndexVar
491 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
492 assert(IndexVar && "Array index variable not loaded");
493
494 // Initialize this index variable to zero.
495 llvm::Value* Zero
496 = llvm::Constant::getNullValue(
497 CGF.ConvertType(CGF.getContext().getSizeType()));
498 CGF.Builder.CreateStore(Zero, IndexVar);
499
500 // Start the loop with a block that tests the condition.
501 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
502 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
503
504 CGF.EmitBlock(CondBlock);
505
506 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
507 // Generate: if (loop-index < number-of-elements) fall to the loop body,
508 // otherwise, go to the block after the for-loop.
509 uint64_t NumElements = Array->getSize().getZExtValue();
510 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
511 llvm::Value *NumElementsPtr =
512 llvm::ConstantInt::get(Counter->getType(), NumElements);
513 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
514 "isless");
515
516 // If the condition is true, execute the body.
517 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
518
519 CGF.EmitBlock(ForBody);
520 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
521
522 // Inside the loop body recurse to emit the inner loop or, eventually, the
523 // constructor call.
524 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
525 Array->getElementType(), ArrayIndexes, Index + 1);
526
527 CGF.EmitBlock(ContinueBlock);
528
529 // Emit the increment of the loop counter.
530 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
531 Counter = CGF.Builder.CreateLoad(IndexVar);
532 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
533 CGF.Builder.CreateStore(NextVal, IndexVar);
534
535 // Finally, branch back up to the condition for the next iteration.
536 CGF.EmitBranch(CondBlock);
537
538 // Emit the fall-through block.
539 CGF.EmitBlock(AfterFor, true);
540 }
541
EmitMemberInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * MemberInit,const CXXConstructorDecl * Constructor,FunctionArgList & Args)542 static void EmitMemberInitializer(CodeGenFunction &CGF,
543 const CXXRecordDecl *ClassDecl,
544 CXXCtorInitializer *MemberInit,
545 const CXXConstructorDecl *Constructor,
546 FunctionArgList &Args) {
547 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
548 assert(MemberInit->isAnyMemberInitializer() &&
549 "Must have member initializer!");
550 assert(MemberInit->getInit() && "Must have initializer!");
551
552 // non-static data member initializers.
553 FieldDecl *Field = MemberInit->getAnyMember();
554 QualType FieldType = Field->getType();
555
556 llvm::Value *ThisPtr = CGF.LoadCXXThis();
557 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
558 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
559
560 if (MemberInit->isIndirectMemberInitializer()) {
561 // If we are initializing an anonymous union field, drill down to
562 // the field.
563 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
564 for (const auto *I : IndirectField->chain())
565 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
566 FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
567 } else {
568 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
569 }
570
571 // Special case: if we are in a copy or move constructor, and we are copying
572 // an array of PODs or classes with trivial copy constructors, ignore the
573 // AST and perform the copy we know is equivalent.
574 // FIXME: This is hacky at best... if we had a bit more explicit information
575 // in the AST, we could generalize it more easily.
576 const ConstantArrayType *Array
577 = CGF.getContext().getAsConstantArrayType(FieldType);
578 if (Array && Constructor->isDefaulted() &&
579 Constructor->isCopyOrMoveConstructor()) {
580 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
581 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
582 if (BaseElementTy.isPODType(CGF.getContext()) ||
583 (CE && CE->getConstructor()->isTrivial())) {
584 unsigned SrcArgIndex =
585 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
586 llvm::Value *SrcPtr
587 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
588 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
589 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
590
591 // Copy the aggregate.
592 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
593 LHS.isVolatileQualified());
594 return;
595 }
596 }
597
598 ArrayRef<VarDecl *> ArrayIndexes;
599 if (MemberInit->getNumArrayIndices())
600 ArrayIndexes = MemberInit->getArrayIndexes();
601 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
602 }
603
EmitInitializerForField(FieldDecl * Field,LValue LHS,Expr * Init,ArrayRef<VarDecl * > ArrayIndexes)604 void CodeGenFunction::EmitInitializerForField(
605 FieldDecl *Field, LValue LHS, Expr *Init,
606 ArrayRef<VarDecl *> ArrayIndexes) {
607 QualType FieldType = Field->getType();
608 switch (getEvaluationKind(FieldType)) {
609 case TEK_Scalar:
610 if (LHS.isSimple()) {
611 EmitExprAsInit(Init, Field, LHS, false);
612 } else {
613 RValue RHS = RValue::get(EmitScalarExpr(Init));
614 EmitStoreThroughLValue(RHS, LHS);
615 }
616 break;
617 case TEK_Complex:
618 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
619 break;
620 case TEK_Aggregate: {
621 llvm::Value *ArrayIndexVar = nullptr;
622 if (ArrayIndexes.size()) {
623 llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
624
625 // The LHS is a pointer to the first object we'll be constructing, as
626 // a flat array.
627 QualType BaseElementTy = getContext().getBaseElementType(FieldType);
628 llvm::Type *BasePtr = ConvertType(BaseElementTy);
629 BasePtr = llvm::PointerType::getUnqual(BasePtr);
630 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
631 BasePtr);
632 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
633
634 // Create an array index that will be used to walk over all of the
635 // objects we're constructing.
636 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
637 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
638 Builder.CreateStore(Zero, ArrayIndexVar);
639
640
641 // Emit the block variables for the array indices, if any.
642 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
643 EmitAutoVarDecl(*ArrayIndexes[I]);
644 }
645
646 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
647 ArrayIndexes, 0);
648 }
649 }
650
651 // Ensure that we destroy this object if an exception is thrown
652 // later in the constructor.
653 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
654 if (needsEHCleanup(dtorKind))
655 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
656 }
657
658 /// Checks whether the given constructor is a valid subject for the
659 /// complete-to-base constructor delegation optimization, i.e.
660 /// emitting the complete constructor as a simple call to the base
661 /// constructor.
IsConstructorDelegationValid(const CXXConstructorDecl * Ctor)662 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
663
664 // Currently we disable the optimization for classes with virtual
665 // bases because (1) the addresses of parameter variables need to be
666 // consistent across all initializers but (2) the delegate function
667 // call necessarily creates a second copy of the parameter variable.
668 //
669 // The limiting example (purely theoretical AFAIK):
670 // struct A { A(int &c) { c++; } };
671 // struct B : virtual A {
672 // B(int count) : A(count) { printf("%d\n", count); }
673 // };
674 // ...although even this example could in principle be emitted as a
675 // delegation since the address of the parameter doesn't escape.
676 if (Ctor->getParent()->getNumVBases()) {
677 // TODO: white-list trivial vbase initializers. This case wouldn't
678 // be subject to the restrictions below.
679
680 // TODO: white-list cases where:
681 // - there are no non-reference parameters to the constructor
682 // - the initializers don't access any non-reference parameters
683 // - the initializers don't take the address of non-reference
684 // parameters
685 // - etc.
686 // If we ever add any of the above cases, remember that:
687 // - function-try-blocks will always blacklist this optimization
688 // - we need to perform the constructor prologue and cleanup in
689 // EmitConstructorBody.
690
691 return false;
692 }
693
694 // We also disable the optimization for variadic functions because
695 // it's impossible to "re-pass" varargs.
696 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
697 return false;
698
699 // FIXME: Decide if we can do a delegation of a delegating constructor.
