xref: /minix3/external/bsd/llvm/dist/clang/lib/CodeGen/CGBuiltin.cpp (revision f4a2713ac843a11c696ec80c0a5e3e5d80b4d338)
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/Basic/TargetBuiltins.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Intrinsics.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 using namespace llvm;
29 
30 /// getBuiltinLibFunction - Given a builtin id for a function like
31 /// "__builtin_fabsf", return a Function* for "fabsf".
32 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
33                                                   unsigned BuiltinID) {
34   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
35 
36   // Get the name, skip over the __builtin_ prefix (if necessary).
37   StringRef Name;
38   GlobalDecl D(FD);
39 
40   // If the builtin has been declared explicitly with an assembler label,
41   // use the mangled name. This differs from the plain label on platforms
42   // that prefix labels.
43   if (FD->hasAttr<AsmLabelAttr>())
44     Name = getMangledName(D);
45   else
46     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
47 
48   llvm::FunctionType *Ty =
49     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
50 
51   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
52 }
53 
54 /// Emit the conversions required to turn the given value into an
55 /// integer of the given size.
56 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
57                         QualType T, llvm::IntegerType *IntType) {
58   V = CGF.EmitToMemory(V, T);
59 
60   if (V->getType()->isPointerTy())
61     return CGF.Builder.CreatePtrToInt(V, IntType);
62 
63   assert(V->getType() == IntType);
64   return V;
65 }
66 
67 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
68                           QualType T, llvm::Type *ResultType) {
69   V = CGF.EmitFromMemory(V, T);
70 
71   if (ResultType->isPointerTy())
72     return CGF.Builder.CreateIntToPtr(V, ResultType);
73 
74   assert(V->getType() == ResultType);
75   return V;
76 }
77 
78 /// Utility to insert an atomic instruction based on Instrinsic::ID
79 /// and the expression node.
80 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
81                                llvm::AtomicRMWInst::BinOp Kind,
82                                const CallExpr *E) {
83   QualType T = E->getType();
84   assert(E->getArg(0)->getType()->isPointerType());
85   assert(CGF.getContext().hasSameUnqualifiedType(T,
86                                   E->getArg(0)->getType()->getPointeeType()));
87   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
88 
89   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
90   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
91 
92   llvm::IntegerType *IntType =
93     llvm::IntegerType::get(CGF.getLLVMContext(),
94                            CGF.getContext().getTypeSize(T));
95   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
96 
97   llvm::Value *Args[2];
98   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
99   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
100   llvm::Type *ValueType = Args[1]->getType();
101   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
102 
103   llvm::Value *Result =
104       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
105                                   llvm::SequentiallyConsistent);
106   Result = EmitFromInt(CGF, Result, T, ValueType);
107   return RValue::get(Result);
108 }
109 
110 /// Utility to insert an atomic instruction based Instrinsic::ID and
111 /// the expression node, where the return value is the result of the
112 /// operation.
113 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
114                                    llvm::AtomicRMWInst::BinOp Kind,
115                                    const CallExpr *E,
116                                    Instruction::BinaryOps Op) {
117   QualType T = E->getType();
118   assert(E->getArg(0)->getType()->isPointerType());
119   assert(CGF.getContext().hasSameUnqualifiedType(T,
120                                   E->getArg(0)->getType()->getPointeeType()));
121   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
122 
123   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
124   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
125 
126   llvm::IntegerType *IntType =
127     llvm::IntegerType::get(CGF.getLLVMContext(),
128                            CGF.getContext().getTypeSize(T));
129   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
130 
131   llvm::Value *Args[2];
132   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
133   llvm::Type *ValueType = Args[1]->getType();
134   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
135   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
136 
137   llvm::Value *Result =
138       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
139                                   llvm::SequentiallyConsistent);
140   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
141   Result = EmitFromInt(CGF, Result, T, ValueType);
142   return RValue::get(Result);
143 }
144 
145 /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
146 /// which must be a scalar floating point type.
147 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
148   const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
149   assert(ValTyP && "isn't scalar fp type!");
150 
151   StringRef FnName;
152   switch (ValTyP->getKind()) {
153   default: llvm_unreachable("Isn't a scalar fp type!");
154   case BuiltinType::Float:      FnName = "fabsf"; break;
155   case BuiltinType::Double:     FnName = "fabs"; break;
156   case BuiltinType::LongDouble: FnName = "fabsl"; break;
157   }
158 
159   // The prototype is something that takes and returns whatever V's type is.
160   llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
161                                                    false);
162   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
163 
164   return CGF.EmitNounwindRuntimeCall(Fn, V, "abs");
165 }
166 
167 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
168                               const CallExpr *E, llvm::Value *calleeValue) {
169   return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E->getLocStart(),
170                       ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
171 }
172 
173 /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
174 /// depending on IntrinsicID.
175 ///
176 /// \arg CGF The current codegen function.
177 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
178 /// \arg X The first argument to the llvm.*.with.overflow.*.
179 /// \arg Y The second argument to the llvm.*.with.overflow.*.
180 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
181 /// \returns The result (i.e. sum/product) returned by the intrinsic.
182 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
183                                           const llvm::Intrinsic::ID IntrinsicID,
184                                           llvm::Value *X, llvm::Value *Y,
185                                           llvm::Value *&Carry) {
186   // Make sure we have integers of the same width.
187   assert(X->getType() == Y->getType() &&
188          "Arguments must be the same type. (Did you forget to make sure both "
189          "arguments have the same integer width?)");
190 
191   llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
192   llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y);
193   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
194   return CGF.Builder.CreateExtractValue(Tmp, 0);
195 }
196 
197 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
198                                         unsigned BuiltinID, const CallExpr *E) {
199   // See if we can constant fold this builtin.  If so, don't emit it at all.
200   Expr::EvalResult Result;
201   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
202       !Result.hasSideEffects()) {
203     if (Result.Val.isInt())
204       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
205                                                 Result.Val.getInt()));
206     if (Result.Val.isFloat())
207       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
208                                                Result.Val.getFloat()));
209   }
210 
211   switch (BuiltinID) {
212   default: break;  // Handle intrinsics and libm functions below.
213   case Builtin::BI__builtin___CFStringMakeConstantString:
214   case Builtin::BI__builtin___NSStringMakeConstantString:
215     return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
216   case Builtin::BI__builtin_stdarg_start:
217   case Builtin::BI__builtin_va_start:
218   case Builtin::BI__builtin_va_end: {
219     Value *ArgValue = EmitVAListRef(E->getArg(0));
220     llvm::Type *DestType = Int8PtrTy;
221     if (ArgValue->getType() != DestType)
222       ArgValue = Builder.CreateBitCast(ArgValue, DestType,
223                                        ArgValue->getName().data());
224 
225     Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
226       Intrinsic::vaend : Intrinsic::vastart;
227     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
228   }
229   case Builtin::BI__builtin_va_copy: {
230     Value *DstPtr = EmitVAListRef(E->getArg(0));
231     Value *SrcPtr = EmitVAListRef(E->getArg(1));
232 
233     llvm::Type *Type = Int8PtrTy;
234 
235     DstPtr = Builder.CreateBitCast(DstPtr, Type);
236     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
237     return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
238                                            DstPtr, SrcPtr));
239   }
240   case Builtin::BI__builtin_abs:
241   case Builtin::BI__builtin_labs:
242   case Builtin::BI__builtin_llabs: {
243     Value *ArgValue = EmitScalarExpr(E->getArg(0));
244 
245     Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
246     Value *CmpResult =
247     Builder.CreateICmpSGE(ArgValue,
248                           llvm::Constant::getNullValue(ArgValue->getType()),
249                                                             "abscond");
250     Value *Result =
251       Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
252 
253     return RValue::get(Result);
254   }
255 
256   case Builtin::BI__builtin_conj:
257   case Builtin::BI__builtin_conjf:
258   case Builtin::BI__builtin_conjl: {
259     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
260     Value *Real = ComplexVal.first;
261     Value *Imag = ComplexVal.second;
262     Value *Zero =
263       Imag->getType()->isFPOrFPVectorTy()
264         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
265         : llvm::Constant::getNullValue(Imag->getType());
266 
267     Imag = Builder.CreateFSub(Zero, Imag, "sub");
268     return RValue::getComplex(std::make_pair(Real, Imag));
269   }
270   case Builtin::BI__builtin_creal:
271   case Builtin::BI__builtin_crealf:
272   case Builtin::BI__builtin_creall:
273   case Builtin::BIcreal:
274   case Builtin::BIcrealf:
275   case Builtin::BIcreall: {
276     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
277     return RValue::get(ComplexVal.first);
278   }
279 
280   case Builtin::BI__builtin_cimag:
281   case Builtin::BI__builtin_cimagf:
282   case Builtin::BI__builtin_cimagl:
283   case Builtin::BIcimag:
284   case Builtin::BIcimagf:
285   case Builtin::BIcimagl: {
286     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
287     return RValue::get(ComplexVal.second);
288   }
289 
290   case Builtin::BI__builtin_ctzs:
291   case Builtin::BI__builtin_ctz:
292   case Builtin::BI__builtin_ctzl:
293   case Builtin::BI__builtin_ctzll: {
294     Value *ArgValue = EmitScalarExpr(E->getArg(0));
295 
296     llvm::Type *ArgType = ArgValue->getType();
297     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
298 
299     llvm::Type *ResultType = ConvertType(E->getType());
300     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
301     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
302     if (Result->getType() != ResultType)
303       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
304                                      "cast");
305     return RValue::get(Result);
306   }
307   case Builtin::BI__builtin_clzs:
308   case Builtin::BI__builtin_clz:
309   case Builtin::BI__builtin_clzl:
310   case Builtin::BI__builtin_clzll: {
311     Value *ArgValue = EmitScalarExpr(E->getArg(0));
312 
313     llvm::Type *ArgType = ArgValue->getType();
314     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
315 
316     llvm::Type *ResultType = ConvertType(E->getType());
317     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
318     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
319     if (Result->getType() != ResultType)
320       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
321                                      "cast");
322     return RValue::get(Result);
323   }
324   case Builtin::BI__builtin_ffs:
325   case Builtin::BI__builtin_ffsl:
326   case Builtin::BI__builtin_ffsll: {
327     // ffs(x) -> x ? cttz(x) + 1 : 0
328     Value *ArgValue = EmitScalarExpr(E->getArg(0));
329 
330     llvm::Type *ArgType = ArgValue->getType();
331     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
332 
333     llvm::Type *ResultType = ConvertType(E->getType());
334     Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue,
335                                                        Builder.getTrue()),
336                                    llvm::ConstantInt::get(ArgType, 1));
337     Value *Zero = llvm::Constant::getNullValue(ArgType);
338     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
339     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
340     if (Result->getType() != ResultType)
341       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
342                                      "cast");
343     return RValue::get(Result);
344   }
345   case Builtin::BI__builtin_parity:
346   case Builtin::BI__builtin_parityl:
347   case Builtin::BI__builtin_parityll: {
348     // parity(x) -> ctpop(x) & 1
349     Value *ArgValue = EmitScalarExpr(E->getArg(0));
350 
351     llvm::Type *ArgType = ArgValue->getType();
352     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
353 
354     llvm::Type *ResultType = ConvertType(E->getType());
355     Value *Tmp = Builder.CreateCall(F, ArgValue);
356     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
357     if (Result->getType() != ResultType)
358       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
359                                      "cast");
360     return RValue::get(Result);
361   }
362   case Builtin::BI__builtin_popcount:
363   case Builtin::BI__builtin_popcountl:
364   case Builtin::BI__builtin_popcountll: {
365     Value *ArgValue = EmitScalarExpr(E->getArg(0));
366 
367     llvm::Type *ArgType = ArgValue->getType();
368     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
369 
370     llvm::Type *ResultType = ConvertType(E->getType());
371     Value *Result = Builder.CreateCall(F, ArgValue);
372     if (Result->getType() != ResultType)
373       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
374                                      "cast");
375     return RValue::get(Result);
376   }
377   case Builtin::BI__builtin_expect: {
378     Value *ArgValue = EmitScalarExpr(E->getArg(0));
379     llvm::Type *ArgType = ArgValue->getType();
380 
381     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
382     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
383 
384     Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
385                                         "expval");
386     return RValue::get(Result);
387   }
388   case Builtin::BI__builtin_bswap16:
389   case Builtin::BI__builtin_bswap32:
390   case Builtin::BI__builtin_bswap64: {
391     Value *ArgValue = EmitScalarExpr(E->getArg(0));
392     llvm::Type *ArgType = ArgValue->getType();
393     Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
394     return RValue::get(Builder.CreateCall(F, ArgValue));
395   }
396   case Builtin::BI__builtin_object_size: {
397     // We rely on constant folding to deal with expressions with side effects.
398     assert(!E->getArg(0)->HasSideEffects(getContext()) &&
399            "should have been constant folded");
400 
401     // We pass this builtin onto the optimizer so that it can
402     // figure out the object size in more complex cases.
403     llvm::Type *ResType = ConvertType(E->getType());
404 
405     // LLVM only supports 0 and 2, make sure that we pass along that
406     // as a boolean.
407     Value *Ty = EmitScalarExpr(E->getArg(1));
408     ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
409     assert(CI);
410     uint64_t val = CI->getZExtValue();
411     CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
412     // FIXME: Get right address space.
413     llvm::Type *Tys[] = { ResType, Builder.getInt8PtrTy(0) };
414     Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
415     return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI));
416   }
417   case Builtin::BI__builtin_prefetch: {
418     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
419     // FIXME: Technically these constants should of type 'int', yes?
420     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
421       llvm::ConstantInt::get(Int32Ty, 0);
422     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
423       llvm::ConstantInt::get(Int32Ty, 3);
424     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
425     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
426     return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
427   }
428   case Builtin::BI__builtin_readcyclecounter: {
429     Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
430     return RValue::get(Builder.CreateCall(F));
431   }
432   case Builtin::BI__builtin_trap: {
433     Value *F = CGM.getIntrinsic(Intrinsic::trap);
434     return RValue::get(Builder.CreateCall(F));
435   }
436   case Builtin::BI__debugbreak: {
437     Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
438     return RValue::get(Builder.CreateCall(F));
439   }
440   case Builtin::BI__builtin_unreachable: {
441     if (SanOpts->Unreachable)
442       EmitCheck(Builder.getFalse(), "builtin_unreachable",
443                 EmitCheckSourceLocation(E->getExprLoc()),
444                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
445     else
446       Builder.CreateUnreachable();
447 
448     // We do need to preserve an insertion point.
449     EmitBlock(createBasicBlock("unreachable.cont"));
450 
451     return RValue::get(0);
452   }
453 
454   case Builtin::BI__builtin_powi:
455   case Builtin::BI__builtin_powif:
456   case Builtin::BI__builtin_powil: {
457     Value *Base = EmitScalarExpr(E->getArg(0));
458     Value *Exponent = EmitScalarExpr(E->getArg(1));
459     llvm::Type *ArgType = Base->getType();
460     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
461     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
462   }
463 
464   case Builtin::BI__builtin_isgreater:
465   case Builtin::BI__builtin_isgreaterequal:
466   case Builtin::BI__builtin_isless:
467   case Builtin::BI__builtin_islessequal:
468   case Builtin::BI__builtin_islessgreater:
469   case Builtin::BI__builtin_isunordered: {
470     // Ordered comparisons: we know the arguments to these are matching scalar
471     // floating point values.
472     Value *LHS = EmitScalarExpr(E->getArg(0));
473     Value *RHS = EmitScalarExpr(E->getArg(1));
474 
475     switch (BuiltinID) {
476     default: llvm_unreachable("Unknown ordered comparison");
477     case Builtin::BI__builtin_isgreater:
478       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
479       break;
480     case Builtin::BI__builtin_isgreaterequal:
481       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
482       break;
483     case Builtin::BI__builtin_isless:
484       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
485       break;
486     case Builtin::BI__builtin_islessequal:
487       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
488       break;
489     case Builtin::BI__builtin_islessgreater:
490       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
491       break;
492     case Builtin::BI__builtin_isunordered:
493       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
494       break;
495     }
496     // ZExt bool to int type.
497     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
498   }
499   case Builtin::BI__builtin_isnan: {
500     Value *V = EmitScalarExpr(E->getArg(0));
501     V = Builder.CreateFCmpUNO(V, V, "cmp");
502     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
503   }
504 
505   case Builtin::BI__builtin_isinf: {
506     // isinf(x) --> fabs(x) == infinity
507     Value *V = EmitScalarExpr(E->getArg(0));
508     V = EmitFAbs(*this, V, E->getArg(0)->getType());
509 
510     V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
511     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
512   }
513 
514   // TODO: BI__builtin_isinf_sign
515   //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
516 
517   case Builtin::BI__builtin_isnormal: {
518     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
519     Value *V = EmitScalarExpr(E->getArg(0));
520     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
521 
522     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
523     Value *IsLessThanInf =
524       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
525     APFloat Smallest = APFloat::getSmallestNormalized(
526                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
527     Value *IsNormal =
528       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
529                             "isnormal");
530     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
531     V = Builder.CreateAnd(V, IsNormal, "and");
532     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
533   }
534 
535   case Builtin::BI__builtin_isfinite: {
536     // isfinite(x) --> x == x && fabs(x) != infinity;
537     Value *V = EmitScalarExpr(E->getArg(0));
538     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
539 
540     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
541     Value *IsNotInf =
542       Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
543 
544     V = Builder.CreateAnd(Eq, IsNotInf, "and");
545     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
546   }
547 
548   case Builtin::BI__builtin_fpclassify: {
549     Value *V = EmitScalarExpr(E->getArg(5));
550     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
551 
552     // Create Result
553     BasicBlock *Begin = Builder.GetInsertBlock();
554     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
555     Builder.SetInsertPoint(End);
556     PHINode *Result =
557       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
558                         "fpclassify_result");
559 
560     // if (V==0) return FP_ZERO
561     Builder.SetInsertPoint(Begin);
562     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
563                                           "iszero");
564     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
565     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
566     Builder.CreateCondBr(IsZero, End, NotZero);
567     Result->addIncoming(ZeroLiteral, Begin);
568 
569     // if (V != V) return FP_NAN
570     Builder.SetInsertPoint(NotZero);
571     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
572     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
573     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
574     Builder.CreateCondBr(IsNan, End, NotNan);
575     Result->addIncoming(NanLiteral, NotZero);
576 
577     // if (fabs(V) == infinity) return FP_INFINITY
578     Builder.SetInsertPoint(NotNan);
579     Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
580     Value *IsInf =
581       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
582                             "isinf");
583     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
584     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
585     Builder.CreateCondBr(IsInf, End, NotInf);
586     Result->addIncoming(InfLiteral, NotNan);
587 
588     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
589     Builder.SetInsertPoint(NotInf);
590     APFloat Smallest = APFloat::getSmallestNormalized(
591         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
592     Value *IsNormal =
593       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
594                             "isnormal");
595     Value *NormalResult =
596       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
597                            EmitScalarExpr(E->getArg(3)));
598     Builder.CreateBr(End);
599     Result->addIncoming(NormalResult, NotInf);
600 
601     // return Result
602     Builder.SetInsertPoint(End);
603     return RValue::get(Result);
604   }
605 
606   case Builtin::BIalloca:
607   case Builtin::BI_alloca:
608   case Builtin::BI__builtin_alloca: {
609     Value *Size = EmitScalarExpr(E->getArg(0));
610     return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
611   }
612   case Builtin::BIbzero:
613   case Builtin::BI__builtin_bzero: {
614     std::pair<llvm::Value*, unsigned> Dest =
615         EmitPointerWithAlignment(E->getArg(0));
616     Value *SizeVal = EmitScalarExpr(E->getArg(1));
617     Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
618                          Dest.second, false);
619     return RValue::get(Dest.first);
620   }
621   case Builtin::BImemcpy:
622   case Builtin::BI__builtin_memcpy: {
623     std::pair<llvm::Value*, unsigned> Dest =
624         EmitPointerWithAlignment(E->getArg(0));
625     std::pair<llvm::Value*, unsigned> Src =
626         EmitPointerWithAlignment(E->getArg(1));
627     Value *SizeVal = EmitScalarExpr(E->getArg(2));
628     unsigned Align = std::min(Dest.second, Src.second);
629     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
630     return RValue::get(Dest.first);
631   }
632 
633   case Builtin::BI__builtin___memcpy_chk: {
634     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
635     llvm::APSInt Size, DstSize;
636     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
637         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
638       break;
639     if (Size.ugt(DstSize))
640       break;
641     std::pair<llvm::Value*, unsigned> Dest =
642         EmitPointerWithAlignment(E->getArg(0));
643     std::pair<llvm::Value*, unsigned> Src =
644         EmitPointerWithAlignment(E->getArg(1));
645     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
646     unsigned Align = std::min(Dest.second, Src.second);
647     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
648     return RValue::get(Dest.first);
649   }
650 
651   case Builtin::BI__builtin_objc_memmove_collectable: {
652     Value *Address = EmitScalarExpr(E->getArg(0));
653     Value *SrcAddr = EmitScalarExpr(E->getArg(1));
654     Value *SizeVal = EmitScalarExpr(E->getArg(2));
655     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
656                                                   Address, SrcAddr, SizeVal);
657     return RValue::get(Address);
658   }
659 
660   case Builtin::BI__builtin___memmove_chk: {
661     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
662     llvm::APSInt Size, DstSize;
663     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
664         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
665       break;
666     if (Size.ugt(DstSize))
667       break;
668     std::pair<llvm::Value*, unsigned> Dest =
669         EmitPointerWithAlignment(E->getArg(0));
670     std::pair<llvm::Value*, unsigned> Src =
671         EmitPointerWithAlignment(E->getArg(1));
672     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
673     unsigned Align = std::min(Dest.second, Src.second);
674     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
675     return RValue::get(Dest.first);
676   }
677 
678   case Builtin::BImemmove:
679   case Builtin::BI__builtin_memmove: {
680     std::pair<llvm::Value*, unsigned> Dest =
681         EmitPointerWithAlignment(E->getArg(0));
682     std::pair<llvm::Value*, unsigned> Src =
683         EmitPointerWithAlignment(E->getArg(1));
684     Value *SizeVal = EmitScalarExpr(E->getArg(2));
685     unsigned Align = std::min(Dest.second, Src.second);
686     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
687     return RValue::get(Dest.first);
688   }
689   case Builtin::BImemset:
690   case Builtin::BI__builtin_memset: {
691     std::pair<llvm::Value*, unsigned> Dest =
692         EmitPointerWithAlignment(E->getArg(0));
693     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
694                                          Builder.getInt8Ty());
695     Value *SizeVal = EmitScalarExpr(E->getArg(2));
696     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
697     return RValue::get(Dest.first);
698   }
699   case Builtin::BI__builtin___memset_chk: {
700     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
701     llvm::APSInt Size, DstSize;
702     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
703         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
704       break;
705     if (Size.ugt(DstSize))
706       break;
707     std::pair<llvm::Value*, unsigned> Dest =
708         EmitPointerWithAlignment(E->getArg(0));
709     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
710                                          Builder.getInt8Ty());
711     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
712     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
713     return RValue::get(Dest.first);
714   }
715   case Builtin::BI__builtin_dwarf_cfa: {
716     // The offset in bytes from the first argument to the CFA.
717     //
718     // Why on earth is this in the frontend?  Is there any reason at
719     // all that the backend can't reasonably determine this while
720     // lowering llvm.eh.dwarf.cfa()?
721     //
722     // TODO: If there's a satisfactory reason, add a target hook for
723     // this instead of hard-coding 0, which is correct for most targets.
724     int32_t Offset = 0;
725 
726     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
727     return RValue::get(Builder.CreateCall(F,
728                                       llvm::ConstantInt::get(Int32Ty, Offset)));
729   }
730   case Builtin::BI__builtin_return_address: {
731     Value *Depth = EmitScalarExpr(E->getArg(0));
732     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
733     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
734     return RValue::get(Builder.CreateCall(F, Depth));
735   }
736   case Builtin::BI__builtin_frame_address: {
737     Value *Depth = EmitScalarExpr(E->getArg(0));
738     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
739     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
740     return RValue::get(Builder.CreateCall(F, Depth));
741   }
742   case Builtin::BI__builtin_extract_return_addr: {
743     Value *Address = EmitScalarExpr(E->getArg(0));
744     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
745     return RValue::get(Result);
746   }
747   case Builtin::BI__builtin_frob_return_addr: {
748     Value *Address = EmitScalarExpr(E->getArg(0));
749     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
750     return RValue::get(Result);
751   }
752   case Builtin::BI__builtin_dwarf_sp_column: {
753     llvm::IntegerType *Ty
754       = cast<llvm::IntegerType>(ConvertType(E->getType()));
755     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
756     if (Column == -1) {
757       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
758       return RValue::get(llvm::UndefValue::get(Ty));
759     }
760     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
761   }
762   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
763     Value *Address = EmitScalarExpr(E->getArg(0));
764     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
765       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
766     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
767   }
768   case Builtin::BI__builtin_eh_return: {
769     Value *Int = EmitScalarExpr(E->getArg(0));
770     Value *Ptr = EmitScalarExpr(E->getArg(1));
771 
772     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
773     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
774            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
775     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
776                                   ? Intrinsic::eh_return_i32
777                                   : Intrinsic::eh_return_i64);
778     Builder.CreateCall2(F, Int, Ptr);
779     Builder.CreateUnreachable();
780 
781     // We do need to preserve an insertion point.
782     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
783 
784     return RValue::get(0);
785   }
786   case Builtin::BI__builtin_unwind_init: {
787     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
788     return RValue::get(Builder.CreateCall(F));
789   }
790   case Builtin::BI__builtin_extend_pointer: {
791     // Extends a pointer to the size of an _Unwind_Word, which is
792     // uint64_t on all platforms.  Generally this gets poked into a
793     // register and eventually used as an address, so if the
794     // addressing registers are wider than pointers and the platform
795     // doesn't implicitly ignore high-order bits when doing
796     // addressing, we need to make sure we zext / sext based on
797     // the platform's expectations.
798     //
799     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
800 
801     // Cast the pointer to intptr_t.
802     Value *Ptr = EmitScalarExpr(E->getArg(0));
803     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
804 
805     // If that's 64 bits, we're done.
806     if (IntPtrTy->getBitWidth() == 64)
807       return RValue::get(Result);
808 
809     // Otherwise, ask the codegen data what to do.
810     if (getTargetHooks().extendPointerWithSExt())
811       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
812     else
813       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
814   }
815   case Builtin::BI__builtin_setjmp: {
816     // Buffer is a void**.
817     Value *Buf = EmitScalarExpr(E->getArg(0));
818 
819     // Store the frame pointer to the setjmp buffer.
820     Value *FrameAddr =
821       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
822                          ConstantInt::get(Int32Ty, 0));
823     Builder.CreateStore(FrameAddr, Buf);
824 
825     // Store the stack pointer to the setjmp buffer.
826     Value *StackAddr =
827       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
828     Value *StackSaveSlot =
829       Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
830     Builder.CreateStore(StackAddr, StackSaveSlot);
831 
832     // Call LLVM's EH setjmp, which is lightweight.
833     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
834     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
835     return RValue::get(Builder.CreateCall(F, Buf));
836   }
837   case Builtin::BI__builtin_longjmp: {
838     Value *Buf = EmitScalarExpr(E->getArg(0));
839     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
840 
841     // Call LLVM's EH longjmp, which is lightweight.