700 if (Ctor->isDelegatingConstructor())
701 return false;
702
703 return true;
704 }
705
706 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
707 // to poison the extra field paddings inserted under
708 // -fsanitize-address-field-padding=1|2.
EmitAsanPrologueOrEpilogue(bool Prologue)709 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
710 ASTContext &Context = getContext();
711 const CXXRecordDecl *ClassDecl =
712 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
713 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
714 if (!ClassDecl->mayInsertExtraPadding()) return;
715
716 struct SizeAndOffset {
717 uint64_t Size;
718 uint64_t Offset;
719 };
720
721 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
722 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
723
724 // Populate sizes and offsets of fields.
725 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
726 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
727 SSV[i].Offset =
728 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
729
730 size_t NumFields = 0;
731 for (const auto *Field : ClassDecl->fields()) {
732 const FieldDecl *D = Field;
733 std::pair<CharUnits, CharUnits> FieldInfo =
734 Context.getTypeInfoInChars(D->getType());
735 CharUnits FieldSize = FieldInfo.first;
736 assert(NumFields < SSV.size());
737 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
738 NumFields++;
739 }
740 assert(NumFields == SSV.size());
741 if (SSV.size() <= 1) return;
742
743 // We will insert calls to __asan_* run-time functions.
744 // LLVM AddressSanitizer pass may decide to inline them later.
745 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
746 llvm::FunctionType *FTy =
747 llvm::FunctionType::get(CGM.VoidTy, Args, false);
748 llvm::Constant *F = CGM.CreateRuntimeFunction(
749 FTy, Prologue ? "__asan_poison_intra_object_redzone"
750 : "__asan_unpoison_intra_object_redzone");
751
752 llvm::Value *ThisPtr = LoadCXXThis();
753 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
754 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
755 // For each field check if it has sufficient padding,
756 // if so (un)poison it with a call.
757 for (size_t i = 0; i < SSV.size(); i++) {
758 uint64_t AsanAlignment = 8;
759 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
760 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
761 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
762 if (PoisonSize < AsanAlignment || !SSV[i].Size ||
763 (NextField % AsanAlignment) != 0)
764 continue;
765 Builder.CreateCall2(
766 F, Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
767 Builder.getIntN(PtrSize, PoisonSize));
768 }
769 }
770
771 /// EmitConstructorBody - Emits the body of the current constructor.
EmitConstructorBody(FunctionArgList & Args)772 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
773 EmitAsanPrologueOrEpilogue(true);
774 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
775 CXXCtorType CtorType = CurGD.getCtorType();
776
777 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
778 CtorType == Ctor_Complete) &&
779 "can only generate complete ctor for this ABI");
780
781 // Before we go any further, try the complete->base constructor
782 // delegation optimization.
783 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
784 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
785 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
786 return;
787 }
788
789 const FunctionDecl *Definition = 0;
790 Stmt *Body = Ctor->getBody(Definition);
791 assert(Definition == Ctor && "emitting wrong constructor body");
792
793 // Enter the function-try-block before the constructor prologue if
794 // applicable.
795 bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
796 if (IsTryBody)
797 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
798
799 RegionCounter Cnt = getPGORegionCounter(Body);
800 Cnt.beginRegion(Builder);
801
802 RunCleanupsScope RunCleanups(*this);
803
804 // TODO: in restricted cases, we can emit the vbase initializers of
805 // a complete ctor and then delegate to the base ctor.
806
807 // Emit the constructor prologue, i.e. the base and member
808 // initializers.
809 EmitCtorPrologue(Ctor, CtorType, Args);
810
811 // Emit the body of the statement.
812 if (IsTryBody)
813 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
814 else if (Body)
815 EmitStmt(Body);
816
817 // Emit any cleanup blocks associated with the member or base
818 // initializers, which includes (along the exceptional path) the
819 // destructors for those members and bases that were fully
820 // constructed.
821 RunCleanups.ForceCleanup();
822
823 if (IsTryBody)
824 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
825 }
826
827 namespace {
828 /// RAII object to indicate that codegen is copying the value representation
829 /// instead of the object representation. Useful when copying a struct or
830 /// class which has uninitialized members and we're only performing
831 /// lvalue-to-rvalue conversion on the object but not its members.
832 class CopyingValueRepresentation {
833 public:
CopyingValueRepresentation(CodeGenFunction & CGF)834 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
835 : CGF(CGF), OldSanOpts(CGF.SanOpts) {
836 CGF.SanOpts.set(SanitizerKind::Bool, false);
837 CGF.SanOpts.set(SanitizerKind::Enum, false);
838 }
~CopyingValueRepresentation()839 ~CopyingValueRepresentation() {
840 CGF.SanOpts = OldSanOpts;
841 }
842 private:
843 CodeGenFunction &CGF;
844 SanitizerSet OldSanOpts;
845 };
846 }
847
848 namespace {
849 class FieldMemcpyizer {
850 public:
FieldMemcpyizer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,const VarDecl * SrcRec)851 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
852 const VarDecl *SrcRec)
853 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
854 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
855 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
856 LastFieldOffset(0), LastAddedFieldIndex(0) {}
857
isMemcpyableField(FieldDecl * F) const858 bool isMemcpyableField(FieldDecl *F) const {
859 // Never memcpy fields when we are adding poisoned paddings.
860 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
861 return false;
862 Qualifiers Qual = F->getType().getQualifiers();
863 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
864 return false;
865 return true;
866 }
867
addMemcpyableField(FieldDecl * F)868 void addMemcpyableField(FieldDecl *F) {
869 if (!FirstField)
870 addInitialField(F);
871 else
872 addNextField(F);
873 }
874
getMemcpySize(uint64_t FirstByteOffset) const875 CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
876 unsigned LastFieldSize =
877 LastField->isBitField() ?
878 LastField->getBitWidthValue(CGF.getContext()) :
879 CGF.getContext().getTypeSize(LastField->getType());
880 uint64_t MemcpySizeBits =
881 LastFieldOffset + LastFieldSize - FirstByteOffset +
882 CGF.getContext().getCharWidth() - 1;
883 CharUnits MemcpySize =
884 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
885 return MemcpySize;
886 }
887
emitMemcpy()888 void emitMemcpy() {
889 // Give the subclass a chance to bail out if it feels the memcpy isn't
890 // worth it (e.g. Hasn't aggregated enough data).
891 if (!FirstField) {
892 return;
893 }
894
895 CharUnits Alignment;
896
897 uint64_t FirstByteOffset;
898 if (FirstField->isBitField()) {
899 const CGRecordLayout &RL =
900 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
901 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
902 Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
903 // FirstFieldOffset is not appropriate for bitfields,
904 // it won't tell us what the storage offset should be and thus might not
905 // be properly aligned.
906 //
907 // Instead calculate the storage offset using the offset of the field in
908 // the struct type.
909 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
910 FirstByteOffset =
911 DL.getStructLayout(RL.getLLVMType())
912 ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField));
913 } else {
914 Alignment = CGF.getContext().getDeclAlign(FirstField);
915 FirstByteOffset = FirstFieldOffset;
916 }
917
918 assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) %
919 Alignment) == 0 && "Bad field alignment.");
920
921 CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
922 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
923 llvm::Value *ThisPtr = CGF.LoadCXXThis();
924 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
925 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
926 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
927 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
928 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
929
930 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
931 Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
932 MemcpySize, Alignment);
933 reset();
934 }
935
reset()936 void reset() {
937 FirstField = nullptr;
938 }
939
940 protected:
941 CodeGenFunction &CGF;
942 const CXXRecordDecl *ClassDecl;
943
944 private:
945
emitMemcpyIR(llvm::Value * DestPtr,llvm::Value * SrcPtr,CharUnits Size,CharUnits Alignment)946 void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
947 CharUnits Size, CharUnits Alignment) {
948 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
949 llvm::Type *DBP =
950 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
951 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
952
953 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
954 llvm::Type *SBP =
955 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
956 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
957
958 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
959 Alignment.getQuantity());
960 }
961
addInitialField(FieldDecl * F)962 void addInitialField(FieldDecl *F) {
963 FirstField = F;
964 LastField = F;
965 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
966 LastFieldOffset = FirstFieldOffset;
967 LastAddedFieldIndex = F->getFieldIndex();
968 return;
969 }
970
addNextField(FieldDecl * F)971 void addNextField(FieldDecl *F) {
972 // For the most part, the following invariant will hold:
973 // F->getFieldIndex() == LastAddedFieldIndex + 1
974 // The one exception is that Sema won't add a copy-initializer for an
975 // unnamed bitfield, which will show up here as a gap in the sequence.
976 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
977 "Cannot aggregate fields out of order.");
978 LastAddedFieldIndex = F->getFieldIndex();
979
980 // The 'first' and 'last' fields are chosen by offset, rather than field
981 // index. This allows the code to support bitfields, as well as regular
982 // fields.
983 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
984 if (FOffset < FirstFieldOffset) {
985 FirstField = F;
986 FirstFieldOffset = FOffset;
987 } else if (FOffset > LastFieldOffset) {
988 LastField = F;
989 LastFieldOffset = FOffset;
990 }
991 }
992
993 const VarDecl *SrcRec;
994 const ASTRecordLayout &RecLayout;
995 FieldDecl *FirstField;
996 FieldDecl *LastField;
997 uint64_t FirstFieldOffset, LastFieldOffset;
998 unsigned LastAddedFieldIndex;
999 };
1000
1001 class ConstructorMemcpyizer : public FieldMemcpyizer {
1002 private:
1003
1004 /// Get source argument for copy constructor. Returns null if not a copy
1005 /// constructor.
getTrivialCopySource(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1006 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1007 const CXXConstructorDecl *CD,
1008 FunctionArgList &Args) {
1009 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1010 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1011 return nullptr;
1012 }
1013
1014 // Returns true if a CXXCtorInitializer represents a member initialization
1015 // that can be rolled into a memcpy.
isMemberInitMemcpyable(CXXCtorInitializer * MemberInit) const1016 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1017 if (!MemcpyableCtor)
1018 return false;
1019 FieldDecl *Field = MemberInit->getMember();
1020 assert(Field && "No field for member init.");
1021 QualType FieldType = Field->getType();
1022 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1023
1024 // Bail out on non-POD, not-trivially-constructable members.
1025 if (!(CE && CE->getConstructor()->isTrivial()) &&
1026 !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1027 FieldType->isReferenceType()))
1028 return false;
1029
1030 // Bail out on volatile fields.
1031 if (!isMemcpyableField(Field))
1032 return false;
1033
1034 // Otherwise we're good.
1035 return true;
1036 }
1037
1038 public:
ConstructorMemcpyizer(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1039 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1040 FunctionArgList &Args)
1041 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1042 ConstructorDecl(CD),
1043 MemcpyableCtor(CD->isDefaulted() &&
1044 CD->isCopyOrMoveConstructor() &&
1045 CGF.getLangOpts().getGC() == LangOptions::NonGC),
1046 Args(Args) { }
1047
addMemberInitializer(CXXCtorInitializer * MemberInit)1048 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1049 if (isMemberInitMemcpyable(MemberInit)) {
1050 AggregatedInits.push_back(MemberInit);
1051 addMemcpyableField(MemberInit->getMember());
1052 } else {
1053 emitAggregatedInits();
1054 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1055 ConstructorDecl, Args);
1056 }
1057 }
1058
emitAggregatedInits()1059 void emitAggregatedInits() {
1060 if (AggregatedInits.size() <= 1) {
1061 // This memcpy is too small to be worthwhile. Fall back on default
1062 // codegen.
1063 if (!AggregatedInits.empty()) {
1064 CopyingValueRepresentation CVR(CGF);
1065 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1066 AggregatedInits[0], ConstructorDecl, Args);
1067 }
1068 reset();
1069 return;
1070 }
1071
1072 pushEHDestructors();
1073 emitMemcpy();
1074 AggregatedInits.clear();
1075 }
1076
pushEHDestructors()1077 void pushEHDestructors() {
1078 llvm::Value *ThisPtr = CGF.LoadCXXThis();
1079 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1080 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
1081
1082 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1083 QualType FieldType = AggregatedInits[i]->getMember()->getType();
1084 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1085 if (CGF.needsEHCleanup(dtorKind))
1086 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
1087 }
1088 }
1089
finish()1090 void finish() {
1091 emitAggregatedInits();
1092 }
1093
1094 private:
1095 const CXXConstructorDecl *ConstructorDecl;
1096 bool MemcpyableCtor;
1097 FunctionArgList &Args;
1098 SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1099 };
1100
1101 class AssignmentMemcpyizer : public FieldMemcpyizer {
1102 private:
1103
1104 // Returns the memcpyable field copied by the given statement, if one
1105 // exists. Otherwise returns null.
getMemcpyableField(Stmt * S)1106 FieldDecl *getMemcpyableField(Stmt *S) {
1107 if (!AssignmentsMemcpyable)
1108 return nullptr;
1109 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1110 // Recognise trivial assignments.
1111 if (BO->getOpcode() != BO_Assign)
1112 return nullptr;
1113 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1114 if (!ME)
1115 return nullptr;
1116 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1117 if (!Field || !isMemcpyableField(Field))
1118 return nullptr;
1119 Stmt *RHS = BO->getRHS();
1120 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1121 RHS = EC->getSubExpr();
1122 if (!RHS)
1123 return nullptr;
1124 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1125 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1126 return nullptr;
1127 return Field;
1128 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1129 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1130 if (!(MD && (MD->isCopyAssignmentOperator() ||
1131 MD->isMoveAssignmentOperator()) &&
1132 MD->isTrivial()))
1133 return nullptr;
1134 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1135 if (!IOA)
1136 return nullptr;
1137 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1138 if (!Field || !isMemcpyableField(Field))
1139 return nullptr;
1140 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1141 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1142 return nullptr;
1143 return Field;
1144 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1145 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1146 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1147 return nullptr;
1148 Expr *DstPtr = CE->getArg(0);
1149 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1150 DstPtr = DC->getSubExpr();
1151 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1152 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1153 return nullptr;
1154 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1155 if (!ME)
1156 return nullptr;
1157 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1158 if (!Field || !isMemcpyableField(Field))
1159 return nullptr;
1160 Expr *SrcPtr = CE->getArg(1);
1161 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1162 SrcPtr = SC->getSubExpr();
1163 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1164 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1165 return nullptr;
1166 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1167 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1168 return nullptr;
1169 return Field;
1170 }
1171
1172 return nullptr;
1173 }
1174
1175 bool AssignmentsMemcpyable;
1176 SmallVector<Stmt*, 16> AggregatedStmts;
1177
1178 public:
1179
AssignmentMemcpyizer(CodeGenFunction & CGF,const CXXMethodDecl * AD,FunctionArgList & Args)1180 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1181 FunctionArgList &Args)
1182 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1183 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1184 assert(Args.size() == 2);
1185 }
1186
emitAssignment(Stmt * S)1187 void emitAssignment(Stmt *S) {
1188 FieldDecl *F = getMemcpyableField(S);
1189 if (F) {
1190 addMemcpyableField(F);
1191 AggregatedStmts.push_back(S);
1192 } else {
1193 emitAggregatedStmts();
1194 CGF.EmitStmt(S);
1195 }
1196 }
1197
emitAggregatedStmts()1198 void emitAggregatedStmts() {
1199 if (AggregatedStmts.size() <= 1) {
1200 if (!AggregatedStmts.empty()) {
1201 CopyingValueRepresentation CVR(CGF);
1202 CGF.EmitStmt(AggregatedStmts[0]);
1203 }
1204 reset();
1205 }
1206
1207 emitMemcpy();
1208 AggregatedStmts.clear();
1209 }
1210
finish()1211 void finish() {
1212 emitAggregatedStmts();
1213 }
1214 };
1215
1216 }
1217
1218 /// EmitCtorPrologue - This routine generates necessary code to initialize
1219 /// base classes and non-static data members belonging to this constructor.