842     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
843 
844     // longjmp doesn't return; mark this as unreachable.
845     Builder.CreateUnreachable();
846 
847     // We do need to preserve an insertion point.
848     EmitBlock(createBasicBlock("longjmp.cont"));
849 
850     return RValue::get(0);
851   }
852   case Builtin::BI__sync_fetch_and_add:
853   case Builtin::BI__sync_fetch_and_sub:
854   case Builtin::BI__sync_fetch_and_or:
855   case Builtin::BI__sync_fetch_and_and:
856   case Builtin::BI__sync_fetch_and_xor:
857   case Builtin::BI__sync_add_and_fetch:
858   case Builtin::BI__sync_sub_and_fetch:
859   case Builtin::BI__sync_and_and_fetch:
860   case Builtin::BI__sync_or_and_fetch:
861   case Builtin::BI__sync_xor_and_fetch:
862   case Builtin::BI__sync_val_compare_and_swap:
863   case Builtin::BI__sync_bool_compare_and_swap:
864   case Builtin::BI__sync_lock_test_and_set:
865   case Builtin::BI__sync_lock_release:
866   case Builtin::BI__sync_swap:
867     llvm_unreachable("Shouldn't make it through sema");
868   case Builtin::BI__sync_fetch_and_add_1:
869   case Builtin::BI__sync_fetch_and_add_2:
870   case Builtin::BI__sync_fetch_and_add_4:
871   case Builtin::BI__sync_fetch_and_add_8:
872   case Builtin::BI__sync_fetch_and_add_16:
873     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
874   case Builtin::BI__sync_fetch_and_sub_1:
875   case Builtin::BI__sync_fetch_and_sub_2:
876   case Builtin::BI__sync_fetch_and_sub_4:
877   case Builtin::BI__sync_fetch_and_sub_8:
878   case Builtin::BI__sync_fetch_and_sub_16:
879     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
880   case Builtin::BI__sync_fetch_and_or_1:
881   case Builtin::BI__sync_fetch_and_or_2:
882   case Builtin::BI__sync_fetch_and_or_4:
883   case Builtin::BI__sync_fetch_and_or_8:
884   case Builtin::BI__sync_fetch_and_or_16:
885     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
886   case Builtin::BI__sync_fetch_and_and_1:
887   case Builtin::BI__sync_fetch_and_and_2:
888   case Builtin::BI__sync_fetch_and_and_4:
889   case Builtin::BI__sync_fetch_and_and_8:
890   case Builtin::BI__sync_fetch_and_and_16:
891     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
892   case Builtin::BI__sync_fetch_and_xor_1:
893   case Builtin::BI__sync_fetch_and_xor_2:
894   case Builtin::BI__sync_fetch_and_xor_4:
895   case Builtin::BI__sync_fetch_and_xor_8:
896   case Builtin::BI__sync_fetch_and_xor_16:
897     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
898 
899   // Clang extensions: not overloaded yet.
900   case Builtin::BI__sync_fetch_and_min:
901     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
902   case Builtin::BI__sync_fetch_and_max:
903     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
904   case Builtin::BI__sync_fetch_and_umin:
905     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
906   case Builtin::BI__sync_fetch_and_umax:
907     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
908 
909   case Builtin::BI__sync_add_and_fetch_1:
910   case Builtin::BI__sync_add_and_fetch_2:
911   case Builtin::BI__sync_add_and_fetch_4:
912   case Builtin::BI__sync_add_and_fetch_8:
913   case Builtin::BI__sync_add_and_fetch_16:
914     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
915                                 llvm::Instruction::Add);
916   case Builtin::BI__sync_sub_and_fetch_1:
917   case Builtin::BI__sync_sub_and_fetch_2:
918   case Builtin::BI__sync_sub_and_fetch_4:
919   case Builtin::BI__sync_sub_and_fetch_8:
920   case Builtin::BI__sync_sub_and_fetch_16:
921     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
922                                 llvm::Instruction::Sub);
923   case Builtin::BI__sync_and_and_fetch_1:
924   case Builtin::BI__sync_and_and_fetch_2:
925   case Builtin::BI__sync_and_and_fetch_4:
926   case Builtin::BI__sync_and_and_fetch_8:
927   case Builtin::BI__sync_and_and_fetch_16:
928     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
929                                 llvm::Instruction::And);
930   case Builtin::BI__sync_or_and_fetch_1:
931   case Builtin::BI__sync_or_and_fetch_2:
932   case Builtin::BI__sync_or_and_fetch_4:
933   case Builtin::BI__sync_or_and_fetch_8:
934   case Builtin::BI__sync_or_and_fetch_16:
935     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
936                                 llvm::Instruction::Or);
937   case Builtin::BI__sync_xor_and_fetch_1:
938   case Builtin::BI__sync_xor_and_fetch_2:
939   case Builtin::BI__sync_xor_and_fetch_4:
940   case Builtin::BI__sync_xor_and_fetch_8:
941   case Builtin::BI__sync_xor_and_fetch_16:
942     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
943                                 llvm::Instruction::Xor);
944 
945   case Builtin::BI__sync_val_compare_and_swap_1:
946   case Builtin::BI__sync_val_compare_and_swap_2:
947   case Builtin::BI__sync_val_compare_and_swap_4:
948   case Builtin::BI__sync_val_compare_and_swap_8:
949   case Builtin::BI__sync_val_compare_and_swap_16: {
950     QualType T = E->getType();
951     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
952     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
953 
954     llvm::IntegerType *IntType =
955       llvm::IntegerType::get(getLLVMContext(),
956                              getContext().getTypeSize(T));
957     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
958 
959     Value *Args[3];
960     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
961     Args[1] = EmitScalarExpr(E->getArg(1));
962     llvm::Type *ValueType = Args[1]->getType();
963     Args[1] = EmitToInt(*this, Args[1], T, IntType);
964     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
965 
966     Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
967                                                 llvm::SequentiallyConsistent);
968     Result = EmitFromInt(*this, Result, T, ValueType);
969     return RValue::get(Result);
970   }
971 
972   case Builtin::BI__sync_bool_compare_and_swap_1:
973   case Builtin::BI__sync_bool_compare_and_swap_2:
974   case Builtin::BI__sync_bool_compare_and_swap_4:
975   case Builtin::BI__sync_bool_compare_and_swap_8:
976   case Builtin::BI__sync_bool_compare_and_swap_16: {
977     QualType T = E->getArg(1)->getType();
978     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
979     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
980 
981     llvm::IntegerType *IntType =
982       llvm::IntegerType::get(getLLVMContext(),
983                              getContext().getTypeSize(T));
984     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
985 
986     Value *Args[3];
987     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
988     Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
989     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
990 
991     Value *OldVal = Args[1];
992     Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
993                                                  llvm::SequentiallyConsistent);
994     Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
995     // zext bool to int.
996     Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
997     return RValue::get(Result);
998   }
999 
1000   case Builtin::BI__sync_swap_1:
1001   case Builtin::BI__sync_swap_2:
1002   case Builtin::BI__sync_swap_4:
1003   case Builtin::BI__sync_swap_8:
1004   case Builtin::BI__sync_swap_16:
1005     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1006 
1007   case Builtin::BI__sync_lock_test_and_set_1:
1008   case Builtin::BI__sync_lock_test_and_set_2:
1009   case Builtin::BI__sync_lock_test_and_set_4:
1010   case Builtin::BI__sync_lock_test_and_set_8:
1011   case Builtin::BI__sync_lock_test_and_set_16:
1012     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1013 
1014   case Builtin::BI__sync_lock_release_1:
1015   case Builtin::BI__sync_lock_release_2:
1016   case Builtin::BI__sync_lock_release_4:
1017   case Builtin::BI__sync_lock_release_8:
1018   case Builtin::BI__sync_lock_release_16: {
1019     Value *Ptr = EmitScalarExpr(E->getArg(0));
1020     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
1021     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
1022     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
1023                                              StoreSize.getQuantity() * 8);
1024     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
1025     llvm::StoreInst *Store =
1026       Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
1027     Store->setAlignment(StoreSize.getQuantity());
1028     Store->setAtomic(llvm::Release);
1029     return RValue::get(0);
1030   }
1031 
1032   case Builtin::BI__sync_synchronize: {
1033     // We assume this is supposed to correspond to a C++0x-style
1034     // sequentially-consistent fence (i.e. this is only usable for
1035     // synchonization, not device I/O or anything like that). This intrinsic
1036     // is really badly designed in the sense that in theory, there isn't
1037     // any way to safely use it... but in practice, it mostly works
1038     // to use it with non-atomic loads and stores to get acquire/release
1039     // semantics.
1040     Builder.CreateFence(llvm::SequentiallyConsistent);
1041     return RValue::get(0);
1042   }
1043 
1044   case Builtin::BI__c11_atomic_is_lock_free:
1045   case Builtin::BI__atomic_is_lock_free: {
1046     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
1047     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
1048     // _Atomic(T) is always properly-aligned.
1049     const char *LibCallName = "__atomic_is_lock_free";
1050     CallArgList Args;
1051     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
1052              getContext().getSizeType());
1053     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
1054       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
1055                getContext().VoidPtrTy);
1056     else
1057       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
1058                getContext().VoidPtrTy);
1059     const CGFunctionInfo &FuncInfo =
1060         CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
1061                                                FunctionType::ExtInfo(),
1062                                                RequiredArgs::All);
1063     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
1064     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
1065     return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
1066   }
1067 
1068   case Builtin::BI__atomic_test_and_set: {
1069     // Look at the argument type to determine whether this is a volatile
1070     // operation. The parameter type is always volatile.
1071     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1072     bool Volatile =
1073         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1074 
1075     Value *Ptr = EmitScalarExpr(E->getArg(0));
1076     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1077     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1078     Value *NewVal = Builder.getInt8(1);
1079     Value *Order = EmitScalarExpr(E->getArg(1));
1080     if (isa<llvm::ConstantInt>(Order)) {
1081       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1082       AtomicRMWInst *Result = 0;
1083       switch (ord) {
1084       case 0:  // memory_order_relaxed
1085       default: // invalid order
1086         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1087                                          Ptr, NewVal,
1088                                          llvm::Monotonic);
1089         break;
1090       case 1:  // memory_order_consume
1091       case 2:  // memory_order_acquire
1092         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1093                                          Ptr, NewVal,
1094                                          llvm::Acquire);
1095         break;
1096       case 3:  // memory_order_release
1097         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1098                                          Ptr, NewVal,
1099                                          llvm::Release);
1100         break;
1101       case 4:  // memory_order_acq_rel
1102         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1103                                          Ptr, NewVal,
1104                                          llvm::AcquireRelease);
1105         break;
1106       case 5:  // memory_order_seq_cst
1107         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1108                                          Ptr, NewVal,
1109                                          llvm::SequentiallyConsistent);
1110         break;
1111       }
1112       Result->setVolatile(Volatile);
1113       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1114     }
1115 
1116     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1117 
1118     llvm::BasicBlock *BBs[5] = {
1119       createBasicBlock("monotonic", CurFn),
1120       createBasicBlock("acquire", CurFn),
1121       createBasicBlock("release", CurFn),
1122       createBasicBlock("acqrel", CurFn),
1123       createBasicBlock("seqcst", CurFn)
1124     };
1125     llvm::AtomicOrdering Orders[5] = {
1126       llvm::Monotonic, llvm::Acquire, llvm::Release,
1127       llvm::AcquireRelease, llvm::SequentiallyConsistent
1128     };
1129 
1130     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1131     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1132 
1133     Builder.SetInsertPoint(ContBB);
1134     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
1135 
1136     for (unsigned i = 0; i < 5; ++i) {
1137       Builder.SetInsertPoint(BBs[i]);
1138       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1139                                                    Ptr, NewVal, Orders[i]);
1140       RMW->setVolatile(Volatile);
1141       Result->addIncoming(RMW, BBs[i]);
1142       Builder.CreateBr(ContBB);
1143     }
1144 
1145     SI->addCase(Builder.getInt32(0), BBs[0]);
1146     SI->addCase(Builder.getInt32(1), BBs[1]);
1147     SI->addCase(Builder.getInt32(2), BBs[1]);
1148     SI->addCase(Builder.getInt32(3), BBs[2]);
1149     SI->addCase(Builder.getInt32(4), BBs[3]);
1150     SI->addCase(Builder.getInt32(5), BBs[4]);
1151 
1152     Builder.SetInsertPoint(ContBB);
1153     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1154   }
1155 
1156   case Builtin::BI__atomic_clear: {
1157     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1158     bool Volatile =
1159         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1160 
1161     Value *Ptr = EmitScalarExpr(E->getArg(0));
1162     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1163     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1164     Value *NewVal = Builder.getInt8(0);
1165     Value *Order = EmitScalarExpr(E->getArg(1));
1166     if (isa<llvm::ConstantInt>(Order)) {
1167       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1168       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1169       Store->setAlignment(1);
1170       switch (ord) {
1171       case 0:  // memory_order_relaxed
1172       default: // invalid order
1173         Store->setOrdering(llvm::Monotonic);
1174         break;
1175       case 3:  // memory_order_release
1176         Store->setOrdering(llvm::Release);
1177         break;
1178       case 5:  // memory_order_seq_cst
1179         Store->setOrdering(llvm::SequentiallyConsistent);
1180         break;
1181       }
1182       return RValue::get(0);
1183     }
1184 
1185     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1186 
1187     llvm::BasicBlock *BBs[3] = {
1188       createBasicBlock("monotonic", CurFn),
1189       createBasicBlock("release", CurFn),
1190       createBasicBlock("seqcst", CurFn)
1191     };
1192     llvm::AtomicOrdering Orders[3] = {
1193       llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
1194     };
1195 
1196     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1197     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1198 
1199     for (unsigned i = 0; i < 3; ++i) {
1200       Builder.SetInsertPoint(BBs[i]);
1201       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1202       Store->setAlignment(1);
1203       Store->setOrdering(Orders[i]);
1204       Builder.CreateBr(ContBB);
1205     }
1206 
1207     SI->addCase(Builder.getInt32(0), BBs[0]);
1208     SI->addCase(Builder.getInt32(3), BBs[1]);
1209     SI->addCase(Builder.getInt32(5), BBs[2]);
1210 
1211     Builder.SetInsertPoint(ContBB);
1212     return RValue::get(0);
1213   }
1214 
1215   case Builtin::BI__atomic_thread_fence:
1216   case Builtin::BI__atomic_signal_fence:
1217   case Builtin::BI__c11_atomic_thread_fence:
1218   case Builtin::BI__c11_atomic_signal_fence: {
1219     llvm::SynchronizationScope Scope;
1220     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
1221         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
1222       Scope = llvm::SingleThread;
1223     else
1224       Scope = llvm::CrossThread;
1225     Value *Order = EmitScalarExpr(E->getArg(0));
1226     if (isa<llvm::ConstantInt>(Order)) {
1227       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1228       switch (ord) {
1229       case 0:  // memory_order_relaxed
1230       default: // invalid order
1231         break;
1232       case 1:  // memory_order_consume
1233       case 2:  // memory_order_acquire
1234         Builder.CreateFence(llvm::Acquire, Scope);
1235         break;
1236       case 3:  // memory_order_release
1237         Builder.CreateFence(llvm::Release, Scope);
1238         break;
1239       case 4:  // memory_order_acq_rel
1240         Builder.CreateFence(llvm::AcquireRelease, Scope);
1241         break;
1242       case 5:  // memory_order_seq_cst
1243         Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1244         break;
1245       }
1246       return RValue::get(0);
1247     }
1248 
1249     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
1250     AcquireBB = createBasicBlock("acquire", CurFn);
1251     ReleaseBB = createBasicBlock("release", CurFn);
1252     AcqRelBB = createBasicBlock("acqrel", CurFn);
1253     SeqCstBB = createBasicBlock("seqcst", CurFn);
1254     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1255 
1256     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1257     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
1258 
1259     Builder.SetInsertPoint(AcquireBB);
1260     Builder.CreateFence(llvm::Acquire, Scope);
1261     Builder.CreateBr(ContBB);
1262     SI->addCase(Builder.getInt32(1), AcquireBB);
1263     SI->addCase(Builder.getInt32(2), AcquireBB);
1264 
1265     Builder.SetInsertPoint(ReleaseBB);
1266     Builder.CreateFence(llvm::Release, Scope);
1267     Builder.CreateBr(ContBB);
1268     SI->addCase(Builder.getInt32(3), ReleaseBB);
1269 
1270     Builder.SetInsertPoint(AcqRelBB);
1271     Builder.CreateFence(llvm::AcquireRelease, Scope);
1272     Builder.CreateBr(ContBB);
1273     SI->addCase(Builder.getInt32(4), AcqRelBB);
1274 
1275     Builder.SetInsertPoint(SeqCstBB);
1276     Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1277     Builder.CreateBr(ContBB);
1278     SI->addCase(Builder.getInt32(5), SeqCstBB);
1279 
1280     Builder.SetInsertPoint(ContBB);
1281     return RValue::get(0);
1282   }
1283 
1284     // Library functions with special handling.
1285   case Builtin::BIsqrt:
1286   case Builtin::BIsqrtf:
1287   case Builtin::BIsqrtl: {
1288     // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
1289     // in finite- or unsafe-math mode (the intrinsic has different semantics
1290     // for handling negative numbers compared to the library function, so
1291     // -fmath-errno=0 is not enough).
1292     if (!FD->hasAttr<ConstAttr>())
1293       break;
1294     if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
1295           CGM.getCodeGenOpts().NoNaNsFPMath))
1296       break;
1297     Value *Arg0 = EmitScalarExpr(E->getArg(0));
1298     llvm::Type *ArgType = Arg0->getType();
1299     Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
1300     return RValue::get(Builder.CreateCall(F, Arg0));
1301   }
1302 
1303   case Builtin::BIpow:
1304   case Builtin::BIpowf:
1305   case Builtin::BIpowl: {
1306     // Transform a call to pow* into a @llvm.pow.* intrinsic call.
1307     if (!FD->hasAttr<ConstAttr>())
1308       break;
1309     Value *Base = EmitScalarExpr(E->getArg(0));
1310     Value *Exponent = EmitScalarExpr(E->getArg(1));
1311     llvm::Type *ArgType = Base->getType();
1312     Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
1313     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
1314     break;
1315   }
1316 
1317   case Builtin::BIfma:
1318   case Builtin::BIfmaf:
1319   case Builtin::BIfmal:
1320   case Builtin::BI__builtin_fma:
1321   case Builtin::BI__builtin_fmaf:
1322   case Builtin::BI__builtin_fmal: {
1323     // Rewrite fma to intrinsic.
1324     Value *FirstArg = EmitScalarExpr(E->getArg(0));
1325     llvm::Type *ArgType = FirstArg->getType();
1326     Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1327     return RValue::get(Builder.CreateCall3(F, FirstArg,
1328                                               EmitScalarExpr(E->getArg(1)),
1329                                               EmitScalarExpr(E->getArg(2))));
1330   }
1331 
1332   case Builtin::BI__builtin_signbit:
1333   case Builtin::BI__builtin_signbitf:
1334   case Builtin::BI__builtin_signbitl: {
1335     LLVMContext &C = CGM.getLLVMContext();
1336 
1337     Value *Arg = EmitScalarExpr(E->getArg(0));
1338     llvm::Type *ArgTy = Arg->getType();
1339     if (ArgTy->isPPC_FP128Ty())
1340       break; // FIXME: I'm not sure what the right implementation is here.
1341     int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1342     llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1343     Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1344     Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1345     Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1346     return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1347   }
1348   case Builtin::BI__builtin_annotation: {
1349     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1350     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1351                                       AnnVal->getType());
1352 
1353     // Get the annotation string, go through casts. Sema requires this to be a
1354     // non-wide string literal, potentially casted, so the cast<> is safe.
1355     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1356     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1357     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1358   }
1359   case Builtin::BI__builtin_addcb:
1360   case Builtin::BI__builtin_addcs:
1361   case Builtin::BI__builtin_addc:
1362   case Builtin::BI__builtin_addcl:
1363   case Builtin::BI__builtin_addcll:
1364   case Builtin::BI__builtin_subcb:
1365   case Builtin::BI__builtin_subcs:
1366   case Builtin::BI__builtin_subc:
1367   case Builtin::BI__builtin_subcl:
1368   case Builtin::BI__builtin_subcll: {
1369 
1370     // We translate all of these builtins from expressions of the form:
1371     //   int x = ..., y = ..., carryin = ..., carryout, result;
1372     //   result = __builtin_addc(x, y, carryin, &carryout);
1373     //
1374     // to LLVM IR of the form:
1375     //
1376     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
1377     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
1378     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
1379     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
1380     //                                                       i32 %carryin)
1381     //   %result = extractvalue {i32, i1} %tmp2, 0
1382     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
1383     //   %tmp3 = or i1 %carry1, %carry2
1384     //   %tmp4 = zext i1 %tmp3 to i32
1385     //   store i32 %tmp4, i32* %carryout
1386 
1387     // Scalarize our inputs.
1388     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1389     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1390     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
1391     std::pair<llvm::Value*, unsigned> CarryOutPtr =
1392       EmitPointerWithAlignment(E->getArg(3));
1393 
1394     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
1395     llvm::Intrinsic::ID IntrinsicId;
1396     switch (BuiltinID) {
1397     default: llvm_unreachable("Unknown multiprecision builtin id.");
1398     case Builtin::BI__builtin_addcb:
1399     case Builtin::BI__builtin_addcs:
1400     case Builtin::BI__builtin_addc:
1401     case Builtin::BI__builtin_addcl:
1402     case Builtin::BI__builtin_addcll:
1403       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1404       break;
1405     case Builtin::BI__builtin_subcb:
1406     case Builtin::BI__builtin_subcs:
1407     case Builtin::BI__builtin_subc:
1408     case Builtin::BI__builtin_subcl:
1409     case Builtin::BI__builtin_subcll:
1410       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1411       break;
1412     }
1413 
1414     // Construct our resulting LLVM IR expression.
1415     llvm::Value *Carry1;
1416     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
1417                                               X, Y, Carry1);
1418     llvm::Value *Carry2;
1419     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
1420                                               Sum1, Carryin, Carry2);
1421     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
1422                                                X->getType());
1423     llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
1424                                                          CarryOutPtr.first);
1425     CarryOutStore->setAlignment(CarryOutPtr.second);
1426     return RValue::get(Sum2);
1427   }
1428   case Builtin::BI__builtin_uadd_overflow:
1429   case Builtin::BI__builtin_uaddl_overflow:
1430   case Builtin::BI__builtin_uaddll_overflow:
1431   case Builtin::BI__builtin_usub_overflow:
1432   case Builtin::BI__builtin_usubl_overflow:
1433   case Builtin::BI__builtin_usubll_overflow:
1434   case Builtin::BI__builtin_umul_overflow:
1435   case Builtin::BI__builtin_umull_overflow:
1436   case Builtin::BI__builtin_umulll_overflow:
1437   case Builtin::BI__builtin_sadd_overflow:
1438   case Builtin::BI__builtin_saddl_overflow:
1439   case Builtin::BI__builtin_saddll_overflow:
1440   case Builtin::BI__builtin_ssub_overflow:
1441   case Builtin::BI__builtin_ssubl_overflow:
1442   case Builtin::BI__builtin_ssubll_overflow:
1443   case Builtin::BI__builtin_smul_overflow:
1444   case Builtin::BI__builtin_smull_overflow:
1445   case Builtin::BI__builtin_smulll_overflow: {
1446 
1447     // We translate all of these builtins directly to the relevant llvm IR node.
1448 
1449     // Scalarize our inputs.
1450     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1451     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1452     std::pair<llvm::Value *, unsigned> SumOutPtr =
1453       EmitPointerWithAlignment(E->getArg(2));
1454 
1455     // Decide which of the overflow intrinsics we are lowering to:
1456     llvm::Intrinsic::ID IntrinsicId;
1457     switch (BuiltinID) {
1458     default: llvm_unreachable("Unknown security overflow builtin id.");
1459     case Builtin::BI__builtin_uadd_overflow:
1460     case Builtin::BI__builtin_uaddl_overflow:
1461     case Builtin::BI__builtin_uaddll_overflow:
1462       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1463       break;
1464     case Builtin::BI__builtin_usub_overflow:
1465     case Builtin::BI__builtin_usubl_overflow:
1466     case Builtin::BI__builtin_usubll_overflow:
1467       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1468       break;
1469     case Builtin::BI__builtin_umul_overflow:
1470     case Builtin::BI__builtin_umull_overflow:
1471     case Builtin::BI__builtin_umulll_overflow:
1472       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
1473       break;
1474     case Builtin::BI__builtin_sadd_overflow:
1475     case Builtin::BI__builtin_saddl_overflow:
1476     case Builtin::BI__builtin_saddll_overflow:
1477       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
1478       break;
1479     case Builtin::BI__builtin_ssub_overflow:
1480     case Builtin::BI__builtin_ssubl_overflow:
1481     case Builtin::BI__builtin_ssubll_overflow:
1482       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
1483       break;
1484     case Builtin::BI__builtin_smul_overflow:
1485     case Builtin::BI__builtin_smull_overflow:
1486     case Builtin::BI__builtin_smulll_overflow:
1487       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
1488       break;
1489     }
1490 
1491 
1492     llvm::Value *Carry;
1493     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
1494     llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first);
1495     SumOutStore->setAlignment(SumOutPtr.second);
1496 
1497     return RValue::get(Carry);
1498   }
1499   case Builtin::BI__builtin_addressof:
1500     return RValue::get(EmitLValue(E->getArg(0)).getAddress());
1501   case Builtin::BI__noop:
1502     return RValue::get(0);
1503   }
1504 
1505   // If this is an alias for a lib function (e.g. __builtin_sin), emit
1506   // the call using the normal call path, but using the unmangled
1507   // version of the function name.
1508   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1509     return emitLibraryCall(*this, FD, E,
1510                            CGM.getBuiltinLibFunction(FD, BuiltinID));
1511 
1512   // If this is a predefined lib function (e.g. malloc), emit the call
1513   // using exactly the normal call path.
1514   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1515     return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1516 
1517   // See if we have a target specific intrinsic.
1518   const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1519   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1520   if (const char *Prefix =
1521       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()))
1522     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1523 
1524   if (IntrinsicID != Intrinsic::not_intrinsic) {
1525     SmallVector<Value*, 16> Args;
1526 
1527     // Find out if any arguments are required to be integer constant
1528     // expressions.
1529     unsigned ICEArguments = 0;
1530     ASTContext::GetBuiltinTypeError Error;
1531     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1532     assert(Error == ASTContext::GE_None && "Should not codegen an error");
1533 
1534     Function *F = CGM.getIntrinsic(IntrinsicID);
1535     llvm::FunctionType *FTy = F->getFunctionType();
1536 
1537     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1538       Value *ArgValue;
1539       // If this is a normal argument, just emit it as a scalar.
1540       if ((ICEArguments & (1 << i)) == 0) {
1541         ArgValue = EmitScalarExpr(E->getArg(i));
1542       } else {
1543         // If this is required to be a constant, constant fold it so that we
1544         // know that the generated intrinsic gets a ConstantInt.