EmitCtorPrologue(const CXXConstructorDecl * CD,CXXCtorType CtorType,FunctionArgList & Args)1220 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1221 CXXCtorType CtorType,
1222 FunctionArgList &Args) {
1223 if (CD->isDelegatingConstructor())
1224 return EmitDelegatingCXXConstructorCall(CD, Args);
1225
1226 const CXXRecordDecl *ClassDecl = CD->getParent();
1227
1228 CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1229 E = CD->init_end();
1230
1231 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1232 if (ClassDecl->getNumVBases() &&
1233 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1234 // The ABIs that don't have constructor variants need to put a branch
1235 // before the virtual base initialization code.
1236 BaseCtorContinueBB =
1237 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1238 assert(BaseCtorContinueBB);
1239 }
1240
1241 // Virtual base initializers first.
1242 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1243 EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1244 }
1245
1246 if (BaseCtorContinueBB) {
1247 // Complete object handler should continue to the remaining initializers.
1248 Builder.CreateBr(BaseCtorContinueBB);
1249 EmitBlock(BaseCtorContinueBB);
1250 }
1251
1252 // Then, non-virtual base initializers.
1253 for (; B != E && (*B)->isBaseInitializer(); B++) {
1254 assert(!(*B)->isBaseVirtual());
1255 EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1256 }
1257
1258 InitializeVTablePointers(ClassDecl);
1259
1260 // And finally, initialize class members.
1261 FieldConstructionScope FCS(*this, CXXThisValue);
1262 ConstructorMemcpyizer CM(*this, CD, Args);
1263 for (; B != E; B++) {
1264 CXXCtorInitializer *Member = (*B);
1265 assert(!Member->isBaseInitializer());
1266 assert(Member->isAnyMemberInitializer() &&
1267 "Delegating initializer on non-delegating constructor");
1268 CM.addMemberInitializer(Member);
1269 }
1270 CM.finish();
1271 }
1272
1273 static bool
1274 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1275
1276 static bool
HasTrivialDestructorBody(ASTContext & Context,const CXXRecordDecl * BaseClassDecl,const CXXRecordDecl * MostDerivedClassDecl)1277 HasTrivialDestructorBody(ASTContext &Context,
1278 const CXXRecordDecl *BaseClassDecl,
1279 const CXXRecordDecl *MostDerivedClassDecl)
1280 {
1281 // If the destructor is trivial we don't have to check anything else.
1282 if (BaseClassDecl->hasTrivialDestructor())
1283 return true;
1284
1285 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1286 return false;
1287
1288 // Check fields.
1289 for (const auto *Field : BaseClassDecl->fields())
1290 if (!FieldHasTrivialDestructorBody(Context, Field))
1291 return false;
1292
1293 // Check non-virtual bases.
1294 for (const auto &I : BaseClassDecl->bases()) {
1295 if (I.isVirtual())
1296 continue;
1297
1298 const CXXRecordDecl *NonVirtualBase =
1299 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1300 if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1301 MostDerivedClassDecl))
1302 return false;
1303 }
1304
1305 if (BaseClassDecl == MostDerivedClassDecl) {
1306 // Check virtual bases.
1307 for (const auto &I : BaseClassDecl->vbases()) {
1308 const CXXRecordDecl *VirtualBase =
1309 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1310 if (!HasTrivialDestructorBody(Context, VirtualBase,
1311 MostDerivedClassDecl))
1312 return false;
1313 }
1314 }
1315
1316 return true;
1317 }
1318
1319 static bool
FieldHasTrivialDestructorBody(ASTContext & Context,const FieldDecl * Field)1320 FieldHasTrivialDestructorBody(ASTContext &Context,
1321 const FieldDecl *Field)
1322 {
1323 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1324
1325 const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1326 if (!RT)
1327 return true;
1328
1329 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1330 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1331 }
1332
1333 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1334 /// any vtable pointers before calling this destructor.
CanSkipVTablePointerInitialization(ASTContext & Context,const CXXDestructorDecl * Dtor)1335 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1336 const CXXDestructorDecl *Dtor) {
1337 if (!Dtor->hasTrivialBody())
1338 return false;
1339
1340 // Check the fields.
1341 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1342 for (const auto *Field : ClassDecl->fields())
1343 if (!FieldHasTrivialDestructorBody(Context, Field))
1344 return false;
1345
1346 return true;
1347 }
1348
1349 /// EmitDestructorBody - Emits the body of the current destructor.
EmitDestructorBody(FunctionArgList & Args)1350 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1351 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1352 CXXDtorType DtorType = CurGD.getDtorType();
1353
1354 // The call to operator delete in a deleting destructor happens
1355 // outside of the function-try-block, which means it's always
1356 // possible to delegate the destructor body to the complete
1357 // destructor. Do so.
1358 if (DtorType == Dtor_Deleting) {
1359 EnterDtorCleanups(Dtor, Dtor_Deleting);
1360 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1361 /*Delegating=*/false, LoadCXXThis());
1362 PopCleanupBlock();
1363 return;
1364 }
1365
1366 Stmt *Body = Dtor->getBody();
1367
1368 // If the body is a function-try-block, enter the try before
1369 // anything else.
1370 bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1371 if (isTryBody)
1372 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1373 EmitAsanPrologueOrEpilogue(false);
1374
1375 // Enter the epilogue cleanups.
1376 RunCleanupsScope DtorEpilogue(*this);
1377
1378 // If this is the complete variant, just invoke the base variant;
1379 // the epilogue will destruct the virtual bases. But we can't do
1380 // this optimization if the body is a function-try-block, because
1381 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1382 // always delegate because we might not have a definition in this TU.
1383 switch (DtorType) {
1384 case Dtor_Comdat:
1385 llvm_unreachable("not expecting a COMDAT");
1386
1387 case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1388
1389 case Dtor_Complete:
1390 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1391 "can't emit a dtor without a body for non-Microsoft ABIs");
1392
1393 // Enter the cleanup scopes for virtual bases.