1545         llvm::APSInt Result;
1546         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1547         assert(IsConst && "Constant arg isn't actually constant?");
1548         (void)IsConst;
1549         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1550       }
1551 
1552       // If the intrinsic arg type is different from the builtin arg type
1553       // we need to do a bit cast.
1554       llvm::Type *PTy = FTy->getParamType(i);
1555       if (PTy != ArgValue->getType()) {
1556         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1557                "Must be able to losslessly bit cast to param");
1558         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1559       }
1560 
1561       Args.push_back(ArgValue);
1562     }
1563 
1564     Value *V = Builder.CreateCall(F, Args);
1565     QualType BuiltinRetType = E->getType();
1566 
1567     llvm::Type *RetTy = VoidTy;
1568     if (!BuiltinRetType->isVoidType())
1569       RetTy = ConvertType(BuiltinRetType);
1570 
1571     if (RetTy != V->getType()) {
1572       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1573              "Must be able to losslessly bit cast result type");
1574       V = Builder.CreateBitCast(V, RetTy);
1575     }
1576 
1577     return RValue::get(V);
1578   }
1579 
1580   // See if we have a target specific builtin that needs to be lowered.
1581   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1582     return RValue::get(V);
1583 
1584   ErrorUnsupported(E, "builtin function");
1585 
1586   // Unknown builtin, for now just dump it out and return undef.
1587   return GetUndefRValue(E->getType());
1588 }
1589 
1590 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1591                                               const CallExpr *E) {
1592   switch (getTarget().getTriple().getArch()) {
1593   case llvm::Triple::aarch64:
1594     return EmitAArch64BuiltinExpr(BuiltinID, E);
1595   case llvm::Triple::arm:
1596   case llvm::Triple::thumb:
1597     return EmitARMBuiltinExpr(BuiltinID, E);
1598   case llvm::Triple::x86:
1599   case llvm::Triple::x86_64:
1600     return EmitX86BuiltinExpr(BuiltinID, E);
1601   case llvm::Triple::ppc:
1602   case llvm::Triple::ppc64:
1603   case llvm::Triple::ppc64le:
1604     return EmitPPCBuiltinExpr(BuiltinID, E);
1605   default:
1606     return 0;
1607   }
1608 }
1609 
1610 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
1611                                      NeonTypeFlags TypeFlags,
1612                                      bool V1Ty=false) {
1613   int IsQuad = TypeFlags.isQuad();
1614   switch (TypeFlags.getEltType()) {
1615   case NeonTypeFlags::Int8:
1616   case NeonTypeFlags::Poly8:
1617     return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
1618   case NeonTypeFlags::Int16:
1619   case NeonTypeFlags::Poly16:
1620   case NeonTypeFlags::Float16:
1621     return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
1622   case NeonTypeFlags::Int32:
1623     return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
1624   case NeonTypeFlags::Int64:
1625   case NeonTypeFlags::Poly64:
1626     return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
1627   case NeonTypeFlags::Float32:
1628     return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
1629   case NeonTypeFlags::Float64:
1630     return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
1631   }
1632   llvm_unreachable("Unknown vector element type!");
1633 }
1634 
1635 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1636   unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1637   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
1638   return Builder.CreateShuffleVector(V, V, SV, "lane");
1639 }
1640 
1641 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1642                                      const char *name,
1643                                      unsigned shift, bool rightshift) {
1644   unsigned j = 0;
1645   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1646        ai != ae; ++ai, ++j)
1647     if (shift > 0 && shift == j)
1648       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1649     else
1650       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1651 
1652   return Builder.CreateCall(F, Ops, name);
1653 }
1654 
1655 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1656                                             bool neg) {
1657   int SV = cast<ConstantInt>(V)->getSExtValue();
1658 
1659   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1660   llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1661   return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
1662 }
1663 
1664 // \brief Right-shift a vector by a constant.
1665 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
1666                                           llvm::Type *Ty, bool usgn,
1667                                           const char *name) {
1668   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1669 
1670   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
1671   int EltSize = VTy->getScalarSizeInBits();
1672 
1673   Vec = Builder.CreateBitCast(Vec, Ty);
1674 
1675   // lshr/ashr are undefined when the shift amount is equal to the vector
1676   // element size.
1677   if (ShiftAmt == EltSize) {
1678     if (usgn) {
1679       // Right-shifting an unsigned value by its size yields 0.
1680       llvm::Constant *Zero = ConstantInt::get(VTy->getElementType(), 0);
1681       return llvm::ConstantVector::getSplat(VTy->getNumElements(), Zero);
1682     } else {
1683       // Right-shifting a signed value by its size is equivalent
1684       // to a shift of size-1.
1685       --ShiftAmt;
1686       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
1687     }
1688   }
1689 
1690   Shift = EmitNeonShiftVector(Shift, Ty, false);
1691   if (usgn)
1692     return Builder.CreateLShr(Vec, Shift, name);
1693   else
1694     return Builder.CreateAShr(Vec, Shift, name);
1695 }
1696 
1697 /// GetPointeeAlignment - Given an expression with a pointer type, find the
1698 /// alignment of the type referenced by the pointer.  Skip over implicit
1699 /// casts.
1700 std::pair<llvm::Value*, unsigned>
1701 CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
1702   assert(Addr->getType()->isPointerType());
1703   Addr = Addr->IgnoreParens();
1704   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
1705     if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
1706         ICE->getSubExpr()->getType()->isPointerType()) {
1707       std::pair<llvm::Value*, unsigned> Ptr =
1708           EmitPointerWithAlignment(ICE->getSubExpr());
1709       Ptr.first = Builder.CreateBitCast(Ptr.first,
1710                                         ConvertType(Addr->getType()));
1711       return Ptr;
1712     } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1713       LValue LV = EmitLValue(ICE->getSubExpr());
1714       unsigned Align = LV.getAlignment().getQuantity();
1715       if (!Align) {
1716         // FIXME: Once LValues are fixed to always set alignment,
1717         // zap this code.
1718         QualType PtTy = ICE->getSubExpr()->getType();
1719         if (!PtTy->isIncompleteType())
1720           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1721         else
1722           Align = 1;
1723       }
1724       return std::make_pair(LV.getAddress(), Align);
1725     }
1726   }
1727   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
1728     if (UO->getOpcode() == UO_AddrOf) {
1729       LValue LV = EmitLValue(UO->getSubExpr());
1730       unsigned Align = LV.getAlignment().getQuantity();
1731       if (!Align) {
1732         // FIXME: Once LValues are fixed to always set alignment,
1733         // zap this code.
1734         QualType PtTy = UO->getSubExpr()->getType();
1735         if (!PtTy->isIncompleteType())
1736           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1737         else
1738           Align = 1;
1739       }
1740       return std::make_pair(LV.getAddress(), Align);
1741     }
1742   }
1743 
1744   unsigned Align = 1;
1745   QualType PtTy = Addr->getType()->getPointeeType();
1746   if (!PtTy->isIncompleteType())
1747     Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1748 
1749   return std::make_pair(EmitScalarExpr(Addr), Align);
1750 }
1751 
1752 static Value *EmitAArch64ScalarBuiltinExpr(CodeGenFunction &CGF,
1753                                            unsigned BuiltinID,
1754                                            const CallExpr *E) {
1755   unsigned int Int = 0;
1756   // Scalar result generated across vectors
1757   bool AcrossVec = false;
1758   // Extend element of one-element vector
1759   bool ExtendEle = false;
1760   bool OverloadInt = false;
1761   bool OverloadCmpInt = false;
1762   bool OverloadWideInt = false;
1763   bool OverloadNarrowInt = false;
1764   const char *s = NULL;
1765 
1766   SmallVector<Value *, 4> Ops;
1767   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1768     Ops.push_back(CGF.EmitScalarExpr(E->getArg(i)));
1769   }
1770 
1771   // AArch64 scalar builtins are not overloaded, they do not have an extra
1772   // argument that specifies the vector type, need to handle each case.
1773   switch (BuiltinID) {
1774   default: break;
1775   case AArch64::BI__builtin_neon_vdups_lane_f32:
1776   case AArch64::BI__builtin_neon_vdupd_lane_f64:
1777   case AArch64::BI__builtin_neon_vdups_laneq_f32:
1778   case AArch64::BI__builtin_neon_vdupd_laneq_f64: {
1779     return CGF.Builder.CreateExtractElement(Ops[0], Ops[1], "vdup_lane");
1780   }
1781   case AArch64::BI__builtin_neon_vdupb_lane_i8:
1782   case AArch64::BI__builtin_neon_vduph_lane_i16:
1783   case AArch64::BI__builtin_neon_vdups_lane_i32:
1784   case AArch64::BI__builtin_neon_vdupd_lane_i64:
1785   case AArch64::BI__builtin_neon_vdupb_laneq_i8:
1786   case AArch64::BI__builtin_neon_vduph_laneq_i16:
1787   case AArch64::BI__builtin_neon_vdups_laneq_i32:
1788   case AArch64::BI__builtin_neon_vdupd_laneq_i64: {
1789     // The backend treats Neon scalar types as v1ix types
1790     // So we want to dup lane from any vector to v1ix vector
1791     // with shufflevector
1792     s = "vdup_lane";
1793     Value* SV = llvm::ConstantVector::getSplat(1, cast<ConstantInt>(Ops[1]));
1794     Value *Result = CGF.Builder.CreateShuffleVector(Ops[0], Ops[0], SV, s);
1795     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
1796     // AArch64 intrinsic one-element vector type cast to
1797     // scalar type expected by the builtin
1798     return CGF.Builder.CreateBitCast(Result, Ty, s);
1799   }
1800   case AArch64::BI__builtin_neon_vqdmlalh_lane_s16 :
1801   case AArch64::BI__builtin_neon_vqdmlalh_laneq_s16 :
1802   case AArch64::BI__builtin_neon_vqdmlals_lane_s32 :
1803   case AArch64::BI__builtin_neon_vqdmlals_laneq_s32 :
1804   case AArch64::BI__builtin_neon_vqdmlslh_lane_s16 :
1805   case AArch64::BI__builtin_neon_vqdmlslh_laneq_s16 :
1806   case AArch64::BI__builtin_neon_vqdmlsls_lane_s32 :
1807   case AArch64::BI__builtin_neon_vqdmlsls_laneq_s32 : {
1808     Int = Intrinsic::arm_neon_vqadds;
1809     if (BuiltinID == AArch64::BI__builtin_neon_vqdmlslh_lane_s16 ||
1810         BuiltinID == AArch64::BI__builtin_neon_vqdmlslh_laneq_s16 ||
1811         BuiltinID == AArch64::BI__builtin_neon_vqdmlsls_lane_s32 ||
1812         BuiltinID == AArch64::BI__builtin_neon_vqdmlsls_laneq_s32) {
1813       Int = Intrinsic::arm_neon_vqsubs;
1814     }
1815     // create vqdmull call with b * c[i]
1816     llvm::Type *Ty = CGF.ConvertType(E->getArg(1)->getType());
1817     llvm::VectorType *OpVTy = llvm::VectorType::get(Ty, 1);
1818     Ty = CGF.ConvertType(E->getArg(0)->getType());
1819     llvm::VectorType *ResVTy = llvm::VectorType::get(Ty, 1);
1820     Value *F = CGF.CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, ResVTy);
1821     Value *V = UndefValue::get(OpVTy);
1822     llvm::Constant *CI = ConstantInt::get(CGF.Int32Ty, 0);
1823     SmallVector<Value *, 2> MulOps;
1824     MulOps.push_back(Ops[1]);
1825     MulOps.push_back(Ops[2]);
1826     MulOps[0] = CGF.Builder.CreateInsertElement(V, MulOps[0], CI);
1827     MulOps[1] = CGF.Builder.CreateExtractElement(MulOps[1], Ops[3], "extract");
1828     MulOps[1] = CGF.Builder.CreateInsertElement(V, MulOps[1], CI);
1829     Value *MulRes = CGF.Builder.CreateCall2(F, MulOps[0], MulOps[1]);
1830     // create vqadds call with a +/- vqdmull result
1831     F = CGF.CGM.getIntrinsic(Int, ResVTy);
1832     SmallVector<Value *, 2> AddOps;
1833     AddOps.push_back(Ops[0]);
1834     AddOps.push_back(MulRes);
1835     V = UndefValue::get(ResVTy);
1836     AddOps[0] = CGF.Builder.CreateInsertElement(V, AddOps[0], CI);
1837     Value *AddRes = CGF.Builder.CreateCall2(F, AddOps[0], AddOps[1]);
1838     return CGF.Builder.CreateBitCast(AddRes, Ty);
1839   }
1840   case AArch64::BI__builtin_neon_vfmas_lane_f32:
1841   case AArch64::BI__builtin_neon_vfmas_laneq_f32:
1842   case AArch64::BI__builtin_neon_vfmad_lane_f64:
1843   case AArch64::BI__builtin_neon_vfmad_laneq_f64: {
1844     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
1845     Value *F = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
1846     Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
1847     return CGF.Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
1848   }
1849   // Scalar Floating-point Multiply Extended
1850   case AArch64::BI__builtin_neon_vmulxs_f32:
1851   case AArch64::BI__builtin_neon_vmulxd_f64: {
1852     Int = Intrinsic::aarch64_neon_vmulx;
1853     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
1854     return CGF.EmitNeonCall(CGF.CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
1855   }
1856   case AArch64::BI__builtin_neon_vmul_n_f64: {
1857     // v1f64 vmul_n_f64  should be mapped to Neon scalar mul lane
1858     llvm::Type *VTy = GetNeonType(&CGF,
1859       NeonTypeFlags(NeonTypeFlags::Float64, false, false));
1860     Ops[0] = CGF.Builder.CreateBitCast(Ops[0], VTy);
1861     llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1862     Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], Idx, "extract");
1863     Value *Result = CGF.Builder.CreateFMul(Ops[0], Ops[1]);
1864     return CGF.Builder.CreateBitCast(Result, VTy);
1865   }
1866   case AArch64::BI__builtin_neon_vget_lane_i8:
1867   case AArch64::BI__builtin_neon_vget_lane_i16:
1868   case AArch64::BI__builtin_neon_vget_lane_i32:
1869   case AArch64::BI__builtin_neon_vget_lane_i64:
1870   case AArch64::BI__builtin_neon_vget_lane_f32:
1871   case AArch64::BI__builtin_neon_vget_lane_f64:
1872   case AArch64::BI__builtin_neon_vgetq_lane_i8:
1873   case AArch64::BI__builtin_neon_vgetq_lane_i16:
1874   case AArch64::BI__builtin_neon_vgetq_lane_i32:
1875   case AArch64::BI__builtin_neon_vgetq_lane_i64:
1876   case AArch64::BI__builtin_neon_vgetq_lane_f32:
1877   case AArch64::BI__builtin_neon_vgetq_lane_f64:
1878     return CGF.EmitARMBuiltinExpr(ARM::BI__builtin_neon_vget_lane_i8, E);
1879   case AArch64::BI__builtin_neon_vset_lane_i8:
1880   case AArch64::BI__builtin_neon_vset_lane_i16:
1881   case AArch64::BI__builtin_neon_vset_lane_i32:
1882   case AArch64::BI__builtin_neon_vset_lane_i64:
1883   case AArch64::BI__builtin_neon_vset_lane_f32:
1884   case AArch64::BI__builtin_neon_vset_lane_f64:
1885   case AArch64::BI__builtin_neon_vsetq_lane_i8:
1886   case AArch64::BI__builtin_neon_vsetq_lane_i16:
1887   case AArch64::BI__builtin_neon_vsetq_lane_i32:
1888   case AArch64::BI__builtin_neon_vsetq_lane_i64:
1889   case AArch64::BI__builtin_neon_vsetq_lane_f32:
1890   case AArch64::BI__builtin_neon_vsetq_lane_f64:
1891     return CGF.EmitARMBuiltinExpr(ARM::BI__builtin_neon_vset_lane_i8, E);
1892   // Crypto
1893   case AArch64::BI__builtin_neon_vsha1h_u32:
1894     Int = Intrinsic::arm_neon_sha1h;
1895     s = "sha1h"; OverloadInt = true; break;
1896   case AArch64::BI__builtin_neon_vsha1cq_u32:
1897     Int = Intrinsic::aarch64_neon_sha1c;
1898     s = "sha1c"; break;
1899   case AArch64::BI__builtin_neon_vsha1pq_u32:
1900     Int = Intrinsic::aarch64_neon_sha1p;
1901     s = "sha1p"; break;
1902   case AArch64::BI__builtin_neon_vsha1mq_u32:
1903     Int = Intrinsic::aarch64_neon_sha1m;
1904     s = "sha1m"; break;
1905   // Scalar Add
1906   case AArch64::BI__builtin_neon_vaddd_s64:
1907     Int = Intrinsic::aarch64_neon_vaddds;
1908     s = "vaddds"; break;
1909   case AArch64::BI__builtin_neon_vaddd_u64:
1910     Int = Intrinsic::aarch64_neon_vadddu;
1911     s = "vadddu"; break;
1912   // Scalar Sub
1913   case AArch64::BI__builtin_neon_vsubd_s64:
1914     Int = Intrinsic::aarch64_neon_vsubds;
1915     s = "vsubds"; break;
1916   case AArch64::BI__builtin_neon_vsubd_u64:
1917     Int = Intrinsic::aarch64_neon_vsubdu;
1918     s = "vsubdu"; break;
1919   // Scalar Saturating Add
1920   case AArch64::BI__builtin_neon_vqaddb_s8:
1921   case AArch64::BI__builtin_neon_vqaddh_s16:
1922   case AArch64::BI__builtin_neon_vqadds_s32:
1923   case AArch64::BI__builtin_neon_vqaddd_s64:
1924     Int = Intrinsic::arm_neon_vqadds;
1925     s = "vqadds"; OverloadInt = true; break;
1926   case AArch64::BI__builtin_neon_vqaddb_u8:
1927   case AArch64::BI__builtin_neon_vqaddh_u16:
1928   case AArch64::BI__builtin_neon_vqadds_u32:
1929   case AArch64::BI__builtin_neon_vqaddd_u64:
1930     Int = Intrinsic::arm_neon_vqaddu;
1931     s = "vqaddu"; OverloadInt = true; break;
1932   // Scalar Saturating Sub
1933   case AArch64::BI__builtin_neon_vqsubb_s8:
1934   case AArch64::BI__builtin_neon_vqsubh_s16:
1935   case AArch64::BI__builtin_neon_vqsubs_s32:
1936   case AArch64::BI__builtin_neon_vqsubd_s64:
1937     Int = Intrinsic::arm_neon_vqsubs;
1938     s = "vqsubs"; OverloadInt = true; break;
1939   case AArch64::BI__builtin_neon_vqsubb_u8:
1940   case AArch64::BI__builtin_neon_vqsubh_u16:
1941   case AArch64::BI__builtin_neon_vqsubs_u32:
1942   case AArch64::BI__builtin_neon_vqsubd_u64:
1943     Int = Intrinsic::arm_neon_vqsubu;
1944     s = "vqsubu"; OverloadInt = true; break;
1945   // Scalar Shift Left
1946   case AArch64::BI__builtin_neon_vshld_s64:
1947     Int = Intrinsic::aarch64_neon_vshlds;
1948     s = "vshlds"; break;
1949   case AArch64::BI__builtin_neon_vshld_u64:
1950     Int = Intrinsic::aarch64_neon_vshldu;
1951     s = "vshldu"; break;
1952   // Scalar Saturating Shift Left
1953   case AArch64::BI__builtin_neon_vqshlb_s8:
1954   case AArch64::BI__builtin_neon_vqshlh_s16:
1955   case AArch64::BI__builtin_neon_vqshls_s32:
1956   case AArch64::BI__builtin_neon_vqshld_s64:
1957     Int = Intrinsic::aarch64_neon_vqshls;
1958     s = "vqshls"; OverloadInt = true; break;
1959   case AArch64::BI__builtin_neon_vqshlb_u8:
1960   case AArch64::BI__builtin_neon_vqshlh_u16:
1961   case AArch64::BI__builtin_neon_vqshls_u32:
1962   case AArch64::BI__builtin_neon_vqshld_u64:
1963     Int = Intrinsic::aarch64_neon_vqshlu;
1964     s = "vqshlu"; OverloadInt = true; break;
1965   // Scalar Rouding Shift Left
1966   case AArch64::BI__builtin_neon_vrshld_s64:
1967     Int = Intrinsic::aarch64_neon_vrshlds;
1968     s = "vrshlds"; break;
1969   case AArch64::BI__builtin_neon_vrshld_u64:
1970     Int = Intrinsic::aarch64_neon_vrshldu;
1971     s = "vrshldu"; break;
1972   // Scalar Saturating Rouding Shift Left
1973   case AArch64::BI__builtin_neon_vqrshlb_s8:
1974   case AArch64::BI__builtin_neon_vqrshlh_s16:
1975   case AArch64::BI__builtin_neon_vqrshls_s32:
1976   case AArch64::BI__builtin_neon_vqrshld_s64:
1977     Int = Intrinsic::aarch64_neon_vqrshls;
1978     s = "vqrshls"; OverloadInt = true; break;
1979   case AArch64::BI__builtin_neon_vqrshlb_u8:
1980   case AArch64::BI__builtin_neon_vqrshlh_u16:
1981   case AArch64::BI__builtin_neon_vqrshls_u32:
1982   case AArch64::BI__builtin_neon_vqrshld_u64:
1983     Int = Intrinsic::aarch64_neon_vqrshlu;
1984     s = "vqrshlu"; OverloadInt = true; break;
1985   // Scalar Reduce Pairwise Add
1986   case AArch64::BI__builtin_neon_vpaddd_s64:
1987     Int = Intrinsic::aarch64_neon_vpadd; s = "vpadd";
1988     break;
1989   case AArch64::BI__builtin_neon_vpadds_f32:
1990     Int = Intrinsic::aarch64_neon_vpfadd; s = "vpfadd";
1991     break;
1992   case AArch64::BI__builtin_neon_vpaddd_f64:
1993     Int = Intrinsic::aarch64_neon_vpfaddq; s = "vpfaddq";
1994     break;
1995   // Scalar Reduce Pairwise Floating Point Max
1996   case AArch64::BI__builtin_neon_vpmaxs_f32:
1997     Int = Intrinsic::aarch64_neon_vpmax; s = "vpmax";
1998     break;
1999   case AArch64::BI__builtin_neon_vpmaxqd_f64:
2000     Int = Intrinsic::aarch64_neon_vpmaxq; s = "vpmaxq";
2001     break;
2002   // Scalar Reduce Pairwise Floating Point Min
2003   case AArch64::BI__builtin_neon_vpmins_f32:
2004     Int = Intrinsic::aarch64_neon_vpmin; s = "vpmin";
2005     break;
2006   case AArch64::BI__builtin_neon_vpminqd_f64:
2007     Int = Intrinsic::aarch64_neon_vpminq; s = "vpminq";
2008     break;
2009   // Scalar Reduce Pairwise Floating Point Maxnm
2010   case AArch64::BI__builtin_neon_vpmaxnms_f32:
2011     Int = Intrinsic::aarch64_neon_vpfmaxnm; s = "vpfmaxnm";
2012     break;
2013   case AArch64::BI__builtin_neon_vpmaxnmqd_f64:
2014     Int = Intrinsic::aarch64_neon_vpfmaxnmq; s = "vpfmaxnmq";
2015     break;
2016   // Scalar Reduce Pairwise Floating Point Minnm
2017   case AArch64::BI__builtin_neon_vpminnms_f32:
2018     Int = Intrinsic::aarch64_neon_vpfminnm; s = "vpfminnm";
2019     break;
2020   case AArch64::BI__builtin_neon_vpminnmqd_f64:
2021     Int = Intrinsic::aarch64_neon_vpfminnmq; s = "vpfminnmq";
2022     break;
2023   // The followings are intrinsics with scalar results generated AcrossVec vectors
2024   case AArch64::BI__builtin_neon_vaddlv_s8:
2025   case AArch64::BI__builtin_neon_vaddlv_s16:
2026   case AArch64::BI__builtin_neon_vaddlvq_s8:
2027   case AArch64::BI__builtin_neon_vaddlvq_s16:
2028   case AArch64::BI__builtin_neon_vaddlvq_s32:
2029     Int = Intrinsic::aarch64_neon_saddlv;
2030     AcrossVec = true; ExtendEle = true; s = "saddlv"; break;
2031   case AArch64::BI__builtin_neon_vaddlv_u8:
2032   case AArch64::BI__builtin_neon_vaddlv_u16:
2033   case AArch64::BI__builtin_neon_vaddlvq_u8:
2034   case AArch64::BI__builtin_neon_vaddlvq_u16:
2035   case AArch64::BI__builtin_neon_vaddlvq_u32:
2036     Int = Intrinsic::aarch64_neon_uaddlv;
2037     AcrossVec = true; ExtendEle = true; s = "uaddlv"; break;
2038   case AArch64::BI__builtin_neon_vmaxv_s8:
2039   case AArch64::BI__builtin_neon_vmaxv_s16:
2040   case AArch64::BI__builtin_neon_vmaxvq_s8:
2041   case AArch64::BI__builtin_neon_vmaxvq_s16:
2042   case AArch64::BI__builtin_neon_vmaxvq_s32:
2043     Int = Intrinsic::aarch64_neon_smaxv;
2044     AcrossVec = true; ExtendEle = false; s = "smaxv"; break;
2045   case AArch64::BI__builtin_neon_vmaxv_u8:
2046   case AArch64::BI__builtin_neon_vmaxv_u16:
2047   case AArch64::BI__builtin_neon_vmaxvq_u8:
2048   case AArch64::BI__builtin_neon_vmaxvq_u16:
2049   case AArch64::BI__builtin_neon_vmaxvq_u32:
2050     Int = Intrinsic::aarch64_neon_umaxv;
2051     AcrossVec = true; ExtendEle = false; s = "umaxv"; break;
2052   case AArch64::BI__builtin_neon_vminv_s8:
2053   case AArch64::BI__builtin_neon_vminv_s16:
2054   case AArch64::BI__builtin_neon_vminvq_s8:
2055   case AArch64::BI__builtin_neon_vminvq_s16:
2056   case AArch64::BI__builtin_neon_vminvq_s32:
2057     Int = Intrinsic::aarch64_neon_sminv;
2058     AcrossVec = true; ExtendEle = false; s = "sminv"; break;
2059   case AArch64::BI__builtin_neon_vminv_u8:
2060   case AArch64::BI__builtin_neon_vminv_u16:
2061   case AArch64::BI__builtin_neon_vminvq_u8:
2062   case AArch64::BI__builtin_neon_vminvq_u16:
2063   case AArch64::BI__builtin_neon_vminvq_u32:
2064     Int = Intrinsic::aarch64_neon_uminv;
2065     AcrossVec = true; ExtendEle = false; s = "uminv"; break;
2066   case AArch64::BI__builtin_neon_vaddv_s8:
2067   case AArch64::BI__builtin_neon_vaddv_s16:
2068   case AArch64::BI__builtin_neon_vaddvq_s8:
2069   case AArch64::BI__builtin_neon_vaddvq_s16:
2070   case AArch64::BI__builtin_neon_vaddvq_s32:
2071   case AArch64::BI__builtin_neon_vaddv_u8:
2072   case AArch64::BI__builtin_neon_vaddv_u16:
2073   case AArch64::BI__builtin_neon_vaddvq_u8:
2074   case AArch64::BI__builtin_neon_vaddvq_u16:
2075   case AArch64::BI__builtin_neon_vaddvq_u32:
2076     Int = Intrinsic::aarch64_neon_vaddv;
2077     AcrossVec = true; ExtendEle = false; s = "vaddv"; break;
2078   case AArch64::BI__builtin_neon_vmaxvq_f32:
2079     Int = Intrinsic::aarch64_neon_vmaxv;
2080     AcrossVec = true; ExtendEle = false; s = "vmaxv"; break;
2081   case AArch64::BI__builtin_neon_vminvq_f32:
2082     Int = Intrinsic::aarch64_neon_vminv;
2083     AcrossVec = true; ExtendEle = false; s = "vminv"; break;
2084   case AArch64::BI__builtin_neon_vmaxnmvq_f32:
2085     Int = Intrinsic::aarch64_neon_vmaxnmv;
2086     AcrossVec = true; ExtendEle = false; s = "vmaxnmv"; break;
2087   case AArch64::BI__builtin_neon_vminnmvq_f32:
2088     Int = Intrinsic::aarch64_neon_vminnmv;
2089     AcrossVec = true; ExtendEle = false; s = "vminnmv"; break;
2090   // Scalar Integer Saturating Doubling Multiply Half High
2091   case AArch64::BI__builtin_neon_vqdmulhh_s16:
2092   case AArch64::BI__builtin_neon_vqdmulhs_s32:
2093     Int = Intrinsic::arm_neon_vqdmulh;
2094     s = "vqdmulh"; OverloadInt = true; break;
2095   // Scalar Integer Saturating Rounding Doubling Multiply Half High
2096   case AArch64::BI__builtin_neon_vqrdmulhh_s16:
2097   case AArch64::BI__builtin_neon_vqrdmulhs_s32:
2098     Int = Intrinsic::arm_neon_vqrdmulh;
2099     s = "vqrdmulh"; OverloadInt = true; break;
2100   // Scalar Floating-point Reciprocal Step and
2101   case AArch64::BI__builtin_neon_vrecpss_f32:
2102   case AArch64::BI__builtin_neon_vrecpsd_f64:
2103     Int = Intrinsic::arm_neon_vrecps;
2104     s = "vrecps"; OverloadInt = true; break;
2105   // Scalar Floating-point Reciprocal Square Root Step
2106   case AArch64::BI__builtin_neon_vrsqrtss_f32:
2107   case AArch64::BI__builtin_neon_vrsqrtsd_f64:
2108     Int = Intrinsic::arm_neon_vrsqrts;
2109     s = "vrsqrts"; OverloadInt = true; break;
2110   // Scalar Signed Integer Convert To Floating-point
2111   case AArch64::BI__builtin_neon_vcvts_f32_s32:
2112     Int = Intrinsic::aarch64_neon_vcvtf32_s32,
2113     s = "vcvtf"; OverloadInt = false; break;
2114   case AArch64::BI__builtin_neon_vcvtd_f64_s64:
2115     Int = Intrinsic::aarch64_neon_vcvtf64_s64,
2116     s = "vcvtf"; OverloadInt = false; break;
2117   // Scalar Unsigned Integer Convert To Floating-point
2118   case AArch64::BI__builtin_neon_vcvts_f32_u32:
2119     Int = Intrinsic::aarch64_neon_vcvtf32_u32,
2120     s = "vcvtf"; OverloadInt = false; break;
2121   case AArch64::BI__builtin_neon_vcvtd_f64_u64:
2122     Int = Intrinsic::aarch64_neon_vcvtf64_u64,
2123     s = "vcvtf"; OverloadInt = false; break;
2124   // Scalar Floating-point Reciprocal Estimate
2125   case AArch64::BI__builtin_neon_vrecpes_f32:
2126   case AArch64::BI__builtin_neon_vrecped_f64:
2127     Int = Intrinsic::arm_neon_vrecpe;
2128     s = "vrecpe"; OverloadInt = true; break;
2129   // Scalar Floating-point Reciprocal Exponent
2130   case AArch64::BI__builtin_neon_vrecpxs_f32:
2131   case AArch64::BI__builtin_neon_vrecpxd_f64:
2132     Int = Intrinsic::aarch64_neon_vrecpx;
2133     s = "vrecpx"; OverloadInt = true; break;
2134   // Scalar Floating-point Reciprocal Square Root Estimate
2135   case AArch64::BI__builtin_neon_vrsqrtes_f32:
2136   case AArch64::BI__builtin_neon_vrsqrted_f64:
2137     Int = Intrinsic::arm_neon_vrsqrte;
2138     s = "vrsqrte"; OverloadInt = true; break;
2139   // Scalar Compare Equal
2140   case AArch64::BI__builtin_neon_vceqd_s64:
2141   case AArch64::BI__builtin_neon_vceqd_u64:
2142     Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2143     OverloadCmpInt = true; break;
2144   // Scalar Compare Equal To Zero
2145   case AArch64::BI__builtin_neon_vceqzd_s64:
2146   case AArch64::BI__builtin_neon_vceqzd_u64:
2147     Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2148     // Add implicit zero operand.