1394 EnterDtorCleanups(Dtor, Dtor_Complete);
1395
1396 if (!isTryBody) {
1397 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1398 /*Delegating=*/false, LoadCXXThis());
1399 break;
1400 }
1401 // Fallthrough: act like we're in the base variant.
1402
1403 case Dtor_Base:
1404 assert(Body);
1405
1406 RegionCounter Cnt = getPGORegionCounter(Body);
1407 Cnt.beginRegion(Builder);
1408
1409 // Enter the cleanup scopes for fields and non-virtual bases.
1410 EnterDtorCleanups(Dtor, Dtor_Base);
1411
1412 // Initialize the vtable pointers before entering the body.
1413 if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1414 InitializeVTablePointers(Dtor->getParent());
1415
1416 if (isTryBody)
1417 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1418 else if (Body)
1419 EmitStmt(Body);
1420 else {
1421 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1422 // nothing to do besides what's in the epilogue
1423 }
1424 // -fapple-kext must inline any call to this dtor into
1425 // the caller's body.
1426 if (getLangOpts().AppleKext)
1427 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1428 break;
1429 }
1430
1431 // Jump out through the epilogue cleanups.
1432 DtorEpilogue.ForceCleanup();
1433
1434 // Exit the try if applicable.
1435 if (isTryBody)
1436 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1437 }
1438
emitImplicitAssignmentOperatorBody(FunctionArgList & Args)1439 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1440 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1441 const Stmt *RootS = AssignOp->getBody();
1442 assert(isa<CompoundStmt>(RootS) &&
1443 "Body of an implicit assignment operator should be compound stmt.");
1444 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1445
1446 LexicalScope Scope(*this, RootCS->getSourceRange());
1447
1448 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1449 for (auto *I : RootCS->body())
1450 AM.emitAssignment(I);
1451 AM.finish();
1452 }
1453
1454 namespace {
1455 /// Call the operator delete associated with the current destructor.
1456 struct CallDtorDelete : EHScopeStack::Cleanup {
CallDtorDelete__anone7009f310411::CallDtorDelete1457 CallDtorDelete() {}
1458
Emit__anone7009f310411::CallDtorDelete1459 void Emit(CodeGenFunction &CGF, Flags flags) override {
1460 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1461 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1462 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1463 CGF.getContext().getTagDeclType(ClassDecl));
1464 }
1465 };
1466
1467 struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1468 llvm::Value *ShouldDeleteCondition;
1469 public:
CallDtorDeleteConditional__anone7009f310411::CallDtorDeleteConditional1470 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1471 : ShouldDeleteCondition(ShouldDeleteCondition) {
1472 assert(ShouldDeleteCondition != nullptr);
1473 }
1474
Emit__anone7009f310411::CallDtorDeleteConditional1475 void Emit(CodeGenFunction &CGF, Flags flags) override {
1476 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1477 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1478 llvm::Value *ShouldCallDelete
1479 = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1480 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1481
1482 CGF.EmitBlock(callDeleteBB);
1483 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1484 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1485 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1486 CGF.getContext().getTagDeclType(ClassDecl));
1487 CGF.Builder.CreateBr(continueBB);
1488
1489 CGF.EmitBlock(continueBB);
1490 }
1491 };
1492
1493 class DestroyField : public EHScopeStack::Cleanup {
1494 const FieldDecl *field;
1495 CodeGenFunction::Destroyer *destroyer;
1496 bool useEHCleanupForArray;
1497
1498 public:
DestroyField(const FieldDecl * field,CodeGenFunction::Destroyer * destroyer,bool useEHCleanupForArray)1499 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1500 bool useEHCleanupForArray)
1501 : field(field), destroyer(destroyer),
1502 useEHCleanupForArray(useEHCleanupForArray) {}
1503
Emit(CodeGenFunction & CGF,Flags flags)1504 void Emit(CodeGenFunction &CGF, Flags flags) override {
1505 // Find the address of the field.
1506 llvm::Value *thisValue = CGF.LoadCXXThis();
1507 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1508 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1509 LValue LV = CGF.EmitLValueForField(ThisLV, field);
1510 assert(LV.isSimple());
1511
1512 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1513 flags.isForNormalCleanup() && useEHCleanupForArray);
1514 }
1515 };
1516 }
1517
1518 /// \brief Emit all code that comes at the end of class's
1519 /// destructor. This is to call destructors on members and base classes
1520 /// in reverse order of their construction.
EnterDtorCleanups(const CXXDestructorDecl * DD,CXXDtorType DtorType)1521 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1522 CXXDtorType DtorType) {
1523 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1524 "Should not emit dtor epilogue for non-exported trivial dtor!");
1525
1526 // The deleting-destructor phase just needs to call the appropriate
1527 // operator delete that Sema picked up.
1528 if (DtorType == Dtor_Deleting) {
1529 assert(DD->getOperatorDelete() &&
1530 "operator delete missing - EnterDtorCleanups");
1531 if (CXXStructorImplicitParamValue) {
1532 // If there is an implicit param to the deleting dtor, it's a boolean
1533 // telling whether we should call delete at the end of the dtor.
1534 EHStack.pushCleanup<CallDtorDeleteConditional>(
1535 NormalAndEHCleanup, CXXStructorImplicitParamValue);
1536 } else {
1537 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1538 }
1539 return;
1540 }
1541
1542 const CXXRecordDecl *ClassDecl = DD->getParent();
1543
1544 // Unions have no bases and do not call field destructors.
1545 if (ClassDecl->isUnion())
1546 return;
1547
1548 // The complete-destructor phase just destructs all the virtual bases.
1549 if (DtorType == Dtor_Complete) {
1550
1551 // We push them in the forward order so that they'll be popped in
1552 // the reverse order.
1553 for (const auto &Base : ClassDecl->vbases()) {
1554 CXXRecordDecl *BaseClassDecl
1555 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1556
1557 // Ignore trivial destructors.
1558 if (BaseClassDecl->hasTrivialDestructor())
1559 continue;
1560
1561 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1562 BaseClassDecl,
1563 /*BaseIsVirtual*/ true);
1564 }
1565
1566 return;
1567 }
1568
1569 assert(DtorType == Dtor_Base);
1570
1571 // Destroy non-virtual bases.
1572 for (const auto &Base : ClassDecl->bases()) {
1573 // Ignore virtual bases.
1574 if (Base.isVirtual())
1575 continue;
1576
1577 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1578
1579 // Ignore trivial destructors.
1580 if (BaseClassDecl->hasTrivialDestructor())
1581 continue;
1582
1583 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1584 BaseClassDecl,
1585 /*BaseIsVirtual*/ false);
1586 }
1587
1588 // Destroy direct fields.
1589 for (const auto *Field : ClassDecl->fields()) {
1590 QualType type = Field->getType();
1591 QualType::DestructionKind dtorKind = type.isDestructedType();
1592 if (!dtorKind) continue;
1593
1594 // Anonymous union members do not have their destructors called.
1595 const RecordType *RT = type->getAsUnionType();
1596 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1597
1598 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1599 EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1600 getDestroyer(dtorKind),
1601 cleanupKind & EHCleanup);
1602 }
1603 }
1604
1605 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1606 /// constructor for each of several members of an array.
1607 ///
1608 /// \param ctor the constructor to call for each element
1609 /// \param arrayType the type of the array to initialize
1610 /// \param arrayBegin an arrayType*
1611 /// \param zeroInitialize true if each element should be
1612 /// zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,const ConstantArrayType * arrayType,llvm::Value * arrayBegin,const CXXConstructExpr * E,bool zeroInitialize)1613 void CodeGenFunction::EmitCXXAggrConstructorCall(
1614 const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1615 llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1616 QualType elementType;
1617 llvm::Value *numElements =
1618 emitArrayLength(arrayType, elementType, arrayBegin);
1619
1620 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1621 }
1622
1623 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1624 /// constructor for each of several members of an array.
1625 ///
1626 /// \param ctor the constructor to call for each element
1627 /// \param numElements the number of elements in the array;
1628 /// may be zero
1629 /// \param arrayBegin a T*, where T is the type constructed by ctor
1630 /// \param zeroInitialize true if each element should be
1631 /// zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,llvm::Value * numElements,llvm::Value * arrayBegin,const CXXConstructExpr * E,bool zeroInitialize)1632 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1633 llvm::Value *numElements,
1634 llvm::Value *arrayBegin,
1635 const CXXConstructExpr *E,
1636 bool zeroInitialize) {
1637
1638 // It's legal for numElements to be zero. This can happen both
1639 // dynamically, because x can be zero in 'new A[x]', and statically,
1640 // because of GCC extensions that permit zero-length arrays. There
1641 // are probably legitimate places where we could assume that this
1642 // doesn't happen, but it's not clear that it's worth it.
1643 llvm::BranchInst *zeroCheckBranch = nullptr;
1644
1645 // Optimize for a constant count.
1646 llvm::ConstantInt *constantCount
1647 = dyn_cast<llvm::ConstantInt>(numElements);
1648 if (constantCount) {
1649 // Just skip out if the constant count is zero.
1650 if (constantCount->isZero()) return;
1651
1652 // Otherwise, emit the check.
1653 } else {
1654 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1655 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1656 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1657 EmitBlock(loopBB);
1658 }
1659
1660 // Find the end of the array.
1661 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1662 "arrayctor.end");
1663
1664 // Enter the loop, setting up a phi for the current location to initialize.
1665 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1666 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1667 EmitBlock(loopBB);
1668 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1669 "arrayctor.cur");
1670 cur->addIncoming(arrayBegin, entryBB);
1671
1672 // Inside the loop body, emit the constructor call on the array element.
1673
1674 QualType type = getContext().getTypeDeclType(ctor->getParent());
1675
1676 // Zero initialize the storage, if requested.
1677 if (zeroInitialize)
1678 EmitNullInitialization(cur, type);
1679
1680 // C++ [class.temporary]p4:
1681 // There are two contexts in which temporaries are destroyed at a different
1682 // point than the end of the full-expression. The first context is when a
1683 // default constructor is called to initialize an element of an array.
1684 // If the constructor has one or more default arguments, the destruction of
1685 // every temporary created in a default argument expression is sequenced
1686 // before the construction of the next array element, if any.
1687
1688 {
1689 RunCleanupsScope Scope(*this);
1690
1691 // Evaluate the constructor and its arguments in a regular
1692 // partial-destroy cleanup.
1693 if (getLangOpts().Exceptions &&
1694 !ctor->getParent()->hasTrivialDestructor()) {
1695 Destroyer *destroyer = destroyCXXObject;
1696 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1697 }
1698
1699 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1700 /*Delegating=*/false, cur, E);
1701 }
1702
1703 // Go to the next element.
1704 llvm::Value *next =
1705 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1706 "arrayctor.next");
1707 cur->addIncoming(next, Builder.GetInsertBlock());
1708
1709 // Check whether that's the end of the loop.
1710 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1711 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1712 Builder.CreateCondBr(done, contBB, loopBB);
1713
1714 // Patch the earlier check to skip over the loop.
1715 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1716
1717 EmitBlock(contBB);
1718 }
1719
destroyCXXObject(CodeGenFunction & CGF,llvm::Value * addr,QualType type)1720 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1721 llvm::Value *addr,
1722 QualType type) {
1723 const RecordType *rtype = type->castAs<RecordType>();
1724 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1725 const CXXDestructorDecl *dtor = record->getDestructor();
1726 assert(!dtor->isTrivial());
1727 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1728 /*Delegating=*/false, addr);
1729 }
1730
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This,const CXXConstructExpr * E)1731 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1732 CXXCtorType Type,
1733 bool ForVirtualBase,
1734 bool Delegating, llvm::Value *This,
1735 const CXXConstructExpr *E) {
1736 // If this is a trivial constructor, just emit what's needed.
1737 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) {
1738 if (E->getNumArgs() == 0) {
1739 // Trivial default constructor, no codegen required.
1740 assert(D->isDefaultConstructor() &&
1741 "trivial 0-arg ctor not a default ctor");
1742 return;
1743 }
1744
1745 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1746 assert(D->isCopyOrMoveConstructor() &&
1747 "trivial 1-arg ctor not a copy/move ctor");
1748
1749 const Expr *Arg = E->getArg(0);
1750 QualType Ty = Arg->getType();
1751 llvm::Value *Src = EmitLValue(Arg).getAddress();
1752 EmitAggregateCopy(This, Src, Ty);
1753 return;
1754 }
1755
1756 // C++11 [class.mfct.non-static]p2:
1757 // If a non-static member function of a class X is called for an object that
1758 // is not of type X, or of a type derived from X, the behavior is undefined.
1759 // FIXME: Provide a source location here.
1760 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
1761 getContext().getRecordType(D->getParent()));
1762
1763 CallArgList Args;
1764
1765 // Push the this ptr.
1766 Args.add(RValue::get(This), D->getThisType(getContext()));
1767
1768 // Add the rest of the user-supplied arguments.
1769 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1770 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor());
1771
1772 // Insert any ABI-specific implicit constructor arguments.
1773 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
1774 *this, D, Type, ForVirtualBase, Delegating, Args);
1775
1776 // Emit the call.
1777 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
1778 const CGFunctionInfo &Info =
1779 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
1780 EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
1781 }
1782
1783 void
EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl * D,llvm::Value * This,llvm::Value * Src,const CXXConstructExpr * E)1784 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1785 llvm::Value *This, llvm::Value *Src,
1786 const CXXConstructExpr *E) {
1787 if (D->isTrivial() &&
1788 !D->getParent()->mayInsertExtraPadding()) {
1789 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1790 assert(D->isCopyOrMoveConstructor() &&
1791 "trivial 1-arg ctor not a copy/move ctor");
1792 EmitAggregateCopy(This, Src, E->arg_begin()->getType());
1793 return;
1794 }
1795 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
1796 assert(D->isInstance() &&
1797 "Trying to emit a member call expr on a static method!");
1798
1799 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1800
1801 CallArgList Args;
1802
1803 // Push the this ptr.
1804 Args.add(RValue::get(This), D->getThisType(getContext()));
1805
1806 // Push the src ptr.
1807 QualType QT = *(FPT->param_type_begin());
1808 llvm::Type *t = CGM.getTypes().ConvertType(QT);
1809 Src = Builder.CreateBitCast(Src, t);
1810 Args.add(RValue::get(Src), QT);
1811
1812 // Skip over first argument (Src).