2149     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2150     OverloadCmpInt = true; break;
2151   // Scalar Compare Greater Than or Equal
2152   case AArch64::BI__builtin_neon_vcged_s64:
2153     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2154     OverloadCmpInt = true; break;
2155   case AArch64::BI__builtin_neon_vcged_u64:
2156     Int = Intrinsic::aarch64_neon_vchs; s = "vcge";
2157     OverloadCmpInt = true; break;
2158   // Scalar Compare Greater Than or Equal To Zero
2159   case AArch64::BI__builtin_neon_vcgezd_s64:
2160     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2161     // Add implicit zero operand.
2162     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2163     OverloadCmpInt = true; break;
2164   // Scalar Compare Greater Than
2165   case AArch64::BI__builtin_neon_vcgtd_s64:
2166     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2167     OverloadCmpInt = true; break;
2168   case AArch64::BI__builtin_neon_vcgtd_u64:
2169     Int = Intrinsic::aarch64_neon_vchi; s = "vcgt";
2170     OverloadCmpInt = true; break;
2171   // Scalar Compare Greater Than Zero
2172   case AArch64::BI__builtin_neon_vcgtzd_s64:
2173     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2174     // Add implicit zero operand.
2175     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2176     OverloadCmpInt = true; break;
2177   // Scalar Compare Less Than or Equal
2178   case AArch64::BI__builtin_neon_vcled_s64:
2179     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2180     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2181   case AArch64::BI__builtin_neon_vcled_u64:
2182     Int = Intrinsic::aarch64_neon_vchs; s = "vchs";
2183     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2184   // Scalar Compare Less Than or Equal To Zero
2185   case AArch64::BI__builtin_neon_vclezd_s64:
2186     Int = Intrinsic::aarch64_neon_vclez; s = "vcle";
2187     // Add implicit zero operand.
2188     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2189     OverloadCmpInt = true; break;
2190   // Scalar Compare Less Than
2191   case AArch64::BI__builtin_neon_vcltd_s64:
2192     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2193     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2194   case AArch64::BI__builtin_neon_vcltd_u64:
2195     Int = Intrinsic::aarch64_neon_vchi; s = "vchi";
2196     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2197   // Scalar Compare Less Than Zero
2198   case AArch64::BI__builtin_neon_vcltzd_s64:
2199     Int = Intrinsic::aarch64_neon_vcltz; s = "vclt";
2200     // Add implicit zero operand.
2201     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2202     OverloadCmpInt = true; break;
2203   // Scalar Floating-point Compare Equal
2204   case AArch64::BI__builtin_neon_vceqs_f32:
2205   case AArch64::BI__builtin_neon_vceqd_f64:
2206     Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2207     OverloadCmpInt = true; break;
2208   // Scalar Floating-point Compare Equal To Zero
2209   case AArch64::BI__builtin_neon_vceqzs_f32:
2210   case AArch64::BI__builtin_neon_vceqzd_f64:
2211     Int = Intrinsic::aarch64_neon_vceq; s = "vceq";
2212     // Add implicit zero operand.
2213     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2214     OverloadCmpInt = true; break;
2215   // Scalar Floating-point Compare Greater Than Or Equal
2216   case AArch64::BI__builtin_neon_vcges_f32:
2217   case AArch64::BI__builtin_neon_vcged_f64:
2218     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2219     OverloadCmpInt = true; break;
2220   // Scalar Floating-point Compare Greater Than Or Equal To Zero
2221   case AArch64::BI__builtin_neon_vcgezs_f32:
2222   case AArch64::BI__builtin_neon_vcgezd_f64:
2223     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2224     // Add implicit zero operand.
2225     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2226     OverloadCmpInt = true; break;
2227   // Scalar Floating-point Compare Greather Than
2228   case AArch64::BI__builtin_neon_vcgts_f32:
2229   case AArch64::BI__builtin_neon_vcgtd_f64:
2230     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2231     OverloadCmpInt = true; break;
2232   // Scalar Floating-point Compare Greather Than Zero
2233   case AArch64::BI__builtin_neon_vcgtzs_f32:
2234   case AArch64::BI__builtin_neon_vcgtzd_f64:
2235     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2236     // Add implicit zero operand.
2237     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2238     OverloadCmpInt = true; break;
2239   // Scalar Floating-point Compare Less Than or Equal
2240   case AArch64::BI__builtin_neon_vcles_f32:
2241   case AArch64::BI__builtin_neon_vcled_f64:
2242     Int = Intrinsic::aarch64_neon_vcge; s = "vcge";
2243     OverloadCmpInt = true; break;
2244   // Scalar Floating-point Compare Less Than Or Equal To Zero
2245   case AArch64::BI__builtin_neon_vclezs_f32:
2246   case AArch64::BI__builtin_neon_vclezd_f64:
2247     Int = Intrinsic::aarch64_neon_vclez; s = "vcle";
2248     // Add implicit zero operand.
2249     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2250     OverloadCmpInt = true; break;
2251   // Scalar Floating-point Compare Less Than Zero
2252   case AArch64::BI__builtin_neon_vclts_f32:
2253   case AArch64::BI__builtin_neon_vcltd_f64:
2254     Int = Intrinsic::aarch64_neon_vcgt; s = "vcgt";
2255     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2256   // Scalar Floating-point Compare Less Than Zero
2257   case AArch64::BI__builtin_neon_vcltzs_f32:
2258   case AArch64::BI__builtin_neon_vcltzd_f64:
2259     Int = Intrinsic::aarch64_neon_vcltz; s = "vclt";
2260     // Add implicit zero operand.
2261     Ops.push_back(llvm::Constant::getNullValue(Ops[0]->getType()));
2262     OverloadCmpInt = true; break;
2263   // Scalar Floating-point Absolute Compare Greater Than Or Equal
2264   case AArch64::BI__builtin_neon_vcages_f32:
2265   case AArch64::BI__builtin_neon_vcaged_f64:
2266     Int = Intrinsic::aarch64_neon_vcage; s = "vcage";
2267     OverloadCmpInt = true; break;
2268   // Scalar Floating-point Absolute Compare Greater Than
2269   case AArch64::BI__builtin_neon_vcagts_f32:
2270   case AArch64::BI__builtin_neon_vcagtd_f64:
2271     Int = Intrinsic::aarch64_neon_vcagt; s = "vcagt";
2272     OverloadCmpInt = true; break;
2273   // Scalar Floating-point Absolute Compare Less Than Or Equal
2274   case AArch64::BI__builtin_neon_vcales_f32:
2275   case AArch64::BI__builtin_neon_vcaled_f64:
2276     Int = Intrinsic::aarch64_neon_vcage; s = "vcage";
2277     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2278   // Scalar Floating-point Absolute Compare Less Than
2279   case AArch64::BI__builtin_neon_vcalts_f32:
2280   case AArch64::BI__builtin_neon_vcaltd_f64:
2281     Int = Intrinsic::aarch64_neon_vcagt; s = "vcalt";
2282     OverloadCmpInt = true; std::swap(Ops[0], Ops[1]); break;
2283   // Scalar Compare Bitwise Test Bits
2284   case AArch64::BI__builtin_neon_vtstd_s64:
2285   case AArch64::BI__builtin_neon_vtstd_u64:
2286     Int = Intrinsic::aarch64_neon_vtstd; s = "vtst";
2287     OverloadCmpInt = true; break;
2288   // Scalar Absolute Value
2289   case AArch64::BI__builtin_neon_vabsd_s64:
2290     Int = Intrinsic::aarch64_neon_vabs;
2291     s = "vabs"; OverloadInt = false; break;
2292   // Scalar Signed Saturating Absolute Value
2293   case AArch64::BI__builtin_neon_vqabsb_s8:
2294   case AArch64::BI__builtin_neon_vqabsh_s16:
2295   case AArch64::BI__builtin_neon_vqabss_s32:
2296   case AArch64::BI__builtin_neon_vqabsd_s64:
2297     Int = Intrinsic::arm_neon_vqabs;
2298     s = "vqabs"; OverloadInt = true; break;
2299   // Scalar Negate
2300   case AArch64::BI__builtin_neon_vnegd_s64:
2301     Int = Intrinsic::aarch64_neon_vneg;
2302     s = "vneg"; OverloadInt = false; break;
2303   // Scalar Signed Saturating Negate
2304   case AArch64::BI__builtin_neon_vqnegb_s8:
2305   case AArch64::BI__builtin_neon_vqnegh_s16:
2306   case AArch64::BI__builtin_neon_vqnegs_s32:
2307   case AArch64::BI__builtin_neon_vqnegd_s64:
2308     Int = Intrinsic::arm_neon_vqneg;
2309     s = "vqneg"; OverloadInt = true; break;
2310   // Scalar Signed Saturating Accumulated of Unsigned Value
2311   case AArch64::BI__builtin_neon_vuqaddb_s8:
2312   case AArch64::BI__builtin_neon_vuqaddh_s16:
2313   case AArch64::BI__builtin_neon_vuqadds_s32:
2314   case AArch64::BI__builtin_neon_vuqaddd_s64:
2315     Int = Intrinsic::aarch64_neon_vuqadd;
2316     s = "vuqadd"; OverloadInt = true; break;
2317   // Scalar Unsigned Saturating Accumulated of Signed Value
2318   case AArch64::BI__builtin_neon_vsqaddb_u8:
2319   case AArch64::BI__builtin_neon_vsqaddh_u16:
2320   case AArch64::BI__builtin_neon_vsqadds_u32:
2321   case AArch64::BI__builtin_neon_vsqaddd_u64:
2322     Int = Intrinsic::aarch64_neon_vsqadd;
2323     s = "vsqadd"; OverloadInt = true; break;
2324   // Signed Saturating Doubling Multiply-Add Long
2325   case AArch64::BI__builtin_neon_vqdmlalh_s16:
2326   case AArch64::BI__builtin_neon_vqdmlals_s32:
2327     Int = Intrinsic::aarch64_neon_vqdmlal;
2328     s = "vqdmlal"; OverloadWideInt = true; break;
2329   // Signed Saturating Doubling Multiply-Subtract Long
2330   case AArch64::BI__builtin_neon_vqdmlslh_s16:
2331   case AArch64::BI__builtin_neon_vqdmlsls_s32:
2332     Int = Intrinsic::aarch64_neon_vqdmlsl;
2333     s = "vqdmlsl"; OverloadWideInt = true; break;
2334   // Signed Saturating Doubling Multiply Long
2335   case AArch64::BI__builtin_neon_vqdmullh_s16:
2336   case AArch64::BI__builtin_neon_vqdmulls_s32:
2337     Int = Intrinsic::arm_neon_vqdmull;
2338     s = "vqdmull"; OverloadWideInt = true; break;
2339   // Scalar Signed Saturating Extract Unsigned Narrow
2340   case AArch64::BI__builtin_neon_vqmovunh_s16:
2341   case AArch64::BI__builtin_neon_vqmovuns_s32:
2342   case AArch64::BI__builtin_neon_vqmovund_s64:
2343     Int = Intrinsic::arm_neon_vqmovnsu;
2344     s = "vqmovun"; OverloadNarrowInt = true; break;
2345   // Scalar Signed Saturating Extract Narrow
2346   case AArch64::BI__builtin_neon_vqmovnh_s16:
2347   case AArch64::BI__builtin_neon_vqmovns_s32:
2348   case AArch64::BI__builtin_neon_vqmovnd_s64:
2349     Int = Intrinsic::arm_neon_vqmovns;
2350     s = "vqmovn"; OverloadNarrowInt = true; break;
2351   // Scalar Unsigned Saturating Extract Narrow
2352   case AArch64::BI__builtin_neon_vqmovnh_u16:
2353   case AArch64::BI__builtin_neon_vqmovns_u32:
2354   case AArch64::BI__builtin_neon_vqmovnd_u64:
2355     Int = Intrinsic::arm_neon_vqmovnu;
2356     s = "vqmovn"; OverloadNarrowInt = true; break;
2357   // Scalar Signed Shift Right (Immediate)
2358   case AArch64::BI__builtin_neon_vshrd_n_s64:
2359     Int = Intrinsic::aarch64_neon_vshrds_n;
2360     s = "vsshr"; OverloadInt = false; break;
2361   // Scalar Unsigned Shift Right (Immediate)
2362   case AArch64::BI__builtin_neon_vshrd_n_u64:
2363     Int = Intrinsic::aarch64_neon_vshrdu_n;
2364     s = "vushr"; OverloadInt = false; break;
2365   // Scalar Signed Rounding Shift Right (Immediate)
2366   case AArch64::BI__builtin_neon_vrshrd_n_s64:
2367     Int = Intrinsic::aarch64_neon_vsrshr;
2368     s = "vsrshr"; OverloadInt = true; break;
2369   // Scalar Unsigned Rounding Shift Right (Immediate)
2370   case AArch64::BI__builtin_neon_vrshrd_n_u64:
2371     Int = Intrinsic::aarch64_neon_vurshr;
2372     s = "vurshr"; OverloadInt = true; break;
2373   // Scalar Signed Shift Right and Accumulate (Immediate)
2374   case AArch64::BI__builtin_neon_vsrad_n_s64:
2375     Int = Intrinsic::aarch64_neon_vsrads_n;
2376     s = "vssra"; OverloadInt = false; break;
2377   // Scalar Unsigned Shift Right and Accumulate (Immediate)
2378   case AArch64::BI__builtin_neon_vsrad_n_u64:
2379     Int = Intrinsic::aarch64_neon_vsradu_n;
2380     s = "vusra"; OverloadInt = false; break;
2381   // Scalar Signed Rounding Shift Right and Accumulate (Immediate)
2382   case AArch64::BI__builtin_neon_vrsrad_n_s64:
2383     Int = Intrinsic::aarch64_neon_vrsrads_n;
2384     s = "vsrsra"; OverloadInt = false; break;
2385   // Scalar Unsigned Rounding Shift Right and Accumulate (Immediate)
2386   case AArch64::BI__builtin_neon_vrsrad_n_u64:
2387     Int = Intrinsic::aarch64_neon_vrsradu_n;
2388     s = "vursra"; OverloadInt = false; break;
2389   // Scalar Signed/Unsigned Shift Left (Immediate)
2390   case AArch64::BI__builtin_neon_vshld_n_s64:
2391   case AArch64::BI__builtin_neon_vshld_n_u64:
2392     Int = Intrinsic::aarch64_neon_vshld_n;
2393     s = "vshl"; OverloadInt = false; break;
2394   // Signed Saturating Shift Left (Immediate)
2395   case AArch64::BI__builtin_neon_vqshlb_n_s8:
2396   case AArch64::BI__builtin_neon_vqshlh_n_s16:
2397   case AArch64::BI__builtin_neon_vqshls_n_s32:
2398   case AArch64::BI__builtin_neon_vqshld_n_s64:
2399     Int = Intrinsic::aarch64_neon_vqshls_n;
2400     s = "vsqshl"; OverloadInt = true; break;
2401   // Unsigned Saturating Shift Left (Immediate)
2402   case AArch64::BI__builtin_neon_vqshlb_n_u8:
2403   case AArch64::BI__builtin_neon_vqshlh_n_u16:
2404   case AArch64::BI__builtin_neon_vqshls_n_u32:
2405   case AArch64::BI__builtin_neon_vqshld_n_u64:
2406     Int = Intrinsic::aarch64_neon_vqshlu_n;
2407     s = "vuqshl"; OverloadInt = true; break;
2408   // Signed Saturating Shift Left Unsigned (Immediate)
2409   case AArch64::BI__builtin_neon_vqshlub_n_s8:
2410   case AArch64::BI__builtin_neon_vqshluh_n_s16:
2411   case AArch64::BI__builtin_neon_vqshlus_n_s32:
2412   case AArch64::BI__builtin_neon_vqshlud_n_s64:
2413     Int = Intrinsic::aarch64_neon_vsqshlu;
2414     s = "vsqshlu"; OverloadInt = true; break;
2415   // Shift Right And Insert (Immediate)
2416   case AArch64::BI__builtin_neon_vsrid_n_s64:
2417   case AArch64::BI__builtin_neon_vsrid_n_u64:
2418     Int = Intrinsic::aarch64_neon_vsri;
2419     s = "vsri"; OverloadInt = true; break;
2420   // Shift Left And Insert (Immediate)
2421   case AArch64::BI__builtin_neon_vslid_n_s64:
2422   case AArch64::BI__builtin_neon_vslid_n_u64:
2423     Int = Intrinsic::aarch64_neon_vsli;
2424     s = "vsli"; OverloadInt = true; break;
2425   // Signed Saturating Shift Right Narrow (Immediate)
2426   case AArch64::BI__builtin_neon_vqshrnh_n_s16:
2427   case AArch64::BI__builtin_neon_vqshrns_n_s32:
2428   case AArch64::BI__builtin_neon_vqshrnd_n_s64:
2429     Int = Intrinsic::aarch64_neon_vsqshrn;
2430     s = "vsqshrn"; OverloadInt = true; break;
2431   // Unsigned Saturating Shift Right Narrow (Immediate)
2432   case AArch64::BI__builtin_neon_vqshrnh_n_u16:
2433   case AArch64::BI__builtin_neon_vqshrns_n_u32:
2434   case AArch64::BI__builtin_neon_vqshrnd_n_u64:
2435     Int = Intrinsic::aarch64_neon_vuqshrn;
2436     s = "vuqshrn"; OverloadInt = true; break;
2437   // Signed Saturating Rounded Shift Right Narrow (Immediate)
2438   case AArch64::BI__builtin_neon_vqrshrnh_n_s16:
2439   case AArch64::BI__builtin_neon_vqrshrns_n_s32:
2440   case AArch64::BI__builtin_neon_vqrshrnd_n_s64:
2441     Int = Intrinsic::aarch64_neon_vsqrshrn;
2442     s = "vsqrshrn"; OverloadInt = true; break;
2443   // Unsigned Saturating Rounded Shift Right Narrow (Immediate)
2444   case AArch64::BI__builtin_neon_vqrshrnh_n_u16:
2445   case AArch64::BI__builtin_neon_vqrshrns_n_u32:
2446   case AArch64::BI__builtin_neon_vqrshrnd_n_u64:
2447     Int = Intrinsic::aarch64_neon_vuqrshrn;
2448     s = "vuqrshrn"; OverloadInt = true; break;
2449   // Signed Saturating Shift Right Unsigned Narrow (Immediate)
2450   case AArch64::BI__builtin_neon_vqshrunh_n_s16:
2451   case AArch64::BI__builtin_neon_vqshruns_n_s32:
2452   case AArch64::BI__builtin_neon_vqshrund_n_s64:
2453     Int = Intrinsic::aarch64_neon_vsqshrun;
2454     s = "vsqshrun"; OverloadInt = true; break;
2455   // Signed Saturating Rounded Shift Right Unsigned Narrow (Immediate)
2456   case AArch64::BI__builtin_neon_vqrshrunh_n_s16:
2457   case AArch64::BI__builtin_neon_vqrshruns_n_s32:
2458   case AArch64::BI__builtin_neon_vqrshrund_n_s64:
2459     Int = Intrinsic::aarch64_neon_vsqrshrun;
2460     s = "vsqrshrun"; OverloadInt = true; break;
2461   // Scalar Signed Fixed-point Convert To Floating-Point (Immediate)
2462   case AArch64::BI__builtin_neon_vcvts_n_f32_s32:
2463     Int = Intrinsic::aarch64_neon_vcvtf32_n_s32;
2464     s = "vcvtf"; OverloadInt = false; break;
2465   case AArch64::BI__builtin_neon_vcvtd_n_f64_s64:
2466     Int = Intrinsic::aarch64_neon_vcvtf64_n_s64;
2467     s = "vcvtf"; OverloadInt = false; break;
2468   // Scalar Unsigned Fixed-point Convert To Floating-Point (Immediate)
2469   case AArch64::BI__builtin_neon_vcvts_n_f32_u32:
2470     Int = Intrinsic::aarch64_neon_vcvtf32_n_u32;
2471     s = "vcvtf"; OverloadInt = false; break;
2472   case AArch64::BI__builtin_neon_vcvtd_n_f64_u64:
2473     Int = Intrinsic::aarch64_neon_vcvtf64_n_u64;
2474     s = "vcvtf"; OverloadInt = false; break;
2475   // Scalar Floating-point Convert To Signed Fixed-point (Immediate)
2476   case AArch64::BI__builtin_neon_vcvts_n_s32_f32:
2477     Int = Intrinsic::aarch64_neon_vcvts_n_s32_f32;
2478     s = "fcvtzs"; OverloadInt = false; break;
2479   case AArch64::BI__builtin_neon_vcvtd_n_s64_f64:
2480     Int = Intrinsic::aarch64_neon_vcvtd_n_s64_f64;
2481     s = "fcvtzs"; OverloadInt = false; break;
2482   // Scalar Floating-point Convert To Unsigned Fixed-point (Immediate)
2483   case AArch64::BI__builtin_neon_vcvts_n_u32_f32:
2484     Int = Intrinsic::aarch64_neon_vcvts_n_u32_f32;
2485     s = "fcvtzu"; OverloadInt = false; break;
2486   case AArch64::BI__builtin_neon_vcvtd_n_u64_f64:
2487     Int = Intrinsic::aarch64_neon_vcvtd_n_u64_f64;
2488     s = "fcvtzu"; OverloadInt = false; break;
2489   }
2490 
2491   if (!Int)
2492     return 0;
2493 
2494   // AArch64 scalar builtin that returns scalar type
2495   // and should be mapped to AArch64 intrinsic that returns
2496   // one-element vector type.
2497   Function *F = 0;
2498   if (AcrossVec) {
2499     // Gen arg type
2500     const Expr *Arg = E->getArg(E->getNumArgs()-1);
2501     llvm::Type *Ty = CGF.ConvertType(Arg->getType());
2502     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
2503     llvm::Type *ETy = VTy->getElementType();
2504     llvm::VectorType *RTy = llvm::VectorType::get(ETy, 1);
2505 
2506     if (ExtendEle) {
2507       assert(!ETy->isFloatingPointTy());
2508       RTy = llvm::VectorType::getExtendedElementVectorType(RTy);
2509     }
2510 
2511     llvm::Type *Tys[2] = {RTy, VTy};
2512     F = CGF.CGM.getIntrinsic(Int, Tys);
2513     assert(E->getNumArgs() == 1);
2514   } else if (OverloadInt) {
2515     // Determine the type of this overloaded AArch64 intrinsic
2516     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
2517     llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2518     assert(VTy);
2519 
2520     F = CGF.CGM.getIntrinsic(Int, VTy);
2521   } else if (OverloadWideInt || OverloadNarrowInt) {
2522     // Determine the type of this overloaded AArch64 intrinsic
2523     const Expr *Arg = E->getArg(E->getNumArgs()-1);
2524     llvm::Type *Ty = CGF.ConvertType(Arg->getType());
2525     llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2526     llvm::VectorType *RTy = OverloadWideInt ?