1813 EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(),
1814 /*ParamsToSkip*/ 1);
1815
1816 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1817 Callee, ReturnValueSlot(), Args, D);
1818 }
1819
1820 void
EmitDelegateCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,const FunctionArgList & Args,SourceLocation Loc)1821 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1822 CXXCtorType CtorType,
1823 const FunctionArgList &Args,
1824 SourceLocation Loc) {
1825 CallArgList DelegateArgs;
1826
1827 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1828 assert(I != E && "no parameters to constructor");
1829
1830 // this
1831 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1832 ++I;
1833
1834 // vtt
1835 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1836 /*ForVirtualBase=*/false,
1837 /*Delegating=*/true)) {
1838 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1839 DelegateArgs.add(RValue::get(VTT), VoidPP);
1840
1841 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1842 assert(I != E && "cannot skip vtt parameter, already done with args");
1843 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1844 ++I;
1845 }
1846 }
1847
1848 // Explicit arguments.
1849 for (; I != E; ++I) {
1850 const VarDecl *param = *I;
1851 // FIXME: per-argument source location
1852 EmitDelegateCallArg(DelegateArgs, param, Loc);
1853 }
1854
1855 llvm::Value *Callee =
1856 CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
1857 EmitCall(CGM.getTypes()
1858 .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
1859 Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1860 }
1861
1862 namespace {
1863 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1864 const CXXDestructorDecl *Dtor;
1865 llvm::Value *Addr;
1866 CXXDtorType Type;
1867
CallDelegatingCtorDtor__anone7009f310511::CallDelegatingCtorDtor1868 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1869 CXXDtorType Type)
1870 : Dtor(D), Addr(Addr), Type(Type) {}
1871
Emit__anone7009f310511::CallDelegatingCtorDtor1872 void Emit(CodeGenFunction &CGF, Flags flags) override {
1873 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1874 /*Delegating=*/true, Addr);
1875 }
1876 };
1877 }
1878
1879 void
EmitDelegatingCXXConstructorCall(const CXXConstructorDecl * Ctor,const FunctionArgList & Args)1880 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1881 const FunctionArgList &Args) {
1882 assert(Ctor->isDelegatingConstructor());
1883
1884 llvm::Value *ThisPtr = LoadCXXThis();
1885
1886 QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1887 CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1888 AggValueSlot AggSlot =
1889 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1890 AggValueSlot::IsDestructed,
1891 AggValueSlot::DoesNotNeedGCBarriers,
1892 AggValueSlot::IsNotAliased);
1893
1894 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1895
1896 const CXXRecordDecl *ClassDecl = Ctor->getParent();
1897 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1898 CXXDtorType Type =
1899 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1900
1901 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1902 ClassDecl->getDestructor(),
1903 ThisPtr, Type);
1904 }
1905 }
1906
EmitCXXDestructorCall(const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This)1907 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1908 CXXDtorType Type,
1909 bool ForVirtualBase,
1910 bool Delegating,
1911 llvm::Value *This) {
1912 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
1913 Delegating, This);
1914 }
1915
1916 namespace {
1917 struct CallLocalDtor : EHScopeStack::Cleanup {
1918 const CXXDestructorDecl *Dtor;
1919 llvm::Value *Addr;
1920
CallLocalDtor__anone7009f310611::CallLocalDtor1921 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1922 : Dtor(D), Addr(Addr) {}
1923
Emit__anone7009f310611::CallLocalDtor1924 void Emit(CodeGenFunction &CGF, Flags flags) override {
1925 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1926 /*ForVirtualBase=*/false,
1927 /*Delegating=*/false, Addr);
1928 }
1929 };
1930 }
1931
PushDestructorCleanup(const CXXDestructorDecl * D,llvm::Value * Addr)1932 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1933 llvm::Value *Addr) {
1934 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1935 }
1936
PushDestructorCleanup(QualType T,llvm::Value * Addr)1937 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1938 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1939 if (!ClassDecl) return;
1940 if (ClassDecl->hasTrivialDestructor()) return;
1941
1942 const CXXDestructorDecl *D = ClassDecl->getDestructor();
1943 assert(D && D->isUsed() && "destructor not marked as used!");
1944 PushDestructorCleanup(D, Addr);
1945 }
1946
1947 void
InitializeVTablePointer(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,const CXXRecordDecl * VTableClass)1948 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1949 const CXXRecordDecl *NearestVBase,
1950 CharUnits OffsetFromNearestVBase,
1951 const CXXRecordDecl *VTableClass) {
1952 // Compute the address point.
1953 bool NeedsVirtualOffset;
1954 llvm::Value *VTableAddressPoint =
1955 CGM.getCXXABI().getVTableAddressPointInStructor(
1956 *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
1957 if (!VTableAddressPoint)
1958 return;
1959
1960 // Compute where to store the address point.
1961 llvm::Value *VirtualOffset = nullptr;
1962 CharUnits NonVirtualOffset = CharUnits::Zero();
1963
1964 if (NeedsVirtualOffset) {
1965 // We need to use the virtual base offset offset because the virtual base
1966 // might have a different offset in the most derived class.
1967 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
1968 LoadCXXThis(),
1969 VTableClass,
1970 NearestVBase);
1971 NonVirtualOffset = OffsetFromNearestVBase;
1972 } else {
1973 // We can just use the base offset in the complete class.
1974 NonVirtualOffset = Base.getBaseOffset();
1975 }
1976
1977 // Apply the offsets.
1978 llvm::Value *VTableField = LoadCXXThis();
1979
1980 if (!NonVirtualOffset.isZero() || VirtualOffset)
1981 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1982 NonVirtualOffset,
1983 VirtualOffset);
1984
1985 // Finally, store the address point. Use the same LLVM types as the field to
1986 // support optimization.
1987 llvm::Type *VTablePtrTy =
1988 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
1989 ->getPointerTo()
1990 ->getPointerTo();
1991 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
1992 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
1993 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1994 CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1995 }
1996
1997 void
InitializeVTablePointers(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,bool BaseIsNonVirtualPrimaryBase,const CXXRecordDecl * VTableClass,VisitedVirtualBasesSetTy & VBases)1998 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1999 const CXXRecordDecl *NearestVBase,
2000 CharUnits OffsetFromNearestVBase,
2001 bool BaseIsNonVirtualPrimaryBase,
2002 const CXXRecordDecl *VTableClass,
2003 VisitedVirtualBasesSetTy& VBases) {
2004 // If this base is a non-virtual primary base the address point has already
2005 // been set.
2006 if (!BaseIsNonVirtualPrimaryBase) {
2007 // Initialize the vtable pointer for this base.
2008 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
2009 VTableClass);
2010 }
2011
2012 const CXXRecordDecl *RD = Base.getBase();
2013
2014 // Traverse bases.
2015 for (const auto &I : RD->bases()) {
2016 CXXRecordDecl *BaseDecl
2017 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2018
2019 // Ignore classes without a vtable.
2020 if (!BaseDecl->isDynamicClass())
2021 continue;
2022
2023 CharUnits BaseOffset;
2024 CharUnits BaseOffsetFromNearestVBase;
2025 bool BaseDeclIsNonVirtualPrimaryBase;
2026
2027 if (I.isVirtual()) {
2028 // Check if we've visited this virtual base before.
2029 if (!VBases.insert(BaseDecl).second)
2030 continue;
2031
2032 const ASTRecordLayout &Layout =
2033 getContext().getASTRecordLayout(VTableClass);
2034
2035 BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2036 BaseOffsetFromNearestVBase = CharUnits::Zero();
2037 BaseDeclIsNonVirtualPrimaryBase = false;
2038 } else {
2039 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2040
2041 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2042 BaseOffsetFromNearestVBase =
2043 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2044 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2045 }
2046
2047 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
2048 I.isVirtual() ? BaseDecl : NearestVBase,
2049 BaseOffsetFromNearestVBase,
2050 BaseDeclIsNonVirtualPrimaryBase,
2051 VTableClass, VBases);
2052 }
2053 }
2054
InitializeVTablePointers(const CXXRecordDecl * RD)2055 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2056 // Ignore classes without a vtable.
2057 if (!RD->isDynamicClass())
2058 return;
2059
2060 // Initialize the vtable pointers for this class and all of its bases.
2061 VisitedVirtualBasesSetTy VBases;
2062 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
2063 /*NearestVBase=*/nullptr,
2064 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2065 /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
2066
2067 if (RD->getNumVBases())
2068 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2069 }
2070
GetVTablePtr(llvm::Value * This,llvm::Type * Ty)2071 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
2072 llvm::Type *Ty) {
2073 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
2074 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2075 CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
2076 return VTable;
2077 }
2078
2079
2080 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2081 // quite what we want.
skipNoOpCastsAndParens(const Expr * E)2082 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2083 while (true) {
2084 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2085 E = PE->getSubExpr();
2086 continue;
2087 }
2088
2089 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2090 if (CE->getCastKind() == CK_NoOp) {
2091 E = CE->getSubExpr();
2092 continue;
2093 }
2094 }
2095 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2096 if (UO->getOpcode() == UO_Extension) {
2097 E = UO->getSubExpr();
2098 continue;
2099 }
2100 }
2101 return E;
2102 }
2103 }
2104
2105 bool
CanDevirtualizeMemberFunctionCall(const Expr * Base,const CXXMethodDecl * MD)2106 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2107 const CXXMethodDecl *MD) {
2108 // When building with -fapple-kext, all calls must go through the vtable since
2109 // the kernel linker can do runtime patching of vtables.
2110 if (getLangOpts().AppleKext)
2111 return false;
2112
2113 // If the most derived class is marked final, we know that no subclass can
2114 // override this member function and so we can devirtualize it. For example:
2115 //
2116 // struct A { virtual void f(); }
2117 // struct B final : A { };
2118 //
2119 // void f(B *b) {
2120 // b->f();
2121 // }
2122 //
2123 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2124 if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2125 return true;
2126
2127 // If the member function is marked 'final', we know that it can't be
2128 // overridden and can therefore devirtualize it.
2129 if (MD->hasAttr<FinalAttr>())
2130 return true;
2131
2132 // Similarly, if the class itself is marked 'final' it can't be overridden
2133 // and we can therefore devirtualize the member function call.
2134 if (MD->getParent()->hasAttr<FinalAttr>())
2135 return true;
2136
2137 Base = skipNoOpCastsAndParens(Base);
2138 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2139 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2140 // This is a record decl. We know the type and can devirtualize it.
2141 return VD->getType()->isRecordType();
2142 }
2143
2144 return false;
2145 }
2146
2147 // We can devirtualize calls on an object accessed by a class member access
2148 // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2149 // a derived class object constructed in the same location.
2150 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2151 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2152 return VD->getType()->isRecordType();
2153
2154 // We can always devirtualize calls on temporary object expressions.
2155 if (isa<CXXConstructExpr>(Base))
2156 return true;
2157
2158 // And calls on bound temporaries.
2159 if (isa<CXXBindTemporaryExpr>(Base))
2160 return true;
2161
2162 // Check if this is a call expr that returns a record type.
2163 if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2164 return CE->getCallReturnType()->isRecordType();
2165
2166 // We can't devirtualize the call.
2167 return false;
2168 }
2169
EmitForwardingCallToLambda(const CXXMethodDecl * callOperator,CallArgList & callArgs)2170 void CodeGenFunction::EmitForwardingCallToLambda(
2171 const CXXMethodDecl *callOperator,
2172 CallArgList &callArgs) {
2173 // Get the address of the call operator.
2174 const CGFunctionInfo &calleeFnInfo =
2175 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2176 llvm::Value *callee =
2177 CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2178 CGM.getTypes().GetFunctionType(calleeFnInfo));
2179
2180 // Prepare the return slot.
2181 const FunctionProtoType *FPT =
2182 callOperator->getType()->castAs<FunctionProtoType>();
2183 QualType resultType = FPT->getReturnType();
2184 ReturnValueSlot returnSlot;
2185 if (!resultType->isVoidType() &&
2186 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2187 !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2188 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2189
2190 // We don't need to separately arrange the call arguments because
2191 // the call can't be variadic anyway --- it's impossible to forward
2192 // variadic arguments.
2193
2194 // Now emit our call.
2195 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2196 callArgs, callOperator);
2197
2198 // If necessary, copy the returned value into the slot.
2199 if (!resultType->isVoidType() && returnSlot.isNull())
2200 EmitReturnOfRValue(RV, resultType);
2201 else
2202 EmitBranchThroughCleanup(ReturnBlock);
2203 }
2204
EmitLambdaBlockInvokeBody()2205 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2206 const BlockDecl *BD = BlockInfo->getBlockDecl();
2207 const VarDecl *variable = BD->capture_begin()->getVariable();
2208 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2209
2210 // Start building arguments for forwarding call
2211 CallArgList CallArgs;
2212
2213 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2214 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2215 CallArgs.add(RValue::get(ThisPtr), ThisType);
2216
2217 // Add the rest of the parameters.
2218 for (auto param : BD->params())
2219 EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2220
2221 assert(!Lambda->isGenericLambda() &&
2222 "generic lambda interconversion to block not implemented");
2223 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2224 }
2225
EmitLambdaToBlockPointerBody(FunctionArgList & Args)2226 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2227 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2228 // FIXME: Making this work correctly is nasty because it requires either
2229 // cloning the body of the call operator or making the call operator forward.
2230 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2231 return;
2232 }
2233
2234 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2235 }
2236
EmitLambdaDelegatingInvokeBody(const CXXMethodDecl * MD)2237 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2238 const CXXRecordDecl *Lambda = MD->getParent();
2239
2240 // Start building arguments for forwarding call
2241 CallArgList CallArgs;
2242
2243 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2244 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2245 CallArgs.add(RValue::get(ThisPtr), ThisType);
2246
2247 // Add the rest of the parameters.
2248 for (auto Param : MD->params())
2249 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2250
2251 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2252 // For a generic lambda, find the corresponding call operator specialization
2253 // to which the call to the static-invoker shall be forwarded.
2254 if (Lambda->isGenericLambda()) {
2255 assert(MD->isFunctionTemplateSpecialization());
2256 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2257 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2258 void *InsertPos = nullptr;
2259 FunctionDecl *CorrespondingCallOpSpecialization =
2260 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2261 assert(CorrespondingCallOpSpecialization);
2262 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2263 }
2264 EmitForwardingCallToLambda(CallOp, CallArgs);
2265 }
2266
EmitLambdaStaticInvokeFunction(const CXXMethodDecl * MD)2267 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2268 if (MD->isVariadic()) {
2269 // FIXME: Making this work correctly is nasty because it requires either
2270 // cloning the body of the call operator or making the call operator forward.
2271 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2272 return;
2273 }
2274
2275 EmitLambdaDelegatingInvokeBody(MD);
2276 }
2277