2527       llvm::VectorType::getExtendedElementVectorType(VTy) :
2528       llvm::VectorType::getTruncatedElementVectorType(VTy);
2529     F = CGF.CGM.getIntrinsic(Int, RTy);
2530   } else if (OverloadCmpInt) {
2531     // Determine the types of this overloaded AArch64 intrinsic
2532     SmallVector<llvm::Type *, 3> Tys;
2533     const Expr *Arg = E->getArg(E->getNumArgs()-1);
2534     llvm::Type *Ty = CGF.ConvertType(E->getCallReturnType());
2535     llvm::VectorType *VTy = llvm::VectorType::get(Ty, 1);
2536     Tys.push_back(VTy);
2537     Ty = CGF.ConvertType(Arg->getType());
2538     VTy = llvm::VectorType::get(Ty, 1);
2539     Tys.push_back(VTy);
2540     Tys.push_back(VTy);
2541 
2542     F = CGF.CGM.getIntrinsic(Int, Tys);
2543   } else
2544     F = CGF.CGM.getIntrinsic(Int);
2545 
2546   Value *Result = CGF.EmitNeonCall(F, Ops, s);
2547   llvm::Type *ResultType = CGF.ConvertType(E->getType());
2548   // AArch64 intrinsic one-element vector type cast to
2549   // scalar type expected by the builtin
2550   return CGF.Builder.CreateBitCast(Result, ResultType, s);
2551 }
2552 
2553 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
2554     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
2555     const CmpInst::Predicate Ip, const Twine &Name) {
2556   llvm::Type *OTy = ((llvm::User *)Op)->getOperand(0)->getType();
2557   if (OTy->isPointerTy())
2558     OTy = Ty;
2559   Op = Builder.CreateBitCast(Op, OTy);
2560   if (((llvm::VectorType *)OTy)->getElementType()->isFloatingPointTy()) {
2561     Op = Builder.CreateFCmp(Fp, Op, ConstantAggregateZero::get(OTy));
2562   } else {
2563     Op = Builder.CreateICmp(Ip, Op, ConstantAggregateZero::get(OTy));
2564   }
2565   return Builder.CreateZExt(Op, Ty, Name);
2566 }
2567 
2568 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
2569                                  Value *ExtOp, Value *IndexOp,
2570                                  llvm::Type *ResTy, unsigned IntID,
2571                                  const char *Name) {
2572   SmallVector<Value *, 2> TblOps;
2573   if (ExtOp)
2574     TblOps.push_back(ExtOp);
2575 
2576   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
2577   SmallVector<Constant*, 16> Indices;
2578   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
2579   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
2580     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i));
2581     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1));
2582   }
2583   Value *SV = llvm::ConstantVector::get(Indices);
2584 
2585   int PairPos = 0, End = Ops.size() - 1;
2586   while (PairPos < End) {
2587     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
2588                                                      Ops[PairPos+1], SV, Name));
2589     PairPos += 2;
2590   }
2591 
2592   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
2593   // of the 128-bit lookup table with zero.
2594   if (PairPos == End) {
2595     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
2596     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
2597                                                      ZeroTbl, SV, Name));
2598   }
2599 
2600   TblTy = llvm::VectorType::get(TblTy->getElementType(),
2601                                 2*TblTy->getNumElements());
2602   llvm::Type *Tys[2] = { ResTy, TblTy };
2603 
2604   Function *TblF;
2605   TblOps.push_back(IndexOp);
2606   TblF = CGF.CGM.getIntrinsic(IntID, Tys);
2607 
2608   return CGF.EmitNeonCall(TblF, TblOps, Name);
2609 }
2610 
2611 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF,
2612                                         unsigned BuiltinID,
2613                                         const CallExpr *E) {
2614   unsigned int Int = 0;
2615   const char *s = NULL;
2616 
2617   unsigned TblPos;
2618   switch (BuiltinID) {
2619   default:
2620     return 0;
2621   case AArch64::BI__builtin_neon_vtbl1_v:
2622   case AArch64::BI__builtin_neon_vqtbl1_v:
2623   case AArch64::BI__builtin_neon_vqtbl1q_v:
2624   case AArch64::BI__builtin_neon_vtbl2_v:
2625   case AArch64::BI__builtin_neon_vqtbl2_v:
2626   case AArch64::BI__builtin_neon_vqtbl2q_v:
2627   case AArch64::BI__builtin_neon_vtbl3_v:
2628   case AArch64::BI__builtin_neon_vqtbl3_v:
2629   case AArch64::BI__builtin_neon_vqtbl3q_v:
2630   case AArch64::BI__builtin_neon_vtbl4_v:
2631   case AArch64::BI__builtin_neon_vqtbl4_v:
2632   case AArch64::BI__builtin_neon_vqtbl4q_v:
2633     TblPos = 0;
2634     break;
2635   case AArch64::BI__builtin_neon_vtbx1_v:
2636   case AArch64::BI__builtin_neon_vqtbx1_v:
2637   case AArch64::BI__builtin_neon_vqtbx1q_v:
2638   case AArch64::BI__builtin_neon_vtbx2_v:
2639   case AArch64::BI__builtin_neon_vqtbx2_v:
2640   case AArch64::BI__builtin_neon_vqtbx2q_v:
2641   case AArch64::BI__builtin_neon_vtbx3_v:
2642   case AArch64::BI__builtin_neon_vqtbx3_v:
2643   case AArch64::BI__builtin_neon_vqtbx3q_v:
2644   case AArch64::BI__builtin_neon_vtbx4_v:
2645   case AArch64::BI__builtin_neon_vqtbx4_v:
2646   case AArch64::BI__builtin_neon_vqtbx4q_v:
2647     TblPos = 1;
2648     break;
2649   }
2650 
2651   assert(E->getNumArgs() >= 3);
2652 
2653   // Get the last argument, which specifies the vector type.
2654   llvm::APSInt Result;
2655   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
2656   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
2657     return 0;
2658 
2659   // Determine the type of this overloaded NEON intrinsic.
2660   NeonTypeFlags Type(Result.getZExtValue());
2661   llvm::VectorType *VTy = GetNeonType(&CGF, Type);
2662   llvm::Type *Ty = VTy;
2663   if (!Ty)
2664     return 0;
2665 
2666   SmallVector<Value *, 4> Ops;
2667   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
2668     Ops.push_back(CGF.EmitScalarExpr(E->getArg(i)));
2669   }
2670 
2671   Arg = E->getArg(TblPos);
2672   llvm::Type *TblTy = CGF.ConvertType(Arg->getType());
2673   llvm::VectorType *VTblTy = cast<llvm::VectorType>(TblTy);
2674   llvm::Type *Tys[2] = { Ty, VTblTy };
2675   unsigned nElts = VTy->getNumElements();
2676 
2677   // AArch64 scalar builtins are not overloaded, they do not have an extra
2678   // argument that specifies the vector type, need to handle each case.
2679   SmallVector<Value *, 2> TblOps;
2680   switch (BuiltinID) {
2681   case AArch64::BI__builtin_neon_vtbl1_v: {
2682     TblOps.push_back(Ops[0]);
2683     return packTBLDVectorList(CGF, TblOps, 0, Ops[1], Ty,
2684                               Intrinsic::aarch64_neon_vtbl1, "vtbl1");
2685   }
2686   case AArch64::BI__builtin_neon_vtbl2_v: {
2687     TblOps.push_back(Ops[0]);
2688     TblOps.push_back(Ops[1]);
2689     return packTBLDVectorList(CGF, TblOps, 0, Ops[2], Ty,
2690                               Intrinsic::aarch64_neon_vtbl1, "vtbl1");
2691   }
2692   case AArch64::BI__builtin_neon_vtbl3_v: {
2693     TblOps.push_back(Ops[0]);
2694     TblOps.push_back(Ops[1]);
2695     TblOps.push_back(Ops[2]);
2696     return packTBLDVectorList(CGF, TblOps, 0, Ops[3], Ty,
2697                               Intrinsic::aarch64_neon_vtbl2, "vtbl2");
2698   }
2699   case AArch64::BI__builtin_neon_vtbl4_v: {
2700     TblOps.push_back(Ops[0]);
2701     TblOps.push_back(Ops[1]);
2702     TblOps.push_back(Ops[2]);
2703     TblOps.push_back(Ops[3]);
2704     return packTBLDVectorList(CGF, TblOps, 0, Ops[4], Ty,
2705                               Intrinsic::aarch64_neon_vtbl2, "vtbl2");
2706   }
2707   case AArch64::BI__builtin_neon_vtbx1_v: {
2708     TblOps.push_back(Ops[1]);
2709     Value *TblRes = packTBLDVectorList(CGF, TblOps, 0, Ops[2], Ty,
2710                                     Intrinsic::aarch64_neon_vtbl1, "vtbl1");
2711 
2712     llvm::Constant *Eight = ConstantInt::get(VTy->getElementType(), 8);
2713     Value* EightV = llvm::ConstantVector::getSplat(nElts, Eight);
2714     Value *CmpRes = CGF.Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
2715     CmpRes = CGF.Builder.CreateSExt(CmpRes, Ty);
2716 
2717     SmallVector<Value *, 4> BslOps;
2718     BslOps.push_back(CmpRes);
2719     BslOps.push_back(Ops[0]);
2720     BslOps.push_back(TblRes);
2721     Function *BslF = CGF.CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty);
2722     return CGF.EmitNeonCall(BslF, BslOps, "vbsl");
2723   }
2724   case AArch64::BI__builtin_neon_vtbx2_v: {
2725     TblOps.push_back(Ops[1]);
2726     TblOps.push_back(Ops[2]);
2727     return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[3], Ty,
2728                               Intrinsic::aarch64_neon_vtbx1, "vtbx1");
2729   }
2730   case AArch64::BI__builtin_neon_vtbx3_v: {
2731     TblOps.push_back(Ops[1]);
2732     TblOps.push_back(Ops[2]);
2733     TblOps.push_back(Ops[3]);
2734     Value *TblRes = packTBLDVectorList(CGF, TblOps, 0, Ops[4], Ty,
2735                                        Intrinsic::aarch64_neon_vtbl2, "vtbl2");
2736 
2737     llvm::Constant *TwentyFour = ConstantInt::get(VTy->getElementType(), 24);
2738     Value* TwentyFourV = llvm::ConstantVector::getSplat(nElts, TwentyFour);
2739     Value *CmpRes = CGF.Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
2740                                            TwentyFourV);
2741     CmpRes = CGF.Builder.CreateSExt(CmpRes, Ty);
2742 
2743     SmallVector<Value *, 4> BslOps;
2744     BslOps.push_back(CmpRes);
2745     BslOps.push_back(Ops[0]);
2746     BslOps.push_back(TblRes);
2747     Function *BslF = CGF.CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty);
2748     return CGF.EmitNeonCall(BslF, BslOps, "vbsl");
2749   }
2750   case AArch64::BI__builtin_neon_vtbx4_v: {
2751     TblOps.push_back(Ops[1]);
2752     TblOps.push_back(Ops[2]);
2753     TblOps.push_back(Ops[3]);
2754     TblOps.push_back(Ops[4]);
2755     return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[5], Ty,
2756                               Intrinsic::aarch64_neon_vtbx2, "vtbx2");
2757   }
2758   case AArch64::BI__builtin_neon_vqtbl1_v:
2759   case AArch64::BI__builtin_neon_vqtbl1q_v:
2760     Int = Intrinsic::aarch64_neon_vtbl1; s = "vtbl1"; break;
2761   case AArch64::BI__builtin_neon_vqtbl2_v:
2762   case AArch64::BI__builtin_neon_vqtbl2q_v: {
2763     Int = Intrinsic::aarch64_neon_vtbl2; s = "vtbl2"; break;
2764   case AArch64::BI__builtin_neon_vqtbl3_v:
2765   case AArch64::BI__builtin_neon_vqtbl3q_v:
2766     Int = Intrinsic::aarch64_neon_vtbl3; s = "vtbl3"; break;
2767   case AArch64::BI__builtin_neon_vqtbl4_v:
2768   case AArch64::BI__builtin_neon_vqtbl4q_v:
2769     Int = Intrinsic::aarch64_neon_vtbl4; s = "vtbl4"; break;
2770   case AArch64::BI__builtin_neon_vqtbx1_v:
2771   case AArch64::BI__builtin_neon_vqtbx1q_v:
2772     Int = Intrinsic::aarch64_neon_vtbx1; s = "vtbx1"; break;
2773   case AArch64::BI__builtin_neon_vqtbx2_v:
2774   case AArch64::BI__builtin_neon_vqtbx2q_v:
2775     Int = Intrinsic::aarch64_neon_vtbx2; s = "vtbx2"; break;
2776   case AArch64::BI__builtin_neon_vqtbx3_v:
2777   case AArch64::BI__builtin_neon_vqtbx3q_v:
2778     Int = Intrinsic::aarch64_neon_vtbx3; s = "vtbx3"; break;
2779   case AArch64::BI__builtin_neon_vqtbx4_v:
2780   case AArch64::BI__builtin_neon_vqtbx4q_v:
2781     Int = Intrinsic::aarch64_neon_vtbx4; s = "vtbx4"; break;
2782   }
2783   }
2784 
2785   if (!Int)
2786     return 0;
2787 
2788   Function *F = CGF.CGM.getIntrinsic(Int, Tys);
2789   return CGF.EmitNeonCall(F, Ops, s);
2790 }
2791 
2792 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
2793                                                const CallExpr *E) {
2794   // Process AArch64 scalar builtins
2795   if (Value *Result = EmitAArch64ScalarBuiltinExpr(*this, BuiltinID, E))
2796     return Result;
2797 
2798   // Process AArch64 table lookup builtins
2799   if (Value *Result = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E))
2800     return Result;
2801 
2802   if (BuiltinID == AArch64::BI__clear_cache) {
2803     assert(E->getNumArgs() == 2 &&
2804            "Variadic __clear_cache slipped through on AArch64");
2805 
2806     const FunctionDecl *FD = E->getDirectCallee();
2807     SmallVector<Value *, 2> Ops;
2808     for (unsigned i = 0; i < E->getNumArgs(); i++)
2809       Ops.push_back(EmitScalarExpr(E->getArg(i)));
2810     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
2811     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
2812     StringRef Name = FD->getName();
2813     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
2814   }
2815 
2816   SmallVector<Value *, 4> Ops;
2817   llvm::Value *Align = 0; // Alignment for load/store
2818   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
2819     if (i == 0) {
2820       switch (BuiltinID) {
2821       case AArch64::BI__builtin_neon_vst1_x2_v:
2822       case AArch64::BI__builtin_neon_vst1q_x2_v:
2823       case AArch64::BI__builtin_neon_vst1_x3_v:
2824       case AArch64::BI__builtin_neon_vst1q_x3_v:
2825       case AArch64::BI__builtin_neon_vst1_x4_v:
2826       case AArch64::BI__builtin_neon_vst1q_x4_v:
2827       // Handle ld1/st1 lane in this function a little different from ARM.
2828       case AArch64::BI__builtin_neon_vld1_lane_v:
2829       case AArch64::BI__builtin_neon_vld1q_lane_v:
2830       case AArch64::BI__builtin_neon_vst1_lane_v:
2831       case AArch64::BI__builtin_neon_vst1q_lane_v:
2832         // Get the alignment for the argument in addition to the value;
2833         // we'll use it later.
2834         std::pair<llvm::Value *, unsigned> Src =
2835             EmitPointerWithAlignment(E->getArg(0));
2836         Ops.push_back(Src.first);
2837         Align = Builder.getInt32(Src.second);
2838         continue;
2839       }
2840     }
2841     if (i == 1) {
2842       switch (BuiltinID) {
2843       case AArch64::BI__builtin_neon_vld1_x2_v:
2844       case AArch64::BI__builtin_neon_vld1q_x2_v:
2845       case AArch64::BI__builtin_neon_vld1_x3_v:
2846       case AArch64::BI__builtin_neon_vld1q_x3_v:
2847       case AArch64::BI__builtin_neon_vld1_x4_v:
2848       case AArch64::BI__builtin_neon_vld1q_x4_v:
2849       // Handle ld1/st1 dup lane in this function a little different from ARM.
2850       case AArch64::BI__builtin_neon_vld2_dup_v:
2851       case AArch64::BI__builtin_neon_vld2q_dup_v:
2852       case AArch64::BI__builtin_neon_vld3_dup_v:
2853       case AArch64::BI__builtin_neon_vld3q_dup_v:
2854       case AArch64::BI__builtin_neon_vld4_dup_v:
2855       case AArch64::BI__builtin_neon_vld4q_dup_v:
2856       case AArch64::BI__builtin_neon_vld2_lane_v:
2857       case AArch64::BI__builtin_neon_vld2q_lane_v:
2858         // Get the alignment for the argument in addition to the value;
2859         // we'll use it later.
2860         std::pair<llvm::Value *, unsigned> Src =
2861             EmitPointerWithAlignment(E->getArg(1));
2862         Ops.push_back(Src.first);
2863         Align = Builder.getInt32(Src.second);
2864         continue;
2865       }
2866     }
2867     Ops.push_back(EmitScalarExpr(E->getArg(i)));
2868   }
2869 
2870   // Get the last argument, which specifies the vector type.
2871   llvm::APSInt Result;
2872   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
2873   if (!Arg->isIntegerConstantExpr(Result, getContext()))
2874     return 0;
2875 
2876   // Determine the type of this overloaded NEON intrinsic.
2877   NeonTypeFlags Type(Result.getZExtValue());
2878   bool usgn = Type.isUnsigned();
2879 
2880   llvm::VectorType *VTy = GetNeonType(this, Type);
2881   llvm::Type *Ty = VTy;
2882   if (!Ty)
2883     return 0;
2884 
2885   unsigned Int;
2886   switch (BuiltinID) {
2887   default:
2888     return 0;
2889 
2890   // AArch64 builtins mapping to legacy ARM v7 builtins.
2891   // FIXME: the mapped builtins listed correspond to what has been tested
2892   // in aarch64-neon-intrinsics.c so far.
2893   case AArch64::BI__builtin_neon_vuzp_v:
2894     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vuzp_v, E);
2895   case AArch64::BI__builtin_neon_vuzpq_v:
2896     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vuzpq_v, E);
2897   case AArch64::BI__builtin_neon_vzip_v:
2898     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vzip_v, E);
2899   case AArch64::BI__builtin_neon_vzipq_v:
2900     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vzipq_v, E);
2901   case AArch64::BI__builtin_neon_vtrn_v:
2902     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtrn_v, E);
2903   case AArch64::BI__builtin_neon_vtrnq_v:
2904     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtrnq_v, E);
2905   case AArch64::BI__builtin_neon_vext_v:
2906     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vext_v, E);
2907   case AArch64::BI__builtin_neon_vextq_v:
2908     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vextq_v, E);
2909   case AArch64::BI__builtin_neon_vmul_v:
2910     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmul_v, E);
2911   case AArch64::BI__builtin_neon_vmulq_v:
2912     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmulq_v, E);
2913   case AArch64::BI__builtin_neon_vabd_v:
2914     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabd_v, E);
2915   case AArch64::BI__builtin_neon_vabdq_v:
2916     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabdq_v, E);
2917   case AArch64::BI__builtin_neon_vfma_v:
2918     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfma_v, E);
2919   case AArch64::BI__builtin_neon_vfmaq_v:
2920     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfmaq_v, E);
2921   case AArch64::BI__builtin_neon_vbsl_v:
2922     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbsl_v, E);
2923   case AArch64::BI__builtin_neon_vbslq_v:
2924     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbslq_v, E);
2925   case AArch64::BI__builtin_neon_vrsqrts_v:
2926     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrts_v, E);
2927   case AArch64::BI__builtin_neon_vrsqrtsq_v:
2928     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrtsq_v, E);
2929   case AArch64::BI__builtin_neon_vrecps_v:
2930     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecps_v, E);
2931   case AArch64::BI__builtin_neon_vrecpsq_v:
2932     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecpsq_v, E);
2933   case AArch64::BI__builtin_neon_vcage_v:
2934     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcage_v, E);
2935   case AArch64::BI__builtin_neon_vcale_v:
2936     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcale_v, E);
2937   case AArch64::BI__builtin_neon_vcaleq_v:
2938     std::swap(Ops[0], Ops[1]);
2939   case AArch64::BI__builtin_neon_vcageq_v: {
2940     Function *F;
2941     if (VTy->getElementType()->isIntegerTy(64))
2942       F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgeq);
2943     else
2944       F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
2945     return EmitNeonCall(F, Ops, "vcage");
2946   }
2947   case AArch64::BI__builtin_neon_vcalt_v:
2948     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcalt_v, E);
2949   case AArch64::BI__builtin_neon_vcagt_v:
2950     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcagt_v, E);
2951   case AArch64::BI__builtin_neon_vcaltq_v:
2952     std::swap(Ops[0], Ops[1]);
2953   case AArch64::BI__builtin_neon_vcagtq_v: {
2954     Function *F;
2955     if (VTy->getElementType()->isIntegerTy(64))
2956       F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgtq);
2957     else
2958       F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
2959     return EmitNeonCall(F, Ops, "vcagt");
2960   }
2961   case AArch64::BI__builtin_neon_vtst_v:
2962     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtst_v, E);
2963   case AArch64::BI__builtin_neon_vtstq_v:
2964     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtstq_v, E);
2965   case AArch64::BI__builtin_neon_vhadd_v:
2966     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhadd_v, E);
2967   case AArch64::BI__builtin_neon_vhaddq_v:
2968     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhaddq_v, E);
2969   case AArch64::BI__builtin_neon_vhsub_v:
2970     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsub_v, E);
2971   case AArch64::BI__builtin_neon_vhsubq_v:
2972     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsubq_v, E);
2973   case AArch64::BI__builtin_neon_vrhadd_v:
2974     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhadd_v, E);
2975   case AArch64::BI__builtin_neon_vrhaddq_v:
2976     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhaddq_v, E);
2977   case AArch64::BI__builtin_neon_vqadd_v:
2978     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqadd_v, E);
2979   case AArch64::BI__builtin_neon_vqaddq_v:
2980     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqaddq_v, E);
2981   case AArch64::BI__builtin_neon_vqsub_v:
2982     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsub_v, E);
2983   case AArch64::BI__builtin_neon_vqsubq_v:
2984     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsubq_v, E);
2985   case AArch64::BI__builtin_neon_vshl_v:
2986     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_v, E);
2987   case AArch64::BI__builtin_neon_vshlq_v:
2988     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_v, E);
2989   case AArch64::BI__builtin_neon_vqshl_v:
2990     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_v, E);
2991   case AArch64::BI__builtin_neon_vqshlq_v:
2992     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_v, E);
2993   case AArch64::BI__builtin_neon_vrshl_v:
2994     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshl_v, E);
2995   case AArch64::BI__builtin_neon_vrshlq_v:
2996     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshlq_v, E);
2997   case AArch64::BI__builtin_neon_vqrshl_v:
2998     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshl_v, E);
2999   case AArch64::BI__builtin_neon_vqrshlq_v:
3000     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshlq_v, E);
3001   case AArch64::BI__builtin_neon_vaddhn_v:
3002     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vaddhn_v, E);
3003   case AArch64::BI__builtin_neon_vraddhn_v:
3004     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vraddhn_v, E);
3005   case AArch64::BI__builtin_neon_vsubhn_v:
3006     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsubhn_v, E);
3007   case AArch64::BI__builtin_neon_vrsubhn_v:
3008     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsubhn_v, E);
3009   case AArch64::BI__builtin_neon_vmull_v:
3010     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmull_v, E);
3011   case AArch64::BI__builtin_neon_vqdmull_v:
3012     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmull_v, E);
3013   case AArch64::BI__builtin_neon_vqdmlal_v:
3014     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlal_v, E);
3015   case AArch64::BI__builtin_neon_vqdmlsl_v:
3016     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlsl_v, E);
3017   case AArch64::BI__builtin_neon_vmax_v:
3018     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmax_v, E);
3019   case AArch64::BI__builtin_neon_vmaxq_v:
3020     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmaxq_v, E);
3021   case AArch64::BI__builtin_neon_vmin_v:
3022     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmin_v, E);
3023   case AArch64::BI__builtin_neon_vminq_v:
3024     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vminq_v, E);
3025   case AArch64::BI__builtin_neon_vpmax_v:
3026     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmax_v, E);
3027   case AArch64::BI__builtin_neon_vpmin_v:
3028     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmin_v, E);
3029   case AArch64::BI__builtin_neon_vpadd_v:
3030     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpadd_v, E);
3031   case AArch64::BI__builtin_neon_vqdmulh_v:
3032     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulh_v, E);
3033   case AArch64::BI__builtin_neon_vqdmulhq_v:
3034     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulhq_v, E);
3035   case AArch64::BI__builtin_neon_vqrdmulh_v:
3036     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulh_v, E);
3037   case AArch64::BI__builtin_neon_vqrdmulhq_v:
3038     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulhq_v, E);
3039 
3040   // Shift by immediate
3041   case AArch64::BI__builtin_neon_vshr_n_v:
3042     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshr_n_v, E);
3043   case AArch64::BI__builtin_neon_vshrq_n_v:
3044     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshrq_n_v, E);
3045   case AArch64::BI__builtin_neon_vrshr_n_v:
3046   case AArch64::BI__builtin_neon_vrshrq_n_v:
3047     Int = usgn ? Intrinsic::aarch64_neon_vurshr
3048                : Intrinsic::aarch64_neon_vsrshr;
3049     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n");
3050   case AArch64::BI__builtin_neon_vsra_n_v:
3051     if (VTy->getElementType()->isIntegerTy(64)) {
3052       Int = usgn ? Intrinsic::aarch64_neon_vsradu_n
3053                  : Intrinsic::aarch64_neon_vsrads_n;
3054       return EmitNeonCall(CGM.getIntrinsic(Int), Ops, "vsra_n");
3055     }
3056     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsra_n_v, E);
3057   case AArch64::BI__builtin_neon_vsraq_n_v:
3058     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsraq_n_v, E);
3059   case AArch64::BI__builtin_neon_vrsra_n_v:
3060     if (VTy->getElementType()->isIntegerTy(64)) {
3061       Int = usgn ? Intrinsic::aarch64_neon_vrsradu_n
3062                  : Intrinsic::aarch64_neon_vrsrads_n;
3063       return EmitNeonCall(CGM.getIntrinsic(Int), Ops, "vrsra_n");
3064     }
3065     // fall through
3066   case AArch64::BI__builtin_neon_vrsraq_n_v: {
3067     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3068     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3069     Int = usgn ? Intrinsic::aarch64_neon_vurshr
3070                : Intrinsic::aarch64_neon_vsrshr;
3071     Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
3072     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
3073   }
3074   case AArch64::BI__builtin_neon_vshl_n_v:
3075     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_n_v, E);
3076   case AArch64::BI__builtin_neon_vshlq_n_v:
3077     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_n_v, E);
3078   case AArch64::BI__builtin_neon_vqshl_n_v:
3079     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_n_v, E);
3080   case AArch64::BI__builtin_neon_vqshlq_n_v:
3081     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_n_v, E);
3082   case AArch64::BI__builtin_neon_vqshlu_n_v:
3083   case AArch64::BI__builtin_neon_vqshluq_n_v:
3084     Int = Intrinsic::aarch64_neon_vsqshlu;
3085     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n");
3086   case AArch64::BI__builtin_neon_vsri_n_v:
3087   case AArch64::BI__builtin_neon_vsriq_n_v:
3088     Int = Intrinsic::aarch64_neon_vsri;
3089     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsri_n");
3090   case AArch64::BI__builtin_neon_vsli_n_v:
3091   case AArch64::BI__builtin_neon_vsliq_n_v:
3092     Int = Intrinsic::aarch64_neon_vsli;
3093     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsli_n");
3094   case AArch64::BI__builtin_neon_vshll_n_v: {
3095     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
3096     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3097     if (usgn)
3098       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
3099     else
3100       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
3101     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
3102     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
3103   }
3104   case AArch64::BI__builtin_neon_vshrn_n_v: {
3105     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
3106     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3107     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
3108     if (usgn)
3109       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
3110     else
3111       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
3112     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
3113   }
3114   case AArch64::BI__builtin_neon_vqshrun_n_v:
3115     Int = Intrinsic::aarch64_neon_vsqshrun;
3116     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
3117   case AArch64::BI__builtin_neon_vrshrn_n_v:
3118     Int = Intrinsic::aarch64_neon_vrshrn;
3119     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
3120   case AArch64::BI__builtin_neon_vqrshrun_n_v:
3121     Int = Intrinsic::aarch64_neon_vsqrshrun;
3122     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
3123   case AArch64::BI__builtin_neon_vqshrn_n_v:
3124     Int = usgn ? Intrinsic::aarch64_neon_vuqshrn
3125                : Intrinsic::aarch64_neon_vsqshrn;
3126     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
3127   case AArch64::BI__builtin_neon_vqrshrn_n_v:
3128     Int = usgn ? Intrinsic::aarch64_neon_vuqrshrn
3129                : Intrinsic::aarch64_neon_vsqrshrn;
3130     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
3131 
3132   // Convert
3133   case AArch64::BI__builtin_neon_vmovl_v:
3134     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmovl_v, E);
3135   case AArch64::BI__builtin_neon_vcvt_n_f32_v:
3136     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_f32_v, E);
3137   case AArch64::BI__builtin_neon_vcvtq_n_f32_v:
3138     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_f32_v, E);
3139   case AArch64::BI__builtin_neon_vcvtq_n_f64_v: {
3140     llvm::Type *FloatTy =
3141         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
3142     llvm::Type *Tys[2] = { FloatTy, Ty };
3143     Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
3144                : Intrinsic::arm_neon_vcvtfxs2fp;
3145     Function *F = CGM.getIntrinsic(Int, Tys);
3146     return EmitNeonCall(F, Ops, "vcvt_n");
3147   }
3148   case AArch64::BI__builtin_neon_vcvt_n_s32_v:
3149     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_s32_v, E);
3150   case AArch64::BI__builtin_neon_vcvtq_n_s32_v:
3151     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_s32_v, E);
3152   case AArch64::BI__builtin_neon_vcvt_n_u32_v:
3153     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_u32_v, E);
3154   case AArch64::BI__builtin_neon_vcvtq_n_u32_v:
3155     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_u32_v, E);
3156   case AArch64::BI__builtin_neon_vcvtq_n_s64_v:
3157   case AArch64::BI__builtin_neon_vcvtq_n_u64_v: {
3158     llvm::Type *FloatTy =
3159         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
3160     llvm::Type *Tys[2] = { Ty, FloatTy };
3161     Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
3162                : Intrinsic::arm_neon_vcvtfp2fxs;
3163     Function *F = CGM.getIntrinsic(Int, Tys);
3164     return EmitNeonCall(F, Ops, "vcvt_n");
3165   }
3166 
3167   // Load/Store
3168   case AArch64::BI__builtin_neon_vld1_v:
3169     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1_v, E);
3170   case AArch64::BI__builtin_neon_vld1q_v:
3171     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1q_v, E);
3172   case AArch64::BI__builtin_neon_vld2_v:
3173     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2_v, E);
3174   case AArch64::BI__builtin_neon_vld2q_v:
3175     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2q_v, E);
3176   case AArch64::BI__builtin_neon_vld3_v:
3177     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3_v, E);
3178   case AArch64::BI__builtin_neon_vld3q_v:
3179     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3q_v, E);
3180   case AArch64::BI__builtin_neon_vld4_v:
3181     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4_v, E);
3182   case AArch64::BI__builtin_neon_vld4q_v:
3183     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4q_v, E);
3184   case AArch64::BI__builtin_neon_vst1_v:
3185     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst1_v, E);
3186   case AArch64::BI__builtin_neon_vst1q_v:
3187     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst1q_v, E);
3188   case AArch64::BI__builtin_neon_vst2_v:
3189     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2_v, E);
3190   case AArch64::BI__builtin_neon_vst2q_v:
3191     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2q_v, E);
3192   case AArch64::BI__builtin_neon_vst3_v:
3193     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3_v, E);
3194   case AArch64::BI__builtin_neon_vst3q_v:
3195     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3q_v, E);
3196   case AArch64::BI__builtin_neon_vst4_v:
3197     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4_v, E);
3198   case AArch64::BI__builtin_neon_vst4q_v:
3199     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4q_v, E);
3200   case AArch64::BI__builtin_neon_vld1_x2_v:
3201   case AArch64::BI__builtin_neon_vld1q_x2_v:
3202   case AArch64::BI__builtin_neon_vld1_x3_v:
3203   case AArch64::BI__builtin_neon_vld1q_x3_v:
3204   case AArch64::BI__builtin_neon_vld1_x4_v:
3205   case AArch64::BI__builtin_neon_vld1q_x4_v: {
3206     unsigned Int;
3207     switch (BuiltinID) {
3208     case AArch64::BI__builtin_neon_vld1_x2_v:
3209     case AArch64::BI__builtin_neon_vld1q_x2_v:
3210       Int = Intrinsic::aarch64_neon_vld1x2;
3211       break;
3212     case AArch64::BI__builtin_neon_vld1_x3_v:
3213     case AArch64::BI__builtin_neon_vld1q_x3_v:
3214       Int = Intrinsic::aarch64_neon_vld1x3;
3215       break;
3216     case AArch64::BI__builtin_neon_vld1_x4_v:
3217     case AArch64::BI__builtin_neon_vld1q_x4_v:
3218       Int = Intrinsic::aarch64_neon_vld1x4;
3219       break;
3220     }
3221     Function *F = CGM.getIntrinsic(Int, Ty);
3222     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld1xN");
3223     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3224     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3225     return Builder.CreateStore(Ops[1], Ops[0]);
3226   }
3227   case AArch64::BI__builtin_neon_vst1_x2_v:
3228   case AArch64::BI__builtin_neon_vst1q_x2_v:
3229   case AArch64::BI__builtin_neon_vst1_x3_v:
3230   case AArch64::BI__builtin_neon_vst1q_x3_v:
3231   case AArch64::BI__builtin_neon_vst1_x4_v:
3232   case AArch64::BI__builtin_neon_vst1q_x4_v: {
3233     Ops.push_back(Align);
3234     unsigned Int;
3235     switch (BuiltinID) {
3236     case AArch64::BI__builtin_neon_vst1_x2_v:
3237     case AArch64::BI__builtin_neon_vst1q_x2_v:
3238       Int = Intrinsic::aarch64_neon_vst1x2;
3239       break;
3240     case AArch64::BI__builtin_neon_vst1_x3_v:
3241     case AArch64::BI__builtin_neon_vst1q_x3_v:
3242       Int = Intrinsic::aarch64_neon_vst1x3;
3243       break;
3244     case AArch64::BI__builtin_neon_vst1_x4_v:
3245     case AArch64::BI__builtin_neon_vst1q_x4_v:
3246       Int = Intrinsic::aarch64_neon_vst1x4;
3247       break;
3248     }
3249     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "");
3250   }
3251   case AArch64::BI__builtin_neon_vld1_lane_v:
3252   case AArch64::BI__builtin_neon_vld1q_lane_v: {
3253     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3254     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
3255     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3256     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
3257     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3258     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
3259   }
3260   case AArch64::BI__builtin_neon_vld2_lane_v:
3261     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2q_lane_v, E);
3262   case AArch64::BI__builtin_neon_vld2q_lane_v:
3263     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld2q_lane_v, E);
3264   case AArch64::BI__builtin_neon_vld3_lane_v:
3265     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3_lane_v, E);
3266   case AArch64::BI__builtin_neon_vld3q_lane_v:
3267     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld3q_lane_v, E);
3268   case AArch64::BI__builtin_neon_vld4_lane_v:
3269     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4_lane_v, E);
3270   case AArch64::BI__builtin_neon_vld4q_lane_v:
3271     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld4q_lane_v, E);
3272   case AArch64::BI__builtin_neon_vst1_lane_v:
3273   case AArch64::BI__builtin_neon_vst1q_lane_v: {
3274     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3275     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
3276     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3277     StoreInst *St =
3278         Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
3279     St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3280     return St;
3281   }
3282   case AArch64::BI__builtin_neon_vst2_lane_v:
3283     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2_lane_v, E);
3284   case AArch64::BI__builtin_neon_vst2q_lane_v:
3285     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst2q_lane_v, E);
3286   case AArch64::BI__builtin_neon_vst3_lane_v:
3287     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3_lane_v, E);
3288   case AArch64::BI__builtin_neon_vst3q_lane_v:
3289     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst3q_lane_v, E);
3290   case AArch64::BI__builtin_neon_vst4_lane_v:
3291     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4_lane_v, E);
3292   case AArch64::BI__builtin_neon_vst4q_lane_v:
3293     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vst4q_lane_v, E);
3294   case AArch64::BI__builtin_neon_vld1_dup_v:
3295     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1_dup_v, E);
3296   case AArch64::BI__builtin_neon_vld1q_dup_v:
3297     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vld1q_dup_v, E);
3298   case AArch64::BI__builtin_neon_vld2_dup_v:
3299   case AArch64::BI__builtin_neon_vld2q_dup_v:
3300   case AArch64::BI__builtin_neon_vld3_dup_v:
3301   case AArch64::BI__builtin_neon_vld3q_dup_v:
3302   case AArch64::BI__builtin_neon_vld4_dup_v:
3303   case AArch64::BI__builtin_neon_vld4q_dup_v: {
3304     // Handle 64-bit x 1 elements as a special-case.  There is no "dup" needed.
3305     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64 &&
3306         VTy->getNumElements() == 1) {
3307       switch (BuiltinID) {
3308       case AArch64::BI__builtin_neon_vld2_dup_v:
3309         Int = Intrinsic::arm_neon_vld2;
3310         break;
3311       case AArch64::BI__builtin_neon_vld3_dup_v:
3312         Int = Intrinsic::arm_neon_vld3;
3313         break;
3314       case AArch64::BI__builtin_neon_vld4_dup_v:
3315         Int = Intrinsic::arm_neon_vld4;
3316         break;
3317       default:
3318         llvm_unreachable("unknown vld_dup intrinsic?");
3319       }
3320       Function *F = CGM.getIntrinsic(Int, Ty);
3321       Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
3322       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3323       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3324       return Builder.CreateStore(Ops[1], Ops[0]);
3325     }
3326     switch (BuiltinID) {
3327     case AArch64::BI__builtin_neon_vld2_dup_v:
3328     case AArch64::BI__builtin_neon_vld2q_dup_v:
3329       Int = Intrinsic::arm_neon_vld2lane;
3330       break;
3331     case AArch64::BI__builtin_neon_vld3_dup_v:
3332     case AArch64::BI__builtin_neon_vld3q_dup_v:
3333       Int = Intrinsic::arm_neon_vld3lane;
3334       break;
3335     case AArch64::BI__builtin_neon_vld4_dup_v:
3336     case AArch64::BI__builtin_neon_vld4q_dup_v:
3337       Int = Intrinsic::arm_neon_vld4lane;
3338       break;
3339     }
3340     Function *F = CGM.getIntrinsic(Int, Ty);
3341     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
3342 
3343     SmallVector<Value *, 6> Args;
3344     Args.push_back(Ops[1]);
3345     Args.append(STy->getNumElements(), UndefValue::get(Ty));
3346 
3347     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
3348     Args.push_back(CI);
3349     Args.push_back(Align);
3350 
3351     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
3352     // splat lane 0 to all elts in each vector of the result.
3353     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3354       Value *Val = Builder.CreateExtractValue(Ops[1], i);
3355       Value *Elt = Builder.CreateBitCast(Val, Ty);
3356       Elt = EmitNeonSplat(Elt, CI);
3357       Elt = Builder.CreateBitCast(Elt, Val->getType());
3358       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
3359     }
3360     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3361     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3362     return Builder.CreateStore(Ops[1], Ops[0]);
3363   }
3364 
3365   // Crypto
3366   case AArch64::BI__builtin_neon_vaeseq_v:
3367     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aese, Ty),
3368                         Ops, "aese");
3369   case AArch64::BI__builtin_neon_vaesdq_v:
3370     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aesd, Ty),
3371                         Ops, "aesd");
3372   case AArch64::BI__builtin_neon_vaesmcq_v:
3373     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aesmc, Ty),
3374                         Ops, "aesmc");
3375   case AArch64::BI__builtin_neon_vaesimcq_v:
3376     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_aesimc, Ty),
3377                         Ops, "aesimc");
3378   case AArch64::BI__builtin_neon_vsha1su1q_v:
3379     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1su1, Ty),
3380                         Ops, "sha1su1");
3381   case AArch64::BI__builtin_neon_vsha256su0q_v:
3382     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256su0, Ty),
3383                         Ops, "sha256su0");
3384   case AArch64::BI__builtin_neon_vsha1su0q_v:
3385     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1su0, Ty),
3386                         Ops, "sha1su0");
3387   case AArch64::BI__builtin_neon_vsha256hq_v:
3388     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256h, Ty),
3389                         Ops, "sha256h");
3390   case AArch64::BI__builtin_neon_vsha256h2q_v:
3391     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256h2, Ty),
3392                         Ops, "sha256h2");
3393   case AArch64::BI__builtin_neon_vsha256su1q_v:
3394     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha256su1, Ty),
3395                         Ops, "sha256su1");
3396   case AArch64::BI__builtin_neon_vmul_lane_v:
3397   case AArch64::BI__builtin_neon_vmul_laneq_v: {
3398     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
3399     bool Quad = false;
3400     if (BuiltinID == AArch64::BI__builtin_neon_vmul_laneq_v)
3401       Quad = true;
3402     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3403     llvm::Type *VTy = GetNeonType(this,
3404       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad ? true : false));
3405     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
3406     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
3407     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
3408     return Builder.CreateBitCast(Result, Ty);
3409   }
3410 
3411   // AArch64-only builtins
3412   case AArch64::BI__builtin_neon_vfmaq_laneq_v: {
3413     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3414     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3415     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3416 
3417     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3418     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
3419     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3420   }
3421   case AArch64::BI__builtin_neon_vfmaq_lane_v: {
3422     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3423     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3424     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3425 
3426     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3427     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
3428                                             VTy->getNumElements() / 2);
3429     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
3430     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
3431                                                cast<ConstantInt>(Ops[3]));
3432     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
3433 
3434     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3435   }
3436   case AArch64::BI__builtin_neon_vfma_lane_v: {
3437     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3438     // v1f64 fma should be mapped to Neon scalar f64 fma
3439     if (VTy && VTy->getElementType() == DoubleTy) {
3440       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3441       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
3442       llvm::Type *VTy = GetNeonType(this,
3443         NeonTypeFlags(NeonTypeFlags::Float64, false, false));
3444       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
3445       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
3446       Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
3447       Value *Result = Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
3448       return Builder.CreateBitCast(Result, Ty);
3449     }
3450     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3451     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3452     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3453 
3454     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3455     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
3456     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3457   }
3458   case AArch64::BI__builtin_neon_vfma_laneq_v: {
3459     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
3460     // v1f64 fma should be mapped to Neon scalar f64 fma
3461     if (VTy && VTy->getElementType() == DoubleTy) {
3462       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3463       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
3464       llvm::Type *VTy = GetNeonType(this,
3465         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
3466       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
3467       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
3468       Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
3469       Value *Result = Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
3470       return Builder.CreateBitCast(Result, Ty);
3471     }
3472     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3473     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3474     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3475 
3476     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
3477                                             VTy->getNumElements() * 2);
3478     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
3479     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
3480                                                cast<ConstantInt>(Ops[3]));
3481     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
3482 
3483     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
3484   }
3485   case AArch64::BI__builtin_neon_vfms_v:
3486   case AArch64::BI__builtin_neon_vfmsq_v: {
3487     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3488     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3489     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3490     Ops[1] = Builder.CreateFNeg(Ops[1]);
3491     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3492 
3493     // LLVM's fma intrinsic puts the accumulator in the last position, but the
3494     // AArch64 intrinsic has it first.
3495     return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
3496   }
3497   case AArch64::BI__builtin_neon_vmaxnm_v:
3498   case AArch64::BI__builtin_neon_vmaxnmq_v: {
3499     Int = Intrinsic::aarch64_neon_vmaxnm;
3500     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
3501   }
3502   case AArch64::BI__builtin_neon_vminnm_v:
3503   case AArch64::BI__builtin_neon_vminnmq_v: {
3504     Int = Intrinsic::aarch64_neon_vminnm;
3505     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
3506   }
3507   case AArch64::BI__builtin_neon_vpmaxnm_v:
3508   case AArch64::BI__builtin_neon_vpmaxnmq_v: {
3509     Int = Intrinsic::aarch64_neon_vpmaxnm;
3510     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
3511   }
3512   case AArch64::BI__builtin_neon_vpminnm_v:
3513   case AArch64::BI__builtin_neon_vpminnmq_v: {
3514     Int = Intrinsic::aarch64_neon_vpminnm;
3515     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
3516   }
3517   case AArch64::BI__builtin_neon_vpmaxq_v: {
3518     Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
3519     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
3520   }
3521   case AArch64::BI__builtin_neon_vpminq_v: {
3522     Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
3523     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
3524   }
3525   case AArch64::BI__builtin_neon_vpaddq_v: {
3526     Int = Intrinsic::arm_neon_vpadd;
3527     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpadd");
3528   }
3529   case AArch64::BI__builtin_neon_vmulx_v:
3530   case AArch64::BI__builtin_neon_vmulxq_v: {
3531     Int = Intrinsic::aarch64_neon_vmulx;
3532     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
3533   }
3534   case AArch64::BI__builtin_neon_vpaddl_v:
3535   case AArch64::BI__builtin_neon_vpaddlq_v:
3536     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpaddl_v, E);
3537   case AArch64::BI__builtin_neon_vpadal_v:
3538   case AArch64::BI__builtin_neon_vpadalq_v:
3539     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpadal_v, E);
3540   case AArch64::BI__builtin_neon_vqabs_v:
3541   case AArch64::BI__builtin_neon_vqabsq_v:
3542     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqabs_v, E);
3543   case AArch64::BI__builtin_neon_vqneg_v:
3544   case AArch64::BI__builtin_neon_vqnegq_v:
3545     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqneg_v, E);
3546   case AArch64::BI__builtin_neon_vabs_v:
3547   case AArch64::BI__builtin_neon_vabsq_v: {
3548     if (VTy->getElementType()->isFloatingPointTy()) {
3549       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
3550     }
3551     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabs_v, E);
3552   }
3553   case AArch64::BI__builtin_neon_vsqadd_v:
3554   case AArch64::BI__builtin_neon_vsqaddq_v: {
3555     Int = Intrinsic::aarch64_neon_usqadd;
3556     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
3557   }
3558   case AArch64::BI__builtin_neon_vuqadd_v:
3559   case AArch64::BI__builtin_neon_vuqaddq_v: {
3560     Int = Intrinsic::aarch64_neon_suqadd;
3561     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
3562   }
3563   case AArch64::BI__builtin_neon_vcls_v:
3564   case AArch64::BI__builtin_neon_vclsq_v:
3565     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcls_v, E);
3566   case AArch64::BI__builtin_neon_vclz_v:
3567   case AArch64::BI__builtin_neon_vclzq_v:
3568     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vclz_v, E);
3569   case AArch64::BI__builtin_neon_vcnt_v:
3570   case AArch64::BI__builtin_neon_vcntq_v:
3571     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcnt_v, E);
3572   case AArch64::BI__builtin_neon_vrbit_v:
3573   case AArch64::BI__builtin_neon_vrbitq_v:
3574     Int = Intrinsic::aarch64_neon_rbit;
3575     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
3576   case AArch64::BI__builtin_neon_vmovn_v:
3577     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmovn_v, E);
3578   case AArch64::BI__builtin_neon_vqmovun_v:
3579     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqmovun_v, E);
3580   case AArch64::BI__builtin_neon_vqmovn_v:
3581     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqmovn_v, E);
3582   case AArch64::BI__builtin_neon_vcvt_f16_v:
3583     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_f16_v, E);
3584   case AArch64::BI__builtin_neon_vcvt_f32_f16:
3585     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_f32_f16, E);
3586   case AArch64::BI__builtin_neon_vcvt_f32_f64: {
3587     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3588     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, false));
3589     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
3590   }
3591   case AArch64::BI__builtin_neon_vcvtx_f32_v: {
3592     llvm::Type *EltTy = FloatTy;
3593     llvm::Type *ResTy = llvm::VectorType::get(EltTy, 2);
3594     llvm::Type *Tys[2] = { ResTy, Ty };
3595     Int = Intrinsic::aarch64_neon_fcvtxn;
3596     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtx_f32_f64");
3597   }
3598   case AArch64::BI__builtin_neon_vcvt_f64_v: {
3599     llvm::Type *OpTy =
3600         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, false));
3601     Ops[0] = Builder.CreateBitCast(Ops[0], OpTy);
3602     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
3603   }
3604   case AArch64::BI__builtin_neon_vcvtq_f64_v: {
3605     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3606     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
3607     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
3608                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
3609   }
3610     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqmovun_v, E);
3611   case AArch64::BI__builtin_neon_vrndn_v:
3612   case AArch64::BI__builtin_neon_vrndnq_v: {
3613     Int = Intrinsic::aarch64_neon_frintn;
3614     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
3615   }
3616   case AArch64::BI__builtin_neon_vrnda_v:
3617   case AArch64::BI__builtin_neon_vrndaq_v: {
3618     Int = Intrinsic::round;
3619     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
3620   }
3621   case AArch64::BI__builtin_neon_vrndp_v:
3622   case AArch64::BI__builtin_neon_vrndpq_v: {
3623     Int = Intrinsic::ceil;
3624     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
3625   }
3626   case AArch64::BI__builtin_neon_vrndm_v:
3627   case AArch64::BI__builtin_neon_vrndmq_v: {
3628     Int = Intrinsic::floor;
3629     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
3630   }
3631   case AArch64::BI__builtin_neon_vrndx_v:
3632   case AArch64::BI__builtin_neon_vrndxq_v: {
3633     Int = Intrinsic::rint;
3634     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
3635   }
3636   case AArch64::BI__builtin_neon_vrnd_v:
3637   case AArch64::BI__builtin_neon_vrndq_v: {
3638     Int = Intrinsic::trunc;
3639     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd");
3640   }
3641   case AArch64::BI__builtin_neon_vrndi_v:
3642   case AArch64::BI__builtin_neon_vrndiq_v: {
3643     Int = Intrinsic::nearbyint;
3644     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
3645   }
3646   case AArch64::BI__builtin_neon_vcvt_s32_v:
3647   case AArch64::BI__builtin_neon_vcvt_u32_v:
3648   case AArch64::BI__builtin_neon_vcvtq_s32_v:
3649   case AArch64::BI__builtin_neon_vcvtq_u32_v:
3650     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_u32_v, E);
3651   case AArch64::BI__builtin_neon_vcvtq_s64_v:
3652   case AArch64::BI__builtin_neon_vcvtq_u64_v: {
3653     llvm::Type *DoubleTy =
3654         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
3655     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
3656     return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
3657                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
3658   }
3659   case AArch64::BI__builtin_neon_vcvtn_s32_v:
3660   case AArch64::BI__builtin_neon_vcvtnq_s32_v: {
3661     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3662     llvm::Type *Tys[2] = { Ty, OpTy };
3663     Int = Intrinsic::aarch64_neon_fcvtns;
3664     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtns_f32");
3665   }
3666   case AArch64::BI__builtin_neon_vcvtnq_s64_v: {
3667     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3668     llvm::Type *Tys[2] = { Ty, OpTy };
3669     Int = Intrinsic::aarch64_neon_fcvtns;
3670     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtns_f64");
3671   }
3672   case AArch64::BI__builtin_neon_vcvtn_u32_v:
3673   case AArch64::BI__builtin_neon_vcvtnq_u32_v: {
3674     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3675     llvm::Type *Tys[2] = { Ty, OpTy };
3676     Int = Intrinsic::aarch64_neon_fcvtnu;
3677     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtnu_f32");
3678   }
3679   case AArch64::BI__builtin_neon_vcvtnq_u64_v: {
3680     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3681     llvm::Type *Tys[2] = { Ty, OpTy };
3682     Int = Intrinsic::aarch64_neon_fcvtnu;
3683     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtnu_f64");
3684   }
3685   case AArch64::BI__builtin_neon_vcvtp_s32_v:
3686   case AArch64::BI__builtin_neon_vcvtpq_s32_v: {
3687     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3688     llvm::Type *Tys[2] = { Ty, OpTy };
3689     Int = Intrinsic::aarch64_neon_fcvtps;
3690     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtps_f32");
3691   }
3692   case AArch64::BI__builtin_neon_vcvtpq_s64_v: {
3693     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3694     llvm::Type *Tys[2] = { Ty, OpTy };
3695     Int = Intrinsic::aarch64_neon_fcvtps;
3696     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtps_f64");
3697   }
3698   case AArch64::BI__builtin_neon_vcvtp_u32_v:
3699   case AArch64::BI__builtin_neon_vcvtpq_u32_v: {
3700     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3701     llvm::Type *Tys[2] = { Ty, OpTy };
3702     Int = Intrinsic::aarch64_neon_fcvtpu;
3703     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtpu_f32");
3704   }
3705   case AArch64::BI__builtin_neon_vcvtpq_u64_v: {
3706     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3707     llvm::Type *Tys[2] = { Ty, OpTy };
3708     Int = Intrinsic::aarch64_neon_fcvtpu;
3709     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtpu_f64");
3710   }
3711   case AArch64::BI__builtin_neon_vcvtm_s32_v:
3712   case AArch64::BI__builtin_neon_vcvtmq_s32_v: {
3713     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3714     llvm::Type *Tys[2] = { Ty, OpTy };
3715     Int = Intrinsic::aarch64_neon_fcvtms;
3716     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtms_f32");
3717   }
3718   case AArch64::BI__builtin_neon_vcvtmq_s64_v: {
3719     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3720     llvm::Type *Tys[2] = { Ty, OpTy };
3721     Int = Intrinsic::aarch64_neon_fcvtms;
3722     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtms_f64");
3723   }
3724   case AArch64::BI__builtin_neon_vcvtm_u32_v:
3725   case AArch64::BI__builtin_neon_vcvtmq_u32_v: {
3726     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3727     llvm::Type *Tys[2] = { Ty, OpTy };
3728     Int = Intrinsic::aarch64_neon_fcvtmu;
3729     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtmu_f32");
3730   }
3731   case AArch64::BI__builtin_neon_vcvtmq_u64_v: {
3732     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3733     llvm::Type *Tys[2] = { Ty, OpTy };
3734     Int = Intrinsic::aarch64_neon_fcvtmu;
3735     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtmu_f64");
3736   }
3737   case AArch64::BI__builtin_neon_vcvta_s32_v:
3738   case AArch64::BI__builtin_neon_vcvtaq_s32_v: {
3739     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3740     llvm::Type *Tys[2] = { Ty, OpTy };
3741     Int = Intrinsic::aarch64_neon_fcvtas;
3742     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtas_f32");
3743   }
3744   case AArch64::BI__builtin_neon_vcvtaq_s64_v: {
3745     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3746     llvm::Type *Tys[2] = { Ty, OpTy };
3747     Int = Intrinsic::aarch64_neon_fcvtas;
3748     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtas_f64");
3749   }
3750   case AArch64::BI__builtin_neon_vcvta_u32_v:
3751   case AArch64::BI__builtin_neon_vcvtaq_u32_v: {
3752     llvm::Type *OpTy = llvm::VectorType::get(FloatTy, VTy->getNumElements());
3753     llvm::Type *Tys[2] = { Ty, OpTy };
3754     Int = Intrinsic::aarch64_neon_fcvtau;
3755     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtau_f32");
3756   }
3757   case AArch64::BI__builtin_neon_vcvtaq_u64_v: {
3758     llvm::Type *OpTy = llvm::VectorType::get(DoubleTy, VTy->getNumElements());
3759     llvm::Type *Tys[2] = { Ty, OpTy };
3760     Int = Intrinsic::aarch64_neon_fcvtau;
3761     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtau_f64");
3762   }
3763   case AArch64::BI__builtin_neon_vrecpe_v:
3764   case AArch64::BI__builtin_neon_vrecpeq_v:
3765     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecpe_v, E);
3766   case AArch64::BI__builtin_neon_vrsqrte_v:
3767   case AArch64::BI__builtin_neon_vrsqrteq_v:
3768     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrte_v, E);
3769   case AArch64::BI__builtin_neon_vsqrt_v:
3770   case AArch64::BI__builtin_neon_vsqrtq_v: {
3771     Int = Intrinsic::aarch64_neon_fsqrt;
3772     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
3773   }
3774   case AArch64::BI__builtin_neon_vcvt_f32_v:
3775   case AArch64::BI__builtin_neon_vcvtq_f32_v:
3776     return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_f32_v, E);
3777   case AArch64::BI__builtin_neon_vceqz_v:
3778   case AArch64::BI__builtin_neon_vceqzq_v:
3779     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
3780                                          ICmpInst::ICMP_EQ, "vceqz");
3781   case AArch64::BI__builtin_neon_vcgez_v:
3782   case AArch64::BI__builtin_neon_vcgezq_v:
3783     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
3784                                          ICmpInst::ICMP_SGE, "vcgez");
3785   case AArch64::BI__builtin_neon_vclez_v:
3786   case AArch64::BI__builtin_neon_vclezq_v:
3787     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
3788                                          ICmpInst::ICMP_SLE, "vclez");
3789   case AArch64::BI__builtin_neon_vcgtz_v:
3790   case AArch64::BI__builtin_neon_vcgtzq_v:
3791     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
3792                                          ICmpInst::ICMP_SGT, "vcgtz");
3793   case AArch64::BI__builtin_neon_vcltz_v:
3794   case AArch64::BI__builtin_neon_vcltzq_v:
3795     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
3796                                          ICmpInst::ICMP_SLT, "vcltz");
3797   }
3798 }
3799 
3800 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
3801                                            const CallExpr *E) {
3802   if (BuiltinID == ARM::BI__clear_cache) {
3803     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
3804     const FunctionDecl *FD = E->getDirectCallee();
3805     SmallVector<Value*, 2> Ops;
3806     for (unsigned i = 0; i < 2; i++)
3807       Ops.push_back(EmitScalarExpr(E->getArg(i)));
3808     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
3809     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
3810     StringRef Name = FD->getName();
3811     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
3812   }
3813 
3814   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
3815       (BuiltinID == ARM::BI__builtin_arm_ldrex &&
3816        getContext().getTypeSize(E->getType()) == 64)) {
3817     Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
3818 
3819     Value *LdPtr = EmitScalarExpr(E->getArg(0));
3820     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
3821                                     "ldrexd");
3822 
3823     Value *Val0 = Builder.CreateExtractValue(Val, 1);
3824     Value *Val1 = Builder.CreateExtractValue(Val, 0);
3825     Val0 = Builder.CreateZExt(Val0, Int64Ty);
3826     Val1 = Builder.CreateZExt(Val1, Int64Ty);
3827 
3828     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
3829     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
3830     Val = Builder.CreateOr(Val, Val1);
3831     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
3832   }
3833 
3834   if (BuiltinID == ARM::BI__builtin_arm_ldrex) {
3835     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
3836 
3837     QualType Ty = E->getType();
3838     llvm::Type *RealResTy = ConvertType(Ty);
3839     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
3840                                                   getContext().getTypeSize(Ty));
3841     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
3842 
3843     Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrex, LoadAddr->getType());
3844     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
3845 
3846     if (RealResTy->isPointerTy())
3847       return Builder.CreateIntToPtr(Val, RealResTy);
3848     else {
3849       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
3850       return Builder.CreateBitCast(Val, RealResTy);
3851     }
3852   }
3853 
3854   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
3855       (BuiltinID == ARM::BI__builtin_arm_strex &&
3856        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
3857     Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
3858     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
3859 
3860     Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
3861     Value *Val = EmitScalarExpr(E->getArg(0));
3862     Builder.CreateStore(Val, Tmp);
3863 
3864     Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
3865     Val = Builder.CreateLoad(LdPtr);
3866 
3867     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
3868     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
3869     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
3870     return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
3871   }
3872 
3873   if (BuiltinID == ARM::BI__builtin_arm_strex) {
3874     Value *StoreVal = EmitScalarExpr(E->getArg(0));
3875     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
3876 
3877     QualType Ty = E->getArg(0)->getType();
3878     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
3879                                                  getContext().getTypeSize(Ty));
3880     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
3881 
3882     if (StoreVal->getType()->isPointerTy())
3883       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
3884     else {
3885       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
3886       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
3887     }
3888 
3889     Function *F = CGM.getIntrinsic(Intrinsic::arm_strex, StoreAddr->getType());
3890     return Builder.CreateCall2(F, StoreVal, StoreAddr, "strex");
3891   }
3892 
3893   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
3894     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
3895     return Builder.CreateCall(F);
3896   }
3897 
3898   if (BuiltinID == ARM::BI__builtin_arm_sevl) {
3899     Function *F = CGM.getIntrinsic(Intrinsic::arm_sevl);
3900     return Builder.CreateCall(F);
3901   }
3902 
3903   // CRC32
3904   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
3905   switch (BuiltinID) {
3906   case ARM::BI__builtin_arm_crc32b:
3907     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
3908   case ARM::BI__builtin_arm_crc32cb:
3909     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
3910   case ARM::BI__builtin_arm_crc32h:
3911     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
3912   case ARM::BI__builtin_arm_crc32ch:
3913     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
3914   case ARM::BI__builtin_arm_crc32w:
3915   case ARM::BI__builtin_arm_crc32d:
3916     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
3917   case ARM::BI__builtin_arm_crc32cw:
3918   case ARM::BI__builtin_arm_crc32cd:
3919     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
3920   }
3921 
3922   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
3923     Value *Arg0 = EmitScalarExpr(E->getArg(0));
3924     Value *Arg1 = EmitScalarExpr(E->getArg(1));
3925 
3926     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
3927     // intrinsics, hence we need different codegen for these cases.
3928     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
3929         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
3930       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
3931       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
3932       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
3933       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
3934 
3935       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
3936       Value *Res = Builder.CreateCall2(F, Arg0, Arg1a);
3937       return Builder.CreateCall2(F, Res, Arg1b);
3938     } else {
3939       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
3940 
3941       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
3942       return Builder.CreateCall2(F, Arg0, Arg1);
3943     }
3944   }
3945 
3946   SmallVector<Value*, 4> Ops;
3947   llvm::Value *Align = 0;
3948   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
3949     if (i == 0) {
3950       switch (BuiltinID) {
3951       case ARM::BI__builtin_neon_vld1_v:
3952       case ARM::BI__builtin_neon_vld1q_v:
3953       case ARM::BI__builtin_neon_vld1q_lane_v:
3954       case ARM::BI__builtin_neon_vld1_lane_v:
3955       case ARM::BI__builtin_neon_vld1_dup_v:
3956       case ARM::BI__builtin_neon_vld1q_dup_v:
3957       case ARM::BI__builtin_neon_vst1_v:
3958       case ARM::BI__builtin_neon_vst1q_v:
3959       case ARM::BI__builtin_neon_vst1q_lane_v:
3960       case ARM::BI__builtin_neon_vst1_lane_v:
3961       case ARM::BI__builtin_neon_vst2_v:
3962       case ARM::BI__builtin_neon_vst2q_v:
3963       case ARM::BI__builtin_neon_vst2_lane_v:
3964       case ARM::BI__builtin_neon_vst2q_lane_v:
3965       case ARM::BI__builtin_neon_vst3_v:
3966       case ARM::BI__builtin_neon_vst3q_v:
3967       case ARM::BI__builtin_neon_vst3_lane_v:
3968       case ARM::BI__builtin_neon_vst3q_lane_v:
3969       case ARM::BI__builtin_neon_vst4_v:
3970       case ARM::BI__builtin_neon_vst4q_v:
3971       case ARM::BI__builtin_neon_vst4_lane_v:
3972       case ARM::BI__builtin_neon_vst4q_lane_v:
3973         // Get the alignment for the argument in addition to the value;
3974         // we'll use it later.
3975         std::pair<llvm::Value*, unsigned> Src =
3976             EmitPointerWithAlignment(E->getArg(0));
3977         Ops.push_back(Src.first);
3978         Align = Builder.getInt32(Src.second);
3979         continue;
3980       }
3981     }
3982     if (i == 1) {
3983       switch (BuiltinID) {
3984       case ARM::BI__builtin_neon_vld2_v:
3985       case ARM::BI__builtin_neon_vld2q_v:
3986       case ARM::BI__builtin_neon_vld3_v:
3987       case ARM::BI__builtin_neon_vld3q_v:
3988       case ARM::BI__builtin_neon_vld4_v:
3989       case ARM::BI__builtin_neon_vld4q_v:
3990       case ARM::BI__builtin_neon_vld2_lane_v:
3991       case ARM::BI__builtin_neon_vld2q_lane_v:
3992       case ARM::BI__builtin_neon_vld3_lane_v:
3993       case ARM::BI__builtin_neon_vld3q_lane_v:
3994       case ARM::BI__builtin_neon_vld4_lane_v:
3995       case ARM::BI__builtin_neon_vld4q_lane_v:
3996       case ARM::BI__builtin_neon_vld2_dup_v:
3997       case ARM::BI__builtin_neon_vld3_dup_v:
3998       case ARM::BI__builtin_neon_vld4_dup_v:
3999         // Get the alignment for the argument in addition to the value;
4000         // we'll use it later.
4001         std::pair<llvm::Value*, unsigned> Src =
4002             EmitPointerWithAlignment(E->getArg(1));
4003         Ops.push_back(Src.first);
4004         Align = Builder.getInt32(Src.second);
4005         continue;
4006       }
4007     }
4008     Ops.push_back(EmitScalarExpr(E->getArg(i)));
4009   }
4010 
4011   // vget_lane and vset_lane are not overloaded and do not have an extra
4012   // argument that specifies the vector type.
4013   switch (BuiltinID) {
4014   default: break;
4015   case ARM::BI__builtin_neon_vget_lane_i8:
4016   case ARM::BI__builtin_neon_vget_lane_i16:
4017   case ARM::BI__builtin_neon_vget_lane_i32:
4018   case ARM::BI__builtin_neon_vget_lane_i64:
4019   case ARM::BI__builtin_neon_vget_lane_f32:
4020   case ARM::BI__builtin_neon_vgetq_lane_i8:
4021   case ARM::BI__builtin_neon_vgetq_lane_i16:
4022   case ARM::BI__builtin_neon_vgetq_lane_i32:
4023   case ARM::BI__builtin_neon_vgetq_lane_i64:
4024   case ARM::BI__builtin_neon_vgetq_lane_f32:
4025     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4026                                         "vget_lane");
4027   case ARM::BI__builtin_neon_vset_lane_i8:
4028   case ARM::BI__builtin_neon_vset_lane_i16:
4029   case ARM::BI__builtin_neon_vset_lane_i32:
4030   case ARM::BI__builtin_neon_vset_lane_i64:
4031   case ARM::BI__builtin_neon_vset_lane_f32:
4032   case ARM::BI__builtin_neon_vsetq_lane_i8:
4033   case ARM::BI__builtin_neon_vsetq_lane_i16:
4034   case ARM::BI__builtin_neon_vsetq_lane_i32:
4035   case ARM::BI__builtin_neon_vsetq_lane_i64:
4036   case ARM::BI__builtin_neon_vsetq_lane_f32:
4037     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4038     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4039   }
4040 
4041   // Get the last argument, which specifies the vector type.
4042   llvm::APSInt Result;
4043   const Expr *Arg = E->getArg(E->getNumArgs()-1);
4044   if (!Arg->isIntegerConstantExpr(Result, getContext()))
4045     return 0;
4046 
4047   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
4048       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
4049     // Determine the overloaded type of this builtin.
4050     llvm::Type *Ty;
4051     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
4052       Ty = FloatTy;
4053     else
4054       Ty = DoubleTy;
4055 
4056     // Determine whether this is an unsigned conversion or not.
4057     bool usgn = Result.getZExtValue() == 1;
4058     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
4059 
4060     // Call the appropriate intrinsic.
4061     Function *F = CGM.getIntrinsic(Int, Ty);
4062     return Builder.CreateCall(F, Ops, "vcvtr");
4063   }
4064 
4065   // Determine the type of this overloaded NEON intrinsic.
4066   NeonTypeFlags Type(Result.getZExtValue());
4067   bool usgn = Type.isUnsigned();
4068   bool quad = Type.isQuad();
4069   bool rightShift = false;
4070 
4071   llvm::VectorType *VTy = GetNeonType(this, Type);
4072   llvm::Type *Ty = VTy;
4073   if (!Ty)
4074     return 0;
4075 
4076   unsigned Int;
4077   switch (BuiltinID) {
4078   default: return 0;
4079   case ARM::BI__builtin_neon_vbsl_v:
4080   case ARM::BI__builtin_neon_vbslq_v:
4081     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty),
4082                         Ops, "vbsl");
4083   case ARM::BI__builtin_neon_vabd_v:
4084   case ARM::BI__builtin_neon_vabdq_v:
4085     Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
4086     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
4087   case ARM::BI__builtin_neon_vabs_v:
4088   case ARM::BI__builtin_neon_vabsq_v:
4089     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
4090                         Ops, "vabs");
4091   case ARM::BI__builtin_neon_vaddhn_v: {
4092     llvm::VectorType *SrcTy =
4093         llvm::VectorType::getExtendedElementVectorType(VTy);
4094 
4095     // %sum = add <4 x i32> %lhs, %rhs
4096     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4097     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4098     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
4099 
4100     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4101     Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
4102                                        SrcTy->getScalarSizeInBits() / 2);
4103     ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
4104     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
4105 
4106     // %res = trunc <4 x i32> %high to <4 x i16>
4107     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
4108   }
4109   case ARM::BI__builtin_neon_vcale_v:
4110     std::swap(Ops[0], Ops[1]);
4111   case ARM::BI__builtin_neon_vcage_v: {
4112     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
4113     return EmitNeonCall(F, Ops, "vcage");
4114   }
4115   case ARM::BI__builtin_neon_vcaleq_v:
4116     std::swap(Ops[0], Ops[1]);
4117   case ARM::BI__builtin_neon_vcageq_v: {
4118     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
4119     return EmitNeonCall(F, Ops, "vcage");
4120   }
4121   case ARM::BI__builtin_neon_vcalt_v:
4122     std::swap(Ops[0], Ops[1]);
4123   case ARM::BI__builtin_neon_vcagt_v: {
4124     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
4125     return EmitNeonCall(F, Ops, "vcagt");
4126   }
4127   case ARM::BI__builtin_neon_vcaltq_v:
4128     std::swap(Ops[0], Ops[1]);
4129   case ARM::BI__builtin_neon_vcagtq_v: {
4130     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
4131     return EmitNeonCall(F, Ops, "vcagt");
4132   }
4133   case ARM::BI__builtin_neon_vcls_v:
4134   case ARM::BI__builtin_neon_vclsq_v: {
4135     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
4136     return EmitNeonCall(F, Ops, "vcls");
4137   }
4138   case ARM::BI__builtin_neon_vclz_v:
4139   case ARM::BI__builtin_neon_vclzq_v: {
4140     // Generate target-independent intrinsic; also need to add second argument
4141     // for whether or not clz of zero is undefined; on ARM it isn't.
4142     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ty);
4143     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
4144     return EmitNeonCall(F, Ops, "vclz");
4145   }
4146   case ARM::BI__builtin_neon_vcnt_v:
4147   case ARM::BI__builtin_neon_vcntq_v: {
4148     // generate target-independent intrinsic
4149     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, Ty);
4150     return EmitNeonCall(F, Ops, "vctpop");
4151   }
4152   case ARM::BI__builtin_neon_vcvt_f16_v: {
4153     assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
4154            "unexpected vcvt_f16_v builtin");
4155     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
4156     return EmitNeonCall(F, Ops, "vcvt");
4157   }
4158   case ARM::BI__builtin_neon_vcvt_f32_f16: {
4159     assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
4160            "unexpected vcvt_f32_f16 builtin");
4161     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
4162     return EmitNeonCall(F, Ops, "vcvt");
4163   }
4164   case ARM::BI__builtin_neon_vcvt_f32_v:
4165   case ARM::BI__builtin_neon_vcvtq_f32_v:
4166     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4167     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4168     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
4169                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
4170   case ARM::BI__builtin_neon_vcvt_s32_v:
4171   case ARM::BI__builtin_neon_vcvt_u32_v:
4172   case ARM::BI__builtin_neon_vcvtq_s32_v:
4173   case ARM::BI__builtin_neon_vcvtq_u32_v: {
4174     llvm::Type *FloatTy =
4175       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4176     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
4177     return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
4178                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
4179   }
4180   case ARM::BI__builtin_neon_vcvt_n_f32_v:
4181   case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
4182     llvm::Type *FloatTy =
4183       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4184     llvm::Type *Tys[2] = { FloatTy, Ty };
4185     Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
4186                : Intrinsic::arm_neon_vcvtfxs2fp;
4187     Function *F = CGM.getIntrinsic(Int, Tys);
4188     return EmitNeonCall(F, Ops, "vcvt_n");
4189   }
4190   case ARM::BI__builtin_neon_vcvt_n_s32_v:
4191   case ARM::BI__builtin_neon_vcvt_n_u32_v:
4192   case ARM::BI__builtin_neon_vcvtq_n_s32_v:
4193   case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
4194     llvm::Type *FloatTy =
4195       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
4196     llvm::Type *Tys[2] = { Ty, FloatTy };
4197     Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
4198                : Intrinsic::arm_neon_vcvtfp2fxs;
4199     Function *F = CGM.getIntrinsic(Int, Tys);
4200     return EmitNeonCall(F, Ops, "vcvt_n");
4201   }
4202   case ARM::BI__builtin_neon_vext_v:
4203   case ARM::BI__builtin_neon_vextq_v: {
4204     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
4205     SmallVector<Constant*, 16> Indices;
4206     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4207       Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
4208 
4209     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4210     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4211     Value *SV = llvm::ConstantVector::get(Indices);
4212     return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
4213   }
4214   case ARM::BI__builtin_neon_vhadd_v:
4215   case ARM::BI__builtin_neon_vhaddq_v:
4216     Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
4217     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
4218   case ARM::BI__builtin_neon_vhsub_v:
4219   case ARM::BI__builtin_neon_vhsubq_v:
4220     Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
4221     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
4222   case ARM::BI__builtin_neon_vld1_v:
4223   case ARM::BI__builtin_neon_vld1q_v:
4224     Ops.push_back(Align);
4225     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
4226                         Ops, "vld1");
4227   case ARM::BI__builtin_neon_vld1q_lane_v:
4228     // Handle 64-bit integer elements as a special case.  Use shuffles of
4229     // one-element vectors to avoid poor code for i64 in the backend.
4230     if (VTy->getElementType()->isIntegerTy(64)) {
4231       // Extract the other lane.
4232       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4233       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
4234       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
4235       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
4236       // Load the value as a one-element vector.
4237       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
4238       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
4239       Value *Ld = Builder.CreateCall2(F, Ops[0], Align);
4240       // Combine them.
4241       SmallVector<Constant*, 2> Indices;
4242       Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
4243       Indices.push_back(ConstantInt::get(Int32Ty, Lane));
4244       SV = llvm::ConstantVector::get(Indices);
4245       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
4246     }
4247     // fall through
4248   case ARM::BI__builtin_neon_vld1_lane_v: {
4249     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4250     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
4251     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4252     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
4253     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
4254     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
4255   }
4256   case ARM::BI__builtin_neon_vld1_dup_v:
4257   case ARM::BI__builtin_neon_vld1q_dup_v: {
4258     Value *V = UndefValue::get(Ty);
4259     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
4260     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4261     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
4262     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
4263     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
4264     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
4265     return EmitNeonSplat(Ops[0], CI);
4266   }
4267   case ARM::BI__builtin_neon_vld2_v:
4268   case ARM::BI__builtin_neon_vld2q_v: {
4269     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
4270     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
4271     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4272     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4273     return Builder.CreateStore(Ops[1], Ops[0]);
4274   }
4275   case ARM::BI__builtin_neon_vld3_v:
4276   case ARM::BI__builtin_neon_vld3q_v: {
4277     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
4278     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
4279     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4280     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4281     return Builder.CreateStore(Ops[1], Ops[0]);
4282   }
4283   case ARM::BI__builtin_neon_vld4_v:
4284   case ARM::BI__builtin_neon_vld4q_v: {
4285     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
4286     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
4287     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4288     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4289     return Builder.CreateStore(Ops[1], Ops[0]);
4290   }
4291   case ARM::BI__builtin_neon_vld2_lane_v:
4292   case ARM::BI__builtin_neon_vld2q_lane_v: {
4293     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
4294     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4295     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
4296     Ops.push_back(Align);
4297     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
4298     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4299     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4300     return Builder.CreateStore(Ops[1], Ops[0]);
4301   }
4302   case ARM::BI__builtin_neon_vld3_lane_v:
4303   case ARM::BI__builtin_neon_vld3q_lane_v: {
4304     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
4305     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4306     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
4307     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
4308     Ops.push_back(Align);
4309     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
4310     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4311     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4312     return Builder.CreateStore(Ops[1], Ops[0]);
4313   }
4314   case ARM::BI__builtin_neon_vld4_lane_v:
4315   case ARM::BI__builtin_neon_vld4q_lane_v: {
4316     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
4317     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4318     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
4319     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
4320     Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
4321     Ops.push_back(Align);
4322     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
4323     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4324     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4325     return Builder.CreateStore(Ops[1], Ops[0]);
4326   }
4327   case ARM::BI__builtin_neon_vld2_dup_v:
4328   case ARM::BI__builtin_neon_vld3_dup_v:
4329   case ARM::BI__builtin_neon_vld4_dup_v: {
4330     // Handle 64-bit elements as a special-case.  There is no "dup" needed.
4331     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
4332       switch (BuiltinID) {
4333       case ARM::BI__builtin_neon_vld2_dup_v:
4334         Int = Intrinsic::arm_neon_vld2;
4335         break;
4336       case ARM::BI__builtin_neon_vld3_dup_v:
4337         Int = Intrinsic::arm_neon_vld3;
4338         break;
4339       case ARM::BI__builtin_neon_vld4_dup_v:
4340         Int = Intrinsic::arm_neon_vld4;
4341         break;
4342       default: llvm_unreachable("unknown vld_dup intrinsic?");
4343       }
4344       Function *F = CGM.getIntrinsic(Int, Ty);
4345       Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
4346       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4347       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4348       return Builder.CreateStore(Ops[1], Ops[0]);
4349     }
4350     switch (BuiltinID) {
4351     case ARM::BI__builtin_neon_vld2_dup_v:
4352       Int = Intrinsic::arm_neon_vld2lane;
4353       break;
4354     case ARM::BI__builtin_neon_vld3_dup_v:
4355       Int = Intrinsic::arm_neon_vld3lane;
4356       break;
4357     case ARM::BI__builtin_neon_vld4_dup_v:
4358       Int = Intrinsic::arm_neon_vld4lane;
4359       break;
4360     default: llvm_unreachable("unknown vld_dup intrinsic?");
4361     }
4362     Function *F = CGM.getIntrinsic(Int, Ty);
4363     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
4364 
4365     SmallVector<Value*, 6> Args;
4366     Args.push_back(Ops[1]);
4367     Args.append(STy->getNumElements(), UndefValue::get(Ty));
4368 
4369     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
4370     Args.push_back(CI);
4371     Args.push_back(Align);
4372 
4373     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
4374     // splat lane 0 to all elts in each vector of the result.
4375     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4376       Value *Val = Builder.CreateExtractValue(Ops[1], i);
4377       Value *Elt = Builder.CreateBitCast(Val, Ty);
4378       Elt = EmitNeonSplat(Elt, CI);
4379       Elt = Builder.CreateBitCast(Elt, Val->getType());
4380       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
4381     }
4382     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4383     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4384     return Builder.CreateStore(Ops[1], Ops[0]);
4385   }
4386   case ARM::BI__builtin_neon_vmax_v:
4387   case ARM::BI__builtin_neon_vmaxq_v:
4388     Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
4389     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
4390   case ARM::BI__builtin_neon_vmin_v:
4391   case ARM::BI__builtin_neon_vminq_v:
4392     Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
4393     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
4394   case ARM::BI__builtin_neon_vmovl_v: {
4395     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
4396     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
4397     if (usgn)
4398       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
4399     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
4400   }
4401   case ARM::BI__builtin_neon_vmovn_v: {
4402     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
4403     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
4404     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
4405   }
4406   case ARM::BI__builtin_neon_vmul_v:
4407   case ARM::BI__builtin_neon_vmulq_v:
4408     assert(Type.isPoly() && "vmul builtin only supported for polynomial types");
4409     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
4410                         Ops, "vmul");
4411   case ARM::BI__builtin_neon_vmull_v:
4412     // FIXME: the integer vmull operations could be emitted in terms of pure
4413     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
4414     // hoisting the exts outside loops. Until global ISel comes along that can
4415     // see through such movement this leads to bad CodeGen. So we need an
4416     // intrinsic for now.
4417     Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
4418     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
4419     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
4420   case ARM::BI__builtin_neon_vfma_v:
4421   case ARM::BI__builtin_neon_vfmaq_v: {
4422     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
4423     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4424     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4425     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4426 
4427     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
4428     return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
4429   }
4430   case ARM::BI__builtin_neon_vpadal_v:
4431   case ARM::BI__builtin_neon_vpadalq_v: {
4432     Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
4433     // The source operand type has twice as many elements of half the size.
4434     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4435     llvm::Type *EltTy =
4436       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4437     llvm::Type *NarrowTy =
4438       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4439     llvm::Type *Tys[2] = { Ty, NarrowTy };
4440     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
4441   }
4442   case ARM::BI__builtin_neon_vpadd_v:
4443     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
4444                         Ops, "vpadd");
4445   case ARM::BI__builtin_neon_vpaddl_v:
4446   case ARM::BI__builtin_neon_vpaddlq_v: {
4447     Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
4448     // The source operand type has twice as many elements of half the size.
4449     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
4450     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
4451     llvm::Type *NarrowTy =
4452       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
4453     llvm::Type *Tys[2] = { Ty, NarrowTy };
4454     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
4455   }
4456   case ARM::BI__builtin_neon_vpmax_v:
4457     Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
4458     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
4459   case ARM::BI__builtin_neon_vpmin_v:
4460     Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
4461     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
4462   case ARM::BI__builtin_neon_vqabs_v:
4463   case ARM::BI__builtin_neon_vqabsq_v:
4464     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
4465                         Ops, "vqabs");
4466   case ARM::BI__builtin_neon_vqadd_v:
4467   case ARM::BI__builtin_neon_vqaddq_v:
4468     Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
4469     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
4470   case ARM::BI__builtin_neon_vqdmlal_v: {
4471     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
4472     Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
4473                               MulOps, "vqdmlal");
4474 
4475     SmallVector<Value *, 2> AddOps;
4476     AddOps.push_back(Ops[0]);
4477     AddOps.push_back(Mul);
4478     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqadds, Ty),
4479                         AddOps, "vqdmlal");
4480   }
4481   case ARM::BI__builtin_neon_vqdmlsl_v: {
4482     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
4483     Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
4484                               MulOps, "vqdmlsl");
4485 
4486     SmallVector<Value *, 2> SubOps;
4487     SubOps.push_back(Ops[0]);
4488     SubOps.push_back(Mul);
4489     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqsubs, Ty),
4490                         SubOps, "vqdmlsl");
4491   }
4492   case ARM::BI__builtin_neon_vqdmulh_v:
4493   case ARM::BI__builtin_neon_vqdmulhq_v:
4494     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
4495                         Ops, "vqdmulh");
4496   case ARM::BI__builtin_neon_vqdmull_v:
4497     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
4498                         Ops, "vqdmull");
4499   case ARM::BI__builtin_neon_vqmovn_v:
4500     Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
4501     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
4502   case ARM::BI__builtin_neon_vqmovun_v:
4503     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
4504                         Ops, "vqdmull");
4505   case ARM::BI__builtin_neon_vqneg_v:
4506   case ARM::BI__builtin_neon_vqnegq_v:
4507     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
4508                         Ops, "vqneg");
4509   case ARM::BI__builtin_neon_vqrdmulh_v:
4510   case ARM::BI__builtin_neon_vqrdmulhq_v:
4511     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
4512                         Ops, "vqrdmulh");
4513   case ARM::BI__builtin_neon_vqrshl_v:
4514   case ARM::BI__builtin_neon_vqrshlq_v:
4515     Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
4516     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
4517   case ARM::BI__builtin_neon_vqrshrn_n_v:
4518     Int =
4519       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
4520     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
4521                         1, true);
4522   case ARM::BI__builtin_neon_vqrshrun_n_v:
4523     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
4524                         Ops, "vqrshrun_n", 1, true);
4525   case ARM::BI__builtin_neon_vqshl_v:
4526   case ARM::BI__builtin_neon_vqshlq_v:
4527     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
4528     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
4529   case ARM::BI__builtin_neon_vqshl_n_v:
4530   case ARM::BI__builtin_neon_vqshlq_n_v:
4531     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
4532     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
4533                         1, false);
4534   case ARM::BI__builtin_neon_vqshlu_n_v:
4535   case ARM::BI__builtin_neon_vqshluq_n_v:
4536     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
4537                         Ops, "vqshlu", 1, false);
4538   case ARM::BI__builtin_neon_vqshrn_n_v:
4539     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
4540     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
4541                         1, true);
4542   case ARM::BI__builtin_neon_vqshrun_n_v:
4543     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
4544                         Ops, "vqshrun_n", 1, true);
4545   case ARM::BI__builtin_neon_vqsub_v:
4546   case ARM::BI__builtin_neon_vqsubq_v:
4547     Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
4548     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
4549   case ARM::BI__builtin_neon_vraddhn_v:
4550     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
4551                         Ops, "vraddhn");
4552   case ARM::BI__builtin_neon_vrecpe_v:
4553   case ARM::BI__builtin_neon_vrecpeq_v:
4554     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
4555                         Ops, "vrecpe");
4556   case ARM::BI__builtin_neon_vrecps_v:
4557   case ARM::BI__builtin_neon_vrecpsq_v:
4558     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
4559                         Ops, "vrecps");
4560   case ARM::BI__builtin_neon_vrhadd_v:
4561   case ARM::BI__builtin_neon_vrhaddq_v:
4562     Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
4563     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
4564   case ARM::BI__builtin_neon_vrshl_v:
4565   case ARM::BI__builtin_neon_vrshlq_v:
4566     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4567     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
4568   case ARM::BI__builtin_neon_vrshrn_n_v:
4569     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
4570                         Ops, "vrshrn_n", 1, true);
4571   case ARM::BI__builtin_neon_vrshr_n_v:
4572   case ARM::BI__builtin_neon_vrshrq_n_v:
4573     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4574     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
4575   case ARM::BI__builtin_neon_vrsqrte_v:
4576   case ARM::BI__builtin_neon_vrsqrteq_v:
4577     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
4578                         Ops, "vrsqrte");
4579   case ARM::BI__builtin_neon_vrsqrts_v:
4580   case ARM::BI__builtin_neon_vrsqrtsq_v:
4581     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
4582                         Ops, "vrsqrts");
4583   case ARM::BI__builtin_neon_vrsra_n_v:
4584   case ARM::BI__builtin_neon_vrsraq_n_v:
4585     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4586     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4587     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
4588     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4589     Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
4590     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
4591   case ARM::BI__builtin_neon_vrsubhn_v:
4592     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
4593                         Ops, "vrsubhn");
4594   case ARM::BI__builtin_neon_vshl_v:
4595   case ARM::BI__builtin_neon_vshlq_v:
4596     Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
4597     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
4598   case ARM::BI__builtin_neon_vshll_n_v:
4599     Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
4600     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
4601   case ARM::BI__builtin_neon_vshl_n_v:
4602   case ARM::BI__builtin_neon_vshlq_n_v:
4603     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
4604     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
4605                              "vshl_n");
4606   case ARM::BI__builtin_neon_vshrn_n_v:
4607     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
4608                         Ops, "vshrn_n", 1, true);
4609   case ARM::BI__builtin_neon_vshr_n_v:
4610   case ARM::BI__builtin_neon_vshrq_n_v:
4611     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, usgn, "vshr_n");
4612   case ARM::BI__builtin_neon_vsri_n_v:
4613   case ARM::BI__builtin_neon_vsriq_n_v:
4614     rightShift = true;
4615   case ARM::BI__builtin_neon_vsli_n_v:
4616   case ARM::BI__builtin_neon_vsliq_n_v:
4617     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
4618     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
4619                         Ops, "vsli_n");
4620   case ARM::BI__builtin_neon_vsra_n_v:
4621   case ARM::BI__builtin_neon_vsraq_n_v:
4622     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4623     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
4624     return Builder.CreateAdd(Ops[0], Ops[1]);
4625   case ARM::BI__builtin_neon_vst1_v:
4626   case ARM::BI__builtin_neon_vst1q_v:
4627     Ops.push_back(Align);
4628     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
4629                         Ops, "");
4630   case ARM::BI__builtin_neon_vst1q_lane_v:
4631     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
4632     // a one-element vector and avoid poor code for i64 in the backend.
4633     if (VTy->getElementType()->isIntegerTy(64)) {
4634       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4635       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
4636       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
4637       Ops[2] = Align;
4638       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
4639                                                  Ops[1]->getType()), Ops);
4640     }
4641     // fall through
4642   case ARM::BI__builtin_neon_vst1_lane_v: {
4643     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4644     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
4645     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4646     StoreInst *St = Builder.CreateStore(Ops[1],
4647                                         Builder.CreateBitCast(Ops[0], Ty));
4648     St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
4649     return St;
4650   }
4651   case ARM::BI__builtin_neon_vst2_v:
4652   case ARM::BI__builtin_neon_vst2q_v:
4653     Ops.push_back(Align);
4654     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
4655                         Ops, "");
4656   case ARM::BI__builtin_neon_vst2_lane_v:
4657   case ARM::BI__builtin_neon_vst2q_lane_v:
4658     Ops.push_back(Align);
4659     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
4660                         Ops, "");
4661   case ARM::BI__builtin_neon_vst3_v:
4662   case ARM::BI__builtin_neon_vst3q_v:
4663     Ops.push_back(Align);
4664     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
4665                         Ops, "");
4666   case ARM::BI__builtin_neon_vst3_lane_v:
4667   case ARM::BI__builtin_neon_vst3q_lane_v:
4668     Ops.push_back(Align);
4669     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
4670                         Ops, "");
4671   case ARM::BI__builtin_neon_vst4_v:
4672   case ARM::BI__builtin_neon_vst4q_v:
4673     Ops.push_back(Align);
4674     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
4675                         Ops, "");
4676   case ARM::BI__builtin_neon_vst4_lane_v:
4677   case ARM::BI__builtin_neon_vst4q_lane_v:
4678     Ops.push_back(Align);
4679     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
4680                         Ops, "");
4681   case ARM::BI__builtin_neon_vsubhn_v: {
4682     llvm::VectorType *SrcTy =
4683         llvm::VectorType::getExtendedElementVectorType(VTy);
4684 
4685     // %sum = add <4 x i32> %lhs, %rhs
4686     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
4687     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
4688     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
4689 
4690     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
4691     Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
4692                                        SrcTy->getScalarSizeInBits() / 2);
4693     ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
4694     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
4695 
4696     // %res = trunc <4 x i32> %high to <4 x i16>
4697     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
4698   }
4699   case ARM::BI__builtin_neon_vtbl1_v:
4700     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
4701                         Ops, "vtbl1");
4702   case ARM::BI__builtin_neon_vtbl2_v:
4703     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
4704                         Ops, "vtbl2");
4705   case ARM::BI__builtin_neon_vtbl3_v:
4706     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
4707                         Ops, "vtbl3");
4708   case ARM::BI__builtin_neon_vtbl4_v:
4709     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
4710                         Ops, "vtbl4");
4711   case ARM::BI__builtin_neon_vtbx1_v:
4712     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
4713                         Ops, "vtbx1");
4714   case ARM::BI__builtin_neon_vtbx2_v:
4715     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
4716                         Ops, "vtbx2");
4717   case ARM::BI__builtin_neon_vtbx3_v:
4718     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
4719                         Ops, "vtbx3");
4720   case ARM::BI__builtin_neon_vtbx4_v:
4721     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
4722                         Ops, "vtbx4");
4723   case ARM::BI__builtin_neon_vtst_v:
4724   case ARM::BI__builtin_neon_vtstq_v: {
4725     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4726     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4727     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
4728     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
4729                                 ConstantAggregateZero::get(Ty));
4730     return Builder.CreateSExt(Ops[0], Ty, "vtst");
4731   }
4732   case ARM::BI__builtin_neon_vtrn_v:
4733   case ARM::BI__builtin_neon_vtrnq_v: {
4734     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4735     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4736     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4737     Value *SV = 0;
4738 
4739     for (unsigned vi = 0; vi != 2; ++vi) {
4740       SmallVector<Constant*, 16> Indices;
4741       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4742         Indices.push_back(Builder.getInt32(i+vi));
4743         Indices.push_back(Builder.getInt32(i+e+vi));
4744       }
4745       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
4746       SV = llvm::ConstantVector::get(Indices);
4747       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
4748       SV = Builder.CreateStore(SV, Addr);
4749     }
4750     return SV;
4751   }
4752   case ARM::BI__builtin_neon_vuzp_v:
4753   case ARM::BI__builtin_neon_vuzpq_v: {
4754     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4755     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4756     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4757     Value *SV = 0;
4758 
4759     for (unsigned vi = 0; vi != 2; ++vi) {
4760       SmallVector<Constant*, 16> Indices;
4761       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
4762         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
4763 
4764       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
4765       SV = llvm::ConstantVector::get(Indices);
4766       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
4767       SV = Builder.CreateStore(SV, Addr);
4768     }
4769     return SV;
4770   }
4771   case ARM::BI__builtin_neon_vzip_v:
4772   case ARM::BI__builtin_neon_vzipq_v: {
4773     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
4774     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4775     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4776     Value *SV = 0;
4777 
4778     for (unsigned vi = 0; vi != 2; ++vi) {
4779       SmallVector<Constant*, 16> Indices;
4780       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
4781         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
4782         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
4783       }
4784       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
4785       SV = llvm::ConstantVector::get(Indices);
4786       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
4787       SV = Builder.CreateStore(SV, Addr);
4788     }
4789     return SV;
4790   }
4791   }
4792 }
4793 
4794 llvm::Value *CodeGenFunction::
4795 BuildVector(ArrayRef<llvm::Value*> Ops) {
4796   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
4797          "Not a power-of-two sized vector!");
4798   bool AllConstants = true;
4799   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
4800     AllConstants &= isa<Constant>(Ops[i]);
4801 
4802   // If this is a constant vector, create a ConstantVector.
4803   if (AllConstants) {
4804     SmallVector<llvm::Constant*, 16> CstOps;
4805     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4806       CstOps.push_back(cast<Constant>(Ops[i]));
4807     return llvm::ConstantVector::get(CstOps);
4808   }
4809 
4810   // Otherwise, insertelement the values to build the vector.
4811   Value *Result =
4812     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
4813 
4814   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4815     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
4816 
4817   return Result;
4818 }
4819 
4820 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
4821                                            const CallExpr *E) {
4822   SmallVector<Value*, 4> Ops;
4823 
4824   // Find out if any arguments are required to be integer constant expressions.
4825   unsigned ICEArguments = 0;
4826   ASTContext::GetBuiltinTypeError Error;
4827   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4828   assert(Error == ASTContext::GE_None && "Should not codegen an error");
4829 
4830   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
4831     // If this is a normal argument, just emit it as a scalar.
4832     if ((ICEArguments & (1 << i)) == 0) {
4833       Ops.push_back(EmitScalarExpr(E->getArg(i)));
4834       continue;
4835     }
4836 
4837     // If this is required to be a constant, constant fold it so that we know
4838     // that the generated intrinsic gets a ConstantInt.
4839     llvm::APSInt Result;
4840     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
4841     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
4842     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
4843   }
4844 
4845   switch (BuiltinID) {
4846   default: return 0;
4847   case X86::BI__builtin_ia32_vec_init_v8qi:
4848   case X86::BI__builtin_ia32_vec_init_v4hi:
4849   case X86::BI__builtin_ia32_vec_init_v2si:
4850     return Builder.CreateBitCast(BuildVector(Ops),
4851                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
4852   case X86::BI__builtin_ia32_vec_ext_v2si:
4853     return Builder.CreateExtractElement(Ops[0],
4854                                   llvm::ConstantInt::get(Ops[1]->getType(), 0));
4855   case X86::BI__builtin_ia32_ldmxcsr: {
4856     Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
4857     Builder.CreateStore(Ops[0], Tmp);
4858     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
4859                               Builder.CreateBitCast(Tmp, Int8PtrTy));
4860   }
4861   case X86::BI__builtin_ia32_stmxcsr: {
4862     Value *Tmp = CreateMemTemp(E->getType());
4863     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
4864                        Builder.CreateBitCast(Tmp, Int8PtrTy));
4865     return Builder.CreateLoad(Tmp, "stmxcsr");
4866   }
4867   case X86::BI__builtin_ia32_storehps:
4868   case X86::BI__builtin_ia32_storelps: {
4869     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
4870     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
4871 
4872     // cast val v2i64
4873     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
4874 
4875     // extract (0, 1)
4876     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
4877     llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
4878     Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
4879 
4880     // cast pointer to i64 & store
4881     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
4882     return Builder.CreateStore(Ops[1], Ops[0]);
4883   }
4884   case X86::BI__builtin_ia32_palignr: {
4885     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
4886 
4887     // If palignr is shifting the pair of input vectors less than 9 bytes,
4888     // emit a shuffle instruction.
4889     if (shiftVal <= 8) {
4890       SmallVector<llvm::Constant*, 8> Indices;
4891       for (unsigned i = 0; i != 8; ++i)
4892         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
4893 
4894       Value* SV = llvm::ConstantVector::get(Indices);
4895       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
4896     }
4897 
4898     // If palignr is shifting the pair of input vectors more than 8 but less
4899     // than 16 bytes, emit a logical right shift of the destination.
4900     if (shiftVal < 16) {
4901       // MMX has these as 1 x i64 vectors for some odd optimization reasons.
4902       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
4903 
4904       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
4905       Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
4906 
4907       // create i32 constant
4908       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
4909       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
4910     }
4911 
4912     // If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
4913     return llvm::Constant::getNullValue(ConvertType(E->getType()));
4914   }
4915   case X86::BI__builtin_ia32_palignr128: {
4916     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
4917 
4918     // If palignr is shifting the pair of input vectors less than 17 bytes,
4919     // emit a shuffle instruction.
4920     if (shiftVal <= 16) {
4921       SmallVector<llvm::Constant*, 16> Indices;
4922       for (unsigned i = 0; i != 16; ++i)
4923         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
4924 
4925       Value* SV = llvm::ConstantVector::get(Indices);
4926       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
4927     }
4928 
4929     // If palignr is shifting the pair of input vectors more than 16 but less
4930     // than 32 bytes, emit a logical right shift of the destination.
4931     if (shiftVal < 32) {
4932       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
4933 
4934       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
4935       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
4936 
4937       // create i32 constant
4938       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
4939       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
4940     }
4941 
4942     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
4943     return llvm::Constant::getNullValue(ConvertType(E->getType()));
4944   }
4945   case X86::BI__builtin_ia32_palignr256: {
4946     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
4947 
4948     // If palignr is shifting the pair of input vectors less than 17 bytes,
4949     // emit a shuffle instruction.
4950     if (shiftVal <= 16) {
4951       SmallVector<llvm::Constant*, 32> Indices;
4952       // 256-bit palignr operates on 128-bit lanes so we need to handle that
4953       for (unsigned l = 0; l != 2; ++l) {
4954         unsigned LaneStart = l * 16;
4955         unsigned LaneEnd = (l+1) * 16;
4956         for (unsigned i = 0; i != 16; ++i) {
4957           unsigned Idx = shiftVal + i + LaneStart;
4958           if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand
4959           Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx));
4960         }
4961       }
4962 
4963       Value* SV = llvm::ConstantVector::get(Indices);
4964       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
4965     }
4966 
4967     // If palignr is shifting the pair of input vectors more than 16 but less
4968     // than 32 bytes, emit a logical right shift of the destination.
4969     if (shiftVal < 32) {
4970       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4);
4971 
4972       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
4973       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
4974 
4975       // create i32 constant
4976       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq);
4977       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
4978     }
4979 
4980     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
4981     return llvm::Constant::getNullValue(ConvertType(E->getType()));
4982   }
4983   case X86::BI__builtin_ia32_movntps:
4984   case X86::BI__builtin_ia32_movntps256:
4985   case X86::BI__builtin_ia32_movntpd:
4986   case X86::BI__builtin_ia32_movntpd256:
4987   case X86::BI__builtin_ia32_movntdq:
4988   case X86::BI__builtin_ia32_movntdq256:
4989   case X86::BI__builtin_ia32_movnti:
4990   case X86::BI__builtin_ia32_movnti64: {
4991     llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
4992                                            Builder.getInt32(1));
4993 
4994     // Convert the type of the pointer to a pointer to the stored type.
4995     Value *BC = Builder.CreateBitCast(Ops[0],
4996                                 llvm::PointerType::getUnqual(Ops[1]->getType()),
4997                                       "cast");
4998     StoreInst *SI = Builder.CreateStore(Ops[1], BC);
4999     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
5000 
5001     // If the operand is an integer, we can't assume alignment. Otherwise,
5002     // assume natural alignment.
5003     QualType ArgTy = E->getArg(1)->getType();
5004     unsigned Align;
5005     if (ArgTy->isIntegerType())
5006       Align = 1;
5007     else
5008       Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
5009     SI->setAlignment(Align);
5010     return SI;
5011   }
5012   // 3DNow!
5013   case X86::BI__builtin_ia32_pswapdsf:
5014   case X86::BI__builtin_ia32_pswapdsi: {
5015     const char *name = 0;
5016     Intrinsic::ID ID = Intrinsic::not_intrinsic;
5017     switch(BuiltinID) {
5018     default: llvm_unreachable("Unsupported intrinsic!");
5019     case X86::BI__builtin_ia32_pswapdsf:
5020     case X86::BI__builtin_ia32_pswapdsi:
5021       name = "pswapd";
5022       ID = Intrinsic::x86_3dnowa_pswapd;
5023       break;
5024     }
5025     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
5026     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
5027     llvm::Function *F = CGM.getIntrinsic(ID);
5028     return Builder.CreateCall(F, Ops, name);
5029   }
5030   case X86::BI__builtin_ia32_rdrand16_step:
5031   case X86::BI__builtin_ia32_rdrand32_step:
5032   case X86::BI__builtin_ia32_rdrand64_step:
5033   case X86::BI__builtin_ia32_rdseed16_step:
5034   case X86::BI__builtin_ia32_rdseed32_step:
5035   case X86::BI__builtin_ia32_rdseed64_step: {
5036     Intrinsic::ID ID;
5037     switch (BuiltinID) {
5038     default: llvm_unreachable("Unsupported intrinsic!");
5039     case X86::BI__builtin_ia32_rdrand16_step:
5040       ID = Intrinsic::x86_rdrand_16;
5041       break;
5042     case X86::BI__builtin_ia32_rdrand32_step:
5043       ID = Intrinsic::x86_rdrand_32;
5044       break;
5045     case X86::BI__builtin_ia32_rdrand64_step:
5046       ID = Intrinsic::x86_rdrand_64;
5047       break;
5048     case X86::BI__builtin_ia32_rdseed16_step:
5049       ID = Intrinsic::x86_rdseed_16;
5050       break;
5051     case X86::BI__builtin_ia32_rdseed32_step:
5052       ID = Intrinsic::x86_rdseed_32;
5053       break;
5054     case X86::BI__builtin_ia32_rdseed64_step:
5055       ID = Intrinsic::x86_rdseed_64;
5056       break;
5057     }
5058 
5059     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
5060     Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
5061     return Builder.CreateExtractValue(Call, 1);
5062   }
5063   // AVX2 broadcast
5064   case X86::BI__builtin_ia32_vbroadcastsi256: {
5065     Value *VecTmp = CreateMemTemp(E->getArg(0)->getType());
5066     Builder.CreateStore(Ops[0], VecTmp);
5067     Value *F = CGM.getIntrinsic(Intrinsic::x86_avx2_vbroadcasti128);
5068     return Builder.CreateCall(F, Builder.CreateBitCast(VecTmp, Int8PtrTy));
5069   }
5070   }
5071 }
5072 
5073 
5074 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
5075                                            const CallExpr *E) {
5076   SmallVector<Value*, 4> Ops;
5077 
5078   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
5079     Ops.push_back(EmitScalarExpr(E->getArg(i)));
5080 
5081   Intrinsic::ID ID = Intrinsic::not_intrinsic;
5082 
5083   switch (BuiltinID) {
5084   default: return 0;
5085 
5086   // vec_ld, vec_lvsl, vec_lvsr
5087   case PPC::BI__builtin_altivec_lvx:
5088   case PPC::BI__builtin_altivec_lvxl:
5089   case PPC::BI__builtin_altivec_lvebx:
5090   case PPC::BI__builtin_altivec_lvehx:
5091   case PPC::BI__builtin_altivec_lvewx:
5092   case PPC::BI__builtin_altivec_lvsl:
5093   case PPC::BI__builtin_altivec_lvsr:
5094   {
5095     Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
5096 
5097     Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
5098     Ops.pop_back();
5099 
5100     switch (BuiltinID) {
5101     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
5102     case PPC::BI__builtin_altivec_lvx:
5103       ID = Intrinsic::ppc_altivec_lvx;
5104       break;
5105     case PPC::BI__builtin_altivec_lvxl:
5106       ID = Intrinsic::ppc_altivec_lvxl;
5107       break;
5108     case PPC::BI__builtin_altivec_lvebx:
5109       ID = Intrinsic::ppc_altivec_lvebx;
5110       break;
5111     case PPC::BI__builtin_altivec_lvehx:
5112       ID = Intrinsic::ppc_altivec_lvehx;
5113       break;
5114     case PPC::BI__builtin_altivec_lvewx:
5115       ID = Intrinsic::ppc_altivec_lvewx;
5116       break;
5117     case PPC::BI__builtin_altivec_lvsl:
5118       ID = Intrinsic::ppc_altivec_lvsl;
5119       break;
5120     case PPC::BI__builtin_altivec_lvsr:
5121       ID = Intrinsic::ppc_altivec_lvsr;
5122       break;
5123     }
5124     llvm::Function *F = CGM.getIntrinsic(ID);
5125     return Builder.CreateCall(F, Ops, "");
5126   }
5127 
5128   // vec_st
5129   case PPC::BI__builtin_altivec_stvx:
5130   case PPC::BI__builtin_altivec_stvxl:
5131   case PPC::BI__builtin_altivec_stvebx:
5132   case PPC::BI__builtin_altivec_stvehx:
5133   case PPC::BI__builtin_altivec_stvewx:
5134   {
5135     Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
5136     Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
5137     Ops.pop_back();
5138 
5139     switch (BuiltinID) {
5140     default: llvm_unreachable("Unsupported st intrinsic!");
5141     case PPC::BI__builtin_altivec_stvx:
5142       ID = Intrinsic::ppc_altivec_stvx;
5143       break;
5144     case PPC::BI__builtin_altivec_stvxl:
5145       ID = Intrinsic::ppc_altivec_stvxl;
5146       break;
5147     case PPC::BI__builtin_altivec_stvebx:
5148       ID = Intrinsic::ppc_altivec_stvebx;
5149       break;
5150     case PPC::BI__builtin_altivec_stvehx:
5151       ID = Intrinsic::ppc_altivec_stvehx;
5152       break;
5153     case PPC::BI__builtin_altivec_stvewx:
5154       ID = Intrinsic::ppc_altivec_stvewx;
5155       break;
5156     }
5157     llvm::Function *F = CGM.getIntrinsic(ID);
5158     return Builder.CreateCall(F, Ops, "");
5159   }
5160   }
5161 }
5162